Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / gold / icf.cc
1 // icf.cc -- Identical Code Folding.
2 //
3 // Copyright (C) 2009-2018 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows. A checksum is computed on each foldable section using
27 // its contents and relocations. If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum. If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used. The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
35 //
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different foldable sections can be identical if
38 // the corresponding foldable sections to which their relocations point to
39 // turn out to be identical. Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained. Here is an example for
41 // the following case :
42 //
43 // int funcA () int funcB ()
44 // { {
45 // return foo(); return goo();
46 // } }
47 //
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
50 //
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained. Now, we have two different ways to do this depending on how
54 // we initialize.
55 //
56 // Algorithm I :
57 // -----------
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming. This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found. However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence. Here is an example with mutually recursive functions :
64 //
65 // int funcA (int a) int funcB (int a)
66 // { {
67 // if (a == 1) if (a == 1)
68 // return 1; return 1;
69 // return 1 + funcB(a - 1); return 1 + funcA(a - 1);
70 // } }
71 //
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other. However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical. It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
78 //
79 // Algorithm II :
80 // ------------
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence. This can detect the above case
83 // mentioned above. It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence. It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed. Algorithm II is not implemented.
87 //
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs. This seems to be the most common case that
92 // Algorithm I could not catch as is. Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
94 // arbitrarily.
95 //
96 // Caveat with using function pointers :
97 // ------------------------------------
98 //
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place. This could lead to unexpected run-time
102 // behaviour.
103 //
104 // Safe Folding :
105 // ------------
106 //
107 // ICF in safe mode folds only ctors and dtors if their function pointers can
108 // never be taken. Also, for X86-64, safe folding uses the relocation
109 // type to determine if a function's pointer is taken or not and only folds
110 // functions whose pointers are definitely not taken.
111 //
112 // Caveat with safe folding :
113 // ------------------------
114 //
115 // This applies only to x86_64.
116 //
117 // Position independent executables are created from PIC objects (compiled
118 // with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119 // relocation types for function pointer taken and a call are the same.
120 // Now, it is not always possible to tell if an object used in the link of
121 // a pie executable is a PIC object or a PIE object. Hence, for pie
122 // executables, using relocation types to disambiguate function pointers is
123 // currently disabled.
124 //
125 // Further, it is not correct to use safe folding to build non-pie
126 // executables using PIC/PIE objects. PIC/PIE objects have different
127 // relocation types for function pointers than non-PIC objects, and the
128 // current implementation of safe folding does not handle those relocation
129 // types. Hence, if used, functions whose pointers are taken could still be
130 // folded causing unpredictable run-time behaviour if the pointers were used
131 // in comparisons.
132 //
133 //
134 //
135 // How to run : --icf=[safe|all|none]
136 // Optional parameters : --icf-iterations <num> --print-icf-sections
137 //
138 // Performance : Less than 20 % link-time overhead on industry strength
139 // applications. Up to 6 % text size reductions.
140
141 #include "gold.h"
142 #include "object.h"
143 #include "gc.h"
144 #include "icf.h"
145 #include "symtab.h"
146 #include "libiberty.h"
147 #include "demangle.h"
148 #include "elfcpp.h"
149 #include "int_encoding.h"
150
151 namespace gold
152 {
153
154 // This function determines if a section or a group of identical
155 // sections has unique contents. Such unique sections or groups can be
156 // declared final and need not be processed any further.
157 // Parameters :
158 // ID_SECTION : Vector mapping a section index to a Section_id pair.
159 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160 // sections is already known to be unique.
161 // SECTION_CONTENTS : Contains the section's text and relocs to sections
162 // that cannot be folded. SECTION_CONTENTS are NULL
163 // implies that this function is being called for the
164 // first time before the first iteration of icf.
