* dynobj.h (Dynobj::do_dynobj): New function.
[deliverable/binutils-gdb.git] / gold / incremental.cc
1 // inremental.cc -- incremental linking support for gold
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Mikolaj Zalewski <mikolajz@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdarg>
26 #include "libiberty.h"
27
28 #include "elfcpp.h"
29 #include "options.h"
30 #include "output.h"
31 #include "symtab.h"
32 #include "incremental.h"
33 #include "archive.h"
34 #include "object.h"
35 #include "output.h"
36 #include "target-select.h"
37 #include "target.h"
38 #include "fileread.h"
39 #include "script.h"
40
41 namespace gold {
42
43 // Version information. Will change frequently during the development, later
44 // we could think about backward (and forward?) compatibility.
45 const unsigned int INCREMENTAL_LINK_VERSION = 1;
46
47 // This class manages the .gnu_incremental_inputs section, which holds
48 // the header information, a directory of input files, and separate
49 // entries for each input file.
50
51 template<int size, bool big_endian>
52 class Output_section_incremental_inputs : public Output_section_data
53 {
54 public:
55 Output_section_incremental_inputs(const Incremental_inputs* inputs,
56 const Symbol_table* symtab)
57 : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
58 { }
59
60 protected:
61 // This is called to update the section size prior to assigning
62 // the address and file offset.
63 void
64 update_data_size()
65 { this->set_final_data_size(); }
66
67 // Set the final data size.
68 void
69 set_final_data_size();
70
71 // Write the data to the file.
72 void
73 do_write(Output_file*);
74
75 // Write to a map file.
76 void
77 do_print_to_mapfile(Mapfile* mapfile) const
78 { mapfile->print_output_data(this, _("** incremental_inputs")); }
79
80 private:
81 // Write the section header.
82 unsigned char*
83 write_header(unsigned char* pov, unsigned int input_file_count,
84 section_offset_type command_line_offset);
85
86 // Write the input file entries.
87 unsigned char*
88 write_input_files(unsigned char* oview, unsigned char* pov,
89 Stringpool* strtab);
90
91 // Write the supplemental information blocks.
92 unsigned char*
93 write_info_blocks(unsigned char* oview, unsigned char* pov,
94 Stringpool* strtab, unsigned int* global_syms,
95 unsigned int global_sym_count);
96
97 // Write the contents of the .gnu_incremental_symtab section.
98 void
99 write_symtab(unsigned char* pov, unsigned int* global_syms,
100 unsigned int global_sym_count);
101
102 // Write the contents of the .gnu_incremental_got_plt section.
103 void
104 write_got_plt(unsigned char* pov, off_t view_size);
105
106 // Typedefs for writing the data to the output sections.
107 typedef elfcpp::Swap<size, big_endian> Swap;
108 typedef elfcpp::Swap<16, big_endian> Swap16;
109 typedef elfcpp::Swap<32, big_endian> Swap32;
110 typedef elfcpp::Swap<64, big_endian> Swap64;
111
112 // Sizes of various structures.
113 static const int sizeof_addr = size / 8;
114 static const int header_size = 16;
115 static const int input_entry_size = 24;
116
117 // The Incremental_inputs object.
118 const Incremental_inputs* inputs_;
119
120 // The symbol table.
121 const Symbol_table* symtab_;
122 };
123
124 // Inform the user why we don't do an incremental link. Not called in
125 // the obvious case of missing output file. TODO: Is this helpful?
126
127 void
128 vexplain_no_incremental(const char* format, va_list args)
129 {
130 char* buf = NULL;
131 if (vasprintf(&buf, format, args) < 0)
132 gold_nomem();
133 gold_info(_("the link might take longer: "
134 "cannot perform incremental link: %s"), buf);
135 free(buf);
136 }
137
138 void
139 explain_no_incremental(const char* format, ...)
140 {
141 va_list args;
142 va_start(args, format);
143 vexplain_no_incremental(format, args);
144 va_end(args);
145 }
146
147 // Report an error.
148
149 void
150 Incremental_binary::error(const char* format, ...) const
151 {
152 va_list args;
153 va_start(args, format);
154 // Current code only checks if the file can be used for incremental linking,
155 // so errors shouldn't fail the build, but only result in a fallback to a
156 // full build.
157 // TODO: when we implement incremental editing of the file, we may need a
158 // flag that will cause errors to be treated seriously.
159 vexplain_no_incremental(format, args);
160 va_end(args);
161 }
162
163 // Find the .gnu_incremental_inputs section and related sections.
164
165 template<int size, bool big_endian>
166 bool
167 Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
168 unsigned int* p_inputs_shndx,
169 unsigned int* p_symtab_shndx,
170 unsigned int* p_relocs_shndx,
171 unsigned int* p_got_plt_shndx,
172 unsigned int* p_strtab_shndx)
173 {
174 unsigned int inputs_shndx =
175 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
176 if (inputs_shndx == elfcpp::SHN_UNDEF) // Not found.
177 return false;
178
179 unsigned int symtab_shndx =
180 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
181 if (symtab_shndx == elfcpp::SHN_UNDEF) // Not found.
182 return false;
183 if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
184 return false;
185
186 unsigned int relocs_shndx =
187 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
188 if (relocs_shndx == elfcpp::SHN_UNDEF) // Not found.
189 return false;
190 if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
191 return false;
192
193 unsigned int got_plt_shndx =
194 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
195 if (got_plt_shndx == elfcpp::SHN_UNDEF) // Not found.
196 return false;
197 if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
198 return false;
199
200 unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
201 if (strtab_shndx == elfcpp::SHN_UNDEF
202 || strtab_shndx > this->elf_file_.shnum()
203 || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
204 return false;
205
206 if (p_inputs_shndx != NULL)
207 *p_inputs_shndx = inputs_shndx;
208 if (p_symtab_shndx != NULL)
209 *p_symtab_shndx = symtab_shndx;
210 if (p_relocs_shndx != NULL)
211 *p_relocs_shndx = relocs_shndx;
212 if (p_got_plt_shndx != NULL)
213 *p_got_plt_shndx = got_plt_shndx;
214 if (p_strtab_shndx != NULL)
215 *p_strtab_shndx = strtab_shndx;
216 return true;
217 }
218
219 // Set up the readers into the incremental info sections.
220
221 template<int size, bool big_endian>
222 void
223 Sized_incremental_binary<size, big_endian>::setup_readers()
224 {
225 unsigned int inputs_shndx;
226 unsigned int symtab_shndx;
227 unsigned int relocs_shndx;
228 unsigned int got_plt_shndx;
229 unsigned int strtab_shndx;
230
231 if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
232 &relocs_shndx, &got_plt_shndx,
233 &strtab_shndx))
234 return;
235
236 Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
237 Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
238 Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
239 Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
240 Location strtab_location(this->elf_file_.section_contents(strtab_shndx));
241
242 View inputs_view = this->view(inputs_location);
243 View symtab_view = this->view(symtab_location);
244 View relocs_view = this->view(relocs_location);
245 View got_plt_view = this->view(got_plt_location);
246 View strtab_view = this->view(strtab_location);
247
248 elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);
249
250 this->inputs_reader_ =
251 Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
252 this->symtab_reader_ =
253 Incremental_symtab_reader<big_endian>(symtab_view.data(),
254 symtab_location.data_size);
255 this->relocs_reader_ =
256 Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
257 relocs_location.data_size);
258 this->got_plt_reader_ =
259 Incremental_got_plt_reader<big_endian>(got_plt_view.data());
260
261 // Find the main symbol table.
262 unsigned int main_symtab_shndx =
263 this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
264 gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
265 this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);
266
267 // Find the main symbol string table.
268 unsigned int main_strtab_shndx =
269 this->elf_file_.section_link(main_symtab_shndx);
270 gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
271 && main_strtab_shndx < this->elf_file_.shnum());
272 this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);
273
274 // Walk the list of input files (a) to setup an Input_reader for each
275 // input file, and (b) to record maps of files added from archive
276 // libraries and scripts.
277 Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
278 unsigned int count = inputs.input_file_count();
279 this->input_objects_.resize(count);
280 this->input_entry_readers_.reserve(count);
281 this->library_map_.resize(count);
282 this->script_map_.resize(count);
283 for (unsigned int i = 0; i < count; i++)
284 {
285 Input_entry_reader input_file = inputs.input_file(i);
286 this->input_entry_readers_.push_back(Sized_input_reader(input_file));
287 switch (input_file.type())
288 {
289 case INCREMENTAL_INPUT_OBJECT:
290 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
291 case INCREMENTAL_INPUT_SHARED_LIBRARY:
292 // No special treatment necessary.
293 break;
294 case INCREMENTAL_INPUT_ARCHIVE:
295 {
296 Incremental_library* lib =
297 new Incremental_library(input_file.filename(), i,
298 &this->input_entry_readers_[i]);
299 this->library_map_[i] = lib;
300 unsigned int member_count = input_file.get_member_count();
301 for (unsigned int j = 0; j < member_count; j++)
302 {
303 int member_offset = input_file.get_member_offset(j);
304 int member_index = inputs.input_file_index(member_offset);
305 this->library_map_[member_index] = lib;
306 }
307 }
308 break;
309 case INCREMENTAL_INPUT_SCRIPT:
310 {
311 Script_info* script = new Script_info(input_file.filename());
312 this->script_map_[i] = script;
313 unsigned int object_count = input_file.get_object_count();
314 for (unsigned int j = 0; j < object_count; j++)
315 {
316 int object_offset = input_file.get_object_offset(j);
317 int object_index = inputs.input_file_index(object_offset);
318 this->script_map_[object_index] = script;
319 }
320 }
321 break;
322 default:
323 gold_unreachable();
324 }
325 }
326
327 // Initialize the map of global symbols.
328 unsigned int nglobals = this->symtab_reader_.symbol_count();
329 this->symbol_map_.resize(nglobals);
330
331 this->has_incremental_info_ = true;
332 }
333
334 // Walk the list of input files given on the command line, and build
335 // a direct map of file index to the corresponding input argument.
336
337 void
338 check_input_args(std::vector<const Input_argument*>& input_args_map,
339 Input_arguments::const_iterator begin,
340 Input_arguments::const_iterator end)
341 {
342 for (Input_arguments::const_iterator p = begin;
343 p != end;
344 ++p)
345 {
346 if (p->is_group())
347 {
348 const Input_file_group* group = p->group();
349 check_input_args(input_args_map, group->begin(), group->end());
350 }
351 else if (p->is_lib())
352 {
353 const Input_file_lib* lib = p->lib();
354 check_input_args(input_args_map, lib->begin(), lib->end());
355 }
356 else
357 {
358 gold_assert(p->is_file());
359 unsigned int arg_serial = p->file().arg_serial();
360 if (arg_serial > 0)
361 {
362 gold_assert(arg_serial <= input_args_map.size());
363 gold_assert(input_args_map[arg_serial - 1] == 0);
364 input_args_map[arg_serial - 1] = &*p;
365 }
366 }
367 }
368 }
369
370 // Determine whether an incremental link based on the existing output file
371 // can be done.
