PR gold/12571
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list. Creates a single free list node that
75 // describes the entire region of length LEN. If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82 this->list_.push_front(Free_list_node(0, len));
83 this->last_remove_ = this->list_.begin();
84 this->extend_ = extend;
85 this->length_ = len;
86 ++Free_list::num_lists;
87 ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list. Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node. We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102 if (start == end)
103 return;
104 gold_assert(start < end);
105
106 ++Free_list::num_removes;
107
108 Iterator p = this->last_remove_;
109 if (p->start_ > start)
110 p = this->list_.begin();
111
112 for (; p != this->list_.end(); ++p)
113 {
114 ++Free_list::num_remove_visits;
115 // Find a node that wholly contains the indicated region.
116 if (p->start_ <= start && p->end_ >= end)
117 {
118 // Case 1: the indicated region spans the whole node.
119 // Add some fuzz to avoid creating tiny free chunks.
120 if (p->start_ + 3 >= start && p->end_ <= end + 3)
121 p = this->list_.erase(p);
122 // Case 2: remove a chunk from the start of the node.
123 else if (p->start_ + 3 >= start)
124 p->start_ = end;
125 // Case 3: remove a chunk from the end of the node.
126 else if (p->end_ <= end + 3)
127 p->end_ = start;
128 // Case 4: remove a chunk from the middle, and split
129 // the node into two.
130 else
131 {
132 Free_list_node newnode(p->start_, start);
133 p->start_ = end;
134 this->list_.insert(p, newnode);
135 ++Free_list::num_nodes;
136 }
137 this->last_remove_ = p;
138 return;
139 }
140 }
141
142 // Did not find a node containing the given chunk. This could happen
143 // because a small chunk was already removed due to the fuzz.
144 gold_debug(DEBUG_INCREMENTAL,
145 "Free_list::remove(%d,%d) not found",
146 static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list. Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156 gold_debug(DEBUG_INCREMENTAL,
157 "Free_list::allocate(%08lx, %d, %08lx)",
158 static_cast<long>(len), static_cast<int>(align),
159 static_cast<long>(minoff));
160 if (len == 0)
161 return align_address(minoff, align);
162
163 ++Free_list::num_allocates;
164
165 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166 {
167 ++Free_list::num_allocate_visits;
168 off_t start = p->start_ > minoff ? p->start_ : minoff;
169 start = align_address(start, align);
170 off_t end = start + len;
171 if (end <= p->end_)
172 {
173 if (p->start_ + 3 >= start && p->end_ <= end + 3)
174 this->list_.erase(p);
175 else if (p->start_ + 3 >= start)
176 p->start_ = end;
177 else if (p->end_ <= end + 3)
178 p->end_ = start;
179 else
180 {
181 Free_list_node newnode(p->start_, start);
182 p->start_ = end;
183 this->list_.insert(p, newnode);
184 ++Free_list::num_nodes;
185 }
186 return start;
187 }
188 }
189 return -1;
190 }
191
192 // Dump the free list (for debugging).
193 void
194 Free_list::dump()
195 {
196 gold_info("Free list:\n start end length\n");
197 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
198 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
199 static_cast<long>(p->end_),
200 static_cast<long>(p->end_ - p->start_));
201 }
202
203 // Print the statistics for the free lists.
204 void
205 Free_list::print_stats()
206 {
207 fprintf(stderr, _("%s: total free lists: %u\n"),
208 program_name, Free_list::num_lists);
209 fprintf(stderr, _("%s: total free list nodes: %u\n"),
210 program_name, Free_list::num_nodes);
211 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
212 program_name, Free_list::num_removes);
213 fprintf(stderr, _("%s: nodes visited: %u\n"),
214 program_name, Free_list::num_remove_visits);
215 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
216 program_name, Free_list::num_allocates);
217 fprintf(stderr, _("%s: nodes visited: %u\n"),
218 program_name, Free_list::num_allocate_visits);
219 }
220
221 // Layout::Relaxation_debug_check methods.
222
223 // Check that sections and special data are in reset states.
224 // We do not save states for Output_sections and special Output_data.
225 // So we check that they have not assigned any addresses or offsets.
226 // clean_up_after_relaxation simply resets their addresses and offsets.
227 void
228 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
229 const Layout::Section_list& sections,
230 const Layout::Data_list& special_outputs)
231 {
232 for(Layout::Section_list::const_iterator p = sections.begin();
233 p != sections.end();
234 ++p)
235 gold_assert((*p)->address_and_file_offset_have_reset_values());
236
237 for(Layout::Data_list::const_iterator p = special_outputs.begin();
238 p != special_outputs.end();
239 ++p)
240 gold_assert((*p)->address_and_file_offset_have_reset_values());
241 }
242
243 // Save information of SECTIONS for checking later.
244
245 void
246 Layout::Relaxation_debug_check::read_sections(
247 const Layout::Section_list& sections)
248 {
249 for(Layout::Section_list::const_iterator p = sections.begin();
250 p != sections.end();
251 ++p)
252 {
253 Output_section* os = *p;
254 Section_info info;
255 info.output_section = os;
256 info.address = os->is_address_valid() ? os->address() : 0;
257 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
258 info.offset = os->is_offset_valid()? os->offset() : -1 ;
259 this->section_infos_.push_back(info);
260 }
261 }
262
263 // Verify SECTIONS using previously recorded information.
264
265 void
266 Layout::Relaxation_debug_check::verify_sections(
267 const Layout::Section_list& sections)
268 {
269 size_t i = 0;
270 for(Layout::Section_list::const_iterator p = sections.begin();
271 p != sections.end();
272 ++p, ++i)
273 {
274 Output_section* os = *p;
275 uint64_t address = os->is_address_valid() ? os->address() : 0;
276 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
277 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
278
279 if (i >= this->section_infos_.size())
280 {
281 gold_fatal("Section_info of %s missing.\n", os->name());
282 }
283 const Section_info& info = this->section_infos_[i];
284 if (os != info.output_section)
285 gold_fatal("Section order changed. Expecting %s but see %s\n",
286 info.output_section->name(), os->name());
287 if (address != info.address
288 || data_size != info.data_size
289 || offset != info.offset)
290 gold_fatal("Section %s changed.\n", os->name());
291 }
292 }
293
294 // Layout_task_runner methods.
295
296 // Lay out the sections. This is called after all the input objects
297 // have been read.
298
299 void
300 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
301 {
302 Layout* layout = this->layout_;
303 off_t file_size = layout->finalize(this->input_objects_,
304 this->symtab_,
305 this->target_,
306 task);
307
308 // Now we know the final size of the output file and we know where
309 // each piece of information goes.
310
311 if (this->mapfile_ != NULL)
312 {
313 this->mapfile_->print_discarded_sections(this->input_objects_);
314 layout->print_to_mapfile(this->mapfile_);
315 }
316
317 Output_file* of;
318 if (layout->incremental_base() == NULL)
319 {
320 of = new Output_file(parameters->options().output_file_name());
321 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
322 of->set_is_temporary();
323 of->open(file_size);
324 }
325 else
326 {
327 of = layout->incremental_base()->output_file();
328
329 // Apply the incremental relocations for symbols whose values
330 // have changed. We do this before we resize the file and start
331 // writing anything else to it, so that we can read the old
332 // incremental information from the file before (possibly)
333 // overwriting it.
334 if (parameters->incremental_update())
335 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
336 this->layout_,
337 of);
338
339 of->resize(file_size);
340 }
341
342 // Queue up the final set of tasks.
343 gold::queue_final_tasks(this->options_, this->input_objects_,
344 this->symtab_, layout, workqueue, of);
345 }
346
347 // Layout methods.
348
349 Layout::Layout(int number_of_input_files, Script_options* script_options)
350 : number_of_input_files_(number_of_input_files),
351 script_options_(script_options),
352 namepool_(),
353 sympool_(),
354 dynpool_(),
355 signatures_(),
356 section_name_map_(),
357 segment_list_(),
358 section_list_(),
359 unattached_section_list_(),
360 special_output_list_(),
361 section_headers_(NULL),
362 tls_segment_(NULL),
363 relro_segment_(NULL),
364 interp_segment_(NULL),
365 increase_relro_(0),
366 symtab_section_(NULL),
367 symtab_xindex_(NULL),
368 dynsym_section_(NULL),
369 dynsym_xindex_(NULL),
370 dynamic_section_(NULL),
371 dynamic_symbol_(NULL),
372 dynamic_data_(NULL),
373 eh_frame_section_(NULL),
374 eh_frame_data_(NULL),
375 added_eh_frame_data_(false),
376 eh_frame_hdr_section_(NULL),
377 build_id_note_(NULL),
378 debug_abbrev_(NULL),
379 debug_info_(NULL),
380 group_signatures_(),
381 output_file_size_(-1),
382 have_added_input_section_(false),
383 sections_are_attached_(false),
384 input_requires_executable_stack_(false),
385 input_with_gnu_stack_note_(false),
386 input_without_gnu_stack_note_(false),
387 has_static_tls_(false),
388 any_postprocessing_sections_(false),
389 resized_signatures_(false),
390 have_stabstr_section_(false),
391 incremental_inputs_(NULL),
392 record_output_section_data_from_script_(false),
393 script_output_section_data_list_(),
394 segment_states_(NULL),
395 relaxation_debug_check_(NULL),
396 incremental_base_(NULL),
397 free_list_()
398 {
399 // Make space for more than enough segments for a typical file.
400 // This is just for efficiency--it's OK if we wind up needing more.
401 this->segment_list_.reserve(12);
402
403 // We expect two unattached Output_data objects: the file header and
404 // the segment headers.
405 this->special_output_list_.reserve(2);
406
407 // Initialize structure needed for an incremental build.
408 if (parameters->incremental())
409 this->incremental_inputs_ = new Incremental_inputs;
410
411 // The section name pool is worth optimizing in all cases, because
412 // it is small, but there are often overlaps due to .rel sections.
413 this->namepool_.set_optimize();
414 }
415
416 // For incremental links, record the base file to be modified.
417
418 void
419 Layout::set_incremental_base(Incremental_binary* base)
420 {
421 this->incremental_base_ = base;
422 this->free_list_.init(base->output_file()->filesize(), true);
423 }
424
425 // Hash a key we use to look up an output section mapping.
426
427 size_t
428 Layout::Hash_key::operator()(const Layout::Key& k) const
429 {
430 return k.first + k.second.first + k.second.second;
431 }
432
433 // Returns whether the given section is in the list of
434 // debug-sections-used-by-some-version-of-gdb. Currently,
435 // we've checked versions of gdb up to and including 6.7.1.
436
437 static const char* gdb_sections[] =
438 { ".debug_abbrev",
439 // ".debug_aranges", // not used by gdb as of 6.7.1
440 ".debug_frame",
441 ".debug_info",
442 ".debug_types",
443 ".debug_line",
444 ".debug_loc",
445 ".debug_macinfo",
446 // ".debug_pubnames", // not used by gdb as of 6.7.1
447 ".debug_ranges",
448 ".debug_str",
449 };
450
451 static const char* lines_only_debug_sections[] =
452 { ".debug_abbrev",
453 // ".debug_aranges", // not used by gdb as of 6.7.1
454 // ".debug_frame",
455 ".debug_info",
456 // ".debug_types",
457 ".debug_line",
458 // ".debug_loc",
459 // ".debug_macinfo",
460 // ".debug_pubnames", // not used by gdb as of 6.7.1
461 // ".debug_ranges",
462 ".debug_str",
463 };
464
465 static inline bool
466 is_gdb_debug_section(const char* str)
467 {
468 // We can do this faster: binary search or a hashtable. But why bother?
469 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
470 if (strcmp(str, gdb_sections[i]) == 0)
471 return true;
472 return false;
473 }
474
475 static inline bool
476 is_lines_only_debug_section(const char* str)
477 {
478 // We can do this faster: binary search or a hashtable. But why bother?
479 for (size_t i = 0;
480 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
481 ++i)
482 if (strcmp(str, lines_only_debug_sections[i]) == 0)
483 return true;
484 return false;
485 }
486
487 // Sometimes we compress sections. This is typically done for
488 // sections that are not part of normal program execution (such as
489 // .debug_* sections), and where the readers of these sections know
490 // how to deal with compressed sections. This routine doesn't say for
491 // certain whether we'll compress -- it depends on commandline options
492 // as well -- just whether this section is a candidate for compression.
493 // (The Output_compressed_section class decides whether to compress
494 // a given section, and picks the name of the compressed section.)
495
496 static bool
497 is_compressible_debug_section(const char* secname)
498 {
499 return (is_prefix_of(".debug", secname));
500 }
501
502 // We may see compressed debug sections in input files. Return TRUE
503 // if this is the name of a compressed debug section.
504
505 bool
506 is_compressed_debug_section(const char* secname)
507 {
508 return (is_prefix_of(".zdebug", secname));
509 }
510
511 // Whether to include this section in the link.
512
513 template<int size, bool big_endian>
514 bool
515 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
516 const elfcpp::Shdr<size, big_endian>& shdr)
517 {
518 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
519 return false;
520
521 switch (shdr.get_sh_type())
522 {
523 case elfcpp::SHT_NULL:
524 case elfcpp::SHT_SYMTAB:
525 case elfcpp::SHT_DYNSYM:
526 case elfcpp::SHT_HASH:
527 case elfcpp::SHT_DYNAMIC:
528 case elfcpp::SHT_SYMTAB_SHNDX:
529 return false;
530
531 case elfcpp::SHT_STRTAB:
532 // Discard the sections which have special meanings in the ELF
533 // ABI. Keep others (e.g., .stabstr). We could also do this by
534 // checking the sh_link fields of the appropriate sections.
535 return (strcmp(name, ".dynstr") != 0
536 && strcmp(name, ".strtab") != 0
537 && strcmp(name, ".shstrtab") != 0);
538
539 case elfcpp::SHT_RELA:
540 case elfcpp::SHT_REL:
541 case elfcpp::SHT_GROUP:
542 // If we are emitting relocations these should be handled
543 // elsewhere.
544 gold_assert(!parameters->options().relocatable()
545 && !parameters->options().emit_relocs());
546 return false;
547
548 case elfcpp::SHT_PROGBITS:
549 if (parameters->options().strip_debug()
550 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
551 {
552 if (is_debug_info_section(name))
553 return false;
554 }
555 if (parameters->options().strip_debug_non_line()
556 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
557 {
558 // Debugging sections can only be recognized by name.
559 if (is_prefix_of(".debug", name)
560 && !is_lines_only_debug_section(name))
561 return false;
562 }
563 if (parameters->options().strip_debug_gdb()
564 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
565 {
566 // Debugging sections can only be recognized by name.
567 if (is_prefix_of(".debug", name)
568 && !is_gdb_debug_section(name))
569 return false;
570 }
571 if (parameters->options().strip_lto_sections()
572 && !parameters->options().relocatable()
573 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
574 {
575 // Ignore LTO sections containing intermediate code.
576 if (is_prefix_of(".gnu.lto_", name))
577 return false;
578 }
579 // The GNU linker strips .gnu_debuglink sections, so we do too.
580 // This is a feature used to keep debugging information in
581 // separate files.
582 if (strcmp(name, ".gnu_debuglink") == 0)
583 return false;
584 return true;
585
586 default:
587 return true;
588 }
589 }
590
591 // Return an output section named NAME, or NULL if there is none.
592
593 Output_section*
594 Layout::find_output_section(const char* name) const
595 {
596 for (Section_list::const_iterator p = this->section_list_.begin();
597 p != this->section_list_.end();
598 ++p)
599 if (strcmp((*p)->name(), name) == 0)
600 return *p;
601 return NULL;
602 }
603
604 // Return an output segment of type TYPE, with segment flags SET set
605 // and segment flags CLEAR clear. Return NULL if there is none.
606
607 Output_segment*
608 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
609 elfcpp::Elf_Word clear) const
610 {
611 for (Segment_list::const_iterator p = this->segment_list_.begin();
612 p != this->segment_list_.end();
613 ++p)
614 if (static_cast<elfcpp::PT>((*p)->type()) == type
615 && ((*p)->flags() & set) == set
616 && ((*p)->flags() & clear) == 0)
617 return *p;
618 return NULL;
619 }
620
621 // When we put a .ctors or .dtors section with more than one word into
622 // a .init_array or .fini_array section, we need to reverse the words
623 // in the .ctors/.dtors section. This is because .init_array executes
624 // constructors front to back, where .ctors executes them back to
625 // front, and vice-versa for .fini_array/.dtors. Although we do want
626 // to remap .ctors/.dtors into .init_array/.fini_array because it can
627 // be more efficient, we don't want to change the order in which
628 // constructors/destructors are run. This set just keeps track of
629 // these sections which need to be reversed. It is only changed by
630 // Layout::layout. It should be a private member of Layout, but that
631 // would require layout.h to #include object.h to get the definition
632 // of Section_id.
633 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
634
635 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
636 // .init_array/.fini_array section.
637
638 bool
639 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
640 {
641 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
642 != ctors_sections_in_init_array.end());
643 }
644
645 // Return the output section to use for section NAME with type TYPE
646 // and section flags FLAGS. NAME must be canonicalized in the string
647 // pool, and NAME_KEY is the key. ORDER is where this should appear
648 // in the output sections. IS_RELRO is true for a relro section.
649
650 Output_section*
651 Layout::get_output_section(const char* name, Stringpool::Key name_key,
652 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
653 Output_section_order order, bool is_relro)
654 {
655 elfcpp::Elf_Word lookup_type = type;
656
657 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
658 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
659 // .init_array, .fini_array, and .preinit_array sections by name
660 // whatever their type in the input file. We do this because the
661 // types are not always right in the input files.
662 if (lookup_type == elfcpp::SHT_INIT_ARRAY
663 || lookup_type == elfcpp::SHT_FINI_ARRAY
664 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
665 lookup_type = elfcpp::SHT_PROGBITS;
666
667 elfcpp::Elf_Xword lookup_flags = flags;
668
669 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
670 // read-write with read-only sections. Some other ELF linkers do
671 // not do this. FIXME: Perhaps there should be an option
672 // controlling this.
673 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
674
675 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
676 const std::pair<Key, Output_section*> v(key, NULL);
677 std::pair<Section_name_map::iterator, bool> ins(
678 this->section_name_map_.insert(v));
679
680 if (!ins.second)
681 return ins.first->second;
682 else
683 {
684 // This is the first time we've seen this name/type/flags
685 // combination. For compatibility with the GNU linker, we
686 // combine sections with contents and zero flags with sections
687 // with non-zero flags. This is a workaround for cases where
688 // assembler code forgets to set section flags. FIXME: Perhaps
689 // there should be an option to control this.
