2010-04-07 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43 #include "plugin.h"
44 #include "gc.h"
45 #include "icf.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 const char* program_name;
52
53 void
54 gold_exit(bool status)
55 {
56 if (parameters != NULL
57 && parameters->options_valid()
58 && parameters->options().has_plugins())
59 parameters->options().plugins()->cleanup();
60 if (!status && parameters != NULL && parameters->options_valid())
61 unlink_if_ordinary(parameters->options().output_file_name());
62 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
63 }
64
65 void
66 gold_nomem()
67 {
68 // We are out of memory, so try hard to print a reasonable message.
69 // Note that we don't try to translate this message, since the
70 // translation process itself will require memory.
71
72 // LEN only exists to avoid a pointless warning when write is
73 // declared with warn_use_result, as when compiling with
74 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
75 // work, at least not with gcc 4.3.0.
76
77 ssize_t len = write(2, program_name, strlen(program_name));
78 if (len >= 0)
79 {
80 const char* const s = ": out of memory\n";
81 len = write(2, s, strlen(s));
82 }
83 gold_exit(false);
84 }
85
86 // Handle an unreachable case.
87
88 void
89 do_gold_unreachable(const char* filename, int lineno, const char* function)
90 {
91 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
92 program_name, function, filename, lineno);
93 gold_exit(false);
94 }
95
96 // This class arranges to run the functions done in the middle of the
97 // link. It is just a closure.
98
99 class Middle_runner : public Task_function_runner
100 {
101 public:
102 Middle_runner(const General_options& options,
103 const Input_objects* input_objects,
104 Symbol_table* symtab,
105 Layout* layout, Mapfile* mapfile)
106 : options_(options), input_objects_(input_objects), symtab_(symtab),
107 layout_(layout), mapfile_(mapfile)
108 { }
109
110 void
111 run(Workqueue*, const Task*);
112
113 private:
114 const General_options& options_;
115 const Input_objects* input_objects_;
116 Symbol_table* symtab_;
117 Layout* layout_;
118 Mapfile* mapfile_;
119 };
120
121 void
122 Middle_runner::run(Workqueue* workqueue, const Task* task)
123 {
124 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
125 this->layout_, workqueue, this->mapfile_);
126 }
127
128 // This class arranges the tasks to process the relocs for garbage collection.
129
130 class Gc_runner : public Task_function_runner
131 {
132 public:
133 Gc_runner(const General_options& options,
134 const Input_objects* input_objects,
135 Symbol_table* symtab,
136 Layout* layout, Mapfile* mapfile)
137 : options_(options), input_objects_(input_objects), symtab_(symtab),
138 layout_(layout), mapfile_(mapfile)
139 { }
140
141 void
142 run(Workqueue*, const Task*);
143
144 private:
145 const General_options& options_;
146 const Input_objects* input_objects_;
147 Symbol_table* symtab_;
148 Layout* layout_;
149 Mapfile* mapfile_;
150 };
151
152 void
153 Gc_runner::run(Workqueue* workqueue, const Task* task)
154 {
155 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
156 this->symtab_, this->layout_, workqueue,
157 this->mapfile_);
158 }
159
160 // Queue up the initial set of tasks for this link job.
161
162 void
163 queue_initial_tasks(const General_options& options,
164 Dirsearch& search_path,
165 const Command_line& cmdline,
166 Workqueue* workqueue, Input_objects* input_objects,
167 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
168 {
169 if (cmdline.begin() == cmdline.end())
170 {
171 if (options.printed_version())
172 gold_exit(true);
173 gold_fatal(_("no input files"));
174 }
175
176 int thread_count = options.thread_count_initial();
177 if (thread_count == 0)
178 thread_count = cmdline.number_of_input_files();
179 workqueue->set_thread_count(thread_count);
180
181 if (cmdline.options().incremental())
182 {
183 Incremental_checker incremental_checker(
184 parameters->options().output_file_name(),
185 layout->incremental_inputs());
186 if (incremental_checker.can_incrementally_link_output_file())
187 {
188 // TODO: remove when incremental linking implemented.
