* target.h (Target::gc_mark_symbol, do_gc_mark_symbol): New functions.
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cstdlib>
27 #include <cstdio>
28 #include <cstring>
29 #include <unistd.h>
30 #include <algorithm>
31 #include "libiberty.h"
32
33 #include "options.h"
34 #include "target-select.h"
35 #include "debug.h"
36 #include "workqueue.h"
37 #include "dirsearch.h"
38 #include "readsyms.h"
39 #include "symtab.h"
40 #include "common.h"
41 #include "object.h"
42 #include "layout.h"
43 #include "reloc.h"
44 #include "defstd.h"
45 #include "plugin.h"
46 #include "gc.h"
47 #include "icf.h"
48 #include "incremental.h"
49 #include "timer.h"
50
51 namespace gold
52 {
53
54 class Object;
55
56 const char* program_name;
57
58 static Task*
59 process_incremental_input(Incremental_binary*, unsigned int, Input_objects*,
60 Symbol_table*, Layout*, Dirsearch*, Mapfile*,
61 Task_token*, Task_token*);
62
63 void
64 gold_exit(Exit_status status)
65 {
66 if (parameters != NULL
67 && parameters->options_valid()
68 && parameters->options().has_plugins())
69 parameters->options().plugins()->cleanup();
70 if (status != GOLD_OK && parameters != NULL && parameters->options_valid())
71 unlink_if_ordinary(parameters->options().output_file_name());
72 exit(status);
73 }
74
75 void
76 gold_nomem()
77 {
78 // We are out of memory, so try hard to print a reasonable message.
79 // Note that we don't try to translate this message, since the
80 // translation process itself will require memory.
81
82 // LEN only exists to avoid a pointless warning when write is
83 // declared with warn_use_result, as when compiling with
84 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
85 // work, at least not with gcc 4.3.0.
86
87 ssize_t len = write(2, program_name, strlen(program_name));
88 if (len >= 0)
89 {
90 const char* const s = ": out of memory\n";
91 len = write(2, s, strlen(s));
92 }
93 gold_exit(GOLD_ERR);
94 }
95
96 // Handle an unreachable case.
97
98 void
99 do_gold_unreachable(const char* filename, int lineno, const char* function)
100 {
101 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
102 program_name, function, filename, lineno);
103 gold_exit(GOLD_ERR);
104 }
105
106 // This class arranges to run the functions done in the middle of the
107 // link. It is just a closure.
108
109 class Middle_runner : public Task_function_runner
110 {
111 public:
112 Middle_runner(const General_options& options,
113 const Input_objects* input_objects,
114 Symbol_table* symtab,
115 Layout* layout, Mapfile* mapfile)
116 : options_(options), input_objects_(input_objects), symtab_(symtab),
117 layout_(layout), mapfile_(mapfile)
118 { }
119
120 void
121 run(Workqueue*, const Task*);
122
123 private:
124 const General_options& options_;
125 const Input_objects* input_objects_;
126 Symbol_table* symtab_;
127 Layout* layout_;
128 Mapfile* mapfile_;
129 };
130
131 void
132 Middle_runner::run(Workqueue* workqueue, const Task* task)
133 {
134 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
135 this->layout_, workqueue, this->mapfile_);
136 }
137
138 // This class arranges the tasks to process the relocs for garbage collection.
139
140 class Gc_runner : public Task_function_runner
141 {
142 public:
143 Gc_runner(const General_options& options,
144 const Input_objects* input_objects,
145 Symbol_table* symtab,
146 Layout* layout, Mapfile* mapfile)
147 : options_(options), input_objects_(input_objects), symtab_(symtab),
148 layout_(layout), mapfile_(mapfile)
149 { }
150
151 void
152 run(Workqueue*, const Task*);
153
154 private:
155 const General_options& options_;
156 const Input_objects* input_objects_;
157 Symbol_table* symtab_;
158 Layout* layout_;
159 Mapfile* mapfile_;
160 };
161
162 void
163 Gc_runner::run(Workqueue* workqueue, const Task* task)
164 {
165 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
166 this->symtab_, this->layout_, workqueue,
167 this->mapfile_);
168 }
169
170 // Queue up the initial set of tasks for this link job.
