Support assignments and expressions in linker scripts.
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include "libiberty.h"
30
31 #include "options.h"
32 #include "workqueue.h"
33 #include "dirsearch.h"
34 #include "readsyms.h"
35 #include "symtab.h"
36 #include "common.h"
37 #include "object.h"
38 #include "layout.h"
39 #include "reloc.h"
40 #include "defstd.h"
41
42 namespace gold
43 {
44
45 const char* program_name;
46
47 void
48 gold_exit(bool status)
49 {
50 if (!status && parameters != NULL && parameters->options_valid())
51 unlink_if_ordinary(parameters->output_file_name());
52 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
53 }
54
55 void
56 gold_nomem()
57 {
58 // We are out of memory, so try hard to print a reasonable message.
59 // Note that we don't try to translate this message, since the
60 // translation process itself will require memory.
61 write(2, program_name, strlen(program_name));
62 const char* const s = ": out of memory\n";
63 write(2, s, strlen(s));
64 gold_exit(false);
65 }
66
67 // Handle an unreachable case.
68
69 void
70 do_gold_unreachable(const char* filename, int lineno, const char* function)
71 {
72 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
73 program_name, function, filename, lineno);
74 gold_exit(false);
75 }
76
77 // This class arranges to run the functions done in the middle of the
78 // link. It is just a closure.
79
80 class Middle_runner : public Task_function_runner
81 {
82 public:
83 Middle_runner(const General_options& options,
84 const Input_objects* input_objects,
85 Symbol_table* symtab,
86 Layout* layout)
87 : options_(options), input_objects_(input_objects), symtab_(symtab),
88 layout_(layout)
89 { }
90
91 void
92 run(Workqueue*, const Task*);
93
94 private:
95 const General_options& options_;
96 const Input_objects* input_objects_;
97 Symbol_table* symtab_;
98 Layout* layout_;
99 };
100
101 void
102 Middle_runner::run(Workqueue* workqueue, const Task* task)
103 {
104 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
105 this->layout_, workqueue);
106 }
107
108 // Queue up the initial set of tasks for this link job.
109
110 void
111 queue_initial_tasks(const General_options& options,
112 Dirsearch& search_path,
113 const Command_line& cmdline,
114 Workqueue* workqueue, Input_objects* input_objects,
115 Symbol_table* symtab, Layout* layout)
116 {
117 if (cmdline.begin() == cmdline.end())
118 gold_fatal(_("no input files"));
119
120 int thread_count = options.thread_count_initial();
121 if (thread_count == 0)
122 thread_count = cmdline.number_of_input_files();
123 workqueue->set_thread_count(thread_count);
124
125 // Read the input files. We have to add the symbols to the symbol
126 // table in order. We do this by creating a separate blocker for
127 // each input file. We associate the blocker with the following
128 // input file, to give us a convenient place to delete it.
129 Task_token* this_blocker = NULL;
130 for (Command_line::const_iterator p = cmdline.begin();
131 p != cmdline.end();
132 ++p)
133 {
134 Task_token* next_blocker = new Task_token(true);
135 next_blocker->add_blocker();
136 workqueue->queue(new Read_symbols(options, input_objects, symtab, layout,
137 &search_path, &*p, NULL, this_blocker,
138 next_blocker));
139 this_blocker = next_blocker;
140 }
141
142 workqueue->queue(new Task_function(new Middle_runner(options,
143 input_objects,
144 symtab,
145 layout),
146 this_blocker,
147 "Task_function Middle_runner"));
148 }
149
150 // Queue up the middle set of tasks. These are the tasks which run
151 // after all the input objects have been found and all the symbols
152 // have been read, but before we lay out the output file.
153
154 void
155 queue_middle_tasks(const General_options& options,
156 const Task* task,
157 const Input_objects* input_objects,
158 Symbol_table* symtab,
159 Layout* layout,
160 Workqueue* workqueue)
161 {
162 if (input_objects->number_of_input_objects() == 0)
163 {
164 // We had some input files, but we weren't able to open any of
165 // them.
166 gold_fatal(_("no input files"));
167 }
168
169 int thread_count = options.thread_count_middle();
170 if (thread_count == 0)
171 thread_count = input_objects->number_of_input_objects();
172 workqueue->set_thread_count(thread_count);
173
174 // Now we have seen all the input files.
175 const bool doing_static_link = (!input_objects->any_dynamic()
176 && !parameters->output_is_shared());
177 set_parameters_doing_static_link(doing_static_link);
178 if (!doing_static_link && options.is_static())
179 {
180 // We print out just the first .so we see; there may be others.
181 gold_error(_("cannot mix -static with dynamic object %s"),
182 (*input_objects->dynobj_begin())->name().c_str());
183 }
184
185 // For each dynamic object, record whether we've seen all the
186 // dynamic objects that it depends upon.
187 input_objects->check_dynamic_dependencies();
188
189 // See if any of the input definitions violate the One Definition Rule.
190 // TODO: if this is too slow, do this as a task, rather than inline.
191 symtab->detect_odr_violations(task, options.output_file_name());
192
193 // Define some sections and symbols needed for a dynamic link. This
194 // handles some cases we want to see before we read the relocs.
