2009-03-23 Ian Lance Taylor <iant@google.com>
[deliverable/binutils-gdb.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41
42 namespace
43 {
44
45 using namespace gold;
46
47 class Output_data_plt_i386;
48
49 // The i386 target class.
50 // TLS info comes from
51 // http://people.redhat.com/drepper/tls.pdf
52 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
53
54 class Target_i386 : public Target_freebsd<32, false>
55 {
56 public:
57 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
58
59 Target_i386()
60 : Target_freebsd<32, false>(&i386_info),
61 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
62 copy_relocs_(elfcpp::R_386_COPY), dynbss_(NULL),
63 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
64 { }
65
66 // Process the relocations to determine unreferenced sections for
67 // garbage collection.
68 void
69 gc_process_relocs(const General_options& options,
70 Symbol_table* symtab,
71 Layout* layout,
72 Sized_relobj<32, false>* object,
73 unsigned int data_shndx,
74 unsigned int sh_type,
75 const unsigned char* prelocs,
76 size_t reloc_count,
77 Output_section* output_section,
78 bool needs_special_offset_handling,
79 size_t local_symbol_count,
80 const unsigned char* plocal_symbols);
81
82 // Scan the relocations to look for symbol adjustments.
83 void
84 scan_relocs(const General_options& options,
85 Symbol_table* symtab,
86 Layout* layout,
87 Sized_relobj<32, false>* object,
88 unsigned int data_shndx,
89 unsigned int sh_type,
90 const unsigned char* prelocs,
91 size_t reloc_count,
92 Output_section* output_section,
93 bool needs_special_offset_handling,
94 size_t local_symbol_count,
95 const unsigned char* plocal_symbols);
96
97 // Finalize the sections.
98 void
99 do_finalize_sections(Layout*);
100
101 // Return the value to use for a dynamic which requires special
102 // treatment.
103 uint64_t
104 do_dynsym_value(const Symbol*) const;
105
106 // Relocate a section.
107 void
108 relocate_section(const Relocate_info<32, false>*,
109 unsigned int sh_type,
110 const unsigned char* prelocs,
111 size_t reloc_count,
112 Output_section* output_section,
113 bool needs_special_offset_handling,
114 unsigned char* view,
115 elfcpp::Elf_types<32>::Elf_Addr view_address,
116 section_size_type view_size);
117
118 // Scan the relocs during a relocatable link.
119 void
120 scan_relocatable_relocs(const General_options& options,
121 Symbol_table* symtab,
122 Layout* layout,
123 Sized_relobj<32, false>* object,
124 unsigned int data_shndx,
125 unsigned int sh_type,
126 const unsigned char* prelocs,
127 size_t reloc_count,
128 Output_section* output_section,
129 bool needs_special_offset_handling,
130 size_t local_symbol_count,
131 const unsigned char* plocal_symbols,
132 Relocatable_relocs*);
133
134 // Relocate a section during a relocatable link.
135 void
136 relocate_for_relocatable(const Relocate_info<32, false>*,
137 unsigned int sh_type,
138 const unsigned char* prelocs,
139 size_t reloc_count,
140 Output_section* output_section,
141 off_t offset_in_output_section,
142 const Relocatable_relocs*,
143 unsigned char* view,
144 elfcpp::Elf_types<32>::Elf_Addr view_address,
145 section_size_type view_size,
146 unsigned char* reloc_view,
147 section_size_type reloc_view_size);
148
149 // Return a string used to fill a code section with nops.
150 std::string
151 do_code_fill(section_size_type length) const;
152
153 // Return whether SYM is defined by the ABI.
154 bool
155 do_is_defined_by_abi(const Symbol* sym) const
156 { return strcmp(sym->name(), "___tls_get_addr") == 0; }
157
158 // Return the size of the GOT section.
159 section_size_type
160 got_size()
161 {
162 gold_assert(this->got_ != NULL);
163 return this->got_->data_size();
164 }
165
166 private:
167 // The class which scans relocations.
168 struct Scan
169 {
170 inline void
171 local(const General_options& options, Symbol_table* symtab,
172 Layout* layout, Target_i386* target,
173 Sized_relobj<32, false>* object,
174 unsigned int data_shndx,
175 Output_section* output_section,
176 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
177 const elfcpp::Sym<32, false>& lsym);
178
179 inline void
180 global(const General_options& options, Symbol_table* symtab,
181 Layout* layout, Target_i386* target,
182 Sized_relobj<32, false>* object,
183 unsigned int data_shndx,
184 Output_section* output_section,
185 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
186 Symbol* gsym);
187
188 static void
189 unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
190
191 static void
192 unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
193 Symbol*);
194 };
195
196 // The class which implements relocation.
197 class Relocate
198 {
199 public:
200 Relocate()
201 : skip_call_tls_get_addr_(false),
202 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
203 { }
204
205 ~Relocate()
206 {
207 if (this->skip_call_tls_get_addr_)
208 {
209 // FIXME: This needs to specify the location somehow.
210 gold_error(_("missing expected TLS relocation"));
211 }
212 }
213
214 // Return whether the static relocation needs to be applied.
215 inline bool
216 should_apply_static_reloc(const Sized_symbol<32>* gsym,
217 int ref_flags,
218 bool is_32bit,
219 Output_section* output_section);
220
221 // Do a relocation. Return false if the caller should not issue
222 // any warnings about this relocation.
223 inline bool
224 relocate(const Relocate_info<32, false>*, Target_i386*, Output_section*,
225 size_t relnum, const elfcpp::Rel<32, false>&,
226 unsigned int r_type, const Sized_symbol<32>*,
227 const Symbol_value<32>*,
228 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
229 section_size_type);
230
231 private:
232 // Do a TLS relocation.
233 inline void
234 relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
235 size_t relnum, const elfcpp::Rel<32, false>&,
236 unsigned int r_type, const Sized_symbol<32>*,
237 const Symbol_value<32>*,
238 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
239 section_size_type);
240
241 // Do a TLS General-Dynamic to Initial-Exec transition.
242 inline void
243 tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
244 Output_segment* tls_segment,
245 const elfcpp::Rel<32, false>&, unsigned int r_type,
246 elfcpp::Elf_types<32>::Elf_Addr value,
247 unsigned char* view,
248 section_size_type view_size);
249
250 // Do a TLS General-Dynamic to Local-Exec transition.
251 inline void
252 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
253 Output_segment* tls_segment,
254 const elfcpp::Rel<32, false>&, unsigned int r_type,
255 elfcpp::Elf_types<32>::Elf_Addr value,
256 unsigned char* view,
257 section_size_type view_size);
258
259 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
260 // transition.
261 inline void
262 tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
263 Output_segment* tls_segment,
264 const elfcpp::Rel<32, false>&, unsigned int r_type,
265 elfcpp::Elf_types<32>::Elf_Addr value,
266 unsigned char* view,
267 section_size_type view_size);
268
269 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
270 // transition.
271 inline void
272 tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
273 Output_segment* tls_segment,
274 const elfcpp::Rel<32, false>&, unsigned int r_type,
275 elfcpp::Elf_types<32>::Elf_Addr value,
276 unsigned char* view,
277 section_size_type view_size);
278
279 // Do a TLS Local-Dynamic to Local-Exec transition.
280 inline void
281 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
282 Output_segment* tls_segment,
283 const elfcpp::Rel<32, false>&, unsigned int r_type,
284 elfcpp::Elf_types<32>::Elf_Addr value,
285 unsigned char* view,
286 section_size_type view_size);
287
288 // Do a TLS Initial-Exec to Local-Exec transition.
289 static inline void
290 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
291 Output_segment* tls_segment,
292 const elfcpp::Rel<32, false>&, unsigned int r_type,
293 elfcpp::Elf_types<32>::Elf_Addr value,
294 unsigned char* view,
295 section_size_type view_size);
296
297 // We need to keep track of which type of local dynamic relocation
298 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
299 enum Local_dynamic_type
300 {
301 LOCAL_DYNAMIC_NONE,
302 LOCAL_DYNAMIC_SUN,
303 LOCAL_DYNAMIC_GNU
304 };
305
306 // This is set if we should skip the next reloc, which should be a
307 // PLT32 reloc against ___tls_get_addr.
308 bool skip_call_tls_get_addr_;
309 // The type of local dynamic relocation we have seen in the section
310 // being relocated, if any.
311 Local_dynamic_type local_dynamic_type_;
312 };
313
314 // A class which returns the size required for a relocation type,
315 // used while scanning relocs during a relocatable link.
316 class Relocatable_size_for_reloc
317 {
318 public:
319 unsigned int
320 get_size_for_reloc(unsigned int, Relobj*);
321 };
322
323 // Adjust TLS relocation type based on the options and whether this
324 // is a local symbol.
325 static tls::Tls_optimization
326 optimize_tls_reloc(bool is_final, int r_type);
327
328 // Get the GOT section, creating it if necessary.
329 Output_data_got<32, false>*
330 got_section(Symbol_table*, Layout*);
331
332 // Get the GOT PLT section.
333 Output_data_space*
334 got_plt_section() const
335 {
336 gold_assert(this->got_plt_ != NULL);
337 return this->got_plt_;
338 }
339
340 // Create a PLT entry for a global symbol.
341 void
342 make_plt_entry(Symbol_table*, Layout*, Symbol*);
343
344 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
345 void
346 define_tls_base_symbol(Symbol_table*, Layout*);
347
348 // Create a GOT entry for the TLS module index.
349 unsigned int
350 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
351 Sized_relobj<32, false>* object);
352
353 // Get the PLT section.
354 const Output_data_plt_i386*
355 plt_section() const
356 {
357 gold_assert(this->plt_ != NULL);
358 return this->plt_;
359 }
360
361 // Get the dynamic reloc section, creating it if necessary.
362 Reloc_section*
363 rel_dyn_section(Layout*);
364
365 // Return true if the symbol may need a COPY relocation.
366 // References from an executable object to non-function symbols
367 // defined in a dynamic object may need a COPY relocation.
368 bool
369 may_need_copy_reloc(Symbol* gsym)
370 {
371 return (!parameters->options().shared()
372 && gsym->is_from_dynobj()
373 && gsym->type() != elfcpp::STT_FUNC);
374 }
375
376 // Add a potential copy relocation.