171
172 void
173 queue_initial_tasks(const General_options& options,
174 Dirsearch& search_path,
175 const Command_line& cmdline,
176 Workqueue* workqueue, Input_objects* input_objects,
177 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
178 {
179 if (cmdline.begin() == cmdline.end())
180 {
181 bool is_ok = false;
182 if (options.printed_version())
183 is_ok = true;
184 if (options.print_output_format())
185 {
186 print_output_format();
187 is_ok = true;
188 }
189 if (is_ok)
190 gold_exit(GOLD_OK);
191 gold_fatal(_("no input files"));
192 }
193
194 int thread_count = options.thread_count_initial();
195 if (thread_count == 0)
196 thread_count = cmdline.number_of_input_files();
197 workqueue->set_thread_count(thread_count);
198
199 // For incremental links, the base output file.
200 Incremental_binary* ibase = NULL;
201
202 if (parameters->incremental_update())
203 {
204 Output_file* of = new Output_file(options.output_file_name());
205 if (of->open_base_file(options.incremental_base(), true))
206 {
207 ibase = open_incremental_binary(of);
208 if (ibase != NULL
209 && ibase->check_inputs(cmdline, layout->incremental_inputs()))
210 ibase->init_layout(layout);
211 else
212 {
213 delete ibase;
214 ibase = NULL;
215 of->close();
216 }
217 }
218 if (ibase == NULL)
219 {
220 if (set_parameters_incremental_full())
221 gold_info(_("linking with --incremental-full"));
222 else
223 gold_fallback(_("restart link with --incremental-full"));
224 }
225 }
226
227 // Read the input files. We have to add the symbols to the symbol
228 // table in order. We do this by creating a separate blocker for
229 // each input file. We associate the blocker with the following
230 // input file, to give us a convenient place to delete it.
231 Task_token* this_blocker = NULL;
232 if (ibase == NULL)
233 {
234 // Normal link. Queue a Read_symbols task for each input file
235 // on the command line.
236 for (Command_line::const_iterator p = cmdline.begin();
237 p != cmdline.end();
238 ++p)
239 {
240 Task_token* next_blocker = new Task_token(true);
241 next_blocker->add_blocker();
242 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
243 &search_path, 0, mapfile, &*p, NULL,
244 NULL, this_blocker, next_blocker));
245 this_blocker = next_blocker;
246 }
247 }
248 else
249 {
250 // Incremental update link. Process the list of input files
251 // stored in the base file, and queue a task for each file:
252 // a Read_symbols task for a changed file, and an Add_symbols task
253 // for an unchanged file. We need to mark all the space used by
254 // unchanged files before we can start any tasks running.
255 unsigned int input_file_count = ibase->input_file_count();
256 std::vector<Task*> tasks;
257 tasks.reserve(input_file_count);
258 for (unsigned int i = 0; i < input_file_count; ++i)
259 {
260 Task_token* next_blocker = new Task_token(true);
261 next_blocker->add_blocker();
262 Task* t = process_incremental_input(ibase, i, input_objects, symtab,
263 layout, &search_path, mapfile,
264 this_blocker, next_blocker);
265 tasks.push_back(t);
266 this_blocker = next_blocker;
267 }
268 // Now we can queue the tasks.
269 for (unsigned int i = 0; i < tasks.size(); i++)
270 workqueue->queue(tasks[i]);
271 }
272
273 if (options.has_plugins())
274 {
275 Task_token* next_blocker = new Task_token(true);
276 next_blocker->add_blocker();
277 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
278 &search_path, mapfile, this_blocker,
279 next_blocker));
280 this_blocker = next_blocker;
281 }
282
283 if (options.relocatable()
284 && (options.gc_sections() || options.icf_enabled()))
285 gold_error(_("cannot mix -r with --gc-sections or --icf"));
286
287 if (options.gc_sections() || options.icf_enabled())
288 {
289 workqueue->queue(new Task_function(new Gc_runner(options,
290 input_objects,
291 symtab,
292 layout,
293 mapfile),
294 this_blocker,
295 "Task_function Gc_runner"));
296 }
297 else
298 {
299 workqueue->queue(new Task_function(new Middle_runner(options,
300 input_objects,
301 symtab,
302 layout,
303 mapfile),
304 this_blocker,
305 "Task_function Middle_runner"));
306 }
307 }
308
309 // Process an incremental input file: if it is unchanged from the previous
310 // link, return a task to add its symbols from the base file's incremental
311 // info; if it has changed, return a normal Read_symbols task. We create a
312 // task for every input file, if only to report the file for rebuilding the
313 // incremental info.
