* symtab.h: Check for GOLD_SYMTAB_H before header includes. Remove
[deliverable/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "debug.h"
34 #include "workqueue.h"
35 #include "dirsearch.h"
36 #include "readsyms.h"
37 #include "symtab.h"
38 #include "common.h"
39 #include "object.h"
40 #include "layout.h"
41 #include "reloc.h"
42 #include "defstd.h"
43 #include "plugin.h"
44 #include "gc.h"
45 #include "icf.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 const char* program_name;
52
53 void
54 gold_exit(bool status)
55 {
56 if (parameters != NULL
57 && parameters->options_valid()
58 && parameters->options().has_plugins())
59 parameters->options().plugins()->cleanup();
60 if (!status && parameters != NULL && parameters->options_valid())
61 unlink_if_ordinary(parameters->options().output_file_name());
62 exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
63 }
64
65 void
66 gold_nomem()
67 {
68 // We are out of memory, so try hard to print a reasonable message.
69 // Note that we don't try to translate this message, since the
70 // translation process itself will require memory.
71
72 // LEN only exists to avoid a pointless warning when write is
73 // declared with warn_use_result, as when compiling with
74 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
75 // work, at least not with gcc 4.3.0.
76
77 ssize_t len = write(2, program_name, strlen(program_name));
78 if (len >= 0)
79 {
80 const char* const s = ": out of memory\n";
81 len = write(2, s, strlen(s));
82 }
83 gold_exit(false);
84 }
85
86 // Handle an unreachable case.
87
88 void
89 do_gold_unreachable(const char* filename, int lineno, const char* function)
90 {
91 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
92 program_name, function, filename, lineno);
93 gold_exit(false);
94 }
95
96 // This class arranges to run the functions done in the middle of the
97 // link. It is just a closure.
98
99 class Middle_runner : public Task_function_runner
100 {
101 public:
102 Middle_runner(const General_options& options,
103 const Input_objects* input_objects,
104 Symbol_table* symtab,
105 Layout* layout, Mapfile* mapfile)
106 : options_(options), input_objects_(input_objects), symtab_(symtab),
107 layout_(layout), mapfile_(mapfile)
108 { }
109
110 void
111 run(Workqueue*, const Task*);
112
113 private:
114 const General_options& options_;
115 const Input_objects* input_objects_;
116 Symbol_table* symtab_;
117 Layout* layout_;
118 Mapfile* mapfile_;
119 };
120
121 void
122 Middle_runner::run(Workqueue* workqueue, const Task* task)
123 {
124 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
125 this->layout_, workqueue, this->mapfile_);
126 }
127
128 // This class arranges the tasks to process the relocs for garbage collection.
129
130 class Gc_runner : public Task_function_runner
131 {
132 public:
133 Gc_runner(const General_options& options,
134 const Input_objects* input_objects,
135 Symbol_table* symtab,
136 Layout* layout, Mapfile* mapfile)
137 : options_(options), input_objects_(input_objects), symtab_(symtab),
138 layout_(layout), mapfile_(mapfile)
139 { }
140
141 void
142 run(Workqueue*, const Task*);
143
144 private:
145 const General_options& options_;
146 const Input_objects* input_objects_;
147 Symbol_table* symtab_;
148 Layout* layout_;
149 Mapfile* mapfile_;
150 };
151
152 void
153 Gc_runner::run(Workqueue* workqueue, const Task* task)
154 {
155 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
156 this->symtab_, this->layout_, workqueue,
157 this->mapfile_);
158 }
159
160 // Queue up the initial set of tasks for this link job.
161
162 void
163 queue_initial_tasks(const General_options& options,
164 Dirsearch& search_path,
165 const Command_line& cmdline,
166 Workqueue* workqueue, Input_objects* input_objects,
167 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
168 {
169 if (cmdline.begin() == cmdline.end())
170 {
171 if (options.printed_version())
172 gold_exit(true);
173 gold_fatal(_("no input files"));
174 }
175
176 int thread_count = options.thread_count_initial();
177 if (thread_count == 0)
178 thread_count = cmdline.number_of_input_files();
179 workqueue->set_thread_count(thread_count);
180
181 if (cmdline.options().incremental())
182 {
183 Incremental_checker incremental_checker(
184 parameters->options().output_file_name(),
185 layout->incremental_inputs());
186 if (incremental_checker.can_incrementally_link_output_file())
187 {
188 // TODO: remove when incremental linking implemented.
189 printf("Incremental linking might be possible "
190 "(not implemented yet)\n");
191 }
192 // TODO: If we decide on an incremental build, fewer tasks
193 // should be scheduled.
194 }
195
196 // Read the input files. We have to add the symbols to the symbol
197 // table in order. We do this by creating a separate blocker for
198 // each input file. We associate the blocker with the following
199 // input file, to give us a convenient place to delete it.