189 printf("Incremental linking might be possible "
190 "(not implemented yet)\n");
191 }
192 // TODO: If we decide on an incremental build, fewer tasks
193 // should be scheduled.
194 }
195
196 // Read the input files. We have to add the symbols to the symbol
197 // table in order. We do this by creating a separate blocker for
198 // each input file. We associate the blocker with the following
199 // input file, to give us a convenient place to delete it.
200 Task_token* this_blocker = NULL;
201 for (Command_line::const_iterator p = cmdline.begin();
202 p != cmdline.end();
203 ++p)
204 {
205 Task_token* next_blocker = new Task_token(true);
206 next_blocker->add_blocker();
207 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
208 &search_path, 0, mapfile, &*p, NULL,
209 NULL, this_blocker, next_blocker));
210 this_blocker = next_blocker;
211 }
212
213 if (options.has_plugins())
214 {
215 Task_token* next_blocker = new Task_token(true);
216 next_blocker->add_blocker();
217 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
218 &search_path, mapfile, this_blocker,
219 next_blocker));
220 this_blocker = next_blocker;
221 }
222
223 if (parameters->options().relocatable()
224 && (parameters->options().gc_sections()
225 || parameters->options().icf_enabled()))
226 gold_error(_("cannot mix -r with --gc-sections or --icf"));
227
228 if (parameters->options().gc_sections()
229 || parameters->options().icf_enabled())
230 {
231 workqueue->queue(new Task_function(new Gc_runner(options,
232 input_objects,
233 symtab,
234 layout,
235 mapfile),
236 this_blocker,
237 "Task_function Gc_runner"));
238 }
239 else
240 {
241 workqueue->queue(new Task_function(new Middle_runner(options,
242 input_objects,
243 symtab,
244 layout,
245 mapfile),
246 this_blocker,
247 "Task_function Middle_runner"));
248 }
249 }
250
251 // Queue up a set of tasks to be done before queueing the middle set
252 // of tasks. This is only necessary when garbage collection
253 // (--gc-sections) of unused sections is desired. The relocs are read
254 // and processed here early to determine the garbage sections before the
255 // relocs can be scanned in later tasks.
256
257 void
258 queue_middle_gc_tasks(const General_options& options,
259 const Task* ,
260 const Input_objects* input_objects,
261 Symbol_table* symtab,
262 Layout* layout,
263 Workqueue* workqueue,
264 Mapfile* mapfile)
265 {
266 // Read_relocs for all the objects must be done and processed to find
267 // unused sections before any scanning of the relocs can take place.
268 Task_token* this_blocker = NULL;
269 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
270 p != input_objects->relobj_end();
271 ++p)
272 {
273 Task_token* next_blocker = new Task_token(true);
274 next_blocker->add_blocker();
275 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
276 next_blocker));
277 this_blocker = next_blocker;
278 }
279 workqueue->queue(new Task_function(new Middle_runner(options,
280 input_objects,
281 symtab,
282 layout,
283 mapfile),
284 this_blocker,
285 "Task_function Middle_runner"));
286 }
287
288 // Queue up the middle set of tasks. These are the tasks which run
289 // after all the input objects have been found and all the symbols
290 // have been read, but before we lay out the output file.
291
292 void
293 queue_middle_tasks(const General_options& options,
294 const Task* task,
295 const Input_objects* input_objects,
296 Symbol_table* symtab,
297 Layout* layout,
298 Workqueue* workqueue,
299 Mapfile* mapfile)
300 {
301 // Add any symbols named with -u options to the symbol table.
302 symtab->add_undefined_symbols_from_command_line();
303
304 // If garbage collection was chosen, relocs have been read and processed
305 // at this point by pre_middle_tasks. Layout can then be done for all
306 // objects.
307 if (parameters->options().gc_sections())
308 {
309 // Find the start symbol if any.
