2010-02-20 Sriraman Tallam <tmsriram@google.com>
[deliverable/binutils-gdb.git] / gold / icf.cc
1 // icf.cc -- Identical Code Folding.
2 //
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows. A checksum is computed on each foldable section using
27 // its contents and relocations. If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum. If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used. The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
35 //
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different foldable sections can be identical if
38 // the corresponding foldable sections to which their relocations point to
39 // turn out to be identical. Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained. Here is an example for
41 // the following case :
42 //
43 // int funcA () int funcB ()
44 // { {
45 // return foo(); return goo();
46 // } }
47 //
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
50 //
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained. Now, we have two different ways to do this depending on how
54 // we initialize.
55 //
56 // Algorithm I :
57 // -----------
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming. This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found. However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence. Here is an example with mutually recursive functions :
64 //
65 // int funcA (int a) int funcB (int a)
66 // { {
67 // if (a == 1) if (a == 1)
68 // return 1; return 1;
69 // return 1 + funcB(a - 1); return 1 + funcA(a - 1);
70 // } }
71 //
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other. However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical. It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
78 //
79 // Algorithm II :
80 // ------------
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence. This can detect the above case
83 // mentioned above. It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence. It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed. Algorithm II is not implemented.
87 //
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs. This seems to be the most common case that
92 // Algorithm I could not catch as is. Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
94 // arbitrarily.
95 //
96 // Caveat with using function pointers :
97 // ------------------------------------
98 //
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place. This could lead to unexpected run-time
102 // behaviour.
103 //
104 // Safe Folding :
105 // ------------
106 //
107 // ICF in safe mode folds only ctors and dtors if their function pointers can
108 // never be taken. Also, for X86-64, safe folding uses the relocation
109 // type to determine if a function's pointer is taken or not and only folds
110 // functions whose pointers are definitely not taken.
111 //
112 // Caveat with safe folding :
113 // ------------------------
114 //
115 // This applies only to x86_64.
116 //
117 // Position independent executables are created from PIC objects (compiled
118 // with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119 // relocation types for function pointer taken and a call are the same.
120 // Now, it is not always possible to tell if an object used in the link of
121 // a pie executable is a PIC object or a PIE object. Hence, for pie
122 // executables, using relocation types to disambiguate function pointers is
123 // currently disabled.
124 //
125 // Further, it is not correct to use safe folding to build non-pie
126 // executables using PIC/PIE objects. PIC/PIE objects have different
127 // relocation types for function pointers than non-PIC objects, and the
128 // current implementation of safe folding does not handle those relocation
129 // types. Hence, if used, functions whose pointers are taken could still be
130 // folded causing unpredictable run-time behaviour if the pointers were used
131 // in comparisons.
132 //
133 //
134 //
135 // How to run : --icf=[safe|all|none]
136 // Optional parameters : --icf-iterations <num> --print-icf-sections
137 //
138 // Performance : Less than 20 % link-time overhead on industry strength
139 // applications. Up to 6 % text size reductions.
140
141 #include "gold.h"
142 #include "object.h"
143 #include "gc.h"
144 #include "icf.h"
145 #include "symtab.h"
146 #include "libiberty.h"
147 #include "demangle.h"
148
149 namespace gold
150 {
151
152 // This function determines if a section or a group of identical
153 // sections has unique contents. Such unique sections or groups can be
154 // declared final and need not be processed any further.
155 // Parameters :
156 // ID_SECTION : Vector mapping a section index to a Section_id pair.
157 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
158 // sections is already known to be unique.
159 // SECTION_CONTENTS : Contains the section's text and relocs to sections
160 // that cannot be folded. SECTION_CONTENTS are NULL
161 // implies that this function is being called for the
162 // first time before the first iteration of icf.
