* incremental.cc (Sized_relobj_incr::do_layout): Call
[deliverable/binutils-gdb.git] / gold / incremental.cc
1 // inremental.cc -- incremental linking support for gold
2
3 // Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Mikolaj Zalewski <mikolajz@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <set>
26 #include <cstdarg>
27 #include "libiberty.h"
28
29 #include "elfcpp.h"
30 #include "options.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "incremental.h"
34 #include "archive.h"
35 #include "object.h"
36 #include "output.h"
37 #include "target-select.h"
38 #include "target.h"
39 #include "fileread.h"
40 #include "script.h"
41
42 namespace gold {
43
44 // Version information. Will change frequently during the development, later
45 // we could think about backward (and forward?) compatibility.
46 const unsigned int INCREMENTAL_LINK_VERSION = 1;
47
48 // This class manages the .gnu_incremental_inputs section, which holds
49 // the header information, a directory of input files, and separate
50 // entries for each input file.
51
52 template<int size, bool big_endian>
53 class Output_section_incremental_inputs : public Output_section_data
54 {
55 public:
56 Output_section_incremental_inputs(const Incremental_inputs* inputs,
57 const Symbol_table* symtab)
58 : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
59 { }
60
61 protected:
62 // This is called to update the section size prior to assigning
63 // the address and file offset.
64 void
65 update_data_size()
66 { this->set_final_data_size(); }
67
68 // Set the final data size.
69 void
70 set_final_data_size();
71
72 // Write the data to the file.
73 void
74 do_write(Output_file*);
75
76 // Write to a map file.
77 void
78 do_print_to_mapfile(Mapfile* mapfile) const
79 { mapfile->print_output_data(this, _("** incremental_inputs")); }
80
81 private:
82 // Write the section header.
83 unsigned char*
84 write_header(unsigned char* pov, unsigned int input_file_count,
85 section_offset_type command_line_offset);
86
87 // Write the input file entries.
88 unsigned char*
89 write_input_files(unsigned char* oview, unsigned char* pov,
90 Stringpool* strtab);
91
92 // Write the supplemental information blocks.
93 unsigned char*
94 write_info_blocks(unsigned char* oview, unsigned char* pov,
95 Stringpool* strtab, unsigned int* global_syms,
96 unsigned int global_sym_count);
97
98 // Write the contents of the .gnu_incremental_symtab section.
99 void
100 write_symtab(unsigned char* pov, unsigned int* global_syms,
101 unsigned int global_sym_count);
102
103 // Write the contents of the .gnu_incremental_got_plt section.
104 void
105 write_got_plt(unsigned char* pov, off_t view_size);
106
107 // Typedefs for writing the data to the output sections.
108 typedef elfcpp::Swap<size, big_endian> Swap;
109 typedef elfcpp::Swap<16, big_endian> Swap16;
110 typedef elfcpp::Swap<32, big_endian> Swap32;
111 typedef elfcpp::Swap<64, big_endian> Swap64;
112
113 // Sizes of various structures.
114 static const int sizeof_addr = size / 8;
115 static const int header_size = 16;
116 static const int input_entry_size = 24;
117
118 // The Incremental_inputs object.
119 const Incremental_inputs* inputs_;
120
121 // The symbol table.
122 const Symbol_table* symtab_;
123 };
124
125 // Inform the user why we don't do an incremental link. Not called in
126 // the obvious case of missing output file. TODO: Is this helpful?
127
128 void
129 vexplain_no_incremental(const char* format, va_list args)
130 {
131 char* buf = NULL;
132 if (vasprintf(&buf, format, args) < 0)
133 gold_nomem();
134 gold_info(_("the link might take longer: "
135 "cannot perform incremental link: %s"), buf);
136 free(buf);
137 }
138
139 void
140 explain_no_incremental(const char* format, ...)
141 {
142 va_list args;
143 va_start(args, format);
144 vexplain_no_incremental(format, args);
145 va_end(args);
146 }
147
148 // Report an error.
149
150 void
151 Incremental_binary::error(const char* format, ...) const
152 {
153 va_list args;
154 va_start(args, format);
155 // Current code only checks if the file can be used for incremental linking,
156 // so errors shouldn't fail the build, but only result in a fallback to a
157 // full build.
158 // TODO: when we implement incremental editing of the file, we may need a
159 // flag that will cause errors to be treated seriously.
160 vexplain_no_incremental(format, args);
161 va_end(args);
162 }
163
164 // Find the .gnu_incremental_inputs section and related sections.
165
166 template<int size, bool big_endian>
167 bool
168 Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
169 unsigned int* p_inputs_shndx,
170 unsigned int* p_symtab_shndx,
171 unsigned int* p_relocs_shndx,
172 unsigned int* p_got_plt_shndx,
173 unsigned int* p_strtab_shndx)
174 {
175 unsigned int inputs_shndx =
176 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
177 if (inputs_shndx == elfcpp::SHN_UNDEF) // Not found.
178 return false;
179
180 unsigned int symtab_shndx =
181 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
182 if (symtab_shndx == elfcpp::SHN_UNDEF) // Not found.
183 return false;
184 if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
185 return false;
186
187 unsigned int relocs_shndx =
188 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
189 if (relocs_shndx == elfcpp::SHN_UNDEF) // Not found.
190 return false;
191 if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
192 return false;
193
194 unsigned int got_plt_shndx =
195 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
196 if (got_plt_shndx == elfcpp::SHN_UNDEF) // Not found.
197 return false;
198 if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
199 return false;
200
201 unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
202 if (strtab_shndx == elfcpp::SHN_UNDEF
203 || strtab_shndx > this->elf_file_.shnum()
204 || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
205 return false;
206
207 if (p_inputs_shndx != NULL)
208 *p_inputs_shndx = inputs_shndx;
209 if (p_symtab_shndx != NULL)
210 *p_symtab_shndx = symtab_shndx;
211 if (p_relocs_shndx != NULL)
212 *p_relocs_shndx = relocs_shndx;
213 if (p_got_plt_shndx != NULL)
214 *p_got_plt_shndx = got_plt_shndx;
215 if (p_strtab_shndx != NULL)
216 *p_strtab_shndx = strtab_shndx;
217 return true;
218 }
219
220 // Set up the readers into the incremental info sections.
221
222 template<int size, bool big_endian>
223 void
224 Sized_incremental_binary<size, big_endian>::setup_readers()
225 {
226 unsigned int inputs_shndx;
227 unsigned int symtab_shndx;
228 unsigned int relocs_shndx;
229 unsigned int got_plt_shndx;
230 unsigned int strtab_shndx;
231
232 if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
233 &relocs_shndx, &got_plt_shndx,
234 &strtab_shndx))
235 return;
236
237 Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
238 Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
239 Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
240 Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
241 Location strtab_location(this->elf_file_.section_contents(strtab_shndx));
242
243 View inputs_view = this->view(inputs_location);
244 View symtab_view = this->view(symtab_location);
245 View relocs_view = this->view(relocs_location);
246 View got_plt_view = this->view(got_plt_location);
247 View strtab_view = this->view(strtab_location);
248
249 elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);
250
251 this->inputs_reader_ =
252 Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
253 this->symtab_reader_ =
254 Incremental_symtab_reader<big_endian>(symtab_view.data(),
255 symtab_location.data_size);
256 this->relocs_reader_ =
257 Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
258 relocs_location.data_size);
259 this->got_plt_reader_ =
260 Incremental_got_plt_reader<big_endian>(got_plt_view.data());
261
262 // Find the main symbol table.
263 unsigned int main_symtab_shndx =
264 this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
265 gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
266 this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);
267
268 // Find the main symbol string table.
269 unsigned int main_strtab_shndx =
270 this->elf_file_.section_link(main_symtab_shndx);
271 gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
272 && main_strtab_shndx < this->elf_file_.shnum());
273 this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);
274
275 // Walk the list of input files (a) to setup an Input_reader for each
276 // input file, and (b) to record maps of files added from archive
277 // libraries and scripts.
278 Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
279 unsigned int count = inputs.input_file_count();
280 this->input_objects_.resize(count);
281 this->input_entry_readers_.reserve(count);
282 this->library_map_.resize(count);
283 this->script_map_.resize(count);
284 for (unsigned int i = 0; i < count; i++)
285 {
286 Input_entry_reader input_file = inputs.input_file(i);
287 this->input_entry_readers_.push_back(Sized_input_reader(input_file));
288 switch (input_file.type())
289 {
290 case INCREMENTAL_INPUT_OBJECT:
291 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
292 case INCREMENTAL_INPUT_SHARED_LIBRARY:
293 // No special treatment necessary.
294 break;
295 case INCREMENTAL_INPUT_ARCHIVE:
296 {
297 Incremental_library* lib =
298 new Incremental_library(input_file.filename(), i,
299 &this->input_entry_readers_[i]);
300 this->library_map_[i] = lib;
301 unsigned int member_count = input_file.get_member_count();
302 for (unsigned int j = 0; j < member_count; j++)
303 {
304 int member_offset = input_file.get_member_offset(j);
305 int member_index = inputs.input_file_index(member_offset);
306 this->library_map_[member_index] = lib;
307 }
308 }
309 break;
310 case INCREMENTAL_INPUT_SCRIPT:
311 {
312 Script_info* script = new Script_info(input_file.filename(), i);
313 this->script_map_[i] = script;
314 unsigned int object_count = input_file.get_object_count();
315 for (unsigned int j = 0; j < object_count; j++)
316 {
317 int object_offset = input_file.get_object_offset(j);
318 int object_index = inputs.input_file_index(object_offset);
319 this->script_map_[object_index] = script;
320 }
321 }
322 break;
323 default:
324 gold_unreachable();
325 }
326 }
327
328 // Initialize the map of global symbols.
329 unsigned int nglobals = this->symtab_reader_.symbol_count();
330 this->symbol_map_.resize(nglobals);
331
332 this->has_incremental_info_ = true;
333 }
334
335 // Walk the list of input files given on the command line, and build
336 // a direct map of file index to the corresponding input argument.
337
338 void
339 check_input_args(std::vector<const Input_argument*>& input_args_map,
340 Input_arguments::const_iterator begin,
341 Input_arguments::const_iterator end)
342 {
343 for (Input_arguments::const_iterator p = begin;
344 p != end;
345 ++p)
346 {
347 if (p->is_group())
348 {
349 const Input_file_group* group = p->group();
350 check_input_args(input_args_map, group->begin(), group->end());
351 }
352 else if (p->is_lib())
353 {
354 const Input_file_lib* lib = p->lib();
355 check_input_args(input_args_map, lib->begin(), lib->end());
356 }
357 else
358 {
359 gold_assert(p->is_file());
360 unsigned int arg_serial = p->file().arg_serial();
361 if (arg_serial > 0)
362 {
363 gold_assert(arg_serial <= input_args_map.size());
364 gold_assert(input_args_map[arg_serial - 1] == 0);
365 input_args_map[arg_serial - 1] = &*p;
366 }
367 }
368 }
369 }
370
371 // Determine whether an incremental link based on the existing output file
372 // can be done.
373
374 template<int size, bool big_endian>
375 bool
376 Sized_incremental_binary<size, big_endian>::do_check_inputs(
377 const Command_line& cmdline,
378 Incremental_inputs* incremental_inputs)
379 {
380 Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
381
382 if (!this->has_incremental_info_)
383 {
384 explain_no_incremental(_("no incremental data from previous build"));
385 return false;
386 }
387
388 if (inputs.version() != INCREMENTAL_LINK_VERSION)
389 {
390 explain_no_incremental(_("different version of incremental build data"));
391 return false;
392 }
393
394 if (incremental_inputs->command_line() != inputs.command_line())
395 {
396 gold_debug(DEBUG_INCREMENTAL,
397 "old command line: %s",
398 inputs.command_line());
399 gold_debug(DEBUG_INCREMENTAL,
400 "new command line: %s",
401 incremental_inputs->command_line().c_str());
402 explain_no_incremental(_("command line changed"));
403 return false;
404 }
405
406 // Walk the list of input files given on the command line, and build
407 // a direct map of argument serial numbers to the corresponding input
408 // arguments.
409 this->input_args_map_.resize(cmdline.number_of_input_files());
410 check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());
411
412 // Walk the list of input files to check for conditions that prevent
413 // an incremental update link.