310 Symbol* start_sym;
311 if (parameters->options().entry())
312 start_sym = symtab->lookup(parameters->options().entry());
313 else
314 start_sym = symtab->lookup("_start");
315 if (start_sym != NULL)
316 {
317 bool is_ordinary;
318 unsigned int shndx = start_sym->shndx(&is_ordinary);
319 if (is_ordinary)
320 {
321 symtab->gc()->worklist().push(
322 Section_id(start_sym->object(), shndx));
323 }
324 }
325 // Symbols named with -u should not be considered garbage.
326 symtab->gc_mark_undef_symbols();
327 gold_assert(symtab->gc() != NULL);
328 // Do a transitive closure on all references to determine the worklist.
329 symtab->gc()->do_transitive_closure();
330 }
331
332 // If identical code folding (--icf) is chosen it makes sense to do it
333 // only after garbage collection (--gc-sections) as we do not want to
334 // be folding sections that will be garbage.
335 if (parameters->options().icf_enabled())
336 {
337 symtab->icf()->find_identical_sections(input_objects, symtab);
338 }
339
340 // Call Object::layout for the second time to determine the
341 // output_sections for all referenced input sections. When
342 // --gc-sections or --icf is turned on, Object::layout is
343 // called twice. It is called the first time when the
344 // symbols are added.
345 if (parameters->options().gc_sections()
346 || parameters->options().icf_enabled())
347 {
348 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
349 p != input_objects->relobj_end();
350 ++p)
351 {
352 (*p)->layout(symtab, layout, NULL);
353 }
354 }
355
356 // Layout deferred objects due to plugins.
357 if (parameters->options().has_plugins())
358 {
359 Plugin_manager* plugins = parameters->options().plugins();
360 gold_assert(plugins != NULL);
361 plugins->layout_deferred_objects();
362 }
363
364 if (parameters->options().gc_sections()
365 || parameters->options().icf_enabled())
366 {
367 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
368 p != input_objects->relobj_end();
369 ++p)
370 {
371 // Update the value of output_section stored in rd.
372 Read_relocs_data *rd = (*p)->get_relocs_data();
373 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
374 q != rd->relocs.end();
375 ++q)
376 {
377 q->output_section = (*p)->output_section(q->data_shndx);
378 q->needs_special_offset_handling =
379 (*p)->is_output_section_offset_invalid(q->data_shndx);
380 }
381 }
382 }
383
384 // We have to support the case of not seeing any input objects, and
385 // generate an empty file. Existing builds depend on being able to
386 // pass an empty archive to the linker and get an empty object file
387 // out. In order to do this we need to use a default target.
388 if (input_objects->number_of_input_objects() == 0)
389 parameters_force_valid_target();
390
391 int thread_count = options.thread_count_middle();
392 if (thread_count == 0)
393 thread_count = std::max(2, input_objects->number_of_input_objects());
394 workqueue->set_thread_count(thread_count);
395
396 // Now we have seen all the input files.
397 const bool doing_static_link =
398 (!input_objects->any_dynamic()
399 && !parameters->options().output_is_position_independent());
400 set_parameters_doing_static_link(doing_static_link);
401 if (!doing_static_link && options.is_static())
402 {
403 // We print out just the first .so we see; there may be others.
404 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
405 gold_error(_("cannot mix -static with dynamic object %s"),
406 (*input_objects->dynobj_begin())->name().c_str());
407 }
408 if (!doing_static_link && parameters->options().relocatable())
409 gold_fatal(_("cannot mix -r with dynamic object %s"),
410 (*input_objects->dynobj_begin())->name().c_str());
411 if (!doing_static_link
412 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
413 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
414 (*input_objects->dynobj_begin())->name().c_str());
415
416 if (parameters->options().relocatable())
417 {
418 Input_objects::Relobj_iterator p = input_objects->relobj_begin();
419 if (p != input_objects->relobj_end())
420 {
421 bool uses_split_stack = (*p)->uses_split_stack();
422 for (++p; p != input_objects->relobj_end(); ++p)
423 {
424 if ((*p)->uses_split_stack() != uses_split_stack)
425 gold_fatal(_("cannot mix split-stack '%s' and "
426 "non-split-stack '%s' when using -r"),
427 (*input_objects->relobj_begin())->name().c_str(),
428 (*p)->name().c_str());
429 }
430 }
431 }
432
433 if (is_debugging_enabled(DEBUG_SCRIPT))
434 layout->script_options()->print(stderr);
435
436 // For each dynamic object, record whether we've seen all the
437 // dynamic objects that it depends upon.