377 void
378 copy_reloc(Symbol_table* symtab, Layout* layout,
379 Sized_relobj<32, false>* object,
380 unsigned int shndx, Output_section* output_section,
381 Symbol* sym, const elfcpp::Rel<32, false>& reloc)
382 {
383 this->copy_relocs_.copy_reloc(symtab, layout,
384 symtab->get_sized_symbol<32>(sym),
385 object, shndx, output_section, reloc,
386 this->rel_dyn_section(layout));
387 }
388
389 // Information about this specific target which we pass to the
390 // general Target structure.
391 static const Target::Target_info i386_info;
392
393 // The types of GOT entries needed for this platform.
394 enum Got_type
395 {
396 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
397 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
398 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
399 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
400 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
401 };
402
403 // The GOT section.
404 Output_data_got<32, false>* got_;
405 // The PLT section.
406 Output_data_plt_i386* plt_;
407 // The GOT PLT section.
408 Output_data_space* got_plt_;
409 // The dynamic reloc section.
410 Reloc_section* rel_dyn_;
411 // Relocs saved to avoid a COPY reloc.
412 Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
413 // Space for variables copied with a COPY reloc.
414 Output_data_space* dynbss_;
415 // Offset of the GOT entry for the TLS module index.
416 unsigned int got_mod_index_offset_;
417 // True if the _TLS_MODULE_BASE_ symbol has been defined.
418 bool tls_base_symbol_defined_;
419 };
420
421 const Target::Target_info Target_i386::i386_info =
422 {
423 32, // size
424 false, // is_big_endian
425 elfcpp::EM_386, // machine_code
426 false, // has_make_symbol
427 false, // has_resolve
428 true, // has_code_fill
429 true, // is_default_stack_executable
430 '\0', // wrap_char
431 "/usr/lib/libc.so.1", // dynamic_linker
432 0x08048000, // default_text_segment_address
433 0x1000, // abi_pagesize (overridable by -z max-page-size)
434 0x1000 // common_pagesize (overridable by -z common-page-size)
435 };
436
437 // Get the GOT section, creating it if necessary.
438
439 Output_data_got<32, false>*
440 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
441 {
442 if (this->got_ == NULL)
443 {
444 gold_assert(symtab != NULL && layout != NULL);
445
446 this->got_ = new Output_data_got<32, false>();
447
448 Output_section* os;
449 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
450 (elfcpp::SHF_ALLOC
451 | elfcpp::SHF_WRITE),
452 this->got_);
453 os->set_is_relro();
454
455 // The old GNU linker creates a .got.plt section. We just
456 // create another set of data in the .got section. Note that we
457 // always create a PLT if we create a GOT, although the PLT
458 // might be empty.
459 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
460 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
461 (elfcpp::SHF_ALLOC
462 | elfcpp::SHF_WRITE),
463 this->got_plt_);
464 os->set_is_relro();
465
466 // The first three entries are reserved.
467 this->got_plt_->set_current_data_size(3 * 4);
468
469 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
470 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
471 this->got_plt_,
472 0, 0, elfcpp::STT_OBJECT,
473 elfcpp::STB_LOCAL,
474 elfcpp::STV_HIDDEN, 0,
475 false, false);
476 }
477
478 return this->got_;
479 }
480
481 // Get the dynamic reloc section, creating it if necessary.
482
483 Target_i386::Reloc_section*
484 Target_i386::rel_dyn_section(Layout* layout)
485 {
486 if (this->rel_dyn_ == NULL)
487 {
488 gold_assert(layout != NULL);
489 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
490 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
491 elfcpp::SHF_ALLOC, this->rel_dyn_);
492 }
493 return this->rel_dyn_;
494 }
495
496 // A class to handle the PLT data.
497
498 class Output_data_plt_i386 : public Output_section_data
499 {
500 public:
501 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
502
503 Output_data_plt_i386(Layout*, Output_data_space*);
504
505 // Add an entry to the PLT.
506 void
507 add_entry(Symbol* gsym);
508
509 // Return the .rel.plt section data.
510 const Reloc_section*
511 rel_plt() const
512 { return this->rel_; }
513
514 protected:
515 void
516 do_adjust_output_section(Output_section* os);
517
518 // Write to a map file.
519 void
520 do_print_to_mapfile(Mapfile* mapfile) const
521 { mapfile->print_output_data(this, _("** PLT")); }
522
523 private:
524 // The size of an entry in the PLT.
525 static const int plt_entry_size = 16;
526
527 // The first entry in the PLT for an executable.
528 static unsigned char exec_first_plt_entry[plt_entry_size];
529
530 // The first entry in the PLT for a shared object.
531 static unsigned char dyn_first_plt_entry[plt_entry_size];
532
533 // Other entries in the PLT for an executable.
534 static unsigned char exec_plt_entry[plt_entry_size];
535
536 // Other entries in the PLT for a shared object.
537 static unsigned char dyn_plt_entry[plt_entry_size];
538
539 // Set the final size.
540 void
541 set_final_data_size()
542 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
543
544 // Write out the PLT data.
545 void
546 do_write(Output_file*);
547
548 // The reloc section.
549 Reloc_section* rel_;
550 // The .got.plt section.
551 Output_data_space* got_plt_;
552 // The number of PLT entries.
553 unsigned int count_;
554 };
555
556 // Create the PLT section. The ordinary .got section is an argument,
557 // since we need to refer to the start. We also create our own .got
558 // section just for PLT entries.
559
560 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
561 Output_data_space* got_plt)
562 : Output_section_data(4), got_plt_(got_plt), count_(0)
563 {
564 this->rel_ = new Reloc_section(false);
565 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
566 elfcpp::SHF_ALLOC, this->rel_);
567 }
568
569 void
570 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
571 {
572 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
573 // linker, and so do we.
574 os->set_entsize(4);
575 }
576
577 // Add an entry to the PLT.
578
579 void
580 Output_data_plt_i386::add_entry(Symbol* gsym)
581 {
582 gold_assert(!gsym->has_plt_offset());
583
584 // Note that when setting the PLT offset we skip the initial
585 // reserved PLT entry.
586 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
587
588 ++this->count_;
589
590 section_offset_type got_offset = this->got_plt_->current_data_size();
591
592 // Every PLT entry needs a GOT entry which points back to the PLT
593 // entry (this will be changed by the dynamic linker, normally
594 // lazily when the function is called).
595 this->got_plt_->set_current_data_size(got_offset + 4);
596
597 // Every PLT entry needs a reloc.
598 gsym->set_needs_dynsym_entry();
599 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
600 got_offset);
601
602 // Note that we don't need to save the symbol. The contents of the
603 // PLT are independent of which symbols are used. The symbols only
604 // appear in the relocations.
605 }
606
607 // The first entry in the PLT for an executable.
608
609 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
610 {
611 0xff, 0x35, // pushl contents of memory address
612 0, 0, 0, 0, // replaced with address of .got + 4
613 0xff, 0x25, // jmp indirect
614 0, 0, 0, 0, // replaced with address of .got + 8
615 0, 0, 0, 0 // unused
616 };
617
618 // The first entry in the PLT for a shared object.
619
620 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
621 {
622 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
623 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
624 0, 0, 0, 0 // unused
625 };
626
627 // Subsequent entries in the PLT for an executable.
628
629 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
630 {
631 0xff, 0x25, // jmp indirect
632 0, 0, 0, 0, // replaced with address of symbol in .got
633 0x68, // pushl immediate
634 0, 0, 0, 0, // replaced with offset into relocation table
635 0xe9, // jmp relative
636 0, 0, 0, 0 // replaced with offset to start of .plt
637 };
638
639 // Subsequent entries in the PLT for a shared object.
640
641 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
642 {
643 0xff, 0xa3, // jmp *offset(%ebx)
644 0, 0, 0, 0, // replaced with offset of symbol in .got
645 0x68, // pushl immediate
646 0, 0, 0, 0, // replaced with offset into relocation table
647 0xe9, // jmp relative
648 0, 0, 0, 0 // replaced with offset to start of .plt
649 };
650
651 // Write out the PLT. This uses the hand-coded instructions above,
652 // and adjusts them as needed. This is all specified by the i386 ELF
653 // Processor Supplement.
654
655 void
656 Output_data_plt_i386::do_write(Output_file* of)
657 {
658 const off_t offset = this->offset();
659 const section_size_type oview_size =
660 convert_to_section_size_type(this->data_size());
661 unsigned char* const oview = of->get_output_view(offset, oview_size);
662
663 const off_t got_file_offset = this->got_plt_->offset();
664 const section_size_type got_size =
665 convert_to_section_size_type(this->got_plt_->data_size());
666 unsigned char* const got_view = of->get_output_view(got_file_offset,
667 got_size);
668
669 unsigned char* pov = oview;
670
671 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
672 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
673
674 if (parameters->options().shared())
675 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
676 else
677 {
678 memcpy(pov, exec_first_plt_entry, plt_entry_size);
679 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
680 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
681 }
682 pov += plt_entry_size;
683
684 unsigned char* got_pov = got_view;
685
686 memset(got_pov, 0, 12);
687 got_pov += 12;
688
689 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
690
691 unsigned int plt_offset = plt_entry_size;
692 unsigned int plt_rel_offset = 0;
693 unsigned int got_offset = 12;
694 const unsigned int count = this->count_;
695 for (unsigned int i = 0;
696 i < count;
697 ++i,
698 pov += plt_entry_size,
699 got_pov += 4,
700 plt_offset += plt_entry_size,
701 plt_rel_offset += rel_size,
702 got_offset += 4)
703 {
704 // Set and adjust the PLT entry itself.
705
706 if (parameters->options().shared())
707 {
708 memcpy(pov, dyn_plt_entry, plt_entry_size);
709 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
710 }
711 else
712 {
713 memcpy(pov, exec_plt_entry, plt_entry_size);
714 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
715 (got_address
716 + got_offset));
717 }
718
719 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
720 elfcpp::Swap<32, false>::writeval(pov + 12,
721 - (plt_offset + plt_entry_size));
722
723 // Set the entry in the GOT.
724 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
725 }
726
727 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
728 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
729
730 of->write_output_view(offset, oview_size, oview);
731 of->write_output_view(got_file_offset, got_size, got_view);
732 }
733
734 // Create a PLT entry for a global symbol.
735
736 void
737 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
738 {
739 if (gsym->has_plt_offset())
740 return;
741
742 if (this->plt_ == NULL)
743 {
744 // Create the GOT sections first.
