2010-09-28 Sriraman Tallam <tmsriram@google.com>
[deliverable/binutils-gdb.git] / gold / icf.cc
1 // icf.cc -- Identical Code Folding.
2 //
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows. A checksum is computed on each foldable section using
27 // its contents and relocations. If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum. If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used. The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
35 //
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different foldable sections can be identical if
38 // the corresponding foldable sections to which their relocations point to
39 // turn out to be identical. Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained. Here is an example for
41 // the following case :
42 //
43 // int funcA () int funcB ()
44 // { {
45 // return foo(); return goo();
46 // } }
47 //
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
50 //
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained. Now, we have two different ways to do this depending on how
54 // we initialize.
55 //
56 // Algorithm I :
57 // -----------
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming. This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found. However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence. Here is an example with mutually recursive functions :
64 //
65 // int funcA (int a) int funcB (int a)
66 // { {
67 // if (a == 1) if (a == 1)
68 // return 1; return 1;
69 // return 1 + funcB(a - 1); return 1 + funcA(a - 1);
70 // } }
71 //
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other. However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical. It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
78 //
79 // Algorithm II :
80 // ------------
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence. This can detect the above case
83 // mentioned above. It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence. It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed. Algorithm II is not implemented.
87 //
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs. This seems to be the most common case that
92 // Algorithm I could not catch as is. Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
94 // arbitrarily.
95 //
96 // Caveat with using function pointers :
97 // ------------------------------------
98 //
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place. This could lead to unexpected run-time
102 // behaviour.
103 //
104 // Safe Folding :
105 // ------------
106 //
107 // ICF in safe mode folds only ctors and dtors if their function pointers can
108 // never be taken. Also, for X86-64, safe folding uses the relocation
109 // type to determine if a function's pointer is taken or not and only folds
110 // functions whose pointers are definitely not taken.
111 //
112 // Caveat with safe folding :
113 // ------------------------
114 //
115 // This applies only to x86_64.
116 //
117 // Position independent executables are created from PIC objects (compiled
118 // with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119 // relocation types for function pointer taken and a call are the same.
120 // Now, it is not always possible to tell if an object used in the link of
121 // a pie executable is a PIC object or a PIE object. Hence, for pie
122 // executables, using relocation types to disambiguate function pointers is
123 // currently disabled.
124 //
125 // Further, it is not correct to use safe folding to build non-pie
126 // executables using PIC/PIE objects. PIC/PIE objects have different
127 // relocation types for function pointers than non-PIC objects, and the
128 // current implementation of safe folding does not handle those relocation
129 // types. Hence, if used, functions whose pointers are taken could still be
130 // folded causing unpredictable run-time behaviour if the pointers were used
131 // in comparisons.
132 //
133 //
134 //
135 // How to run : --icf=[safe|all|none]
136 // Optional parameters : --icf-iterations <num> --print-icf-sections
137 //
138 // Performance : Less than 20 % link-time overhead on industry strength
139 // applications. Up to 6 % text size reductions.
140
141 #include "gold.h"
142 #include "object.h"
143 #include "gc.h"
144 #include "icf.h"
145 #include "symtab.h"
146 #include "libiberty.h"
147 #include "demangle.h"
148 #include "elfcpp.h"
149 #include "int_encoding.h"
150
151 namespace gold
152 {
153
154 // This function determines if a section or a group of identical
155 // sections has unique contents. Such unique sections or groups can be
156 // declared final and need not be processed any further.
157 // Parameters :
158 // ID_SECTION : Vector mapping a section index to a Section_id pair.
159 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160 // sections is already known to be unique.
161 // SECTION_CONTENTS : Contains the section's text and relocs to sections
162 // that cannot be folded. SECTION_CONTENTS are NULL
163 // implies that this function is being called for the
164 // first time before the first iteration of icf.