372
373 template<int size, bool big_endian>
374 bool
375 Sized_incremental_binary<size, big_endian>::do_check_inputs(
376 const Command_line& cmdline,
377 Incremental_inputs* incremental_inputs)
378 {
379 Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
380
381 if (!this->has_incremental_info_)
382 {
383 explain_no_incremental(_("no incremental data from previous build"));
384 return false;
385 }
386
387 if (inputs.version() != INCREMENTAL_LINK_VERSION)
388 {
389 explain_no_incremental(_("different version of incremental build data"));
390 return false;
391 }
392
393 if (incremental_inputs->command_line() != inputs.command_line())
394 {
395 explain_no_incremental(_("command line changed"));
396 return false;
397 }
398
399 // Walk the list of input files given on the command line, and build
400 // a direct map of argument serial numbers to the corresponding input
401 // arguments.
402 this->input_args_map_.resize(cmdline.number_of_input_files());
403 check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());
404
405 // Walk the list of input files to check for conditions that prevent
406 // an incremental update link.
407 unsigned int count = inputs.input_file_count();
408 for (unsigned int i = 0; i < count; i++)
409 {
410 Input_entry_reader input_file = inputs.input_file(i);
411 switch (input_file.type())
412 {
413 case INCREMENTAL_INPUT_OBJECT:
414 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
415 case INCREMENTAL_INPUT_SHARED_LIBRARY:
416 case INCREMENTAL_INPUT_ARCHIVE:
417 // No special treatment necessary.
418 break;
419 case INCREMENTAL_INPUT_SCRIPT:
420 if (this->do_file_has_changed(i))
421 {
422 explain_no_incremental(_("%s: script file changed"),
423 input_file.filename());
424 return false;
425 }
426 break;
427 default:
428 gold_unreachable();
429 }
430 }
431
432 return true;
433 }
434
435 // Return TRUE if input file N has changed since the last incremental link.
436
437 template<int size, bool big_endian>
438 bool
439 Sized_incremental_binary<size, big_endian>::do_file_has_changed(
440 unsigned int n) const
441 {
442 Input_entry_reader input_file = this->inputs_reader_.input_file(n);
443 Incremental_disposition disp = INCREMENTAL_CHECK;
444 const Input_argument* input_argument = this->get_input_argument(n);
445 if (input_argument != NULL)
446 disp = input_argument->file().options().incremental_disposition();
447
448 if (disp != INCREMENTAL_CHECK)
449 return disp == INCREMENTAL_CHANGED;
450
451 const char* filename = input_file.filename();
452 Timespec old_mtime = input_file.get_mtime();
453 Timespec new_mtime;
454 if (!get_mtime(filename, &new_mtime))
455 {
456 // If we can't open get the current modification time, assume it has
457 // changed. If the file doesn't exist, we'll issue an error when we
458 // try to open it later.
459 return true;
460 }
461
462 if (new_mtime.seconds > old_mtime.seconds)
463 return true;
464 if (new_mtime.seconds == old_mtime.seconds
465 && new_mtime.nanoseconds > old_mtime.nanoseconds)
466 return true;
467 return false;
468 }
469
470 // Initialize the layout of the output file based on the existing
471 // output file.
472
473 template<int size, bool big_endian>
474 void
475 Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
476 {
477 typedef elfcpp::Shdr<size, big_endian> Shdr;
478 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
479
480 // Get views of the section headers and the section string table.
481 const off_t shoff = this->elf_file_.shoff();
482 const unsigned int shnum = this->elf_file_.shnum();
483 const unsigned int shstrndx = this->elf_file_.shstrndx();
484 Location shdrs_location(shoff, shnum * shdr_size);
485 Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
486 View shdrs_view = this->view(shdrs_location);
487 View shstrndx_view = this->view(shstrndx_location);
488 elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
489 shstrndx_location.data_size);
490
491 layout->set_incremental_base(this);
492
493 // Initialize the layout.
494 this->section_map_.resize(shnum);
495 const unsigned char* pshdr = shdrs_view.data() + shdr_size;
496 for (unsigned int i = 1; i < shnum; i++)
497 {
498 Shdr shdr(pshdr);
499 const char* name;
500 if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
501 name = NULL;
502 gold_debug(DEBUG_INCREMENTAL,
503 "Output section: %2d %08lx %08lx %08lx %3d %s",
504 i,
505 static_cast<long>(shdr.get_sh_addr()),
506 static_cast<long>(shdr.get_sh_offset()),
507 static_cast<long>(shdr.get_sh_size()),
508 shdr.get_sh_type(), name ? name : "<null>");
509 this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
510 pshdr += shdr_size;
511 }
512 }
513
514 // Mark regions of the input file that must be kept unchanged.
515
516 template<int size, bool big_endian>
517 void
518 Sized_incremental_binary<size, big_endian>::do_reserve_layout(
519 unsigned int input_file_index)
520 {
521 Input_entry_reader input_file =
522 this->inputs_reader_.input_file(input_file_index);
523
524 if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
525 return;
526
527 unsigned int shnum = input_file.get_input_section_count();
528 for (unsigned int i = 0; i < shnum; i++)
529 {
530 typename Input_entry_reader::Input_section_info sect =
531 input_file.get_input_section(i);
532 if (sect.output_shndx == 0 || sect.sh_offset == -1)
533 continue;
534 Output_section* os = this->section_map_[sect.output_shndx];
535 gold_assert(os != NULL);
536 os->reserve(sect.sh_offset, sect.sh_size);
537 }
538 }
539
540 // Process the GOT and PLT entries from the existing output file.
541
542 template<int size, bool big_endian>
543 void
544 Sized_incremental_binary<size, big_endian>::do_process_got_plt(
545 Symbol_table* symtab,
546 Layout* layout)
547 {
548 Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
549 Sized_target<size, big_endian>* target =
550 parameters->sized_target<size, big_endian>();
551
552 // Get the number of symbols in the main symbol table and in the
553 // incremental symbol table. The difference between the two counts
554 // is the index of the first forced-local or global symbol in the
555 // main symbol table.
556 unsigned int symtab_count =
557 this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
558 unsigned int isym_count = this->symtab_reader_.symbol_count();
559 unsigned int first_global = symtab_count - isym_count;
560
561 // Tell the target how big the GOT and PLT sections are.
562 unsigned int got_count = got_plt_reader.get_got_entry_count();
563 unsigned int plt_count = got_plt_reader.get_plt_entry_count();
564 Output_data_got<size, big_endian>* got =
565 target->init_got_plt_for_update(symtab, layout, got_count, plt_count);
566
567 // Read the GOT entries from the base file and build the outgoing GOT.
568 for (unsigned int i = 0; i < got_count; ++i)
569 {
570 unsigned int got_type = got_plt_reader.get_got_type(i);
571 if ((got_type & 0x7f) == 0x7f)
572 {
573 // This is the second entry of a pair.
574 got->reserve_slot(i);
575 continue;
576 }
577 unsigned int symndx = got_plt_reader.get_got_symndx(i);
578 if (got_type & 0x80)
579 {
580 // This is an entry for a local symbol. Ignore this entry if
581 // the object file was replaced.
582 unsigned int input_index = got_plt_reader.get_got_input_index(i);
583 gold_debug(DEBUG_INCREMENTAL,
584 "GOT entry %d, type %02x: (local symbol)",
585 i, got_type & 0x7f);
586 Sized_relobj_incr<size, big_endian>* obj =
587 this->input_object(input_index);
588 if (obj != NULL)
589 target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
590 }
591 else
592 {
593 // This is an entry for a global symbol. GOT_DESC is the symbol
594 // table index.
595 // FIXME: This should really be a fatal error (corrupt input).
596 gold_assert(symndx >= first_global && symndx < symtab_count);
597 Symbol* sym = this->global_symbol(symndx - first_global);
598 gold_debug(DEBUG_INCREMENTAL,
599 "GOT entry %d, type %02x: %s",
600 i, got_type, sym->name());
601 target->reserve_global_got_entry(i, sym, got_type);
602 }
603 }
604
605 // Read the PLT entries from the base file and pass each to the target.
606 for (unsigned int i = 0; i < plt_count; ++i)
607 {
608 unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
609 // FIXME: This should really be a fatal error (corrupt input).
610 gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
611 Symbol* sym = this->global_symbol(plt_desc - first_global);
612 gold_debug(DEBUG_INCREMENTAL,
613 "PLT entry %d: %s",
614 i, sym->name());
615 target->register_global_plt_entry(i, sym);
616 }
617 }
618
619 // Apply incremental relocations for symbols whose values have changed.
620
621 template<int size, bool big_endian>
622 void
623 Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
624 const Symbol_table* symtab,
625 Layout* layout,
626 Output_file* of)
627 {
628 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
629 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
630 Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
631 Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
632 unsigned int nglobals = isymtab.symbol_count();
633 const unsigned int incr_reloc_size = irelocs.reloc_size;
634
635 Relocate_info<size, big_endian> relinfo;
636 relinfo.symtab = symtab;
637 relinfo.layout = layout;
638 relinfo.object = NULL;
639 relinfo.reloc_shndx = 0;
640 relinfo.reloc_shdr = NULL;
641 relinfo.data_shndx = 0;
642 relinfo.data_shdr = NULL;
643
644 Sized_target<size, big_endian>* target =
645 parameters->sized_target<size, big_endian>();
646
647 for (unsigned int i = 0; i < nglobals; i++)
648 {
649 const Symbol* gsym = this->global_symbol(i);
650
651 // If the symbol is not referenced from any unchanged input files,
652 // we do not need to reapply any of its relocations.
653 if (gsym == NULL)
654 continue;
655
656 // If the symbol is defined in an unchanged file, we do not need to
657 // reapply any of its relocations.
658 if (gsym->source() == Symbol::FROM_OBJECT
659 && gsym->object()->is_incremental())
660 continue;
661
662 gold_debug(DEBUG_INCREMENTAL,
663 "Applying incremental relocations for global symbol %s [%d]",
664 gsym->name(), i);
665
666 // Follow the linked list of input symbol table entries for this symbol.
667 // We don't bother to figure out whether the symbol table entry belongs
668 // to a changed or unchanged file because it's easier just to apply all
669 // the relocations -- although we might scribble over an area that has
670 // been reallocated, we do this before copying any new data into the
671 // output file.
672 unsigned int offset = isymtab.get_list_head(i);
673 while (offset > 0)
674 {
675 Incremental_global_symbol_reader<big_endian> sym_info =
676 this->inputs_reader().global_symbol_reader_at_offset(offset);
677 unsigned int r_base = sym_info.reloc_offset();
678 unsigned int r_count = sym_info.reloc_count();
679
680 // Apply each relocation for this symbol table entry.
681 for (unsigned int j = 0; j < r_count;
682 ++j, r_base += incr_reloc_size)
683 {
684 unsigned int r_type = irelocs.get_r_type(r_base);
685 unsigned int r_shndx = irelocs.get_r_shndx(r_base);
686 Address r_offset = irelocs.get_r_offset(r_base);
687 Addend r_addend = irelocs.get_r_addend(r_base);
688 Output_section* os = this->output_section(r_shndx);
689 Address address = os->address();
690 off_t section_offset = os->offset();
691 size_t view_size = os->data_size();
692 unsigned char* const view = of->get_output_view(section_offset,
693 view_size);
694
695 gold_debug(DEBUG_INCREMENTAL,
696 " %08lx: %s + %d: type %d addend %ld",
697 (long)(section_offset + r_offset),
698 os->name(),
699 (int)r_offset,
700 r_type,
701 (long)r_addend);
702
703 target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
704 gsym, view, address, view_size);
705
706 // FIXME: Do something more efficient if write_output_view
707 // ever becomes more than a no-op.