690 Output_section* os = NULL;
691
692 if (lookup_type == elfcpp::SHT_PROGBITS)
693 {
694 if (flags == 0)
695 {
696 Output_section* same_name = this->find_output_section(name);
697 if (same_name != NULL
698 && (same_name->type() == elfcpp::SHT_PROGBITS
699 || same_name->type() == elfcpp::SHT_INIT_ARRAY
700 || same_name->type() == elfcpp::SHT_FINI_ARRAY
701 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
702 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
703 os = same_name;
704 }
705 else if ((flags & elfcpp::SHF_TLS) == 0)
706 {
707 elfcpp::Elf_Xword zero_flags = 0;
708 const Key zero_key(name_key, std::make_pair(lookup_type,
709 zero_flags));
710 Section_name_map::iterator p =
711 this->section_name_map_.find(zero_key);
712 if (p != this->section_name_map_.end())
713 os = p->second;
714 }
715 }
716
717 if (os == NULL)
718 os = this->make_output_section(name, type, flags, order, is_relro);
719
720 ins.first->second = os;
721 return os;
722 }
723 }
724
725 // Pick the output section to use for section NAME, in input file
726 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
727 // linker created section. IS_INPUT_SECTION is true if we are
728 // choosing an output section for an input section found in a input
729 // file. ORDER is where this section should appear in the output
730 // sections. IS_RELRO is true for a relro section. This will return
731 // NULL if the input section should be discarded.
732
733 Output_section*
734 Layout::choose_output_section(const Relobj* relobj, const char* name,
735 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
736 bool is_input_section, Output_section_order order,
737 bool is_relro)
738 {
739 // We should not see any input sections after we have attached
740 // sections to segments.
741 gold_assert(!is_input_section || !this->sections_are_attached_);
742
743 // Some flags in the input section should not be automatically
744 // copied to the output section.
745 flags &= ~ (elfcpp::SHF_INFO_LINK
746 | elfcpp::SHF_GROUP
747 | elfcpp::SHF_MERGE
748 | elfcpp::SHF_STRINGS);
749
750 // We only clear the SHF_LINK_ORDER flag in for
751 // a non-relocatable link.
752 if (!parameters->options().relocatable())
753 flags &= ~elfcpp::SHF_LINK_ORDER;
754
755 if (this->script_options_->saw_sections_clause())
756 {
757 // We are using a SECTIONS clause, so the output section is
758 // chosen based only on the name.
759
760 Script_sections* ss = this->script_options_->script_sections();
761 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
762 Output_section** output_section_slot;
763 Script_sections::Section_type script_section_type;
764 const char* orig_name = name;
765 name = ss->output_section_name(file_name, name, &output_section_slot,
766 &script_section_type);
767 if (name == NULL)
768 {
769 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
770 "because it is not allowed by the "
771 "SECTIONS clause of the linker script"),
772 orig_name);
773 // The SECTIONS clause says to discard this input section.
774 return NULL;
775 }
776
777 // We can only handle script section types ST_NONE and ST_NOLOAD.
778 switch (script_section_type)
779 {
780 case Script_sections::ST_NONE:
781 break;
782 case Script_sections::ST_NOLOAD:
783 flags &= elfcpp::SHF_ALLOC;
784 break;
785 default:
786 gold_unreachable();
787 }
788
789 // If this is an orphan section--one not mentioned in the linker
790 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
791 // default processing below.
792
793 if (output_section_slot != NULL)
794 {
795 if (*output_section_slot != NULL)
796 {
797 (*output_section_slot)->update_flags_for_input_section(flags);
798 return *output_section_slot;
799 }
800
801 // We don't put sections found in the linker script into
802 // SECTION_NAME_MAP_. That keeps us from getting confused
803 // if an orphan section is mapped to a section with the same
804 // name as one in the linker script.
805
806 name = this->namepool_.add(name, false, NULL);
807
808 Output_section* os = this->make_output_section(name, type, flags,
809 order, is_relro);
810
811 os->set_found_in_sections_clause();
812
813 // Special handling for NOLOAD sections.
814 if (script_section_type == Script_sections::ST_NOLOAD)
815 {
816 os->set_is_noload();
817
818 // The constructor of Output_section sets addresses of non-ALLOC
819 // sections to 0 by default. We don't want that for NOLOAD
820 // sections even if they have no SHF_ALLOC flag.
821 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
822 && os->is_address_valid())
823 {
824 gold_assert(os->address() == 0
825 && !os->is_offset_valid()
826 && !os->is_data_size_valid());
827 os->reset_address_and_file_offset();
828 }
829 }
830
831 *output_section_slot = os;
832 return os;
833 }
834 }
835
836 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
837
838 size_t len = strlen(name);
839 char* uncompressed_name = NULL;
840
841 // Compressed debug sections should be mapped to the corresponding
842 // uncompressed section.
843 if (is_compressed_debug_section(name))
844 {
845 uncompressed_name = new char[len];
846 uncompressed_name[0] = '.';
847 gold_assert(name[0] == '.' && name[1] == 'z');
848 strncpy(&uncompressed_name[1], &name[2], len - 2);
849 uncompressed_name[len - 1] = '\0';
850 len -= 1;
851 name = uncompressed_name;
852 }
853
854 // Turn NAME from the name of the input section into the name of the
855 // output section.
856 if (is_input_section
857 && !this->script_options_->saw_sections_clause()
858 && !parameters->options().relocatable())
859 name = Layout::output_section_name(relobj, name, &len);
860
861 Stringpool::Key name_key;
862 name = this->namepool_.add_with_length(name, len, true, &name_key);
863
864 if (uncompressed_name != NULL)
865 delete[] uncompressed_name;
866
867 // Find or make the output section. The output section is selected
868 // based on the section name, type, and flags.
869 return this->get_output_section(name, name_key, type, flags, order, is_relro);
870 }
871
872 // For incremental links, record the initial fixed layout of a section
873 // from the base file, and return a pointer to the Output_section.
874
875 template<int size, bool big_endian>
876 Output_section*
877 Layout::init_fixed_output_section(const char* name,
878 elfcpp::Shdr<size, big_endian>& shdr)
879 {
880 unsigned int sh_type = shdr.get_sh_type();
881
882 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
883 // All others will be created from scratch and reallocated.
884 if (sh_type != elfcpp::SHT_PROGBITS
885 && sh_type != elfcpp::SHT_NOBITS
886 && sh_type != elfcpp::SHT_NOTE)
887 return NULL;
888
889 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
890 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
891 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
892 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
893 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
894 shdr.get_sh_addralign();
895
896 // Make the output section.
897 Stringpool::Key name_key;
898 name = this->namepool_.add(name, true, &name_key);
899 Output_section* os = this->get_output_section(name, name_key, sh_type,
900 sh_flags, ORDER_INVALID, false);
901 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
902 if (sh_type != elfcpp::SHT_NOBITS)
903 this->free_list_.remove(sh_offset, sh_offset + sh_size);
904 return os;
905 }
906
907 // Return the output section to use for input section SHNDX, with name
908 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
909 // index of a relocation section which applies to this section, or 0
910 // if none, or -1U if more than one. RELOC_TYPE is the type of the
911 // relocation section if there is one. Set *OFF to the offset of this
912 // input section without the output section. Return NULL if the
913 // section should be discarded. Set *OFF to -1 if the section
914 // contents should not be written directly to the output file, but
915 // will instead receive special handling.
916
917 template<int size, bool big_endian>
918 Output_section*
919 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
920 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
921 unsigned int reloc_shndx, unsigned int, off_t* off)
922 {
923 *off = 0;
924
925 if (!this->include_section(object, name, shdr))
926 return NULL;
927
928 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
929
930 // In a relocatable link a grouped section must not be combined with
931 // any other sections.
932 Output_section* os;
933 if (parameters->options().relocatable()
934 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
935 {
936 name = this->namepool_.add(name, true, NULL);
937 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
938 ORDER_INVALID, false);
939 }
940 else
941 {
942 os = this->choose_output_section(object, name, sh_type,
943 shdr.get_sh_flags(), true,
944 ORDER_INVALID, false);
945 if (os == NULL)
946 return NULL;
947 }
948
949 // By default the GNU linker sorts input sections whose names match
950 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
951 // sections are sorted by name. This is used to implement
952 // constructor priority ordering. We are compatible. When we put
953 // .ctor sections in .init_array and .dtor sections in .fini_array,
954 // we must also sort plain .ctor and .dtor sections.
955 if (!this->script_options_->saw_sections_clause()
956 && !parameters->options().relocatable()
957 && (is_prefix_of(".ctors.", name)
958 || is_prefix_of(".dtors.", name)
959 || is_prefix_of(".init_array.", name)
960 || is_prefix_of(".fini_array.", name)
961 || (parameters->options().ctors_in_init_array()
962 && (strcmp(name, ".ctors") == 0
963 || strcmp(name, ".dtors") == 0))))
964 os->set_must_sort_attached_input_sections();
965
966 // If this is a .ctors or .ctors.* section being mapped to a
967 // .init_array section, or a .dtors or .dtors.* section being mapped
968 // to a .fini_array section, we will need to reverse the words if
969 // there is more than one. Record this section for later. See
970 // ctors_sections_in_init_array above.
971 if (!this->script_options_->saw_sections_clause()
972 && !parameters->options().relocatable()
973 && shdr.get_sh_size() > size / 8
974 && (((strcmp(name, ".ctors") == 0
975 || is_prefix_of(".ctors.", name))
976 && strcmp(os->name(), ".init_array") == 0)
977 || ((strcmp(name, ".dtors") == 0
978 || is_prefix_of(".dtors.", name))
979 && strcmp(os->name(), ".fini_array") == 0)))
980 ctors_sections_in_init_array.insert(Section_id(object, shndx));
981
982 // FIXME: Handle SHF_LINK_ORDER somewhere.
983
984 elfcpp::Elf_Xword orig_flags = os->flags();
985
986 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
987 this->script_options_->saw_sections_clause());
988
989 // If the flags changed, we may have to change the order.
990 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
991 {
992 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
993 elfcpp::Elf_Xword new_flags =
994 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
995 if (orig_flags != new_flags)
996 os->set_order(this->default_section_order(os, false));
997 }
998
999 this->have_added_input_section_ = true;
1000
1001 return os;
1002 }
1003
1004 // Handle a relocation section when doing a relocatable link.
1005
1006 template<int size, bool big_endian>
1007 Output_section*
1008 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1009 unsigned int,
1010 const elfcpp::Shdr<size, big_endian>& shdr,
1011 Output_section* data_section,
1012 Relocatable_relocs* rr)
1013 {
1014 gold_assert(parameters->options().relocatable()
1015 || parameters->options().emit_relocs());
1016
1017 int sh_type = shdr.get_sh_type();
1018
1019 std::string name;
1020 if (sh_type == elfcpp::SHT_REL)
1021 name = ".rel";
1022 else if (sh_type == elfcpp::SHT_RELA)
1023 name = ".rela";
1024 else
1025 gold_unreachable();
1026 name += data_section->name();
1027
1028 // In a relocatable link relocs for a grouped section must not be
1029 // combined with other reloc sections.
1030 Output_section* os;
1031 if (!parameters->options().relocatable()
1032 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1033 os = this->choose_output_section(object, name.c_str(), sh_type,
1034 shdr.get_sh_flags(), false,
1035 ORDER_INVALID, false);
1036 else
1037 {
1038 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1039 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1040 ORDER_INVALID, false);
1041 }
1042
1043 os->set_should_link_to_symtab();
1044 os->set_info_section(data_section);
1045
1046 Output_section_data* posd;
1047 if (sh_type == elfcpp::SHT_REL)
1048 {
1049 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1050 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1051 size,
1052 big_endian>(rr);
1053 }
1054 else if (sh_type == elfcpp::SHT_RELA)
1055 {
1056 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1057 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1058 size,
1059 big_endian>(rr);
1060 }
1061 else
1062 gold_unreachable();
1063
1064 os->add_output_section_data(posd);
1065 rr->set_output_data(posd);
1066
1067 return os;
1068 }
1069
1070 // Handle a group section when doing a relocatable link.
1071
1072 template<int size, bool big_endian>
1073 void
1074 Layout::layout_group(Symbol_table* symtab,
1075 Sized_relobj_file<size, big_endian>* object,
1076 unsigned int,
1077 const char* group_section_name,
1078 const char* signature,
1079 const elfcpp::Shdr<size, big_endian>& shdr,
1080 elfcpp::Elf_Word flags,
1081 std::vector<unsigned int>* shndxes)
1082 {
1083 gold_assert(parameters->options().relocatable());
1084 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1085 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1086 Output_section* os = this->make_output_section(group_section_name,
1087 elfcpp::SHT_GROUP,
1088 shdr.get_sh_flags(),
1089 ORDER_INVALID, false);
1090
1091 // We need to find a symbol with the signature in the symbol table.
1092 // If we don't find one now, we need to look again later.
1093 Symbol* sym = symtab->lookup(signature, NULL);
1094 if (sym != NULL)
1095 os->set_info_symndx(sym);
1096 else
1097 {
1098 // Reserve some space to minimize reallocations.
1099 if (this->group_signatures_.empty())
1100 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1101
1102 // We will wind up using a symbol whose name is the signature.
1103 // So just put the signature in the symbol name pool to save it.
1104 signature = symtab->canonicalize_name(signature);
1105 this->group_signatures_.push_back(Group_signature(os, signature));
1106 }
1107
1108 os->set_should_link_to_symtab();
1109 os->set_entsize(4);
1110
1111 section_size_type entry_count =
1112 convert_to_section_size_type(shdr.get_sh_size() / 4);
1113 Output_section_data* posd =
1114 new Output_data_group<size, big_endian>(object, entry_count, flags,
1115 shndxes);
1116 os->add_output_section_data(posd);
1117 }
1118
1119 // Special GNU handling of sections name .eh_frame. They will
1120 // normally hold exception frame data as defined by the C++ ABI
1121 // (http://codesourcery.com/cxx-abi/).
1122
1123 template<int size, bool big_endian>
1124 Output_section*
1125 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1126 const unsigned char* symbols,
1127 off_t symbols_size,
1128 const unsigned char* symbol_names,
1129 off_t symbol_names_size,
1130 unsigned int shndx,
1131 const elfcpp::Shdr<size, big_endian>& shdr,
1132 unsigned int reloc_shndx, unsigned int reloc_type,
1133 off_t* off)
1134 {
1135 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1136 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1137 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1138
1139 Output_section* os = this->make_eh_frame_section(object);
1140 if (os == NULL)
1141 return NULL;
1142
1143 gold_assert(this->eh_frame_section_ == os);
1144
1145 elfcpp::Elf_Xword orig_flags = os->flags();
1146
1147 if (!parameters->incremental()
1148 && this->eh_frame_data_->add_ehframe_input_section(object,
1149 symbols,
1150 symbols_size,
1151 symbol_names,
1152 symbol_names_size,
1153 shndx,
1154 reloc_shndx,
1155 reloc_type))
1156 {
1157 os->update_flags_for_input_section(shdr.get_sh_flags());
1158
1159 // A writable .eh_frame section is a RELRO section.
1160 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1161 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1162 {
1163 os->set_is_relro();
1164 os->set_order(ORDER_RELRO);
1165 }
1166
1167 // We found a .eh_frame section we are going to optimize, so now
1168 // we can add the set of optimized sections to the output
1169 // section. We need to postpone adding this until we've found a
1170 // section we can optimize so that the .eh_frame section in
1171 // crtbegin.o winds up at the start of the output section.
1172 if (!this->added_eh_frame_data_)
1173 {
1174 os->add_output_section_data(this->eh_frame_data_);
1175 this->added_eh_frame_data_ = true;
1176 }
1177 *off = -1;
1178 }
1179 else
1180 {
1181 // We couldn't handle this .eh_frame section for some reason.
1182 // Add it as a normal section.
1183 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1184 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1185 reloc_shndx, saw_sections_clause);
1186 this->have_added_input_section_ = true;
1187
1188 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1189 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1190 os->set_order(this->default_section_order(os, false));
1191 }
1192
1193 return os;
1194 }
1195
1196 // Create and return the magic .eh_frame section. Create
1197 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1198 // input .eh_frame section; it may be NULL.
1199
1200 Output_section*
1201 Layout::make_eh_frame_section(const Relobj* object)
1202 {
1203 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1204 // SHT_PROGBITS.
1205 Output_section* os = this->choose_output_section(object, ".eh_frame",
1206 elfcpp::SHT_PROGBITS,
1207 elfcpp::SHF_ALLOC, false,
1208 ORDER_EHFRAME, false);
1209 if (os == NULL)
1210 return NULL;
1211
1212 if (this->eh_frame_section_ == NULL)
1213 {
1214 this->eh_frame_section_ = os;
1215 this->eh_frame_data_ = new Eh_frame();
1216
1217 // For incremental linking, we do not optimize .eh_frame sections
1218 // or create a .eh_frame_hdr section.
1219 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1220 {
1221 Output_section* hdr_os =
1222 this->choose_output_section(NULL, ".eh_frame_hdr",
1223 elfcpp::SHT_PROGBITS,
1224 elfcpp::SHF_ALLOC, false,
1225 ORDER_EHFRAME, false);
1226
1227 if (hdr_os != NULL)
1228 {
1229 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1230 this->eh_frame_data_);
1231 hdr_os->add_output_section_data(hdr_posd);
1232
1233 hdr_os->set_after_input_sections();
1234
1235 if (!this->script_options_->saw_phdrs_clause())
1236 {
1237 Output_segment* hdr_oseg;
1238 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1239 elfcpp::PF_R);
1240 hdr_oseg->add_output_section_to_nonload(hdr_os,
1241 elfcpp::PF_R);
1242 }
1243
1244 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1245 }
1246 }
1247 }
1248
1249 return os;
1250 }
1251
1252 // Add an exception frame for a PLT. This is called from target code.
1253
1254 void
1255 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1256 size_t cie_length, const unsigned char* fde_data,
1257 size_t fde_length)
1258 {
1259 if (parameters->incremental())
1260 {
1261 // FIXME: Maybe this could work some day....
1262 return;
1263 }
1264 Output_section* os = this->make_eh_frame_section(NULL);
1265 if (os == NULL)
1266 return;
1267 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1268 fde_data, fde_length);
1269 if (!this->added_eh_frame_data_)
1270 {
1271 os->add_output_section_data(this->eh_frame_data_);
1272 this->added_eh_frame_data_ = true;
1273 }
1274 }
1275
1276 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1277 // the output section.
1278
1279 Output_section*
1280 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1281 elfcpp::Elf_Xword flags,
1282 Output_section_data* posd,
1283 Output_section_order order, bool is_relro)
1284 {
1285 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1286 false, order, is_relro);
1287 if (os != NULL)
1288 os->add_output_section_data(posd);
1289 return os;
1290 }
1291
1292 // Map section flags to segment flags.
