elfcpp/:
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43 #include "plugin.h"
44 #include "icf.h"
45 #include "incremental.h"
46
47 namespace gold
48 {
49
50 const char* program_name;
51
52 void
53 gold_exit(bool status)
54 {
55 if (parameters != NULL
56 && parameters->options_valid()
57 && parameters->options().has_plugins())
58 parameters->options().plugins()->cleanup();
59 if (!status && parameters != NULL && parameters->options_valid())
60 unlink_if_ordinary(parameters->options().output_file_name());
61 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
62 }
63
64 void
65 gold_nomem()
66 {
67 // We are out of memory, so try hard to print a reasonable message.
68 // Note that we don't try to translate this message, since the
69 // translation process itself will require memory.
70
71 // LEN only exists to avoid a pointless warning when write is
72 // declared with warn_use_result, as when compiling with
73 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
74 // work, at least not with gcc 4.3.0.
75
76 ssize_t len = write(2, program_name, strlen(program_name));
77 if (len >= 0)
78 {
79 const char* const s = ": out of memory\n";
80 len = write(2, s, strlen(s));
81 }
82 gold_exit(false);
83 }
84
85 // Handle an unreachable case.
86
87 void
88 do_gold_unreachable(const char* filename, int lineno, const char* function)
89 {
90 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
91 program_name, function, filename, lineno);
92 gold_exit(false);
93 }
94
95 // This class arranges to run the functions done in the middle of the
96 // link. It is just a closure.
97
98 class Middle_runner : public Task_function_runner
99 {
100 public:
101 Middle_runner(const General_options& options,
102 const Input_objects* input_objects,
103 Symbol_table* symtab,
104 Layout* layout, Mapfile* mapfile)
105 : options_(options), input_objects_(input_objects), symtab_(symtab),
106 layout_(layout), mapfile_(mapfile)
107 { }
108
109 void
110 run(Workqueue*, const Task*);
111
112 private:
113 const General_options& options_;
114 const Input_objects* input_objects_;
115 Symbol_table* symtab_;
116 Layout* layout_;
117 Mapfile* mapfile_;
118 };
119
120 void
121 Middle_runner::run(Workqueue* workqueue, const Task* task)
122 {
123 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
124 this->layout_, workqueue, this->mapfile_);
125 }
126
127 // This class arranges the tasks to process the relocs for garbage collection.
128
129 class Gc_runner : public Task_function_runner
130 {
131 public:
132 Gc_runner(const General_options& options,
133 const Input_objects* input_objects,
134 Symbol_table* symtab,
135 Layout* layout, Mapfile* mapfile)
136 : options_(options), input_objects_(input_objects), symtab_(symtab),
137 layout_(layout), mapfile_(mapfile)
138 { }
139
140 void
141 run(Workqueue*, const Task*);
142
143 private:
144 const General_options& options_;
145 const Input_objects* input_objects_;
146 Symbol_table* symtab_;
147 Layout* layout_;
148 Mapfile* mapfile_;
149 };
150
151 void
152 Gc_runner::run(Workqueue* workqueue, const Task* task)
153 {
154 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
155 this->symtab_, this->layout_, workqueue,
156 this->mapfile_);
157 }
158
159 // Queue up the initial set of tasks for this link job.
160
161 void
162 queue_initial_tasks(const General_options& options,
163 Dirsearch& search_path,
164 const Command_line& cmdline,
165 Workqueue* workqueue, Input_objects* input_objects,
166 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
167 {
168 if (cmdline.begin() == cmdline.end())
169 {
170 if (options.printed_version())
171 gold_exit(true);
172 gold_fatal(_("no input files"));
173 }
174
175 int thread_count = options.thread_count_initial();
176 if (thread_count == 0)
177 thread_count = cmdline.number_of_input_files();
178 workqueue->set_thread_count(thread_count);
179
180 if (cmdline.options().incremental())
181 {
182 Incremental_checker incremental_checker(
183 parameters->options().output_file_name(),
184 layout->incremental_inputs());
185 if (incremental_checker.can_incrementally_link_output_file())
186 {
187 // TODO: remove when incremental linking implemented.
188 printf("Incremental linking might be possible "
189 "(not implemented yet)\n");
190 }
191 // TODO: If we decide on an incremental build, fewer tasks
192 // should be scheduled.
193 }
194
195 // Read the input files. We have to add the symbols to the symbol
196 // table in order. We do this by creating a separate blocker for
197 // each input file. We associate the blocker with the following
198 // input file, to give us a convenient place to delete it.