414 unsigned int count = inputs.input_file_count();
415 for (unsigned int i = 0; i < count; i++)
416 {
417 Input_entry_reader input_file = inputs.input_file(i);
418 switch (input_file.type())
419 {
420 case INCREMENTAL_INPUT_OBJECT:
421 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
422 case INCREMENTAL_INPUT_SHARED_LIBRARY:
423 case INCREMENTAL_INPUT_ARCHIVE:
424 // No special treatment necessary.
425 break;
426 case INCREMENTAL_INPUT_SCRIPT:
427 if (this->do_file_has_changed(i))
428 {
429 explain_no_incremental(_("%s: script file changed"),
430 input_file.filename());
431 return false;
432 }
433 break;
434 default:
435 gold_unreachable();
436 }
437 }
438
439 return true;
440 }
441
442 // Return TRUE if input file N has changed since the last incremental link.
443
444 template<int size, bool big_endian>
445 bool
446 Sized_incremental_binary<size, big_endian>::do_file_has_changed(
447 unsigned int n) const
448 {
449 Input_entry_reader input_file = this->inputs_reader_.input_file(n);
450 Incremental_disposition disp = INCREMENTAL_CHECK;
451
452 // For files named in scripts, find the file that was actually named
453 // on the command line, so that we can get the incremental disposition
454 // flag.
455 Script_info* script = this->get_script_info(n);
456 if (script != NULL)
457 n = script->input_file_index();
458
459 const Input_argument* input_argument = this->get_input_argument(n);
460 if (input_argument != NULL)
461 disp = input_argument->file().options().incremental_disposition();
462
463 // For files at the beginning of the command line (i.e., those added
464 // implicitly by gcc), check whether the --incremental-startup-unchanged
465 // option was used.
466 if (disp == INCREMENTAL_STARTUP)
467 disp = parameters->options().incremental_startup_disposition();
468
469 if (disp != INCREMENTAL_CHECK)
470 return disp == INCREMENTAL_CHANGED;
471
472 const char* filename = input_file.filename();
473 Timespec old_mtime = input_file.get_mtime();
474 Timespec new_mtime;
475 if (!get_mtime(filename, &new_mtime))
476 {
477 // If we can't open get the current modification time, assume it has
478 // changed. If the file doesn't exist, we'll issue an error when we
479 // try to open it later.
480 return true;
481 }
482
483 if (new_mtime.seconds > old_mtime.seconds)
484 return true;
485 if (new_mtime.seconds == old_mtime.seconds
486 && new_mtime.nanoseconds > old_mtime.nanoseconds)
487 return true;
488 return false;
489 }
490
491 // Initialize the layout of the output file based on the existing
492 // output file.
493
494 template<int size, bool big_endian>
495 void
496 Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
497 {
498 typedef elfcpp::Shdr<size, big_endian> Shdr;
499 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
500
501 // Get views of the section headers and the section string table.
502 const off_t shoff = this->elf_file_.shoff();
503 const unsigned int shnum = this->elf_file_.shnum();
504 const unsigned int shstrndx = this->elf_file_.shstrndx();
505 Location shdrs_location(shoff, shnum * shdr_size);
506 Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
507 View shdrs_view = this->view(shdrs_location);
508 View shstrndx_view = this->view(shstrndx_location);
509 elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
510 shstrndx_location.data_size);
511
512 layout->set_incremental_base(this);
513
514 // Initialize the layout.
515 this->section_map_.resize(shnum);
516 const unsigned char* pshdr = shdrs_view.data() + shdr_size;
517 for (unsigned int i = 1; i < shnum; i++)
518 {
519 Shdr shdr(pshdr);
520 const char* name;
521 if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
522 name = NULL;
523 gold_debug(DEBUG_INCREMENTAL,
524 "Output section: %2d %08lx %08lx %08lx %3d %s",
525 i,
526 static_cast<long>(shdr.get_sh_addr()),
527 static_cast<long>(shdr.get_sh_offset()),
528 static_cast<long>(shdr.get_sh_size()),
529 shdr.get_sh_type(), name ? name : "<null>");
530 this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
531 pshdr += shdr_size;
532 }
533 }
534
535 // Mark regions of the input file that must be kept unchanged.
536
537 template<int size, bool big_endian>
538 void
539 Sized_incremental_binary<size, big_endian>::do_reserve_layout(
540 unsigned int input_file_index)
541 {
542 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
543
544 Input_entry_reader input_file =
545 this->inputs_reader_.input_file(input_file_index);
546
547 if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
548 {
549 // Reserve the BSS space used for COPY relocations.
550 unsigned int nsyms = input_file.get_global_symbol_count();
551 Incremental_binary::View symtab_view(NULL);
552 unsigned int symtab_count;
553 elfcpp::Elf_strtab strtab(NULL, 0);
554 this->get_symtab_view(&symtab_view, &symtab_count, &strtab);
555 for (unsigned int i = 0; i < nsyms; ++i)
556 {
557 bool is_def;
558 bool is_copy;
559 unsigned int output_symndx =
560 input_file.get_output_symbol_index(i, &is_def, &is_copy);
561 if (is_copy)
562 {
563 const unsigned char* sym_p = (symtab_view.data()
564 + output_symndx * sym_size);
565 elfcpp::Sym<size, big_endian> gsym(sym_p);
566 unsigned int shndx = gsym.get_st_shndx();
567 if (shndx < 1 || shndx >= this->section_map_.size())
568 continue;
569 Output_section* os = this->section_map_[shndx];
570 off_t offset = gsym.get_st_value() - os->address();
571 os->reserve(offset, gsym.get_st_size());
572 gold_debug(DEBUG_INCREMENTAL,
573 "Reserve for COPY reloc: %s, off %d, size %d",
574 os->name(),
575 static_cast<int>(offset),
576 static_cast<int>(gsym.get_st_size()));
577 }
578 }
579 return;
580 }
581
582 unsigned int shnum = input_file.get_input_section_count();
583 for (unsigned int i = 0; i < shnum; i++)
584 {
585 typename Input_entry_reader::Input_section_info sect =
586 input_file.get_input_section(i);
587 if (sect.output_shndx == 0 || sect.sh_offset == -1)
588 continue;
589 Output_section* os = this->section_map_[sect.output_shndx];
590 gold_assert(os != NULL);
591 os->reserve(sect.sh_offset, sect.sh_size);
592 }
593 }
594
595 // Process the GOT and PLT entries from the existing output file.
596
597 template<int size, bool big_endian>
598 void
599 Sized_incremental_binary<size, big_endian>::do_process_got_plt(
600 Symbol_table* symtab,
601 Layout* layout)
602 {
603 Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
604 Sized_target<size, big_endian>* target =
605 parameters->sized_target<size, big_endian>();
606
607 // Get the number of symbols in the main symbol table and in the
608 // incremental symbol table. The difference between the two counts
609 // is the index of the first forced-local or global symbol in the
610 // main symbol table.
611 unsigned int symtab_count =
612 this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
613 unsigned int isym_count = this->symtab_reader_.symbol_count();
614 unsigned int first_global = symtab_count - isym_count;
615
616 // Tell the target how big the GOT and PLT sections are.
617 unsigned int got_count = got_plt_reader.get_got_entry_count();
618 unsigned int plt_count = got_plt_reader.get_plt_entry_count();
619 Output_data_got<size, big_endian>* got =
620 target->init_got_plt_for_update(symtab, layout, got_count, plt_count);
621
622 // Read the GOT entries from the base file and build the outgoing GOT.
623 for (unsigned int i = 0; i < got_count; ++i)
624 {
625 unsigned int got_type = got_plt_reader.get_got_type(i);
626 if ((got_type & 0x7f) == 0x7f)
627 {
628 // This is the second entry of a pair.
629 got->reserve_slot(i);
630 continue;
631 }
632 unsigned int symndx = got_plt_reader.get_got_symndx(i);
633 if (got_type & 0x80)
634 {
635 // This is an entry for a local symbol. Ignore this entry if
636 // the object file was replaced.
637 unsigned int input_index = got_plt_reader.get_got_input_index(i);
638 gold_debug(DEBUG_INCREMENTAL,
639 "GOT entry %d, type %02x: (local symbol)",
640 i, got_type & 0x7f);
641 Sized_relobj_incr<size, big_endian>* obj =
642 this->input_object(input_index);
643 if (obj != NULL)
644 target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
645 }
646 else
647 {
648 // This is an entry for a global symbol. GOT_DESC is the symbol
649 // table index.
650 // FIXME: This should really be a fatal error (corrupt input).
651 gold_assert(symndx >= first_global && symndx < symtab_count);
652 Symbol* sym = this->global_symbol(symndx - first_global);
653 // Add the GOT entry only if the symbol is still referenced.
654 if (sym != NULL && sym->in_reg())
655 {
656 gold_debug(DEBUG_INCREMENTAL,
657 "GOT entry %d, type %02x: %s",
658 i, got_type, sym->name());
659 target->reserve_global_got_entry(i, sym, got_type);
660 }
661 }
662 }
663
664 // Read the PLT entries from the base file and pass each to the target.
665 for (unsigned int i = 0; i < plt_count; ++i)
666 {
667 unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
668 // FIXME: This should really be a fatal error (corrupt input).
669 gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
670 Symbol* sym = this->global_symbol(plt_desc - first_global);
671 // Add the PLT entry only if the symbol is still referenced.
672 if (sym->in_reg())
673 {
674 gold_debug(DEBUG_INCREMENTAL,
675 "PLT entry %d: %s",
676 i, sym->name());
677 target->register_global_plt_entry(symtab, layout, i, sym);
678 }
679 }
680 }
681
682 // Emit COPY relocations from the existing output file.
683
684 template<int size, bool big_endian>
685 void
686 Sized_incremental_binary<size, big_endian>::do_emit_copy_relocs(
687 Symbol_table* symtab)
688 {
689 Sized_target<size, big_endian>* target =
690 parameters->sized_target<size, big_endian>();
691
692 for (typename Copy_relocs::iterator p = this->copy_relocs_.begin();
693 p != this->copy_relocs_.end();
694 ++p)
695 {
696 if (!(*p).symbol->is_copied_from_dynobj())
697 target->emit_copy_reloc(symtab, (*p).symbol, (*p).output_section,
698 (*p).offset);
699 }
700 }
701
702 // Apply incremental relocations for symbols whose values have changed.
703
704 template<int size, bool big_endian>
705 void
706 Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
707 const Symbol_table* symtab,
708 Layout* layout,
709 Output_file* of)
710 {
711 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
712 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
713 Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
714 Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
715 unsigned int nglobals = isymtab.symbol_count();
716 const unsigned int incr_reloc_size = irelocs.reloc_size;
717
718 Relocate_info<size, big_endian> relinfo;
719 relinfo.symtab = symtab;
720 relinfo.layout = layout;
721 relinfo.object = NULL;
722 relinfo.reloc_shndx = 0;
723 relinfo.reloc_shdr = NULL;
724 relinfo.data_shndx = 0;
725 relinfo.data_shdr = NULL;
726
727 Sized_target<size, big_endian>* target =
728 parameters->sized_target<size, big_endian>();
729
730 for (unsigned int i = 0; i < nglobals; i++)
731 {
732 const Symbol* gsym = this->global_symbol(i);
733
734 // If the symbol is not referenced from any unchanged input files,
735 // we do not need to reapply any of its relocations.
736 if (gsym == NULL)
737 continue;
738
739 // If the symbol is defined in an unchanged file, we do not need to
740 // reapply any of its relocations.
741 if (gsym->source() == Symbol::FROM_OBJECT
742 && gsym->object()->is_incremental())
743 continue;
744
745 gold_debug(DEBUG_INCREMENTAL,
746 "Applying incremental relocations for global symbol %s [%d]",
747 gsym->name(), i);
748
749 // Follow the linked list of input symbol table entries for this symbol.
750 // We don't bother to figure out whether the symbol table entry belongs
751 // to a changed or unchanged file because it's easier just to apply all
752 // the relocations -- although we might scribble over an area that has
753 // been reallocated, we do this before copying any new data into the
754 // output file.
755 unsigned int offset = isymtab.get_list_head(i);
756 while (offset > 0)
757 {
758 Incremental_global_symbol_reader<big_endian> sym_info =
759 this->inputs_reader().global_symbol_reader_at_offset(offset);
760 unsigned int r_base = sym_info.reloc_offset();
761 unsigned int r_count = sym_info.reloc_count();
762
763 // Apply each relocation for this symbol table entry.