745 this->got_section(symtab, layout);
746
747 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
748 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
749 (elfcpp::SHF_ALLOC
750 | elfcpp::SHF_EXECINSTR),
751 this->plt_);
752 }
753
754 this->plt_->add_entry(gsym);
755 }
756
757 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
758
759 void
760 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
761 {
762 if (this->tls_base_symbol_defined_)
763 return;
764
765 Output_segment* tls_segment = layout->tls_segment();
766 if (tls_segment != NULL)
767 {
768 bool is_exec = parameters->options().output_is_executable();
769 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
770 tls_segment, 0, 0,
771 elfcpp::STT_TLS,
772 elfcpp::STB_LOCAL,
773 elfcpp::STV_HIDDEN, 0,
774 (is_exec
775 ? Symbol::SEGMENT_END
776 : Symbol::SEGMENT_START),
777 true);
778 }
779 this->tls_base_symbol_defined_ = true;
780 }
781
782 // Create a GOT entry for the TLS module index.
783
784 unsigned int
785 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
786 Sized_relobj<32, false>* object)
787 {
788 if (this->got_mod_index_offset_ == -1U)
789 {
790 gold_assert(symtab != NULL && layout != NULL && object != NULL);
791 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
792 Output_data_got<32, false>* got = this->got_section(symtab, layout);
793 unsigned int got_offset = got->add_constant(0);
794 rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
795 got_offset);
796 got->add_constant(0);
797 this->got_mod_index_offset_ = got_offset;
798 }
799 return this->got_mod_index_offset_;
800 }
801
802 // Optimize the TLS relocation type based on what we know about the
803 // symbol. IS_FINAL is true if the final address of this symbol is
804 // known at link time.
805
806 tls::Tls_optimization
807 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
808 {
809 // If we are generating a shared library, then we can't do anything
810 // in the linker.
811 if (parameters->options().shared())
812 return tls::TLSOPT_NONE;
813
814 switch (r_type)
815 {
816 case elfcpp::R_386_TLS_GD:
817 case elfcpp::R_386_TLS_GOTDESC:
818 case elfcpp::R_386_TLS_DESC_CALL:
819 // These are General-Dynamic which permits fully general TLS
820 // access. Since we know that we are generating an executable,
821 // we can convert this to Initial-Exec. If we also know that
822 // this is a local symbol, we can further switch to Local-Exec.
823 if (is_final)
824 return tls::TLSOPT_TO_LE;
825 return tls::TLSOPT_TO_IE;
826
827 case elfcpp::R_386_TLS_LDM:
828 // This is Local-Dynamic, which refers to a local symbol in the
829 // dynamic TLS block. Since we know that we generating an
830 // executable, we can switch to Local-Exec.
831 return tls::TLSOPT_TO_LE;
832
833 case elfcpp::R_386_TLS_LDO_32:
834 // Another type of Local-Dynamic relocation.
835 return tls::TLSOPT_TO_LE;
836
837 case elfcpp::R_386_TLS_IE:
838 case elfcpp::R_386_TLS_GOTIE:
839 case elfcpp::R_386_TLS_IE_32:
840 // These are Initial-Exec relocs which get the thread offset
841 // from the GOT. If we know that we are linking against the
842 // local symbol, we can switch to Local-Exec, which links the
843 // thread offset into the instruction.
844 if (is_final)
845 return tls::TLSOPT_TO_LE;
846 return tls::TLSOPT_NONE;
847
848 case elfcpp::R_386_TLS_LE:
849 case elfcpp::R_386_TLS_LE_32:
850 // When we already have Local-Exec, there is nothing further we
851 // can do.
852 return tls::TLSOPT_NONE;
853
854 default:
855 gold_unreachable();
856 }
857 }
858
859 // Report an unsupported relocation against a local symbol.
860
861 void
862 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
863 unsigned int r_type)
864 {
865 gold_error(_("%s: unsupported reloc %u against local symbol"),
866 object->name().c_str(), r_type);
867 }
868
869 // Scan a relocation for a local symbol.
870
871 inline void
872 Target_i386::Scan::local(const General_options&,
873 Symbol_table* symtab,
874 Layout* layout,
875 Target_i386* target,
876 Sized_relobj<32, false>* object,
877 unsigned int data_shndx,
878 Output_section* output_section,
879 const elfcpp::Rel<32, false>& reloc,
880 unsigned int r_type,
881 const elfcpp::Sym<32, false>& lsym)
882 {
883 switch (r_type)
884 {
885 case elfcpp::R_386_NONE:
886 case elfcpp::R_386_GNU_VTINHERIT:
887 case elfcpp::R_386_GNU_VTENTRY:
888 break;
889
890 case elfcpp::R_386_32:
891 // If building a shared library (or a position-independent
892 // executable), we need to create a dynamic relocation for
893 // this location. The relocation applied at link time will
894 // apply the link-time value, so we flag the location with
895 // an R_386_RELATIVE relocation so the dynamic loader can
896 // relocate it easily.
897 if (parameters->options().output_is_position_independent())
898 {
899 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
900 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
901 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
902 output_section, data_shndx,
903 reloc.get_r_offset());
904 }
905 break;
906
907 case elfcpp::R_386_16:
908 case elfcpp::R_386_8:
909 // If building a shared library (or a position-independent
910 // executable), we need to create a dynamic relocation for
911 // this location. Because the addend needs to remain in the
912 // data section, we need to be careful not to apply this
913 // relocation statically.
914 if (parameters->options().output_is_position_independent())
915 {
916 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
917 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
918 if (lsym.get_st_type() != elfcpp::STT_SECTION)
919 rel_dyn->add_local(object, r_sym, r_type, output_section,
920 data_shndx, reloc.get_r_offset());
921 else
922 {
923 gold_assert(lsym.get_st_value() == 0);
924 unsigned int shndx = lsym.get_st_shndx();
925 bool is_ordinary;
926 shndx = object->adjust_sym_shndx(r_sym, shndx,
927 &is_ordinary);
928 if (!is_ordinary)
929 object->error(_("section symbol %u has bad shndx %u"),
930 r_sym, shndx);
931 else
932 rel_dyn->add_local_section(object, shndx,
933 r_type, output_section,
934 data_shndx, reloc.get_r_offset());
935 }
936 }
937 break;
938
939 case elfcpp::R_386_PC32:
940 case elfcpp::R_386_PC16:
941 case elfcpp::R_386_PC8:
942 break;
943
944 case elfcpp::R_386_PLT32:
945 // Since we know this is a local symbol, we can handle this as a
946 // PC32 reloc.
947 break;
948
949 case elfcpp::R_386_GOTOFF:
950 case elfcpp::R_386_GOTPC:
951 // We need a GOT section.
952 target->got_section(symtab, layout);
953 break;
954
955 case elfcpp::R_386_GOT32:
956 {
957 // The symbol requires a GOT entry.
958 Output_data_got<32, false>* got = target->got_section(symtab, layout);
959 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
960 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
961 {
962 // If we are generating a shared object, we need to add a
963 // dynamic RELATIVE relocation for this symbol's GOT entry.
964 if (parameters->options().output_is_position_independent())
965 {
966 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
967 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
968 rel_dyn->add_local_relative(
969 object, r_sym, elfcpp::R_386_RELATIVE, got,
970 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
971 }
972 }
973 }
974 break;
975
976 // These are relocations which should only be seen by the
977 // dynamic linker, and should never be seen here.
978 case elfcpp::R_386_COPY:
979 case elfcpp::R_386_GLOB_DAT:
980 case elfcpp::R_386_JUMP_SLOT:
981 case elfcpp::R_386_RELATIVE:
982 case elfcpp::R_386_TLS_TPOFF:
983 case elfcpp::R_386_TLS_DTPMOD32:
984 case elfcpp::R_386_TLS_DTPOFF32:
985 case elfcpp::R_386_TLS_TPOFF32:
986 case elfcpp::R_386_TLS_DESC:
987 gold_error(_("%s: unexpected reloc %u in object file"),
988 object->name().c_str(), r_type);
989 break;
990
991 // These are initial TLS relocs, which are expected when
992 // linking.
993 case elfcpp::R_386_TLS_GD: // Global-dynamic
994 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
995 case elfcpp::R_386_TLS_DESC_CALL:
996 case elfcpp::R_386_TLS_LDM: // Local-dynamic
997 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
998 case elfcpp::R_386_TLS_IE: // Initial-exec
999 case elfcpp::R_386_TLS_IE_32:
1000 case elfcpp::R_386_TLS_GOTIE:
1001 case elfcpp::R_386_TLS_LE: // Local-exec
1002 case elfcpp::R_386_TLS_LE_32:
1003 {
1004 bool output_is_shared = parameters->options().shared();
1005 const tls::Tls_optimization optimized_type
1006 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1007 switch (r_type)
1008 {
1009 case elfcpp::R_386_TLS_GD: // Global-dynamic
1010 if (optimized_type == tls::TLSOPT_NONE)
1011 {
1012 // Create a pair of GOT entries for the module index and
1013 // dtv-relative offset.
1014 Output_data_got<32, false>* got
1015 = target->got_section(symtab, layout);
1016 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1017 unsigned int shndx = lsym.get_st_shndx();
1018 bool is_ordinary;
1019 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1020 if (!is_ordinary)
1021 object->error(_("local symbol %u has bad shndx %u"),
1022 r_sym, shndx);
1023 else
1024 got->add_local_pair_with_rel(object, r_sym, shndx,
1025 GOT_TYPE_TLS_PAIR,
1026 target->rel_dyn_section(layout),
1027 elfcpp::R_386_TLS_DTPMOD32, 0);
1028 }
1029 else if (optimized_type != tls::TLSOPT_TO_LE)
1030 unsupported_reloc_local(object, r_type);
1031 break;
1032
1033 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva)
1034 target->define_tls_base_symbol(symtab, layout);
1035 if (optimized_type == tls::TLSOPT_NONE)
1036 {
1037 // Create a double GOT entry with an R_386_TLS_DESC reloc.
1038 Output_data_got<32, false>* got
1039 = target->got_section(symtab, layout);
1040 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1041 unsigned int shndx = lsym.get_st_shndx();
1042 bool is_ordinary;
1043 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1044 if (!is_ordinary)
1045 object->error(_("local symbol %u has bad shndx %u"),
1046 r_sym, shndx);
1047 else
1048 got->add_local_pair_with_rel(object, r_sym, shndx,
1049 GOT_TYPE_TLS_DESC,
1050 target->rel_dyn_section(layout),
1051 elfcpp::R_386_TLS_DESC, 0);
1052 }
1053 else if (optimized_type != tls::TLSOPT_TO_LE)
1054 unsupported_reloc_local(object, r_type);
1055 break;
1056
1057 case elfcpp::R_386_TLS_DESC_CALL:
1058 break;
1059
1060 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1061 if (optimized_type == tls::TLSOPT_NONE)
1062 {
1063 // Create a GOT entry for the module index.