165
166 static void
167 preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
168 std::vector<bool>* is_secn_or_group_unique,
169 std::vector<std::string>* section_contents)
170 {
171 Unordered_map<uint32_t, unsigned int> uniq_map;
172 std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
173 uniq_map_insert;
174
175 for (unsigned int i = 0; i < id_section.size(); i++)
176 {
177 if ((*is_secn_or_group_unique)[i])
178 continue;
179
180 uint32_t cksum;
181 Section_id secn = id_section[i];
182 section_size_type plen;
183 if (section_contents == NULL)
184 {
185 const unsigned char* contents;
186 contents = secn.first->section_contents(secn.second,
187 &plen,
188 false);
189 cksum = xcrc32(contents, plen, 0xffffffff);
190 }
191 else
192 {
193 const unsigned char* contents_array = reinterpret_cast
194 <const unsigned char*>((*section_contents)[i].c_str());
195 cksum = xcrc32(contents_array, (*section_contents)[i].length(),
196 0xffffffff);
197 }
198 uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
199 if (uniq_map_insert.second)
200 {
201 (*is_secn_or_group_unique)[i] = true;
202 }
203 else
204 {
205 (*is_secn_or_group_unique)[i] = false;
206 (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
207 }
208 }
209 }
210
211 // This returns the buffer containing the section's contents, both
212 // text and relocs. Relocs are differentiated as those pointing to
213 // sections that could be folded and those that cannot. Only relocs
214 // pointing to sections that could be folded are recomputed on
215 // subsequent invocations of this function.
216 // Parameters :
217 // FIRST_ITERATION : true if it is the first invocation.
218 // SECN : Section for which contents are desired.
219 // SECTION_NUM : Unique section number of this section.
220 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
221 // to ICF sections.
222 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
223 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
224 // sections.
225
226 static std::string
227 get_section_contents(bool first_iteration,
228 const Section_id& secn,
229 unsigned int section_num,
230 unsigned int* num_tracked_relocs,
231 Symbol_table* symtab,
232 const std::vector<unsigned int>& kept_section_id,
233 std::vector<std::string>* section_contents)
234 {
235 section_size_type plen;
236 const unsigned char* contents = NULL;
237
238 if (first_iteration)
239 {
240 contents = secn.first->section_contents(secn.second,
241 &plen,
242 false);
243 }
244
245 // The buffer to hold all the contents including relocs. A checksum
246 // is then computed on this buffer.
247 std::string buffer;
248 std::string icf_reloc_buffer;
249
250 if (num_tracked_relocs)
251 *num_tracked_relocs = 0;
252
253 Icf::Reloc_info_list& reloc_info_list =
254 symtab->icf()->reloc_info_list();
255
256 Icf::Reloc_info_list::iterator it_reloc_info_list =
257 reloc_info_list.find(secn);
258
259 buffer.clear();
260 icf_reloc_buffer.clear();
261
262 // Process relocs and put them into the buffer.
263
264 if (it_reloc_info_list != reloc_info_list.end())
265 {
266 Icf::Sections_reachable_info v =
267 (it_reloc_info_list->second).section_info;
268 // Stores the information of the symbol pointed to by the reloc.
269 Icf::Symbol_info s = (it_reloc_info_list->second).symbol_info;
270 // Stores the addend and the symbol value.
271 Icf::Addend_info a = (it_reloc_info_list->second).addend_info;
272 // Stores the offset of the reloc.
273 Icf::Offset_info o = (it_reloc_info_list->second).offset_info;
274 Icf::Reloc_addend_size_info reloc_addend_size_info =
275 (it_reloc_info_list->second).reloc_addend_size_info;
276 Icf::Sections_reachable_info::iterator it_v = v.begin();
277 Icf::Symbol_info::iterator it_s = s.begin();
278 Icf::Addend_info::iterator it_a = a.begin();
279 Icf::Offset_info::iterator it_o = o.begin();
280 Icf::Reloc_addend_size_info::iterator it_addend_size =
281 reloc_addend_size_info.begin();
282
283 for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
284 {
285 // ADDEND_STR stores the symbol value and addend and offset,
286 // each atmost 16 hex digits long. it_a points to a pair
287 // where first is the symbol value and second is the
288 // addend.
289 char addend_str[50];
290
291 // It would be nice if we could use format macros in inttypes.h
292 // here but there are not in ISO/IEC C++ 1998.