438 input_objects->check_dynamic_dependencies();
439
440 // See if any of the input definitions violate the One Definition Rule.
441 // TODO: if this is too slow, do this as a task, rather than inline.
442 symtab->detect_odr_violations(task, options.output_file_name());
443
444 // Do the --no-undefined-version check.
445 if (!parameters->options().undefined_version())
446 {
447 Script_options* so = layout->script_options();
448 so->version_script_info()->check_unmatched_names(symtab);
449 }
450
451 // Create any automatic note sections.
452 layout->create_notes();
453
454 // Create any output sections required by any linker script.
455 layout->create_script_sections();
456
457 // Define some sections and symbols needed for a dynamic link. This
458 // handles some cases we want to see before we read the relocs.
459 layout->create_initial_dynamic_sections(symtab);
460
461 // Define symbols from any linker scripts.
462 layout->define_script_symbols(symtab);
463
464 // Attach sections to segments.
465 layout->attach_sections_to_segments();
466
467 if (!parameters->options().relocatable())
468 {
469 // Predefine standard symbols.
470 define_standard_symbols(symtab, layout);
471
472 // Define __start and __stop symbols for output sections where
473 // appropriate.
474 layout->define_section_symbols(symtab);
475 }
476
477 // Make sure we have symbols for any required group signatures.
478 layout->define_group_signatures(symtab);
479
480 Task_token* this_blocker = NULL;
481
482 // Allocate common symbols. We use a blocker to run this before the
483 // Scan_relocs tasks, because it writes to the symbol table just as
484 // they do.
485 if (parameters->options().define_common())
486 {
487 this_blocker = new Task_token(true);
488 this_blocker->add_blocker();
489 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
490 this_blocker));
491 }
492
493 // If doing garbage collection, the relocations have already been read.
494 // Otherwise, read and scan the relocations.
495 if (parameters->options().gc_sections()
496 || parameters->options().icf_enabled())
497 {
498 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
499 p != input_objects->relobj_end();
500 ++p)
501 {
502 Task_token* next_blocker = new Task_token(true);
503 next_blocker->add_blocker();
504 workqueue->queue(new Scan_relocs(symtab, layout, *p,
505 (*p)->get_relocs_data(),
506 this_blocker, next_blocker));
507 this_blocker = next_blocker;
508 }
509 }
510 else
511 {
512 // Read the relocations of the input files. We do this to find
513 // which symbols are used by relocations which require a GOT and/or
514 // a PLT entry, or a COPY reloc. When we implement garbage
515 // collection we will do it here by reading the relocations in a
516 // breadth first search by references.
517 //
518 // We could also read the relocations during the first pass, and
519 // mark symbols at that time. That is how the old GNU linker works.
520 // Doing that is more complex, since we may later decide to discard
521 // some of the sections, and thus change our minds about the types
522 // of references made to the symbols.
523 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
524 p != input_objects->relobj_end();
525 ++p)
526 {
527 Task_token* next_blocker = new Task_token(true);
528 next_blocker->add_blocker();
529 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
530 next_blocker));
531 this_blocker = next_blocker;
532 }
533 }
534
535 if (this_blocker == NULL)
536 {
537 if (input_objects->number_of_relobjs() == 0)
538 {
539 // If we are given only archives in input, we have no regular
540 // objects and THIS_BLOCKER is NULL here. Create a dummy
541 // blocker here so that we can run the layout task immediately.