1064 target->got_mod_index_entry(symtab, layout, object);
1065 }
1066 else if (optimized_type != tls::TLSOPT_TO_LE)
1067 unsupported_reloc_local(object, r_type);
1068 break;
1069
1070 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1071 break;
1072
1073 case elfcpp::R_386_TLS_IE: // Initial-exec
1074 case elfcpp::R_386_TLS_IE_32:
1075 case elfcpp::R_386_TLS_GOTIE:
1076 layout->set_has_static_tls();
1077 if (optimized_type == tls::TLSOPT_NONE)
1078 {
1079 // For the R_386_TLS_IE relocation, we need to create a
1080 // dynamic relocation when building a shared library.
1081 if (r_type == elfcpp::R_386_TLS_IE
1082 && parameters->options().shared())
1083 {
1084 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1085 unsigned int r_sym
1086 = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1087 rel_dyn->add_local_relative(object, r_sym,
1088 elfcpp::R_386_RELATIVE,
1089 output_section, data_shndx,
1090 reloc.get_r_offset());
1091 }
1092 // Create a GOT entry for the tp-relative offset.
1093 Output_data_got<32, false>* got
1094 = target->got_section(symtab, layout);
1095 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1096 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1097 ? elfcpp::R_386_TLS_TPOFF32
1098 : elfcpp::R_386_TLS_TPOFF);
1099 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1100 ? GOT_TYPE_TLS_OFFSET
1101 : GOT_TYPE_TLS_NOFFSET);
1102 got->add_local_with_rel(object, r_sym, got_type,
1103 target->rel_dyn_section(layout),
1104 dyn_r_type);
1105 }
1106 else if (optimized_type != tls::TLSOPT_TO_LE)
1107 unsupported_reloc_local(object, r_type);
1108 break;
1109
1110 case elfcpp::R_386_TLS_LE: // Local-exec
1111 case elfcpp::R_386_TLS_LE_32:
1112 layout->set_has_static_tls();
1113 if (output_is_shared)
1114 {
1115 // We need to create a dynamic relocation.
1116 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1117 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1118 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1119 ? elfcpp::R_386_TLS_TPOFF32
1120 : elfcpp::R_386_TLS_TPOFF);
1121 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1122 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1123 data_shndx, reloc.get_r_offset());
1124 }
1125 break;
1126
1127 default:
1128 gold_unreachable();
1129 }
1130 }
1131 break;
1132
1133 case elfcpp::R_386_32PLT:
1134 case elfcpp::R_386_TLS_GD_32:
1135 case elfcpp::R_386_TLS_GD_PUSH:
1136 case elfcpp::R_386_TLS_GD_CALL:
1137 case elfcpp::R_386_TLS_GD_POP:
1138 case elfcpp::R_386_TLS_LDM_32:
1139 case elfcpp::R_386_TLS_LDM_PUSH:
1140 case elfcpp::R_386_TLS_LDM_CALL:
1141 case elfcpp::R_386_TLS_LDM_POP:
1142 case elfcpp::R_386_USED_BY_INTEL_200:
1143 default:
1144 unsupported_reloc_local(object, r_type);
1145 break;
1146 }
1147 }
1148
1149 // Report an unsupported relocation against a global symbol.
1150
1151 void
1152 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
1153 unsigned int r_type,
1154 Symbol* gsym)
1155 {
1156 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1157 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1158 }
1159
1160 // Scan a relocation for a global symbol.
1161
1162 inline void
1163 Target_i386::Scan::global(const General_options&,
1164 Symbol_table* symtab,
1165 Layout* layout,
1166 Target_i386* target,
1167 Sized_relobj<32, false>* object,
1168 unsigned int data_shndx,
1169 Output_section* output_section,
1170 const elfcpp::Rel<32, false>& reloc,
1171 unsigned int r_type,
1172 Symbol* gsym)
1173 {
1174 switch (r_type)
1175 {
1176 case elfcpp::R_386_NONE:
1177 case elfcpp::R_386_GNU_VTINHERIT:
1178 case elfcpp::R_386_GNU_VTENTRY:
1179 break;
1180
1181 case elfcpp::R_386_32:
1182 case elfcpp::R_386_16:
1183 case elfcpp::R_386_8:
1184 {
1185 // Make a PLT entry if necessary.
1186 if (gsym->needs_plt_entry())
1187 {
1188 target->make_plt_entry(symtab, layout, gsym);
1189 // Since this is not a PC-relative relocation, we may be
1190 // taking the address of a function. In that case we need to
1191 // set the entry in the dynamic symbol table to the address of
1192 // the PLT entry.
1193 if (gsym->is_from_dynobj() && !parameters->options().shared())
1194 gsym->set_needs_dynsym_value();
1195 }
1196 // Make a dynamic relocation if necessary.
1197 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1198 {
1199 if (target->may_need_copy_reloc(gsym))
1200 {
1201 target->copy_reloc(symtab, layout, object,
1202 data_shndx, output_section, gsym, reloc);
1203 }
1204 else if (r_type == elfcpp::R_386_32
1205 && gsym->can_use_relative_reloc(false))
1206 {
1207 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1208 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1209 output_section, object,
1210 data_shndx, reloc.get_r_offset());
1211 }
1212 else
1213 {
1214 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1215 rel_dyn->add_global(gsym, r_type, output_section, object,
1216 data_shndx, reloc.get_r_offset());
1217 }
1218 }
1219 }
1220 break;
1221
1222 case elfcpp::R_386_PC32:
1223 case elfcpp::R_386_PC16:
1224 case elfcpp::R_386_PC8:
1225 {
1226 // Make a PLT entry if necessary.
1227 if (gsym->needs_plt_entry())
1228 {
1229 // These relocations are used for function calls only in
1230 // non-PIC code. For a 32-bit relocation in a shared library,
1231 // we'll need a text relocation anyway, so we can skip the
1232 // PLT entry and let the dynamic linker bind the call directly
1233 // to the target. For smaller relocations, we should use a
1234 // PLT entry to ensure that the call can reach.
1235 if (!parameters->options().shared()
1236 || r_type != elfcpp::R_386_PC32)
1237 target->make_plt_entry(symtab, layout, gsym);
1238 }
1239 // Make a dynamic relocation if necessary.
1240 int flags = Symbol::NON_PIC_REF;
1241 if (gsym->type() == elfcpp::STT_FUNC)
1242 flags |= Symbol::FUNCTION_CALL;
1243 if (gsym->needs_dynamic_reloc(flags))
1244 {
1245 if (target->may_need_copy_reloc(gsym))
1246 {
1247 target->copy_reloc(symtab, layout, object,
1248 data_shndx, output_section, gsym, reloc);
1249 }
1250 else
1251 {
1252 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1253 rel_dyn->add_global(gsym, r_type, output_section, object,
1254 data_shndx, reloc.get_r_offset());
1255 }
1256 }
1257 }
1258 break;
1259
1260 case elfcpp::R_386_GOT32:
1261 {
1262 // The symbol requires a GOT entry.
1263 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1264 if (gsym->final_value_is_known())
1265 got->add_global(gsym, GOT_TYPE_STANDARD);
1266 else
1267 {
1268 // If this symbol is not fully resolved, we need to add a
1269 // GOT entry with a dynamic relocation.
1270 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1271 if (gsym->is_from_dynobj()
1272 || gsym->is_undefined()
1273 || gsym->is_preemptible())
1274 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
1275 rel_dyn, elfcpp::R_386_GLOB_DAT);
1276 else
1277 {
1278 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1279 rel_dyn->add_global_relative(
1280 gsym, elfcpp::R_386_RELATIVE, got,
1281 gsym->got_offset(GOT_TYPE_STANDARD));
1282 }
1283 }
1284 }
1285 break;
1286
1287 case elfcpp::R_386_PLT32:
1288 // If the symbol is fully resolved, this is just a PC32 reloc.
1289 // Otherwise we need a PLT entry.
1290 if (gsym->final_value_is_known())
1291 break;
1292 // If building a shared library, we can also skip the PLT entry
1293 // if the symbol is defined in the output file and is protected
1294 // or hidden.
1295 if (gsym->is_defined()
1296 && !gsym->is_from_dynobj()
1297 && !gsym->is_preemptible())
1298 break;
1299 target->make_plt_entry(symtab, layout, gsym);
1300 break;
1301
1302 case elfcpp::R_386_GOTOFF:
1303 case elfcpp::R_386_GOTPC:
1304 // We need a GOT section.
1305 target->got_section(symtab, layout);
1306 break;
1307
1308 // These are relocations which should only be seen by the
1309 // dynamic linker, and should never be seen here.
1310 case elfcpp::R_386_COPY:
1311 case elfcpp::R_386_GLOB_DAT:
1312 case elfcpp::R_386_JUMP_SLOT:
1313 case elfcpp::R_386_RELATIVE:
1314 case elfcpp::R_386_TLS_TPOFF:
1315 case elfcpp::R_386_TLS_DTPMOD32:
1316 case elfcpp::R_386_TLS_DTPOFF32:
1317 case elfcpp::R_386_TLS_TPOFF32:
1318 case elfcpp::R_386_TLS_DESC:
1319 gold_error(_("%s: unexpected reloc %u in object file"),
1320 object->name().c_str(), r_type);
1321 break;
1322
1323 // These are initial tls relocs, which are expected when
1324 // linking.
1325 case elfcpp::R_386_TLS_GD: // Global-dynamic
1326 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1327 case elfcpp::R_386_TLS_DESC_CALL:
1328 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1329 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1330 case elfcpp::R_386_TLS_IE: // Initial-exec
1331 case elfcpp::R_386_TLS_IE_32:
1332 case elfcpp::R_386_TLS_GOTIE:
1333 case elfcpp::R_386_TLS_LE: // Local-exec
1334 case elfcpp::R_386_TLS_LE_32:
1335 {
1336 const bool is_final = gsym->final_value_is_known();
1337 const tls::Tls_optimization optimized_type
1338 = Target_i386::optimize_tls_reloc(is_final, r_type);
1339 switch (r_type)
1340 {
1341 case elfcpp::R_386_TLS_GD: // Global-dynamic
1342 if (optimized_type == tls::TLSOPT_NONE)
1343 {
1344 // Create a pair of GOT entries for the module index and
1345 // dtv-relative offset.