764 for (unsigned int j = 0; j < r_count;
765 ++j, r_base += incr_reloc_size)
766 {
767 unsigned int r_type = irelocs.get_r_type(r_base);
768 unsigned int r_shndx = irelocs.get_r_shndx(r_base);
769 Address r_offset = irelocs.get_r_offset(r_base);
770 Addend r_addend = irelocs.get_r_addend(r_base);
771 Output_section* os = this->output_section(r_shndx);
772 Address address = os->address();
773 off_t section_offset = os->offset();
774 size_t view_size = os->data_size();
775 unsigned char* const view = of->get_output_view(section_offset,
776 view_size);
777
778 gold_debug(DEBUG_INCREMENTAL,
779 " %08lx: %s + %d: type %d addend %ld",
780 (long)(section_offset + r_offset),
781 os->name(),
782 (int)r_offset,
783 r_type,
784 (long)r_addend);
785
786 target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
787 gsym, view, address, view_size);
788
789 // FIXME: Do something more efficient if write_output_view
790 // ever becomes more than a no-op.
791 of->write_output_view(section_offset, view_size, view);
792 }
793 offset = sym_info.next_offset();
794 }
795 }
796 }
797
798 // Get a view of the main symbol table and the symbol string table.
799
800 template<int size, bool big_endian>
801 void
802 Sized_incremental_binary<size, big_endian>::get_symtab_view(
803 View* symtab_view,
804 unsigned int* nsyms,
805 elfcpp::Elf_strtab* strtab)
806 {
807 *symtab_view = this->view(this->main_symtab_loc_);
808 *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
809
810 View strtab_view(this->view(this->main_strtab_loc_));
811 *strtab = elfcpp::Elf_strtab(strtab_view.data(),
812 this->main_strtab_loc_.data_size);
813 }
814
815 namespace
816 {
817
818 // Create a Sized_incremental_binary object of the specified size and
819 // endianness. Fails if the target architecture is not supported.
820
821 template<int size, bool big_endian>
822 Incremental_binary*
823 make_sized_incremental_binary(Output_file* file,
824 const elfcpp::Ehdr<size, big_endian>& ehdr)
825 {
826 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
827 ehdr.get_e_ident()[elfcpp::EI_OSABI],
828 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
829 if (target == NULL)
830 {
831 explain_no_incremental(_("unsupported ELF machine number %d"),
832 ehdr.get_e_machine());
833 return NULL;
834 }
835
836 if (!parameters->target_valid())
837 set_parameters_target(target);
838 else if (target != &parameters->target())
839 gold_error(_("%s: incompatible target"), file->filename());
840
841 return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
842 }
843
844 } // End of anonymous namespace.
845
846 // Create an Incremental_binary object for FILE. Returns NULL is this is not
847 // possible, e.g. FILE is not an ELF file or has an unsupported target. FILE
848 // should be opened.
849
850 Incremental_binary*
851 open_incremental_binary(Output_file* file)
852 {
853 off_t filesize = file->filesize();
854 int want = elfcpp::Elf_recognizer::max_header_size;
855 if (filesize < want)
856 want = filesize;
857
858 const unsigned char* p = file->get_input_view(0, want);
859 if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
860 {
861 explain_no_incremental(_("output is not an ELF file."));
862 return NULL;
863 }
864
865 int size = 0;
866 bool big_endian = false;
867 std::string error;
868 if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
869 &error))
870 {
871 explain_no_incremental(error.c_str());
872 return NULL;
873 }
874
875 Incremental_binary* result = NULL;
876 if (size == 32)
877 {
878 if (big_endian)
879 {
880 #ifdef HAVE_TARGET_32_BIG
881 result = make_sized_incremental_binary<32, true>(
882 file, elfcpp::Ehdr<32, true>(p));
883 #else
884 explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
885 #endif
886 }
887 else
888 {
889 #ifdef HAVE_TARGET_32_LITTLE
890 result = make_sized_incremental_binary<32, false>(
891 file, elfcpp::Ehdr<32, false>(p));
892 #else
893 explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
894 #endif
895 }
896 }
897 else if (size == 64)
898 {
899 if (big_endian)
900 {
901 #ifdef HAVE_TARGET_64_BIG
902 result = make_sized_incremental_binary<64, true>(
903 file, elfcpp::Ehdr<64, true>(p));
904 #else
905 explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
906 #endif
907 }
908 else
909 {
910 #ifdef HAVE_TARGET_64_LITTLE
911 result = make_sized_incremental_binary<64, false>(
912 file, elfcpp::Ehdr<64, false>(p));
913 #else
914 explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
915 #endif
916 }
917 }
918 else
919 gold_unreachable();
920
921 return result;
922 }
923
924 // Class Incremental_inputs.
925
926 // Add the command line to the string table, setting
927 // command_line_key_. In incremental builds, the command line is
928 // stored in .gnu_incremental_inputs so that the next linker run can
929 // check if the command line options didn't change.
930
931 void
932 Incremental_inputs::report_command_line(int argc, const char* const* argv)
933 {
934 // Always store 'gold' as argv[0] to avoid a full relink if the user used a
935 // different path to the linker.
936 std::string args("gold");
937 // Copied from collect_argv in main.cc.
938 for (int i = 1; i < argc; ++i)
939 {
940 // Adding/removing these options should not result in a full relink.
941 if (strcmp(argv[i], "--incremental") == 0
942 || strcmp(argv[i], "--incremental-full") == 0
943 || strcmp(argv[i], "--incremental-update") == 0
944 || strcmp(argv[i], "--incremental-changed") == 0
945 || strcmp(argv[i], "--incremental-unchanged") == 0
946 || strcmp(argv[i], "--incremental-unknown") == 0
947 || strcmp(argv[i], "--incremental-startup-unchanged") == 0
948 || is_prefix_of("--incremental-base=", argv[i])
949 || is_prefix_of("--incremental-patch=", argv[i])
950 || is_prefix_of("--debug=", argv[i]))
951 continue;
952 if (strcmp(argv[i], "--incremental-base") == 0
953 || strcmp(argv[i], "--incremental-patch") == 0
954 || strcmp(argv[i], "--debug") == 0)
955 {
956 // When these options are used without the '=', skip the
957 // following parameter as well.
958 ++i;
959 continue;
960 }
961
962 args.append(" '");
963 // Now append argv[i], but with all single-quotes escaped
964 const char* argpos = argv[i];
965 while (1)
966 {
967 const int len = strcspn(argpos, "'");
968 args.append(argpos, len);
969 if (argpos[len] == '\0')
970 break;
971 args.append("'\"'\"'");
972 argpos += len + 1;
973 }
974 args.append("'");
975 }
976
977 this->command_line_ = args;
978 this->strtab_->add(this->command_line_.c_str(), false,
979 &this->command_line_key_);
980 }
981
982 // Record the input archive file ARCHIVE. This is called by the
983 // Add_archive_symbols task before determining which archive members
984 // to include. We create the Incremental_archive_entry here and
985 // attach it to the Archive, but we do not add it to the list of
986 // input objects until report_archive_end is called.
987
988 void
989 Incremental_inputs::report_archive_begin(Library_base* arch,
990 unsigned int arg_serial,
991 Script_info* script_info)
992 {
993 Stringpool::Key filename_key;
994 Timespec mtime = arch->get_mtime();
995
996 // For a file loaded from a script, don't record its argument serial number.
997 if (script_info != NULL)
998 arg_serial = 0;
999
1000 this->strtab_->add(arch->filename().c_str(), false, &filename_key);
1001 Incremental_archive_entry* entry =
1002 new Incremental_archive_entry(filename_key, arg_serial, mtime);
1003 arch->set_incremental_info(entry);
1004
1005 if (script_info != NULL)
1006 {
1007 Incremental_script_entry* script_entry = script_info->incremental_info();
1008 gold_assert(script_entry != NULL);
1009 script_entry->add_object(entry);
1010 }
1011 }
1012
1013 // Visitor class for processing the unused global symbols in a library.
1014 // An instance of this class is passed to the library's
1015 // for_all_unused_symbols() iterator, which will call the visit()
1016 // function for each global symbol defined in each unused library
1017 // member. We add those symbol names to the incremental info for the
1018 // library.
1019
1020 class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
1021 {
1022 public:
1023 Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
1024 : entry_(entry), strtab_(strtab)
1025 { }
1026
1027 void
1028 visit(const char* sym)
1029 {
1030 Stringpool::Key symbol_key;
1031 this->strtab_->add(sym, true, &symbol_key);
1032 this->entry_->add_unused_global_symbol(symbol_key);
1033 }
1034
1035 private:
1036 Incremental_archive_entry* entry_;
1037 Stringpool* strtab_;
1038 };
1039
1040 // Finish recording the input archive file ARCHIVE. This is called by the
1041 // Add_archive_symbols task after determining which archive members
1042 // to include.
1043
1044 void
1045 Incremental_inputs::report_archive_end(Library_base* arch)
1046 {
1047 Incremental_archive_entry* entry = arch->incremental_info();
1048
1049 gold_assert(entry != NULL);
1050 this->inputs_.push_back(entry);
1051
1052 // Collect unused global symbols.
1053 Unused_symbol_visitor v(entry, this->strtab_);
1054 arch->for_all_unused_symbols(&v);
1055 }
1056
1057 // Record the input object file OBJ. If ARCH is not NULL, attach
1058 // the object file to the archive. This is called by the
1059 // Add_symbols task after finding out the type of the file.
1060
1061 void
1062 Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
1063 Library_base* arch, Script_info* script_info)
1064 {
1065 Stringpool::Key filename_key;
1066 Timespec mtime = obj->get_mtime();
1067
1068 // For a file loaded from a script, don't record its argument serial number.
1069 if (script_info != NULL)
1070 arg_serial = 0;
1071
1072 this->strtab_->add(obj->name().c_str(), false, &filename_key);
1073
1074 Incremental_input_entry* input_entry;
1075
1076 this->current_object_ = obj;
1077
1078 if (!obj->is_dynamic())
1079 {
1080 this->current_object_entry_ =
1081 new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
1082 input_entry = this->current_object_entry_;
1083 if (arch != NULL)
1084 {
1085 Incremental_archive_entry* arch_entry = arch->incremental_info();
1086 gold_assert(arch_entry != NULL);
1087 arch_entry->add_object(this->current_object_entry_);
1088 }
1089 }
1090 else
1091 {
1092 this->current_object_entry_ = NULL;
1093 Stringpool::Key soname_key;
1094 Dynobj* dynobj = obj->dynobj();
1095 gold_assert(dynobj != NULL);
1096 this->strtab_->add(dynobj->soname(), false, &soname_key);
1097 input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
1098 arg_serial, mtime);
1099 }
1100
1101 if (obj->is_in_system_directory())
1102 input_entry->set_is_in_system_directory();
1103
1104 if (obj->as_needed())
1105 input_entry->set_as_needed();
1106
1107 this->inputs_.push_back(input_entry);
1108
1109 if (script_info != NULL)
1110 {
1111 Incremental_script_entry* script_entry = script_info->incremental_info();
1112 gold_assert(script_entry != NULL);
1113 script_entry->add_object(input_entry);
1114 }
1115 }
1116
1117 // Record an input section SHNDX from object file OBJ.
1118
1119 void
1120 Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
1121 const char* name, off_t sh_size)
1122 {
1123 Stringpool::Key key = 0;
1124
1125 if (name != NULL)
1126 this->strtab_->add(name, true, &key);
1127
1128 gold_assert(obj == this->current_object_);
1129 gold_assert(this->current_object_entry_ != NULL);
1130 this->current_object_entry_->add_input_section(shndx, key, sh_size);
1131 }
1132
1133 // Record a kept COMDAT group belonging to object file OBJ.
1134
1135 void
1136 Incremental_inputs::report_comdat_group(Object* obj, const char* name)
1137 {
1138 Stringpool::Key key = 0;
1139
1140 if (name != NULL)
1141 this->strtab_->add(name, true, &key);
1142 gold_assert(obj == this->current_object_);
1143 gold_assert(this->current_object_entry_ != NULL);
1144 this->current_object_entry_->add_comdat_group(key);
1145 }
1146
1147 // Record that the input argument INPUT is a script SCRIPT. This is
1148 // called by read_script after parsing the script and reading the list
1149 // of inputs added by this script.