1293
1294 elfcpp::Elf_Word
1295 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1296 {
1297 elfcpp::Elf_Word ret = elfcpp::PF_R;
1298 if ((flags & elfcpp::SHF_WRITE) != 0)
1299 ret |= elfcpp::PF_W;
1300 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1301 ret |= elfcpp::PF_X;
1302 return ret;
1303 }
1304
1305 // Make a new Output_section, and attach it to segments as
1306 // appropriate. ORDER is the order in which this section should
1307 // appear in the output segment. IS_RELRO is true if this is a relro
1308 // (read-only after relocations) section.
1309
1310 Output_section*
1311 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1312 elfcpp::Elf_Xword flags,
1313 Output_section_order order, bool is_relro)
1314 {
1315 Output_section* os;
1316 if ((flags & elfcpp::SHF_ALLOC) == 0
1317 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1318 && is_compressible_debug_section(name))
1319 os = new Output_compressed_section(&parameters->options(), name, type,
1320 flags);
1321 else if ((flags & elfcpp::SHF_ALLOC) == 0
1322 && parameters->options().strip_debug_non_line()
1323 && strcmp(".debug_abbrev", name) == 0)
1324 {
1325 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1326 name, type, flags);
1327 if (this->debug_info_)
1328 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1329 }
1330 else if ((flags & elfcpp::SHF_ALLOC) == 0
1331 && parameters->options().strip_debug_non_line()
1332 && strcmp(".debug_info", name) == 0)
1333 {
1334 os = this->debug_info_ = new Output_reduced_debug_info_section(
1335 name, type, flags);
1336 if (this->debug_abbrev_)
1337 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1338 }
1339 else
1340 {
1341 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1342 // not have correct section types. Force them here.
1343 if (type == elfcpp::SHT_PROGBITS)
1344 {
1345 if (is_prefix_of(".init_array", name))
1346 type = elfcpp::SHT_INIT_ARRAY;
1347 else if (is_prefix_of(".preinit_array", name))
1348 type = elfcpp::SHT_PREINIT_ARRAY;
1349 else if (is_prefix_of(".fini_array", name))
1350 type = elfcpp::SHT_FINI_ARRAY;
1351 }
1352
1353 // FIXME: const_cast is ugly.
1354 Target* target = const_cast<Target*>(&parameters->target());
1355 os = target->make_output_section(name, type, flags);
1356 }
1357
1358 // With -z relro, we have to recognize the special sections by name.
1359 // There is no other way.
1360 bool is_relro_local = false;
1361 if (!this->script_options_->saw_sections_clause()
1362 && parameters->options().relro()
1363 && type == elfcpp::SHT_PROGBITS
1364 && (flags & elfcpp::SHF_ALLOC) != 0
1365 && (flags & elfcpp::SHF_WRITE) != 0)
1366 {
1367 if (strcmp(name, ".data.rel.ro") == 0)
1368 is_relro = true;
1369 else if (strcmp(name, ".data.rel.ro.local") == 0)
1370 {
1371 is_relro = true;
1372 is_relro_local = true;
1373 }
1374 else if (type == elfcpp::SHT_INIT_ARRAY
1375 || type == elfcpp::SHT_FINI_ARRAY
1376 || type == elfcpp::SHT_PREINIT_ARRAY)
1377 is_relro = true;
1378 else if (strcmp(name, ".ctors") == 0
1379 || strcmp(name, ".dtors") == 0
1380 || strcmp(name, ".jcr") == 0)
1381 is_relro = true;
1382 }
1383
1384 if (is_relro)
1385 os->set_is_relro();
1386
1387 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1388 order = this->default_section_order(os, is_relro_local);
1389
1390 os->set_order(order);
1391
1392 parameters->target().new_output_section(os);
1393
1394 this->section_list_.push_back(os);
1395
1396 // The GNU linker by default sorts some sections by priority, so we
1397 // do the same. We need to know that this might happen before we
1398 // attach any input sections.
1399 if (!this->script_options_->saw_sections_clause()
1400 && !parameters->options().relocatable()
1401 && (strcmp(name, ".init_array") == 0
1402 || strcmp(name, ".fini_array") == 0
1403 || (!parameters->options().ctors_in_init_array()
1404 && (strcmp(name, ".ctors") == 0
1405 || strcmp(name, ".dtors") == 0))))
1406 os->set_may_sort_attached_input_sections();
1407
1408 // Check for .stab*str sections, as .stab* sections need to link to
1409 // them.
1410 if (type == elfcpp::SHT_STRTAB
1411 && !this->have_stabstr_section_
1412 && strncmp(name, ".stab", 5) == 0
1413 && strcmp(name + strlen(name) - 3, "str") == 0)
1414 this->have_stabstr_section_ = true;
1415
1416 // If we have already attached the sections to segments, then we
1417 // need to attach this one now. This happens for sections created
1418 // directly by the linker.
1419 if (this->sections_are_attached_)
1420 this->attach_section_to_segment(os);
1421
1422 return os;
1423 }
1424
1425 // Return the default order in which a section should be placed in an
1426 // output segment. This function captures a lot of the ideas in
1427 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1428 // linker created section is normally set when the section is created;
1429 // this function is used for input sections.
1430
1431 Output_section_order
1432 Layout::default_section_order(Output_section* os, bool is_relro_local)
1433 {
1434 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1435 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1436 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1437 bool is_bss = false;
1438
1439 switch (os->type())
1440 {
1441 default:
1442 case elfcpp::SHT_PROGBITS:
1443 break;
1444 case elfcpp::SHT_NOBITS:
1445 is_bss = true;
1446 break;
1447 case elfcpp::SHT_RELA:
1448 case elfcpp::SHT_REL:
1449 if (!is_write)
1450 return ORDER_DYNAMIC_RELOCS;
1451 break;
1452 case elfcpp::SHT_HASH:
1453 case elfcpp::SHT_DYNAMIC:
1454 case elfcpp::SHT_SHLIB:
1455 case elfcpp::SHT_DYNSYM:
1456 case elfcpp::SHT_GNU_HASH:
1457 case elfcpp::SHT_GNU_verdef:
1458 case elfcpp::SHT_GNU_verneed:
1459 case elfcpp::SHT_GNU_versym:
1460 if (!is_write)
1461 return ORDER_DYNAMIC_LINKER;
1462 break;
1463 case elfcpp::SHT_NOTE:
1464 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1465 }
1466
1467 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1468 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1469
1470 if (!is_bss && !is_write)
1471 {
1472 if (is_execinstr)
1473 {
1474 if (strcmp(os->name(), ".init") == 0)
1475 return ORDER_INIT;
1476 else if (strcmp(os->name(), ".fini") == 0)
1477 return ORDER_FINI;
1478 }
1479 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1480 }
1481
1482 if (os->is_relro())
1483 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1484
1485 if (os->is_small_section())
1486 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1487 if (os->is_large_section())
1488 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1489
1490 return is_bss ? ORDER_BSS : ORDER_DATA;
1491 }
1492
1493 // Attach output sections to segments. This is called after we have
1494 // seen all the input sections.
1495
1496 void
1497 Layout::attach_sections_to_segments()
1498 {
1499 for (Section_list::iterator p = this->section_list_.begin();
1500 p != this->section_list_.end();
1501 ++p)
1502 this->attach_section_to_segment(*p);
1503
1504 this->sections_are_attached_ = true;
1505 }
1506
1507 // Attach an output section to a segment.
1508
1509 void
1510 Layout::attach_section_to_segment(Output_section* os)
1511 {
1512 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1513 this->unattached_section_list_.push_back(os);
1514 else
1515 this->attach_allocated_section_to_segment(os);
1516 }
1517
1518 // Attach an allocated output section to a segment.
1519
1520 void
1521 Layout::attach_allocated_section_to_segment(Output_section* os)
1522 {
1523 elfcpp::Elf_Xword flags = os->flags();
1524 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1525
1526 if (parameters->options().relocatable())
1527 return;
1528
1529 // If we have a SECTIONS clause, we can't handle the attachment to
1530 // segments until after we've seen all the sections.
1531 if (this->script_options_->saw_sections_clause())
1532 return;
1533
1534 gold_assert(!this->script_options_->saw_phdrs_clause());
1535
1536 // This output section goes into a PT_LOAD segment.
1537
1538 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1539
1540 // Check for --section-start.
1541 uint64_t addr;
1542 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1543
1544 // In general the only thing we really care about for PT_LOAD
1545 // segments is whether or not they are writable or executable,
1546 // so that is how we search for them.
1547 // Large data sections also go into their own PT_LOAD segment.
1548 // People who need segments sorted on some other basis will
1549 // have to use a linker script.
1550
1551 Segment_list::const_iterator p;
1552 for (p = this->segment_list_.begin();
1553 p != this->segment_list_.end();
1554 ++p)
1555 {
1556 if ((*p)->type() != elfcpp::PT_LOAD)
1557 continue;
1558 if (!parameters->options().omagic()
1559 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1560 continue;
1561 if (parameters->options().rosegment()
1562 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1563 continue;
1564 // If -Tbss was specified, we need to separate the data and BSS
1565 // segments.
1566 if (parameters->options().user_set_Tbss())
1567 {
1568 if ((os->type() == elfcpp::SHT_NOBITS)
1569 == (*p)->has_any_data_sections())
1570 continue;
1571 }
1572 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1573 continue;
1574
1575 if (is_address_set)
1576 {
1577 if ((*p)->are_addresses_set())
1578 continue;
1579
1580 (*p)->add_initial_output_data(os);
1581 (*p)->update_flags_for_output_section(seg_flags);
1582 (*p)->set_addresses(addr, addr);
1583 break;
1584 }
1585
1586 (*p)->add_output_section_to_load(this, os, seg_flags);
1587 break;
1588 }
1589
1590 if (p == this->segment_list_.end())
1591 {
1592 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1593 seg_flags);
1594 if (os->is_large_data_section())
1595 oseg->set_is_large_data_segment();
1596 oseg->add_output_section_to_load(this, os, seg_flags);
1597 if (is_address_set)
1598 oseg->set_addresses(addr, addr);
1599 }
1600
1601 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1602 // segment.
1603 if (os->type() == elfcpp::SHT_NOTE)
1604 {
1605 // See if we already have an equivalent PT_NOTE segment.
1606 for (p = this->segment_list_.begin();
1607 p != segment_list_.end();
1608 ++p)
1609 {
1610 if ((*p)->type() == elfcpp::PT_NOTE
1611 && (((*p)->flags() & elfcpp::PF_W)
1612 == (seg_flags & elfcpp::PF_W)))
1613 {
1614 (*p)->add_output_section_to_nonload(os, seg_flags);
1615 break;
1616 }
1617 }
1618
1619 if (p == this->segment_list_.end())
1620 {
1621 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1622 seg_flags);
1623 oseg->add_output_section_to_nonload(os, seg_flags);
1624 }
1625 }
1626
1627 // If we see a loadable SHF_TLS section, we create a PT_TLS
1628 // segment. There can only be one such segment.
1629 if ((flags & elfcpp::SHF_TLS) != 0)
1630 {
1631 if (this->tls_segment_ == NULL)
1632 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1633 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1634 }
1635
1636 // If -z relro is in effect, and we see a relro section, we create a
1637 // PT_GNU_RELRO segment. There can only be one such segment.
1638 if (os->is_relro() && parameters->options().relro())
1639 {
1640 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1641 if (this->relro_segment_ == NULL)
1642 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1643 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1644 }
1645
1646 // If we see a section named .interp, put it into a PT_INTERP
1647 // segment. This seems broken to me, but this is what GNU ld does,
1648 // and glibc expects it.
1649 if (strcmp(os->name(), ".interp") == 0
1650 && !this->script_options_->saw_phdrs_clause())
1651 {
1652 if (this->interp_segment_ == NULL)
1653 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1654 else
1655 gold_warning(_("multiple '.interp' sections in input files "
1656 "may cause confusing PT_INTERP segment"));
1657 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1658 }
1659 }
1660
1661 // Make an output section for a script.
1662
1663 Output_section*
1664 Layout::make_output_section_for_script(
1665 const char* name,
1666 Script_sections::Section_type section_type)
1667 {
1668 name = this->namepool_.add(name, false, NULL);
1669 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1670 if (section_type == Script_sections::ST_NOLOAD)
1671 sh_flags = 0;
1672 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1673 sh_flags, ORDER_INVALID,
1674 false);
1675 os->set_found_in_sections_clause();
1676 if (section_type == Script_sections::ST_NOLOAD)
1677 os->set_is_noload();
1678 return os;
1679 }
1680
1681 // Return the number of segments we expect to see.
1682
1683 size_t
1684 Layout::expected_segment_count() const
1685 {
1686 size_t ret = this->segment_list_.size();
1687
1688 // If we didn't see a SECTIONS clause in a linker script, we should
1689 // already have the complete list of segments. Otherwise we ask the
1690 // SECTIONS clause how many segments it expects, and add in the ones
1691 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1692
1693 if (!this->script_options_->saw_sections_clause())
1694 return ret;
1695 else
1696 {
1697 const Script_sections* ss = this->script_options_->script_sections();
1698 return ret + ss->expected_segment_count(this);
1699 }
1700 }
1701
1702 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1703 // is whether we saw a .note.GNU-stack section in the object file.
1704 // GNU_STACK_FLAGS is the section flags. The flags give the
1705 // protection required for stack memory. We record this in an
1706 // executable as a PT_GNU_STACK segment. If an object file does not
1707 // have a .note.GNU-stack segment, we must assume that it is an old
1708 // object. On some targets that will force an executable stack.
1709
1710 void
1711 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1712 const Object* obj)
1713 {
1714 if (!seen_gnu_stack)
1715 {
1716 this->input_without_gnu_stack_note_ = true;
1717 if (parameters->options().warn_execstack()
1718 && parameters->target().is_default_stack_executable())
1719 gold_warning(_("%s: missing .note.GNU-stack section"
1720 " implies executable stack"),
1721 obj->name().c_str());
1722 }
1723 else
1724 {
1725 this->input_with_gnu_stack_note_ = true;
1726 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1727 {
1728 this->input_requires_executable_stack_ = true;
1729 if (parameters->options().warn_execstack()
1730 || parameters->options().is_stack_executable())
1731 gold_warning(_("%s: requires executable stack"),
1732 obj->name().c_str());
1733 }
1734 }
1735 }
1736
1737 // Create automatic note sections.
1738
1739 void
1740 Layout::create_notes()
1741 {
1742 this->create_gold_note();
1743 this->create_executable_stack_info();
1744 this->create_build_id();
1745 }
1746
1747 // Create the dynamic sections which are needed before we read the
1748 // relocs.
1749
1750 void
1751 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1752 {
1753 if (parameters->doing_static_link())
1754 return;
1755
1756 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1757 elfcpp::SHT_DYNAMIC,
1758 (elfcpp::SHF_ALLOC
1759 | elfcpp::SHF_WRITE),
1760 false, ORDER_RELRO,
1761 true);
1762
1763 this->dynamic_symbol_ =
1764 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1765 this->dynamic_section_, 0, 0,
1766 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1767 elfcpp::STV_HIDDEN, 0, false, false);
1768
1769 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1770
1771 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1772 }
1773
1774 // For each output section whose name can be represented as C symbol,
1775 // define __start and __stop symbols for the section. This is a GNU
1776 // extension.
1777
1778 void
1779 Layout::define_section_symbols(Symbol_table* symtab)
1780 {
1781 for (Section_list::const_iterator p = this->section_list_.begin();
1782 p != this->section_list_.end();
1783 ++p)
1784 {
1785 const char* const name = (*p)->name();
1786 if (is_cident(name))
1787 {
1788 const std::string name_string(name);
1789 const std::string start_name(cident_section_start_prefix
1790 + name_string);
1791 const std::string stop_name(cident_section_stop_prefix
1792 + name_string);
1793
1794 symtab->define_in_output_data(start_name.c_str(),
1795 NULL, // version
1796 Symbol_table::PREDEFINED,
1797 *p,
1798 0, // value
1799 0, // symsize
1800 elfcpp::STT_NOTYPE,
1801 elfcpp::STB_GLOBAL,
1802 elfcpp::STV_DEFAULT,
1803 0, // nonvis
1804 false, // offset_is_from_end
1805 true); // only_if_ref
1806
1807 symtab->define_in_output_data(stop_name.c_str(),
1808 NULL, // version
1809 Symbol_table::PREDEFINED,
1810 *p,
1811 0, // value
1812 0, // symsize
1813 elfcpp::STT_NOTYPE,
1814 elfcpp::STB_GLOBAL,
1815 elfcpp::STV_DEFAULT,
1816 0, // nonvis
1817 true, // offset_is_from_end
1818 true); // only_if_ref
1819 }
1820 }
1821 }
1822
1823 // Define symbols for group signatures.
1824
1825 void
1826 Layout::define_group_signatures(Symbol_table* symtab)
1827 {
1828 for (Group_signatures::iterator p = this->group_signatures_.begin();
1829 p != this->group_signatures_.end();
1830 ++p)
1831 {
1832 Symbol* sym = symtab->lookup(p->signature, NULL);
1833 if (sym != NULL)
1834 p->section->set_info_symndx(sym);
1835 else
1836 {
1837 // Force the name of the group section to the group
1838 // signature, and use the group's section symbol as the
1839 // signature symbol.
1840 if (strcmp(p->section->name(), p->signature) != 0)
1841 {
1842 const char* name = this->namepool_.add(p->signature,
1843 true, NULL);
1844 p->section->set_name(name);
1845 }
1846 p->section->set_needs_symtab_index();
1847 p->section->set_info_section_symndx(p->section);
1848 }
1849 }
1850
1851 this->group_signatures_.clear();
1852 }
1853
1854 // Find the first read-only PT_LOAD segment, creating one if
1855 // necessary.
1856
1857 Output_segment*
1858 Layout::find_first_load_seg()
1859 {
1860 Output_segment* best = NULL;
1861 for (Segment_list::const_iterator p = this->segment_list_.begin();
1862 p != this->segment_list_.end();
1863 ++p)
1864 {
1865 if ((*p)->type() == elfcpp::PT_LOAD
1866 && ((*p)->flags() & elfcpp::PF_R) != 0
1867 && (parameters->options().omagic()
1868 || ((*p)->flags() & elfcpp::PF_W) == 0))
1869 {
1870 if (best == NULL || this->segment_precedes(*p, best))
1871 best = *p;
1872 }
1873 }
1874 if (best != NULL)
1875 return best;
1876
1877 gold_assert(!this->script_options_->saw_phdrs_clause());
1878
1879 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1880 elfcpp::PF_R);
1881 return load_seg;
1882 }
1883
1884 // Save states of all current output segments. Store saved states
1885 // in SEGMENT_STATES.