1346 Output_data_got<32, false>* got
1347 = target->got_section(symtab, layout);
1348 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
1349 target->rel_dyn_section(layout),
1350 elfcpp::R_386_TLS_DTPMOD32,
1351 elfcpp::R_386_TLS_DTPOFF32);
1352 }
1353 else if (optimized_type == tls::TLSOPT_TO_IE)
1354 {
1355 // Create a GOT entry for the tp-relative offset.
1356 Output_data_got<32, false>* got
1357 = target->got_section(symtab, layout);
1358 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
1359 target->rel_dyn_section(layout),
1360 elfcpp::R_386_TLS_TPOFF);
1361 }
1362 else if (optimized_type != tls::TLSOPT_TO_LE)
1363 unsupported_reloc_global(object, r_type, gsym);
1364 break;
1365
1366 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (~oliva url)
1367 target->define_tls_base_symbol(symtab, layout);
1368 if (optimized_type == tls::TLSOPT_NONE)
1369 {
1370 // Create a double GOT entry with an R_386_TLS_DESC reloc.
1371 Output_data_got<32, false>* got
1372 = target->got_section(symtab, layout);
1373 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC,
1374 target->rel_dyn_section(layout),
1375 elfcpp::R_386_TLS_DESC, 0);
1376 }
1377 else if (optimized_type == tls::TLSOPT_TO_IE)
1378 {
1379 // Create a GOT entry for the tp-relative offset.
1380 Output_data_got<32, false>* got
1381 = target->got_section(symtab, layout);
1382 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
1383 target->rel_dyn_section(layout),
1384 elfcpp::R_386_TLS_TPOFF);
1385 }
1386 else if (optimized_type != tls::TLSOPT_TO_LE)
1387 unsupported_reloc_global(object, r_type, gsym);
1388 break;
1389
1390 case elfcpp::R_386_TLS_DESC_CALL:
1391 break;
1392
1393 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1394 if (optimized_type == tls::TLSOPT_NONE)
1395 {
1396 // Create a GOT entry for the module index.
1397 target->got_mod_index_entry(symtab, layout, object);
1398 }
1399 else if (optimized_type != tls::TLSOPT_TO_LE)
1400 unsupported_reloc_global(object, r_type, gsym);
1401 break;
1402
1403 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1404 break;
1405
1406 case elfcpp::R_386_TLS_IE: // Initial-exec
1407 case elfcpp::R_386_TLS_IE_32:
1408 case elfcpp::R_386_TLS_GOTIE:
1409 layout->set_has_static_tls();
1410 if (optimized_type == tls::TLSOPT_NONE)
1411 {
1412 // For the R_386_TLS_IE relocation, we need to create a
1413 // dynamic relocation when building a shared library.
1414 if (r_type == elfcpp::R_386_TLS_IE
1415 && parameters->options().shared())
1416 {
1417 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1418 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1419 output_section, object,
1420 data_shndx,
1421 reloc.get_r_offset());
1422 }
1423 // Create a GOT entry for the tp-relative offset.
1424 Output_data_got<32, false>* got
1425 = target->got_section(symtab, layout);
1426 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1427 ? elfcpp::R_386_TLS_TPOFF32
1428 : elfcpp::R_386_TLS_TPOFF);
1429 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1430 ? GOT_TYPE_TLS_OFFSET
1431 : GOT_TYPE_TLS_NOFFSET);
1432 got->add_global_with_rel(gsym, got_type,
1433 target->rel_dyn_section(layout),
1434 dyn_r_type);
1435 }
1436 else if (optimized_type != tls::TLSOPT_TO_LE)
1437 unsupported_reloc_global(object, r_type, gsym);
1438 break;
1439
1440 case elfcpp::R_386_TLS_LE: // Local-exec
1441 case elfcpp::R_386_TLS_LE_32:
1442 layout->set_has_static_tls();
1443 if (parameters->options().shared())
1444 {
1445 // We need to create a dynamic relocation.
1446 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1447 ? elfcpp::R_386_TLS_TPOFF32
1448 : elfcpp::R_386_TLS_TPOFF);
1449 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1450 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
1451 data_shndx, reloc.get_r_offset());
1452 }
1453 break;
1454
1455 default:
1456 gold_unreachable();
1457 }
1458 }
1459 break;
1460
1461 case elfcpp::R_386_32PLT:
1462 case elfcpp::R_386_TLS_GD_32:
1463 case elfcpp::R_386_TLS_GD_PUSH:
1464 case elfcpp::R_386_TLS_GD_CALL:
1465 case elfcpp::R_386_TLS_GD_POP:
1466 case elfcpp::R_386_TLS_LDM_32:
1467 case elfcpp::R_386_TLS_LDM_PUSH:
1468 case elfcpp::R_386_TLS_LDM_CALL:
1469 case elfcpp::R_386_TLS_LDM_POP:
1470 case elfcpp::R_386_USED_BY_INTEL_200:
1471 default:
1472 unsupported_reloc_global(object, r_type, gsym);
1473 break;
1474 }
1475 }
1476
1477 // Process relocations for gc.
1478
1479 void
1480 Target_i386::gc_process_relocs(const General_options& options,
1481 Symbol_table* symtab,
1482 Layout* layout,
1483 Sized_relobj<32, false>* object,
1484 unsigned int data_shndx,
1485 unsigned int,
1486 const unsigned char* prelocs,
1487 size_t reloc_count,
1488 Output_section* output_section,
1489 bool needs_special_offset_handling,
1490 size_t local_symbol_count,
1491 const unsigned char* plocal_symbols)
1492 {
1493 gold::gc_process_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1494 Target_i386::Scan>(
1495 options,
1496 symtab,
1497 layout,
1498 this,
1499 object,
1500 data_shndx,
1501 prelocs,
1502 reloc_count,
1503 output_section,
1504 needs_special_offset_handling,
1505 local_symbol_count,
1506 plocal_symbols);
1507 }
1508
1509 // Scan relocations for a section.
1510
1511 void
1512 Target_i386::scan_relocs(const General_options& options,
1513 Symbol_table* symtab,
1514 Layout* layout,
1515 Sized_relobj<32, false>* object,
1516 unsigned int data_shndx,
1517 unsigned int sh_type,
1518 const unsigned char* prelocs,
1519 size_t reloc_count,
1520 Output_section* output_section,
1521 bool needs_special_offset_handling,
1522 size_t local_symbol_count,
1523 const unsigned char* plocal_symbols)
1524 {
1525 if (sh_type == elfcpp::SHT_RELA)
1526 {
1527 gold_error(_("%s: unsupported RELA reloc section"),
1528 object->name().c_str());
1529 return;
1530 }
1531
1532 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1533 Target_i386::Scan>(
1534 options,
1535 symtab,
1536 layout,
1537 this,
1538 object,
1539 data_shndx,
1540 prelocs,
1541 reloc_count,
1542 output_section,
1543 needs_special_offset_handling,
1544 local_symbol_count,
1545 plocal_symbols);
1546 }
1547
1548 // Finalize the sections.
1549
1550 void
1551 Target_i386::do_finalize_sections(Layout* layout)
1552 {
1553 // Fill in some more dynamic tags.
1554 Output_data_dynamic* const odyn = layout->dynamic_data();
1555 if (odyn != NULL)
1556 {
1557 if (this->got_plt_ != NULL)
1558 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1559
1560 if (this->plt_ != NULL)
1561 {
1562 const Output_data* od = this->plt_->rel_plt();
1563 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1564 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1565 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1566 }
1567
1568 if (this->rel_dyn_ != NULL)
1569 {
1570 const Output_data* od = this->rel_dyn_;
1571 odyn->add_section_address(elfcpp::DT_REL, od);
1572 odyn->add_section_size(elfcpp::DT_RELSZ, od);
1573 odyn->add_constant(elfcpp::DT_RELENT,
1574 elfcpp::Elf_sizes<32>::rel_size);
1575 }
1576
1577 if (!parameters->options().shared())
1578 {
1579 // The value of the DT_DEBUG tag is filled in by the dynamic
1580 // linker at run time, and used by the debugger.
1581 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1582 }
1583 }
1584
1585 // Emit any relocs we saved in an attempt to avoid generating COPY
1586 // relocs.
1587 if (this->copy_relocs_.any_saved_relocs())
1588 this->copy_relocs_.emit(this->rel_dyn_section(layout));
1589 }
1590
1591 // Return whether a direct absolute static relocation needs to be applied.
1592 // In cases where Scan::local() or Scan::global() has created
1593 // a dynamic relocation other than R_386_RELATIVE, the addend
1594 // of the relocation is carried in the data, and we must not
1595 // apply the static relocation.
1596
1597 inline bool
1598 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
1599 int ref_flags,
1600 bool is_32bit,
1601 Output_section* output_section)
1602 {
1603 // If the output section is not allocated, then we didn't call
1604 // scan_relocs, we didn't create a dynamic reloc, and we must apply
1605 // the reloc here.
1606 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
1607 return true;
1608
1609 // For local symbols, we will have created a non-RELATIVE dynamic
1610 // relocation only if (a) the output is position independent,
1611 // (b) the relocation is absolute (not pc- or segment-relative), and
1612 // (c) the relocation is not 32 bits wide.
1613 if (gsym == NULL)
1614 return !(parameters->options().output_is_position_independent()
1615 && (ref_flags & Symbol::ABSOLUTE_REF)
1616 && !is_32bit);
1617
1618 // For global symbols, we use the same helper routines used in the
1619 // scan pass. If we did not create a dynamic relocation, or if we
1620 // created a RELATIVE dynamic relocation, we should apply the static
1621 // relocation.
1622 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
1623 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
1624 && gsym->can_use_relative_reloc(ref_flags
1625 & Symbol::FUNCTION_CALL);
1626 return !has_dyn || is_rel;
1627 }
1628
1629 // Perform a relocation.
1630
1631 inline bool
1632 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1633 Target_i386* target,
1634 Output_section *output_section,
1635 size_t relnum,
1636 const elfcpp::Rel<32, false>& rel,
1637 unsigned int r_type,
1638 const Sized_symbol<32>* gsym,
1639 const Symbol_value<32>* psymval,
1640 unsigned char* view,
1641 elfcpp::Elf_types<32>::Elf_Addr address,
1642 section_size_type view_size)
1643 {
1644 if (this->skip_call_tls_get_addr_)
1645 {
1646 if ((r_type != elfcpp::R_386_PLT32
1647 && r_type != elfcpp::R_386_PC32)
1648 || gsym == NULL
1649 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1650 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1651 _("missing expected TLS relocation"));
1652 else
1653 {
1654 this->skip_call_tls_get_addr_ = false;
1655 return false;
1656 }
1657 }
1658
1659 // Pick the value to use for symbols defined in shared objects.