293 snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
294 static_cast<long long>((*it_a).first),
295 static_cast<long long>((*it_a).second),
296 static_cast<unsigned long long>(*it_o));
297
298 // If the symbol pointed to by the reloc is not in an ordinary
299 // section or if the symbol type is not FROM_OBJECT, then the
300 // object is NULL.
301 if (it_v->first == NULL)
302 {
303 if (first_iteration)
304 {
305 // If the symbol name is available, use it.
306 if ((*it_s) != NULL)
307 buffer.append((*it_s)->name());
308 // Append the addend.
309 buffer.append(addend_str);
310 buffer.append("@");
311 }
312 continue;
313 }
314
315 Section_id reloc_secn(it_v->first, it_v->second);
316
317 // If this reloc turns back and points to the same section,
318 // like a recursive call, use a special symbol to mark this.
319 if (reloc_secn.first == secn.first
320 && reloc_secn.second == secn.second)
321 {
322 if (first_iteration)
323 {
324 buffer.append("R");
325 buffer.append(addend_str);
326 buffer.append("@");
327 }
328 continue;
329 }
330 Icf::Uniq_secn_id_map& section_id_map =
331 symtab->icf()->section_to_int_map();
332 Icf::Uniq_secn_id_map::iterator section_id_map_it =
333 section_id_map.find(reloc_secn);
334 bool is_sym_preemptible = (*it_s != NULL
335 && !(*it_s)->is_from_dynobj()
336 && !(*it_s)->is_undefined()
337 && (*it_s)->is_preemptible());
338 if (!is_sym_preemptible
339 && section_id_map_it != section_id_map.end())
340 {
341 // This is a reloc to a section that might be folded.
342 if (num_tracked_relocs)
343 (*num_tracked_relocs)++;
344
345 char kept_section_str[10];
346 unsigned int secn_id = section_id_map_it->second;
347 snprintf(kept_section_str, sizeof(kept_section_str), "%u",
348 kept_section_id[secn_id]);
349 if (first_iteration)
350 {
351 buffer.append("ICF_R");
352 buffer.append(addend_str);
353 }
354 icf_reloc_buffer.append(kept_section_str);
355 // Append the addend.
356 icf_reloc_buffer.append(addend_str);
357 icf_reloc_buffer.append("@");
358 }
359 else
360 {
361 // This is a reloc to a section that cannot be folded.
362 // Process it only in the first iteration.
363 if (!first_iteration)
364 continue;
365
366 uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
367 // This reloc points to a merge section. Hash the
368 // contents of this section.
369 if ((secn_flags & elfcpp::SHF_MERGE) != 0
370 && parameters->target().can_icf_inline_merge_sections ())
371 {
372 uint64_t entsize =
373 (it_v->first)->section_entsize(it_v->second);
374 long long offset = it_a->first;
375
376 unsigned long long addend = it_a->second;
377 // Ignoring the addend when it is a negative value. See the
378 // comments in Merged_symbol_value::Value in object.h.
379 if (addend < 0xffffff00)
380 offset = offset + addend;
381
382 // For SHT_REL relocation sections, the addend is stored in the
383 // text section at the relocation offset.
384 uint64_t reloc_addend_value = 0;
385 const unsigned char* reloc_addend_ptr =
386 contents + static_cast<unsigned long long>(*it_o);
387 switch(*it_addend_size)
388 {
389 case 0:
390 {
391 break;
392 }
393 case 1:
394 {
395 reloc_addend_value =
396 read_from_pointer<8>(reloc_addend_ptr);
397 break;
398 }
399 case 2:
400 {
401 reloc_addend_value =
402 read_from_pointer<16>(reloc_addend_ptr);
403 break;
404 }
405 case 4:
406 {
407 reloc_addend_value =
408 read_from_pointer<32>(reloc_addend_ptr);
409 break;
410 }
411 case 8:
412 {
413 reloc_addend_value =
414 read_from_pointer<64>(reloc_addend_ptr);
415 break;
416 }
417 default:
418 gold_unreachable();
419 }
420 offset = offset + reloc_addend_value;
421
422 section_size_type secn_len;
423 const unsigned char* str_contents =
424 (it_v->first)->section_contents(it_v->second,
425 &secn_len,
426 false) + offset;
427 if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
428 {
429 // String merge section.