199 Task_token* this_blocker = NULL;
200 for (Command_line::const_iterator p = cmdline.begin();
201 p != cmdline.end();
202 ++p)
203 {
204 Task_token* next_blocker = new Task_token(true);
205 next_blocker->add_blocker();
206 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
207 &search_path, 0, mapfile, &*p, NULL,
208 this_blocker, next_blocker));
209 this_blocker = next_blocker;
210 }
211
212 if (options.has_plugins())
213 {
214 Task_token* next_blocker = new Task_token(true);
215 next_blocker->add_blocker();
216 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
217 &search_path, mapfile, this_blocker,
218 next_blocker));
219 this_blocker = next_blocker;
220 }
221
222 if (parameters->options().relocatable()
223 && (parameters->options().gc_sections() || parameters->options().icf()))
224 gold_error(_("cannot mix -r with --gc-sections or --icf"));
225
226 if (parameters->options().gc_sections() || parameters->options().icf())
227 {
228 workqueue->queue(new Task_function(new Gc_runner(options,
229 input_objects,
230 symtab,
231 layout,
232 mapfile),
233 this_blocker,
234 "Task_function Gc_runner"));
235 }
236 else
237 {
238 workqueue->queue(new Task_function(new Middle_runner(options,
239 input_objects,
240 symtab,
241 layout,
242 mapfile),
243 this_blocker,
244 "Task_function Middle_runner"));
245 }
246 }
247
248 // Queue up a set of tasks to be done before queueing the middle set
249 // of tasks. This is only necessary when garbage collection
250 // (--gc-sections) of unused sections is desired. The relocs are read
251 // and processed here early to determine the garbage sections before the
252 // relocs can be scanned in later tasks.
253
254 void
255 queue_middle_gc_tasks(const General_options& options,
256 const Task* ,
257 const Input_objects* input_objects,
258 Symbol_table* symtab,
259 Layout* layout,
260 Workqueue* workqueue,
261 Mapfile* mapfile)
262 {
263 // Read_relocs for all the objects must be done and processed to find
264 // unused sections before any scanning of the relocs can take place.
265 Task_token* blocker = new Task_token(true);
266 Task_token* symtab_lock = new Task_token(false);
267 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
268 p != input_objects->relobj_end();
269 ++p)
270 {
271 // We can read and process the relocations in any order.
272 blocker->add_blocker();
273 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
274 symtab_lock, blocker));
275 }
276
277 Task_token* this_blocker = new Task_token(true);
278 workqueue->queue(new Task_function(new Middle_runner(options,
279 input_objects,
280 symtab,
281 layout,
282 mapfile),
283 this_blocker,
284 "Task_function Middle_runner"));
285 }
286
287 // Queue up the middle set of tasks. These are the tasks which run
288 // after all the input objects have been found and all the symbols
289 // have been read, but before we lay out the output file.
290
291 void
292 queue_middle_tasks(const General_options& options,
293 const Task* task,
294 const Input_objects* input_objects,
295 Symbol_table* symtab,
296 Layout* layout,
297 Workqueue* workqueue,
298 Mapfile* mapfile)
299 {
300 // Add any symbols named with -u options to the symbol table.
301 symtab->add_undefined_symbols_from_command_line();
302
303 // If garbage collection was chosen, relocs have been read and processed
304 // at this point by pre_middle_tasks. Layout can then be done for all
305 // objects.
306 if (parameters->options().gc_sections())
307 {
308 // Find the start symbol if any.
309 Symbol* start_sym;
310 if (parameters->options().entry())
311 start_sym = symtab->lookup(parameters->options().entry());
312 else
313 start_sym = symtab->lookup("_start");
314 if (start_sym !=NULL)
315 {
316 bool is_ordinary;
317 unsigned int shndx = start_sym->shndx(&is_ordinary);
318 if (is_ordinary)
319 {
320 symtab->gc()->worklist().push(
321 Section_id(start_sym->object(), shndx));
322 }
323 }
324 // Symbols named with -u should not be considered garbage.
325 symtab->gc_mark_undef_symbols();
326 gold_assert(symtab->gc() != NULL);
327 // Do a transitive closure on all references to determine the worklist.
328 symtab->gc()->do_transitive_closure();
329 }
330
331 // If identical code folding (--icf) is chosen it makes sense to do it
332 // only after garbage collection (--gc-sections) as we do not want to
333 // be folding sections that will be garbage.
334 if (parameters->options().icf())
335 {
336 symtab->icf()->find_identical_sections(input_objects, symtab);
337 }
338
339 // Call Object::layout for the second time to determine the
340 // output_sections for all referenced input sections. When
341 // --gc-sections or --icf is turned on, Object::layout is
342 // called twice. It is called the first time when the
343 // symbols are added.
344 if (parameters->options().gc_sections() || parameters->options().icf())
345 {
346 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
347 p != input_objects->relobj_end();
348 ++p)
349 {
350 (*p)->layout(symtab, layout, NULL);
351 }
352 }
353
354 // Layout deferred objects due to plugins.