1660 Symbol_value<32> symval;
1661 if (gsym != NULL
1662 && gsym->use_plt_offset(r_type == elfcpp::R_386_PC8
1663 || r_type == elfcpp::R_386_PC16
1664 || r_type == elfcpp::R_386_PC32))
1665 {
1666 symval.set_output_value(target->plt_section()->address()
1667 + gsym->plt_offset());
1668 psymval = &symval;
1669 }
1670
1671 const Sized_relobj<32, false>* object = relinfo->object;
1672
1673 // Get the GOT offset if needed.
1674 // The GOT pointer points to the end of the GOT section.
1675 // We need to subtract the size of the GOT section to get
1676 // the actual offset to use in the relocation.
1677 bool have_got_offset = false;
1678 unsigned int got_offset = 0;
1679 switch (r_type)
1680 {
1681 case elfcpp::R_386_GOT32:
1682 if (gsym != NULL)
1683 {
1684 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1685 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
1686 - target->got_size());
1687 }
1688 else
1689 {
1690 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1691 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1692 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1693 - target->got_size());
1694 }
1695 have_got_offset = true;
1696 break;
1697
1698 default:
1699 break;
1700 }
1701
1702 switch (r_type)
1703 {
1704 case elfcpp::R_386_NONE:
1705 case elfcpp::R_386_GNU_VTINHERIT:
1706 case elfcpp::R_386_GNU_VTENTRY:
1707 break;
1708
1709 case elfcpp::R_386_32:
1710 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
1711 output_section))
1712 Relocate_functions<32, false>::rel32(view, object, psymval);
1713 break;
1714
1715 case elfcpp::R_386_PC32:
1716 {
1717 int ref_flags = Symbol::NON_PIC_REF;
1718 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1719 ref_flags |= Symbol::FUNCTION_CALL;
1720 if (should_apply_static_reloc(gsym, ref_flags, true, output_section))
1721 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1722 }
1723 break;
1724
1725 case elfcpp::R_386_16:
1726 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
1727 output_section))
1728 Relocate_functions<32, false>::rel16(view, object, psymval);
1729 break;
1730
1731 case elfcpp::R_386_PC16:
1732 {
1733 int ref_flags = Symbol::NON_PIC_REF;
1734 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1735 ref_flags |= Symbol::FUNCTION_CALL;
1736 if (should_apply_static_reloc(gsym, ref_flags, false, output_section))
1737 Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1738 }
1739 break;
1740
1741 case elfcpp::R_386_8:
1742 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
1743 output_section))
1744 Relocate_functions<32, false>::rel8(view, object, psymval);
1745 break;
1746
1747 case elfcpp::R_386_PC8:
1748 {
1749 int ref_flags = Symbol::NON_PIC_REF;
1750 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1751 ref_flags |= Symbol::FUNCTION_CALL;
1752 if (should_apply_static_reloc(gsym, ref_flags, false,
1753 output_section))
1754 Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1755 }
1756 break;
1757
1758 case elfcpp::R_386_PLT32:
1759 gold_assert(gsym == NULL
1760 || gsym->has_plt_offset()
1761 || gsym->final_value_is_known()
1762 || (gsym->is_defined()
1763 && !gsym->is_from_dynobj()
1764 && !gsym->is_preemptible()));
1765 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1766 break;
1767
1768 case elfcpp::R_386_GOT32:
1769 gold_assert(have_got_offset);
1770 Relocate_functions<32, false>::rel32(view, got_offset);
1771 break;
1772
1773 case elfcpp::R_386_GOTOFF:
1774 {
1775 elfcpp::Elf_types<32>::Elf_Addr value;
1776 value = (psymval->value(object, 0)
1777 - target->got_plt_section()->address());
1778 Relocate_functions<32, false>::rel32(view, value);
1779 }
1780 break;
1781
1782 case elfcpp::R_386_GOTPC:
1783 {
1784 elfcpp::Elf_types<32>::Elf_Addr value;
1785 value = target->got_plt_section()->address();
1786 Relocate_functions<32, false>::pcrel32(view, value, address);
1787 }
1788 break;
1789
1790 case elfcpp::R_386_COPY:
1791 case elfcpp::R_386_GLOB_DAT:
1792 case elfcpp::R_386_JUMP_SLOT:
1793 case elfcpp::R_386_RELATIVE:
1794 // These are outstanding tls relocs, which are unexpected when
1795 // linking.
1796 case elfcpp::R_386_TLS_TPOFF:
1797 case elfcpp::R_386_TLS_DTPMOD32:
1798 case elfcpp::R_386_TLS_DTPOFF32:
1799 case elfcpp::R_386_TLS_TPOFF32:
1800 case elfcpp::R_386_TLS_DESC:
1801 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1802 _("unexpected reloc %u in object file"),
1803 r_type);
1804 break;
1805
1806 // These are initial tls relocs, which are expected when
1807 // linking.
1808 case elfcpp::R_386_TLS_GD: // Global-dynamic
1809 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1810 case elfcpp::R_386_TLS_DESC_CALL:
1811 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1812 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1813 case elfcpp::R_386_TLS_IE: // Initial-exec
1814 case elfcpp::R_386_TLS_IE_32:
1815 case elfcpp::R_386_TLS_GOTIE:
1816 case elfcpp::R_386_TLS_LE: // Local-exec
1817 case elfcpp::R_386_TLS_LE_32:
1818 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
1819 view, address, view_size);
1820 break;
1821
1822 case elfcpp::R_386_32PLT:
1823 case elfcpp::R_386_TLS_GD_32:
1824 case elfcpp::R_386_TLS_GD_PUSH:
1825 case elfcpp::R_386_TLS_GD_CALL:
1826 case elfcpp::R_386_TLS_GD_POP:
1827 case elfcpp::R_386_TLS_LDM_32:
1828 case elfcpp::R_386_TLS_LDM_PUSH:
1829 case elfcpp::R_386_TLS_LDM_CALL:
1830 case elfcpp::R_386_TLS_LDM_POP:
1831 case elfcpp::R_386_USED_BY_INTEL_200:
1832 default:
1833 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1834 _("unsupported reloc %u"),
1835 r_type);
1836 break;
1837 }
1838
1839 return true;
1840 }
1841
1842 // Perform a TLS relocation.
1843
1844 inline void
1845 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1846 Target_i386* target,
1847 size_t relnum,
1848 const elfcpp::Rel<32, false>& rel,
1849 unsigned int r_type,
1850 const Sized_symbol<32>* gsym,
1851 const Symbol_value<32>* psymval,
1852 unsigned char* view,
1853 elfcpp::Elf_types<32>::Elf_Addr,
1854 section_size_type view_size)
1855 {
1856 Output_segment* tls_segment = relinfo->layout->tls_segment();
1857
1858 const Sized_relobj<32, false>* object = relinfo->object;
1859
1860 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
1861
1862 const bool is_final =
1863 (gsym == NULL
1864 ? !parameters->options().output_is_position_independent()
1865 : gsym->final_value_is_known());
1866 const tls::Tls_optimization optimized_type
1867 = Target_i386::optimize_tls_reloc(is_final, r_type);
1868 switch (r_type)
1869 {
1870 case elfcpp::R_386_TLS_GD: // Global-dynamic
1871 if (optimized_type == tls::TLSOPT_TO_LE)
1872 {
1873 gold_assert(tls_segment != NULL);
1874 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1875 rel, r_type, value, view,
1876 view_size);
1877 break;
1878 }
1879 else
1880 {
1881 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1882 ? GOT_TYPE_TLS_NOFFSET
1883 : GOT_TYPE_TLS_PAIR);
1884 unsigned int got_offset;
1885 if (gsym != NULL)
1886 {
1887 gold_assert(gsym->has_got_offset(got_type));
1888 got_offset = gsym->got_offset(got_type) - target->got_size();
1889 }
1890 else
1891 {
1892 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1893 gold_assert(object->local_has_got_offset(r_sym, got_type));
1894 got_offset = (object->local_got_offset(r_sym, got_type)
1895 - target->got_size());
1896 }
1897 if (optimized_type == tls::TLSOPT_TO_IE)
1898 {
1899 gold_assert(tls_segment != NULL);
1900 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1901 got_offset, view, view_size);
1902 break;
1903 }
1904 else if (optimized_type == tls::TLSOPT_NONE)
1905 {
1906 // Relocate the field with the offset of the pair of GOT
1907 // entries.
1908 Relocate_functions<32, false>::rel32(view, got_offset);
1909 break;
1910 }
1911 }
1912 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1913 _("unsupported reloc %u"),
1914 r_type);
1915 break;
1916
1917 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1918 case elfcpp::R_386_TLS_DESC_CALL:
1919 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1920 if (optimized_type == tls::TLSOPT_TO_LE)
1921 {
1922 gold_assert(tls_segment != NULL);
1923 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
1924 rel, r_type, value, view,
1925 view_size);
1926 break;
1927 }
1928 else
1929 {
1930 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1931 ? GOT_TYPE_TLS_NOFFSET
1932 : GOT_TYPE_TLS_DESC);
1933 unsigned int got_offset;
1934 if (gsym != NULL)
1935 {
1936 gold_assert(gsym->has_got_offset(got_type));
1937 got_offset = gsym->got_offset(got_type) - target->got_size();
1938 }
1939 else
1940 {
1941 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1942 gold_assert(object->local_has_got_offset(r_sym, got_type));
1943 got_offset = (object->local_got_offset(r_sym, got_type)
1944 - target->got_size());
1945 }
1946 if (optimized_type == tls::TLSOPT_TO_IE)
1947 {
1948 gold_assert(tls_segment != NULL);
1949 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1950 got_offset, view, view_size);
1951 break;
1952 }
1953 else if (optimized_type == tls::TLSOPT_NONE)
1954 {
1955 if (r_type == elfcpp::R_386_TLS_GOTDESC)
1956 {
1957 // Relocate the field with the offset of the pair of GOT
1958 // entries.
