*** empty log message ***
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43 #include "plugin.h"
44 #include "icf.h"
45
46 namespace gold
47 {
48
49 const char* program_name;
50
51 void
52 gold_exit(bool status)
53 {
54 if (parameters != NULL
55 && parameters->options_valid()
56 && parameters->options().has_plugins())
57 parameters->options().plugins()->cleanup();
58 if (!status && parameters != NULL && parameters->options_valid())
59 unlink_if_ordinary(parameters->options().output_file_name());
60 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
61 }
62
63 void
64 gold_nomem()
65 {
66 // We are out of memory, so try hard to print a reasonable message.
67 // Note that we don't try to translate this message, since the
68 // translation process itself will require memory.
69
70 // LEN only exists to avoid a pointless warning when write is
71 // declared with warn_use_result, as when compiling with
72 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
73 // work, at least not with gcc 4.3.0.
74
75 ssize_t len = write(2, program_name, strlen(program_name));
76 if (len >= 0)
77 {
78 const char* const s = ": out of memory\n";
79 len = write(2, s, strlen(s));
80 }
81 gold_exit(false);
82 }
83
84 // Handle an unreachable case.
85
86 void
87 do_gold_unreachable(const char* filename, int lineno, const char* function)
88 {
89 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
90 program_name, function, filename, lineno);
91 gold_exit(false);
92 }
93
94 // This class arranges to run the functions done in the middle of the
95 // link. It is just a closure.
96
97 class Middle_runner : public Task_function_runner
98 {
99 public:
100 Middle_runner(const General_options& options,
101 const Input_objects* input_objects,
102 Symbol_table* symtab,
103 Layout* layout, Mapfile* mapfile)
104 : options_(options), input_objects_(input_objects), symtab_(symtab),
105 layout_(layout), mapfile_(mapfile)
106 { }
107
108 void
109 run(Workqueue*, const Task*);
110
111 private:
112 const General_options& options_;
113 const Input_objects* input_objects_;
114 Symbol_table* symtab_;
115 Layout* layout_;
116 Mapfile* mapfile_;
117 };
118
119 void
120 Middle_runner::run(Workqueue* workqueue, const Task* task)
121 {
122 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
123 this->layout_, workqueue, this->mapfile_);
124 }
125
126 // This class arranges the tasks to process the relocs for garbage collection.
127
128 class Gc_runner : public Task_function_runner
129 {
130 public:
131 Gc_runner(const General_options& options,
132 const Input_objects* input_objects,
133 Symbol_table* symtab,
134 Layout* layout, Mapfile* mapfile)
135 : options_(options), input_objects_(input_objects), symtab_(symtab),
136 layout_(layout), mapfile_(mapfile)
137 { }
138
139 void
140 run(Workqueue*, const Task*);
141
142 private:
143 const General_options& options_;
144 const Input_objects* input_objects_;
145 Symbol_table* symtab_;
146 Layout* layout_;
147 Mapfile* mapfile_;
148 };
149
150 void
151 Gc_runner::run(Workqueue* workqueue, const Task* task)
152 {
153 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
154 this->symtab_, this->layout_, workqueue,
155 this->mapfile_);
156 }
157
158 // Queue up the initial set of tasks for this link job.
159
160 void
161 queue_initial_tasks(const General_options& options,
162 Dirsearch& search_path,
163 const Command_line& cmdline,
164 Workqueue* workqueue, Input_objects* input_objects,
165 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
166 {
167 if (cmdline.begin() == cmdline.end())
168 {
169 if (options.printed_version())
170 gold_exit(true);
171 gold_fatal(_("no input files"));
172 }
173
174 int thread_count = options.thread_count_initial();
175 if (thread_count == 0)
176 thread_count = cmdline.number_of_input_files();
177 workqueue->set_thread_count(thread_count);
178
179 // Read the input files. We have to add the symbols to the symbol
180 // table in order. We do this by creating a separate blocker for
181 // each input file. We associate the blocker with the following
182 // input file, to give us a convenient place to delete it.