430 const char* str_char =
431 reinterpret_cast<const char*>(str_contents);
432 switch(entsize)
433 {
434 case 1:
435 {
436 buffer.append(str_char);
437 break;
438 }
439 case 2:
440 {
441 const uint16_t* ptr_16 =
442 reinterpret_cast<const uint16_t*>(str_char);
443 unsigned int strlen_16 = 0;
444 // Find the NULL character.
445 while(*(ptr_16 + strlen_16) != 0)
446 strlen_16++;
447 buffer.append(str_char, strlen_16 * 2);
448 }
449 break;
450 case 4:
451 {
452 const uint32_t* ptr_32 =
453 reinterpret_cast<const uint32_t*>(str_char);
454 unsigned int strlen_32 = 0;
455 // Find the NULL character.
456 while(*(ptr_32 + strlen_32) != 0)
457 strlen_32++;
458 buffer.append(str_char, strlen_32 * 4);
459 }
460 break;
461 default:
462 gold_unreachable();
463 }
464 }
465 else
466 {
467 // Use the entsize to determine the length.
468 buffer.append(reinterpret_cast<const
469 char*>(str_contents),
470 entsize);
471 }
472 buffer.append("@");
473 }
474 else if ((*it_s) != NULL)
475 {
476 // If symbol name is available use that.
477 buffer.append((*it_s)->name());
478 // Append the addend.
479 buffer.append(addend_str);
480 buffer.append("@");
481 }
482 else
483 {
484 // Symbol name is not available, like for a local symbol,
485 // use object and section id.
486 buffer.append(it_v->first->name());
487 char secn_id[10];
488 snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
489 buffer.append(secn_id);
490 // Append the addend.
491 buffer.append(addend_str);
492 buffer.append("@");
493 }
494 }
495 }
496 }
497
498 if (first_iteration)
499 {
500 buffer.append("Contents = ");
501 buffer.append(reinterpret_cast<const char*>(contents), plen);
502 // Store the section contents that dont change to avoid recomputing
503 // during the next call to this function.
504 (*section_contents)[section_num] = buffer;
505 }
506 else
507 {
508 gold_assert(buffer.empty());
509 // Reuse the contents computed in the previous iteration.
510 buffer.append((*section_contents)[section_num]);
511 }
512
513 buffer.append(icf_reloc_buffer);
514 return buffer;
515 }
516
517 // This function computes a checksum on each section to detect and form
518 // groups of identical sections. The first iteration does this for all
519 // sections.
520 // Further iterations do this only for the kept sections from each group to
521 // determine if larger groups of identical sections could be formed. The
522 // first section in each group is the kept section for that group.
523 //
524 // CRC32 is the checksumming algorithm and can have collisions. That is,
525 // two sections with different contents can have the same checksum. Hence,
526 // a multimap is used to maintain more than one group of checksum
527 // identical sections. A section is added to a group only after its
528 // contents are explicitly compared with the kept section of the group.
529 //
530 // Parameters :
531 // ITERATION_NUM : Invocation instance of this function.
532 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
533 // to ICF sections.
534 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
535 // ID_SECTION : Vector mapping a section to an unique integer.
536 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
537 // sectionsis already known to be unique.
538 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
539 // sections.
540
541 static bool
542 match_sections(unsigned int iteration_num,
543 Symbol_table* symtab,
544 std::vector<unsigned int>* num_tracked_relocs,
545 std::vector<unsigned int>* kept_section_id,
546 const std::vector<Section_id>& id_section,
547 std::vector<bool>* is_secn_or_group_unique,
548 std::vector<std::string>* section_contents)
549 {
550 Unordered_multimap<uint32_t, unsigned int> section_cksum;
551 std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
552 Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
553 bool converged = true;
554
555 if (iteration_num == 1)
556 preprocess_for_unique_sections(id_section,
557 is_secn_or_group_unique,
558 NULL);
559 else
560 preprocess_for_unique_sections(id_section,
561 is_secn_or_group_unique,
562 section_contents);
563
564 std::vector<std::string> full_section_contents;
565
566 for (unsigned int i = 0; i < id_section.size(); i++)
567 {
568 full_section_contents.push_back("");
569 if ((*is_secn_or_group_unique)[i])
570 continue;
571
572 Section_id secn = id_section[i];
573 std::string this_secn_contents;
574 uint32_t cksum;
575 if (iteration_num == 1)
576 {
577 unsigned int num_relocs = 0;
578 this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
579 symtab, (*kept_section_id),
580 section_contents);
581 (*num_tracked_relocs)[i] = num_relocs;
582 }
583 else
584 {
585 if ((*kept_section_id)[i] != i)
586 {
587 // This section is already folded into something. See
588 // if it should point to a different kept section.