1959 Relocate_functions<32, false>::rel32(view, got_offset);
1960 }
1961 break;
1962 }
1963 }
1964 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1965 _("unsupported reloc %u"),
1966 r_type);
1967 break;
1968
1969 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1970 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1971 {
1972 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1973 _("both SUN and GNU model "
1974 "TLS relocations"));
1975 break;
1976 }
1977 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1978 if (optimized_type == tls::TLSOPT_TO_LE)
1979 {
1980 gold_assert(tls_segment != NULL);
1981 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1982 value, view, view_size);
1983 break;
1984 }
1985 else if (optimized_type == tls::TLSOPT_NONE)
1986 {
1987 // Relocate the field with the offset of the GOT entry for
1988 // the module index.
1989 unsigned int got_offset;
1990 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1991 - target->got_size());
1992 Relocate_functions<32, false>::rel32(view, got_offset);
1993 break;
1994 }
1995 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1996 _("unsupported reloc %u"),
1997 r_type);
1998 break;
1999
2000 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2001 // This reloc can appear in debugging sections, in which case we
2002 // won't see the TLS_LDM reloc. The local_dynamic_type field
2003 // tells us this.
2004 if (optimized_type == tls::TLSOPT_TO_LE
2005 && this->local_dynamic_type_ != LOCAL_DYNAMIC_NONE)
2006 {
2007 gold_assert(tls_segment != NULL);
2008 value -= tls_segment->memsz();
2009 }
2010 Relocate_functions<32, false>::rel32(view, value);
2011 break;
2012
2013 case elfcpp::R_386_TLS_IE: // Initial-exec
2014 case elfcpp::R_386_TLS_GOTIE:
2015 case elfcpp::R_386_TLS_IE_32:
2016 if (optimized_type == tls::TLSOPT_TO_LE)
2017 {
2018 gold_assert(tls_segment != NULL);
2019 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2020 rel, r_type, value, view,
2021 view_size);
2022 break;
2023 }
2024 else if (optimized_type == tls::TLSOPT_NONE)
2025 {
2026 // Relocate the field with the offset of the GOT entry for
2027 // the tp-relative offset of the symbol.
2028 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2029 ? GOT_TYPE_TLS_OFFSET
2030 : GOT_TYPE_TLS_NOFFSET);
2031 unsigned int got_offset;
2032 if (gsym != NULL)
2033 {
2034 gold_assert(gsym->has_got_offset(got_type));
2035 got_offset = gsym->got_offset(got_type);
2036 }
2037 else
2038 {
2039 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2040 gold_assert(object->local_has_got_offset(r_sym, got_type));
2041 got_offset = object->local_got_offset(r_sym, got_type);
2042 }
2043 // For the R_386_TLS_IE relocation, we need to apply the
2044 // absolute address of the GOT entry.
2045 if (r_type == elfcpp::R_386_TLS_IE)
2046 got_offset += target->got_plt_section()->address();
2047 // All GOT offsets are relative to the end of the GOT.
2048 got_offset -= target->got_size();
2049 Relocate_functions<32, false>::rel32(view, got_offset);
2050 break;
2051 }
2052 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2053 _("unsupported reloc %u"),
2054 r_type);
2055 break;
2056
2057 case elfcpp::R_386_TLS_LE: // Local-exec
2058 // If we're creating a shared library, a dynamic relocation will
2059 // have been created for this location, so do not apply it now.
2060 if (!parameters->options().shared())
2061 {
2062 gold_assert(tls_segment != NULL);
2063 value -= tls_segment->memsz();
2064 Relocate_functions<32, false>::rel32(view, value);
2065 }
2066 break;
2067
2068 case elfcpp::R_386_TLS_LE_32:
2069 // If we're creating a shared library, a dynamic relocation will
2070 // have been created for this location, so do not apply it now.
2071 if (!parameters->options().shared())
2072 {
2073 gold_assert(tls_segment != NULL);
2074 value = tls_segment->memsz() - value;
2075 Relocate_functions<32, false>::rel32(view, value);
2076 }
2077 break;
2078 }
2079 }
2080
2081 // Do a relocation in which we convert a TLS General-Dynamic to a
2082 // Local-Exec.
2083
2084 inline void
2085 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
2086 size_t relnum,
2087 Output_segment* tls_segment,
2088 const elfcpp::Rel<32, false>& rel,
2089 unsigned int,
2090 elfcpp::Elf_types<32>::Elf_Addr value,
2091 unsigned char* view,
2092 section_size_type view_size)
2093 {
2094 // leal foo(,%reg,1),%eax; call ___tls_get_addr
2095 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2096 // leal foo(%reg),%eax; call ___tls_get_addr
2097 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2098
2099 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2100 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2101
2102 unsigned char op1 = view[-1];
2103 unsigned char op2 = view[-2];
2104
2105 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2106 op2 == 0x8d || op2 == 0x04);
2107 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2108
2109 int roff = 5;
2110
2111 if (op2 == 0x04)
2112 {
2113 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2114 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2115 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2116 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2117 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2118 }
2119 else
2120 {
2121 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2122 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2123 if (rel.get_r_offset() + 9 < view_size
2124 && view[9] == 0x90)
2125 {
2126 // There is a trailing nop. Use the size byte subl.
2127 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2128 roff = 6;
2129 }
2130 else
2131 {
2132 // Use the five byte subl.
2133 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2134 }
2135 }
2136
2137 value = tls_segment->memsz() - value;
2138 Relocate_functions<32, false>::rel32(view + roff, value);
2139
2140 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2141 // We can skip it.
2142 this->skip_call_tls_get_addr_ = true;
2143 }
2144
2145 // Do a relocation in which we convert a TLS General-Dynamic to an
2146 // Initial-Exec.
2147
2148 inline void
2149 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
2150 size_t relnum,
2151 Output_segment*,
2152 const elfcpp::Rel<32, false>& rel,
2153 unsigned int,
2154 elfcpp::Elf_types<32>::Elf_Addr value,
2155 unsigned char* view,
2156 section_size_type view_size)
2157 {
2158 // leal foo(,%ebx,1),%eax; call ___tls_get_addr
2159 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
2160
2161 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2162 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2163
2164 unsigned char op1 = view[-1];
2165 unsigned char op2 = view[-2];
2166
2167 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2168 op2 == 0x8d || op2 == 0x04);
2169 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2170
2171 int roff = 5;
2172
2173 // FIXME: For now, support only the first (SIB) form.
2174 tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
2175
2176 if (op2 == 0x04)
2177 {
2178 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2179 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2180 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2181 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2182 memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
2183 }
2184 else
2185 {
2186 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2187 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2188 if (rel.get_r_offset() + 9 < view_size
2189 && view[9] == 0x90)
2190 {
2191 // FIXME: This is not the right instruction sequence.
2192 // There is a trailing nop. Use the size byte subl.
2193 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2194 roff = 6;
2195 }
2196 else
2197 {
2198 // FIXME: This is not the right instruction sequence.
2199 // Use the five byte subl.
2200 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2201 }
2202 }
2203
2204 Relocate_functions<32, false>::rel32(view + roff, value);
2205
2206 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2207 // We can skip it.
2208 this->skip_call_tls_get_addr_ = true;
2209 }
2210
2211 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
2212 // General-Dynamic to a Local-Exec.
2213
2214 inline void
2215 Target_i386::Relocate::tls_desc_gd_to_le(
2216 const Relocate_info<32, false>* relinfo,
2217 size_t relnum,
2218 Output_segment* tls_segment,
2219 const elfcpp::Rel<32, false>& rel,
2220 unsigned int r_type,
2221 elfcpp::Elf_types<32>::Elf_Addr value,
2222 unsigned char* view,
2223 section_size_type view_size)
2224 {
2225 if (r_type == elfcpp::R_386_TLS_GOTDESC)
2226 {
2227 // leal foo@TLSDESC(%ebx), %eax
2228 // ==> leal foo@NTPOFF, %eax
2229 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2230 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2231 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2232 view[-2] == 0x8d && view[-1] == 0x83);
2233 view[-1] = 0x05;
2234 value -= tls_segment->memsz();
2235 Relocate_functions<32, false>::rel32(view, value);
2236 }
2237 else
2238 {
2239 // call *foo@TLSCALL(%eax)
2240 // ==> nop; nop
2241 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
2242 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
2243 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2244 view[0] == 0xff && view[1] == 0x10);
2245 view[0] = 0x66;
2246 view[1] = 0x90;
2247 }
2248 }
2249
2250 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
2251 // General-Dynamic to an Initial-Exec.
2252
2253 inline void
2254 Target_i386::Relocate::tls_desc_gd_to_ie(
2255 const Relocate_info<32, false>* relinfo,
2256 size_t relnum,
2257 Output_segment*,
2258 const elfcpp::Rel<32, false>& rel,
2259 unsigned int r_type,
2260 elfcpp::Elf_types<32>::Elf_Addr value,
2261 unsigned char* view,
2262 section_size_type view_size)
2263 {
2264 if (r_type == elfcpp::R_386_TLS_GOTDESC)
2265 {
2266 // leal foo@TLSDESC(%ebx), %eax
2267 // ==> movl foo@GOTNTPOFF(%ebx), %eax
2268 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2269 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2270 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2271 view[-2] == 0x8d && view[-1] == 0x83);
2272 view[-2] = 0x8b;
2273 Relocate_functions<32, false>::rel32(view, value);
2274 }
2275 else
2276 {
2277 // call *foo@TLSCALL(%eax)
2278 // ==> nop; nop
2279 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
2280 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
2281 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2282 view[0] == 0xff && view[1] == 0x10);
2283 view[0] = 0x66;
2284 view[1] = 0x90;
2285 }
2286 }
2287
2288 // Do a relocation in which we convert a TLS Local-Dynamic to a
2289 // Local-Exec.
2290
2291 inline void
2292 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
2293 size_t relnum,
2294 Output_segment*,
2295 const elfcpp::Rel<32, false>& rel,
2296 unsigned int,
2297 elfcpp::Elf_types<32>::Elf_Addr,
2298 unsigned char* view,
2299 section_size_type view_size)
2300 {
2301 // leal foo(%reg), %eax; call ___tls_get_addr
2302 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
2303
2304 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2305 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2306
2307 // FIXME: Does this test really always pass?
2308 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2309 view[-2] == 0x8d && view[-1] == 0x83);
2310
2311 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2312
2313 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
2314
2315 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2316 // We can skip it.
2317 this->skip_call_tls_get_addr_ = true;
2318 }
2319
2320 // Do a relocation in which we convert a TLS Initial-Exec to a
2321 // Local-Exec.