183 Task_token* this_blocker = NULL;
184 for (Command_line::const_iterator p = cmdline.begin();
185 p != cmdline.end();
186 ++p)
187 {
188 Task_token* next_blocker = new Task_token(true);
189 next_blocker->add_blocker();
190 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
191 &search_path, 0, mapfile, &*p, NULL,
192 this_blocker, next_blocker));
193 this_blocker = next_blocker;
194 }
195
196 if (options.has_plugins())
197 {
198 Task_token* next_blocker = new Task_token(true);
199 next_blocker->add_blocker();
200 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
201 &search_path, mapfile, this_blocker,
202 next_blocker));
203 this_blocker = next_blocker;
204 }
205
206 if (parameters->options().relocatable()
207 && (parameters->options().gc_sections() || parameters->options().icf()))
208 gold_error(_("cannot mix -r with --gc-sections or --icf"));
209
210 if (parameters->options().gc_sections() || parameters->options().icf())
211 {
212 workqueue->queue(new Task_function(new Gc_runner(options,
213 input_objects,
214 symtab,
215 layout,
216 mapfile),
217 this_blocker,
218 "Task_function Gc_runner"));
219 }
220 else
221 {
222 workqueue->queue(new Task_function(new Middle_runner(options,
223 input_objects,
224 symtab,
225 layout,
226 mapfile),
227 this_blocker,
228 "Task_function Middle_runner"));
229 }
230 }
231
232 // Queue up a set of tasks to be done before queueing the middle set
233 // of tasks. This is only necessary when garbage collection
234 // (--gc-sections) of unused sections is desired. The relocs are read
235 // and processed here early to determine the garbage sections before the
236 // relocs can be scanned in later tasks.
237
238 void
239 queue_middle_gc_tasks(const General_options& options,
240 const Task* ,
241 const Input_objects* input_objects,
242 Symbol_table* symtab,
243 Layout* layout,
244 Workqueue* workqueue,
245 Mapfile* mapfile)
246 {
247 // Read_relocs for all the objects must be done and processed to find
248 // unused sections before any scanning of the relocs can take place.
249 Task_token* blocker = new Task_token(true);
250 Task_token* symtab_lock = new Task_token(false);
251 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
252 p != input_objects->relobj_end();
253 ++p)
254 {
255 // We can read and process the relocations in any order.
256 blocker->add_blocker();
257 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
258 symtab_lock, blocker));
259 }
260
261 Task_token* this_blocker = new Task_token(true);
262 workqueue->queue(new Task_function(new Middle_runner(options,
263 input_objects,
264 symtab,
265 layout,
266 mapfile),
267 this_blocker,
268 "Task_function Middle_runner"));
269 }
270
271 // Queue up the middle set of tasks. These are the tasks which run
272 // after all the input objects have been found and all the symbols
273 // have been read, but before we lay out the output file.
274
275 void
276 queue_middle_tasks(const General_options& options,
277 const Task* task,
278 const Input_objects* input_objects,
279 Symbol_table* symtab,
280 Layout* layout,
281 Workqueue* workqueue,
282 Mapfile* mapfile)
283 {
284 // Add any symbols named with -u options to the symbol table.
285 symtab->add_undefined_symbols_from_command_line();
286
287 // If garbage collection was chosen, relocs have been read and processed
288 // at this point by pre_middle_tasks. Layout can then be done for all
289 // objects.
290 if (parameters->options().gc_sections())
291 {
292 // Find the start symbol if any.
293 Symbol* start_sym;
294 if (parameters->options().entry())
295 start_sym = symtab->lookup(parameters->options().entry());
296 else
297 start_sym = symtab->lookup("_start");
298 if (start_sym !=NULL)
299 {
300 bool is_ordinary;
301 unsigned int shndx = start_sym->shndx(&is_ordinary);
302 if (is_ordinary)
303 {
304 symtab->gc()->worklist().push(
305 Section_id(start_sym->object(), shndx));
306 }
307 }
308 // Symbols named with -u should not be considered garbage.
309 symtab->gc_mark_undef_symbols();
310 gold_assert(symtab->gc() != NULL);
311 // Do a transitive closure on all references to determine the worklist.
312 symtab->gc()->do_transitive_closure();
313 }
314
315 // If identical code folding (--icf) is chosen it makes sense to do it
316 // only after garbage collection (--gc-sections) as we do not want to
317 // be folding sections that will be garbage.
318 if (parameters->options().icf())
319 {
320 symtab->icf()->find_identical_sections(input_objects, symtab);
321 }
322
323 // Call Object::layout for the second time to determine the
324 // output_sections for all referenced input sections. When
325 // --gc-sections or --icf is turned on, Object::layout is
326 // called twice. It is called the first time when the
327 // symbols are added.