1150
1151 void
1152 Incremental_inputs::report_script(Script_info* script,
1153 unsigned int arg_serial,
1154 Timespec mtime)
1155 {
1156 Stringpool::Key filename_key;
1157
1158 this->strtab_->add(script->filename().c_str(), false, &filename_key);
1159 Incremental_script_entry* entry =
1160 new Incremental_script_entry(filename_key, arg_serial, script, mtime);
1161 this->inputs_.push_back(entry);
1162 script->set_incremental_info(entry);
1163 }
1164
1165 // Finalize the incremental link information. Called from
1166 // Layout::finalize.
1167
1168 void
1169 Incremental_inputs::finalize()
1170 {
1171 // Finalize the string table.
1172 this->strtab_->set_string_offsets();
1173 }
1174
1175 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
1176
1177 void
1178 Incremental_inputs::create_data_sections(Symbol_table* symtab)
1179 {
1180 switch (parameters->size_and_endianness())
1181 {
1182 #ifdef HAVE_TARGET_32_LITTLE
1183 case Parameters::TARGET_32_LITTLE:
1184 this->inputs_section_ =
1185 new Output_section_incremental_inputs<32, false>(this, symtab);
1186 break;
1187 #endif
1188 #ifdef HAVE_TARGET_32_BIG
1189 case Parameters::TARGET_32_BIG:
1190 this->inputs_section_ =
1191 new Output_section_incremental_inputs<32, true>(this, symtab);
1192 break;
1193 #endif
1194 #ifdef HAVE_TARGET_64_LITTLE
1195 case Parameters::TARGET_64_LITTLE:
1196 this->inputs_section_ =
1197 new Output_section_incremental_inputs<64, false>(this, symtab);
1198 break;
1199 #endif
1200 #ifdef HAVE_TARGET_64_BIG
1201 case Parameters::TARGET_64_BIG:
1202 this->inputs_section_ =
1203 new Output_section_incremental_inputs<64, true>(this, symtab);
1204 break;
1205 #endif
1206 default:
1207 gold_unreachable();
1208 }
1209 this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
1210 this->relocs_section_ = new Output_data_space(4, "** incremental_relocs");
1211 this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
1212 }
1213
1214 // Return the sh_entsize value for the .gnu_incremental_relocs section.
1215 unsigned int
1216 Incremental_inputs::relocs_entsize() const
1217 {
1218 return 8 + 2 * parameters->target().get_size() / 8;
1219 }
1220
1221 // Class Output_section_incremental_inputs.
1222
1223 // Finalize the offsets for each input section and supplemental info block,
1224 // and set the final data size of the incremental output sections.
1225
1226 template<int size, bool big_endian>
1227 void
1228 Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
1229 {
1230 const Incremental_inputs* inputs = this->inputs_;
1231 const unsigned int sizeof_addr = size / 8;
1232 const unsigned int rel_size = 8 + 2 * sizeof_addr;
1233
1234 // Offset of each input entry.
1235 unsigned int input_offset = this->header_size;
1236
1237 // Offset of each supplemental info block.
1238 unsigned int file_index = 0;
1239 unsigned int info_offset = this->header_size;
1240 info_offset += this->input_entry_size * inputs->input_file_count();
1241
1242 // Count each input file and its supplemental information block.
1243 for (Incremental_inputs::Input_list::const_iterator p =
1244 inputs->input_files().begin();
1245 p != inputs->input_files().end();
1246 ++p)
1247 {
1248 // Set the index and offset of the input file entry.
1249 (*p)->set_offset(file_index, input_offset);
1250 ++file_index;
1251 input_offset += this->input_entry_size;
1252
1253 // Set the offset of the supplemental info block.
1254 switch ((*p)->type())
1255 {
1256 case INCREMENTAL_INPUT_SCRIPT:
1257 {
1258 Incremental_script_entry *entry = (*p)->script_entry();
1259 gold_assert(entry != NULL);
1260 (*p)->set_info_offset(info_offset);
1261 // Object count.
1262 info_offset += 4;
1263 // Each member.
1264 info_offset += (entry->get_object_count() * 4);
1265 }
1266 break;
1267 case INCREMENTAL_INPUT_OBJECT:
1268 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1269 {
1270 Incremental_object_entry* entry = (*p)->object_entry();
1271 gold_assert(entry != NULL);
1272 (*p)->set_info_offset(info_offset);
1273 // Input section count, global symbol count, local symbol offset,
1274 // local symbol count, first dynamic reloc, dynamic reloc count,
1275 // comdat group count.
1276 info_offset += 28;
1277 // Each input section.
1278 info_offset += (entry->get_input_section_count()
1279 * (8 + 2 * sizeof_addr));
1280 // Each global symbol.
1281 const Object::Symbols* syms = entry->object()->get_global_symbols();
1282 info_offset += syms->size() * 20;
1283 // Each comdat group.
1284 info_offset += entry->get_comdat_group_count() * 4;
1285 }
1286 break;
1287 case INCREMENTAL_INPUT_SHARED_LIBRARY:
1288 {
1289 Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1290 gold_assert(entry != NULL);
1291 (*p)->set_info_offset(info_offset);
1292 // Global symbol count, soname index.
1293 info_offset += 8;
1294 // Each global symbol.
1295 const Object::Symbols* syms = entry->object()->get_global_symbols();
1296 gold_assert(syms != NULL);
1297 unsigned int nsyms = syms->size();
1298 unsigned int nsyms_out = 0;
1299 for (unsigned int i = 0; i < nsyms; ++i)
1300 {
1301 const Symbol* sym = (*syms)[i];
1302 if (sym == NULL)
1303 continue;
1304 if (sym->is_forwarder())
1305 sym = this->symtab_->resolve_forwards(sym);
1306 if (sym->symtab_index() != -1U)
1307 ++nsyms_out;
1308 }
1309 info_offset += nsyms_out * 4;
1310 }
1311 break;
1312 case INCREMENTAL_INPUT_ARCHIVE:
1313 {
1314 Incremental_archive_entry* entry = (*p)->archive_entry();
1315 gold_assert(entry != NULL);
1316 (*p)->set_info_offset(info_offset);
1317 // Member count + unused global symbol count.
1318 info_offset += 8;
1319 // Each member.
1320 info_offset += (entry->get_member_count() * 4);
1321 // Each global symbol.
1322 info_offset += (entry->get_unused_global_symbol_count() * 4);
1323 }
1324 break;
1325 default:
1326 gold_unreachable();
1327 }
1328 }
1329
1330 this->set_data_size(info_offset);
1331
1332 // Set the size of the .gnu_incremental_symtab section.
1333 inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
1334 * sizeof(unsigned int));
1335
1336 // Set the size of the .gnu_incremental_relocs section.
1337 inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
1338 * rel_size);
1339
1340 // Set the size of the .gnu_incremental_got_plt section.
1341 Sized_target<size, big_endian>* target =
1342 parameters->sized_target<size, big_endian>();
1343 unsigned int got_count = target->got_entry_count();
1344 unsigned int plt_count = target->plt_entry_count();
1345 unsigned int got_plt_size = 8; // GOT entry count, PLT entry count.
1346 got_plt_size = (got_plt_size + got_count + 3) & ~3; // GOT type array.
1347 got_plt_size += got_count * 8 + plt_count * 4; // GOT array, PLT array.
1348 inputs->got_plt_section()->set_current_data_size(got_plt_size);
1349 }
1350
1351 // Write the contents of the .gnu_incremental_inputs and
1352 // .gnu_incremental_symtab sections.
1353
1354 template<int size, bool big_endian>
1355 void
1356 Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
1357 {
1358 const Incremental_inputs* inputs = this->inputs_;
1359 Stringpool* strtab = inputs->get_stringpool();
1360
1361 // Get a view into the .gnu_incremental_inputs section.
1362 const off_t off = this->offset();
1363 const off_t oview_size = this->data_size();
1364 unsigned char* const oview = of->get_output_view(off, oview_size);
1365 unsigned char* pov = oview;
1366
1367 // Get a view into the .gnu_incremental_symtab section.
1368 const off_t symtab_off = inputs->symtab_section()->offset();
1369 const off_t symtab_size = inputs->symtab_section()->data_size();
1370 unsigned char* const symtab_view = of->get_output_view(symtab_off,
1371 symtab_size);
1372
1373 // Allocate an array of linked list heads for the .gnu_incremental_symtab
1374 // section. Each element corresponds to a global symbol in the output
1375 // symbol table, and points to the head of the linked list that threads
1376 // through the object file input entries. The value of each element
1377 // is the section-relative offset to a global symbol entry in a
1378 // supplemental information block.
1379 unsigned int global_sym_count = this->symtab_->output_count();
1380 unsigned int* global_syms = new unsigned int[global_sym_count];
1381 memset(global_syms, 0, global_sym_count * sizeof(unsigned int));
1382
1383 // Write the section header.
1384 Stringpool::Key command_line_key = inputs->command_line_key();
1385 pov = this->write_header(pov, inputs->input_file_count(),
1386 strtab->get_offset_from_key(command_line_key));
1387
1388 // Write the list of input files.
1389 pov = this->write_input_files(oview, pov, strtab);
1390
1391 // Write the supplemental information blocks for each input file.
1392 pov = this->write_info_blocks(oview, pov, strtab, global_syms,
1393 global_sym_count);
1394
1395 gold_assert(pov - oview == oview_size);
1396
1397 // Write the .gnu_incremental_symtab section.
1398 gold_assert(global_sym_count * 4 == symtab_size);
1399 this->write_symtab(symtab_view, global_syms, global_sym_count);
1400
1401 delete[] global_syms;
1402
1403 // Write the .gnu_incremental_got_plt section.
1404 const off_t got_plt_off = inputs->got_plt_section()->offset();
1405 const off_t got_plt_size = inputs->got_plt_section()->data_size();
1406 unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
1407 got_plt_size);
1408 this->write_got_plt(got_plt_view, got_plt_size);
1409
1410 of->write_output_view(off, oview_size, oview);
1411 of->write_output_view(symtab_off, symtab_size, symtab_view);
1412 of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
1413 }
1414
1415 // Write the section header: version, input file count, offset of command line
1416 // in the string table, and 4 bytes of padding.
1417
1418 template<int size, bool big_endian>
1419 unsigned char*
1420 Output_section_incremental_inputs<size, big_endian>::write_header(
1421 unsigned char* pov,
1422 unsigned int input_file_count,
1423 section_offset_type command_line_offset)
1424 {
1425 Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
1426 Swap32::writeval(pov + 4, input_file_count);
1427 Swap32::writeval(pov + 8, command_line_offset);
1428 Swap32::writeval(pov + 12, 0);
1429 return pov + this->header_size;
1430 }
1431
1432 // Write the input file entries.
1433
1434 template<int size, bool big_endian>
1435 unsigned char*
1436 Output_section_incremental_inputs<size, big_endian>::write_input_files(
1437 unsigned char* oview,
1438 unsigned char* pov,
1439 Stringpool* strtab)
1440 {
1441 const Incremental_inputs* inputs = this->inputs_;
1442
1443 for (Incremental_inputs::Input_list::const_iterator p =
1444 inputs->input_files().begin();
1445 p != inputs->input_files().end();
1446 ++p)
1447 {
1448 gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
1449 section_offset_type filename_offset =
1450 strtab->get_offset_from_key((*p)->get_filename_key());
1451 const Timespec& mtime = (*p)->get_mtime();
1452 unsigned int flags = (*p)->type();
1453 if ((*p)->is_in_system_directory())
1454 flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
1455 if ((*p)->as_needed())
1456 flags |= INCREMENTAL_INPUT_AS_NEEDED;
1457 Swap32::writeval(pov, filename_offset);
1458 Swap32::writeval(pov + 4, (*p)->get_info_offset());
1459 Swap64::writeval(pov + 8, mtime.seconds);
1460 Swap32::writeval(pov + 16, mtime.nanoseconds);
1461 Swap16::writeval(pov + 20, flags);
1462 Swap16::writeval(pov + 22, (*p)->arg_serial());
1463 pov += this->input_entry_size;
1464 }
1465 return pov;
1466 }
1467
1468 // Write the supplemental information blocks.