195 layout->create_initial_dynamic_sections(input_objects, symtab);
196
197 // Predefine standard symbols. This should be fast, so we don't
198 // bother to create a task for it.
199 define_standard_symbols(symtab, layout, input_objects->target());
200
201 // Define __start and __stop symbols for output sections where
202 // appropriate.
203 layout->define_section_symbols(symtab, input_objects->target());
204
205 // Define symbols from any linker scripts.
206 layout->define_script_symbols(symtab, input_objects->target());
207
208 // Read the relocations of the input files. We do this to find
209 // which symbols are used by relocations which require a GOT and/or
210 // a PLT entry, or a COPY reloc. When we implement garbage
211 // collection we will do it here by reading the relocations in a
212 // breadth first search by references.
213 //
214 // We could also read the relocations during the first pass, and
215 // mark symbols at that time. That is how the old GNU linker works.
216 // Doing that is more complex, since we may later decide to discard
217 // some of the sections, and thus change our minds about the types
218 // of references made to the symbols.
219 Task_token* blocker = new Task_token(true);
220 Task_token* symtab_lock = new Task_token(false);
221 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
222 p != input_objects->relobj_end();
223 ++p)
224 {
225 // We can read and process the relocations in any order. But we
226 // only want one task to write to the symbol table at a time.
227 // So we queue up a task for each object to read the
228 // relocations. That task will in turn queue a task to wait
229 // until it can write to the symbol table.
230 blocker->add_blocker();
231 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
232 symtab_lock, blocker));
233 }
234
235 // Allocate common symbols. This requires write access to the
236 // symbol table, but is independent of the relocation processing.
237 blocker->add_blocker();
238 workqueue->queue(new Allocate_commons_task(options, symtab, layout,
239 symtab_lock, blocker));
240
241 // When all those tasks are complete, we can start laying out the
242 // output file.
243 workqueue->queue(new Task_function(new Layout_task_runner(options,
244 input_objects,
245 symtab,
246 layout),
247 blocker,
248 "Task_function Layout_task_runner"));
249 }
250
251 // Queue up the final set of tasks. This is called at the end of
252 // Layout_task.
253
254 void
255 queue_final_tasks(const General_options& options,
256 const Input_objects* input_objects,
257 const Symbol_table* symtab,
258 Layout* layout,
259 Workqueue* workqueue,
260 Output_file* of)
261 {
262 int thread_count = options.thread_count_final();
263 if (thread_count == 0)
264 thread_count = input_objects->number_of_input_objects();
265 workqueue->set_thread_count(thread_count);
266
267 bool any_postprocessing_sections = layout->any_postprocessing_sections();
268
269 // Use a blocker to wait until all the input sections have been
270 // written out.
271 Task_token* input_sections_blocker = NULL;
272 if (!any_postprocessing_sections)
273 input_sections_blocker = new Task_token(true);
274
275 // Use a blocker to block any objects which have to wait for the
276 // output sections to complete before they can apply relocations.
277 Task_token* output_sections_blocker = new Task_token(true);
278
279 // Use a blocker to block the final cleanup task.
280 Task_token* final_blocker = new Task_token(true);
281
282 // Queue a task to write out the symbol table.
283 if (!options.strip_all())
284 {
285 final_blocker->add_blocker();
286 workqueue->queue(new Write_symbols_task(symtab,
287 input_objects,
288 layout->sympool(),
289 layout->dynpool(),
290 of,
291 final_blocker));
292 }
293
294 // Queue a task to write out the output sections.
295 output_sections_blocker->add_blocker();
296 final_blocker->add_blocker();
297 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
298 final_blocker));
299
300 // Queue a task to write out everything else.
301 final_blocker->add_blocker();
302 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
303
304 // Queue a task for each input object to relocate the sections and
305 // write out the local symbols.
306 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
307 p != input_objects->relobj_end();
308 ++p)
309 {
310 if (input_sections_blocker != NULL)
311 input_sections_blocker->add_blocker();
312 final_blocker->add_blocker();
313 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
314 input_sections_blocker,
315 output_sections_blocker,
316 final_blocker));
317 }
318
319 // Queue a task to write out the output sections which depend on
320 // input sections. If there are any sections which require
321 // postprocessing, then we need to do this last, since it may resize
322 // the output file.
323 if (!any_postprocessing_sections)
324 {
325 final_blocker->add_blocker();
326 Task* t = new Write_after_input_sections_task(layout, of,
327 input_sections_blocker,
328 final_blocker);
329 workqueue->queue(t);
330 }
331 else
332 {
333 Task_token *new_final_blocker = new Task_token(true);
334 new_final_blocker->add_blocker();
335 Task* t = new Write_after_input_sections_task(layout, of,
336 final_blocker,
337 new_final_blocker);
338 workqueue->queue(t);
339 final_blocker = new_final_blocker;
340 }
341
342 // Queue a task to close the output file. This will be blocked by
343 // FINAL_BLOCKER.
344 workqueue->queue(new Task_function(new Close_task_runner(of),
345 final_blocker,
346 "Task_function Close_task_runner"));
347 }
348
349 } // End namespace gold.
This page took 0.037877 seconds and 5 git commands to generate.