328 if (parameters->options().gc_sections() || parameters->options().icf())
329 {
330 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
331 p != input_objects->relobj_end();
332 ++p)
333 {
334 (*p)->layout(symtab, layout, NULL);
335 }
336 }
337
338 // Layout deferred objects due to plugins.
339 if (parameters->options().has_plugins())
340 {
341 Plugin_manager* plugins = parameters->options().plugins();
342 gold_assert(plugins != NULL);
343 plugins->layout_deferred_objects();
344 }
345
346 if (parameters->options().gc_sections() || parameters->options().icf())
347 {
348 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
349 p != input_objects->relobj_end();
350 ++p)
351 {
352 // Update the value of output_section stored in rd.
353 Read_relocs_data *rd = (*p)->get_relocs_data();
354 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
355 q != rd->relocs.end();
356 ++q)
357 {
358 q->output_section = (*p)->output_section(q->data_shndx);
359 q->needs_special_offset_handling =
360 (*p)->is_output_section_offset_invalid(q->data_shndx);
361 }
362 }
363 }
364
365 // We have to support the case of not seeing any input objects, and
366 // generate an empty file. Existing builds depend on being able to
367 // pass an empty archive to the linker and get an empty object file
368 // out. In order to do this we need to use a default target.
369 if (input_objects->number_of_input_objects() == 0)
370 set_parameters_target(&parameters->default_target());
371
372 int thread_count = options.thread_count_middle();
373 if (thread_count == 0)
374 thread_count = std::max(2, input_objects->number_of_input_objects());
375 workqueue->set_thread_count(thread_count);
376
377 // Now we have seen all the input files.
378 const bool doing_static_link = (!input_objects->any_dynamic()
379 && !parameters->options().shared());
380 set_parameters_doing_static_link(doing_static_link);
381 if (!doing_static_link && options.is_static())
382 {
383 // We print out just the first .so we see; there may be others.
384 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
385 gold_error(_("cannot mix -static with dynamic object %s"),
386 (*input_objects->dynobj_begin())->name().c_str());
387 }
388 if (!doing_static_link && parameters->options().relocatable())
389 gold_fatal(_("cannot mix -r with dynamic object %s"),
390 (*input_objects->dynobj_begin())->name().c_str());
391 if (!doing_static_link
392 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
393 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
394 (*input_objects->dynobj_begin())->name().c_str());
395
396 if (is_debugging_enabled(DEBUG_SCRIPT))
397 layout->script_options()->print(stderr);
398
399 // For each dynamic object, record whether we've seen all the
400 // dynamic objects that it depends upon.
401 input_objects->check_dynamic_dependencies();
402
403 // See if any of the input definitions violate the One Definition Rule.
404 // TODO: if this is too slow, do this as a task, rather than inline.
405 symtab->detect_odr_violations(task, options.output_file_name());
406
407 // Create any automatic note sections.
408 layout->create_notes();
409
410 // Create any output sections required by any linker script.
411 layout->create_script_sections();
412
413 // Define some sections and symbols needed for a dynamic link. This
414 // handles some cases we want to see before we read the relocs.
415 layout->create_initial_dynamic_sections(symtab);
416
417 // Define symbols from any linker scripts.
418 layout->define_script_symbols(symtab);
419
420 // Attach sections to segments.
421 layout->attach_sections_to_segments();
422
423 if (!parameters->options().relocatable())
424 {
425 // Predefine standard symbols.
426 define_standard_symbols(symtab, layout);
427
428 // Define __start and __stop symbols for output sections where
429 // appropriate.
430 layout->define_section_symbols(symtab);
431 }
432
433 // Make sure we have symbols for any required group signatures.
434 layout->define_group_signatures(symtab);
435
436 Task_token* blocker = new Task_token(true);
437 Task_token* symtab_lock = new Task_token(false);
438
439 // If doing garbage collection, the relocations have already been read.
440 // Otherwise, read and scan the relocations.
441 if (parameters->options().gc_sections() || parameters->options().icf())
442 {
443 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
444 p != input_objects->relobj_end();
445 ++p)
446 {
447 blocker->add_blocker();
448 workqueue->queue(new Scan_relocs(options, symtab, layout, *p,
449 (*p)->get_relocs_data(),symtab_lock, blocker));
450 }
451 }
452 else
453 {
454 // Read the relocations of the input files. We do this to find
455 // which symbols are used by relocations which require a GOT and/or
456 // a PLT entry, or a COPY reloc. When we implement garbage
457 // collection we will do it here by reading the relocations in a
458 // breadth first search by references.