200 Task_token* this_blocker = NULL;
201 for (Command_line::const_iterator p = cmdline.begin();
202 p != cmdline.end();
203 ++p)
204 {
205 Task_token* next_blocker = new Task_token(true);
206 next_blocker->add_blocker();
207 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
208 &search_path, 0, mapfile, &*p, NULL,
209 this_blocker, next_blocker));
210 this_blocker = next_blocker;
211 }
212
213 if (options.has_plugins())
214 {
215 Task_token* next_blocker = new Task_token(true);
216 next_blocker->add_blocker();
217 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
218 &search_path, mapfile, this_blocker,
219 next_blocker));
220 this_blocker = next_blocker;
221 }
222
223 if (parameters->options().relocatable()
224 && (parameters->options().gc_sections() || parameters->options().icf()))
225 gold_error(_("cannot mix -r with --gc-sections or --icf"));
226
227 if (parameters->options().gc_sections() || parameters->options().icf())
228 {
229 workqueue->queue(new Task_function(new Gc_runner(options,
230 input_objects,
231 symtab,
232 layout,
233 mapfile),
234 this_blocker,
235 "Task_function Gc_runner"));
236 }
237 else
238 {
239 workqueue->queue(new Task_function(new Middle_runner(options,
240 input_objects,
241 symtab,
242 layout,
243 mapfile),
244 this_blocker,
245 "Task_function Middle_runner"));
246 }
247 }
248
249 // Queue up a set of tasks to be done before queueing the middle set
250 // of tasks. This is only necessary when garbage collection
251 // (--gc-sections) of unused sections is desired. The relocs are read
252 // and processed here early to determine the garbage sections before the
253 // relocs can be scanned in later tasks.
254
255 void
256 queue_middle_gc_tasks(const General_options& options,
257 const Task* ,
258 const Input_objects* input_objects,
259 Symbol_table* symtab,
260 Layout* layout,
261 Workqueue* workqueue,
262 Mapfile* mapfile)
263 {
264 // Read_relocs for all the objects must be done and processed to find
265 // unused sections before any scanning of the relocs can take place.
266 Task_token* blocker = new Task_token(true);
267 Task_token* symtab_lock = new Task_token(false);
268 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
269 p != input_objects->relobj_end();
270 ++p)
271 {
272 // We can read and process the relocations in any order.
273 blocker->add_blocker();
274 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
275 symtab_lock, blocker));
276 }
277
278 Task_token* this_blocker = new Task_token(true);
279 workqueue->queue(new Task_function(new Middle_runner(options,
280 input_objects,
281 symtab,
282 layout,
283 mapfile),
284 this_blocker,
285 "Task_function Middle_runner"));
286 }
287
288 // Queue up the middle set of tasks. These are the tasks which run
289 // after all the input objects have been found and all the symbols
290 // have been read, but before we lay out the output file.
291
292 void
293 queue_middle_tasks(const General_options& options,
294 const Task* task,
295 const Input_objects* input_objects,
296 Symbol_table* symtab,
297 Layout* layout,
298 Workqueue* workqueue,
299 Mapfile* mapfile)
300 {
301 // Add any symbols named with -u options to the symbol table.
302 symtab->add_undefined_symbols_from_command_line();
303
304 // If garbage collection was chosen, relocs have been read and processed
305 // at this point by pre_middle_tasks. Layout can then be done for all
306 // objects.
307 if (parameters->options().gc_sections())
308 {
309 // Find the start symbol if any.
310 Symbol* start_sym;
311 if (parameters->options().entry())
312 start_sym = symtab->lookup(parameters->options().entry());
313 else
314 start_sym = symtab->lookup("_start");
315 if (start_sym !=NULL)
316 {
317 bool is_ordinary;
318 unsigned int shndx = start_sym->shndx(&is_ordinary);
319 if (is_ordinary)
320 {
321 symtab->gc()->worklist().push(
322 Section_id(start_sym->object(), shndx));
323 }
324 }
325 // Symbols named with -u should not be considered garbage.
326 symtab->gc_mark_undef_symbols();
327 gold_assert(symtab->gc() != NULL);
328 // Do a transitive closure on all references to determine the worklist.
329 symtab->gc()->do_transitive_closure();
330 }
331
332 // If identical code folding (--icf) is chosen it makes sense to do it
333 // only after garbage collection (--gc-sections) as we do not want to
334 // be folding sections that will be garbage.
335 if (parameters->options().icf())
336 {
337 symtab->icf()->find_identical_sections(input_objects, symtab);
338 }
339
340 // Call Object::layout for the second time to determine the
341 // output_sections for all referenced input sections. When
342 // --gc-sections or --icf is turned on, Object::layout is
343 // called twice. It is called the first time when the
344 // symbols are added.