589 unsigned int kept_section = (*kept_section_id)[i];
590 if (kept_section != (*kept_section_id)[kept_section])
591 {
592 (*kept_section_id)[i] = (*kept_section_id)[kept_section];
593 }
594 continue;
595 }
596 this_secn_contents = get_section_contents(false, secn, i, NULL,
597 symtab, (*kept_section_id),
598 section_contents);
599 }
600
601 const unsigned char* this_secn_contents_array =
602 reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
603 cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
604 0xffffffff);
605 size_t count = section_cksum.count(cksum);
606
607 if (count == 0)
608 {
609 // Start a group with this cksum.
610 section_cksum.insert(std::make_pair(cksum, i));
611 full_section_contents[i] = this_secn_contents;
612 }
613 else
614 {
615 key_range = section_cksum.equal_range(cksum);
616 Unordered_multimap<uint32_t, unsigned int>::iterator it;
617 // Search all the groups with this cksum for a match.
618 for (it = key_range.first; it != key_range.second; ++it)
619 {
620 unsigned int kept_section = it->second;
621 if (full_section_contents[kept_section].length()
622 != this_secn_contents.length())
623 continue;
624 if (memcmp(full_section_contents[kept_section].c_str(),
625 this_secn_contents.c_str(),
626 this_secn_contents.length()) != 0)
627 continue;
628 (*kept_section_id)[i] = kept_section;
629 converged = false;
630 break;
631 }
632 if (it == key_range.second)
633 {
634 // Create a new group for this cksum.
635 section_cksum.insert(std::make_pair(cksum, i));
636 full_section_contents[i] = this_secn_contents;
637 }
638 }
639 // If there are no relocs to foldable sections do not process
640 // this section any further.
641 if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
642 (*is_secn_or_group_unique)[i] = true;
643 }
644
645 return converged;
646 }
647
648 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
649 // This function returns true if the mangled function name is a ctor or a
650 // dtor.
651
652 static bool
653 is_function_ctor_or_dtor(const char* mangled_func_name)
654 {
655 if ((is_prefix_of("_ZN", mangled_func_name)
656 || is_prefix_of("_ZZ", mangled_func_name))
657 && (is_gnu_v3_mangled_ctor(mangled_func_name)
658 || is_gnu_v3_mangled_dtor(mangled_func_name)))
659 {
660 return true;
661 }
662 return false;
663 }
664
665 // This is the main ICF function called in gold.cc. This does the
666 // initialization and calls match_sections repeatedly (twice by default)
667 // which computes the crc checksums and detects identical functions.
668
669 void
670 Icf::find_identical_sections(const Input_objects* input_objects,
671 Symbol_table* symtab)
672 {
673 unsigned int section_num = 0;
674 std::vector<unsigned int> num_tracked_relocs;
675 std::vector<bool> is_secn_or_group_unique;
676 std::vector<std::string> section_contents;
677 const Target& target = parameters->target();
678
679 // Decide which sections are possible candidates first.
680
681 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
682 p != input_objects->relobj_end();
683 ++p)
684 {
685 for (unsigned int i = 0;i < (*p)->shnum(); ++i)
686 {
687 const char* section_name = (*p)->section_name(i).c_str();
688 if (!is_section_foldable_candidate(section_name))
689 continue;
690 if (!(*p)->is_section_included(i))
691 continue;
692 if (parameters->options().gc_sections()
693 && symtab->gc()->is_section_garbage(*p, i))
694 continue;
695 const char* mangled_func_name = strrchr(section_name, '.');
696 gold_assert(mangled_func_name != NULL);
697 // With --icf=safe, check if the mangled function name is a ctor
698 // or a dtor. The mangled function name can be obtained from the
699 // section name by stripping the section prefix.