165
166 static void
167 preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
168 std::vector<bool>* is_secn_or_group_unique,
169 std::vector<std::string>* section_contents)
170 {
171 Unordered_map<uint32_t, unsigned int> uniq_map;
172 std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
173 uniq_map_insert;
174
175 for (unsigned int i = 0; i < id_section.size(); i++)
176 {
177 if ((*is_secn_or_group_unique)[i])
178 continue;
179
180 uint32_t cksum;
181 Section_id secn = id_section[i];
182 section_size_type plen;
183 if (section_contents == NULL)
184 {
185 // Lock the object so we can read from it. This is only called
186 // single-threaded from queue_middle_tasks, so it is OK to lock.
187 // Unfortunately we have no way to pass in a Task token.
188 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
189 Task_lock_obj<Object> tl(dummy_task, secn.first);
190 const unsigned char* contents;
191 contents = secn.first->section_contents(secn.second,
192 &plen,
193 false);
194 cksum = xcrc32(contents, plen, 0xffffffff);
195 }
196 else
197 {
198 const unsigned char* contents_array = reinterpret_cast
199 <const unsigned char*>((*section_contents)[i].c_str());
200 cksum = xcrc32(contents_array, (*section_contents)[i].length(),
201 0xffffffff);
202 }
203 uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
204 if (uniq_map_insert.second)
205 {
206 (*is_secn_or_group_unique)[i] = true;
207 }
208 else
209 {
210 (*is_secn_or_group_unique)[i] = false;
211 (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
212 }
213 }
214 }
215
216 // For SHF_MERGE sections that use REL relocations, the addend is stored in
217 // the text section at the relocation offset. Read the addend value given
218 // the pointer to the addend in the text section and the addend size.
219 // Update the addend value if a valid addend is found.
220 // Parameters:
221 // RELOC_ADDEND_PTR : Pointer to the addend in the text section.
222 // ADDEND_SIZE : The size of the addend.
223 // RELOC_ADDEND_VALUE : Pointer to the addend that is updated.
224
225 inline void
226 get_rel_addend(const unsigned char* reloc_addend_ptr,
227 const unsigned int addend_size,
228 uint64_t* reloc_addend_value)
229 {
230 switch (addend_size)
231 {
232 case 0:
233 break;
234 case 1:
235 *reloc_addend_value =
236 read_from_pointer<8>(reloc_addend_ptr);
237 break;
238 case 2:
239 *reloc_addend_value =
240 read_from_pointer<16>(reloc_addend_ptr);
241 break;
242 case 4:
243 *reloc_addend_value =
244 read_from_pointer<32>(reloc_addend_ptr);
245 break;
246 case 8:
247 *reloc_addend_value =
248 read_from_pointer<64>(reloc_addend_ptr);
249 break;
250 default:
251 gold_unreachable();
252 }
253 }
254
255 // This returns the buffer containing the section's contents, both
256 // text and relocs. Relocs are differentiated as those pointing to
257 // sections that could be folded and those that cannot. Only relocs
258 // pointing to sections that could be folded are recomputed on
259 // subsequent invocations of this function.
260 // Parameters :
261 // FIRST_ITERATION : true if it is the first invocation.
262 // SECN : Section for which contents are desired.
263 // SECTION_NUM : Unique section number of this section.
264 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
265 // to ICF sections.
266 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
267 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
268 // sections.
269
270 static std::string
271 get_section_contents(bool first_iteration,
272 const Section_id& secn,
273 unsigned int section_num,
274 unsigned int* num_tracked_relocs,
275 Symbol_table* symtab,
276 const std::vector<unsigned int>& kept_section_id,
277 std::vector<std::string>* section_contents)
278 {
279 // Lock the object so we can read from it. This is only called
280 // single-threaded from queue_middle_tasks, so it is OK to lock.
281 // Unfortunately we have no way to pass in a Task token.
282 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
283 Task_lock_obj<Object> tl(dummy_task, secn.first);
284
285 section_size_type plen;
286 const unsigned char* contents = NULL;
287 if (first_iteration)
288 contents = secn.first->section_contents(secn.second, &plen, false);
289
290 // The buffer to hold all the contents including relocs. A checksum
291 // is then computed on this buffer.