708 of->write_output_view(section_offset, view_size, view);
709 }
710 offset = sym_info.next_offset();
711 }
712 }
713 }
714
715 // Get a view of the main symbol table and the symbol string table.
716
717 template<int size, bool big_endian>
718 void
719 Sized_incremental_binary<size, big_endian>::get_symtab_view(
720 View* symtab_view,
721 unsigned int* nsyms,
722 elfcpp::Elf_strtab* strtab)
723 {
724 *symtab_view = this->view(this->main_symtab_loc_);
725 *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
726
727 View strtab_view(this->view(this->main_strtab_loc_));
728 *strtab = elfcpp::Elf_strtab(strtab_view.data(),
729 this->main_strtab_loc_.data_size);
730 }
731
732 namespace
733 {
734
735 // Create a Sized_incremental_binary object of the specified size and
736 // endianness. Fails if the target architecture is not supported.
737
738 template<int size, bool big_endian>
739 Incremental_binary*
740 make_sized_incremental_binary(Output_file* file,
741 const elfcpp::Ehdr<size, big_endian>& ehdr)
742 {
743 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
744 ehdr.get_e_ident()[elfcpp::EI_OSABI],
745 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
746 if (target == NULL)
747 {
748 explain_no_incremental(_("unsupported ELF machine number %d"),
749 ehdr.get_e_machine());
750 return NULL;
751 }
752
753 if (!parameters->target_valid())
754 set_parameters_target(target);
755 else if (target != &parameters->target())
756 gold_error(_("%s: incompatible target"), file->filename());
757
758 return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
759 }
760
761 } // End of anonymous namespace.
762
763 // Create an Incremental_binary object for FILE. Returns NULL is this is not
764 // possible, e.g. FILE is not an ELF file or has an unsupported target. FILE
765 // should be opened.
766
767 Incremental_binary*
768 open_incremental_binary(Output_file* file)
769 {
770 off_t filesize = file->filesize();
771 int want = elfcpp::Elf_recognizer::max_header_size;
772 if (filesize < want)
773 want = filesize;
774
775 const unsigned char* p = file->get_input_view(0, want);
776 if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
777 {
778 explain_no_incremental(_("output is not an ELF file."));
779 return NULL;
780 }
781
782 int size = 0;
783 bool big_endian = false;
784 std::string error;
785 if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
786 &error))
787 {
788 explain_no_incremental(error.c_str());
789 return NULL;
790 }
791
792 Incremental_binary* result = NULL;
793 if (size == 32)
794 {
795 if (big_endian)
796 {
797 #ifdef HAVE_TARGET_32_BIG
798 result = make_sized_incremental_binary<32, true>(
799 file, elfcpp::Ehdr<32, true>(p));
800 #else
801 explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
802 #endif
803 }
804 else
805 {
806 #ifdef HAVE_TARGET_32_LITTLE
807 result = make_sized_incremental_binary<32, false>(
808 file, elfcpp::Ehdr<32, false>(p));
809 #else
810 explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
811 #endif
812 }
813 }
814 else if (size == 64)
815 {
816 if (big_endian)
817 {
818 #ifdef HAVE_TARGET_64_BIG
819 result = make_sized_incremental_binary<64, true>(
820 file, elfcpp::Ehdr<64, true>(p));
821 #else
822 explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
823 #endif
824 }
825 else
826 {
827 #ifdef HAVE_TARGET_64_LITTLE
828 result = make_sized_incremental_binary<64, false>(
829 file, elfcpp::Ehdr<64, false>(p));
830 #else
831 explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
832 #endif
833 }
834 }
835 else
836 gold_unreachable();
837
838 return result;
839 }
840
841 // Class Incremental_inputs.
842
843 // Add the command line to the string table, setting
844 // command_line_key_. In incremental builds, the command line is
845 // stored in .gnu_incremental_inputs so that the next linker run can
846 // check if the command line options didn't change.
847
848 void
849 Incremental_inputs::report_command_line(int argc, const char* const* argv)
850 {
851 // Always store 'gold' as argv[0] to avoid a full relink if the user used a
852 // different path to the linker.
853 std::string args("gold");
854 // Copied from collect_argv in main.cc.
855 for (int i = 1; i < argc; ++i)
856 {
857 // Adding/removing these options should not result in a full relink.
858 if (strcmp(argv[i], "--incremental") == 0
859 || strcmp(argv[i], "--incremental-full") == 0
860 || strcmp(argv[i], "--incremental-update") == 0
861 || strcmp(argv[i], "--incremental-changed") == 0
862 || strcmp(argv[i], "--incremental-unchanged") == 0
863 || strcmp(argv[i], "--incremental-unknown") == 0
864 || is_prefix_of("--debug=", argv[i]))
865 continue;
866
867 args.append(" '");
868 // Now append argv[i], but with all single-quotes escaped
869 const char* argpos = argv[i];
870 while (1)
871 {
872 const int len = strcspn(argpos, "'");
873 args.append(argpos, len);
874 if (argpos[len] == '\0')
875 break;
876 args.append("'\"'\"'");
877 argpos += len + 1;
878 }
879 args.append("'");
880 }
881
882 this->command_line_ = args;
883 this->strtab_->add(this->command_line_.c_str(), false,
884 &this->command_line_key_);
885 }
886
887 // Record the input archive file ARCHIVE. This is called by the
888 // Add_archive_symbols task before determining which archive members
889 // to include. We create the Incremental_archive_entry here and
890 // attach it to the Archive, but we do not add it to the list of
891 // input objects until report_archive_end is called.
892
893 void
894 Incremental_inputs::report_archive_begin(Library_base* arch,
895 unsigned int arg_serial,
896 Script_info* script_info)
897 {
898 Stringpool::Key filename_key;
899 Timespec mtime = arch->get_mtime();
900
901 // For a file loaded from a script, don't record its argument serial number.
902 if (script_info != NULL)
903 arg_serial = 0;
904
905 this->strtab_->add(arch->filename().c_str(), false, &filename_key);
906 Incremental_archive_entry* entry =
907 new Incremental_archive_entry(filename_key, arg_serial, mtime);
908 arch->set_incremental_info(entry);
909
910 if (script_info != NULL)
911 {
912 Incremental_script_entry* script_entry = script_info->incremental_info();
913 gold_assert(script_entry != NULL);
914 script_entry->add_object(entry);
915 }
916 }
917
918 // Visitor class for processing the unused global symbols in a library.
919 // An instance of this class is passed to the library's
920 // for_all_unused_symbols() iterator, which will call the visit()
921 // function for each global symbol defined in each unused library
922 // member. We add those symbol names to the incremental info for the
923 // library.
924
925 class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
926 {
927 public:
928 Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
929 : entry_(entry), strtab_(strtab)
930 { }
931
932 void
933 visit(const char* sym)
934 {
935 Stringpool::Key symbol_key;
936 this->strtab_->add(sym, true, &symbol_key);
937 this->entry_->add_unused_global_symbol(symbol_key);
938 }
939
940 private:
941 Incremental_archive_entry* entry_;
942 Stringpool* strtab_;
943 };
944
945 // Finish recording the input archive file ARCHIVE. This is called by the
946 // Add_archive_symbols task after determining which archive members
947 // to include.
948
949 void
950 Incremental_inputs::report_archive_end(Library_base* arch)
951 {
952 Incremental_archive_entry* entry = arch->incremental_info();
953
954 gold_assert(entry != NULL);
955 this->inputs_.push_back(entry);
956
957 // Collect unused global symbols.
958 Unused_symbol_visitor v(entry, this->strtab_);
959 arch->for_all_unused_symbols(&v);
960 }
961
962 // Record the input object file OBJ. If ARCH is not NULL, attach
963 // the object file to the archive. This is called by the
964 // Add_symbols task after finding out the type of the file.
965
966 void
967 Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
968 Library_base* arch, Script_info* script_info)
969 {
970 Stringpool::Key filename_key;
971 Timespec mtime = obj->get_mtime();
972
973 // For a file loaded from a script, don't record its argument serial number.
974 if (script_info != NULL)
975 arg_serial = 0;
976
977 this->strtab_->add(obj->name().c_str(), false, &filename_key);
978
979 Incremental_input_entry* input_entry;
980
981 this->current_object_ = obj;
982
983 if (!obj->is_dynamic())
984 {
985 this->current_object_entry_ =
986 new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
987 input_entry = this->current_object_entry_;
988 if (arch != NULL)
989 {
990 Incremental_archive_entry* arch_entry = arch->incremental_info();
991 gold_assert(arch_entry != NULL);
992 arch_entry->add_object(this->current_object_entry_);
993 }
994 }
995 else
996 {
997 this->current_object_entry_ = NULL;
998 Stringpool::Key soname_key;
999 Dynobj* dynobj = obj->dynobj();
1000 gold_assert(dynobj != NULL);
1001 this->strtab_->add(dynobj->soname(), false, &soname_key);
1002 input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
1003 arg_serial, mtime);
1004 }
1005
1006 if (obj->is_in_system_directory())
1007 input_entry->set_is_in_system_directory();
1008
1009 if (obj->as_needed())
1010 input_entry->set_as_needed();
1011
1012 this->inputs_.push_back(input_entry);
1013
1014 if (script_info != NULL)
1015 {
1016 Incremental_script_entry* script_entry = script_info->incremental_info();
1017 gold_assert(script_entry != NULL);
1018 script_entry->add_object(input_entry);
1019 }
1020 }
1021
1022 // Record the input object file OBJ. If ARCH is not NULL, attach
1023 // the object file to the archive. This is called by the
1024 // Add_symbols task after finding out the type of the file.
1025
1026 void
1027 Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
1028 const char* name, off_t sh_size)
1029 {
1030 Stringpool::Key key = 0;
1031
1032 if (name != NULL)
1033 this->strtab_->add(name, true, &key);
1034
1035 gold_assert(obj == this->current_object_);
1036 gold_assert(this->current_object_entry_ != NULL);
1037 this->current_object_entry_->add_input_section(shndx, key, sh_size);
1038 }
1039
1040 // Record that the input argument INPUT is a script SCRIPT. This is
1041 // called by read_script after parsing the script and reading the list
1042 // of inputs added by this script.
1043
1044 void
1045 Incremental_inputs::report_script(Script_info* script,
1046 unsigned int arg_serial,
1047 Timespec mtime)
1048 {
1049 Stringpool::Key filename_key;
1050
1051 this->strtab_->add(script->filename().c_str(), false, &filename_key);
1052 Incremental_script_entry* entry =
1053 new Incremental_script_entry(filename_key, arg_serial, script, mtime);
1054 this->inputs_.push_back(entry);
1055 script->set_incremental_info(entry);
1056 }
1057
1058 // Finalize the incremental link information. Called from
1059 // Layout::finalize.
1060
1061 void
1062 Incremental_inputs::finalize()
1063 {
1064 // Finalize the string table.