163
164 static void
165 preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
166 std::vector<bool>* is_secn_or_group_unique,
167 std::vector<std::string>* section_contents)
168 {
169 Unordered_map<uint32_t, unsigned int> uniq_map;
170 std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
171 uniq_map_insert;
172
173 for (unsigned int i = 0; i < id_section.size(); i++)
174 {
175 if ((*is_secn_or_group_unique)[i])
176 continue;
177
178 uint32_t cksum;
179 Section_id secn = id_section[i];
180 section_size_type plen;
181 if (section_contents == NULL)
182 {
183 const unsigned char* contents;
184 contents = secn.first->section_contents(secn.second,
185 &plen,
186 false);
187 cksum = xcrc32(contents, plen, 0xffffffff);
188 }
189 else
190 {
191 const unsigned char* contents_array = reinterpret_cast
192 <const unsigned char*>((*section_contents)[i].c_str());
193 cksum = xcrc32(contents_array, (*section_contents)[i].length(),
194 0xffffffff);
195 }
196 uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
197 if (uniq_map_insert.second)
198 {
199 (*is_secn_or_group_unique)[i] = true;
200 }
201 else
202 {
203 (*is_secn_or_group_unique)[i] = false;
204 (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
205 }
206 }
207 }
208
209 // This returns the buffer containing the section's contents, both
210 // text and relocs. Relocs are differentiated as those pointing to
211 // sections that could be folded and those that cannot. Only relocs
212 // pointing to sections that could be folded are recomputed on
213 // subsequent invocations of this function.
214 // Parameters :
215 // FIRST_ITERATION : true if it is the first invocation.
216 // SECN : Section for which contents are desired.
217 // SECTION_NUM : Unique section number of this section.
218 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
219 // to ICF sections.
220 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
221 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
222 // sections.
223
224 static std::string
225 get_section_contents(bool first_iteration,
226 const Section_id& secn,
227 unsigned int section_num,
228 unsigned int* num_tracked_relocs,
229 Symbol_table* symtab,
230 const std::vector<unsigned int>& kept_section_id,
231 std::vector<std::string>* section_contents)
232 {
233 section_size_type plen;
234 const unsigned char* contents = NULL;
235
236 if (first_iteration)
237 {
238 contents = secn.first->section_contents(secn.second,
239 &plen,
240 false);
241 }
242
243 // The buffer to hold all the contents including relocs. A checksum
244 // is then computed on this buffer.
245 std::string buffer;
246 std::string icf_reloc_buffer;
247
248 if (num_tracked_relocs)
249 *num_tracked_relocs = 0;
250
251 Icf::Reloc_info_list& reloc_info_list =
252 symtab->icf()->reloc_info_list();
253
254 Icf::Reloc_info_list::iterator it_reloc_info_list =
255 reloc_info_list.find(secn);
256
257 buffer.clear();
258 icf_reloc_buffer.clear();
259
260 // Process relocs and put them into the buffer.
261
262 if (it_reloc_info_list != reloc_info_list.end())
263 {
264 Icf::Sections_reachable_info v =
265 (it_reloc_info_list->second).section_info;
266 Icf::Symbol_info s = (it_reloc_info_list->second).symbol_info;
267 Icf::Addend_info a = (it_reloc_info_list->second).addend_info;
268 Icf::Offset_info o = (it_reloc_info_list->second).offset_info;
269 Icf::Sections_reachable_info::iterator it_v = v.begin();
270 Icf::Symbol_info::iterator it_s = s.begin();
271 Icf::Addend_info::iterator it_a = a.begin();
272 Icf::Offset_info::iterator it_o = o.begin();
273
274 for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o)
275 {
276 // ADDEND_STR stores the symbol value and addend and offset,
277 // each atmost 16 hex digits long. it_a points to a pair
278 // where first is the symbol value and second is the
279 // addend.
280 char addend_str[50];
281 snprintf(addend_str, sizeof(addend_str), "%llx %llx %lux",
282 (*it_a).first, (*it_a).second, (*it_o));
283 Section_id reloc_secn(it_v->first, it_v->second);
284
285 // If this reloc turns back and points to the same section,
286 // like a recursive call, use a special symbol to mark this.
287 if (reloc_secn.first == secn.first
288 && reloc_secn.second == secn.second)
289 {
290 if (first_iteration)
291 {
292 buffer.append("R");
293 buffer.append(addend_str);
294 buffer.append("@");
295 }
296 continue;
297 }
298 Icf::Uniq_secn_id_map& section_id_map =
299 symtab->icf()->section_to_int_map();
300 Icf::Uniq_secn_id_map::iterator section_id_map_it =
301 section_id_map.find(reloc_secn);
302 if (section_id_map_it != section_id_map.end())
303 {
304 // This is a reloc to a section that might be folded.
305 if (num_tracked_relocs)
306 (*num_tracked_relocs)++;
307
308 char kept_section_str[10];
309 unsigned int secn_id = section_id_map_it->second;
310 snprintf(kept_section_str, sizeof(kept_section_str), "%u",
311 kept_section_id[secn_id]);
312 if (first_iteration)
313 {
314 buffer.append("ICF_R");
315 buffer.append(addend_str);
316 }
317 icf_reloc_buffer.append(kept_section_str);
318 // Append the addend.