292 std::string buffer;
293 std::string icf_reloc_buffer;
294
295 if (num_tracked_relocs)
296 *num_tracked_relocs = 0;
297
298 Icf::Reloc_info_list& reloc_info_list =
299 symtab->icf()->reloc_info_list();
300
301 Icf::Reloc_info_list::iterator it_reloc_info_list =
302 reloc_info_list.find(secn);
303
304 buffer.clear();
305 icf_reloc_buffer.clear();
306
307 // Process relocs and put them into the buffer.
308
309 if (it_reloc_info_list != reloc_info_list.end())
310 {
311 Icf::Sections_reachable_info &v =
312 (it_reloc_info_list->second).section_info;
313 // Stores the information of the symbol pointed to by the reloc.
314 const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
315 // Stores the addend and the symbol value.
316 Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
317 // Stores the offset of the reloc.
318 const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
319 const Icf::Reloc_addend_size_info &reloc_addend_size_info =
320 (it_reloc_info_list->second).reloc_addend_size_info;
321 Icf::Sections_reachable_info::iterator it_v = v.begin();
322 Icf::Symbol_info::const_iterator it_s = s.begin();
323 Icf::Addend_info::iterator it_a = a.begin();
324 Icf::Offset_info::const_iterator it_o = o.begin();
325 Icf::Reloc_addend_size_info::const_iterator it_addend_size =
326 reloc_addend_size_info.begin();
327
328 for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
329 {
330 if (first_iteration
331 && it_v->first != NULL)
332 {
333 Symbol_location loc;
334 loc.object = it_v->first;
335 loc.shndx = it_v->second;
336 loc.offset = convert_types<off_t, long long>(it_a->first
337 + it_a->second);
338 // Look through function descriptors
339 parameters->target().function_location(&loc);
340 if (loc.shndx != it_v->second)
341 {
342 it_v->second = loc.shndx;
343 // Modify symvalue/addend to the code entry.
344 it_a->first = loc.offset;
345 it_a->second = 0;
346 }
347 }
348
349 // ADDEND_STR stores the symbol value and addend and offset,
350 // each at most 16 hex digits long. it_a points to a pair
351 // where first is the symbol value and second is the
352 // addend.
353 char addend_str[50];
354
355 // It would be nice if we could use format macros in inttypes.h
356 // here but there are not in ISO/IEC C++ 1998.
357 snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
358 static_cast<long long>((*it_a).first),
359 static_cast<long long>((*it_a).second),
360 static_cast<unsigned long long>(*it_o));
361
362 // If the symbol pointed to by the reloc is not in an ordinary
363 // section or if the symbol type is not FROM_OBJECT, then the
364 // object is NULL.
365 if (it_v->first == NULL)
366 {
367 if (first_iteration)
368 {
369 // If the symbol name is available, use it.
370 if ((*it_s) != NULL)
371 buffer.append((*it_s)->name());
372 // Append the addend.
373 buffer.append(addend_str);
374 buffer.append("@");
375 }
376 continue;
377 }
378
379 Section_id reloc_secn(it_v->first, it_v->second);
380
381 // If this reloc turns back and points to the same section,
382 // like a recursive call, use a special symbol to mark this.
383 if (reloc_secn.first == secn.first
384 && reloc_secn.second == secn.second)
385 {
386 if (first_iteration)
387 {
388 buffer.append("R");
389 buffer.append(addend_str);
390 buffer.append("@");
391 }
392 continue;
393 }
394 Icf::Uniq_secn_id_map& section_id_map =
395 symtab->icf()->section_to_int_map();
396 Icf::Uniq_secn_id_map::iterator section_id_map_it =
397 section_id_map.find(reloc_secn);
398 bool is_sym_preemptible = (*it_s != NULL
399 && !(*it_s)->is_from_dynobj()
400 && !(*it_s)->is_undefined()
401 && (*it_s)->is_preemptible());
402 if (!is_sym_preemptible
403 && section_id_map_it != section_id_map.end())
404 {
405 // This is a reloc to a section that might be folded.