1065 this->strtab_->set_string_offsets();
1066 }
1067
1068 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
1069
1070 void
1071 Incremental_inputs::create_data_sections(Symbol_table* symtab)
1072 {
1073 switch (parameters->size_and_endianness())
1074 {
1075 #ifdef HAVE_TARGET_32_LITTLE
1076 case Parameters::TARGET_32_LITTLE:
1077 this->inputs_section_ =
1078 new Output_section_incremental_inputs<32, false>(this, symtab);
1079 break;
1080 #endif
1081 #ifdef HAVE_TARGET_32_BIG
1082 case Parameters::TARGET_32_BIG:
1083 this->inputs_section_ =
1084 new Output_section_incremental_inputs<32, true>(this, symtab);
1085 break;
1086 #endif
1087 #ifdef HAVE_TARGET_64_LITTLE
1088 case Parameters::TARGET_64_LITTLE:
1089 this->inputs_section_ =
1090 new Output_section_incremental_inputs<64, false>(this, symtab);
1091 break;
1092 #endif
1093 #ifdef HAVE_TARGET_64_BIG
1094 case Parameters::TARGET_64_BIG:
1095 this->inputs_section_ =
1096 new Output_section_incremental_inputs<64, true>(this, symtab);
1097 break;
1098 #endif
1099 default:
1100 gold_unreachable();
1101 }
1102 this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
1103 this->relocs_section_ = new Output_data_space(4, "** incremental_relocs");
1104 this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
1105 }
1106
1107 // Return the sh_entsize value for the .gnu_incremental_relocs section.
1108 unsigned int
1109 Incremental_inputs::relocs_entsize() const
1110 {
1111 return 8 + 2 * parameters->target().get_size() / 8;
1112 }
1113
1114 // Class Output_section_incremental_inputs.
1115
1116 // Finalize the offsets for each input section and supplemental info block,
1117 // and set the final data size of the incremental output sections.
1118
1119 template<int size, bool big_endian>
1120 void
1121 Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
1122 {
1123 const Incremental_inputs* inputs = this->inputs_;
1124 const unsigned int sizeof_addr = size / 8;
1125 const unsigned int rel_size = 8 + 2 * sizeof_addr;
1126
1127 // Offset of each input entry.
1128 unsigned int input_offset = this->header_size;
1129
1130 // Offset of each supplemental info block.
1131 unsigned int file_index = 0;
1132 unsigned int info_offset = this->header_size;
1133 info_offset += this->input_entry_size * inputs->input_file_count();
1134
1135 // Count each input file and its supplemental information block.
1136 for (Incremental_inputs::Input_list::const_iterator p =
1137 inputs->input_files().begin();
1138 p != inputs->input_files().end();
1139 ++p)
1140 {
1141 // Set the index and offset of the input file entry.
1142 (*p)->set_offset(file_index, input_offset);
1143 ++file_index;
1144 input_offset += this->input_entry_size;
1145
1146 // Set the offset of the supplemental info block.
1147 switch ((*p)->type())
1148 {
1149 case INCREMENTAL_INPUT_SCRIPT:
1150 {
1151 Incremental_script_entry *entry = (*p)->script_entry();
1152 gold_assert(entry != NULL);
1153 (*p)->set_info_offset(info_offset);
1154 // Object count.
1155 info_offset += 4;
1156 // Each member.
1157 info_offset += (entry->get_object_count() * 4);
1158 }
1159 break;
1160 case INCREMENTAL_INPUT_OBJECT:
1161 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1162 {
1163 Incremental_object_entry* entry = (*p)->object_entry();
1164 gold_assert(entry != NULL);
1165 (*p)->set_info_offset(info_offset);
1166 // Input section count, global symbol count, local symbol offset,
1167 // local symbol count, first dynamic reloc, dynamic reloc count.
1168 info_offset += 24;
1169 // Each input section.
1170 info_offset += (entry->get_input_section_count()
1171 * (8 + 2 * sizeof_addr));
1172 // Each global symbol.
1173 const Object::Symbols* syms = entry->object()->get_global_symbols();
1174 info_offset += syms->size() * 20;
1175 }
1176 break;
1177 case INCREMENTAL_INPUT_SHARED_LIBRARY:
1178 {
1179 Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1180 gold_assert(entry != NULL);
1181 (*p)->set_info_offset(info_offset);
1182 // Global symbol count, soname index.
1183 info_offset += 8;
1184 // Each global symbol.
1185 const Object::Symbols* syms = entry->object()->get_global_symbols();
1186 gold_assert(syms != NULL);
1187 unsigned int nsyms = syms->size();
1188 unsigned int nsyms_out = 0;
1189 for (unsigned int i = 0; i < nsyms; ++i)
1190 {
1191 const Symbol* sym = (*syms)[i];
1192 if (sym == NULL)
1193 continue;
1194 if (sym->is_forwarder())
1195 sym = this->symtab_->resolve_forwards(sym);
1196 if (sym->symtab_index() != -1U)
1197 ++nsyms_out;
1198 }
1199 info_offset += nsyms_out * 4;
1200 }
1201 break;
1202 case INCREMENTAL_INPUT_ARCHIVE:
1203 {
1204 Incremental_archive_entry* entry = (*p)->archive_entry();
1205 gold_assert(entry != NULL);
1206 (*p)->set_info_offset(info_offset);
1207 // Member count + unused global symbol count.
1208 info_offset += 8;
1209 // Each member.
1210 info_offset += (entry->get_member_count() * 4);
1211 // Each global symbol.
1212 info_offset += (entry->get_unused_global_symbol_count() * 4);
1213 }
1214 break;
1215 default:
1216 gold_unreachable();
1217 }
1218 }
1219
1220 this->set_data_size(info_offset);
1221
1222 // Set the size of the .gnu_incremental_symtab section.
1223 inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
1224 * sizeof(unsigned int));
1225
1226 // Set the size of the .gnu_incremental_relocs section.
1227 inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
1228 * rel_size);
1229
1230 // Set the size of the .gnu_incremental_got_plt section.
1231 Sized_target<size, big_endian>* target =
1232 parameters->sized_target<size, big_endian>();
1233 unsigned int got_count = target->got_entry_count();
1234 unsigned int plt_count = target->plt_entry_count();
1235 unsigned int got_plt_size = 8; // GOT entry count, PLT entry count.
1236 got_plt_size = (got_plt_size + got_count + 3) & ~3; // GOT type array.
1237 got_plt_size += got_count * 8 + plt_count * 4; // GOT array, PLT array.
1238 inputs->got_plt_section()->set_current_data_size(got_plt_size);
1239 }
1240
1241 // Write the contents of the .gnu_incremental_inputs and
1242 // .gnu_incremental_symtab sections.
1243
1244 template<int size, bool big_endian>
1245 void
1246 Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
1247 {
1248 const Incremental_inputs* inputs = this->inputs_;
1249 Stringpool* strtab = inputs->get_stringpool();
1250
1251 // Get a view into the .gnu_incremental_inputs section.
1252 const off_t off = this->offset();
1253 const off_t oview_size = this->data_size();
1254 unsigned char* const oview = of->get_output_view(off, oview_size);
1255 unsigned char* pov = oview;
1256
1257 // Get a view into the .gnu_incremental_symtab section.
1258 const off_t symtab_off = inputs->symtab_section()->offset();
1259 const off_t symtab_size = inputs->symtab_section()->data_size();
1260 unsigned char* const symtab_view = of->get_output_view(symtab_off,
1261 symtab_size);
1262
1263 // Allocate an array of linked list heads for the .gnu_incremental_symtab
1264 // section. Each element corresponds to a global symbol in the output
1265 // symbol table, and points to the head of the linked list that threads
1266 // through the object file input entries. The value of each element
1267 // is the section-relative offset to a global symbol entry in a
1268 // supplemental information block.
1269 unsigned int global_sym_count = this->symtab_->output_count();
1270 unsigned int* global_syms = new unsigned int[global_sym_count];
1271 memset(global_syms, 0, global_sym_count * sizeof(unsigned int));
1272
1273 // Write the section header.
1274 Stringpool::Key command_line_key = inputs->command_line_key();
1275 pov = this->write_header(pov, inputs->input_file_count(),
1276 strtab->get_offset_from_key(command_line_key));
1277
1278 // Write the list of input files.
1279 pov = this->write_input_files(oview, pov, strtab);
1280
1281 // Write the supplemental information blocks for each input file.
1282 pov = this->write_info_blocks(oview, pov, strtab, global_syms,
1283 global_sym_count);
1284
1285 gold_assert(pov - oview == oview_size);
1286
1287 // Write the .gnu_incremental_symtab section.
1288 gold_assert(global_sym_count * 4 == symtab_size);
1289 this->write_symtab(symtab_view, global_syms, global_sym_count);
1290
1291 delete[] global_syms;
1292
1293 // Write the .gnu_incremental_got_plt section.
1294 const off_t got_plt_off = inputs->got_plt_section()->offset();
1295 const off_t got_plt_size = inputs->got_plt_section()->data_size();
1296 unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
1297 got_plt_size);
1298 this->write_got_plt(got_plt_view, got_plt_size);
1299
1300 of->write_output_view(off, oview_size, oview);
1301 of->write_output_view(symtab_off, symtab_size, symtab_view);
1302 of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
1303 }
1304
1305 // Write the section header: version, input file count, offset of command line
1306 // in the string table, and 4 bytes of padding.
1307
1308 template<int size, bool big_endian>
1309 unsigned char*
1310 Output_section_incremental_inputs<size, big_endian>::write_header(
1311 unsigned char* pov,
1312 unsigned int input_file_count,
1313 section_offset_type command_line_offset)
1314 {
1315 Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
1316 Swap32::writeval(pov + 4, input_file_count);
1317 Swap32::writeval(pov + 8, command_line_offset);
1318 Swap32::writeval(pov + 12, 0);
1319 return pov + this->header_size;
1320 }
1321
1322 // Write the input file entries.
1323
1324 template<int size, bool big_endian>
1325 unsigned char*
1326 Output_section_incremental_inputs<size, big_endian>::write_input_files(
1327 unsigned char* oview,
1328 unsigned char* pov,
1329 Stringpool* strtab)
1330 {
1331 const Incremental_inputs* inputs = this->inputs_;
1332
1333 for (Incremental_inputs::Input_list::const_iterator p =
1334 inputs->input_files().begin();
1335 p != inputs->input_files().end();
1336 ++p)
1337 {
1338 gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
1339 section_offset_type filename_offset =
1340 strtab->get_offset_from_key((*p)->get_filename_key());
1341 const Timespec& mtime = (*p)->get_mtime();
1342 unsigned int flags = (*p)->type();
1343 if ((*p)->is_in_system_directory())
1344 flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
1345 if ((*p)->as_needed())
1346 flags |= INCREMENTAL_INPUT_AS_NEEDED;
1347 Swap32::writeval(pov, filename_offset);
1348 Swap32::writeval(pov + 4, (*p)->get_info_offset());
1349 Swap64::writeval(pov + 8, mtime.seconds);
1350 Swap32::writeval(pov + 16, mtime.nanoseconds);
1351 Swap16::writeval(pov + 20, flags);
1352 Swap16::writeval(pov + 22, (*p)->arg_serial());
1353 pov += this->input_entry_size;
1354 }
1355 return pov;
1356 }
1357
1358 // Write the supplemental information blocks.