459 //
460 // We could also read the relocations during the first pass, and
461 // mark symbols at that time. That is how the old GNU linker works.
462 // Doing that is more complex, since we may later decide to discard
463 // some of the sections, and thus change our minds about the types
464 // of references made to the symbols.
465 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
466 p != input_objects->relobj_end();
467 ++p)
468 {
469 // We can read and process the relocations in any order. But we
470 // only want one task to write to the symbol table at a time.
471 // So we queue up a task for each object to read the
472 // relocations. That task will in turn queue a task to wait
473 // until it can write to the symbol table.
474 blocker->add_blocker();
475 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
476 symtab_lock, blocker));
477 }
478 }
479
480 // Allocate common symbols. This requires write access to the
481 // symbol table, but is independent of the relocation processing.
482 if (parameters->options().define_common())
483 {
484 blocker->add_blocker();
485 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
486 symtab_lock, blocker));
487 }
488
489 // When all those tasks are complete, we can start laying out the
490 // output file.
491 // TODO(csilvers): figure out a more principled way to get the target
492 Target* target = const_cast<Target*>(&parameters->target());
493 workqueue->queue(new Task_function(new Layout_task_runner(options,
494 input_objects,
495 symtab,
496 target,
497 layout,
498 mapfile),
499 blocker,
500 "Task_function Layout_task_runner"));
501 }
502
503 // Queue up the final set of tasks. This is called at the end of
504 // Layout_task.
505
506 void
507 queue_final_tasks(const General_options& options,
508 const Input_objects* input_objects,
509 const Symbol_table* symtab,
510 Layout* layout,
511 Workqueue* workqueue,
512 Output_file* of)
513 {
514 int thread_count = options.thread_count_final();
515 if (thread_count == 0)
516 thread_count = std::max(2, input_objects->number_of_input_objects());
517 workqueue->set_thread_count(thread_count);
518
519 bool any_postprocessing_sections = layout->any_postprocessing_sections();
520
521 // Use a blocker to wait until all the input sections have been
522 // written out.
523 Task_token* input_sections_blocker = NULL;
524 if (!any_postprocessing_sections)
525 input_sections_blocker = new Task_token(true);
526
527 // Use a blocker to block any objects which have to wait for the
528 // output sections to complete before they can apply relocations.
529 Task_token* output_sections_blocker = new Task_token(true);
530
531 // Use a blocker to block the final cleanup task.
532 Task_token* final_blocker = new Task_token(true);
533
534 // Queue a task to write out the symbol table.
535 final_blocker->add_blocker();
536 workqueue->queue(new Write_symbols_task(layout,
537 symtab,
538 input_objects,
539 layout->sympool(),
540 layout->dynpool(),
541 of,
542 final_blocker));
543
544 // Queue a task to write out the output sections.
545 output_sections_blocker->add_blocker();
546 final_blocker->add_blocker();
547 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
548 final_blocker));
549
550 // Queue a task to write out everything else.
551 final_blocker->add_blocker();
552 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
553
554 // Queue a task for each input object to relocate the sections and
555 // write out the local symbols.
556 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
557 p != input_objects->relobj_end();
558 ++p)
559 {
560 if (input_sections_blocker != NULL)
561 input_sections_blocker->add_blocker();
562 final_blocker->add_blocker();
563 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
564 input_sections_blocker,
565 output_sections_blocker,
566 final_blocker));
567 }
568
569 // Queue a task to write out the output sections which depend on
570 // input sections. If there are any sections which require
571 // postprocessing, then we need to do this last, since it may resize
572 // the output file.
573 if (!any_postprocessing_sections)
574 {
575 final_blocker->add_blocker();
576 Task* t = new Write_after_input_sections_task(layout, of,
577 input_sections_blocker,
578 final_blocker);
579 workqueue->queue(t);
580 }
581 else
582 {
583 Task_token *new_final_blocker = new Task_token(true);
584 new_final_blocker->add_blocker();
585 Task* t = new Write_after_input_sections_task(layout, of,
586 final_blocker,
587 new_final_blocker);
588 workqueue->queue(t);
589 final_blocker = new_final_blocker;
590 }
591
592 // Queue a task to close the output file. This will be blocked by
593 // FINAL_BLOCKER.
594 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
595 of),
596 final_blocker,
597 "Task_function Close_task_runner"));
598 }
599
600 } // End namespace gold.
This page took 0.057267 seconds and 5 git commands to generate.