406 if (num_tracked_relocs)
407 (*num_tracked_relocs)++;
408
409 char kept_section_str[10];
410 unsigned int secn_id = section_id_map_it->second;
411 snprintf(kept_section_str, sizeof(kept_section_str), "%u",
412 kept_section_id[secn_id]);
413 if (first_iteration)
414 {
415 buffer.append("ICF_R");
416 buffer.append(addend_str);
417 }
418 icf_reloc_buffer.append(kept_section_str);
419 // Append the addend.
420 icf_reloc_buffer.append(addend_str);
421 icf_reloc_buffer.append("@");
422 }
423 else
424 {
425 // This is a reloc to a section that cannot be folded.
426 // Process it only in the first iteration.
427 if (!first_iteration)
428 continue;
429
430 uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
431 // This reloc points to a merge section. Hash the
432 // contents of this section.
433 if ((secn_flags & elfcpp::SHF_MERGE) != 0
434 && parameters->target().can_icf_inline_merge_sections())
435 {
436 uint64_t entsize =
437 (it_v->first)->section_entsize(it_v->second);
438 long long offset = it_a->first;
439 // Handle SHT_RELA and SHT_REL addends, only one of these
440 // addends exists.
441 // Get the SHT_RELA addend. For RELA relocations, we have
442 // the addend from the relocation.
443 uint64_t reloc_addend_value = it_a->second;
444
445 // Handle SHT_REL addends.
446 // For REL relocations, we need to fetch the addend from the
447 // section contents.
448 const unsigned char* reloc_addend_ptr =
449 contents + static_cast<unsigned long long>(*it_o);
450
451 // Update the addend value with the SHT_REL addend if
452 // available.
453 get_rel_addend(reloc_addend_ptr, *it_addend_size,
454 &reloc_addend_value);
455
456 // Ignore the addend when it is a negative value. See the
457 // comments in Merged_symbol_value::value in object.h.
458 if (reloc_addend_value < 0xffffff00)
459 offset = offset + reloc_addend_value;
460
461 section_size_type secn_len;
462
463 const unsigned char* str_contents =
464 (it_v->first)->section_contents(it_v->second,
465 &secn_len,
466 false) + offset;
467 gold_assert (offset < (long long) secn_len);
468
469 if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
470 {
471 // String merge section.
472 const char* str_char =
473 reinterpret_cast<const char*>(str_contents);
474 switch(entsize)
475 {
476 case 1:
477 {
478 buffer.append(str_char);
479 break;
480 }
481 case 2:
482 {
483 const uint16_t* ptr_16 =
484 reinterpret_cast<const uint16_t*>(str_char);
485 unsigned int strlen_16 = 0;
486 // Find the NULL character.
487 while(*(ptr_16 + strlen_16) != 0)
488 strlen_16++;
489 buffer.append(str_char, strlen_16 * 2);
490 }
491 break;
492 case 4:
493 {
494 const uint32_t* ptr_32 =
495 reinterpret_cast<const uint32_t*>(str_char);
496 unsigned int strlen_32 = 0;
497 // Find the NULL character.
498 while(*(ptr_32 + strlen_32) != 0)
499 strlen_32++;
500 buffer.append(str_char, strlen_32 * 4);
501 }
502 break;
503 default:
504 gold_unreachable();
505 }
506 }
507 else
508 {
509 // Use the entsize to determine the length to copy.
510 uint64_t bufsize = entsize;
511 // If entsize is too big, copy all the remaining bytes.
512 if ((offset + entsize) > secn_len)
513 bufsize = secn_len - offset;
514 buffer.append(reinterpret_cast<const
515 char*>(str_contents),
516 bufsize);
517 }
518 buffer.append("@");
519 }
520 else if ((*it_s) != NULL)
521 {
522 // If symbol name is available use that.
523 buffer.append((*it_s)->name());
524 // Append the addend.
525 buffer.append(addend_str);
526 buffer.append("@");
527 }
528 else
529 {
530 // Symbol name is not available, like for a local symbol,
531 // use object and section id.