542 this_blocker = new Task_token(true);
543 }
544 else
545 {
546 // If we failed to open any input files, it's possible for
547 // THIS_BLOCKER to be NULL here. There's no real point in
548 // continuing if that happens.
549 gold_assert(parameters->errors()->error_count() > 0);
550 gold_exit(false);
551 }
552 }
553
554 // When all those tasks are complete, we can start laying out the
555 // output file.
556 // TODO(csilvers): figure out a more principled way to get the target
557 Target* target = const_cast<Target*>(&parameters->target());
558 workqueue->queue(new Task_function(new Layout_task_runner(options,
559 input_objects,
560 symtab,
561 target,
562 layout,
563 mapfile),
564 this_blocker,
565 "Task_function Layout_task_runner"));
566 }
567
568 // Queue up the final set of tasks. This is called at the end of
569 // Layout_task.
570
571 void
572 queue_final_tasks(const General_options& options,
573 const Input_objects* input_objects,
574 const Symbol_table* symtab,
575 Layout* layout,
576 Workqueue* workqueue,
577 Output_file* of)
578 {
579 int thread_count = options.thread_count_final();
580 if (thread_count == 0)
581 thread_count = std::max(2, input_objects->number_of_input_objects());
582 workqueue->set_thread_count(thread_count);
583
584 bool any_postprocessing_sections = layout->any_postprocessing_sections();
585
586 // Use a blocker to wait until all the input sections have been
587 // written out.
588 Task_token* input_sections_blocker = NULL;
589 if (!any_postprocessing_sections)
590 {
591 input_sections_blocker = new Task_token(true);
592 input_sections_blocker->add_blockers(input_objects->number_of_relobjs());
593 }
594
595 // Use a blocker to block any objects which have to wait for the
596 // output sections to complete before they can apply relocations.
597 Task_token* output_sections_blocker = new Task_token(true);
598 output_sections_blocker->add_blocker();
599
600 // Use a blocker to block the final cleanup task.
601 Task_token* final_blocker = new Task_token(true);
602 // Write_symbols_task, Write_sections_task, Write_data_task,
603 // Relocate_tasks.
604 final_blocker->add_blockers(3);
605 final_blocker->add_blockers(input_objects->number_of_relobjs());
606 if (!any_postprocessing_sections)
607 final_blocker->add_blocker();
608
609 // Queue a task to write out the symbol table.
610 workqueue->queue(new Write_symbols_task(layout,
611 symtab,
612 input_objects,
613 layout->sympool(),
614 layout->dynpool(),
615 of,
616 final_blocker));
617
618 // Queue a task to write out the output sections.
619 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
620 final_blocker));
621
622 // Queue a task to write out everything else.
623 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
624
625 // Queue a task for each input object to relocate the sections and
626 // write out the local symbols.
627 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
628 p != input_objects->relobj_end();
629 ++p)
630 workqueue->queue(new Relocate_task(symtab, layout, *p, of,
631 input_sections_blocker,
632 output_sections_blocker,
633 final_blocker));
634
635 // Queue a task to write out the output sections which depend on
636 // input sections. If there are any sections which require
637 // postprocessing, then we need to do this last, since it may resize
638 // the output file.
639 if (!any_postprocessing_sections)
640 {
641 Task* t = new Write_after_input_sections_task(layout, of,
642 input_sections_blocker,
643 final_blocker);
644 workqueue->queue(t);
645 }
646 else
647 {
648 Task_token *new_final_blocker = new Task_token(true);
649 new_final_blocker->add_blocker();
650 Task* t = new Write_after_input_sections_task(layout, of,
651 final_blocker,
652 new_final_blocker);
653 workqueue->queue(t);
654 final_blocker = new_final_blocker;
655 }
656
657 // Queue a task to close the output file. This will be blocked by
658 // FINAL_BLOCKER.
659 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
660 of),
661 final_blocker,
662 "Task_function Close_task_runner"));
663 }
664
665 } // End namespace gold.
This page took 0.04616 seconds and 5 git commands to generate.