* mapfile.cc: New file.
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43
44 namespace gold
45 {
46
47 const char* program_name;
48
49 void
50 gold_exit(bool status)
51 {
52 if (!status && parameters != NULL && parameters->options_valid())
53 unlink_if_ordinary(parameters->options().output_file_name());
54 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
55 }
56
57 void
58 gold_nomem()
59 {
60 // We are out of memory, so try hard to print a reasonable message.
61 // Note that we don't try to translate this message, since the
62 // translation process itself will require memory.
63
64 // LEN only exists to avoid a pointless warning when write is
65 // declared with warn_use_result, as when compiling with
66 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
67 // work, at least not with gcc 4.3.0.
68
69 ssize_t len = write(2, program_name, strlen(program_name));
70 if (len >= 0)
71 {
72 const char* const s = ": out of memory\n";
73 len = write(2, s, strlen(s));
74 }
75 gold_exit(false);
76 }
77
78 // Handle an unreachable case.
79
80 void
81 do_gold_unreachable(const char* filename, int lineno, const char* function)
82 {
83 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
84 program_name, function, filename, lineno);
85 gold_exit(false);
86 }
87
88 // This class arranges to run the functions done in the middle of the
89 // link. It is just a closure.
90
91 class Middle_runner : public Task_function_runner
92 {
93 public:
94 Middle_runner(const General_options& options,
95 const Input_objects* input_objects,
96 Symbol_table* symtab,
97 Layout* layout, Mapfile* mapfile)
98 : options_(options), input_objects_(input_objects), symtab_(symtab),
99 layout_(layout), mapfile_(mapfile)
100 { }
101
102 void
103 run(Workqueue*, const Task*);
104
105 private:
106 const General_options& options_;
107 const Input_objects* input_objects_;
108 Symbol_table* symtab_;
109 Layout* layout_;
110 Mapfile* mapfile_;
111 };
112
113 void
114 Middle_runner::run(Workqueue* workqueue, const Task* task)
115 {
116 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
117 this->layout_, workqueue, this->mapfile_);
118 }
119
120 // Queue up the initial set of tasks for this link job.
121
122 void
123 queue_initial_tasks(const General_options& options,
124 Dirsearch& search_path,
125 const Command_line& cmdline,
126 Workqueue* workqueue, Input_objects* input_objects,
127 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
128 {
129 if (cmdline.begin() == cmdline.end())
130 gold_fatal(_("no input files"));
131
132 int thread_count = options.thread_count_initial();
133 if (thread_count == 0)
134 thread_count = cmdline.number_of_input_files();
135 workqueue->set_thread_count(thread_count);
136
137 // Read the input files. We have to add the symbols to the symbol
138 // table in order. We do this by creating a separate blocker for
139 // each input file. We associate the blocker with the following
140 // input file, to give us a convenient place to delete it.
141 Task_token* this_blocker = NULL;
142 for (Command_line::const_iterator p = cmdline.begin();
143 p != cmdline.end();
144 ++p)
145 {
146 Task_token* next_blocker = new Task_token(true);
147 next_blocker->add_blocker();
148 workqueue->queue(new Read_symbols(options, input_objects, symtab, layout,
149 &search_path, mapfile, &*p, NULL,
150 this_blocker, next_blocker));
151 this_blocker = next_blocker;
152 }
153
154 workqueue->queue(new Task_function(new Middle_runner(options,
155 input_objects,
156 symtab,
157 layout,
158 mapfile),
159 this_blocker,
160 "Task_function Middle_runner"));
161 }
162
163 // Queue up the middle set of tasks. These are the tasks which run
164 // after all the input objects have been found and all the symbols
165 // have been read, but before we lay out the output file.
166
167 void
168 queue_middle_tasks(const General_options& options,
169 const Task* task,
170 const Input_objects* input_objects,
171 Symbol_table* symtab,
172 Layout* layout,
173 Workqueue* workqueue,
174 Mapfile* mapfile)
175 {
176 // We have to support the case of not seeing any input objects, and
177 // generate an empty file. Existing builds depend on being able to
178 // pass an empty archive to the linker and get an empty object file
179 // out. In order to do this we need to use a default target.
180 if (input_objects->number_of_input_objects() == 0)
181 set_parameters_target(&parameters->default_target());
182
183 int thread_count = options.thread_count_middle();
184 if (thread_count == 0)
185 thread_count = std::max(2, input_objects->number_of_input_objects());
186 workqueue->set_thread_count(thread_count);
187
188 // Now we have seen all the input files.
189 const bool doing_static_link = (!input_objects->any_dynamic()
190 && !parameters->options().shared());
191 set_parameters_doing_static_link(doing_static_link);
192 if (!doing_static_link && options.is_static())
193 {
194 // We print out just the first .so we see; there may be others.
195 gold_error(_("cannot mix -static with dynamic object %s"),
196 (*input_objects->dynobj_begin())->name().c_str());
197 }
198 if (!doing_static_link && parameters->options().relocatable())
199 gold_error(_("cannot mix -r with dynamic object %s"),
200 (*input_objects->dynobj_begin())->name().c_str());
201 if (!doing_static_link
202 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
203 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
204 (*input_objects->dynobj_begin())->name().c_str());
205
206 if (is_debugging_enabled(DEBUG_SCRIPT))
207 layout->script_options()->print(stderr);
208
209 // For each dynamic object, record whether we've seen all the
210 // dynamic objects that it depends upon.
211 input_objects->check_dynamic_dependencies();
212
213 // See if any of the input definitions violate the One Definition Rule.
214 // TODO: if this is too slow, do this as a task, rather than inline.
215 symtab->detect_odr_violations(task, options.output_file_name());
216
217 // Create any output sections required by any linker script.