532 buffer.append(it_v->first->name());
533 char secn_id[10];
534 snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
535 buffer.append(secn_id);
536 // Append the addend.
537 buffer.append(addend_str);
538 buffer.append("@");
539 }
540 }
541 }
542 }
543
544 if (first_iteration)
545 {
546 buffer.append("Contents = ");
547 buffer.append(reinterpret_cast<const char*>(contents), plen);
548 // Store the section contents that don't change to avoid recomputing
549 // during the next call to this function.
550 (*section_contents)[section_num] = buffer;
551 }
552 else
553 {
554 gold_assert(buffer.empty());
555 // Reuse the contents computed in the previous iteration.
556 buffer.append((*section_contents)[section_num]);
557 }
558
559 buffer.append(icf_reloc_buffer);
560 return buffer;
561 }
562
563 // This function computes a checksum on each section to detect and form
564 // groups of identical sections. The first iteration does this for all
565 // sections.
566 // Further iterations do this only for the kept sections from each group to
567 // determine if larger groups of identical sections could be formed. The
568 // first section in each group is the kept section for that group.
569 //
570 // CRC32 is the checksumming algorithm and can have collisions. That is,
571 // two sections with different contents can have the same checksum. Hence,
572 // a multimap is used to maintain more than one group of checksum
573 // identical sections. A section is added to a group only after its
574 // contents are explicitly compared with the kept section of the group.
575 //
576 // Parameters :
577 // ITERATION_NUM : Invocation instance of this function.
578 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
579 // to ICF sections.
580 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
581 // ID_SECTION : Vector mapping a section to an unique integer.
582 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
583 // sections is already known to be unique.
584 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
585 // sections.
586
587 static bool
588 match_sections(unsigned int iteration_num,
589 Symbol_table* symtab,
590 std::vector<unsigned int>* num_tracked_relocs,
591 std::vector<unsigned int>* kept_section_id,
592 const std::vector<Section_id>& id_section,
593 const std::vector<uint64_t>& section_addraligns,
594 std::vector<bool>* is_secn_or_group_unique,
595 std::vector<std::string>* section_contents)
596 {
597 Unordered_multimap<uint32_t, unsigned int> section_cksum;
598 std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
599 Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
600 bool converged = true;
601
602 if (iteration_num == 1)
603 preprocess_for_unique_sections(id_section,
604 is_secn_or_group_unique,
605 NULL);
606 else
607 preprocess_for_unique_sections(id_section,
608 is_secn_or_group_unique,
609 section_contents);
610
611 std::vector<std::string> full_section_contents;
612
613 for (unsigned int i = 0; i < id_section.size(); i++)
614 {
615 full_section_contents.push_back("");
616 if ((*is_secn_or_group_unique)[i])
617 continue;
618
619 Section_id secn = id_section[i];
620 std::string this_secn_contents;
621 uint32_t cksum;
622 if (iteration_num == 1)
623 {
624 unsigned int num_relocs = 0;
625 this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
626 symtab, (*kept_section_id),
627 section_contents);
628 (*num_tracked_relocs)[i] = num_relocs;
629 }
630 else
631 {
632 if ((*kept_section_id)[i] != i)
633 {
634 // This section is already folded into something.
635 continue;
636 }
637 this_secn_contents = get_section_contents(false, secn, i, NULL,
638 symtab, (*kept_section_id),
639 section_contents);
640 }
641
642 const unsigned char* this_secn_contents_array =
643 reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
644 cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
645 0xffffffff);
646 size_t count = section_cksum.count(cksum);
647
648 if (count == 0)
649 {
650 // Start a group with this cksum.
651 section_cksum.insert(std::make_pair(cksum, i));
652 full_section_contents[i] = this_secn_contents;
653 }
654 else
655 {
656 key_range = section_cksum.equal_range(cksum);
657 Unordered_multimap<uint32_t, unsigned int>::iterator it;
658 // Search all the groups with this cksum for a match.