314
315 static Task*
316 process_incremental_input(Incremental_binary* ibase,
317 unsigned int input_file_index,
318 Input_objects* input_objects,
319 Symbol_table* symtab,
320 Layout* layout,
321 Dirsearch* search_path,
322 Mapfile* mapfile,
323 Task_token* this_blocker,
324 Task_token* next_blocker)
325 {
326 const Incremental_binary::Input_reader* input_reader =
327 ibase->get_input_reader(input_file_index);
328 Incremental_input_type input_type = input_reader->type();
329
330 // Get the input argument corresponding to this input file, matching on
331 // the argument serial number. If the input file cannot be matched
332 // to an existing input argument, synthesize a new one.
333 const Input_argument* input_argument =
334 ibase->get_input_argument(input_file_index);
335 if (input_argument == NULL)
336 {
337 Input_file_argument file(input_reader->filename(),
338 Input_file_argument::INPUT_FILE_TYPE_FILE,
339 "", false, parameters->options());
340 Input_argument* arg = new Input_argument(file);
341 arg->set_script_info(ibase->get_script_info(input_file_index));
342 input_argument = arg;
343 }
344
345 gold_debug(DEBUG_INCREMENTAL, "Incremental object: %s, type %d",
346 input_reader->filename(), input_type);
347
348 if (input_type == INCREMENTAL_INPUT_SCRIPT)
349 {
350 // Incremental_binary::check_inputs should have cancelled the
351 // incremental update if the script has changed.
352 gold_assert(!ibase->file_has_changed(input_file_index));
353 return new Check_script(layout, ibase, input_file_index, input_reader,
354 this_blocker, next_blocker);
355 }
356
357 if (input_type == INCREMENTAL_INPUT_ARCHIVE)
358 {
359 Incremental_library* lib = ibase->get_library(input_file_index);
360 gold_assert(lib != NULL);
361 if (lib->filename() == "/group/"
362 || !ibase->file_has_changed(input_file_index))
363 {
364 // Queue a task to check that no references have been added to any
365 // of the library's unused symbols.
366 return new Check_library(symtab, layout, ibase, input_file_index,
367 input_reader, this_blocker, next_blocker);
368 }
369 else
370 {
371 // Queue a Read_symbols task to process the archive normally.
372 return new Read_symbols(input_objects, symtab, layout, search_path,
373 0, mapfile, input_argument, NULL, NULL,
374 this_blocker, next_blocker);
375 }
376 }
377
378 if (input_type == INCREMENTAL_INPUT_ARCHIVE_MEMBER)
379 {
380 // For archive members, check the timestamp of the containing archive.
381 Incremental_library* lib = ibase->get_library(input_file_index);
382 gold_assert(lib != NULL);
383 // Process members of a --start-lib/--end-lib group as normal objects.
384 if (lib->filename() != "/group/")
385 {
386 if (ibase->file_has_changed(lib->input_file_index()))
387 {
388 return new Read_member(input_objects, symtab, layout, mapfile,
389 input_reader, this_blocker, next_blocker);
390 }
391 else
392 {
393 // The previous contributions from this file will be kept.
394 // Mark the pieces of output sections contributed by this
395 // object.
396 ibase->reserve_layout(input_file_index);
397 Object* obj = make_sized_incremental_object(ibase,
398 input_file_index,
399 input_type,
400 input_reader);
401 return new Add_symbols(input_objects, symtab, layout,
402 search_path, 0, mapfile, input_argument,
403 obj, lib, NULL, this_blocker,
404 next_blocker);
405 }
406 }
407 }
408
409 // Normal object file or shared library. Check if the file has changed
410 // since the last incremental link.