1359
1360 template<int size, bool big_endian>
1361 unsigned char*
1362 Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
1363 unsigned char* oview,
1364 unsigned char* pov,
1365 Stringpool* strtab,
1366 unsigned int* global_syms,
1367 unsigned int global_sym_count)
1368 {
1369 const Incremental_inputs* inputs = this->inputs_;
1370 unsigned int first_global_index = this->symtab_->first_global_index();
1371
1372 for (Incremental_inputs::Input_list::const_iterator p =
1373 inputs->input_files().begin();
1374 p != inputs->input_files().end();
1375 ++p)
1376 {
1377 switch ((*p)->type())
1378 {
1379 case INCREMENTAL_INPUT_SCRIPT:
1380 {
1381 gold_assert(static_cast<unsigned int>(pov - oview)
1382 == (*p)->get_info_offset());
1383 Incremental_script_entry* entry = (*p)->script_entry();
1384 gold_assert(entry != NULL);
1385
1386 // Write the object count.
1387 unsigned int nobjects = entry->get_object_count();
1388 Swap32::writeval(pov, nobjects);
1389 pov += 4;
1390
1391 // For each object, write the offset to its input file entry.
1392 for (unsigned int i = 0; i < nobjects; ++i)
1393 {
1394 Incremental_input_entry* obj = entry->get_object(i);
1395 Swap32::writeval(pov, obj->get_offset());
1396 pov += 4;
1397 }
1398 }
1399 break;
1400
1401 case INCREMENTAL_INPUT_OBJECT:
1402 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1403 {
1404 gold_assert(static_cast<unsigned int>(pov - oview)
1405 == (*p)->get_info_offset());
1406 Incremental_object_entry* entry = (*p)->object_entry();
1407 gold_assert(entry != NULL);
1408 const Object* obj = entry->object();
1409 const Relobj* relobj = static_cast<const Relobj*>(obj);
1410 const Object::Symbols* syms = obj->get_global_symbols();
1411 // Write the input section count and global symbol count.
1412 unsigned int nsections = entry->get_input_section_count();
1413 unsigned int nsyms = syms->size();
1414 off_t locals_offset = relobj->local_symbol_offset();
1415 unsigned int nlocals = relobj->output_local_symbol_count();
1416 unsigned int first_dynrel = relobj->first_dyn_reloc();
1417 unsigned int ndynrel = relobj->dyn_reloc_count();
1418 Swap32::writeval(pov, nsections);
1419 Swap32::writeval(pov + 4, nsyms);
1420 Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
1421 Swap32::writeval(pov + 12, nlocals);
1422 Swap32::writeval(pov + 16, first_dynrel);
1423 Swap32::writeval(pov + 20, ndynrel);
1424 pov += 24;
1425
1426 // Build a temporary array to map input section indexes
1427 // from the original object file index to the index in the
1428 // incremental info table.
1429 unsigned int* index_map = new unsigned int[obj->shnum()];
1430 memset(index_map, 0, obj->shnum() * sizeof(unsigned int));
1431
1432 // For each input section, write the name, output section index,
1433 // offset within output section, and input section size.
1434 for (unsigned int i = 0; i < nsections; i++)
1435 {
1436 unsigned int shndx = entry->get_input_section_index(i);
1437 index_map[shndx] = i + 1;
1438 Stringpool::Key key = entry->get_input_section_name_key(i);
1439 off_t name_offset = 0;
1440 if (key != 0)
1441 name_offset = strtab->get_offset_from_key(key);
1442 int out_shndx = 0;
1443 off_t out_offset = 0;
1444 off_t sh_size = 0;
1445 Output_section* os = obj->output_section(shndx);
1446 if (os != NULL)
1447 {
1448 out_shndx = os->out_shndx();
1449 out_offset = obj->output_section_offset(shndx);
1450 sh_size = entry->get_input_section_size(i);
1451 }
1452 Swap32::writeval(pov, name_offset);
1453 Swap32::writeval(pov + 4, out_shndx);
1454 Swap::writeval(pov + 8, out_offset);
1455 Swap::writeval(pov + 8 + sizeof_addr, sh_size);
1456 pov += 8 + 2 * sizeof_addr;
1457 }
1458
1459 // For each global symbol, write its associated relocations,
1460 // add it to the linked list of globals, then write the
1461 // supplemental information: global symbol table index,
1462 // input section index, linked list chain pointer, relocation
1463 // count, and offset to the relocations.
1464 for (unsigned int i = 0; i < nsyms; i++)
1465 {
1466 const Symbol* sym = (*syms)[i];
1467 if (sym->is_forwarder())
1468 sym = this->symtab_->resolve_forwards(sym);
1469 unsigned int shndx = 0;
1470 if (sym->source() == Symbol::FROM_OBJECT
1471 && sym->object() == obj
1472 && sym->is_defined())
1473 {
1474 bool is_ordinary;
1475 unsigned int orig_shndx = sym->shndx(&is_ordinary);
1476 if (is_ordinary)
1477 shndx = index_map[orig_shndx];
1478 }
1479 unsigned int symtab_index = sym->symtab_index();
1480 unsigned int chain = 0;
1481 unsigned int first_reloc = 0;
1482 unsigned int nrelocs = obj->get_incremental_reloc_count(i);
1483 if (nrelocs > 0)
1484 {
1485 gold_assert(symtab_index != -1U
1486 && (symtab_index - first_global_index
1487 < global_sym_count));
1488 first_reloc = obj->get_incremental_reloc_base(i);
1489 chain = global_syms[symtab_index - first_global_index];
1490 global_syms[symtab_index - first_global_index] =
1491 pov - oview;
1492 }
1493 Swap32::writeval(pov, symtab_index);
1494 Swap32::writeval(pov + 4, shndx);
1495 Swap32::writeval(pov + 8, chain);
1496 Swap32::writeval(pov + 12, nrelocs);
1497 Swap32::writeval(pov + 16, first_reloc * 3 * sizeof_addr);
1498 pov += 20;
1499 }
1500
1501 delete[] index_map;
1502 }
1503 break;
1504
1505 case INCREMENTAL_INPUT_SHARED_LIBRARY:
1506 {
1507 gold_assert(static_cast<unsigned int>(pov - oview)
1508 == (*p)->get_info_offset());
1509 Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1510 gold_assert(entry != NULL);
1511 const Object* obj = entry->object();
1512 const Object::Symbols* syms = obj->get_global_symbols();
1513
1514 // Write the soname string table index.
1515 section_offset_type soname_offset =
1516 strtab->get_offset_from_key(entry->get_soname_key());
1517 Swap32::writeval(pov, soname_offset);
1518 pov += 4;
1519
1520 // Skip the global symbol count for now.
1521 unsigned char* orig_pov = pov;
1522 pov += 4;
1523
1524 // For each global symbol, write the global symbol table index.
1525 unsigned int nsyms = syms->size();
1526 unsigned int nsyms_out = 0;
1527 for (unsigned int i = 0; i < nsyms; i++)
1528 {
1529 const Symbol* sym = (*syms)[i];
1530 if (sym == NULL)
1531 continue;
1532 if (sym->is_forwarder())
1533 sym = this->symtab_->resolve_forwards(sym);
1534 if (sym->symtab_index() == -1U)
1535 continue;
1536 unsigned int def_flag = 0;
1537 if (sym->source() == Symbol::FROM_OBJECT
1538 && sym->object() == obj
1539 && sym->is_defined())
1540 def_flag = 1U << 31;
1541 Swap32::writeval(pov, sym->symtab_index() | def_flag);
1542 pov += 4;
1543 ++nsyms_out;
1544 }
1545
1546 // Now write the global symbol count.
1547 Swap32::writeval(orig_pov, nsyms_out);
1548 }
1549 break;
1550
1551 case INCREMENTAL_INPUT_ARCHIVE:
1552 {
1553 gold_assert(static_cast<unsigned int>(pov - oview)
1554 == (*p)->get_info_offset());
1555 Incremental_archive_entry* entry = (*p)->archive_entry();
1556 gold_assert(entry != NULL);
1557
1558 // Write the member count and unused global symbol count.
1559 unsigned int nmembers = entry->get_member_count();
1560 unsigned int nsyms = entry->get_unused_global_symbol_count();
1561 Swap32::writeval(pov, nmembers);
1562 Swap32::writeval(pov + 4, nsyms);
1563 pov += 8;
1564
1565 // For each member, write the offset to its input file entry.
1566 for (unsigned int i = 0; i < nmembers; ++i)
1567 {
1568 Incremental_object_entry* member = entry->get_member(i);
1569 Swap32::writeval(pov, member->get_offset());
1570 pov += 4;
1571 }
1572
1573 // For each global symbol, write the name offset.
1574 for (unsigned int i = 0; i < nsyms; ++i)
1575 {
1576 Stringpool::Key key = entry->get_unused_global_symbol(i);
1577 Swap32::writeval(pov, strtab->get_offset_from_key(key));
1578 pov += 4;
1579 }
1580 }
1581 break;
1582
1583 default:
1584 gold_unreachable();
1585 }
1586 }
1587 return pov;
1588 }
1589
1590 // Write the contents of the .gnu_incremental_symtab section.
1591
1592 template<int size, bool big_endian>
1593 void
1594 Output_section_incremental_inputs<size, big_endian>::write_symtab(
1595 unsigned char* pov,
1596 unsigned int* global_syms,
1597 unsigned int global_sym_count)
1598 {
1599 for (unsigned int i = 0; i < global_sym_count; ++i)
1600 {
1601 Swap32::writeval(pov, global_syms[i]);
1602 pov += 4;
1603 }
1604 }
1605
1606 // This struct holds the view information needed to write the
1607 // .gnu_incremental_got_plt section.
1608
1609 struct Got_plt_view_info
1610 {
1611 // Start of the GOT type array in the output view.
1612 unsigned char* got_type_p;
1613 // Start of the GOT descriptor array in the output view.
1614 unsigned char* got_desc_p;
1615 // Start of the PLT descriptor array in the output view.
1616 unsigned char* plt_desc_p;
1617 // Number of GOT entries.
1618 unsigned int got_count;
1619 // Number of PLT entries.
1620 unsigned int plt_count;
1621 // Offset of the first non-reserved PLT entry (this is a target-dependent value).
1622 unsigned int first_plt_entry_offset;
1623 // Size of a PLT entry (this is a target-dependent value).
1624 unsigned int plt_entry_size;
1625 // Symbol index to write in the GOT descriptor array. For global symbols,
1626 // this is the global symbol table index; for local symbols, it is the
1627 // local symbol table index.
1628 unsigned int sym_index;
1629 // Input file index to write in the GOT descriptor array. For global
1630 // symbols, this is 0; for local symbols, it is the index of the input
1631 // file entry in the .gnu_incremental_inputs section.
1632 unsigned int input_index;
1633 };
1634
1635 // Functor class for processing a GOT offset list for local symbols.
1636 // Writes the GOT type and symbol index into the GOT type and descriptor
1637 // arrays in the output section.
1638
1639 template<int size, bool big_endian>
1640 class Local_got_offset_visitor : public Got_offset_list::Visitor
1641 {
1642 public:
1643 Local_got_offset_visitor(struct Got_plt_view_info& info)
1644 : info_(info)
1645 { }
1646
1647 void
1648 visit(unsigned int got_type, unsigned int got_offset)
1649 {
1650 unsigned int got_index = got_offset / this->got_entry_size_;
1651 gold_assert(got_index < this->info_.got_count);
1652 // We can only handle GOT entry types in the range 0..0x7e
1653 // because we use a byte array to store them, and we use the
1654 // high bit to flag a local symbol.