659 for (it = key_range.first; it != key_range.second; ++it)
660 {
661 unsigned int kept_section = it->second;
662 if (full_section_contents[kept_section].length()
663 != this_secn_contents.length())
664 continue;
665 if (memcmp(full_section_contents[kept_section].c_str(),
666 this_secn_contents.c_str(),
667 this_secn_contents.length()) != 0)
668 continue;
669
670 // Check section alignment here.
671 // The section with the larger alignment requirement
672 // should be kept. We assume alignment can only be
673 // zero or positive integral powers of two.
674 uint64_t align_i = section_addraligns[i];
675 uint64_t align_kept = section_addraligns[kept_section];
676 if (align_i <= align_kept)
677 {
678 (*kept_section_id)[i] = kept_section;
679 }
680 else
681 {
682 (*kept_section_id)[kept_section] = i;
683 it->second = i;
684 full_section_contents[kept_section].swap(
685 full_section_contents[i]);
686 }
687
688 converged = false;
689 break;
690 }
691 if (it == key_range.second)
692 {
693 // Create a new group for this cksum.
694 section_cksum.insert(std::make_pair(cksum, i));
695 full_section_contents[i] = this_secn_contents;
696 }
697 }
698 // If there are no relocs to foldable sections do not process
699 // this section any further.
700 if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
701 (*is_secn_or_group_unique)[i] = true;
702 }
703
704 // If a section was folded into another section that was later folded
705 // again then the former has to be updated.
706 for (unsigned int i = 0; i < id_section.size(); i++)
707 {
708 // Find the end of the folding chain
709 unsigned int kept = i;
710 while ((*kept_section_id)[kept] != kept)
711 {
712 kept = (*kept_section_id)[kept];
713 }
714 // Update every element of the chain
715 unsigned int current = i;
716 while ((*kept_section_id)[current] != kept)
717 {
718 unsigned int next = (*kept_section_id)[current];
719 (*kept_section_id)[current] = kept;
720 current = next;
721 }
722 }
723
724 return converged;
725 }
726
727 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
728 // This function returns true if the section name is that of a ctor or a dtor.
729
730 static bool
731 is_function_ctor_or_dtor(const std::string& section_name)
732 {
733 const char* mangled_func_name = strrchr(section_name.c_str(), '.');
734 gold_assert(mangled_func_name != NULL);
735 if ((is_prefix_of("._ZN", mangled_func_name)
736 || is_prefix_of("._ZZ", mangled_func_name))
737 && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
738 || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
739 {
740 return true;
741 }
742 return false;
743 }
744
745 // This is the main ICF function called in gold.cc. This does the
746 // initialization and calls match_sections repeatedly (twice by default)
747 // which computes the crc checksums and detects identical functions.
748
749 void
750 Icf::find_identical_sections(const Input_objects* input_objects,
751 Symbol_table* symtab)
752 {
753 unsigned int section_num = 0;
754 std::vector<unsigned int> num_tracked_relocs;
755 std::vector<uint64_t> section_addraligns;
756 std::vector<bool> is_secn_or_group_unique;
757 std::vector<std::string> section_contents;
758 const Target& target = parameters->target();
759
760 // Decide which sections are possible candidates first.
761
762 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
763 p != input_objects->relobj_end();
764 ++p)
765 {
766 // Lock the object so we can read from it. This is only called
767 // single-threaded from queue_middle_tasks, so it is OK to lock.
768 // Unfortunately we have no way to pass in a Task token.
769 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
770 Task_lock_obj<Object> tl(dummy_task, *p);
771
772 for (unsigned int i = 0;i < (*p)->shnum(); ++i)
773 {
774 const std::string section_name = (*p)->section_name(i);
775 if (!is_section_foldable_candidate(section_name))
776 continue;
777 if (!(*p)->is_section_included(i))
778 continue;
779 if (parameters->options().gc_sections()
780 && symtab->gc()->is_section_garbage(*p, i))
781 continue;
782 // With --icf=safe, check if the mangled function name is a ctor
783 // or a dtor. The mangled function name can be obtained from the
784 // section name by stripping the section prefix.