411 if (ibase->file_has_changed(input_file_index))
412 {
413 return new Read_symbols(input_objects, symtab, layout, search_path, 0,
414 mapfile, input_argument, NULL, NULL,
415 this_blocker, next_blocker);
416 }
417 else
418 {
419 // The previous contributions from this file will be kept.
420 // Mark the pieces of output sections contributed by this object.
421 ibase->reserve_layout(input_file_index);
422 Object* obj = make_sized_incremental_object(ibase,
423 input_file_index,
424 input_type,
425 input_reader);
426 return new Add_symbols(input_objects, symtab, layout, search_path, 0,
427 mapfile, input_argument, obj, NULL, NULL,
428 this_blocker, next_blocker);
429 }
430 }
431
432 // Queue up a set of tasks to be done before queueing the middle set
433 // of tasks. This is only necessary when garbage collection
434 // (--gc-sections) of unused sections is desired. The relocs are read
435 // and processed here early to determine the garbage sections before the
436 // relocs can be scanned in later tasks.
437
438 void
439 queue_middle_gc_tasks(const General_options& options,
440 const Task* ,
441 const Input_objects* input_objects,
442 Symbol_table* symtab,
443 Layout* layout,
444 Workqueue* workqueue,
445 Mapfile* mapfile)
446 {
447 // Read_relocs for all the objects must be done and processed to find
448 // unused sections before any scanning of the relocs can take place.
449 Task_token* this_blocker = NULL;
450 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
451 p != input_objects->relobj_end();
452 ++p)
453 {
454 Task_token* next_blocker = new Task_token(true);
455 next_blocker->add_blocker();
456 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
457 next_blocker));
458 this_blocker = next_blocker;
459 }
460
461 // If we are given only archives in input, we have no regular
462 // objects and THIS_BLOCKER is NULL here. Create a dummy
463 // blocker here so that we can run the middle tasks immediately.
464 if (this_blocker == NULL)
465 {
466 gold_assert(input_objects->number_of_relobjs() == 0);
467 this_blocker = new Task_token(true);
468 }
469
470 workqueue->queue(new Task_function(new Middle_runner(options,
471 input_objects,
472 symtab,
473 layout,
474 mapfile),
475 this_blocker,
476 "Task_function Middle_runner"));
477 }
478
479 // Queue up the middle set of tasks. These are the tasks which run
480 // after all the input objects have been found and all the symbols
481 // have been read, but before we lay out the output file.
482
483 void
484 queue_middle_tasks(const General_options& options,
485 const Task* task,
486 const Input_objects* input_objects,
487 Symbol_table* symtab,
488 Layout* layout,
489 Workqueue* workqueue,
490 Mapfile* mapfile)
491 {
492 Timer* timer = parameters->timer();
493 if (timer != NULL)
494 timer->stamp(0);
495
496 // Add any symbols named with -u options to the symbol table.
497 symtab->add_undefined_symbols_from_command_line(layout);
498
499 // If garbage collection was chosen, relocs have been read and processed
500 // at this point by pre_middle_tasks. Layout can then be done for all
501 // objects.
502 if (parameters->options().gc_sections())
503 {
504 // Find the start symbol if any.
505 Symbol* start_sym = symtab->lookup(parameters->entry());
506 if (start_sym != NULL)
507 symtab->gc_mark_symbol(start_sym);
508 // Symbols named with -u should not be considered garbage.
509 symtab->gc_mark_undef_symbols(layout);
510 gold_assert(symtab->gc() != NULL);
511 // Do a transitive closure on all references to determine the worklist.
512 symtab->gc()->do_transitive_closure();
513 }
514
515 // If identical code folding (--icf) is chosen it makes sense to do it
516 // only after garbage collection (--gc-sections) as we do not want to
517 // be folding sections that will be garbage.