1655 gold_assert(got_type < 0x7f);
1656 this->info_.got_type_p[got_index] = got_type | 0x80;
1657 unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1658 elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1659 elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
1660 }
1661
1662 private:
1663 static const unsigned int got_entry_size_ = size / 8;
1664 struct Got_plt_view_info& info_;
1665 };
1666
1667 // Functor class for processing a GOT offset list. Writes the GOT type
1668 // and symbol index into the GOT type and descriptor arrays in the output
1669 // section.
1670
1671 template<int size, bool big_endian>
1672 class Global_got_offset_visitor : public Got_offset_list::Visitor
1673 {
1674 public:
1675 Global_got_offset_visitor(struct Got_plt_view_info& info)
1676 : info_(info)
1677 { }
1678
1679 void
1680 visit(unsigned int got_type, unsigned int got_offset)
1681 {
1682 unsigned int got_index = got_offset / this->got_entry_size_;
1683 gold_assert(got_index < this->info_.got_count);
1684 // We can only handle GOT entry types in the range 0..0x7e
1685 // because we use a byte array to store them, and we use the
1686 // high bit to flag a local symbol.
1687 gold_assert(got_type < 0x7f);
1688 this->info_.got_type_p[got_index] = got_type;
1689 unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1690 elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1691 elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
1692 }
1693
1694 private:
1695 static const unsigned int got_entry_size_ = size / 8;
1696 struct Got_plt_view_info& info_;
1697 };
1698
1699 // Functor class for processing the global symbol table. Processes the
1700 // GOT offset list for the symbol, and writes the symbol table index
1701 // into the PLT descriptor array in the output section.
1702
1703 template<int size, bool big_endian>
1704 class Global_symbol_visitor_got_plt
1705 {
1706 public:
1707 Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
1708 : info_(info)
1709 { }
1710
1711 void
1712 operator()(const Sized_symbol<size>* sym)
1713 {
1714 typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
1715 const Got_offset_list* got_offsets = sym->got_offset_list();
1716 if (got_offsets != NULL)
1717 {
1718 this->info_.sym_index = sym->symtab_index();
1719 this->info_.input_index = 0;
1720 Got_visitor v(this->info_);
1721 got_offsets->for_all_got_offsets(&v);
1722 }
1723 if (sym->has_plt_offset())
1724 {
1725 unsigned int plt_index =
1726 ((sym->plt_offset() - this->info_.first_plt_entry_offset)
1727 / this->info_.plt_entry_size);
1728 gold_assert(plt_index < this->info_.plt_count);
1729 unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
1730 elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
1731 }
1732 }
1733
1734 private:
1735 struct Got_plt_view_info& info_;
1736 };
1737
1738 // Write the contents of the .gnu_incremental_got_plt section.
1739
1740 template<int size, bool big_endian>
1741 void
1742 Output_section_incremental_inputs<size, big_endian>::write_got_plt(
1743 unsigned char* pov,
1744 off_t view_size)
1745 {
1746 Sized_target<size, big_endian>* target =
1747 parameters->sized_target<size, big_endian>();
1748
1749 // Set up the view information for the functors.
1750 struct Got_plt_view_info view_info;
1751 view_info.got_count = target->got_entry_count();
1752 view_info.plt_count = target->plt_entry_count();
1753 view_info.first_plt_entry_offset = target->first_plt_entry_offset();
1754 view_info.plt_entry_size = target->plt_entry_size();
1755 view_info.got_type_p = pov + 8;
1756 view_info.got_desc_p = (view_info.got_type_p
1757 + ((view_info.got_count + 3) & ~3));
1758 view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;
1759
1760 gold_assert(pov + view_size ==
1761 view_info.plt_desc_p + view_info.plt_count * 4);
1762
1763 // Write the section header.
1764 Swap32::writeval(pov, view_info.got_count);
1765 Swap32::writeval(pov + 4, view_info.plt_count);
1766
1767 // Initialize the GOT type array to 0xff (reserved).
1768 memset(view_info.got_type_p, 0xff, view_info.got_count);
1769
1770 // Write the incremental GOT descriptors for local symbols.
1771 typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
1772 for (Incremental_inputs::Input_list::const_iterator p =
1773 this->inputs_->input_files().begin();
1774 p != this->inputs_->input_files().end();
1775 ++p)
1776 {
1777 if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
1778 && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
1779 continue;
1780 Incremental_object_entry* entry = (*p)->object_entry();
1781 gold_assert(entry != NULL);
1782 const Object* obj = entry->object();
1783 gold_assert(obj != NULL);
1784 view_info.input_index = (*p)->get_file_index();
1785 Got_visitor v(view_info);
1786 obj->for_all_local_got_entries(&v);
1787 }
1788
1789 // Write the incremental GOT and PLT descriptors for global symbols.
1790 typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
1791 symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
1792 }
1793
1794 // Class Sized_relobj_incr. Most of these methods are not used for
1795 // Incremental objects, but are required to be implemented by the
1796 // base class Object.
1797
1798 template<int size, bool big_endian>
1799 Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
1800 const std::string& name,
1801 Sized_incremental_binary<size, big_endian>* ibase,
1802 unsigned int input_file_index)
1803 : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
1804 input_file_index_(input_file_index),
1805 input_reader_(ibase->inputs_reader().input_file(input_file_index)),
1806 local_symbol_count_(0), output_local_dynsym_count_(0),
1807 local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
1808 symbols_(), incr_reloc_offset_(-1U), incr_reloc_count_(0),
1809 incr_reloc_output_index_(0), incr_relocs_(NULL), local_symbols_()
1810 {
1811 if (this->input_reader_.is_in_system_directory())
1812 this->set_is_in_system_directory();
1813 const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
1814 this->set_shnum(shnum);
1815 ibase->set_input_object(input_file_index, this);
1816 }
1817
1818 // Read the symbols.
1819
1820 template<int size, bool big_endian>
1821 void
1822 Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
1823 {
1824 gold_unreachable();
1825 }
1826
1827 // Lay out the input sections.
1828
1829 template<int size, bool big_endian>
1830 void
1831 Sized_relobj_incr<size, big_endian>::do_layout(
1832 Symbol_table*,
1833 Layout* layout,
1834 Read_symbols_data*)
1835 {
1836 const unsigned int shnum = this->shnum();
1837 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1838 gold_assert(incremental_inputs != NULL);
1839 Output_sections& out_sections(this->output_sections());
1840 out_sections.resize(shnum);
1841 this->section_offsets().resize(shnum);
1842 for (unsigned int i = 1; i < shnum; i++)
1843 {
1844 typename Input_entry_reader::Input_section_info sect =
1845 this->input_reader_.get_input_section(i - 1);
1846 // Add the section to the incremental inputs layout.
1847 incremental_inputs->report_input_section(this, i, sect.name,
1848 sect.sh_size);
1849 if (sect.output_shndx == 0 || sect.sh_offset == -1)
1850 continue;
1851 Output_section* os = this->ibase_->output_section(sect.output_shndx);
1852 gold_assert(os != NULL);
1853 out_sections[i] = os;
1854 this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);
1855 }
1856 }
1857
1858 // Layout sections whose layout was deferred while waiting for
1859 // input files from a plugin.
1860 template<int size, bool big_endian>
1861 void
1862 Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
1863 {
1864 }
1865
1866 // Add the symbols to the symbol table.
1867
1868 template<int size, bool big_endian>
1869 void
1870 Sized_relobj_incr<size, big_endian>::do_add_symbols(
1871 Symbol_table* symtab,
1872 Read_symbols_data*,
1873 Layout*)
1874 {
1875 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1876 unsigned char symbuf[sym_size];
1877 elfcpp::Sym<size, big_endian> sym(symbuf);
1878 elfcpp::Sym_write<size, big_endian> osym(symbuf);
1879
1880 typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
1881
1882 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
1883 this->symbols_.resize(nsyms);
1884
1885 Incremental_binary::View symtab_view(NULL);
1886 unsigned int symtab_count;
1887 elfcpp::Elf_strtab strtab(NULL, 0);
1888 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
1889
1890 Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
1891 unsigned int isym_count = isymtab.symbol_count();
1892 unsigned int first_global = symtab_count - isym_count;
1893
1894 const unsigned char* sym_p;
1895 for (unsigned int i = 0; i < nsyms; ++i)
1896 {
1897 Incremental_global_symbol_reader<big_endian> info =
1898 this->input_reader_.get_global_symbol_reader(i);
1899 unsigned int output_symndx = info.output_symndx();
1900 sym_p = symtab_view.data() + output_symndx * sym_size;
1901 elfcpp::Sym<size, big_endian> gsym(sym_p);
1902 const char* name;
1903 if (!strtab.get_c_string(gsym.get_st_name(), &name))
1904 name = "";
1905
1906 typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
1907 unsigned int shndx = gsym.get_st_shndx();
1908 elfcpp::STB st_bind = gsym.get_st_bind();
1909 elfcpp::STT st_type = gsym.get_st_type();
1910
1911 // Local hidden symbols start out as globals, but get converted to
1912 // to local during output.
1913 if (st_bind == elfcpp::STB_LOCAL)
1914 st_bind = elfcpp::STB_GLOBAL;
1915
1916 unsigned int input_shndx = info.shndx();
1917 if (input_shndx == 0)
1918 {
1919 shndx = elfcpp::SHN_UNDEF;
1920 v = 0;
1921 }
1922 else if (shndx != elfcpp::SHN_ABS)
1923 {
1924 // Find the input section and calculate the section-relative value.
1925 gold_assert(shndx != elfcpp::SHN_UNDEF);
1926 Output_section* os = this->ibase_->output_section(shndx);
1927 gold_assert(os != NULL && os->has_fixed_layout());
1928 typename Input_entry_reader::Input_section_info sect =
1929 this->input_reader_.get_input_section(input_shndx - 1);
1930 gold_assert(sect.output_shndx == shndx);
1931 if (st_type != elfcpp::STT_TLS)
1932 v -= os->address();
1933 v -= sect.sh_offset;
1934 shndx = input_shndx;
1935 }
1936
1937 osym.put_st_name(0);
1938 osym.put_st_value(v);
1939 osym.put_st_size(gsym.get_st_size());
1940 osym.put_st_info(st_bind, st_type);
1941 osym.put_st_other(gsym.get_st_other());
1942 osym.put_st_shndx(shndx);
1943
1944 this->symbols_[i] =
1945 symtab->add_from_incrobj(this, name, NULL, &sym);
1946 this->ibase_->add_global_symbol(output_symndx - first_global,
1947 this->symbols_[i]);
1948 }
1949 }
1950
1951 // Return TRUE if we should include this object from an archive library.
1952
1953 template<int size, bool big_endian>
1954 Archive::Should_include
1955 Sized_relobj_incr<size, big_endian>::do_should_include_member(
1956 Symbol_table*,
1957 Layout*,
1958 Read_symbols_data*,
1959 std::string*)
1960 {
1961 gold_unreachable();
1962 }
1963
1964 // Iterate over global symbols, calling a visitor class V for each.
1965
1966 template<int size, bool big_endian>
1967 void
1968 Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
1969 Read_symbols_data*,
1970 Library_base::Symbol_visitor_base*)
1971 {
1972 // This routine is not used for incremental objects.
1973 }
1974
1975 // Get the size of a section.
1976
1977 template<int size, bool big_endian>
1978 uint64_t
1979 Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
1980 {
1981 gold_unreachable();
1982 }
1983
1984 // Get the name of a section.