785 if (parameters->options().icf_safe_folding()
786 && !is_function_ctor_or_dtor(section_name)
787 && (!target.can_check_for_function_pointers()
788 || section_has_function_pointers(*p, i)))
789 {
790 continue;
791 }
792 this->id_section_.push_back(Section_id(*p, i));
793 this->section_id_[Section_id(*p, i)] = section_num;
794 this->kept_section_id_.push_back(section_num);
795 num_tracked_relocs.push_back(0);
796 section_addraligns.push_back((*p)->section_addralign(i));
797 is_secn_or_group_unique.push_back(false);
798 section_contents.push_back("");
799 section_num++;
800 }
801 }
802
803 unsigned int num_iterations = 0;
804
805 // Default number of iterations to run ICF is 2.
806 unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
807 ? parameters->options().icf_iterations()
808 : 2;
809
810 bool converged = false;
811
812 while (!converged && (num_iterations < max_iterations))
813 {
814 num_iterations++;
815 converged = match_sections(num_iterations, symtab,
816 &num_tracked_relocs, &this->kept_section_id_,
817 this->id_section_, section_addraligns,
818 &is_secn_or_group_unique, &section_contents);
819 }
820
821 if (parameters->options().print_icf_sections())
822 {
823 if (converged)
824 gold_info(_("%s: ICF Converged after %u iteration(s)"),
825 program_name, num_iterations);
826 else
827 gold_info(_("%s: ICF stopped after %u iteration(s)"),
828 program_name, num_iterations);
829 }
830
831 // Unfold --keep-unique symbols.
832 for (options::String_set::const_iterator p =
833 parameters->options().keep_unique_begin();
834 p != parameters->options().keep_unique_end();
835 ++p)
836 {
837 const char* name = p->c_str();
838 Symbol* sym = symtab->lookup(name);
839 if (sym == NULL)
840 {
841 gold_warning(_("Could not find symbol %s to unfold\n"), name);
842 }
843 else if (sym->source() == Symbol::FROM_OBJECT
844 && !sym->object()->is_dynamic())
845 {
846 Relobj* obj = static_cast<Relobj*>(sym->object());
847 bool is_ordinary;
848 unsigned int shndx = sym->shndx(&is_ordinary);
849 if (is_ordinary)
850 {
851 this->unfold_section(obj, shndx);
852 }
853 }
854
855 }
856
857 this->icf_ready();
858 }
859
860 // Unfolds the section denoted by OBJ and SHNDX if folded.
861
862 void
863 Icf::unfold_section(Relobj* obj, unsigned int shndx)
864 {
865 Section_id secn(obj, shndx);
866 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
867 if (it == this->section_id_.end())
868 return;
869 unsigned int section_num = it->second;
870 unsigned int kept_section_id = this->kept_section_id_[section_num];
871 if (kept_section_id != section_num)
872 this->kept_section_id_[section_num] = section_num;
873 }
874
875 // This function determines if the section corresponding to the
876 // given object and index is folded based on if the kept section
877 // is different from this section.
878
879 bool
880 Icf::is_section_folded(Relobj* obj, unsigned int shndx)
881 {
882 Section_id secn(obj, shndx);
883 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
884 if (it == this->section_id_.end())
885 return false;
886 unsigned int section_num = it->second;
887 unsigned int kept_section_id = this->kept_section_id_[section_num];
888 return kept_section_id != section_num;
889 }
890
891 // This function returns the folded section for the given section.
892
893 Section_id
894 Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx)
895 {
896 Section_id dup_secn(dup_obj, dup_shndx);
897 Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
898 gold_assert(it != this->section_id_.end());
899 unsigned int section_num = it->second;
900 unsigned int kept_section_id = this->kept_section_id_[section_num];
901 Section_id folded_section = this->id_section_[kept_section_id];
902 return folded_section;
903 }
904
905 } // End of namespace gold.
This page took 0.056703 seconds and 5 git commands to generate.