1469
1470 template<int size, bool big_endian>
1471 unsigned char*
1472 Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
1473 unsigned char* oview,
1474 unsigned char* pov,
1475 Stringpool* strtab,
1476 unsigned int* global_syms,
1477 unsigned int global_sym_count)
1478 {
1479 const Incremental_inputs* inputs = this->inputs_;
1480 unsigned int first_global_index = this->symtab_->first_global_index();
1481
1482 for (Incremental_inputs::Input_list::const_iterator p =
1483 inputs->input_files().begin();
1484 p != inputs->input_files().end();
1485 ++p)
1486 {
1487 switch ((*p)->type())
1488 {
1489 case INCREMENTAL_INPUT_SCRIPT:
1490 {
1491 gold_assert(static_cast<unsigned int>(pov - oview)
1492 == (*p)->get_info_offset());
1493 Incremental_script_entry* entry = (*p)->script_entry();
1494 gold_assert(entry != NULL);
1495
1496 // Write the object count.
1497 unsigned int nobjects = entry->get_object_count();
1498 Swap32::writeval(pov, nobjects);
1499 pov += 4;
1500
1501 // For each object, write the offset to its input file entry.
1502 for (unsigned int i = 0; i < nobjects; ++i)
1503 {
1504 Incremental_input_entry* obj = entry->get_object(i);
1505 Swap32::writeval(pov, obj->get_offset());
1506 pov += 4;
1507 }
1508 }
1509 break;
1510
1511 case INCREMENTAL_INPUT_OBJECT:
1512 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1513 {
1514 gold_assert(static_cast<unsigned int>(pov - oview)
1515 == (*p)->get_info_offset());
1516 Incremental_object_entry* entry = (*p)->object_entry();
1517 gold_assert(entry != NULL);
1518 const Object* obj = entry->object();
1519 const Relobj* relobj = static_cast<const Relobj*>(obj);
1520 const Object::Symbols* syms = obj->get_global_symbols();
1521 // Write the input section count and global symbol count.
1522 unsigned int nsections = entry->get_input_section_count();
1523 unsigned int nsyms = syms->size();
1524 off_t locals_offset = relobj->local_symbol_offset();
1525 unsigned int nlocals = relobj->output_local_symbol_count();
1526 unsigned int first_dynrel = relobj->first_dyn_reloc();
1527 unsigned int ndynrel = relobj->dyn_reloc_count();
1528 unsigned int ncomdat = entry->get_comdat_group_count();
1529 Swap32::writeval(pov, nsections);
1530 Swap32::writeval(pov + 4, nsyms);
1531 Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
1532 Swap32::writeval(pov + 12, nlocals);
1533 Swap32::writeval(pov + 16, first_dynrel);
1534 Swap32::writeval(pov + 20, ndynrel);
1535 Swap32::writeval(pov + 24, ncomdat);
1536 pov += 28;
1537
1538 // Build a temporary array to map input section indexes
1539 // from the original object file index to the index in the
1540 // incremental info table.
1541 unsigned int* index_map = new unsigned int[obj->shnum()];
1542 memset(index_map, 0, obj->shnum() * sizeof(unsigned int));
1543
1544 // For each input section, write the name, output section index,
1545 // offset within output section, and input section size.
1546 for (unsigned int i = 0; i < nsections; i++)
1547 {
1548 unsigned int shndx = entry->get_input_section_index(i);
1549 index_map[shndx] = i + 1;
1550 Stringpool::Key key = entry->get_input_section_name_key(i);
1551 off_t name_offset = 0;
1552 if (key != 0)
1553 name_offset = strtab->get_offset_from_key(key);
1554 int out_shndx = 0;
1555 off_t out_offset = 0;
1556 off_t sh_size = 0;
1557 Output_section* os = obj->output_section(shndx);
1558 if (os != NULL)
1559 {
1560 out_shndx = os->out_shndx();
1561 out_offset = obj->output_section_offset(shndx);
1562 sh_size = entry->get_input_section_size(i);
1563 }
1564 Swap32::writeval(pov, name_offset);
1565 Swap32::writeval(pov + 4, out_shndx);
1566 Swap::writeval(pov + 8, out_offset);
1567 Swap::writeval(pov + 8 + sizeof_addr, sh_size);
1568 pov += 8 + 2 * sizeof_addr;
1569 }
1570
1571 // For each global symbol, write its associated relocations,
1572 // add it to the linked list of globals, then write the
1573 // supplemental information: global symbol table index,
1574 // input section index, linked list chain pointer, relocation
1575 // count, and offset to the relocations.
1576 for (unsigned int i = 0; i < nsyms; i++)
1577 {
1578 const Symbol* sym = (*syms)[i];
1579 if (sym->is_forwarder())
1580 sym = this->symtab_->resolve_forwards(sym);
1581 unsigned int shndx = 0;
1582 if (sym->source() != Symbol::FROM_OBJECT)
1583 {
1584 // The symbol was defined by the linker (e.g., common).
1585 // We mark these symbols with a special SHNDX of -1,
1586 // but exclude linker-predefined symbols and symbols
1587 // copied from shared objects.
1588 if (!sym->is_predefined()
1589 && !sym->is_copied_from_dynobj())
1590 shndx = -1U;
1591 }
1592 else if (sym->object() == obj && sym->is_defined())
1593 {
1594 bool is_ordinary;
1595 unsigned int orig_shndx = sym->shndx(&is_ordinary);
1596 if (is_ordinary)
1597 shndx = index_map[orig_shndx];
1598 else
1599 shndx = 1;
1600 }
1601 unsigned int symtab_index = sym->symtab_index();
1602 unsigned int chain = 0;
1603 unsigned int first_reloc = 0;
1604 unsigned int nrelocs = obj->get_incremental_reloc_count(i);
1605 if (nrelocs > 0)
1606 {
1607 gold_assert(symtab_index != -1U
1608 && (symtab_index - first_global_index
1609 < global_sym_count));
1610 first_reloc = obj->get_incremental_reloc_base(i);
1611 chain = global_syms[symtab_index - first_global_index];
1612 global_syms[symtab_index - first_global_index] =
1613 pov - oview;
1614 }
1615 Swap32::writeval(pov, symtab_index);
1616 Swap32::writeval(pov + 4, shndx);
1617 Swap32::writeval(pov + 8, chain);
1618 Swap32::writeval(pov + 12, nrelocs);
1619 Swap32::writeval(pov + 16, first_reloc * 3 * sizeof_addr);
1620 pov += 20;
1621 }
1622
1623 // For each kept COMDAT group, write the group signature.
1624 for (unsigned int i = 0; i < ncomdat; i++)
1625 {
1626 Stringpool::Key key = entry->get_comdat_signature_key(i);
1627 off_t name_offset = 0;
1628 if (key != 0)
1629 name_offset = strtab->get_offset_from_key(key);
1630 Swap32::writeval(pov, name_offset);
1631 pov += 4;
1632 }
1633
1634 delete[] index_map;
1635 }
1636 break;
1637
1638 case INCREMENTAL_INPUT_SHARED_LIBRARY:
1639 {
1640 gold_assert(static_cast<unsigned int>(pov - oview)
1641 == (*p)->get_info_offset());
1642 Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1643 gold_assert(entry != NULL);
1644 Object* obj = entry->object();
1645 Dynobj* dynobj = obj->dynobj();
1646 gold_assert(dynobj != NULL);
1647 const Object::Symbols* syms = obj->get_global_symbols();
1648
1649 // Write the soname string table index.
1650 section_offset_type soname_offset =
1651 strtab->get_offset_from_key(entry->get_soname_key());
1652 Swap32::writeval(pov, soname_offset);
1653 pov += 4;
1654
1655 // Skip the global symbol count for now.
1656 unsigned char* orig_pov = pov;
1657 pov += 4;
1658
1659 // For each global symbol, write the global symbol table index.
1660 unsigned int nsyms = syms->size();
1661 unsigned int nsyms_out = 0;
1662 for (unsigned int i = 0; i < nsyms; i++)
1663 {
1664 const Symbol* sym = (*syms)[i];
1665 if (sym == NULL)
1666 continue;
1667 if (sym->is_forwarder())
1668 sym = this->symtab_->resolve_forwards(sym);
1669 if (sym->symtab_index() == -1U)
1670 continue;
1671 unsigned int flags = 0;
1672 // If the symbol has hidden or internal visibility, we
1673 // mark it as defined in the shared object so we don't
1674 // try to resolve it during an incremental update.
1675 if (sym->visibility() == elfcpp::STV_HIDDEN
1676 || sym->visibility() == elfcpp::STV_INTERNAL)
1677 flags = INCREMENTAL_SHLIB_SYM_DEF;
1678 else if (sym->source() == Symbol::FROM_OBJECT
1679 && sym->object() == obj
1680 && sym->is_defined())
1681 flags = INCREMENTAL_SHLIB_SYM_DEF;
1682 else if (sym->is_copied_from_dynobj()
1683 && this->symtab_->get_copy_source(sym) == dynobj)
1684 flags = INCREMENTAL_SHLIB_SYM_COPY;
1685 flags <<= INCREMENTAL_SHLIB_SYM_FLAGS_SHIFT;
1686 Swap32::writeval(pov, sym->symtab_index() | flags);
1687 pov += 4;
1688 ++nsyms_out;
1689 }
1690
1691 // Now write the global symbol count.
1692 Swap32::writeval(orig_pov, nsyms_out);
1693 }
1694 break;
1695
1696 case INCREMENTAL_INPUT_ARCHIVE:
1697 {
1698 gold_assert(static_cast<unsigned int>(pov - oview)
1699 == (*p)->get_info_offset());
1700 Incremental_archive_entry* entry = (*p)->archive_entry();
1701 gold_assert(entry != NULL);
1702
1703 // Write the member count and unused global symbol count.
1704 unsigned int nmembers = entry->get_member_count();
1705 unsigned int nsyms = entry->get_unused_global_symbol_count();
1706 Swap32::writeval(pov, nmembers);
1707 Swap32::writeval(pov + 4, nsyms);
1708 pov += 8;
1709
1710 // For each member, write the offset to its input file entry.
1711 for (unsigned int i = 0; i < nmembers; ++i)
1712 {
1713 Incremental_object_entry* member = entry->get_member(i);
1714 Swap32::writeval(pov, member->get_offset());
1715 pov += 4;
1716 }
1717
1718 // For each global symbol, write the name offset.
1719 for (unsigned int i = 0; i < nsyms; ++i)
1720 {
1721 Stringpool::Key key = entry->get_unused_global_symbol(i);
1722 Swap32::writeval(pov, strtab->get_offset_from_key(key));
1723 pov += 4;
1724 }
1725 }
1726 break;
1727
1728 default:
1729 gold_unreachable();
1730 }
1731 }
1732 return pov;
1733 }
1734
1735 // Write the contents of the .gnu_incremental_symtab section.
1736
1737 template<int size, bool big_endian>
1738 void
1739 Output_section_incremental_inputs<size, big_endian>::write_symtab(
1740 unsigned char* pov,
1741 unsigned int* global_syms,
1742 unsigned int global_sym_count)
1743 {
1744 for (unsigned int i = 0; i < global_sym_count; ++i)
1745 {
1746 Swap32::writeval(pov, global_syms[i]);
1747 pov += 4;
1748 }
1749 }
1750
1751 // This struct holds the view information needed to write the
1752 // .gnu_incremental_got_plt section.
1753
1754 struct Got_plt_view_info
1755 {
1756 // Start of the GOT type array in the output view.
1757 unsigned char* got_type_p;
1758 // Start of the GOT descriptor array in the output view.
1759 unsigned char* got_desc_p;
1760 // Start of the PLT descriptor array in the output view.
1761 unsigned char* plt_desc_p;
1762 // Number of GOT entries.
1763 unsigned int got_count;
1764 // Number of PLT entries.
1765 unsigned int plt_count;
1766 // Offset of the first non-reserved PLT entry (this is a target-dependent value).
1767 unsigned int first_plt_entry_offset;
1768 // Size of a PLT entry (this is a target-dependent value).
1769 unsigned int plt_entry_size;
1770 // Symbol index to write in the GOT descriptor array. For global symbols,
1771 // this is the global symbol table index; for local symbols, it is the
1772 // local symbol table index.
1773 unsigned int sym_index;
1774 // Input file index to write in the GOT descriptor array. For global
1775 // symbols, this is 0; for local symbols, it is the index of the input
1776 // file entry in the .gnu_incremental_inputs section.
1777 unsigned int input_index;
1778 };
1779
1780 // Functor class for processing a GOT offset list for local symbols.
1781 // Writes the GOT type and symbol index into the GOT type and descriptor
1782 // arrays in the output section.