345 if (parameters->options().gc_sections() || parameters->options().icf())
346 {
347 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
348 p != input_objects->relobj_end();
349 ++p)
350 {
351 (*p)->layout(symtab, layout, NULL);
352 }
353 }
354
355 // Layout deferred objects due to plugins.
356 if (parameters->options().has_plugins())
357 {
358 Plugin_manager* plugins = parameters->options().plugins();
359 gold_assert(plugins != NULL);
360 plugins->layout_deferred_objects();
361 }
362
363 if (parameters->options().gc_sections() || parameters->options().icf())
364 {
365 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
366 p != input_objects->relobj_end();
367 ++p)
368 {
369 // Update the value of output_section stored in rd.
370 Read_relocs_data *rd = (*p)->get_relocs_data();
371 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
372 q != rd->relocs.end();
373 ++q)
374 {
375 q->output_section = (*p)->output_section(q->data_shndx);
376 q->needs_special_offset_handling =
377 (*p)->is_output_section_offset_invalid(q->data_shndx);
378 }
379 }
380 }
381
382 // We have to support the case of not seeing any input objects, and
383 // generate an empty file. Existing builds depend on being able to
384 // pass an empty archive to the linker and get an empty object file
385 // out. In order to do this we need to use a default target.
386 if (input_objects->number_of_input_objects() == 0)
387 parameters_force_valid_target();
388
389 int thread_count = options.thread_count_middle();
390 if (thread_count == 0)
391 thread_count = std::max(2, input_objects->number_of_input_objects());
392 workqueue->set_thread_count(thread_count);
393
394 // Now we have seen all the input files.
395 const bool doing_static_link = (!input_objects->any_dynamic()
396 && !parameters->options().shared());
397 set_parameters_doing_static_link(doing_static_link);
398 if (!doing_static_link && options.is_static())
399 {
400 // We print out just the first .so we see; there may be others.
401 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
402 gold_error(_("cannot mix -static with dynamic object %s"),
403 (*input_objects->dynobj_begin())->name().c_str());
404 }
405 if (!doing_static_link && parameters->options().relocatable())
406 gold_fatal(_("cannot mix -r with dynamic object %s"),
407 (*input_objects->dynobj_begin())->name().c_str());
408 if (!doing_static_link
409 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
410 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
411 (*input_objects->dynobj_begin())->name().c_str());
412
413 if (parameters->options().relocatable())
414 {
415 Input_objects::Relobj_iterator p = input_objects->relobj_begin();
416 if (p != input_objects->relobj_end())
417 {
418 bool uses_split_stack = (*p)->uses_split_stack();
419 for (++p; p != input_objects->relobj_end(); ++p)
420 {
421 if ((*p)->uses_split_stack() != uses_split_stack)
422 gold_fatal(_("cannot mix split-stack '%s' and "
423 "non-split-stack '%s' when using -r"),
424 (*input_objects->relobj_begin())->name().c_str(),
425 (*p)->name().c_str());
426 }
427 }
428 }
429
430 if (is_debugging_enabled(DEBUG_SCRIPT))
431 layout->script_options()->print(stderr);
432
433 // For each dynamic object, record whether we've seen all the
434 // dynamic objects that it depends upon.
435 input_objects->check_dynamic_dependencies();
436
437 // See if any of the input definitions violate the One Definition Rule.
438 // TODO: if this is too slow, do this as a task, rather than inline.
439 symtab->detect_odr_violations(task, options.output_file_name());
440
441 // Create any automatic note sections.
442 layout->create_notes();
443
444 // Create any output sections required by any linker script.
445 layout->create_script_sections();
446
447 // Define some sections and symbols needed for a dynamic link. This
448 // handles some cases we want to see before we read the relocs.
449 layout->create_initial_dynamic_sections(symtab);
450
451 // Define symbols from any linker scripts.
452 layout->define_script_symbols(symtab);
453
454 // Attach sections to segments.
455 layout->attach_sections_to_segments();
456
457 if (!parameters->options().relocatable())
458 {
459 // Predefine standard symbols.
460 define_standard_symbols(symtab, layout);
461
462 // Define __start and __stop symbols for output sections where
463 // appropriate.
464 layout->define_section_symbols(symtab);
465 }
466
467 // Make sure we have symbols for any required group signatures.
468 layout->define_group_signatures(symtab);
469
470 Task_token* blocker = new Task_token(true);
471 Task_token* symtab_lock = new Task_token(false);
472
473 // If doing garbage collection, the relocations have already been read.
474 // Otherwise, read and scan the relocations.