518 if (parameters->options().icf_enabled())
519 {
520 symtab->icf()->find_identical_sections(input_objects, symtab);
521 }
522
523 // Call Object::layout for the second time to determine the
524 // output_sections for all referenced input sections. When
525 // --gc-sections or --icf is turned on, or when certain input
526 // sections have to be mapped to unique segments, Object::layout
527 // is called twice. It is called the first time when symbols
528 // are added.
529 if (parameters->options().gc_sections()
530 || parameters->options().icf_enabled()
531 || layout->is_unique_segment_for_sections_specified())
532 {
533 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
534 p != input_objects->relobj_end();
535 ++p)
536 {
537 Task_lock_obj<Object> tlo(task, *p);
538 (*p)->layout(symtab, layout, NULL);
539 }
540 }
541
542 // Layout deferred objects due to plugins.
543 if (parameters->options().has_plugins())
544 {
545 Plugin_manager* plugins = parameters->options().plugins();
546 gold_assert(plugins != NULL);
547 plugins->layout_deferred_objects();
548 }
549
550 /* If plugins have specified a section order, re-arrange input sections
551 according to a specified section order. If --section-ordering-file is
552 also specified, do not do anything here. */
553 if (parameters->options().has_plugins()
554 && layout->is_section_ordering_specified()
555 && !parameters->options().section_ordering_file ())
556 {
557 for (Layout::Section_list::const_iterator p
558 = layout->section_list().begin();
559 p != layout->section_list().end();
560 ++p)
561 (*p)->update_section_layout(layout->get_section_order_map());
562 }
563
564 if (parameters->options().gc_sections()
565 || parameters->options().icf_enabled())
566 {
567 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
568 p != input_objects->relobj_end();
569 ++p)
570 {
571 // Update the value of output_section stored in rd.
572 Read_relocs_data* rd = (*p)->get_relocs_data();
573 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
574 q != rd->relocs.end();
575 ++q)
576 {
577 q->output_section = (*p)->output_section(q->data_shndx);
578 q->needs_special_offset_handling =
579 (*p)->is_output_section_offset_invalid(q->data_shndx);
580 }
581 }
582 }
583
584 // We have to support the case of not seeing any input objects, and
585 // generate an empty file. Existing builds depend on being able to
586 // pass an empty archive to the linker and get an empty object file
587 // out. In order to do this we need to use a default target.
588 if (input_objects->number_of_input_objects() == 0
589 && layout->incremental_base() == NULL)
590 parameters_force_valid_target();
591
592 int thread_count = options.thread_count_middle();
593 if (thread_count == 0)
594 thread_count = std::max(2, input_objects->number_of_input_objects());
595 workqueue->set_thread_count(thread_count);
596
597 // Now we have seen all the input files.
598 const bool doing_static_link =
599 (!input_objects->any_dynamic()
600 && !parameters->options().output_is_position_independent());
601 set_parameters_doing_static_link(doing_static_link);
602 if (!doing_static_link && options.is_static())
603 {
604 // We print out just the first .so we see; there may be others.
605 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
606 gold_error(_("cannot mix -static with dynamic object %s"),
607 (*input_objects->dynobj_begin())->name().c_str());
608 }
609 if (!doing_static_link && parameters->options().relocatable())
610 gold_fatal(_("cannot mix -r with dynamic object %s"),
611 (*input_objects->dynobj_begin())->name().c_str());
612 if (!doing_static_link
613 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
614 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
615 (*input_objects->dynobj_begin())->name().c_str());
616
617 if (parameters->options().relocatable())
618 {
619 Input_objects::Relobj_iterator p = input_objects->relobj_begin();
620 if (p != input_objects->relobj_end())
621 {
622 bool uses_split_stack = (*p)->uses_split_stack();
623 for (++p; p != input_objects->relobj_end(); ++p)
624 {
625 if ((*p)->uses_split_stack() != uses_split_stack)
626 gold_fatal(_("cannot mix split-stack '%s' and "
627 "non-split-stack '%s' when using -r"),
628 (*input_objects->relobj_begin())->name().c_str(),
629 (*p)->name().c_str());
630 }
631 }
632 }
633
634 // For incremental updates, record the existing GOT and PLT entries,
635 // and the COPY relocations.