1783
1784 template<int size, bool big_endian>
1785 class Local_got_offset_visitor : public Got_offset_list::Visitor
1786 {
1787 public:
1788 Local_got_offset_visitor(struct Got_plt_view_info& info)
1789 : info_(info)
1790 { }
1791
1792 void
1793 visit(unsigned int got_type, unsigned int got_offset)
1794 {
1795 unsigned int got_index = got_offset / this->got_entry_size_;
1796 gold_assert(got_index < this->info_.got_count);
1797 // We can only handle GOT entry types in the range 0..0x7e
1798 // because we use a byte array to store them, and we use the
1799 // high bit to flag a local symbol.
1800 gold_assert(got_type < 0x7f);
1801 this->info_.got_type_p[got_index] = got_type | 0x80;
1802 unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1803 elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1804 elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
1805 }
1806
1807 private:
1808 static const unsigned int got_entry_size_ = size / 8;
1809 struct Got_plt_view_info& info_;
1810 };
1811
1812 // Functor class for processing a GOT offset list. Writes the GOT type
1813 // and symbol index into the GOT type and descriptor arrays in the output
1814 // section.
1815
1816 template<int size, bool big_endian>
1817 class Global_got_offset_visitor : public Got_offset_list::Visitor
1818 {
1819 public:
1820 Global_got_offset_visitor(struct Got_plt_view_info& info)
1821 : info_(info)
1822 { }
1823
1824 void
1825 visit(unsigned int got_type, unsigned int got_offset)
1826 {
1827 unsigned int got_index = got_offset / this->got_entry_size_;
1828 gold_assert(got_index < this->info_.got_count);
1829 // We can only handle GOT entry types in the range 0..0x7e
1830 // because we use a byte array to store them, and we use the
1831 // high bit to flag a local symbol.
1832 gold_assert(got_type < 0x7f);
1833 this->info_.got_type_p[got_index] = got_type;
1834 unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1835 elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1836 elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
1837 }
1838
1839 private:
1840 static const unsigned int got_entry_size_ = size / 8;
1841 struct Got_plt_view_info& info_;
1842 };
1843
1844 // Functor class for processing the global symbol table. Processes the
1845 // GOT offset list for the symbol, and writes the symbol table index
1846 // into the PLT descriptor array in the output section.
1847
1848 template<int size, bool big_endian>
1849 class Global_symbol_visitor_got_plt
1850 {
1851 public:
1852 Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
1853 : info_(info)
1854 { }
1855
1856 void
1857 operator()(const Sized_symbol<size>* sym)
1858 {
1859 typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
1860 const Got_offset_list* got_offsets = sym->got_offset_list();
1861 if (got_offsets != NULL)
1862 {
1863 this->info_.sym_index = sym->symtab_index();
1864 this->info_.input_index = 0;
1865 Got_visitor v(this->info_);
1866 got_offsets->for_all_got_offsets(&v);
1867 }
1868 if (sym->has_plt_offset())
1869 {
1870 unsigned int plt_index =
1871 ((sym->plt_offset() - this->info_.first_plt_entry_offset)
1872 / this->info_.plt_entry_size);
1873 gold_assert(plt_index < this->info_.plt_count);
1874 unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
1875 elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
1876 }
1877 }
1878
1879 private:
1880 struct Got_plt_view_info& info_;
1881 };
1882
1883 // Write the contents of the .gnu_incremental_got_plt section.
1884
1885 template<int size, bool big_endian>
1886 void
1887 Output_section_incremental_inputs<size, big_endian>::write_got_plt(
1888 unsigned char* pov,
1889 off_t view_size)
1890 {
1891 Sized_target<size, big_endian>* target =
1892 parameters->sized_target<size, big_endian>();
1893
1894 // Set up the view information for the functors.
1895 struct Got_plt_view_info view_info;
1896 view_info.got_count = target->got_entry_count();
1897 view_info.plt_count = target->plt_entry_count();
1898 view_info.first_plt_entry_offset = target->first_plt_entry_offset();
1899 view_info.plt_entry_size = target->plt_entry_size();
1900 view_info.got_type_p = pov + 8;
1901 view_info.got_desc_p = (view_info.got_type_p
1902 + ((view_info.got_count + 3) & ~3));
1903 view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;
1904
1905 gold_assert(pov + view_size ==
1906 view_info.plt_desc_p + view_info.plt_count * 4);
1907
1908 // Write the section header.
1909 Swap32::writeval(pov, view_info.got_count);
1910 Swap32::writeval(pov + 4, view_info.plt_count);
1911
1912 // Initialize the GOT type array to 0xff (reserved).
1913 memset(view_info.got_type_p, 0xff, view_info.got_count);
1914
1915 // Write the incremental GOT descriptors for local symbols.
1916 typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
1917 for (Incremental_inputs::Input_list::const_iterator p =
1918 this->inputs_->input_files().begin();
1919 p != this->inputs_->input_files().end();
1920 ++p)
1921 {
1922 if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
1923 && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
1924 continue;
1925 Incremental_object_entry* entry = (*p)->object_entry();
1926 gold_assert(entry != NULL);
1927 const Object* obj = entry->object();
1928 gold_assert(obj != NULL);
1929 view_info.input_index = (*p)->get_file_index();
1930 Got_visitor v(view_info);
1931 obj->for_all_local_got_entries(&v);
1932 }
1933
1934 // Write the incremental GOT and PLT descriptors for global symbols.
1935 typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
1936 symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
1937 }
1938
1939 // Class Sized_relobj_incr. Most of these methods are not used for
1940 // Incremental objects, but are required to be implemented by the
1941 // base class Object.
1942
1943 template<int size, bool big_endian>
1944 Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
1945 const std::string& name,
1946 Sized_incremental_binary<size, big_endian>* ibase,
1947 unsigned int input_file_index)
1948 : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
1949 input_file_index_(input_file_index),
1950 input_reader_(ibase->inputs_reader().input_file(input_file_index)),
1951 local_symbol_count_(0), output_local_dynsym_count_(0),
1952 local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
1953 symbols_(), incr_reloc_offset_(-1U), incr_reloc_count_(0),
1954 incr_reloc_output_index_(0), incr_relocs_(NULL), local_symbols_()
1955 {
1956 if (this->input_reader_.is_in_system_directory())
1957 this->set_is_in_system_directory();
1958 const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
1959 this->set_shnum(shnum);
1960 ibase->set_input_object(input_file_index, this);
1961 }
1962
1963 // Read the symbols.
1964
1965 template<int size, bool big_endian>
1966 void
1967 Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
1968 {
1969 gold_unreachable();
1970 }
1971
1972 // Lay out the input sections.
1973
1974 template<int size, bool big_endian>
1975 void
1976 Sized_relobj_incr<size, big_endian>::do_layout(
1977 Symbol_table*,
1978 Layout* layout,
1979 Read_symbols_data*)
1980 {
1981 const unsigned int shnum = this->shnum();
1982 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1983 gold_assert(incremental_inputs != NULL);
1984 Output_sections& out_sections(this->output_sections());
1985 out_sections.resize(shnum);
1986 this->section_offsets().resize(shnum);
1987 for (unsigned int i = 1; i < shnum; i++)
1988 {
1989 typename Input_entry_reader::Input_section_info sect =
1990 this->input_reader_.get_input_section(i - 1);
1991 // Add the section to the incremental inputs layout.
1992 incremental_inputs->report_input_section(this, i, sect.name,
1993 sect.sh_size);
1994 if (sect.output_shndx == 0 || sect.sh_offset == -1)
1995 continue;
1996 Output_section* os = this->ibase_->output_section(sect.output_shndx);
1997 gold_assert(os != NULL);
1998 out_sections[i] = os;
1999 this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);
2000 }
2001
2002 // Process the COMDAT groups.
2003 unsigned int ncomdat = this->input_reader_.get_comdat_group_count();
2004 for (unsigned int i = 0; i < ncomdat; i++)
2005 {
2006 const char* signature = this->input_reader_.get_comdat_group_signature(i);
2007 if (signature == NULL || signature[0] == '\0')
2008 this->error(_("COMDAT group has no signature"));
2009 bool keep = layout->find_or_add_kept_section(signature, this, i, true,
2010 true, NULL);
2011 if (keep)
2012 incremental_inputs->report_comdat_group(this, signature);
2013 else
2014 this->error(_("COMDAT group %s included twice in incremental link"),
2015 signature);
2016 }
2017 }
2018
2019 // Layout sections whose layout was deferred while waiting for
2020 // input files from a plugin.
2021 template<int size, bool big_endian>
2022 void
2023 Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
2024 {
2025 }
2026
2027 // Add the symbols to the symbol table.
2028
2029 template<int size, bool big_endian>
2030 void
2031 Sized_relobj_incr<size, big_endian>::do_add_symbols(
2032 Symbol_table* symtab,
2033 Read_symbols_data*,
2034 Layout*)
2035 {
2036 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2037 unsigned char symbuf[sym_size];
2038 elfcpp::Sym<size, big_endian> sym(symbuf);
2039 elfcpp::Sym_write<size, big_endian> osym(symbuf);
2040
2041 typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2042
2043 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2044 this->symbols_.resize(nsyms);
2045
2046 Incremental_binary::View symtab_view(NULL);
2047 unsigned int symtab_count;
2048 elfcpp::Elf_strtab strtab(NULL, 0);
2049 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2050
2051 Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2052 unsigned int isym_count = isymtab.symbol_count();
2053 unsigned int first_global = symtab_count - isym_count;
2054
2055 const unsigned char* sym_p;
2056 for (unsigned int i = 0; i < nsyms; ++i)
2057 {
2058 Incremental_global_symbol_reader<big_endian> info =
2059 this->input_reader_.get_global_symbol_reader(i);
2060 unsigned int output_symndx = info.output_symndx();
2061 sym_p = symtab_view.data() + output_symndx * sym_size;
2062 elfcpp::Sym<size, big_endian> gsym(sym_p);
2063 const char* name;
2064 if (!strtab.get_c_string(gsym.get_st_name(), &name))
2065 name = "";
2066
2067 typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
2068 unsigned int shndx = gsym.get_st_shndx();
2069 elfcpp::STB st_bind = gsym.get_st_bind();
2070 elfcpp::STT st_type = gsym.get_st_type();
2071
2072 // Local hidden symbols start out as globals, but get converted to
2073 // to local during output.
2074 if (st_bind == elfcpp::STB_LOCAL)
2075 st_bind = elfcpp::STB_GLOBAL;
2076
2077 unsigned int input_shndx = info.shndx();
2078 if (input_shndx == 0 || input_shndx == -1U)
2079 {
2080 shndx = elfcpp::SHN_UNDEF;
2081 v = 0;
2082 }
2083 else if (shndx != elfcpp::SHN_ABS)
2084 {
2085 // Find the input section and calculate the section-relative value.
2086 gold_assert(shndx != elfcpp::SHN_UNDEF);
2087 Output_section* os = this->ibase_->output_section(shndx);
2088 gold_assert(os != NULL && os->has_fixed_layout());
2089 typename Input_entry_reader::Input_section_info sect =
2090 this->input_reader_.get_input_section(input_shndx - 1);
2091 gold_assert(sect.output_shndx == shndx);
2092 if (st_type != elfcpp::STT_TLS)
2093 v -= os->address();
2094 v -= sect.sh_offset;
2095 shndx = input_shndx;
2096 }
2097
2098 osym.put_st_name(0);
2099 osym.put_st_value(v);
2100 osym.put_st_size(gsym.get_st_size());
2101 osym.put_st_info(st_bind, st_type);
2102 osym.put_st_other(gsym.get_st_other());
2103 osym.put_st_shndx(shndx);
2104
2105 Symbol* res = symtab->add_from_incrobj(this, name, NULL, &sym);
2106
2107 // If this is a linker-defined symbol that hasn't yet been defined,
2108 // define it now.
2109 if (input_shndx == -1U && !res->is_defined())
2110 {
2111 shndx = gsym.get_st_shndx();
2112 v = gsym.get_st_value();
2113 Elf_size_type symsize = gsym.get_st_size();
2114 if (shndx == elfcpp::SHN_ABS)
2115 {
2116 symtab->define_as_constant(name, NULL,
2117 Symbol_table::INCREMENTAL_BASE,
2118 v, symsize, st_type, st_bind,
2119 gsym.get_st_visibility(), 0,
2120 false, false);
2121 }
2122 else
2123 {
2124 Output_section* os = this->ibase_->output_section(shndx);
2125 gold_assert(os != NULL && os->has_fixed_layout());
2126 v -= os->address();
2127 if (symsize > 0)
2128 os->reserve(v, symsize);
2129 symtab->define_in_output_data(name, NULL,
2130 Symbol_table::INCREMENTAL_BASE,
2131 os, v, symsize, st_type, st_bind,
2132 gsym.get_st_visibility(), 0,
2133 false, false);
2134 }
2135 }
2136
2137 this->symbols_[i] = res;
2138 this->ibase_->add_global_symbol(output_symndx - first_global, res);
2139 }
2140 }
2141
2142 // Return TRUE if we should include this object from an archive library.