319 icf_reloc_buffer.append(addend_str);
320 icf_reloc_buffer.append("@");
321 }
322 else
323 {
324 // This is a reloc to a section that cannot be folded.
325 // Process it only in the first iteration.
326 if (!first_iteration)
327 continue;
328
329 uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
330 // This reloc points to a merge section. Hash the
331 // contents of this section.
332 if ((secn_flags & elfcpp::SHF_MERGE) != 0)
333 {
334 uint64_t entsize =
335 (it_v->first)->section_entsize(it_v->second);
336 long long offset = it_a->first + it_a->second;
337 section_size_type secn_len;
338 const unsigned char* str_contents =
339 (it_v->first)->section_contents(it_v->second,
340 &secn_len,
341 false) + offset;
342 if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
343 {
344 // String merge section.
345 const char* str_char =
346 reinterpret_cast<const char*>(str_contents);
347 switch(entsize)
348 {
349 case 1:
350 {
351 buffer.append(str_char);
352 break;
353 }
354 case 2:
355 {
356 const uint16_t* ptr_16 =
357 reinterpret_cast<const uint16_t*>(str_char);
358 unsigned int strlen_16 = 0;
359 // Find the NULL character.
360 while(*(ptr_16 + strlen_16) != 0)
361 strlen_16++;
362 buffer.append(str_char, strlen_16 * 2);
363 }
364 break;
365 case 4:
366 {
367 const uint32_t* ptr_32 =
368 reinterpret_cast<const uint32_t*>(str_char);
369 unsigned int strlen_32 = 0;
370 // Find the NULL character.
371 while(*(ptr_32 + strlen_32) != 0)
372 strlen_32++;
373 buffer.append(str_char, strlen_32 * 4);
374 }
375 break;
376 default:
377 gold_unreachable();
378 }
379 }
380 else
381 {
382 // Use the entsize to determine the length.
383 buffer.append(reinterpret_cast<const
384 char*>(str_contents),
385 entsize);
386 }
387 }
388 else if ((*it_s) != NULL)
389 {
390 // If symbol name is available use that.
391 const char *sym_name = (*it_s)->name();
392 buffer.append(sym_name);
393 // Append the addend.
394 buffer.append(addend_str);
395 buffer.append("@");
396 }
397 else
398 {
399 // Symbol name is not available, like for a local symbol,
400 // use object and section id.
401 buffer.append(it_v->first->name());
402 char secn_id[10];
403 snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
404 buffer.append(secn_id);
405 // Append the addend.
406 buffer.append(addend_str);
407 buffer.append("@");
408 }
409 }
410 }
411 }
412
413 if (first_iteration)
414 {
415 buffer.append("Contents = ");
416 buffer.append(reinterpret_cast<const char*>(contents), plen);
417 // Store the section contents that dont change to avoid recomputing
418 // during the next call to this function.
419 (*section_contents)[section_num] = buffer;
420 }
421 else
422 {
423 gold_assert(buffer.empty());
424 // Reuse the contents computed in the previous iteration.
425 buffer.append((*section_contents)[section_num]);
426 }
427
428 buffer.append(icf_reloc_buffer);
429 return buffer;
430 }
431
432 // This function computes a checksum on each section to detect and form
433 // groups of identical sections. The first iteration does this for all
434 // sections.
435 // Further iterations do this only for the kept sections from each group to
436 // determine if larger groups of identical sections could be formed. The
437 // first section in each group is the kept section for that group.
438 //
439 // CRC32 is the checksumming algorithm and can have collisions. That is,
440 // two sections with different contents can have the same checksum. Hence,
441 // a multimap is used to maintain more than one group of checksum
442 // identical sections. A section is added to a group only after its
443 // contents are explicitly compared with the kept section of the group.
444 //
445 // Parameters :
446 // ITERATION_NUM : Invocation instance of this function.
447 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
448 // to ICF sections.
449 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
450 // ID_SECTION : Vector mapping a section to an unique integer.
451 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
452 // sectionsis already known to be unique.
453 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
454 // sections.