1886
1887 void
1888 Layout::save_segments(Segment_states* segment_states)
1889 {
1890 for (Segment_list::const_iterator p = this->segment_list_.begin();
1891 p != this->segment_list_.end();
1892 ++p)
1893 {
1894 Output_segment* segment = *p;
1895 // Shallow copy.
1896 Output_segment* copy = new Output_segment(*segment);
1897 (*segment_states)[segment] = copy;
1898 }
1899 }
1900
1901 // Restore states of output segments and delete any segment not found in
1902 // SEGMENT_STATES.
1903
1904 void
1905 Layout::restore_segments(const Segment_states* segment_states)
1906 {
1907 // Go through the segment list and remove any segment added in the
1908 // relaxation loop.
1909 this->tls_segment_ = NULL;
1910 this->relro_segment_ = NULL;
1911 Segment_list::iterator list_iter = this->segment_list_.begin();
1912 while (list_iter != this->segment_list_.end())
1913 {
1914 Output_segment* segment = *list_iter;
1915 Segment_states::const_iterator states_iter =
1916 segment_states->find(segment);
1917 if (states_iter != segment_states->end())
1918 {
1919 const Output_segment* copy = states_iter->second;
1920 // Shallow copy to restore states.
1921 *segment = *copy;
1922
1923 // Also fix up TLS and RELRO segment pointers as appropriate.
1924 if (segment->type() == elfcpp::PT_TLS)
1925 this->tls_segment_ = segment;
1926 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1927 this->relro_segment_ = segment;
1928
1929 ++list_iter;
1930 }
1931 else
1932 {
1933 list_iter = this->segment_list_.erase(list_iter);
1934 // This is a segment created during section layout. It should be
1935 // safe to remove it since we should have removed all pointers to it.
1936 delete segment;
1937 }
1938 }
1939 }
1940
1941 // Clean up after relaxation so that sections can be laid out again.
1942
1943 void
1944 Layout::clean_up_after_relaxation()
1945 {
1946 // Restore the segments to point state just prior to the relaxation loop.
1947 Script_sections* script_section = this->script_options_->script_sections();
1948 script_section->release_segments();
1949 this->restore_segments(this->segment_states_);
1950
1951 // Reset section addresses and file offsets
1952 for (Section_list::iterator p = this->section_list_.begin();
1953 p != this->section_list_.end();
1954 ++p)
1955 {
1956 (*p)->restore_states();
1957
1958 // If an input section changes size because of relaxation,
1959 // we need to adjust the section offsets of all input sections.
1960 // after such a section.
1961 if ((*p)->section_offsets_need_adjustment())
1962 (*p)->adjust_section_offsets();
1963
1964 (*p)->reset_address_and_file_offset();
1965 }
1966
1967 // Reset special output object address and file offsets.
1968 for (Data_list::iterator p = this->special_output_list_.begin();
1969 p != this->special_output_list_.end();
1970 ++p)
1971 (*p)->reset_address_and_file_offset();
1972
1973 // A linker script may have created some output section data objects.
1974 // They are useless now.
1975 for (Output_section_data_list::const_iterator p =
1976 this->script_output_section_data_list_.begin();
1977 p != this->script_output_section_data_list_.end();
1978 ++p)
1979 delete *p;
1980 this->script_output_section_data_list_.clear();
1981 }
1982
1983 // Prepare for relaxation.
1984
1985 void
1986 Layout::prepare_for_relaxation()
1987 {
1988 // Create an relaxation debug check if in debugging mode.
1989 if (is_debugging_enabled(DEBUG_RELAXATION))
1990 this->relaxation_debug_check_ = new Relaxation_debug_check();
1991
1992 // Save segment states.
1993 this->segment_states_ = new Segment_states();
1994 this->save_segments(this->segment_states_);
1995
1996 for(Section_list::const_iterator p = this->section_list_.begin();
1997 p != this->section_list_.end();
1998 ++p)
1999 (*p)->save_states();
2000
2001 if (is_debugging_enabled(DEBUG_RELAXATION))
2002 this->relaxation_debug_check_->check_output_data_for_reset_values(
2003 this->section_list_, this->special_output_list_);
2004
2005 // Also enable recording of output section data from scripts.
2006 this->record_output_section_data_from_script_ = true;
2007 }
2008
2009 // Relaxation loop body: If target has no relaxation, this runs only once
2010 // Otherwise, the target relaxation hook is called at the end of
2011 // each iteration. If the hook returns true, it means re-layout of
2012 // section is required.
2013 //
2014 // The number of segments created by a linking script without a PHDRS
2015 // clause may be affected by section sizes and alignments. There is
2016 // a remote chance that relaxation causes different number of PT_LOAD
2017 // segments are created and sections are attached to different segments.
2018 // Therefore, we always throw away all segments created during section
2019 // layout. In order to be able to restart the section layout, we keep
2020 // a copy of the segment list right before the relaxation loop and use
2021 // that to restore the segments.
2022 //
2023 // PASS is the current relaxation pass number.
2024 // SYMTAB is a symbol table.
2025 // PLOAD_SEG is the address of a pointer for the load segment.
2026 // PHDR_SEG is a pointer to the PHDR segment.
2027 // SEGMENT_HEADERS points to the output segment header.
2028 // FILE_HEADER points to the output file header.
2029 // PSHNDX is the address to store the output section index.
2030
2031 off_t inline
2032 Layout::relaxation_loop_body(
2033 int pass,
2034 Target* target,
2035 Symbol_table* symtab,
2036 Output_segment** pload_seg,
2037 Output_segment* phdr_seg,
2038 Output_segment_headers* segment_headers,
2039 Output_file_header* file_header,
2040 unsigned int* pshndx)
2041 {
2042 // If this is not the first iteration, we need to clean up after
2043 // relaxation so that we can lay out the sections again.
2044 if (pass != 0)
2045 this->clean_up_after_relaxation();
2046
2047 // If there is a SECTIONS clause, put all the input sections into
2048 // the required order.
2049 Output_segment* load_seg;
2050 if (this->script_options_->saw_sections_clause())
2051 load_seg = this->set_section_addresses_from_script(symtab);
2052 else if (parameters->options().relocatable())
2053 load_seg = NULL;
2054 else
2055 load_seg = this->find_first_load_seg();
2056
2057 if (parameters->options().oformat_enum()
2058 != General_options::OBJECT_FORMAT_ELF)
2059 load_seg = NULL;
2060
2061 // If the user set the address of the text segment, that may not be
2062 // compatible with putting the segment headers and file headers into
2063 // that segment.
2064 if (parameters->options().user_set_Ttext())
2065 load_seg = NULL;
2066
2067 gold_assert(phdr_seg == NULL
2068 || load_seg != NULL
2069 || this->script_options_->saw_sections_clause());
2070
2071 // If the address of the load segment we found has been set by
2072 // --section-start rather than by a script, then adjust the VMA and
2073 // LMA downward if possible to include the file and section headers.
2074 uint64_t header_gap = 0;
2075 if (load_seg != NULL
2076 && load_seg->are_addresses_set()
2077 && !this->script_options_->saw_sections_clause()
2078 && !parameters->options().relocatable())
2079 {
2080 file_header->finalize_data_size();
2081 segment_headers->finalize_data_size();
2082 size_t sizeof_headers = (file_header->data_size()
2083 + segment_headers->data_size());
2084 const uint64_t abi_pagesize = target->abi_pagesize();
2085 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2086 hdr_paddr &= ~(abi_pagesize - 1);
2087 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2088 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2089 load_seg = NULL;
2090 else
2091 {
2092 load_seg->set_addresses(load_seg->vaddr() - subtract,
2093 load_seg->paddr() - subtract);
2094 header_gap = subtract - sizeof_headers;
2095 }
2096 }
2097
2098 // Lay out the segment headers.
2099 if (!parameters->options().relocatable())
2100 {
2101 gold_assert(segment_headers != NULL);
2102 if (header_gap != 0 && load_seg != NULL)
2103 {
2104 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2105 load_seg->add_initial_output_data(z);
2106 }
2107 if (load_seg != NULL)
2108 load_seg->add_initial_output_data(segment_headers);
2109 if (phdr_seg != NULL)
2110 phdr_seg->add_initial_output_data(segment_headers);
2111 }
2112
2113 // Lay out the file header.
2114 if (load_seg != NULL)
2115 load_seg->add_initial_output_data(file_header);
2116
2117 if (this->script_options_->saw_phdrs_clause()
2118 && !parameters->options().relocatable())
2119 {
2120 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2121 // clause in a linker script.
2122 Script_sections* ss = this->script_options_->script_sections();
2123 ss->put_headers_in_phdrs(file_header, segment_headers);
2124 }
2125
2126 // We set the output section indexes in set_segment_offsets and
2127 // set_section_indexes.
2128 *pshndx = 1;
2129
2130 // Set the file offsets of all the segments, and all the sections
2131 // they contain.
2132 off_t off;
2133 if (!parameters->options().relocatable())
2134 off = this->set_segment_offsets(target, load_seg, pshndx);
2135 else
2136 off = this->set_relocatable_section_offsets(file_header, pshndx);
2137
2138 // Verify that the dummy relaxation does not change anything.
2139 if (is_debugging_enabled(DEBUG_RELAXATION))
2140 {
2141 if (pass == 0)
2142 this->relaxation_debug_check_->read_sections(this->section_list_);
2143 else
2144 this->relaxation_debug_check_->verify_sections(this->section_list_);
2145 }
2146
2147 *pload_seg = load_seg;
2148 return off;
2149 }
2150
2151 // Search the list of patterns and find the postion of the given section
2152 // name in the output section. If the section name matches a glob
2153 // pattern and a non-glob name, then the non-glob position takes
2154 // precedence. Return 0 if no match is found.
2155
2156 unsigned int
2157 Layout::find_section_order_index(const std::string& section_name)
2158 {
2159 Unordered_map<std::string, unsigned int>::iterator map_it;
2160 map_it = this->input_section_position_.find(section_name);
2161 if (map_it != this->input_section_position_.end())
2162 return map_it->second;
2163
2164 // Absolute match failed. Linear search the glob patterns.
2165 std::vector<std::string>::iterator it;
2166 for (it = this->input_section_glob_.begin();
2167 it != this->input_section_glob_.end();
2168 ++it)
2169 {
2170 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2171 {
2172 map_it = this->input_section_position_.find(*it);
2173 gold_assert(map_it != this->input_section_position_.end());
2174 return map_it->second;
2175 }
2176 }
2177 return 0;
2178 }
2179
2180 // Read the sequence of input sections from the file specified with
2181 // --section-ordering-file.
2182
2183 void
2184 Layout::read_layout_from_file()
2185 {
2186 const char* filename = parameters->options().section_ordering_file();
2187 std::ifstream in;
2188 std::string line;
2189
2190 in.open(filename);
2191 if (!in)
2192 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2193 filename, strerror(errno));
2194
2195 std::getline(in, line); // this chops off the trailing \n, if any
2196 unsigned int position = 1;
2197
2198 while (in)
2199 {
2200 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2201 line.resize(line.length() - 1);
2202 // Ignore comments, beginning with '#'
2203 if (line[0] == '#')
2204 {
2205 std::getline(in, line);
2206 continue;
2207 }
2208 this->input_section_position_[line] = position;
2209 // Store all glob patterns in a vector.
2210 if (is_wildcard_string(line.c_str()))
2211 this->input_section_glob_.push_back(line);
2212 position++;
2213 std::getline(in, line);
2214 }
2215 }
2216
2217 // Finalize the layout. When this is called, we have created all the
2218 // output sections and all the output segments which are based on
2219 // input sections. We have several things to do, and we have to do
2220 // them in the right order, so that we get the right results correctly
2221 // and efficiently.
2222
2223 // 1) Finalize the list of output segments and create the segment
2224 // table header.
2225
2226 // 2) Finalize the dynamic symbol table and associated sections.
2227
2228 // 3) Determine the final file offset of all the output segments.
2229
2230 // 4) Determine the final file offset of all the SHF_ALLOC output
2231 // sections.
2232
2233 // 5) Create the symbol table sections and the section name table
2234 // section.
2235
2236 // 6) Finalize the symbol table: set symbol values to their final
2237 // value and make a final determination of which symbols are going
2238 // into the output symbol table.
2239
2240 // 7) Create the section table header.
2241
2242 // 8) Determine the final file offset of all the output sections which
2243 // are not SHF_ALLOC, including the section table header.
2244
2245 // 9) Finalize the ELF file header.
2246
2247 // This function returns the size of the output file.
2248
2249 off_t
2250 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2251 Target* target, const Task* task)
2252 {
2253 target->finalize_sections(this, input_objects, symtab);
2254
2255 this->count_local_symbols(task, input_objects);
2256
2257 this->link_stabs_sections();
2258
2259 Output_segment* phdr_seg = NULL;
2260 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2261 {
2262 // There was a dynamic object in the link. We need to create
2263 // some information for the dynamic linker.
2264
2265 // Create the PT_PHDR segment which will hold the program
2266 // headers.
2267 if (!this->script_options_->saw_phdrs_clause())
2268 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2269
2270 // Create the dynamic symbol table, including the hash table.
2271 Output_section* dynstr;
2272 std::vector<Symbol*> dynamic_symbols;
2273 unsigned int local_dynamic_count;
2274 Versions versions(*this->script_options()->version_script_info(),
2275 &this->dynpool_);
2276 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2277 &local_dynamic_count, &dynamic_symbols,
2278 &versions);
2279
2280 // Create the .interp section to hold the name of the
2281 // interpreter, and put it in a PT_INTERP segment. Don't do it
2282 // if we saw a .interp section in an input file.
2283 if ((!parameters->options().shared()
2284 || parameters->options().dynamic_linker() != NULL)
2285 && this->interp_segment_ == NULL)
2286 this->create_interp(target);
2287
2288 // Finish the .dynamic section to hold the dynamic data, and put
2289 // it in a PT_DYNAMIC segment.
2290 this->finish_dynamic_section(input_objects, symtab);
2291
2292 // We should have added everything we need to the dynamic string
2293 // table.
2294 this->dynpool_.set_string_offsets();
2295
2296 // Create the version sections. We can't do this until the
2297 // dynamic string table is complete.
2298 this->create_version_sections(&versions, symtab, local_dynamic_count,
2299 dynamic_symbols, dynstr);
2300
2301 // Set the size of the _DYNAMIC symbol. We can't do this until
2302 // after we call create_version_sections.
2303 this->set_dynamic_symbol_size(symtab);
2304 }
2305
2306 // Create segment headers.
2307 Output_segment_headers* segment_headers =
2308 (parameters->options().relocatable()
2309 ? NULL
2310 : new Output_segment_headers(this->segment_list_));
2311
2312 // Lay out the file header.
2313 Output_file_header* file_header = new Output_file_header(target, symtab,
2314 segment_headers);
2315
2316 this->special_output_list_.push_back(file_header);
2317 if (segment_headers != NULL)
2318 this->special_output_list_.push_back(segment_headers);
2319
2320 // Find approriate places for orphan output sections if we are using
2321 // a linker script.
2322 if (this->script_options_->saw_sections_clause())
2323 this->place_orphan_sections_in_script();
2324
2325 Output_segment* load_seg;
2326 off_t off;
2327 unsigned int shndx;
2328 int pass = 0;
2329
2330 // Take a snapshot of the section layout as needed.
2331 if (target->may_relax())
2332 this->prepare_for_relaxation();
2333
2334 // Run the relaxation loop to lay out sections.
2335 do
2336 {
2337 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2338 phdr_seg, segment_headers, file_header,
2339 &shndx);
2340 pass++;
2341 }
2342 while (target->may_relax()
2343 && target->relax(pass, input_objects, symtab, this, task));
2344
2345 // Set the file offsets of all the non-data sections we've seen so
2346 // far which don't have to wait for the input sections. We need
2347 // this in order to finalize local symbols in non-allocated
2348 // sections.
2349 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2350
2351 // Set the section indexes of all unallocated sections seen so far,
2352 // in case any of them are somehow referenced by a symbol.
2353 shndx = this->set_section_indexes(shndx);
2354
2355 // Create the symbol table sections.
2356 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2357 if (!parameters->doing_static_link())
2358 this->assign_local_dynsym_offsets(input_objects);
2359
2360 // Process any symbol assignments from a linker script. This must
2361 // be called after the symbol table has been finalized.
2362 this->script_options_->finalize_symbols(symtab, this);
2363
2364 // Create the incremental inputs sections.
2365 if (this->incremental_inputs_)
2366 {
2367 this->incremental_inputs_->finalize();
2368 this->create_incremental_info_sections(symtab);
2369 }
2370
2371 // Create the .shstrtab section.
2372 Output_section* shstrtab_section = this->create_shstrtab();
2373
2374 // Set the file offsets of the rest of the non-data sections which
2375 // don't have to wait for the input sections.
2376 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2377
2378 // Now that all sections have been created, set the section indexes
2379 // for any sections which haven't been done yet.
2380 shndx = this->set_section_indexes(shndx);
2381
2382 // Create the section table header.
2383 this->create_shdrs(shstrtab_section, &off);
2384
2385 // If there are no sections which require postprocessing, we can
2386 // handle the section names now, and avoid a resize later.
2387 if (!this->any_postprocessing_sections_)
2388 {
2389 off = this->set_section_offsets(off,
2390 POSTPROCESSING_SECTIONS_PASS);
2391 off =
2392 this->set_section_offsets(off,
2393 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2394 }
2395
2396 file_header->set_section_info(this->section_headers_, shstrtab_section);
2397
2398 // Now we know exactly where everything goes in the output file
2399 // (except for non-allocated sections which require postprocessing).
2400 Output_data::layout_complete();
2401
2402 this->output_file_size_ = off;
2403
2404 return off;
2405 }
2406
2407 // Create a note header following the format defined in the ELF ABI.
2408 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2409 // of the section to create, DESCSZ is the size of the descriptor.
2410 // ALLOCATE is true if the section should be allocated in memory.
2411 // This returns the new note section. It sets *TRAILING_PADDING to
2412 // the number of trailing zero bytes required.
2413
2414 Output_section*
2415 Layout::create_note(const char* name, int note_type,
2416 const char* section_name, size_t descsz,
2417 bool allocate, size_t* trailing_padding)
2418 {
2419 // Authorities all agree that the values in a .note field should
2420 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2421 // they differ on what the alignment is for 64-bit binaries.