2143
2144 template<int size, bool big_endian>
2145 Archive::Should_include
2146 Sized_relobj_incr<size, big_endian>::do_should_include_member(
2147 Symbol_table*,
2148 Layout*,
2149 Read_symbols_data*,
2150 std::string*)
2151 {
2152 gold_unreachable();
2153 }
2154
2155 // Iterate over global symbols, calling a visitor class V for each.
2156
2157 template<int size, bool big_endian>
2158 void
2159 Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
2160 Read_symbols_data*,
2161 Library_base::Symbol_visitor_base*)
2162 {
2163 // This routine is not used for incremental objects.
2164 }
2165
2166 // Get the size of a section.
2167
2168 template<int size, bool big_endian>
2169 uint64_t
2170 Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
2171 {
2172 gold_unreachable();
2173 }
2174
2175 // Get the name of a section.
2176
2177 template<int size, bool big_endian>
2178 std::string
2179 Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int)
2180 {
2181 gold_unreachable();
2182 }
2183
2184 // Return a view of the contents of a section.
2185
2186 template<int size, bool big_endian>
2187 Object::Location
2188 Sized_relobj_incr<size, big_endian>::do_section_contents(unsigned int)
2189 {
2190 gold_unreachable();
2191 }
2192
2193 // Return section flags.
2194
2195 template<int size, bool big_endian>
2196 uint64_t
2197 Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
2198 {
2199 gold_unreachable();
2200 }
2201
2202 // Return section entsize.
2203
2204 template<int size, bool big_endian>
2205 uint64_t
2206 Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
2207 {
2208 gold_unreachable();
2209 }
2210
2211 // Return section address.
2212
2213 template<int size, bool big_endian>
2214 uint64_t
2215 Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
2216 {
2217 gold_unreachable();
2218 }
2219
2220 // Return section type.
2221
2222 template<int size, bool big_endian>
2223 unsigned int
2224 Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
2225 {
2226 gold_unreachable();
2227 }
2228
2229 // Return the section link field.
2230
2231 template<int size, bool big_endian>
2232 unsigned int
2233 Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
2234 {
2235 gold_unreachable();
2236 }
2237
2238 // Return the section link field.
2239
2240 template<int size, bool big_endian>
2241 unsigned int
2242 Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
2243 {
2244 gold_unreachable();
2245 }
2246
2247 // Return the section alignment.
2248
2249 template<int size, bool big_endian>
2250 uint64_t
2251 Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
2252 {
2253 gold_unreachable();
2254 }
2255
2256 // Return the Xindex structure to use.
2257
2258 template<int size, bool big_endian>
2259 Xindex*
2260 Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
2261 {
2262 gold_unreachable();
2263 }
2264
2265 // Get symbol counts.
2266
2267 template<int size, bool big_endian>
2268 void
2269 Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
2270 const Symbol_table*, size_t*, size_t*) const
2271 {
2272 gold_unreachable();
2273 }
2274
2275 // Read the relocs.
2276
2277 template<int size, bool big_endian>
2278 void
2279 Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
2280 {
2281 }
2282
2283 // Process the relocs to find list of referenced sections. Used only
2284 // during garbage collection.
2285
2286 template<int size, bool big_endian>
2287 void
2288 Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
2289 Layout*,
2290 Read_relocs_data*)
2291 {
2292 gold_unreachable();
2293 }
2294
2295 // Scan the relocs and adjust the symbol table.
2296
2297 template<int size, bool big_endian>
2298 void
2299 Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
2300 Layout* layout,
2301 Read_relocs_data*)
2302 {
2303 // Count the incremental relocations for this object.
2304 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2305 this->allocate_incremental_reloc_counts();
2306 for (unsigned int i = 0; i < nsyms; i++)
2307 {
2308 Incremental_global_symbol_reader<big_endian> sym =
2309 this->input_reader_.get_global_symbol_reader(i);
2310 unsigned int reloc_count = sym.reloc_count();
2311 if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
2312 this->incr_reloc_offset_ = sym.reloc_offset();
2313 this->incr_reloc_count_ += reloc_count;
2314 for (unsigned int j = 0; j < reloc_count; j++)
2315 this->count_incremental_reloc(i);
2316 }
2317 this->incr_reloc_output_index_ =
2318 layout->incremental_inputs()->get_reloc_count();
2319 this->finalize_incremental_relocs(layout, false);
2320
2321 // The incoming incremental relocations may not end up in the same
2322 // location after the incremental update, because the incremental info
2323 // is regenerated in each link. Because the new location may overlap
2324 // with other data in the updated output file, we need to copy the
2325 // relocations into a buffer so that we can still read them safely
2326 // after we start writing updates to the output file.
2327 if (this->incr_reloc_count_ > 0)
2328 {
2329 const Incremental_relocs_reader<size, big_endian>& relocs_reader =
2330 this->ibase_->relocs_reader();
2331 const unsigned int incr_reloc_size = relocs_reader.reloc_size;
2332 unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2333 this->incr_relocs_ = new unsigned char[len];
2334 memcpy(this->incr_relocs_,
2335 relocs_reader.data(this->incr_reloc_offset_),
2336 len);
2337 }
2338 }
2339
2340 // Count the local symbols.
2341
2342 template<int size, bool big_endian>
2343 void
2344 Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
2345 Stringpool_template<char>* pool,
2346 Stringpool_template<char>*)
2347 {
2348 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2349
2350 // Set the count of local symbols based on the incremental info.
2351 unsigned int nlocals = this->input_reader_.get_local_symbol_count();
2352 this->local_symbol_count_ = nlocals;
2353 this->local_symbols_.reserve(nlocals);
2354
2355 // Get views of the base file's symbol table and string table.
2356 Incremental_binary::View symtab_view(NULL);
2357 unsigned int symtab_count;
2358 elfcpp::Elf_strtab strtab(NULL, 0);
2359 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2360
2361 // Read the local symbols from the base file's symbol table.
2362 off_t off = this->input_reader_.get_local_symbol_offset();
2363 const unsigned char* symp = symtab_view.data() + off;
2364 for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
2365 {
2366 elfcpp::Sym<size, big_endian> sym(symp);
2367 const char* name;
2368 if (!strtab.get_c_string(sym.get_st_name(), &name))
2369 name = "";
2370 gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
2371 name = pool->add(name, true, NULL);
2372 this->local_symbols_.push_back(Local_symbol(name,
2373 sym.get_st_value(),
2374 sym.get_st_size(),
2375 sym.get_st_shndx(),
2376 sym.get_st_type(),
2377 false));
2378 }
2379 }
2380
2381 // Finalize the local symbols.
2382
2383 template<int size, bool big_endian>
2384 unsigned int
2385 Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
2386 unsigned int index,
2387 off_t off,
2388 Symbol_table*)
2389 {
2390 this->local_symbol_index_ = index;
2391 this->local_symbol_offset_ = off;
2392 return index + this->local_symbol_count_;
2393 }
2394
2395 // Set the offset where local dynamic symbol information will be stored.
2396
2397 template<int size, bool big_endian>
2398 unsigned int
2399 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
2400 unsigned int index)
2401 {
2402 // FIXME: set local dynsym indexes.
2403 return index;
2404 }
2405
2406 // Set the offset where local dynamic symbol information will be stored.
2407
2408 template<int size, bool big_endian>
2409 unsigned int
2410 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
2411 {
2412 return 0;
2413 }
2414
2415 // Relocate the input sections and write out the local symbols.
2416 // We don't actually do any relocation here. For unchanged input files,
2417 // we reapply relocations only for symbols that have changed; that happens
2418 // in queue_final_tasks. We do need to rewrite the incremental relocations
2419 // for this object.
2420
2421 template<int size, bool big_endian>
2422 void
2423 Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
2424 const Layout* layout,
2425 Output_file* of)
2426 {
2427 if (this->incr_reloc_count_ == 0)
2428 return;
2429
2430 const unsigned int incr_reloc_size =
2431 Incremental_relocs_reader<size, big_endian>::reloc_size;
2432
2433 // Get a view for the .gnu_incremental_relocs section.
2434 Incremental_inputs* inputs = layout->incremental_inputs();
2435 gold_assert(inputs != NULL);
2436 const off_t relocs_off = inputs->relocs_section()->offset();
2437 const off_t relocs_size = inputs->relocs_section()->data_size();
2438 unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
2439
2440 // Copy the relocations from the buffer.
2441 off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
2442 unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2443 memcpy(view + off, this->incr_relocs_, len);
2444
2445 // The output section table may have changed, so we need to map
2446 // the old section index to the new section index for each relocation.
2447 for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
2448 {
2449 unsigned char* pov = view + off + i * incr_reloc_size;
2450 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
2451 Output_section* os = this->ibase_->output_section(shndx);
2452 gold_assert(os != NULL);
2453 shndx = os->out_shndx();
2454 elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
2455 }
2456
2457 of->write_output_view(off, len, view);
2458
2459 // Get views into the output file for the portions of the symbol table
2460 // and the dynamic symbol table that we will be writing.
2461 off_t symtab_off = layout->symtab_section()->offset();
2462 off_t output_size = this->local_symbol_count_ * This::sym_size;
2463 unsigned char* oview = NULL;
2464 if (output_size > 0)
2465 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2466 output_size);
2467
2468 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2469 unsigned char* dyn_oview = NULL;
2470 if (dyn_output_size > 0)
2471 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2472 dyn_output_size);
2473
2474 // Write the local symbols.
2475 unsigned char* ov = oview;
2476 unsigned char* dyn_ov = dyn_oview;
2477 const Stringpool* sympool = layout->sympool();
2478 const Stringpool* dynpool = layout->dynpool();
2479 Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
2480 Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
2481 for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
2482 {
2483 Local_symbol& lsym(this->local_symbols_[i]);
2484
2485 bool is_ordinary;
2486 unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
2487 &is_ordinary);
2488 if (is_ordinary)
2489 {
2490 Output_section* os = this->ibase_->output_section(st_shndx);
2491 st_shndx = os->out_shndx();
2492 if (st_shndx >= elfcpp::SHN_LORESERVE)
2493 {
2494 symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
2495 if (lsym.needs_dynsym_entry)
2496 dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
2497 st_shndx = elfcpp::SHN_XINDEX;
2498 }
2499 }
2500
2501 // Write the symbol to the output symbol table.
2502 {
2503 elfcpp::Sym_write<size, big_endian> osym(ov);
2504 osym.put_st_name(sympool->get_offset(lsym.name));
2505 osym.put_st_value(lsym.st_value);
2506 osym.put_st_size(lsym.st_size);
2507 osym.put_st_info(elfcpp::STB_LOCAL,
2508 static_cast<elfcpp::STT>(lsym.st_type));
2509 osym.put_st_other(0);
2510 osym.put_st_shndx(st_shndx);
2511 ov += sym_size;
2512 }
2513
2514 // Write the symbol to the output dynamic symbol table.
2515 if (lsym.needs_dynsym_entry)
2516 {
2517 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2518 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2519 osym.put_st_name(dynpool->get_offset(lsym.name));
2520 osym.put_st_value(lsym.st_value);
2521 osym.put_st_size(lsym.st_size);
2522 osym.put_st_info(elfcpp::STB_LOCAL,
2523 static_cast<elfcpp::STT>(lsym.st_type));
2524 osym.put_st_other(0);
2525 osym.put_st_shndx(st_shndx);
2526 dyn_ov += sym_size;
2527 }
2528 }
2529
2530 if (output_size > 0)
2531 {
2532 gold_assert(ov - oview == output_size);
2533 of->write_output_view(symtab_off + this->local_symbol_offset_,
2534 output_size, oview);
2535 }
2536
2537 if (dyn_output_size > 0)
2538 {
2539 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2540 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2541 dyn_oview);
2542 }
2543 }
2544
2545 // Set the offset of a section.