700 if (parameters->options().icf_safe_folding()
701 && !is_function_ctor_or_dtor(mangled_func_name + 1)
702 && (!target.can_check_for_function_pointers()
703 || section_has_function_pointers(*p, i)))
704 {
705 continue;
706 }
707 this->id_section_.push_back(Section_id(*p, i));
708 this->section_id_[Section_id(*p, i)] = section_num;
709 this->kept_section_id_.push_back(section_num);
710 num_tracked_relocs.push_back(0);
711 is_secn_or_group_unique.push_back(false);
712 section_contents.push_back("");
713 section_num++;
714 }
715 }
716
717 unsigned int num_iterations = 0;
718
719 // Default number of iterations to run ICF is 2.
720 unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
721 ? parameters->options().icf_iterations()
722 : 2;
723
724 bool converged = false;
725
726 while (!converged && (num_iterations < max_iterations))
727 {
728 num_iterations++;
729 converged = match_sections(num_iterations, symtab,
730 &num_tracked_relocs, &this->kept_section_id_,
731 this->id_section_, &is_secn_or_group_unique,
732 &section_contents);
733 }
734
735 if (parameters->options().print_icf_sections())
736 {
737 if (converged)
738 gold_info(_("%s: ICF Converged after %u iteration(s)"),
739 program_name, num_iterations);
740 else
741 gold_info(_("%s: ICF stopped after %u iteration(s)"),
742 program_name, num_iterations);
743 }
744
745 // Unfold --keep-unique symbols.
746 for (options::String_set::const_iterator p =
747 parameters->options().keep_unique_begin();
748 p != parameters->options().keep_unique_end();
749 ++p)
750 {
751 const char* name = p->c_str();
752 Symbol* sym = symtab->lookup(name);
753 if (sym == NULL)
754 {
755 gold_warning(_("Could not find symbol %s to unfold\n"), name);
756 }
757 else if (sym->source() == Symbol::FROM_OBJECT
758 && !sym->object()->is_dynamic())
759 {
760 Object* obj = sym->object();
761 bool is_ordinary;
762 unsigned int shndx = sym->shndx(&is_ordinary);
763 if (is_ordinary)
764 {
765 this->unfold_section(obj, shndx);
766 }
767 }
768
769 }
770
771 this->icf_ready();
772 }
773
774 // Unfolds the section denoted by OBJ and SHNDX if folded.
775
776 void
777 Icf::unfold_section(Object* obj, unsigned int shndx)
778 {
779 Section_id secn(obj, shndx);
780 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
781 if (it == this->section_id_.end())
782 return;
783 unsigned int section_num = it->second;
784 unsigned int kept_section_id = this->kept_section_id_[section_num];
785 if (kept_section_id != section_num)
786 this->kept_section_id_[section_num] = section_num;
787 }
788
789 // This function determines if the section corresponding to the
790 // given object and index is folded based on if the kept section
791 // is different from this section.
792
793 bool
794 Icf::is_section_folded(Object* obj, unsigned int shndx)
795 {
796 Section_id secn(obj, shndx);
797 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
798 if (it == this->section_id_.end())
799 return false;
800 unsigned int section_num = it->second;
801 unsigned int kept_section_id = this->kept_section_id_[section_num];
802 return kept_section_id != section_num;
803 }
804
805 // This function returns the folded section for the given section.
806
807 Section_id
808 Icf::get_folded_section(Object* dup_obj, unsigned int dup_shndx)
809 {
810 Section_id dup_secn(dup_obj, dup_shndx);
811 Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
812 gold_assert(it != this->section_id_.end());
813 unsigned int section_num = it->second;
814 unsigned int kept_section_id = this->kept_section_id_[section_num];
815 Section_id folded_section = this->id_section_[kept_section_id];
816 return folded_section;
817 }
818
819 } // End of namespace gold.
This page took 0.050957 seconds and 5 git commands to generate.