2422 // The GABI says unambiguously they take 8-byte alignment:
2423 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2424 // Other documentation says alignment should always be 4 bytes:
2425 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2426 // GNU ld and GNU readelf both support the latter (at least as of
2427 // version 2.16.91), and glibc always generates the latter for
2428 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2429 // here.
2430 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2431 const int size = parameters->target().get_size();
2432 #else
2433 const int size = 32;
2434 #endif
2435
2436 // The contents of the .note section.
2437 size_t namesz = strlen(name) + 1;
2438 size_t aligned_namesz = align_address(namesz, size / 8);
2439 size_t aligned_descsz = align_address(descsz, size / 8);
2440
2441 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2442
2443 unsigned char* buffer = new unsigned char[notehdrsz];
2444 memset(buffer, 0, notehdrsz);
2445
2446 bool is_big_endian = parameters->target().is_big_endian();
2447
2448 if (size == 32)
2449 {
2450 if (!is_big_endian)
2451 {
2452 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2453 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2454 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2455 }
2456 else
2457 {
2458 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2459 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2460 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2461 }
2462 }
2463 else if (size == 64)
2464 {
2465 if (!is_big_endian)
2466 {
2467 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2468 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2469 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2470 }
2471 else
2472 {
2473 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2474 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2475 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2476 }
2477 }
2478 else
2479 gold_unreachable();
2480
2481 memcpy(buffer + 3 * (size / 8), name, namesz);
2482
2483 elfcpp::Elf_Xword flags = 0;
2484 Output_section_order order = ORDER_INVALID;
2485 if (allocate)
2486 {
2487 flags = elfcpp::SHF_ALLOC;
2488 order = ORDER_RO_NOTE;
2489 }
2490 Output_section* os = this->choose_output_section(NULL, section_name,
2491 elfcpp::SHT_NOTE,
2492 flags, false, order, false);
2493 if (os == NULL)
2494 return NULL;
2495
2496 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2497 size / 8,
2498 "** note header");
2499 os->add_output_section_data(posd);
2500
2501 *trailing_padding = aligned_descsz - descsz;
2502
2503 return os;
2504 }
2505
2506 // For an executable or shared library, create a note to record the
2507 // version of gold used to create the binary.
2508
2509 void
2510 Layout::create_gold_note()
2511 {
2512 if (parameters->options().relocatable()
2513 || parameters->incremental_update())
2514 return;
2515
2516 std::string desc = std::string("gold ") + gold::get_version_string();
2517
2518 size_t trailing_padding;
2519 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2520 ".note.gnu.gold-version", desc.size(),
2521 false, &trailing_padding);
2522 if (os == NULL)
2523 return;
2524
2525 Output_section_data* posd = new Output_data_const(desc, 4);
2526 os->add_output_section_data(posd);
2527
2528 if (trailing_padding > 0)
2529 {
2530 posd = new Output_data_zero_fill(trailing_padding, 0);
2531 os->add_output_section_data(posd);
2532 }
2533 }
2534
2535 // Record whether the stack should be executable. This can be set
2536 // from the command line using the -z execstack or -z noexecstack
2537 // options. Otherwise, if any input file has a .note.GNU-stack
2538 // section with the SHF_EXECINSTR flag set, the stack should be
2539 // executable. Otherwise, if at least one input file a
2540 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2541 // section, we use the target default for whether the stack should be
2542 // executable. Otherwise, we don't generate a stack note. When
2543 // generating a object file, we create a .note.GNU-stack section with
2544 // the appropriate marking. When generating an executable or shared
2545 // library, we create a PT_GNU_STACK segment.
2546
2547 void
2548 Layout::create_executable_stack_info()
2549 {
2550 bool is_stack_executable;
2551 if (parameters->options().is_execstack_set())
2552 is_stack_executable = parameters->options().is_stack_executable();
2553 else if (!this->input_with_gnu_stack_note_)
2554 return;
2555 else
2556 {
2557 if (this->input_requires_executable_stack_)
2558 is_stack_executable = true;
2559 else if (this->input_without_gnu_stack_note_)
2560 is_stack_executable =
2561 parameters->target().is_default_stack_executable();
2562 else
2563 is_stack_executable = false;
2564 }
2565
2566 if (parameters->options().relocatable())
2567 {
2568 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2569 elfcpp::Elf_Xword flags = 0;
2570 if (is_stack_executable)
2571 flags |= elfcpp::SHF_EXECINSTR;
2572 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2573 ORDER_INVALID, false);
2574 }
2575 else
2576 {
2577 if (this->script_options_->saw_phdrs_clause())
2578 return;
2579 int flags = elfcpp::PF_R | elfcpp::PF_W;
2580 if (is_stack_executable)
2581 flags |= elfcpp::PF_X;
2582 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2583 }
2584 }
2585
2586 // If --build-id was used, set up the build ID note.
2587
2588 void
2589 Layout::create_build_id()
2590 {
2591 if (!parameters->options().user_set_build_id())
2592 return;
2593
2594 const char* style = parameters->options().build_id();
2595 if (strcmp(style, "none") == 0)
2596 return;
2597
2598 // Set DESCSZ to the size of the note descriptor. When possible,
2599 // set DESC to the note descriptor contents.
2600 size_t descsz;
2601 std::string desc;
2602 if (strcmp(style, "md5") == 0)
2603 descsz = 128 / 8;
2604 else if (strcmp(style, "sha1") == 0)
2605 descsz = 160 / 8;
2606 else if (strcmp(style, "uuid") == 0)
2607 {
2608 const size_t uuidsz = 128 / 8;
2609
2610 char buffer[uuidsz];
2611 memset(buffer, 0, uuidsz);
2612
2613 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2614 if (descriptor < 0)
2615 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2616 strerror(errno));
2617 else
2618 {
2619 ssize_t got = ::read(descriptor, buffer, uuidsz);
2620 release_descriptor(descriptor, true);
2621 if (got < 0)
2622 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2623 else if (static_cast<size_t>(got) != uuidsz)
2624 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2625 uuidsz, got);
2626 }
2627
2628 desc.assign(buffer, uuidsz);
2629 descsz = uuidsz;
2630 }
2631 else if (strncmp(style, "0x", 2) == 0)
2632 {
2633 hex_init();
2634 const char* p = style + 2;
2635 while (*p != '\0')
2636 {
2637 if (hex_p(p[0]) && hex_p(p[1]))
2638 {
2639 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2640 desc += c;
2641 p += 2;
2642 }
2643 else if (*p == '-' || *p == ':')
2644 ++p;
2645 else
2646 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2647 style);
2648 }
2649 descsz = desc.size();
2650 }
2651 else
2652 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2653
2654 // Create the note.
2655 size_t trailing_padding;
2656 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2657 ".note.gnu.build-id", descsz, true,
2658 &trailing_padding);
2659 if (os == NULL)
2660 return;
2661
2662 if (!desc.empty())
2663 {
2664 // We know the value already, so we fill it in now.
2665 gold_assert(desc.size() == descsz);
2666
2667 Output_section_data* posd = new Output_data_const(desc, 4);
2668 os->add_output_section_data(posd);
2669
2670 if (trailing_padding != 0)
2671 {
2672 posd = new Output_data_zero_fill(trailing_padding, 0);
2673 os->add_output_section_data(posd);
2674 }
2675 }
2676 else
2677 {
2678 // We need to compute a checksum after we have completed the
2679 // link.
2680 gold_assert(trailing_padding == 0);
2681 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2682 os->add_output_section_data(this->build_id_note_);
2683 }
2684 }
2685
2686 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2687 // field of the former should point to the latter. I'm not sure who
2688 // started this, but the GNU linker does it, and some tools depend
2689 // upon it.
2690
2691 void
2692 Layout::link_stabs_sections()
2693 {
2694 if (!this->have_stabstr_section_)
2695 return;
2696
2697 for (Section_list::iterator p = this->section_list_.begin();
2698 p != this->section_list_.end();
2699 ++p)
2700 {
2701 if ((*p)->type() != elfcpp::SHT_STRTAB)
2702 continue;
2703
2704 const char* name = (*p)->name();
2705 if (strncmp(name, ".stab", 5) != 0)
2706 continue;
2707
2708 size_t len = strlen(name);
2709 if (strcmp(name + len - 3, "str") != 0)
2710 continue;
2711
2712 std::string stab_name(name, len - 3);
2713 Output_section* stab_sec;
2714 stab_sec = this->find_output_section(stab_name.c_str());
2715 if (stab_sec != NULL)
2716 stab_sec->set_link_section(*p);
2717 }
2718 }
2719
2720 // Create .gnu_incremental_inputs and related sections needed
2721 // for the next run of incremental linking to check what has changed.
2722
2723 void
2724 Layout::create_incremental_info_sections(Symbol_table* symtab)
2725 {
2726 Incremental_inputs* incr = this->incremental_inputs_;
2727
2728 gold_assert(incr != NULL);
2729
2730 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2731 incr->create_data_sections(symtab);
2732
2733 // Add the .gnu_incremental_inputs section.
2734 const char* incremental_inputs_name =
2735 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2736 Output_section* incremental_inputs_os =
2737 this->make_output_section(incremental_inputs_name,
2738 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2739 ORDER_INVALID, false);
2740 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2741
2742 // Add the .gnu_incremental_symtab section.
2743 const char* incremental_symtab_name =
2744 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2745 Output_section* incremental_symtab_os =
2746 this->make_output_section(incremental_symtab_name,
2747 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2748 ORDER_INVALID, false);
2749 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2750 incremental_symtab_os->set_entsize(4);
2751
2752 // Add the .gnu_incremental_relocs section.
2753 const char* incremental_relocs_name =
2754 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2755 Output_section* incremental_relocs_os =
2756 this->make_output_section(incremental_relocs_name,
2757 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2758 ORDER_INVALID, false);
2759 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2760 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2761
2762 // Add the .gnu_incremental_got_plt section.
2763 const char* incremental_got_plt_name =
2764 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2765 Output_section* incremental_got_plt_os =
2766 this->make_output_section(incremental_got_plt_name,
2767 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2768 ORDER_INVALID, false);
2769 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2770
2771 // Add the .gnu_incremental_strtab section.
2772 const char* incremental_strtab_name =
2773 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2774 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2775 elfcpp::SHT_STRTAB, 0,
2776 ORDER_INVALID, false);
2777 Output_data_strtab* strtab_data =
2778 new Output_data_strtab(incr->get_stringpool());
2779 incremental_strtab_os->add_output_section_data(strtab_data);
2780
2781 incremental_inputs_os->set_after_input_sections();
2782 incremental_symtab_os->set_after_input_sections();
2783 incremental_relocs_os->set_after_input_sections();
2784 incremental_got_plt_os->set_after_input_sections();
2785
2786 incremental_inputs_os->set_link_section(incremental_strtab_os);
2787 incremental_symtab_os->set_link_section(incremental_inputs_os);
2788 incremental_relocs_os->set_link_section(incremental_inputs_os);
2789 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2790 }
2791
2792 // Return whether SEG1 should be before SEG2 in the output file. This
2793 // is based entirely on the segment type and flags. When this is
2794 // called the segment addresses have normally not yet been set.
2795
2796 bool
2797 Layout::segment_precedes(const Output_segment* seg1,
2798 const Output_segment* seg2)
2799 {
2800 elfcpp::Elf_Word type1 = seg1->type();
2801 elfcpp::Elf_Word type2 = seg2->type();
2802
2803 // The single PT_PHDR segment is required to precede any loadable
2804 // segment. We simply make it always first.
2805 if (type1 == elfcpp::PT_PHDR)
2806 {
2807 gold_assert(type2 != elfcpp::PT_PHDR);
2808 return true;
2809 }
2810 if (type2 == elfcpp::PT_PHDR)
2811 return false;
2812
2813 // The single PT_INTERP segment is required to precede any loadable
2814 // segment. We simply make it always second.
2815 if (type1 == elfcpp::PT_INTERP)
2816 {
2817 gold_assert(type2 != elfcpp::PT_INTERP);
2818 return true;
2819 }
2820 if (type2 == elfcpp::PT_INTERP)
2821 return false;
2822
2823 // We then put PT_LOAD segments before any other segments.
2824 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2825 return true;
2826 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2827 return false;
2828
2829 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2830 // segment, because that is where the dynamic linker expects to find
2831 // it (this is just for efficiency; other positions would also work
2832 // correctly).
2833 if (type1 == elfcpp::PT_TLS
2834 && type2 != elfcpp::PT_TLS
2835 && type2 != elfcpp::PT_GNU_RELRO)
2836 return false;
2837 if (type2 == elfcpp::PT_TLS
2838 && type1 != elfcpp::PT_TLS
2839 && type1 != elfcpp::PT_GNU_RELRO)
2840 return true;
2841
2842 // We put the PT_GNU_RELRO segment last, because that is where the
2843 // dynamic linker expects to find it (as with PT_TLS, this is just
2844 // for efficiency).
2845 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2846 return false;
2847 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2848 return true;
2849
2850 const elfcpp::Elf_Word flags1 = seg1->flags();
2851 const elfcpp::Elf_Word flags2 = seg2->flags();
2852
2853 // The order of non-PT_LOAD segments is unimportant. We simply sort
2854 // by the numeric segment type and flags values. There should not
2855 // be more than one segment with the same type and flags.
2856 if (type1 != elfcpp::PT_LOAD)
2857 {
2858 if (type1 != type2)
2859 return type1 < type2;
2860 gold_assert(flags1 != flags2);
2861 return flags1 < flags2;
2862 }
2863
2864 // If the addresses are set already, sort by load address.
2865 if (seg1->are_addresses_set())
2866 {
2867 if (!seg2->are_addresses_set())
2868 return true;
2869
2870 unsigned int section_count1 = seg1->output_section_count();
2871 unsigned int section_count2 = seg2->output_section_count();
2872 if (section_count1 == 0 && section_count2 > 0)
2873 return true;
2874 if (section_count1 > 0 && section_count2 == 0)
2875 return false;
2876
2877 uint64_t paddr1 = (seg1->are_addresses_set()
2878 ? seg1->paddr()
2879 : seg1->first_section_load_address());
2880 uint64_t paddr2 = (seg2->are_addresses_set()
2881 ? seg2->paddr()
2882 : seg2->first_section_load_address());
2883
2884 if (paddr1 != paddr2)
2885 return paddr1 < paddr2;
2886 }
2887 else if (seg2->are_addresses_set())
2888 return false;
2889
2890 // A segment which holds large data comes after a segment which does
2891 // not hold large data.
2892 if (seg1->is_large_data_segment())
2893 {
2894 if (!seg2->is_large_data_segment())
2895 return false;
2896 }
2897 else if (seg2->is_large_data_segment())
2898 return true;
2899
2900 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2901 // segments come before writable segments. Then writable segments
2902 // with data come before writable segments without data. Then
2903 // executable segments come before non-executable segments. Then
2904 // the unlikely case of a non-readable segment comes before the
2905 // normal case of a readable segment. If there are multiple
2906 // segments with the same type and flags, we require that the
2907 // address be set, and we sort by virtual address and then physical
2908 // address.
2909 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2910 return (flags1 & elfcpp::PF_W) == 0;
2911 if ((flags1 & elfcpp::PF_W) != 0
2912 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2913 return seg1->has_any_data_sections();
2914 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2915 return (flags1 & elfcpp::PF_X) != 0;
2916 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2917 return (flags1 & elfcpp::PF_R) == 0;
2918
2919 // We shouldn't get here--we shouldn't create segments which we
2920 // can't distinguish. Unless of course we are using a weird linker
2921 // script.
2922 gold_assert(this->script_options_->saw_phdrs_clause());
2923 return false;
2924 }
2925
2926 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2927
2928 static off_t
2929 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2930 {
2931 uint64_t unsigned_off = off;
2932 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2933 | (addr & (abi_pagesize - 1)));
2934 if (aligned_off < unsigned_off)
2935 aligned_off += abi_pagesize;
2936 return aligned_off;
2937 }
2938
2939 // Set the file offsets of all the segments, and all the sections they
2940 // contain. They have all been created. LOAD_SEG must be be laid out
2941 // first. Return the offset of the data to follow.
2942
2943 off_t
2944 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2945 unsigned int* pshndx)
2946 {
2947 // Sort them into the final order. We use a stable sort so that we
2948 // don't randomize the order of indistinguishable segments created
2949 // by linker scripts.
2950 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
2951 Layout::Compare_segments(this));
2952
2953 // Find the PT_LOAD segments, and set their addresses and offsets
2954 // and their section's addresses and offsets.
2955 uint64_t addr;
2956 if (parameters->options().user_set_Ttext())
2957 addr = parameters->options().Ttext();
2958 else if (parameters->options().output_is_position_independent())
2959 addr = 0;
2960 else
2961 addr = target->default_text_segment_address();
2962 off_t off = 0;
2963
2964 // If LOAD_SEG is NULL, then the file header and segment headers
2965 // will not be loadable. But they still need to be at offset 0 in
2966 // the file. Set their offsets now.
2967 if (load_seg == NULL)
2968 {
2969 for (Data_list::iterator p = this->special_output_list_.begin();
2970 p != this->special_output_list_.end();
2971 ++p)
2972 {
2973 off = align_address(off, (*p)->addralign());
2974 (*p)->set_address_and_file_offset(0, off);
2975 off += (*p)->data_size();
2976 }
2977 }
2978
2979 unsigned int increase_relro = this->increase_relro_;
2980 if (this->script_options_->saw_sections_clause())
2981 increase_relro = 0;
2982
2983 const bool check_sections = parameters->options().check_sections();
2984 Output_segment* last_load_segment = NULL;
2985
2986 for (Segment_list::iterator p = this->segment_list_.begin();
2987 p != this->segment_list_.end();
2988 ++p)
2989 {
2990 if ((*p)->type() == elfcpp::PT_LOAD)
2991 {
2992 if (load_seg != NULL && load_seg != *p)
2993 gold_unreachable();
2994 load_seg = NULL;
2995
2996 bool are_addresses_set = (*p)->are_addresses_set();
2997 if (are_addresses_set)
2998 {
2999 // When it comes to setting file offsets, we care about
3000 // the physical address.