2546
2547 template<int size, bool big_endian>
2548 void
2549 Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
2550 uint64_t)
2551 {
2552 }
2553
2554 // Class Sized_incr_dynobj. Most of these methods are not used for
2555 // Incremental objects, but are required to be implemented by the
2556 // base class Object.
2557
2558 template<int size, bool big_endian>
2559 Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
2560 const std::string& name,
2561 Sized_incremental_binary<size, big_endian>* ibase,
2562 unsigned int input_file_index)
2563 : Dynobj(name, NULL), ibase_(ibase),
2564 input_file_index_(input_file_index),
2565 input_reader_(ibase->inputs_reader().input_file(input_file_index)),
2566 symbols_()
2567 {
2568 if (this->input_reader_.is_in_system_directory())
2569 this->set_is_in_system_directory();
2570 if (this->input_reader_.as_needed())
2571 this->set_as_needed();
2572 this->set_soname_string(this->input_reader_.get_soname());
2573 this->set_shnum(0);
2574 }
2575
2576 // Read the symbols.
2577
2578 template<int size, bool big_endian>
2579 void
2580 Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
2581 {
2582 gold_unreachable();
2583 }
2584
2585 // Lay out the input sections.
2586
2587 template<int size, bool big_endian>
2588 void
2589 Sized_incr_dynobj<size, big_endian>::do_layout(
2590 Symbol_table*,
2591 Layout*,
2592 Read_symbols_data*)
2593 {
2594 }
2595
2596 // Add the symbols to the symbol table.
2597
2598 template<int size, bool big_endian>
2599 void
2600 Sized_incr_dynobj<size, big_endian>::do_add_symbols(
2601 Symbol_table* symtab,
2602 Read_symbols_data*,
2603 Layout*)
2604 {
2605 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2606 unsigned char symbuf[sym_size];
2607 elfcpp::Sym<size, big_endian> sym(symbuf);
2608 elfcpp::Sym_write<size, big_endian> osym(symbuf);
2609
2610 typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2611
2612 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2613 this->symbols_.resize(nsyms);
2614
2615 Incremental_binary::View symtab_view(NULL);
2616 unsigned int symtab_count;
2617 elfcpp::Elf_strtab strtab(NULL, 0);
2618 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2619
2620 Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2621 unsigned int isym_count = isymtab.symbol_count();
2622 unsigned int first_global = symtab_count - isym_count;
2623
2624 // We keep a set of symbols that we have generated COPY relocations
2625 // for, indexed by the symbol value. We do not need more than one
2626 // COPY relocation per address.
2627 typedef typename std::set<Address> Copied_symbols;
2628 Copied_symbols copied_symbols;
2629
2630 const unsigned char* sym_p;
2631 for (unsigned int i = 0; i < nsyms; ++i)
2632 {
2633 bool is_def;
2634 bool is_copy;
2635 unsigned int output_symndx =
2636 this->input_reader_.get_output_symbol_index(i, &is_def, &is_copy);
2637 sym_p = symtab_view.data() + output_symndx * sym_size;
2638 elfcpp::Sym<size, big_endian> gsym(sym_p);
2639 const char* name;
2640 if (!strtab.get_c_string(gsym.get_st_name(), &name))
2641 name = "";
2642
2643 Address v;
2644 unsigned int shndx;
2645 elfcpp::STB st_bind = gsym.get_st_bind();
2646 elfcpp::STT st_type = gsym.get_st_type();
2647
2648 // Local hidden symbols start out as globals, but get converted to
2649 // to local during output.
2650 if (st_bind == elfcpp::STB_LOCAL)
2651 st_bind = elfcpp::STB_GLOBAL;
2652
2653 if (!is_def)
2654 {
2655 shndx = elfcpp::SHN_UNDEF;
2656 v = 0;
2657 }
2658 else
2659 {
2660 // For a symbol defined in a shared object, the section index
2661 // is meaningless, as long as it's not SHN_UNDEF.
2662 shndx = 1;
2663 v = gsym.get_st_value();
2664 }
2665
2666 osym.put_st_name(0);
2667 osym.put_st_value(v);
2668 osym.put_st_size(gsym.get_st_size());
2669 osym.put_st_info(st_bind, st_type);
2670 osym.put_st_other(gsym.get_st_other());
2671 osym.put_st_shndx(shndx);
2672
2673 Sized_symbol<size>* res =
2674 symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
2675 this->symbols_[i] = res;
2676 this->ibase_->add_global_symbol(output_symndx - first_global,
2677 this->symbols_[i]);
2678
2679 if (is_copy)
2680 {
2681 std::pair<typename Copied_symbols::iterator, bool> ins =
2682 copied_symbols.insert(v);
2683 if (ins.second)
2684 {
2685 unsigned int shndx = gsym.get_st_shndx();
2686 Output_section* os = this->ibase_->output_section(shndx);
2687 off_t offset = v - os->address();
2688 this->ibase_->add_copy_reloc(this->symbols_[i], os, offset);
2689 }
2690 }
2691 }
2692 }
2693
2694 // Return TRUE if we should include this object from an archive library.
2695
2696 template<int size, bool big_endian>
2697 Archive::Should_include
2698 Sized_incr_dynobj<size, big_endian>::do_should_include_member(
2699 Symbol_table*,
2700 Layout*,
2701 Read_symbols_data*,
2702 std::string*)
2703 {
2704 gold_unreachable();
2705 }
2706
2707 // Iterate over global symbols, calling a visitor class V for each.
2708
2709 template<int size, bool big_endian>
2710 void
2711 Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
2712 Read_symbols_data*,
2713 Library_base::Symbol_visitor_base*)
2714 {
2715 // This routine is not used for dynamic libraries.
2716 }
2717
2718 // Iterate over local symbols, calling a visitor class V for each GOT offset
2719 // associated with a local symbol.
2720
2721 template<int size, bool big_endian>
2722 void
2723 Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
2724 Got_offset_list::Visitor*) const
2725 {
2726 }
2727
2728 // Get the size of a section.
2729
2730 template<int size, bool big_endian>
2731 uint64_t
2732 Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
2733 {
2734 gold_unreachable();
2735 }
2736
2737 // Get the name of a section.
2738
2739 template<int size, bool big_endian>
2740 std::string
2741 Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int)
2742 {
2743 gold_unreachable();
2744 }
2745
2746 // Return a view of the contents of a section.
2747
2748 template<int size, bool big_endian>
2749 Object::Location
2750 Sized_incr_dynobj<size, big_endian>::do_section_contents(unsigned int)
2751 {
2752 gold_unreachable();
2753 }
2754
2755 // Return section flags.
2756
2757 template<int size, bool big_endian>
2758 uint64_t
2759 Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
2760 {
2761 gold_unreachable();
2762 }
2763
2764 // Return section entsize.
2765
2766 template<int size, bool big_endian>
2767 uint64_t
2768 Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
2769 {
2770 gold_unreachable();
2771 }
2772
2773 // Return section address.
2774
2775 template<int size, bool big_endian>
2776 uint64_t
2777 Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
2778 {
2779 gold_unreachable();
2780 }
2781
2782 // Return section type.
2783
2784 template<int size, bool big_endian>
2785 unsigned int
2786 Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
2787 {
2788 gold_unreachable();
2789 }
2790
2791 // Return the section link field.
2792
2793 template<int size, bool big_endian>
2794 unsigned int
2795 Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
2796 {
2797 gold_unreachable();
2798 }
2799
2800 // Return the section link field.
2801
2802 template<int size, bool big_endian>
2803 unsigned int
2804 Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
2805 {
2806 gold_unreachable();
2807 }
2808
2809 // Return the section alignment.
2810
2811 template<int size, bool big_endian>
2812 uint64_t
2813 Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
2814 {
2815 gold_unreachable();
2816 }
2817
2818 // Return the Xindex structure to use.
2819
2820 template<int size, bool big_endian>
2821 Xindex*
2822 Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
2823 {
2824 gold_unreachable();
2825 }
2826
2827 // Get symbol counts.
2828
2829 template<int size, bool big_endian>
2830 void
2831 Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
2832 const Symbol_table*, size_t*, size_t*) const
2833 {
2834 gold_unreachable();
2835 }
2836
2837 // Allocate an incremental object of the appropriate size and endianness.
2838
2839 Object*
2840 make_sized_incremental_object(
2841 Incremental_binary* ibase,
2842 unsigned int input_file_index,
2843 Incremental_input_type input_type,
2844 const Incremental_binary::Input_reader* input_reader)
2845 {
2846 Object* obj = NULL;
2847 std::string name(input_reader->filename());
2848
2849 switch (parameters->size_and_endianness())
2850 {
2851 #ifdef HAVE_TARGET_32_LITTLE
2852 case Parameters::TARGET_32_LITTLE:
2853 {
2854 Sized_incremental_binary<32, false>* sized_ibase =
2855 static_cast<Sized_incremental_binary<32, false>*>(ibase);
2856 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2857 obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
2858 input_file_index);
2859 else
2860 obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
2861 input_file_index);
2862 }
2863 break;
2864 #endif
2865 #ifdef HAVE_TARGET_32_BIG
2866 case Parameters::TARGET_32_BIG:
2867 {
2868 Sized_incremental_binary<32, true>* sized_ibase =
2869 static_cast<Sized_incremental_binary<32, true>*>(ibase);
2870 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2871 obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
2872 input_file_index);
2873 else
2874 obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
2875 input_file_index);
2876 }
2877 break;
2878 #endif
2879 #ifdef HAVE_TARGET_64_LITTLE
2880 case Parameters::TARGET_64_LITTLE:
2881 {
2882 Sized_incremental_binary<64, false>* sized_ibase =
2883 static_cast<Sized_incremental_binary<64, false>*>(ibase);
2884 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2885 obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
2886 input_file_index);
2887 else
2888 obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
2889 input_file_index);
2890 }
2891 break;
2892 #endif
2893 #ifdef HAVE_TARGET_64_BIG
2894 case Parameters::TARGET_64_BIG:
2895 {
2896 Sized_incremental_binary<64, true>* sized_ibase =
2897 static_cast<Sized_incremental_binary<64, true>*>(ibase);
2898 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2899 obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
2900 input_file_index);
2901 else
2902 obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
2903 input_file_index);
2904 }
2905 break;
2906 #endif
2907 default:
2908 gold_unreachable();
2909 }
2910
2911 gold_assert(obj != NULL);
2912 return obj;
2913 }
2914
2915 // Copy the unused symbols from the incremental input info.
2916 // We need to do this because we may be overwriting the incremental
2917 // input info in the base file before we write the new incremental
2918 // info.
2919 void
2920 Incremental_library::copy_unused_symbols()
2921 {
2922 unsigned int symcount = this->input_reader_->get_unused_symbol_count();
2923 this->unused_symbols_.reserve(symcount);
2924 for (unsigned int i = 0; i < symcount; ++i)
2925 {
2926 std::string name(this->input_reader_->get_unused_symbol(i));
2927 this->unused_symbols_.push_back(name);
2928 }
2929 }
2930
2931 // Iterator for unused global symbols in the library.
2932 void
2933 Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
2934 {
2935 for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
2936 p != this->unused_symbols_.end();
2937 ++p)
2938 v->visit(p->c_str());
2939 }
2940
2941 // Instantiate the templates we need.
2942
2943 #ifdef HAVE_TARGET_32_LITTLE
2944 template
2945 class Sized_incremental_binary<32, false>;
2946
2947 template
2948 class Sized_relobj_incr<32, false>;
2949
2950 template
2951 class Sized_incr_dynobj<32, false>;
2952 #endif
2953
2954 #ifdef HAVE_TARGET_32_BIG
2955 template
2956 class Sized_incremental_binary<32, true>;
2957
2958 template
2959 class Sized_relobj_incr<32, true>;
2960
2961 template
2962 class Sized_incr_dynobj<32, true>;
2963 #endif
2964
2965 #ifdef HAVE_TARGET_64_LITTLE
2966 template
2967 class Sized_incremental_binary<64, false>;
2968
2969 template
2970 class Sized_relobj_incr<64, false>;
2971
2972 template
2973 class Sized_incr_dynobj<64, false>;
2974 #endif
2975
2976 #ifdef HAVE_TARGET_64_BIG
2977 template
2978 class Sized_incremental_binary<64, true>;
2979
2980 template
2981 class Sized_relobj_incr<64, true>;
2982
2983 template
2984 class Sized_incr_dynobj<64, true>;
2985 #endif
2986
2987 } // End namespace gold.
This page took 0.131717 seconds and 5 git commands to generate.