218 layout->create_script_sections();
219
220 // Define some sections and symbols needed for a dynamic link. This
221 // handles some cases we want to see before we read the relocs.
222 layout->create_initial_dynamic_sections(symtab);
223
224 // Define symbols from any linker scripts.
225 layout->define_script_symbols(symtab);
226
227 // Add any symbols named with -u options to the symbol table.
228 symtab->add_undefined_symbols_from_command_line();
229
230 // Attach sections to segments.
231 layout->attach_sections_to_segments();
232
233 if (!parameters->options().relocatable())
234 {
235 // Predefine standard symbols.
236 define_standard_symbols(symtab, layout);
237
238 // Define __start and __stop symbols for output sections where
239 // appropriate.
240 layout->define_section_symbols(symtab);
241 }
242
243 // Make sure we have symbols for any required group signatures.
244 layout->define_group_signatures(symtab);
245
246 // Read the relocations of the input files. We do this to find
247 // which symbols are used by relocations which require a GOT and/or
248 // a PLT entry, or a COPY reloc. When we implement garbage
249 // collection we will do it here by reading the relocations in a
250 // breadth first search by references.
251 //
252 // We could also read the relocations during the first pass, and
253 // mark symbols at that time. That is how the old GNU linker works.
254 // Doing that is more complex, since we may later decide to discard
255 // some of the sections, and thus change our minds about the types
256 // of references made to the symbols.
257 Task_token* blocker = new Task_token(true);
258 Task_token* symtab_lock = new Task_token(false);
259 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
260 p != input_objects->relobj_end();
261 ++p)
262 {
263 // We can read and process the relocations in any order. But we
264 // only want one task to write to the symbol table at a time.
265 // So we queue up a task for each object to read the
266 // relocations. That task will in turn queue a task to wait
267 // until it can write to the symbol table.
268 blocker->add_blocker();
269 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
270 symtab_lock, blocker));
271 }
272
273 // Allocate common symbols. This requires write access to the
274 // symbol table, but is independent of the relocation processing.
275 if (parameters->options().define_common())
276 {
277 blocker->add_blocker();
278 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
279 symtab_lock, blocker));
280 }
281
282 // When all those tasks are complete, we can start laying out the
283 // output file.
284 // TODO(csilvers): figure out a more principled way to get the target
285 Target* target = const_cast<Target*>(&parameters->target());
286 workqueue->queue(new Task_function(new Layout_task_runner(options,
287 input_objects,
288 symtab,
289 target,
290 layout,
291 mapfile),
292 blocker,
293 "Task_function Layout_task_runner"));
294 }
295
296 // Queue up the final set of tasks. This is called at the end of
297 // Layout_task.
298
299 void
300 queue_final_tasks(const General_options& options,
301 const Input_objects* input_objects,
302 const Symbol_table* symtab,
303 Layout* layout,
304 Workqueue* workqueue,
305 Output_file* of)
306 {
307 int thread_count = options.thread_count_final();
308 if (thread_count == 0)
309 thread_count = std::max(2, input_objects->number_of_input_objects());
310 workqueue->set_thread_count(thread_count);
311
312 bool any_postprocessing_sections = layout->any_postprocessing_sections();
313
314 // Use a blocker to wait until all the input sections have been
315 // written out.
316 Task_token* input_sections_blocker = NULL;
317 if (!any_postprocessing_sections)
318 input_sections_blocker = new Task_token(true);
319
320 // Use a blocker to block any objects which have to wait for the
321 // output sections to complete before they can apply relocations.
322 Task_token* output_sections_blocker = new Task_token(true);
323
324 // Use a blocker to block the final cleanup task.
325 Task_token* final_blocker = new Task_token(true);
326
327 // Queue a task to write out the symbol table.
328 final_blocker->add_blocker();
329 workqueue->queue(new Write_symbols_task(layout,
330 symtab,
331 input_objects,
332 layout->sympool(),
333 layout->dynpool(),
334 of,
335 final_blocker));
336
337 // Queue a task to write out the output sections.
338 output_sections_blocker->add_blocker();
339 final_blocker->add_blocker();
340 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
341 final_blocker));
342
343 // Queue a task to write out everything else.
344 final_blocker->add_blocker();
345 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
346
347 // Queue a task for each input object to relocate the sections and
348 // write out the local symbols.
349 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
350 p != input_objects->relobj_end();
351 ++p)
352 {
353 if (input_sections_blocker != NULL)
354 input_sections_blocker->add_blocker();
355 final_blocker->add_blocker();
356 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
357 input_sections_blocker,
358 output_sections_blocker,
359 final_blocker));
360 }
361
362 // Queue a task to write out the output sections which depend on
363 // input sections. If there are any sections which require
364 // postprocessing, then we need to do this last, since it may resize
365 // the output file.
366 if (!any_postprocessing_sections)
367 {
368 final_blocker->add_blocker();
369 Task* t = new Write_after_input_sections_task(layout, of,
370 input_sections_blocker,
371 final_blocker);
372 workqueue->queue(t);
373 }
374 else
375 {
376 Task_token *new_final_blocker = new Task_token(true);
377 new_final_blocker->add_blocker();
378 Task* t = new Write_after_input_sections_task(layout, of,
379 final_blocker,
380 new_final_blocker);
381 workqueue->queue(t);
382 final_blocker = new_final_blocker;
383 }
384
385 // Queue a task to close the output file. This will be blocked by
386 // FINAL_BLOCKER.
387 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
388 of),
389 final_blocker,
390 "Task_function Close_task_runner"));
391 }
392
393 } // End namespace gold.
This page took 0.037993 seconds and 5 git commands to generate.