3001 addr = (*p)->paddr();
3002 }
3003 else if (parameters->options().user_set_Tdata()
3004 && ((*p)->flags() & elfcpp::PF_W) != 0
3005 && (!parameters->options().user_set_Tbss()
3006 || (*p)->has_any_data_sections()))
3007 {
3008 addr = parameters->options().Tdata();
3009 are_addresses_set = true;
3010 }
3011 else if (parameters->options().user_set_Tbss()
3012 && ((*p)->flags() & elfcpp::PF_W) != 0
3013 && !(*p)->has_any_data_sections())
3014 {
3015 addr = parameters->options().Tbss();
3016 are_addresses_set = true;
3017 }
3018
3019 uint64_t orig_addr = addr;
3020 uint64_t orig_off = off;
3021
3022 uint64_t aligned_addr = 0;
3023 uint64_t abi_pagesize = target->abi_pagesize();
3024 uint64_t common_pagesize = target->common_pagesize();
3025
3026 if (!parameters->options().nmagic()
3027 && !parameters->options().omagic())
3028 (*p)->set_minimum_p_align(common_pagesize);
3029
3030 if (!are_addresses_set)
3031 {
3032 // Skip the address forward one page, maintaining the same
3033 // position within the page. This lets us store both segments
3034 // overlapping on a single page in the file, but the loader will
3035 // put them on different pages in memory. We will revisit this
3036 // decision once we know the size of the segment.
3037
3038 addr = align_address(addr, (*p)->maximum_alignment());
3039 aligned_addr = addr;
3040
3041 if ((addr & (abi_pagesize - 1)) != 0)
3042 addr = addr + abi_pagesize;
3043
3044 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3045 }
3046
3047 if (!parameters->options().nmagic()
3048 && !parameters->options().omagic())
3049 off = align_file_offset(off, addr, abi_pagesize);
3050 else if (load_seg == NULL)
3051 {
3052 // This is -N or -n with a section script which prevents
3053 // us from using a load segment. We need to ensure that
3054 // the file offset is aligned to the alignment of the
3055 // segment. This is because the linker script
3056 // implicitly assumed a zero offset. If we don't align
3057 // here, then the alignment of the sections in the
3058 // linker script may not match the alignment of the
3059 // sections in the set_section_addresses call below,
3060 // causing an error about dot moving backward.
3061 off = align_address(off, (*p)->maximum_alignment());
3062 }
3063
3064 unsigned int shndx_hold = *pshndx;
3065 bool has_relro = false;
3066 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3067 &increase_relro,
3068 &has_relro,
3069 &off, pshndx);
3070
3071 // Now that we know the size of this segment, we may be able
3072 // to save a page in memory, at the cost of wasting some
3073 // file space, by instead aligning to the start of a new
3074 // page. Here we use the real machine page size rather than
3075 // the ABI mandated page size. If the segment has been
3076 // aligned so that the relro data ends at a page boundary,
3077 // we do not try to realign it.
3078
3079 if (!are_addresses_set
3080 && !has_relro
3081 && aligned_addr != addr
3082 && !parameters->incremental())
3083 {
3084 uint64_t first_off = (common_pagesize
3085 - (aligned_addr
3086 & (common_pagesize - 1)));
3087 uint64_t last_off = new_addr & (common_pagesize - 1);
3088 if (first_off > 0
3089 && last_off > 0
3090 && ((aligned_addr & ~ (common_pagesize - 1))
3091 != (new_addr & ~ (common_pagesize - 1)))
3092 && first_off + last_off <= common_pagesize)
3093 {
3094 *pshndx = shndx_hold;
3095 addr = align_address(aligned_addr, common_pagesize);
3096 addr = align_address(addr, (*p)->maximum_alignment());
3097 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3098 off = align_file_offset(off, addr, abi_pagesize);
3099
3100 increase_relro = this->increase_relro_;
3101 if (this->script_options_->saw_sections_clause())
3102 increase_relro = 0;
3103 has_relro = false;
3104
3105 new_addr = (*p)->set_section_addresses(this, true, addr,
3106 &increase_relro,
3107 &has_relro,
3108 &off, pshndx);
3109 }
3110 }
3111
3112 addr = new_addr;
3113
3114 // Implement --check-sections. We know that the segments
3115 // are sorted by LMA.
3116 if (check_sections && last_load_segment != NULL)
3117 {
3118 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3119 if (last_load_segment->paddr() + last_load_segment->memsz()
3120 > (*p)->paddr())
3121 {
3122 unsigned long long lb1 = last_load_segment->paddr();
3123 unsigned long long le1 = lb1 + last_load_segment->memsz();
3124 unsigned long long lb2 = (*p)->paddr();
3125 unsigned long long le2 = lb2 + (*p)->memsz();
3126 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3127 "[0x%llx -> 0x%llx]"),
3128 lb1, le1, lb2, le2);
3129 }
3130 }
3131 last_load_segment = *p;
3132 }
3133 }
3134
3135 // Handle the non-PT_LOAD segments, setting their offsets from their
3136 // section's offsets.
3137 for (Segment_list::iterator p = this->segment_list_.begin();
3138 p != this->segment_list_.end();
3139 ++p)
3140 {
3141 if ((*p)->type() != elfcpp::PT_LOAD)
3142 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3143 ? increase_relro
3144 : 0);
3145 }
3146
3147 // Set the TLS offsets for each section in the PT_TLS segment.
3148 if (this->tls_segment_ != NULL)
3149 this->tls_segment_->set_tls_offsets();
3150
3151 return off;
3152 }
3153
3154 // Set the offsets of all the allocated sections when doing a
3155 // relocatable link. This does the same jobs as set_segment_offsets,
3156 // only for a relocatable link.
3157
3158 off_t
3159 Layout::set_relocatable_section_offsets(Output_data* file_header,
3160 unsigned int* pshndx)
3161 {
3162 off_t off = 0;
3163
3164 file_header->set_address_and_file_offset(0, 0);
3165 off += file_header->data_size();
3166
3167 for (Section_list::iterator p = this->section_list_.begin();
3168 p != this->section_list_.end();
3169 ++p)
3170 {
3171 // We skip unallocated sections here, except that group sections
3172 // have to come first.
3173 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3174 && (*p)->type() != elfcpp::SHT_GROUP)
3175 continue;
3176
3177 off = align_address(off, (*p)->addralign());
3178
3179 // The linker script might have set the address.
3180 if (!(*p)->is_address_valid())
3181 (*p)->set_address(0);
3182 (*p)->set_file_offset(off);
3183 (*p)->finalize_data_size();
3184 off += (*p)->data_size();
3185
3186 (*p)->set_out_shndx(*pshndx);
3187 ++*pshndx;
3188 }
3189
3190 return off;
3191 }
3192
3193 // Set the file offset of all the sections not associated with a
3194 // segment.
3195
3196 off_t
3197 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3198 {
3199 off_t startoff = off;
3200 off_t maxoff = off;
3201
3202 for (Section_list::iterator p = this->unattached_section_list_.begin();
3203 p != this->unattached_section_list_.end();
3204 ++p)
3205 {
3206 // The symtab section is handled in create_symtab_sections.
3207 if (*p == this->symtab_section_)
3208 continue;
3209
3210 // If we've already set the data size, don't set it again.
3211 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3212 continue;
3213
3214 if (pass == BEFORE_INPUT_SECTIONS_PASS
3215 && (*p)->requires_postprocessing())
3216 {
3217 (*p)->create_postprocessing_buffer();
3218 this->any_postprocessing_sections_ = true;
3219 }
3220
3221 if (pass == BEFORE_INPUT_SECTIONS_PASS
3222 && (*p)->after_input_sections())
3223 continue;
3224 else if (pass == POSTPROCESSING_SECTIONS_PASS
3225 && (!(*p)->after_input_sections()
3226 || (*p)->type() == elfcpp::SHT_STRTAB))
3227 continue;
3228 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3229 && (!(*p)->after_input_sections()
3230 || (*p)->type() != elfcpp::SHT_STRTAB))
3231 continue;
3232
3233 if (!parameters->incremental_update())
3234 {
3235 off = align_address(off, (*p)->addralign());
3236 (*p)->set_file_offset(off);
3237 (*p)->finalize_data_size();
3238 }
3239 else
3240 {
3241 // Incremental update: allocate file space from free list.
3242 (*p)->pre_finalize_data_size();
3243 off_t current_size = (*p)->current_data_size();
3244 off = this->allocate(current_size, (*p)->addralign(), startoff);
3245 if (off == -1)
3246 {
3247 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3248 this->free_list_.dump();
3249 gold_assert((*p)->output_section() != NULL);
3250 gold_fallback(_("out of patch space for section %s; "
3251 "relink with --incremental-full"),
3252 (*p)->output_section()->name());
3253 }
3254 (*p)->set_file_offset(off);
3255 (*p)->finalize_data_size();
3256 if ((*p)->data_size() > current_size)
3257 {
3258 gold_assert((*p)->output_section() != NULL);
3259 gold_fallback(_("%s: section changed size; "
3260 "relink with --incremental-full"),
3261 (*p)->output_section()->name());
3262 }
3263 gold_debug(DEBUG_INCREMENTAL,
3264 "set_section_offsets: %08lx %08lx %s",
3265 static_cast<long>(off),
3266 static_cast<long>((*p)->data_size()),
3267 ((*p)->output_section() != NULL
3268 ? (*p)->output_section()->name() : "(special)"));
3269 }
3270
3271 off += (*p)->data_size();
3272 if (off > maxoff)
3273 maxoff = off;
3274
3275 // At this point the name must be set.
3276 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3277 this->namepool_.add((*p)->name(), false, NULL);
3278 }
3279 return maxoff;
3280 }
3281
3282 // Set the section indexes of all the sections not associated with a
3283 // segment.
3284
3285 unsigned int
3286 Layout::set_section_indexes(unsigned int shndx)
3287 {
3288 for (Section_list::iterator p = this->unattached_section_list_.begin();
3289 p != this->unattached_section_list_.end();
3290 ++p)
3291 {
3292 if (!(*p)->has_out_shndx())
3293 {
3294 (*p)->set_out_shndx(shndx);
3295 ++shndx;
3296 }
3297 }
3298 return shndx;
3299 }
3300
3301 // Set the section addresses according to the linker script. This is
3302 // only called when we see a SECTIONS clause. This returns the
3303 // program segment which should hold the file header and segment
3304 // headers, if any. It will return NULL if they should not be in a
3305 // segment.
3306
3307 Output_segment*
3308 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3309 {
3310 Script_sections* ss = this->script_options_->script_sections();
3311 gold_assert(ss->saw_sections_clause());
3312 return this->script_options_->set_section_addresses(symtab, this);
3313 }
3314
3315 // Place the orphan sections in the linker script.
3316
3317 void
3318 Layout::place_orphan_sections_in_script()
3319 {
3320 Script_sections* ss = this->script_options_->script_sections();
3321 gold_assert(ss->saw_sections_clause());
3322
3323 // Place each orphaned output section in the script.
3324 for (Section_list::iterator p = this->section_list_.begin();
3325 p != this->section_list_.end();
3326 ++p)
3327 {
3328 if (!(*p)->found_in_sections_clause())
3329 ss->place_orphan(*p);
3330 }
3331 }
3332
3333 // Count the local symbols in the regular symbol table and the dynamic
3334 // symbol table, and build the respective string pools.
3335
3336 void
3337 Layout::count_local_symbols(const Task* task,
3338 const Input_objects* input_objects)
3339 {
3340 // First, figure out an upper bound on the number of symbols we'll
3341 // be inserting into each pool. This helps us create the pools with
3342 // the right size, to avoid unnecessary hashtable resizing.
3343 unsigned int symbol_count = 0;
3344 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3345 p != input_objects->relobj_end();
3346 ++p)
3347 symbol_count += (*p)->local_symbol_count();
3348
3349 // Go from "upper bound" to "estimate." We overcount for two
3350 // reasons: we double-count symbols that occur in more than one
3351 // object file, and we count symbols that are dropped from the
3352 // output. Add it all together and assume we overcount by 100%.
3353 symbol_count /= 2;
3354
3355 // We assume all symbols will go into both the sympool and dynpool.
3356 this->sympool_.reserve(symbol_count);
3357 this->dynpool_.reserve(symbol_count);
3358
3359 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3360 p != input_objects->relobj_end();
3361 ++p)
3362 {
3363 Task_lock_obj<Object> tlo(task, *p);
3364 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3365 }
3366 }
3367
3368 // Create the symbol table sections. Here we also set the final
3369 // values of the symbols. At this point all the loadable sections are
3370 // fully laid out. SHNUM is the number of sections so far.
3371
3372 void
3373 Layout::create_symtab_sections(const Input_objects* input_objects,
3374 Symbol_table* symtab,
3375 unsigned int shnum,
3376 off_t* poff)
3377 {
3378 int symsize;
3379 unsigned int align;
3380 if (parameters->target().get_size() == 32)
3381 {
3382 symsize = elfcpp::Elf_sizes<32>::sym_size;
3383 align = 4;
3384 }
3385 else if (parameters->target().get_size() == 64)
3386 {
3387 symsize = elfcpp::Elf_sizes<64>::sym_size;
3388 align = 8;
3389 }
3390 else
3391 gold_unreachable();
3392
3393 // Compute file offsets relative to the start of the symtab section.
3394 off_t off = 0;
3395
3396 // Save space for the dummy symbol at the start of the section. We
3397 // never bother to write this out--it will just be left as zero.
3398 off += symsize;
3399 unsigned int local_symbol_index = 1;
3400
3401 // Add STT_SECTION symbols for each Output section which needs one.
3402 for (Section_list::iterator p = this->section_list_.begin();
3403 p != this->section_list_.end();
3404 ++p)
3405 {
3406 if (!(*p)->needs_symtab_index())
3407 (*p)->set_symtab_index(-1U);
3408 else
3409 {
3410 (*p)->set_symtab_index(local_symbol_index);
3411 ++local_symbol_index;
3412 off += symsize;
3413 }
3414 }
3415
3416 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3417 p != input_objects->relobj_end();
3418 ++p)
3419 {
3420 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3421 off, symtab);
3422 off += (index - local_symbol_index) * symsize;
3423 local_symbol_index = index;
3424 }
3425
3426 unsigned int local_symcount = local_symbol_index;
3427 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3428
3429 off_t dynoff;
3430 size_t dyn_global_index;
3431 size_t dyncount;
3432 if (this->dynsym_section_ == NULL)
3433 {
3434 dynoff = 0;
3435 dyn_global_index = 0;
3436 dyncount = 0;
3437 }
3438 else
3439 {
3440 dyn_global_index = this->dynsym_section_->info();
3441 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3442 dynoff = this->dynsym_section_->offset() + locsize;
3443 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3444 gold_assert(static_cast<off_t>(dyncount * symsize)
3445 == this->dynsym_section_->data_size() - locsize);
3446 }
3447
3448 off_t global_off = off;
3449 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3450 &this->sympool_, &local_symcount);
3451
3452 if (!parameters->options().strip_all())
3453 {
3454 this->sympool_.set_string_offsets();
3455
3456 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3457 Output_section* osymtab = this->make_output_section(symtab_name,
3458 elfcpp::SHT_SYMTAB,
3459 0, ORDER_INVALID,
3460 false);
3461 this->symtab_section_ = osymtab;
3462
3463 Output_section_data* pos = new Output_data_fixed_space(off, align,
3464 "** symtab");
3465 osymtab->add_output_section_data(pos);
3466
3467 // We generate a .symtab_shndx section if we have more than
3468 // SHN_LORESERVE sections. Technically it is possible that we
3469 // don't need one, because it is possible that there are no
3470 // symbols in any of sections with indexes larger than
3471 // SHN_LORESERVE. That is probably unusual, though, and it is
3472 // easier to always create one than to compute section indexes
3473 // twice (once here, once when writing out the symbols).
3474 if (shnum >= elfcpp::SHN_LORESERVE)
3475 {
3476 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3477 false, NULL);
3478 Output_section* osymtab_xindex =
3479 this->make_output_section(symtab_xindex_name,
3480 elfcpp::SHT_SYMTAB_SHNDX, 0,
3481 ORDER_INVALID, false);
3482
3483 size_t symcount = off / symsize;
3484 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3485
3486 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3487
3488 osymtab_xindex->set_link_section(osymtab);
3489 osymtab_xindex->set_addralign(4);
3490 osymtab_xindex->set_entsize(4);
3491
3492 osymtab_xindex->set_after_input_sections();
3493
3494 // This tells the driver code to wait until the symbol table
3495 // has written out before writing out the postprocessing
3496 // sections, including the .symtab_shndx section.
3497 this->any_postprocessing_sections_ = true;
3498 }
3499
3500 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3501 Output_section* ostrtab = this->make_output_section(strtab_name,
3502 elfcpp::SHT_STRTAB,
3503 0, ORDER_INVALID,
3504 false);
3505
3506 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3507 ostrtab->add_output_section_data(pstr);
3508
3509 off_t symtab_off;
3510 if (!parameters->incremental_update())
3511 symtab_off = align_address(*poff, align);
3512 else
3513 {
3514 symtab_off = this->allocate(off, align, *poff);
3515 if (off == -1)
3516 gold_fallback(_("out of patch space for symbol table; "
3517 "relink with --incremental-full"));
3518 gold_debug(DEBUG_INCREMENTAL,
3519 "create_symtab_sections: %08lx %08lx .symtab",
3520 static_cast<long>(symtab_off),
3521 static_cast<long>(off));
3522 }
3523
3524 symtab->set_file_offset(symtab_off + global_off);
3525 osymtab->set_file_offset(symtab_off);
3526 osymtab->finalize_data_size();
3527 osymtab->set_link_section(ostrtab);
3528 osymtab->set_info(local_symcount);
3529 osymtab->set_entsize(symsize);
3530
3531 if (symtab_off + off > *poff)
3532 *poff = symtab_off + off;
3533 }
3534 }
3535
3536 // Create the .shstrtab section, which holds the names of the
3537 // sections. At the time this is called, we have created all the
3538 // output sections except .shstrtab itself.
3539
3540 Output_section*
3541 Layout::create_shstrtab()
3542 {
3543 // FIXME: We don't need to create a .shstrtab section if we are
3544 // stripping everything.
3545
3546 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3547
3548 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3549 ORDER_INVALID, false);
3550
3551 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3552 {
3553 // We can't write out this section until we've set all the
3554 // section names, and we don't set the names of compressed
3555 // output sections until relocations are complete. FIXME: With
3556 // the current names we use, this is unnecessary.
3557 os->set_after_input_sections();
3558 }
3559
3560 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3561 os->add_output_section_data(posd);
3562
3563 return os;
3564 }
3565
3566 // Create the section headers. SIZE is 32 or 64. OFF is the file
3567 // offset.