1985
1986 template<int size, bool big_endian>
1987 std::string
1988 Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int)
1989 {
1990 gold_unreachable();
1991 }
1992
1993 // Return a view of the contents of a section.
1994
1995 template<int size, bool big_endian>
1996 Object::Location
1997 Sized_relobj_incr<size, big_endian>::do_section_contents(unsigned int)
1998 {
1999 gold_unreachable();
2000 }
2001
2002 // Return section flags.
2003
2004 template<int size, bool big_endian>
2005 uint64_t
2006 Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
2007 {
2008 gold_unreachable();
2009 }
2010
2011 // Return section entsize.
2012
2013 template<int size, bool big_endian>
2014 uint64_t
2015 Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
2016 {
2017 gold_unreachable();
2018 }
2019
2020 // Return section address.
2021
2022 template<int size, bool big_endian>
2023 uint64_t
2024 Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
2025 {
2026 gold_unreachable();
2027 }
2028
2029 // Return section type.
2030
2031 template<int size, bool big_endian>
2032 unsigned int
2033 Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
2034 {
2035 gold_unreachable();
2036 }
2037
2038 // Return the section link field.
2039
2040 template<int size, bool big_endian>
2041 unsigned int
2042 Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
2043 {
2044 gold_unreachable();
2045 }
2046
2047 // Return the section link field.
2048
2049 template<int size, bool big_endian>
2050 unsigned int
2051 Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
2052 {
2053 gold_unreachable();
2054 }
2055
2056 // Return the section alignment.
2057
2058 template<int size, bool big_endian>
2059 uint64_t
2060 Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
2061 {
2062 gold_unreachable();
2063 }
2064
2065 // Return the Xindex structure to use.
2066
2067 template<int size, bool big_endian>
2068 Xindex*
2069 Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
2070 {
2071 gold_unreachable();
2072 }
2073
2074 // Get symbol counts.
2075
2076 template<int size, bool big_endian>
2077 void
2078 Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
2079 const Symbol_table*, size_t*, size_t*) const
2080 {
2081 gold_unreachable();
2082 }
2083
2084 // Read the relocs.
2085
2086 template<int size, bool big_endian>
2087 void
2088 Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
2089 {
2090 }
2091
2092 // Process the relocs to find list of referenced sections. Used only
2093 // during garbage collection.
2094
2095 template<int size, bool big_endian>
2096 void
2097 Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
2098 Layout*,
2099 Read_relocs_data*)
2100 {
2101 gold_unreachable();
2102 }
2103
2104 // Scan the relocs and adjust the symbol table.
2105
2106 template<int size, bool big_endian>
2107 void
2108 Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
2109 Layout* layout,
2110 Read_relocs_data*)
2111 {
2112 // Count the incremental relocations for this object.
2113 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2114 this->allocate_incremental_reloc_counts();
2115 for (unsigned int i = 0; i < nsyms; i++)
2116 {
2117 Incremental_global_symbol_reader<big_endian> sym =
2118 this->input_reader_.get_global_symbol_reader(i);
2119 unsigned int reloc_count = sym.reloc_count();
2120 if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
2121 this->incr_reloc_offset_ = sym.reloc_offset();
2122 this->incr_reloc_count_ += reloc_count;
2123 for (unsigned int j = 0; j < reloc_count; j++)
2124 this->count_incremental_reloc(i);
2125 }
2126 this->incr_reloc_output_index_ =
2127 layout->incremental_inputs()->get_reloc_count();
2128 this->finalize_incremental_relocs(layout, false);
2129
2130 // The incoming incremental relocations may not end up in the same
2131 // location after the incremental update, because the incremental info
2132 // is regenerated in each link. Because the new location may overlap
2133 // with other data in the updated output file, we need to copy the
2134 // relocations into a buffer so that we can still read them safely
2135 // after we start writing updates to the output file.
2136 if (this->incr_reloc_count_ > 0)
2137 {
2138 const Incremental_relocs_reader<size, big_endian>& relocs_reader =
2139 this->ibase_->relocs_reader();
2140 const unsigned int incr_reloc_size = relocs_reader.reloc_size;
2141 unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2142 this->incr_relocs_ = new unsigned char[len];
2143 memcpy(this->incr_relocs_,
2144 relocs_reader.data(this->incr_reloc_offset_),
2145 len);
2146 }
2147 }
2148
2149 // Count the local symbols.
2150
2151 template<int size, bool big_endian>
2152 void
2153 Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
2154 Stringpool_template<char>* pool,
2155 Stringpool_template<char>*)
2156 {
2157 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2158
2159 // Set the count of local symbols based on the incremental info.
2160 unsigned int nlocals = this->input_reader_.get_local_symbol_count();
2161 this->local_symbol_count_ = nlocals;
2162 this->local_symbols_.reserve(nlocals);
2163
2164 // Get views of the base file's symbol table and string table.
2165 Incremental_binary::View symtab_view(NULL);
2166 unsigned int symtab_count;
2167 elfcpp::Elf_strtab strtab(NULL, 0);
2168 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2169
2170 // Read the local symbols from the base file's symbol table.
2171 off_t off = this->input_reader_.get_local_symbol_offset();
2172 const unsigned char* symp = symtab_view.data() + off;
2173 for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
2174 {
2175 elfcpp::Sym<size, big_endian> sym(symp);
2176 const char* name;
2177 if (!strtab.get_c_string(sym.get_st_name(), &name))
2178 name = "";
2179 gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
2180 name = pool->add(name, true, NULL);
2181 this->local_symbols_.push_back(Local_symbol(name,
2182 sym.get_st_value(),
2183 sym.get_st_size(),
2184 sym.get_st_shndx(),
2185 sym.get_st_type(),
2186 false));
2187 }
2188 }
2189
2190 // Finalize the local symbols.
2191
2192 template<int size, bool big_endian>
2193 unsigned int
2194 Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
2195 unsigned int index,
2196 off_t off,
2197 Symbol_table*)
2198 {
2199 this->local_symbol_index_ = index;
2200 this->local_symbol_offset_ = off;
2201 return index + this->local_symbol_count_;
2202 }
2203
2204 // Set the offset where local dynamic symbol information will be stored.
2205
2206 template<int size, bool big_endian>
2207 unsigned int
2208 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
2209 unsigned int index)
2210 {
2211 // FIXME: set local dynsym indexes.
2212 return index;
2213 }
2214
2215 // Set the offset where local dynamic symbol information will be stored.
2216
2217 template<int size, bool big_endian>
2218 unsigned int
2219 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
2220 {
2221 return 0;
2222 }
2223
2224 // Relocate the input sections and write out the local symbols.
2225 // We don't actually do any relocation here. For unchanged input files,
2226 // we reapply relocations only for symbols that have changed; that happens
2227 // in queue_final_tasks. We do need to rewrite the incremental relocations
2228 // for this object.
2229
2230 template<int size, bool big_endian>
2231 void
2232 Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
2233 const Layout* layout,
2234 Output_file* of)
2235 {
2236 if (this->incr_reloc_count_ == 0)
2237 return;
2238
2239 const unsigned int incr_reloc_size =
2240 Incremental_relocs_reader<size, big_endian>::reloc_size;
2241
2242 // Get a view for the .gnu_incremental_relocs section.
2243 Incremental_inputs* inputs = layout->incremental_inputs();
2244 gold_assert(inputs != NULL);
2245 const off_t relocs_off = inputs->relocs_section()->offset();
2246 const off_t relocs_size = inputs->relocs_section()->data_size();
2247 unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
2248
2249 // Copy the relocations from the buffer.
2250 off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
2251 unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2252 memcpy(view + off, this->incr_relocs_, len);
2253
2254 // The output section table may have changed, so we need to map
2255 // the old section index to the new section index for each relocation.
2256 for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
2257 {
2258 unsigned char* pov = view + off + i * incr_reloc_size;
2259 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
2260 Output_section* os = this->ibase_->output_section(shndx);
2261 gold_assert(os != NULL);
2262 shndx = os->out_shndx();
2263 elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
2264 }
2265
2266 of->write_output_view(off, len, view);
2267
2268 // Get views into the output file for the portions of the symbol table
2269 // and the dynamic symbol table that we will be writing.
2270 off_t symtab_off = layout->symtab_section()->offset();
2271 off_t output_size = this->local_symbol_count_ * This::sym_size;
2272 unsigned char* oview = NULL;
2273 if (output_size > 0)
2274 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2275 output_size);
2276
2277 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2278 unsigned char* dyn_oview = NULL;
2279 if (dyn_output_size > 0)
2280 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2281 dyn_output_size);
2282
2283 // Write the local symbols.
2284 unsigned char* ov = oview;
2285 unsigned char* dyn_ov = dyn_oview;
2286 const Stringpool* sympool = layout->sympool();
2287 const Stringpool* dynpool = layout->dynpool();
2288 Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
2289 Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
2290 for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
2291 {
2292 Local_symbol& lsym(this->local_symbols_[i]);
2293
2294 bool is_ordinary;
2295 unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
2296 &is_ordinary);
2297 if (is_ordinary)
2298 {
2299 Output_section* os = this->ibase_->output_section(st_shndx);
2300 st_shndx = os->out_shndx();
2301 if (st_shndx >= elfcpp::SHN_LORESERVE)
2302 {
2303 symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
2304 if (lsym.needs_dynsym_entry)
2305 dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
2306 st_shndx = elfcpp::SHN_XINDEX;
2307 }
2308 }
2309
2310 // Write the symbol to the output symbol table.
2311 {
2312 elfcpp::Sym_write<size, big_endian> osym(ov);
2313 osym.put_st_name(sympool->get_offset(lsym.name));
2314 osym.put_st_value(lsym.st_value);
2315 osym.put_st_size(lsym.st_size);
2316 osym.put_st_info(elfcpp::STB_LOCAL,
2317 static_cast<elfcpp::STT>(lsym.st_type));
2318 osym.put_st_other(0);
2319 osym.put_st_shndx(st_shndx);
2320 ov += sym_size;
2321 }
2322
2323 // Write the symbol to the output dynamic symbol table.
2324 if (lsym.needs_dynsym_entry)
2325 {
2326 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2327 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2328 osym.put_st_name(dynpool->get_offset(lsym.name));
2329 osym.put_st_value(lsym.st_value);
2330 osym.put_st_size(lsym.st_size);
2331 osym.put_st_info(elfcpp::STB_LOCAL,
2332 static_cast<elfcpp::STT>(lsym.st_type));
2333 osym.put_st_other(0);
2334 osym.put_st_shndx(st_shndx);
2335 dyn_ov += sym_size;
2336 }
2337 }
2338
2339 if (output_size > 0)
2340 {
2341 gold_assert(ov - oview == output_size);
2342 of->write_output_view(symtab_off + this->local_symbol_offset_,
2343 output_size, oview);
2344 }
2345
2346 if (dyn_output_size > 0)
2347 {
2348 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2349 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2350 dyn_oview);
2351 }
2352 }
2353
2354 // Set the offset of a section.
2355
2356 template<int size, bool big_endian>
2357 void
2358 Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
2359 uint64_t)
2360 {
2361 }
2362
2363 // Class Sized_incr_dynobj. Most of these methods are not used for
2364 // Incremental objects, but are required to be implemented by the
2365 // base class Object.