355 if (parameters->options().has_plugins())
356 {
357 Plugin_manager* plugins = parameters->options().plugins();
358 gold_assert(plugins != NULL);
359 plugins->layout_deferred_objects();
360 }
361
362 if (parameters->options().gc_sections() || parameters->options().icf())
363 {
364 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
365 p != input_objects->relobj_end();
366 ++p)
367 {
368 // Update the value of output_section stored in rd.
369 Read_relocs_data *rd = (*p)->get_relocs_data();
370 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
371 q != rd->relocs.end();
372 ++q)
373 {
374 q->output_section = (*p)->output_section(q->data_shndx);
375 q->needs_special_offset_handling =
376 (*p)->is_output_section_offset_invalid(q->data_shndx);
377 }
378 }
379 }
380
381 // We have to support the case of not seeing any input objects, and
382 // generate an empty file. Existing builds depend on being able to
383 // pass an empty archive to the linker and get an empty object file
384 // out. In order to do this we need to use a default target.
385 if (input_objects->number_of_input_objects() == 0)
386 parameters_force_valid_target();
387
388 int thread_count = options.thread_count_middle();
389 if (thread_count == 0)
390 thread_count = std::max(2, input_objects->number_of_input_objects());
391 workqueue->set_thread_count(thread_count);
392
393 // Now we have seen all the input files.
394 const bool doing_static_link = (!input_objects->any_dynamic()
395 && !parameters->options().shared());
396 set_parameters_doing_static_link(doing_static_link);
397 if (!doing_static_link && options.is_static())
398 {
399 // We print out just the first .so we see; there may be others.
400 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
401 gold_error(_("cannot mix -static with dynamic object %s"),
402 (*input_objects->dynobj_begin())->name().c_str());
403 }
404 if (!doing_static_link && parameters->options().relocatable())
405 gold_fatal(_("cannot mix -r with dynamic object %s"),
406 (*input_objects->dynobj_begin())->name().c_str());
407 if (!doing_static_link
408 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
409 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
410 (*input_objects->dynobj_begin())->name().c_str());
411
412 if (parameters->options().relocatable())
413 {
414 Input_objects::Relobj_iterator p = input_objects->relobj_begin();
415 if (p != input_objects->relobj_end())
416 {
417 bool uses_split_stack = (*p)->uses_split_stack();
418 for (++p; p != input_objects->relobj_end(); ++p)
419 {
420 if ((*p)->uses_split_stack() != uses_split_stack)
421 gold_fatal(_("cannot mix split-stack '%s' and "
422 "non-split-stack '%s' when using -r"),
423 (*input_objects->relobj_begin())->name().c_str(),
424 (*p)->name().c_str());
425 }
426 }
427 }
428
429 if (is_debugging_enabled(DEBUG_SCRIPT))
430 layout->script_options()->print(stderr);
431
432 // For each dynamic object, record whether we've seen all the
433 // dynamic objects that it depends upon.
434 input_objects->check_dynamic_dependencies();
435
436 // See if any of the input definitions violate the One Definition Rule.
437 // TODO: if this is too slow, do this as a task, rather than inline.
438 symtab->detect_odr_violations(task, options.output_file_name());
439
440 // Create any automatic note sections.
441 layout->create_notes();
442
443 // Create any output sections required by any linker script.
444 layout->create_script_sections();
445
446 // Define some sections and symbols needed for a dynamic link. This
447 // handles some cases we want to see before we read the relocs.
448 layout->create_initial_dynamic_sections(symtab);
449
450 // Define symbols from any linker scripts.
451 layout->define_script_symbols(symtab);
452
453 // Attach sections to segments.
454 layout->attach_sections_to_segments();
455
456 if (!parameters->options().relocatable())
457 {
458 // Predefine standard symbols.
459 define_standard_symbols(symtab, layout);
460
461 // Define __start and __stop symbols for output sections where
462 // appropriate.
463 layout->define_section_symbols(symtab);
464 }
465
466 // Make sure we have symbols for any required group signatures.
467 layout->define_group_signatures(symtab);
468
469 Task_token* blocker = new Task_token(true);
470 Task_token* symtab_lock = new Task_token(false);
471
472 // If doing garbage collection, the relocations have already been read.
473 // Otherwise, read and scan the relocations.
474 if (parameters->options().gc_sections() || parameters->options().icf())
475 {
476 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
477 p != input_objects->relobj_end();
478 ++p)
479 {
480 blocker->add_blocker();
481 workqueue->queue(new Scan_relocs(options, symtab, layout, *p,
482 (*p)->get_relocs_data(),symtab_lock, blocker));
483 }
484 }
485 else
486 {
487 // Read the relocations of the input files. We do this to find
488 // which symbols are used by relocations which require a GOT and/or
489 // a PLT entry, or a COPY reloc. When we implement garbage
490 // collection we will do it here by reading the relocations in a
491 // breadth first search by references.