2322
2323 inline void
2324 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
2325 size_t relnum,
2326 Output_segment* tls_segment,
2327 const elfcpp::Rel<32, false>& rel,
2328 unsigned int r_type,
2329 elfcpp::Elf_types<32>::Elf_Addr value,
2330 unsigned char* view,
2331 section_size_type view_size)
2332 {
2333 // We have to actually change the instructions, which means that we
2334 // need to examine the opcodes to figure out which instruction we
2335 // are looking at.
2336 if (r_type == elfcpp::R_386_TLS_IE)
2337 {
2338 // movl %gs:XX,%eax ==> movl $YY,%eax
2339 // movl %gs:XX,%reg ==> movl $YY,%reg
2340 // addl %gs:XX,%reg ==> addl $YY,%reg
2341 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
2342 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2343
2344 unsigned char op1 = view[-1];
2345 if (op1 == 0xa1)
2346 {
2347 // movl XX,%eax ==> movl $YY,%eax
2348 view[-1] = 0xb8;
2349 }
2350 else
2351 {
2352 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2353
2354 unsigned char op2 = view[-2];
2355 if (op2 == 0x8b)
2356 {
2357 // movl XX,%reg ==> movl $YY,%reg
2358 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2359 (op1 & 0xc7) == 0x05);
2360 view[-2] = 0xc7;
2361 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2362 }
2363 else if (op2 == 0x03)
2364 {
2365 // addl XX,%reg ==> addl $YY,%reg
2366 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2367 (op1 & 0xc7) == 0x05);
2368 view[-2] = 0x81;
2369 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2370 }
2371 else
2372 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2373 }
2374 }
2375 else
2376 {
2377 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2378 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2379 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2380 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2381 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2382
2383 unsigned char op1 = view[-1];
2384 unsigned char op2 = view[-2];
2385 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2386 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
2387 if (op2 == 0x8b)
2388 {
2389 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2390 view[-2] = 0xc7;
2391 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2392 }
2393 else if (op2 == 0x2b)
2394 {
2395 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2396 view[-2] = 0x81;
2397 view[-1] = 0xe8 | ((op1 >> 3) & 7);
2398 }
2399 else if (op2 == 0x03)
2400 {
2401 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2402 view[-2] = 0x81;
2403 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2404 }
2405 else
2406 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2407 }
2408
2409 value = tls_segment->memsz() - value;
2410 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
2411 value = - value;
2412
2413 Relocate_functions<32, false>::rel32(view, value);
2414 }
2415
2416 // Relocate section data.
2417
2418 void
2419 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
2420 unsigned int sh_type,
2421 const unsigned char* prelocs,
2422 size_t reloc_count,
2423 Output_section* output_section,
2424 bool needs_special_offset_handling,
2425 unsigned char* view,
2426 elfcpp::Elf_types<32>::Elf_Addr address,
2427 section_size_type view_size)
2428 {
2429 gold_assert(sh_type == elfcpp::SHT_REL);
2430
2431 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
2432 Target_i386::Relocate>(
2433 relinfo,
2434 this,
2435 prelocs,
2436 reloc_count,
2437 output_section,
2438 needs_special_offset_handling,
2439 view,
2440 address,
2441 view_size);
2442 }
2443
2444 // Return the size of a relocation while scanning during a relocatable
2445 // link.
2446
2447 unsigned int
2448 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
2449 unsigned int r_type,
2450 Relobj* object)
2451 {
2452 switch (r_type)
2453 {
2454 case elfcpp::R_386_NONE:
2455 case elfcpp::R_386_GNU_VTINHERIT:
2456 case elfcpp::R_386_GNU_VTENTRY:
2457 case elfcpp::R_386_TLS_GD: // Global-dynamic
2458 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2459 case elfcpp::R_386_TLS_DESC_CALL:
2460 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2461 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2462 case elfcpp::R_386_TLS_IE: // Initial-exec
2463 case elfcpp::R_386_TLS_IE_32:
2464 case elfcpp::R_386_TLS_GOTIE:
2465 case elfcpp::R_386_TLS_LE: // Local-exec
2466 case elfcpp::R_386_TLS_LE_32:
2467 return 0;
2468
2469 case elfcpp::R_386_32:
2470 case elfcpp::R_386_PC32:
2471 case elfcpp::R_386_GOT32:
2472 case elfcpp::R_386_PLT32:
2473 case elfcpp::R_386_GOTOFF:
2474 case elfcpp::R_386_GOTPC:
2475 return 4;
2476
2477 case elfcpp::R_386_16:
2478 case elfcpp::R_386_PC16:
2479 return 2;
2480
2481 case elfcpp::R_386_8:
2482 case elfcpp::R_386_PC8:
2483 return 1;
2484
2485 // These are relocations which should only be seen by the
2486 // dynamic linker, and should never be seen here.
2487 case elfcpp::R_386_COPY:
2488 case elfcpp::R_386_GLOB_DAT:
2489 case elfcpp::R_386_JUMP_SLOT:
2490 case elfcpp::R_386_RELATIVE:
2491 case elfcpp::R_386_TLS_TPOFF:
2492 case elfcpp::R_386_TLS_DTPMOD32:
2493 case elfcpp::R_386_TLS_DTPOFF32:
2494 case elfcpp::R_386_TLS_TPOFF32:
2495 case elfcpp::R_386_TLS_DESC:
2496 object->error(_("unexpected reloc %u in object file"), r_type);
2497 return 0;
2498
2499 case elfcpp::R_386_32PLT:
2500 case elfcpp::R_386_TLS_GD_32:
2501 case elfcpp::R_386_TLS_GD_PUSH:
2502 case elfcpp::R_386_TLS_GD_CALL:
2503 case elfcpp::R_386_TLS_GD_POP:
2504 case elfcpp::R_386_TLS_LDM_32:
2505 case elfcpp::R_386_TLS_LDM_PUSH:
2506 case elfcpp::R_386_TLS_LDM_CALL:
2507 case elfcpp::R_386_TLS_LDM_POP:
2508 case elfcpp::R_386_USED_BY_INTEL_200:
2509 default:
2510 object->error(_("unsupported reloc %u in object file"), r_type);
2511 return 0;
2512 }
2513 }
2514
2515 // Scan the relocs during a relocatable link.
2516
2517 void
2518 Target_i386::scan_relocatable_relocs(const General_options& options,
2519 Symbol_table* symtab,
2520 Layout* layout,
2521 Sized_relobj<32, false>* object,
2522 unsigned int data_shndx,
2523 unsigned int sh_type,
2524 const unsigned char* prelocs,
2525 size_t reloc_count,
2526 Output_section* output_section,
2527 bool needs_special_offset_handling,
2528 size_t local_symbol_count,
2529 const unsigned char* plocal_symbols,
2530 Relocatable_relocs* rr)
2531 {
2532 gold_assert(sh_type == elfcpp::SHT_REL);
2533
2534 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
2535 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2536
2537 gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
2538 Scan_relocatable_relocs>(
2539 options,
2540 symtab,
2541 layout,
2542 object,
2543 data_shndx,
2544 prelocs,
2545 reloc_count,
2546 output_section,
2547 needs_special_offset_handling,
2548 local_symbol_count,
2549 plocal_symbols,
2550 rr);
2551 }
2552
2553 // Relocate a section during a relocatable link.
2554
2555 void
2556 Target_i386::relocate_for_relocatable(
2557 const Relocate_info<32, false>* relinfo,
2558 unsigned int sh_type,
2559 const unsigned char* prelocs,
2560 size_t reloc_count,
2561 Output_section* output_section,
2562 off_t offset_in_output_section,
2563 const Relocatable_relocs* rr,
2564 unsigned char* view,
2565 elfcpp::Elf_types<32>::Elf_Addr view_address,
2566 section_size_type view_size,
2567 unsigned char* reloc_view,
2568 section_size_type reloc_view_size)
2569 {
2570 gold_assert(sh_type == elfcpp::SHT_REL);
2571
2572 gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
2573 relinfo,
2574 prelocs,
2575 reloc_count,
2576 output_section,
2577 offset_in_output_section,
2578 rr,
2579 view,
2580 view_address,
2581 view_size,
2582 reloc_view,
2583 reloc_view_size);
2584 }
2585
2586 // Return the value to use for a dynamic which requires special
2587 // treatment. This is how we support equality comparisons of function
2588 // pointers across shared library boundaries, as described in the
2589 // processor specific ABI supplement.
2590
2591 uint64_t
2592 Target_i386::do_dynsym_value(const Symbol* gsym) const
2593 {
2594 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2595 return this->plt_section()->address() + gsym->plt_offset();
2596 }
2597
2598 // Return a string used to fill a code section with nops to take up
2599 // the specified length.
2600
2601 std::string
2602 Target_i386::do_code_fill(section_size_type length) const
2603 {
2604 if (length >= 16)
2605 {
2606 // Build a jmp instruction to skip over the bytes.
2607 unsigned char jmp[5];
2608 jmp[0] = 0xe9;
2609 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2610 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2611 + std::string(length - 5, '\0'));
2612 }
2613
2614 // Nop sequences of various lengths.
2615 const char nop1[1] = { 0x90 }; // nop
2616 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2617 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
2618 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
2619 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
2620 0x00 }; // leal 0(%esi,1),%esi
2621 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2622 0x00, 0x00 };
2623 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2624 0x00, 0x00, 0x00 };
2625 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
2626 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2627 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
2628 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
2629 0x00 };
2630 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2631 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2632 0x00, 0x00 };
2633 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2634 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2635 0x00, 0x00, 0x00 };
2636 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2637 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2638 0x00, 0x00, 0x00, 0x00 };
2639 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2640 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2641 0x27, 0x00, 0x00, 0x00,
2642 0x00 };
2643 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2644 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2645 0xbc, 0x27, 0x00, 0x00,
2646 0x00, 0x00 };
2647 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2648 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2649 0x90, 0x90, 0x90, 0x90,
2650 0x90, 0x90, 0x90 };
2651
2652 const char* nops[16] = {
2653 NULL,
2654 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2655 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2656 };
2657
2658 return std::string(nops[length], length);
2659 }
2660
2661 // The selector for i386 object files.
2662
2663 class Target_selector_i386 : public Target_selector_freebsd
2664 {
2665 public:
2666 Target_selector_i386()
2667 : Target_selector_freebsd(elfcpp::EM_386, 32, false,
2668 "elf32-i386", "elf32-i386-freebsd")
2669 { }
2670
2671 Target*
2672 do_instantiate_target()
2673 { return new Target_i386(); }
2674 };
2675
2676 Target_selector_i386 target_selector_i386;
2677
2678 } // End anonymous namespace.
This page took 0.113027 seconds and 5 git commands to generate.