455
456 static bool
457 match_sections(unsigned int iteration_num,
458 Symbol_table* symtab,
459 std::vector<unsigned int>* num_tracked_relocs,
460 std::vector<unsigned int>* kept_section_id,
461 const std::vector<Section_id>& id_section,
462 std::vector<bool>* is_secn_or_group_unique,
463 std::vector<std::string>* section_contents)
464 {
465 Unordered_multimap<uint32_t, unsigned int> section_cksum;
466 std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
467 Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
468 bool converged = true;
469
470 if (iteration_num == 1)
471 preprocess_for_unique_sections(id_section,
472 is_secn_or_group_unique,
473 NULL);
474 else
475 preprocess_for_unique_sections(id_section,
476 is_secn_or_group_unique,
477 section_contents);
478
479 std::vector<std::string> full_section_contents;
480
481 for (unsigned int i = 0; i < id_section.size(); i++)
482 {
483 full_section_contents.push_back("");
484 if ((*is_secn_or_group_unique)[i])
485 continue;
486
487 Section_id secn = id_section[i];
488 std::string this_secn_contents;
489 uint32_t cksum;
490 if (iteration_num == 1)
491 {
492 unsigned int num_relocs = 0;
493 this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
494 symtab, (*kept_section_id),
495 section_contents);
496 (*num_tracked_relocs)[i] = num_relocs;
497 }
498 else
499 {
500 if ((*kept_section_id)[i] != i)
501 {
502 // This section is already folded into something. See
503 // if it should point to a different kept section.
504 unsigned int kept_section = (*kept_section_id)[i];
505 if (kept_section != (*kept_section_id)[kept_section])
506 {
507 (*kept_section_id)[i] = (*kept_section_id)[kept_section];
508 }
509 continue;
510 }
511 this_secn_contents = get_section_contents(false, secn, i, NULL,
512 symtab, (*kept_section_id),
513 section_contents);
514 }
515
516 const unsigned char* this_secn_contents_array =
517 reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
518 cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
519 0xffffffff);
520 size_t count = section_cksum.count(cksum);
521
522 if (count == 0)
523 {
524 // Start a group with this cksum.
525 section_cksum.insert(std::make_pair(cksum, i));
526 full_section_contents[i] = this_secn_contents;
527 }
528 else
529 {
530 key_range = section_cksum.equal_range(cksum);
531 Unordered_multimap<uint32_t, unsigned int>::iterator it;
532 // Search all the groups with this cksum for a match.
533 for (it = key_range.first; it != key_range.second; ++it)
534 {
535 unsigned int kept_section = it->second;
536 if (full_section_contents[kept_section].length()
537 != this_secn_contents.length())
538 continue;
539 if (memcmp(full_section_contents[kept_section].c_str(),
540 this_secn_contents.c_str(),
541 this_secn_contents.length()) != 0)
542 continue;
543 (*kept_section_id)[i] = kept_section;
544 converged = false;
545 break;
546 }
547 if (it == key_range.second)
548 {
549 // Create a new group for this cksum.
550 section_cksum.insert(std::make_pair(cksum, i));
551 full_section_contents[i] = this_secn_contents;
552 }
553 }
554 // If there are no relocs to foldable sections do not process
555 // this section any further.
556 if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
557 (*is_secn_or_group_unique)[i] = true;
558 }
559
560 return converged;
561 }
562
563 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
564 // This function returns true if the mangled function name is a ctor or a
565 // dtor.
566
567 static bool
568 is_function_ctor_or_dtor(const char* mangled_func_name)
569 {
570 if ((is_prefix_of("_ZN", mangled_func_name)
571 || is_prefix_of("_ZZ", mangled_func_name))
572 && (is_gnu_v3_mangled_ctor(mangled_func_name)
573 || is_gnu_v3_mangled_dtor(mangled_func_name)))
574 {
575 return true;
576 }
577 return false;
578 }
579
580 // This is the main ICF function called in gold.cc. This does the
581 // initialization and calls match_sections repeatedly (twice by default)
582 // which computes the crc checksums and detects identical functions.
583
584 void
585 Icf::find_identical_sections(const Input_objects* input_objects,
586 Symbol_table* symtab)
587 {
588 unsigned int section_num = 0;
589 std::vector<unsigned int> num_tracked_relocs;
590 std::vector<bool> is_secn_or_group_unique;
591 std::vector<std::string> section_contents;
592 const Target& target = parameters->target();
593
594 // Decide which sections are possible candidates first.