492 //
493 // We could also read the relocations during the first pass, and
494 // mark symbols at that time. That is how the old GNU linker works.
495 // Doing that is more complex, since we may later decide to discard
496 // some of the sections, and thus change our minds about the types
497 // of references made to the symbols.
498 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
499 p != input_objects->relobj_end();
500 ++p)
501 {
502 // We can read and process the relocations in any order. But we
503 // only want one task to write to the symbol table at a time.
504 // So we queue up a task for each object to read the
505 // relocations. That task will in turn queue a task to wait
506 // until it can write to the symbol table.
507 blocker->add_blocker();
508 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
509 symtab_lock, blocker));
510 }
511 }
512
513 // Allocate common symbols. This requires write access to the
514 // symbol table, but is independent of the relocation processing.
515 if (parameters->options().define_common())
516 {
517 blocker->add_blocker();
518 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
519 symtab_lock, blocker));
520 }
521
522 // When all those tasks are complete, we can start laying out the
523 // output file.
524 // TODO(csilvers): figure out a more principled way to get the target
525 Target* target = const_cast<Target*>(&parameters->target());
526 workqueue->queue(new Task_function(new Layout_task_runner(options,
527 input_objects,
528 symtab,
529 target,
530 layout,
531 mapfile),
532 blocker,
533 "Task_function Layout_task_runner"));
534 }
535
536 // Queue up the final set of tasks. This is called at the end of
537 // Layout_task.
538
539 void
540 queue_final_tasks(const General_options& options,
541 const Input_objects* input_objects,
542 const Symbol_table* symtab,
543 Layout* layout,
544 Workqueue* workqueue,
545 Output_file* of)
546 {
547 int thread_count = options.thread_count_final();
548 if (thread_count == 0)
549 thread_count = std::max(2, input_objects->number_of_input_objects());
550 workqueue->set_thread_count(thread_count);
551
552 bool any_postprocessing_sections = layout->any_postprocessing_sections();
553
554 // Use a blocker to wait until all the input sections have been
555 // written out.
556 Task_token* input_sections_blocker = NULL;
557 if (!any_postprocessing_sections)
558 input_sections_blocker = new Task_token(true);
559
560 // Use a blocker to block any objects which have to wait for the
561 // output sections to complete before they can apply relocations.
562 Task_token* output_sections_blocker = new Task_token(true);
563
564 // Use a blocker to block the final cleanup task.
565 Task_token* final_blocker = new Task_token(true);
566
567 // Queue a task to write out the symbol table.
568 final_blocker->add_blocker();
569 workqueue->queue(new Write_symbols_task(layout,
570 symtab,
571 input_objects,
572 layout->sympool(),
573 layout->dynpool(),
574 of,
575 final_blocker));
576
577 // Queue a task to write out the output sections.
578 output_sections_blocker->add_blocker();
579 final_blocker->add_blocker();
580 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
581 final_blocker));
582
583 // Queue a task to write out everything else.
584 final_blocker->add_blocker();
585 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
586
587 // Queue a task for each input object to relocate the sections and
588 // write out the local symbols.
589 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
590 p != input_objects->relobj_end();
591 ++p)
592 {
593 if (input_sections_blocker != NULL)
594 input_sections_blocker->add_blocker();
595 final_blocker->add_blocker();
596 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
597 input_sections_blocker,
598 output_sections_blocker,
599 final_blocker));
600 }
601
602 // Queue a task to write out the output sections which depend on
603 // input sections. If there are any sections which require
604 // postprocessing, then we need to do this last, since it may resize
605 // the output file.
606 if (!any_postprocessing_sections)
607 {
608 final_blocker->add_blocker();
609 Task* t = new Write_after_input_sections_task(layout, of,
610 input_sections_blocker,
611 final_blocker);
612 workqueue->queue(t);
613 }
614 else
615 {
616 Task_token *new_final_blocker = new Task_token(true);
617 new_final_blocker->add_blocker();
618 Task* t = new Write_after_input_sections_task(layout, of,
619 final_blocker,
620 new_final_blocker);
621 workqueue->queue(t);
622 final_blocker = new_final_blocker;
623 }
624
625 // Queue a task to close the output file. This will be blocked by
626 // FINAL_BLOCKER.
627 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
628 of),
629 final_blocker,
630 "Task_function Close_task_runner"));
631 }
632
633 } // End namespace gold.
This page took 0.043361 seconds and 5 git commands to generate.