2366
2367 template<int size, bool big_endian>
2368 Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
2369 const std::string& name,
2370 Sized_incremental_binary<size, big_endian>* ibase,
2371 unsigned int input_file_index)
2372 : Dynobj(name, NULL), ibase_(ibase),
2373 input_file_index_(input_file_index),
2374 input_reader_(ibase->inputs_reader().input_file(input_file_index)),
2375 symbols_()
2376 {
2377 if (this->input_reader_.is_in_system_directory())
2378 this->set_is_in_system_directory();
2379 if (this->input_reader_.as_needed())
2380 this->set_as_needed();
2381 this->set_soname_string(this->input_reader_.get_soname());
2382 this->set_shnum(0);
2383 }
2384
2385 // Read the symbols.
2386
2387 template<int size, bool big_endian>
2388 void
2389 Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
2390 {
2391 gold_unreachable();
2392 }
2393
2394 // Lay out the input sections.
2395
2396 template<int size, bool big_endian>
2397 void
2398 Sized_incr_dynobj<size, big_endian>::do_layout(
2399 Symbol_table*,
2400 Layout*,
2401 Read_symbols_data*)
2402 {
2403 }
2404
2405 // Add the symbols to the symbol table.
2406
2407 template<int size, bool big_endian>
2408 void
2409 Sized_incr_dynobj<size, big_endian>::do_add_symbols(
2410 Symbol_table* symtab,
2411 Read_symbols_data*,
2412 Layout*)
2413 {
2414 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2415 unsigned char symbuf[sym_size];
2416 elfcpp::Sym<size, big_endian> sym(symbuf);
2417 elfcpp::Sym_write<size, big_endian> osym(symbuf);
2418
2419 typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2420
2421 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2422 this->symbols_.resize(nsyms);
2423
2424 Incremental_binary::View symtab_view(NULL);
2425 unsigned int symtab_count;
2426 elfcpp::Elf_strtab strtab(NULL, 0);
2427 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2428
2429 Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2430 unsigned int isym_count = isymtab.symbol_count();
2431 unsigned int first_global = symtab_count - isym_count;
2432
2433 const unsigned char* sym_p;
2434 for (unsigned int i = 0; i < nsyms; ++i)
2435 {
2436 bool is_def;
2437 unsigned int output_symndx =
2438 this->input_reader_.get_output_symbol_index(i, &is_def);
2439 sym_p = symtab_view.data() + output_symndx * sym_size;
2440 elfcpp::Sym<size, big_endian> gsym(sym_p);
2441 const char* name;
2442 if (!strtab.get_c_string(gsym.get_st_name(), &name))
2443 name = "";
2444
2445 typename elfcpp::Elf_types<size>::Elf_Addr v;
2446 unsigned int shndx;
2447 elfcpp::STB st_bind = gsym.get_st_bind();
2448 elfcpp::STT st_type = gsym.get_st_type();
2449
2450 // Local hidden symbols start out as globals, but get converted to
2451 // to local during output.
2452 if (st_bind == elfcpp::STB_LOCAL)
2453 st_bind = elfcpp::STB_GLOBAL;
2454
2455 if (!is_def)
2456 {
2457 shndx = elfcpp::SHN_UNDEF;
2458 v = 0;
2459 }
2460 else
2461 {
2462 // For a symbol defined in a shared object, the section index
2463 // is meaningless, as long as it's not SHN_UNDEF.
2464 shndx = 1;
2465 v = gsym.get_st_value();
2466 }
2467
2468 osym.put_st_name(0);
2469 osym.put_st_value(v);
2470 osym.put_st_size(gsym.get_st_size());
2471 osym.put_st_info(st_bind, st_type);
2472 osym.put_st_other(gsym.get_st_other());
2473 osym.put_st_shndx(shndx);
2474
2475 this->symbols_[i] =
2476 symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
2477 this->ibase_->add_global_symbol(output_symndx - first_global,
2478 this->symbols_[i]);
2479 }
2480 }
2481
2482 // Return TRUE if we should include this object from an archive library.
2483
2484 template<int size, bool big_endian>
2485 Archive::Should_include
2486 Sized_incr_dynobj<size, big_endian>::do_should_include_member(
2487 Symbol_table*,
2488 Layout*,
2489 Read_symbols_data*,
2490 std::string*)
2491 {
2492 gold_unreachable();
2493 }
2494
2495 // Iterate over global symbols, calling a visitor class V for each.
2496
2497 template<int size, bool big_endian>
2498 void
2499 Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
2500 Read_symbols_data*,
2501 Library_base::Symbol_visitor_base*)
2502 {
2503 // This routine is not used for dynamic libraries.
2504 }
2505
2506 // Iterate over local symbols, calling a visitor class V for each GOT offset
2507 // associated with a local symbol.
2508
2509 template<int size, bool big_endian>
2510 void
2511 Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
2512 Got_offset_list::Visitor*) const
2513 {
2514 }
2515
2516 // Get the size of a section.
2517
2518 template<int size, bool big_endian>
2519 uint64_t
2520 Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
2521 {
2522 gold_unreachable();
2523 }
2524
2525 // Get the name of a section.
2526
2527 template<int size, bool big_endian>
2528 std::string
2529 Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int)
2530 {
2531 gold_unreachable();
2532 }
2533
2534 // Return a view of the contents of a section.
2535
2536 template<int size, bool big_endian>
2537 Object::Location
2538 Sized_incr_dynobj<size, big_endian>::do_section_contents(unsigned int)
2539 {
2540 gold_unreachable();
2541 }
2542
2543 // Return section flags.
2544
2545 template<int size, bool big_endian>
2546 uint64_t
2547 Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
2548 {
2549 gold_unreachable();
2550 }
2551
2552 // Return section entsize.
2553
2554 template<int size, bool big_endian>
2555 uint64_t
2556 Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
2557 {
2558 gold_unreachable();
2559 }
2560
2561 // Return section address.
2562
2563 template<int size, bool big_endian>
2564 uint64_t
2565 Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
2566 {
2567 gold_unreachable();
2568 }
2569
2570 // Return section type.
2571
2572 template<int size, bool big_endian>
2573 unsigned int
2574 Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
2575 {
2576 gold_unreachable();
2577 }
2578
2579 // Return the section link field.
2580
2581 template<int size, bool big_endian>
2582 unsigned int
2583 Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
2584 {
2585 gold_unreachable();
2586 }
2587
2588 // Return the section link field.
2589
2590 template<int size, bool big_endian>
2591 unsigned int
2592 Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
2593 {
2594 gold_unreachable();
2595 }
2596
2597 // Return the section alignment.
2598
2599 template<int size, bool big_endian>
2600 uint64_t
2601 Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
2602 {
2603 gold_unreachable();
2604 }
2605
2606 // Return the Xindex structure to use.
2607
2608 template<int size, bool big_endian>
2609 Xindex*
2610 Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
2611 {
2612 gold_unreachable();
2613 }
2614
2615 // Get symbol counts.
2616
2617 template<int size, bool big_endian>
2618 void
2619 Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
2620 const Symbol_table*, size_t*, size_t*) const
2621 {
2622 gold_unreachable();
2623 }
2624
2625 // Allocate an incremental object of the appropriate size and endianness.
2626
2627 Object*
2628 make_sized_incremental_object(
2629 Incremental_binary* ibase,
2630 unsigned int input_file_index,
2631 Incremental_input_type input_type,
2632 const Incremental_binary::Input_reader* input_reader)
2633 {
2634 Object* obj = NULL;
2635 std::string name(input_reader->filename());
2636
2637 switch (parameters->size_and_endianness())
2638 {
2639 #ifdef HAVE_TARGET_32_LITTLE
2640 case Parameters::TARGET_32_LITTLE:
2641 {
2642 Sized_incremental_binary<32, false>* sized_ibase =
2643 static_cast<Sized_incremental_binary<32, false>*>(ibase);
2644 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2645 obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
2646 input_file_index);
2647 else
2648 obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
2649 input_file_index);
2650 }
2651 break;
2652 #endif
2653 #ifdef HAVE_TARGET_32_BIG
2654 case Parameters::TARGET_32_BIG:
2655 {
2656 Sized_incremental_binary<32, true>* sized_ibase =
2657 static_cast<Sized_incremental_binary<32, true>*>(ibase);
2658 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2659 obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
2660 input_file_index);
2661 else
2662 obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
2663 input_file_index);
2664 }
2665 break;
2666 #endif
2667 #ifdef HAVE_TARGET_64_LITTLE
2668 case Parameters::TARGET_64_LITTLE:
2669 {
2670 Sized_incremental_binary<64, false>* sized_ibase =
2671 static_cast<Sized_incremental_binary<64, false>*>(ibase);
2672 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2673 obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
2674 input_file_index);
2675 else
2676 obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
2677 input_file_index);
2678 }
2679 break;
2680 #endif
2681 #ifdef HAVE_TARGET_64_BIG
2682 case Parameters::TARGET_64_BIG:
2683 {
2684 Sized_incremental_binary<64, true>* sized_ibase =
2685 static_cast<Sized_incremental_binary<64, true>*>(ibase);
2686 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2687 obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
2688 input_file_index);
2689 else
2690 obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
2691 input_file_index);
2692 }
2693 break;
2694 #endif
2695 default:
2696 gold_unreachable();
2697 }
2698
2699 gold_assert(obj != NULL);
2700 return obj;
2701 }
2702
2703 // Copy the unused symbols from the incremental input info.
2704 // We need to do this because we may be overwriting the incremental
2705 // input info in the base file before we write the new incremental
2706 // info.
2707 void
2708 Incremental_library::copy_unused_symbols()
2709 {
2710 unsigned int symcount = this->input_reader_->get_unused_symbol_count();
2711 this->unused_symbols_.reserve(symcount);
2712 for (unsigned int i = 0; i < symcount; ++i)
2713 {
2714 std::string name(this->input_reader_->get_unused_symbol(i));
2715 this->unused_symbols_.push_back(name);
2716 }
2717 }
2718
2719 // Iterator for unused global symbols in the library.
2720 void
2721 Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
2722 {
2723 for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
2724 p != this->unused_symbols_.end();
2725 ++p)
2726 v->visit(p->c_str());
2727 }
2728
2729 // Instantiate the templates we need.
2730
2731 #ifdef HAVE_TARGET_32_LITTLE
2732 template
2733 class Sized_incremental_binary<32, false>;
2734
2735 template
2736 class Sized_relobj_incr<32, false>;
2737
2738 template
2739 class Sized_incr_dynobj<32, false>;
2740 #endif
2741
2742 #ifdef HAVE_TARGET_32_BIG
2743 template
2744 class Sized_incremental_binary<32, true>;
2745
2746 template
2747 class Sized_relobj_incr<32, true>;
2748
2749 template
2750 class Sized_incr_dynobj<32, true>;
2751 #endif
2752
2753 #ifdef HAVE_TARGET_64_LITTLE
2754 template
2755 class Sized_incremental_binary<64, false>;
2756
2757 template
2758 class Sized_relobj_incr<64, false>;
2759
2760 template
2761 class Sized_incr_dynobj<64, false>;
2762 #endif
2763
2764 #ifdef HAVE_TARGET_64_BIG
2765 template
2766 class Sized_incremental_binary<64, true>;
2767
2768 template
2769 class Sized_relobj_incr<64, true>;
2770
2771 template
2772 class Sized_incr_dynobj<64, true>;
2773 #endif
2774
2775 } // End namespace gold.
This page took 0.144164 seconds and 5 git commands to generate.