3568
3569 void
3570 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3571 {
3572 Output_section_headers* oshdrs;
3573 oshdrs = new Output_section_headers(this,
3574 &this->segment_list_,
3575 &this->section_list_,
3576 &this->unattached_section_list_,
3577 &this->namepool_,
3578 shstrtab_section);
3579 off_t off;
3580 if (!parameters->incremental_update())
3581 off = align_address(*poff, oshdrs->addralign());
3582 else
3583 {
3584 oshdrs->pre_finalize_data_size();
3585 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3586 if (off == -1)
3587 gold_fallback(_("out of patch space for section header table; "
3588 "relink with --incremental-full"));
3589 gold_debug(DEBUG_INCREMENTAL,
3590 "create_shdrs: %08lx %08lx (section header table)",
3591 static_cast<long>(off),
3592 static_cast<long>(off + oshdrs->data_size()));
3593 }
3594 oshdrs->set_address_and_file_offset(0, off);
3595 off += oshdrs->data_size();
3596 if (off > *poff)
3597 *poff = off;
3598 this->section_headers_ = oshdrs;
3599 }
3600
3601 // Count the allocated sections.
3602
3603 size_t
3604 Layout::allocated_output_section_count() const
3605 {
3606 size_t section_count = 0;
3607 for (Segment_list::const_iterator p = this->segment_list_.begin();
3608 p != this->segment_list_.end();
3609 ++p)
3610 section_count += (*p)->output_section_count();
3611 return section_count;
3612 }
3613
3614 // Create the dynamic symbol table.
3615
3616 void
3617 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3618 Symbol_table* symtab,
3619 Output_section** pdynstr,
3620 unsigned int* plocal_dynamic_count,
3621 std::vector<Symbol*>* pdynamic_symbols,
3622 Versions* pversions)
3623 {
3624 // Count all the symbols in the dynamic symbol table, and set the
3625 // dynamic symbol indexes.
3626
3627 // Skip symbol 0, which is always all zeroes.
3628 unsigned int index = 1;
3629
3630 // Add STT_SECTION symbols for each Output section which needs one.
3631 for (Section_list::iterator p = this->section_list_.begin();
3632 p != this->section_list_.end();
3633 ++p)
3634 {
3635 if (!(*p)->needs_dynsym_index())
3636 (*p)->set_dynsym_index(-1U);
3637 else
3638 {
3639 (*p)->set_dynsym_index(index);
3640 ++index;
3641 }
3642 }
3643
3644 // Count the local symbols that need to go in the dynamic symbol table,
3645 // and set the dynamic symbol indexes.
3646 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3647 p != input_objects->relobj_end();
3648 ++p)
3649 {
3650 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3651 index = new_index;
3652 }
3653
3654 unsigned int local_symcount = index;
3655 *plocal_dynamic_count = local_symcount;
3656
3657 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3658 &this->dynpool_, pversions);
3659
3660 int symsize;
3661 unsigned int align;
3662 const int size = parameters->target().get_size();
3663 if (size == 32)
3664 {
3665 symsize = elfcpp::Elf_sizes<32>::sym_size;
3666 align = 4;
3667 }
3668 else if (size == 64)
3669 {
3670 symsize = elfcpp::Elf_sizes<64>::sym_size;
3671 align = 8;
3672 }
3673 else
3674 gold_unreachable();
3675
3676 // Create the dynamic symbol table section.
3677
3678 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3679 elfcpp::SHT_DYNSYM,
3680 elfcpp::SHF_ALLOC,
3681 false,
3682 ORDER_DYNAMIC_LINKER,
3683 false);
3684
3685 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3686 align,
3687 "** dynsym");
3688 dynsym->add_output_section_data(odata);
3689
3690 dynsym->set_info(local_symcount);
3691 dynsym->set_entsize(symsize);
3692 dynsym->set_addralign(align);
3693
3694 this->dynsym_section_ = dynsym;
3695
3696 Output_data_dynamic* const odyn = this->dynamic_data_;
3697 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3698 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3699
3700 // If there are more than SHN_LORESERVE allocated sections, we
3701 // create a .dynsym_shndx section. It is possible that we don't
3702 // need one, because it is possible that there are no dynamic
3703 // symbols in any of the sections with indexes larger than
3704 // SHN_LORESERVE. This is probably unusual, though, and at this
3705 // time we don't know the actual section indexes so it is
3706 // inconvenient to check.
3707 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3708 {
3709 Output_section* dynsym_xindex =
3710 this->choose_output_section(NULL, ".dynsym_shndx",
3711 elfcpp::SHT_SYMTAB_SHNDX,
3712 elfcpp::SHF_ALLOC,
3713 false, ORDER_DYNAMIC_LINKER, false);
3714
3715 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3716
3717 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3718
3719 dynsym_xindex->set_link_section(dynsym);
3720 dynsym_xindex->set_addralign(4);
3721 dynsym_xindex->set_entsize(4);
3722
3723 dynsym_xindex->set_after_input_sections();
3724
3725 // This tells the driver code to wait until the symbol table has
3726 // written out before writing out the postprocessing sections,
3727 // including the .dynsym_shndx section.
3728 this->any_postprocessing_sections_ = true;
3729 }
3730
3731 // Create the dynamic string table section.
3732
3733 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3734 elfcpp::SHT_STRTAB,
3735 elfcpp::SHF_ALLOC,
3736 false,
3737 ORDER_DYNAMIC_LINKER,
3738 false);
3739
3740 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3741 dynstr->add_output_section_data(strdata);
3742
3743 dynsym->set_link_section(dynstr);
3744 this->dynamic_section_->set_link_section(dynstr);
3745
3746 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3747 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3748
3749 *pdynstr = dynstr;
3750
3751 // Create the hash tables.
3752
3753 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3754 || strcmp(parameters->options().hash_style(), "both") == 0)
3755 {
3756 unsigned char* phash;
3757 unsigned int hashlen;
3758 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3759 &phash, &hashlen);
3760
3761 Output_section* hashsec =
3762 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3763 elfcpp::SHF_ALLOC, false,
3764 ORDER_DYNAMIC_LINKER, false);
3765
3766 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3767 hashlen,
3768 align,
3769 "** hash");
3770 hashsec->add_output_section_data(hashdata);
3771
3772 hashsec->set_link_section(dynsym);
3773 hashsec->set_entsize(4);
3774
3775 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3776 }
3777
3778 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3779 || strcmp(parameters->options().hash_style(), "both") == 0)
3780 {
3781 unsigned char* phash;
3782 unsigned int hashlen;
3783 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3784 &phash, &hashlen);
3785
3786 Output_section* hashsec =
3787 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3788 elfcpp::SHF_ALLOC, false,
3789 ORDER_DYNAMIC_LINKER, false);
3790
3791 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3792 hashlen,
3793 align,
3794 "** hash");
3795 hashsec->add_output_section_data(hashdata);
3796
3797 hashsec->set_link_section(dynsym);
3798
3799 // For a 64-bit target, the entries in .gnu.hash do not have a
3800 // uniform size, so we only set the entry size for a 32-bit
3801 // target.
3802 if (parameters->target().get_size() == 32)
3803 hashsec->set_entsize(4);
3804
3805 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3806 }
3807 }
3808
3809 // Assign offsets to each local portion of the dynamic symbol table.
3810
3811 void
3812 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3813 {
3814 Output_section* dynsym = this->dynsym_section_;
3815 gold_assert(dynsym != NULL);
3816
3817 off_t off = dynsym->offset();
3818
3819 // Skip the dummy symbol at the start of the section.
3820 off += dynsym->entsize();
3821
3822 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3823 p != input_objects->relobj_end();
3824 ++p)
3825 {
3826 unsigned int count = (*p)->set_local_dynsym_offset(off);
3827 off += count * dynsym->entsize();
3828 }
3829 }
3830
3831 // Create the version sections.
3832
3833 void
3834 Layout::create_version_sections(const Versions* versions,
3835 const Symbol_table* symtab,
3836 unsigned int local_symcount,
3837 const std::vector<Symbol*>& dynamic_symbols,
3838 const Output_section* dynstr)
3839 {
3840 if (!versions->any_defs() && !versions->any_needs())
3841 return;
3842
3843 switch (parameters->size_and_endianness())
3844 {
3845 #ifdef HAVE_TARGET_32_LITTLE
3846 case Parameters::TARGET_32_LITTLE:
3847 this->sized_create_version_sections<32, false>(versions, symtab,
3848 local_symcount,
3849 dynamic_symbols, dynstr);
3850 break;
3851 #endif
3852 #ifdef HAVE_TARGET_32_BIG
3853 case Parameters::TARGET_32_BIG:
3854 this->sized_create_version_sections<32, true>(versions, symtab,
3855 local_symcount,
3856 dynamic_symbols, dynstr);
3857 break;
3858 #endif
3859 #ifdef HAVE_TARGET_64_LITTLE
3860 case Parameters::TARGET_64_LITTLE:
3861 this->sized_create_version_sections<64, false>(versions, symtab,
3862 local_symcount,
3863 dynamic_symbols, dynstr);
3864 break;
3865 #endif
3866 #ifdef HAVE_TARGET_64_BIG
3867 case Parameters::TARGET_64_BIG:
3868 this->sized_create_version_sections<64, true>(versions, symtab,
3869 local_symcount,
3870 dynamic_symbols, dynstr);
3871 break;
3872 #endif
3873 default:
3874 gold_unreachable();
3875 }
3876 }
3877
3878 // Create the version sections, sized version.
3879
3880 template<int size, bool big_endian>
3881 void
3882 Layout::sized_create_version_sections(
3883 const Versions* versions,
3884 const Symbol_table* symtab,
3885 unsigned int local_symcount,
3886 const std::vector<Symbol*>& dynamic_symbols,
3887 const Output_section* dynstr)
3888 {
3889 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3890 elfcpp::SHT_GNU_versym,
3891 elfcpp::SHF_ALLOC,
3892 false,
3893 ORDER_DYNAMIC_LINKER,
3894 false);
3895
3896 unsigned char* vbuf;
3897 unsigned int vsize;
3898 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3899 local_symcount,
3900 dynamic_symbols,
3901 &vbuf, &vsize);
3902
3903 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3904 "** versions");
3905
3906 vsec->add_output_section_data(vdata);
3907 vsec->set_entsize(2);
3908 vsec->set_link_section(this->dynsym_section_);
3909
3910 Output_data_dynamic* const odyn = this->dynamic_data_;
3911 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3912
3913 if (versions->any_defs())
3914 {
3915 Output_section* vdsec;
3916 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3917 elfcpp::SHT_GNU_verdef,
3918 elfcpp::SHF_ALLOC,
3919 false, ORDER_DYNAMIC_LINKER, false);
3920
3921 unsigned char* vdbuf;
3922 unsigned int vdsize;
3923 unsigned int vdentries;
3924 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3925 &vdsize, &vdentries);
3926
3927 Output_section_data* vddata =
3928 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3929
3930 vdsec->add_output_section_data(vddata);
3931 vdsec->set_link_section(dynstr);
3932 vdsec->set_info(vdentries);
3933
3934 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3935 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3936 }
3937
3938 if (versions->any_needs())
3939 {
3940 Output_section* vnsec;
3941 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3942 elfcpp::SHT_GNU_verneed,
3943 elfcpp::SHF_ALLOC,
3944 false, ORDER_DYNAMIC_LINKER, false);
3945
3946 unsigned char* vnbuf;
3947 unsigned int vnsize;
3948 unsigned int vnentries;
3949 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3950 &vnbuf, &vnsize,
3951 &vnentries);
3952
3953 Output_section_data* vndata =
3954 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3955
3956 vnsec->add_output_section_data(vndata);
3957 vnsec->set_link_section(dynstr);
3958 vnsec->set_info(vnentries);
3959
3960 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3961 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3962 }
3963 }
3964
3965 // Create the .interp section and PT_INTERP segment.
3966
3967 void
3968 Layout::create_interp(const Target* target)
3969 {
3970 gold_assert(this->interp_segment_ == NULL);
3971
3972 const char* interp = parameters->options().dynamic_linker();
3973 if (interp == NULL)
3974 {
3975 interp = target->dynamic_linker();
3976 gold_assert(interp != NULL);
3977 }
3978
3979 size_t len = strlen(interp) + 1;
3980
3981 Output_section_data* odata = new Output_data_const(interp, len, 1);
3982
3983 Output_section* osec = this->choose_output_section(NULL, ".interp",
3984 elfcpp::SHT_PROGBITS,
3985 elfcpp::SHF_ALLOC,
3986 false, ORDER_INTERP,
3987 false);
3988 osec->add_output_section_data(odata);
3989 }
3990
3991 // Add dynamic tags for the PLT and the dynamic relocs. This is
3992 // called by the target-specific code. This does nothing if not doing
3993 // a dynamic link.
3994
3995 // USE_REL is true for REL relocs rather than RELA relocs.
3996
3997 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3998
3999 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4000 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4001 // some targets have multiple reloc sections in PLT_REL.
4002
4003 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4004 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
4005
4006 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4007 // executable.
4008
4009 void
4010 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4011 const Output_data* plt_rel,
4012 const Output_data_reloc_generic* dyn_rel,
4013 bool add_debug, bool dynrel_includes_plt)
4014 {
4015 Output_data_dynamic* odyn = this->dynamic_data_;
4016 if (odyn == NULL)
4017 return;
4018
4019 if (plt_got != NULL && plt_got->output_section() != NULL)
4020 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4021
4022 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4023 {
4024 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4025 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4026 odyn->add_constant(elfcpp::DT_PLTREL,
4027 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4028 }
4029
4030 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4031 {
4032 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4033 dyn_rel);
4034 if (plt_rel != NULL && dynrel_includes_plt)
4035 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4036 dyn_rel, plt_rel);
4037 else
4038 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4039 dyn_rel);
4040 const int size = parameters->target().get_size();
4041 elfcpp::DT rel_tag;
4042 int rel_size;
4043 if (use_rel)
4044 {
4045 rel_tag = elfcpp::DT_RELENT;
4046 if (size == 32)
4047 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4048 else if (size == 64)
4049 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4050 else
4051 gold_unreachable();
4052 }
4053 else
4054 {
4055 rel_tag = elfcpp::DT_RELAENT;
4056 if (size == 32)
4057 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4058 else if (size == 64)
4059 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4060 else
4061 gold_unreachable();
4062 }
4063 odyn->add_constant(rel_tag, rel_size);
4064
4065 if (parameters->options().combreloc())
4066 {
4067 size_t c = dyn_rel->relative_reloc_count();
4068 if (c > 0)
4069 odyn->add_constant((use_rel
4070 ? elfcpp::DT_RELCOUNT
4071 : elfcpp::DT_RELACOUNT),
4072 c);
4073 }
4074 }
4075
4076 if (add_debug && !parameters->options().shared())
4077 {
4078 // The value of the DT_DEBUG tag is filled in by the dynamic
4079 // linker at run time, and used by the debugger.
4080 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4081 }
4082 }
4083
4084 // Finish the .dynamic section and PT_DYNAMIC segment.
4085
4086 void
4087 Layout::finish_dynamic_section(const Input_objects* input_objects,
4088 const Symbol_table* symtab)
4089 {
4090 if (!this->script_options_->saw_phdrs_clause())
4091 {
4092 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4093 (elfcpp::PF_R
4094 | elfcpp::PF_W));
4095 oseg->add_output_section_to_nonload(this->dynamic_section_,
4096 elfcpp::PF_R | elfcpp::PF_W);
4097 }
4098
4099 Output_data_dynamic* const odyn = this->dynamic_data_;
4100
4101 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4102 p != input_objects->dynobj_end();
4103 ++p)
4104 {
4105 if (!(*p)->is_needed() && (*p)->as_needed())
4106 {
4107 // This dynamic object was linked with --as-needed, but it
4108 // is not needed.
4109 continue;
4110 }
4111
4112 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4113 }
4114
4115 if (parameters->options().shared())
4116 {
4117 const char* soname = parameters->options().soname();
4118 if (soname != NULL)
4119 odyn->add_string(elfcpp::DT_SONAME, soname);
4120 }
4121
4122 Symbol* sym = symtab->lookup(parameters->options().init());
4123 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4124 odyn->add_symbol(elfcpp::DT_INIT, sym);
4125
4126 sym = symtab->lookup(parameters->options().fini());
4127 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4128 odyn->add_symbol(elfcpp::DT_FINI, sym);
4129
4130 // Look for .init_array, .preinit_array and .fini_array by checking
4131 // section types.
4132 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4133 p != this->section_list_.end();
4134 ++p)
4135 switch((*p)->type())
4136 {
4137 case elfcpp::SHT_FINI_ARRAY:
4138 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4139 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4140 break;
4141 case elfcpp::SHT_INIT_ARRAY:
4142 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4143 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4144 break;
4145 case elfcpp::SHT_PREINIT_ARRAY:
4146 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4147 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4148 break;
4149 default:
4150 break;
4151 }
4152
4153 // Add a DT_RPATH entry if needed.
4154 const General_options::Dir_list& rpath(parameters->options().rpath());
4155 if (!rpath.empty())
4156 {
4157 std::string rpath_val;
4158 for (General_options::Dir_list::const_iterator p = rpath.begin();
4159 p != rpath.end();
4160 ++p)
4161 {
4162 if (rpath_val.empty())
4163 rpath_val = p->name();
4164 else
4165 {
4166 // Eliminate duplicates.
4167 General_options::Dir_list::const_iterator q;
4168 for (q = rpath.begin(); q != p; ++q)
4169 if (q->name() == p->name())
4170 break;
4171 if (q == p)
4172 {
4173 rpath_val += ':';
4174 rpath_val += p->name();
4175 }
4176 }
4177 }
4178
4179 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4180 if (parameters->options().enable_new_dtags())
4181 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4182 }
4183
4184 // Look for text segments that have dynamic relocations.
4185 bool have_textrel = false;
4186 if (!this->script_options_->saw_sections_clause())
4187 {
4188 for (Segment_list::const_iterator p = this->segment_list_.begin();
4189 p != this->segment_list_.end();
4190 ++p)
4191 {
4192 if ((*p)->type() == elfcpp::PT_LOAD
4193 && ((*p)->flags() & elfcpp::PF_W) == 0
4194 && (*p)->has_dynamic_reloc())
4195 {
4196 have_textrel = true;
4197 break;
4198 }
4199 }
4200 }
4201 else
4202 {
4203 // We don't know the section -> segment mapping, so we are
4204 // conservative and just look for readonly sections with
4205 // relocations. If those sections wind up in writable segments,
4206 // then we have created an unnecessary DT_TEXTREL entry.
4207 for (Section_list::const_iterator p = this->section_list_.begin();
4208 p != this->section_list_.end();
4209 ++p)
4210 {
4211 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4212 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4213 && (*p)->has_dynamic_reloc())
4214 {
4215 have_textrel = true;
4216 break;
4217 }
4218 }
4219 }
4220
4221 // Add a DT_FLAGS entry. We add it even if no flags are set so that
4222 // post-link tools can easily modify these flags if desired.
4223 unsigned int flags = 0;
4224 if (have_textrel)
4225 {
4226 // Add a DT_TEXTREL for compatibility with older loaders.