636 if (parameters->incremental_update())
637 {
638 Incremental_binary* ibase = layout->incremental_base();
639 ibase->process_got_plt(symtab, layout);
640 ibase->emit_copy_relocs(symtab);
641 }
642
643 if (is_debugging_enabled(DEBUG_SCRIPT))
644 layout->script_options()->print(stderr);
645
646 // For each dynamic object, record whether we've seen all the
647 // dynamic objects that it depends upon.
648 input_objects->check_dynamic_dependencies();
649
650 // See if any of the input definitions violate the One Definition Rule.
651 // TODO: if this is too slow, do this as a task, rather than inline.
652 symtab->detect_odr_violations(task, options.output_file_name());
653
654 // Do the --no-undefined-version check.
655 if (!parameters->options().undefined_version())
656 {
657 Script_options* so = layout->script_options();
658 so->version_script_info()->check_unmatched_names(symtab);
659 }
660
661 // Create any automatic note sections.
662 layout->create_notes();
663
664 // Create any output sections required by any linker script.
665 layout->create_script_sections();
666
667 // Define some sections and symbols needed for a dynamic link. This
668 // handles some cases we want to see before we read the relocs.
669 layout->create_initial_dynamic_sections(symtab);
670
671 // Define symbols from any linker scripts.
672 layout->define_script_symbols(symtab);
673
674 // TODO(csilvers): figure out a more principled way to get the target
675 Target* target = const_cast<Target*>(&parameters->target());
676
677 // Attach sections to segments.
678 layout->attach_sections_to_segments(target);
679
680 if (!parameters->options().relocatable())
681 {
682 // Predefine standard symbols.
683 define_standard_symbols(symtab, layout);
684
685 // Define __start and __stop symbols for output sections where
686 // appropriate.
687 layout->define_section_symbols(symtab);
688
689 // Define target-specific symbols.
690 target->define_standard_symbols(symtab, layout);
691 }
692
693 // Make sure we have symbols for any required group signatures.
694 layout->define_group_signatures(symtab);
695
696 Task_token* this_blocker = NULL;
697
698 // Allocate common symbols. We use a blocker to run this before the
699 // Scan_relocs tasks, because it writes to the symbol table just as
700 // they do.
701 if (parameters->options().define_common())
702 {
703 this_blocker = new Task_token(true);
704 this_blocker->add_blocker();
705 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
706 this_blocker));
707 }
708
709 // If doing garbage collection, the relocations have already been read.
710 // Otherwise, read and scan the relocations.
711 if (parameters->options().gc_sections()
712 || parameters->options().icf_enabled())
713 {
714 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
715 p != input_objects->relobj_end();
716 ++p)
717 {
718 Task_token* next_blocker = new Task_token(true);
719 next_blocker->add_blocker();
720 workqueue->queue(new Scan_relocs(symtab, layout, *p,
721 (*p)->get_relocs_data(),
722 this_blocker, next_blocker));
723 this_blocker = next_blocker;
724 }
725 }
726 else
727 {
728 // Read the relocations of the input files. We do this to find
729 // which symbols are used by relocations which require a GOT and/or
730 // a PLT entry, or a COPY reloc. When we implement garbage
731 // collection we will do it here by reading the relocations in a
732 // breadth first search by references.
733 //
734 // We could also read the relocations during the first pass, and
735 // mark symbols at that time. That is how the old GNU linker works.
736 // Doing that is more complex, since we may later decide to discard
737 // some of the sections, and thus change our minds about the types
738 // of references made to the symbols.
739 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
740 p != input_objects->relobj_end();
741 ++p)
742 {
743 Task_token* next_blocker = new Task_token(true);
744 next_blocker->add_blocker();
745 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
746 next_blocker));
747 this_blocker = next_blocker;
748 }
749 }
750
751 if (this_blocker == NULL)
752 {
753 if (input_objects->number_of_relobjs() == 0)
754 {
755 // If we are given only archives in input, we have no regular
756 // objects and THIS_BLOCKER is NULL here. Create a dummy
757 // blocker here so that we can run the layout task immediately.