475 if (parameters->options().gc_sections() || parameters->options().icf())
476 {
477 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
478 p != input_objects->relobj_end();
479 ++p)
480 {
481 blocker->add_blocker();
482 workqueue->queue(new Scan_relocs(options, symtab, layout, *p,
483 (*p)->get_relocs_data(),symtab_lock, blocker));
484 }
485 }
486 else
487 {
488 // Read the relocations of the input files. We do this to find
489 // which symbols are used by relocations which require a GOT and/or
490 // a PLT entry, or a COPY reloc. When we implement garbage
491 // collection we will do it here by reading the relocations in a
492 // breadth first search by references.
493 //
494 // We could also read the relocations during the first pass, and
495 // mark symbols at that time. That is how the old GNU linker works.
496 // Doing that is more complex, since we may later decide to discard
497 // some of the sections, and thus change our minds about the types
498 // of references made to the symbols.
499 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
500 p != input_objects->relobj_end();
501 ++p)
502 {
503 // We can read and process the relocations in any order. But we
504 // only want one task to write to the symbol table at a time.
505 // So we queue up a task for each object to read the
506 // relocations. That task will in turn queue a task to wait
507 // until it can write to the symbol table.
508 blocker->add_blocker();
509 workqueue->queue(new Read_relocs(options, symtab, layout, *p,
510 symtab_lock, blocker));
511 }
512 }
513
514 // Allocate common symbols. This requires write access to the
515 // symbol table, but is independent of the relocation processing.
516 if (parameters->options().define_common())
517 {
518 blocker->add_blocker();
519 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
520 symtab_lock, blocker));
521 }
522
523 // When all those tasks are complete, we can start laying out the
524 // output file.
525 // TODO(csilvers): figure out a more principled way to get the target
526 Target* target = const_cast<Target*>(&parameters->target());
527 workqueue->queue(new Task_function(new Layout_task_runner(options,
528 input_objects,
529 symtab,
530 target,
531 layout,
532 mapfile),
533 blocker,
534 "Task_function Layout_task_runner"));
535 }
536
537 // Queue up the final set of tasks. This is called at the end of
538 // Layout_task.
539
540 void
541 queue_final_tasks(const General_options& options,
542 const Input_objects* input_objects,
543 const Symbol_table* symtab,
544 Layout* layout,
545 Workqueue* workqueue,
546 Output_file* of)
547 {
548 int thread_count = options.thread_count_final();
549 if (thread_count == 0)
550 thread_count = std::max(2, input_objects->number_of_input_objects());
551 workqueue->set_thread_count(thread_count);
552
553 bool any_postprocessing_sections = layout->any_postprocessing_sections();
554
555 // Use a blocker to wait until all the input sections have been
556 // written out.
557 Task_token* input_sections_blocker = NULL;
558 if (!any_postprocessing_sections)
559 input_sections_blocker = new Task_token(true);
560
561 // Use a blocker to block any objects which have to wait for the
562 // output sections to complete before they can apply relocations.
563 Task_token* output_sections_blocker = new Task_token(true);
564
565 // Use a blocker to block the final cleanup task.
566 Task_token* final_blocker = new Task_token(true);
567
568 // Queue a task to write out the symbol table.
569 final_blocker->add_blocker();
570 workqueue->queue(new Write_symbols_task(layout,
571 symtab,
572 input_objects,
573 layout->sympool(),
574 layout->dynpool(),
575 of,
576 final_blocker));
577
578 // Queue a task to write out the output sections.
579 output_sections_blocker->add_blocker();
580 final_blocker->add_blocker();
581 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
582 final_blocker));
583
584 // Queue a task to write out everything else.
585 final_blocker->add_blocker();
586 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
587
588 // Queue a task for each input object to relocate the sections and
589 // write out the local symbols.
590 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
591 p != input_objects->relobj_end();
592 ++p)
593 {
594 if (input_sections_blocker != NULL)
595 input_sections_blocker->add_blocker();
596 final_blocker->add_blocker();
597 workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
598 input_sections_blocker,
599 output_sections_blocker,
600 final_blocker));
601 }
602
603 // Queue a task to write out the output sections which depend on
604 // input sections. If there are any sections which require
605 // postprocessing, then we need to do this last, since it may resize
606 // the output file.
607 if (!any_postprocessing_sections)
608 {
609 final_blocker->add_blocker();
610 Task* t = new Write_after_input_sections_task(layout, of,
611 input_sections_blocker,
612 final_blocker);
613 workqueue->queue(t);
614 }
615 else
616 {
617 Task_token *new_final_blocker = new Task_token(true);
618 new_final_blocker->add_blocker();
619 Task* t = new Write_after_input_sections_task(layout, of,
620 final_blocker,
621 new_final_blocker);
622 workqueue->queue(t);
623 final_blocker = new_final_blocker;
624 }
625
626 // Queue a task to close the output file. This will be blocked by
627 // FINAL_BLOCKER.
628 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
629 of),
630 final_blocker,
631 "Task_function Close_task_runner"));
632 }
633
634 } // End namespace gold.
This page took 0.055063 seconds and 5 git commands to generate.