595
596 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
597 p != input_objects->relobj_end();
598 ++p)
599 {
600 for (unsigned int i = 0;i < (*p)->shnum(); ++i)
601 {
602 const char* section_name = (*p)->section_name(i).c_str();
603 if (!is_section_foldable_candidate(section_name))
604 continue;
605 if (!(*p)->is_section_included(i))
606 continue;
607 if (parameters->options().gc_sections()
608 && symtab->gc()->is_section_garbage(*p, i))
609 continue;
610 const char* mangled_func_name = strrchr(section_name, '.');
611 gold_assert(mangled_func_name != NULL);
612 // With --icf=safe, check if the mangled function name is a ctor
613 // or a dtor. The mangled function name can be obtained from the
614 // section name by stripping the section prefix.
615 if (parameters->options().icf_safe_folding()
616 && !is_function_ctor_or_dtor(mangled_func_name + 1)
617 && (!target.can_check_for_function_pointers()
618 || section_has_function_pointers(*p, i)))
619 {
620 continue;
621 }
622 this->id_section_.push_back(Section_id(*p, i));
623 this->section_id_[Section_id(*p, i)] = section_num;
624 this->kept_section_id_.push_back(section_num);
625 num_tracked_relocs.push_back(0);
626 is_secn_or_group_unique.push_back(false);
627 section_contents.push_back("");
628 section_num++;
629 }
630 }
631
632 unsigned int num_iterations = 0;
633
634 // Default number of iterations to run ICF is 2.
635 unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
636 ? parameters->options().icf_iterations()
637 : 2;
638
639 bool converged = false;
640
641 while (!converged && (num_iterations < max_iterations))
642 {
643 num_iterations++;
644 converged = match_sections(num_iterations, symtab,
645 &num_tracked_relocs, &this->kept_section_id_,
646 this->id_section_, &is_secn_or_group_unique,
647 &section_contents);
648 }
649
650 if (parameters->options().print_icf_sections())
651 {
652 if (converged)
653 gold_info(_("%s: ICF Converged after %u iteration(s)"),
654 program_name, num_iterations);
655 else
656 gold_info(_("%s: ICF stopped after %u iteration(s)"),
657 program_name, num_iterations);
658 }
659
660 // Unfold --keep-unique symbols.
661 for (options::String_set::const_iterator p =
662 parameters->options().keep_unique_begin();
663 p != parameters->options().keep_unique_end();
664 ++p)
665 {
666 const char* name = p->c_str();
667 Symbol* sym = symtab->lookup(name);
668 if (sym == NULL)
669 {
670 gold_warning(_("Could not find symbol %s to unfold\n"), name);
671 }
672 else if (sym->source() == Symbol::FROM_OBJECT
673 && !sym->object()->is_dynamic())
674 {
675 Object* obj = sym->object();
676 bool is_ordinary;
677 unsigned int shndx = sym->shndx(&is_ordinary);
678 if (is_ordinary)
679 {
680 this->unfold_section(obj, shndx);
681 }
682 }
683
684 }
685
686 this->icf_ready();
687 }
688
689 // Unfolds the section denoted by OBJ and SHNDX if folded.
690
691 void
692 Icf::unfold_section(Object* obj, unsigned int shndx)
693 {
694 Section_id secn(obj, shndx);
695 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
696 if (it == this->section_id_.end())
697 return;
698 unsigned int section_num = it->second;
699 unsigned int kept_section_id = this->kept_section_id_[section_num];
700 if (kept_section_id != section_num)
701 this->kept_section_id_[section_num] = section_num;
702 }
703
704 // This function determines if the section corresponding to the
705 // given object and index is folded based on if the kept section
706 // is different from this section.
707
708 bool
709 Icf::is_section_folded(Object* obj, unsigned int shndx)
710 {
711 Section_id secn(obj, shndx);
712 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
713 if (it == this->section_id_.end())
714 return false;
715 unsigned int section_num = it->second;
716 unsigned int kept_section_id = this->kept_section_id_[section_num];
717 return kept_section_id != section_num;
718 }
719
720 // This function returns the folded section for the given section.
721
722 Section_id
723 Icf::get_folded_section(Object* dup_obj, unsigned int dup_shndx)
724 {
725 Section_id dup_secn(dup_obj, dup_shndx);
726 Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
727 gold_assert(it != this->section_id_.end());
728 unsigned int section_num = it->second;
729 unsigned int kept_section_id = this->kept_section_id_[section_num];
730 Section_id folded_section = this->id_section_[kept_section_id];
731 return folded_section;
732 }
733
734 } // End of namespace gold.
This page took 0.046035 seconds and 5 git commands to generate.