758 this_blocker = new Task_token(true);
759 }
760 else
761 {
762 // If we failed to open any input files, it's possible for
763 // THIS_BLOCKER to be NULL here. There's no real point in
764 // continuing if that happens.
765 gold_assert(parameters->errors()->error_count() > 0);
766 gold_exit(GOLD_ERR);
767 }
768 }
769
770 // When all those tasks are complete, we can start laying out the
771 // output file.
772 workqueue->queue(new Task_function(new Layout_task_runner(options,
773 input_objects,
774 symtab,
775 target,
776 layout,
777 mapfile),
778 this_blocker,
779 "Task_function Layout_task_runner"));
780 }
781
782 // Queue up the final set of tasks. This is called at the end of
783 // Layout_task.
784
785 void
786 queue_final_tasks(const General_options& options,
787 const Input_objects* input_objects,
788 const Symbol_table* symtab,
789 Layout* layout,
790 Workqueue* workqueue,
791 Output_file* of)
792 {
793 Timer* timer = parameters->timer();
794 if (timer != NULL)
795 timer->stamp(1);
796
797 int thread_count = options.thread_count_final();
798 if (thread_count == 0)
799 thread_count = std::max(2, input_objects->number_of_input_objects());
800 workqueue->set_thread_count(thread_count);
801
802 bool any_postprocessing_sections = layout->any_postprocessing_sections();
803
804 // Use a blocker to wait until all the input sections have been
805 // written out.
806 Task_token* input_sections_blocker = NULL;
807 if (!any_postprocessing_sections)
808 {
809 input_sections_blocker = new Task_token(true);
810 input_sections_blocker->add_blockers(input_objects->number_of_relobjs());
811 }
812
813 // Use a blocker to block any objects which have to wait for the
814 // output sections to complete before they can apply relocations.
815 Task_token* output_sections_blocker = new Task_token(true);
816 output_sections_blocker->add_blocker();
817
818 // Use a blocker to block the final cleanup task.
819 Task_token* final_blocker = new Task_token(true);
820 // Write_symbols_task, Write_sections_task, Write_data_task,
821 // Relocate_tasks.
822 final_blocker->add_blockers(3);
823 final_blocker->add_blockers(input_objects->number_of_relobjs());
824 if (!any_postprocessing_sections)
825 final_blocker->add_blocker();
826
827 // Queue a task to write out the symbol table.
828 workqueue->queue(new Write_symbols_task(layout,
829 symtab,
830 input_objects,
831 layout->sympool(),
832 layout->dynpool(),
833 of,
834 final_blocker));
835
836 // Queue a task to write out the output sections.
837 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
838 final_blocker));
839
840 // Queue a task to write out everything else.
841 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
842
843 // Queue a task for each input object to relocate the sections and
844 // write out the local symbols.
845 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
846 p != input_objects->relobj_end();
847 ++p)
848 workqueue->queue(new Relocate_task(symtab, layout, *p, of,
849 input_sections_blocker,
850 output_sections_blocker,
851 final_blocker));
852
853 // Queue a task to write out the output sections which depend on
854 // input sections. If there are any sections which require
855 // postprocessing, then we need to do this last, since it may resize
856 // the output file.
857 if (!any_postprocessing_sections)
858 {
859 Task* t = new Write_after_input_sections_task(layout, of,
860 input_sections_blocker,
861 final_blocker);
862 workqueue->queue(t);
863 }
864 else
865 {
866 Task_token* new_final_blocker = new Task_token(true);
867 new_final_blocker->add_blocker();
868 Task* t = new Write_after_input_sections_task(layout, of,
869 final_blocker,
870 new_final_blocker);
871 workqueue->queue(t);
872 final_blocker = new_final_blocker;
873 }
874
875 // Queue a task to close the output file. This will be blocked by
876 // FINAL_BLOCKER.
877 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
878 of),
879 final_blocker,
880 "Task_function Close_task_runner"));
881 }
882
883 } // End namespace gold.
This page took 0.048333 seconds and 5 git commands to generate.