4227 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4228 flags |= elfcpp::DF_TEXTREL;
4229
4230 if (parameters->options().text())
4231 gold_error(_("read-only segment has dynamic relocations"));
4232 else if (parameters->options().warn_shared_textrel()
4233 && parameters->options().shared())
4234 gold_warning(_("shared library text segment is not shareable"));
4235 }
4236 if (parameters->options().shared() && this->has_static_tls())
4237 flags |= elfcpp::DF_STATIC_TLS;
4238 if (parameters->options().origin())
4239 flags |= elfcpp::DF_ORIGIN;
4240 if (parameters->options().Bsymbolic())
4241 {
4242 flags |= elfcpp::DF_SYMBOLIC;
4243 // Add DT_SYMBOLIC for compatibility with older loaders.
4244 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4245 }
4246 if (parameters->options().now())
4247 flags |= elfcpp::DF_BIND_NOW;
4248 if (flags != 0)
4249 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4250
4251 flags = 0;
4252 if (parameters->options().initfirst())
4253 flags |= elfcpp::DF_1_INITFIRST;
4254 if (parameters->options().interpose())
4255 flags |= elfcpp::DF_1_INTERPOSE;
4256 if (parameters->options().loadfltr())
4257 flags |= elfcpp::DF_1_LOADFLTR;
4258 if (parameters->options().nodefaultlib())
4259 flags |= elfcpp::DF_1_NODEFLIB;
4260 if (parameters->options().nodelete())
4261 flags |= elfcpp::DF_1_NODELETE;
4262 if (parameters->options().nodlopen())
4263 flags |= elfcpp::DF_1_NOOPEN;
4264 if (parameters->options().nodump())
4265 flags |= elfcpp::DF_1_NODUMP;
4266 if (!parameters->options().shared())
4267 flags &= ~(elfcpp::DF_1_INITFIRST
4268 | elfcpp::DF_1_NODELETE
4269 | elfcpp::DF_1_NOOPEN);
4270 if (parameters->options().origin())
4271 flags |= elfcpp::DF_1_ORIGIN;
4272 if (parameters->options().now())
4273 flags |= elfcpp::DF_1_NOW;
4274 if (flags != 0)
4275 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4276 }
4277
4278 // Set the size of the _DYNAMIC symbol table to be the size of the
4279 // dynamic data.
4280
4281 void
4282 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4283 {
4284 Output_data_dynamic* const odyn = this->dynamic_data_;
4285 odyn->finalize_data_size();
4286 off_t data_size = odyn->data_size();
4287 const int size = parameters->target().get_size();
4288 if (size == 32)
4289 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4290 else if (size == 64)
4291 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4292 else
4293 gold_unreachable();
4294 }
4295
4296 // The mapping of input section name prefixes to output section names.
4297 // In some cases one prefix is itself a prefix of another prefix; in
4298 // such a case the longer prefix must come first. These prefixes are
4299 // based on the GNU linker default ELF linker script.
4300
4301 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4302 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4303 {
4304 MAPPING_INIT(".text.", ".text"),
4305 MAPPING_INIT(".rodata.", ".rodata"),
4306 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4307 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4308 MAPPING_INIT(".data.", ".data"),
4309 MAPPING_INIT(".bss.", ".bss"),
4310 MAPPING_INIT(".tdata.", ".tdata"),
4311 MAPPING_INIT(".tbss.", ".tbss"),
4312 MAPPING_INIT(".init_array.", ".init_array"),
4313 MAPPING_INIT(".fini_array.", ".fini_array"),
4314 MAPPING_INIT(".sdata.", ".sdata"),
4315 MAPPING_INIT(".sbss.", ".sbss"),
4316 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4317 // differently depending on whether it is creating a shared library.
4318 MAPPING_INIT(".sdata2.", ".sdata"),
4319 MAPPING_INIT(".sbss2.", ".sbss"),
4320 MAPPING_INIT(".lrodata.", ".lrodata"),
4321 MAPPING_INIT(".ldata.", ".ldata"),
4322 MAPPING_INIT(".lbss.", ".lbss"),
4323 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4324 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4325 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4326 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4327 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4328 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4329 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4330 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4331 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4332 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4333 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4334 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4335 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4336 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4337 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4338 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4339 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4340 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4341 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4342 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4343 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4344 };
4345 #undef MAPPING_INIT
4346
4347 const int Layout::section_name_mapping_count =
4348 (sizeof(Layout::section_name_mapping)
4349 / sizeof(Layout::section_name_mapping[0]));
4350
4351 // Choose the output section name to use given an input section name.
4352 // Set *PLEN to the length of the name. *PLEN is initialized to the
4353 // length of NAME.
4354
4355 const char*
4356 Layout::output_section_name(const Relobj* relobj, const char* name,
4357 size_t* plen)
4358 {
4359 // gcc 4.3 generates the following sorts of section names when it
4360 // needs a section name specific to a function:
4361 // .text.FN
4362 // .rodata.FN
4363 // .sdata2.FN
4364 // .data.FN
4365 // .data.rel.FN
4366 // .data.rel.local.FN
4367 // .data.rel.ro.FN
4368 // .data.rel.ro.local.FN
4369 // .sdata.FN
4370 // .bss.FN
4371 // .sbss.FN
4372 // .tdata.FN
4373 // .tbss.FN
4374
4375 // The GNU linker maps all of those to the part before the .FN,
4376 // except that .data.rel.local.FN is mapped to .data, and
4377 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4378 // beginning with .data.rel.ro.local are grouped together.
4379
4380 // For an anonymous namespace, the string FN can contain a '.'.
4381
4382 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4383 // GNU linker maps to .rodata.
4384
4385 // The .data.rel.ro sections are used with -z relro. The sections
4386 // are recognized by name. We use the same names that the GNU
4387 // linker does for these sections.
4388
4389 // It is hard to handle this in a principled way, so we don't even
4390 // try. We use a table of mappings. If the input section name is
4391 // not found in the table, we simply use it as the output section
4392 // name.
4393
4394 const Section_name_mapping* psnm = section_name_mapping;
4395 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4396 {
4397 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4398 {
4399 *plen = psnm->tolen;
4400 return psnm->to;
4401 }
4402 }
4403
4404 // As an additional complication, .ctors sections are output in
4405 // either .ctors or .init_array sections, and .dtors sections are
4406 // output in either .dtors or .fini_array sections.
4407 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4408 {
4409 if (parameters->options().ctors_in_init_array())
4410 {
4411 *plen = 11;
4412 return name[1] == 'c' ? ".init_array" : ".fini_array";
4413 }
4414 else
4415 {
4416 *plen = 6;
4417 return name[1] == 'c' ? ".ctors" : ".dtors";
4418 }
4419 }
4420 if (parameters->options().ctors_in_init_array()
4421 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4422 {
4423 // To make .init_array/.fini_array work with gcc we must exclude
4424 // .ctors and .dtors sections from the crtbegin and crtend
4425 // files.
4426 if (relobj == NULL
4427 || (!Layout::match_file_name(relobj, "crtbegin")
4428 && !Layout::match_file_name(relobj, "crtend")))
4429 {
4430 *plen = 11;
4431 return name[1] == 'c' ? ".init_array" : ".fini_array";
4432 }
4433 }
4434
4435 return name;
4436 }
4437
4438 // Return true if RELOBJ is an input file whose base name matches
4439 // FILE_NAME. The base name must have an extension of ".o", and must
4440 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4441 // to match crtbegin.o as well as crtbeginS.o without getting confused
4442 // by other possibilities. Overall matching the file name this way is
4443 // a dreadful hack, but the GNU linker does it in order to better
4444 // support gcc, and we need to be compatible.
4445
4446 bool
4447 Layout::match_file_name(const Relobj* relobj, const char* match)
4448 {
4449 const std::string& file_name(relobj->name());
4450 const char* base_name = lbasename(file_name.c_str());
4451 size_t match_len = strlen(match);
4452 if (strncmp(base_name, match, match_len) != 0)
4453 return false;
4454 size_t base_len = strlen(base_name);
4455 if (base_len != match_len + 2 && base_len != match_len + 3)
4456 return false;
4457 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4458 }
4459
4460 // Check if a comdat group or .gnu.linkonce section with the given
4461 // NAME is selected for the link. If there is already a section,
4462 // *KEPT_SECTION is set to point to the existing section and the
4463 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4464 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4465 // *KEPT_SECTION is set to the internal copy and the function returns
4466 // true.
4467
4468 bool
4469 Layout::find_or_add_kept_section(const std::string& name,
4470 Relobj* object,
4471 unsigned int shndx,
4472 bool is_comdat,
4473 bool is_group_name,
4474 Kept_section** kept_section)
4475 {
4476 // It's normal to see a couple of entries here, for the x86 thunk
4477 // sections. If we see more than a few, we're linking a C++
4478 // program, and we resize to get more space to minimize rehashing.
4479 if (this->signatures_.size() > 4
4480 && !this->resized_signatures_)
4481 {
4482 reserve_unordered_map(&this->signatures_,
4483 this->number_of_input_files_ * 64);
4484 this->resized_signatures_ = true;
4485 }
4486
4487 Kept_section candidate;
4488 std::pair<Signatures::iterator, bool> ins =
4489 this->signatures_.insert(std::make_pair(name, candidate));
4490
4491 if (kept_section != NULL)
4492 *kept_section = &ins.first->second;
4493 if (ins.second)
4494 {
4495 // This is the first time we've seen this signature.
4496 ins.first->second.set_object(object);
4497 ins.first->second.set_shndx(shndx);
4498 if (is_comdat)
4499 ins.first->second.set_is_comdat();
4500 if (is_group_name)
4501 ins.first->second.set_is_group_name();
4502 return true;
4503 }
4504
4505 // We have already seen this signature.
4506
4507 if (ins.first->second.is_group_name())
4508 {
4509 // We've already seen a real section group with this signature.
4510 // If the kept group is from a plugin object, and we're in the
4511 // replacement phase, accept the new one as a replacement.
4512 if (ins.first->second.object() == NULL
4513 && parameters->options().plugins()->in_replacement_phase())
4514 {
4515 ins.first->second.set_object(object);
4516 ins.first->second.set_shndx(shndx);
4517 return true;
4518 }
4519 return false;
4520 }
4521 else if (is_group_name)
4522 {
4523 // This is a real section group, and we've already seen a
4524 // linkonce section with this signature. Record that we've seen
4525 // a section group, and don't include this section group.
4526 ins.first->second.set_is_group_name();
4527 return false;
4528 }
4529 else
4530 {
4531 // We've already seen a linkonce section and this is a linkonce
4532 // section. These don't block each other--this may be the same
4533 // symbol name with different section types.
4534 return true;
4535 }
4536 }
4537
4538 // Store the allocated sections into the section list.
4539
4540 void
4541 Layout::get_allocated_sections(Section_list* section_list) const
4542 {
4543 for (Section_list::const_iterator p = this->section_list_.begin();
4544 p != this->section_list_.end();
4545 ++p)
4546 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4547 section_list->push_back(*p);
4548 }
4549
4550 // Create an output segment.
4551
4552 Output_segment*
4553 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4554 {
4555 gold_assert(!parameters->options().relocatable());
4556 Output_segment* oseg = new Output_segment(type, flags);
4557 this->segment_list_.push_back(oseg);
4558
4559 if (type == elfcpp::PT_TLS)
4560 this->tls_segment_ = oseg;
4561 else if (type == elfcpp::PT_GNU_RELRO)
4562 this->relro_segment_ = oseg;
4563 else if (type == elfcpp::PT_INTERP)
4564 this->interp_segment_ = oseg;
4565
4566 return oseg;
4567 }
4568
4569 // Return the file offset of the normal symbol table.
4570
4571 off_t
4572 Layout::symtab_section_offset() const
4573 {
4574 if (this->symtab_section_ != NULL)
4575 return this->symtab_section_->offset();
4576 return 0;
4577 }
4578
4579 // Return the section index of the normal symbol table. It may have
4580 // been stripped by the -s/--strip-all option.
4581
4582 unsigned int
4583 Layout::symtab_section_shndx() const
4584 {
4585 if (this->symtab_section_ != NULL)
4586 return this->symtab_section_->out_shndx();
4587 return 0;
4588 }
4589
4590 // Write out the Output_sections. Most won't have anything to write,
4591 // since most of the data will come from input sections which are
4592 // handled elsewhere. But some Output_sections do have Output_data.
4593
4594 void
4595 Layout::write_output_sections(Output_file* of) const
4596 {
4597 for (Section_list::const_iterator p = this->section_list_.begin();
4598 p != this->section_list_.end();
4599 ++p)
4600 {
4601 if (!(*p)->after_input_sections())
4602 (*p)->write(of);
4603 }
4604 }
4605
4606 // Write out data not associated with a section or the symbol table.
4607
4608 void
4609 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4610 {
4611 if (!parameters->options().strip_all())
4612 {
4613 const Output_section* symtab_section = this->symtab_section_;
4614 for (Section_list::const_iterator p = this->section_list_.begin();
4615 p != this->section_list_.end();
4616 ++p)
4617 {
4618 if ((*p)->needs_symtab_index())
4619 {
4620 gold_assert(symtab_section != NULL);
4621 unsigned int index = (*p)->symtab_index();
4622 gold_assert(index > 0 && index != -1U);
4623 off_t off = (symtab_section->offset()
4624 + index * symtab_section->entsize());
4625 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4626 }
4627 }
4628 }
4629
4630 const Output_section* dynsym_section = this->dynsym_section_;
4631 for (Section_list::const_iterator p = this->section_list_.begin();
4632 p != this->section_list_.end();
4633 ++p)
4634 {
4635 if ((*p)->needs_dynsym_index())
4636 {
4637 gold_assert(dynsym_section != NULL);
4638 unsigned int index = (*p)->dynsym_index();
4639 gold_assert(index > 0 && index != -1U);
4640 off_t off = (dynsym_section->offset()
4641 + index * dynsym_section->entsize());
4642 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4643 }
4644 }
4645
4646 // Write out the Output_data which are not in an Output_section.
4647 for (Data_list::const_iterator p = this->special_output_list_.begin();
4648 p != this->special_output_list_.end();
4649 ++p)
4650 (*p)->write(of);
4651 }
4652
4653 // Write out the Output_sections which can only be written after the
4654 // input sections are complete.
4655
4656 void
4657 Layout::write_sections_after_input_sections(Output_file* of)
4658 {
4659 // Determine the final section offsets, and thus the final output
4660 // file size. Note we finalize the .shstrab last, to allow the
4661 // after_input_section sections to modify their section-names before
4662 // writing.
4663 if (this->any_postprocessing_sections_)
4664 {
4665 off_t off = this->output_file_size_;
4666 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4667
4668 // Now that we've finalized the names, we can finalize the shstrab.
4669 off =
4670 this->set_section_offsets(off,
4671 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4672
4673 if (off > this->output_file_size_)
4674 {
4675 of->resize(off);
4676 this->output_file_size_ = off;
4677 }
4678 }
4679
4680 for (Section_list::const_iterator p = this->section_list_.begin();
4681 p != this->section_list_.end();
4682 ++p)
4683 {
4684 if ((*p)->after_input_sections())
4685 (*p)->write(of);
4686 }
4687
4688 this->section_headers_->write(of);
4689 }
4690
4691 // If the build ID requires computing a checksum, do so here, and
4692 // write it out. We compute a checksum over the entire file because
4693 // that is simplest.
4694
4695 void
4696 Layout::write_build_id(Output_file* of) const
4697 {
4698 if (this->build_id_note_ == NULL)
4699 return;
4700
4701 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4702
4703 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4704 this->build_id_note_->data_size());
4705
4706 const char* style = parameters->options().build_id();
4707 if (strcmp(style, "sha1") == 0)
4708 {
4709 sha1_ctx ctx;
4710 sha1_init_ctx(&ctx);
4711 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4712 sha1_finish_ctx(&ctx, ov);
4713 }
4714 else if (strcmp(style, "md5") == 0)
4715 {
4716 md5_ctx ctx;
4717 md5_init_ctx(&ctx);
4718 md5_process_bytes(iv, this->output_file_size_, &ctx);
4719 md5_finish_ctx(&ctx, ov);
4720 }
4721 else
4722 gold_unreachable();
4723
4724 of->write_output_view(this->build_id_note_->offset(),
4725 this->build_id_note_->data_size(),
4726 ov);
4727
4728 of->free_input_view(0, this->output_file_size_, iv);
4729 }
4730
4731 // Write out a binary file. This is called after the link is
4732 // complete. IN is the temporary output file we used to generate the
4733 // ELF code. We simply walk through the segments, read them from
4734 // their file offset in IN, and write them to their load address in
4735 // the output file. FIXME: with a bit more work, we could support
4736 // S-records and/or Intel hex format here.
4737
4738 void
4739 Layout::write_binary(Output_file* in) const
4740 {
4741 gold_assert(parameters->options().oformat_enum()
4742 == General_options::OBJECT_FORMAT_BINARY);
4743
4744 // Get the size of the binary file.
4745 uint64_t max_load_address = 0;
4746 for (Segment_list::const_iterator p = this->segment_list_.begin();
4747 p != this->segment_list_.end();
4748 ++p)
4749 {
4750 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4751 {
4752 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4753 if (max_paddr > max_load_address)
4754 max_load_address = max_paddr;
4755 }
4756 }
4757
4758 Output_file out(parameters->options().output_file_name());
4759 out.open(max_load_address);
4760
4761 for (Segment_list::const_iterator p = this->segment_list_.begin();
4762 p != this->segment_list_.end();
4763 ++p)
4764 {
4765 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4766 {
4767 const unsigned char* vin = in->get_input_view((*p)->offset(),
4768 (*p)->filesz());
4769 unsigned char* vout = out.get_output_view((*p)->paddr(),
4770 (*p)->filesz());
4771 memcpy(vout, vin, (*p)->filesz());
4772 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4773 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4774 }
4775 }
4776
4777 out.close();
4778 }
4779
4780 // Print the output sections to the map file.
4781
4782 void
4783 Layout::print_to_mapfile(Mapfile* mapfile) const
4784 {
4785 for (Segment_list::const_iterator p = this->segment_list_.begin();
4786 p != this->segment_list_.end();
4787 ++p)
4788 (*p)->print_sections_to_mapfile(mapfile);
4789 }
4790
4791 // Print statistical information to stderr. This is used for --stats.
4792
4793 void
4794 Layout::print_stats() const
4795 {
4796 this->namepool_.print_stats("section name pool");
4797 this->sympool_.print_stats("output symbol name pool");
4798 this->dynpool_.print_stats("dynamic name pool");
4799
4800 for (Section_list::const_iterator p = this->section_list_.begin();
4801 p != this->section_list_.end();
4802 ++p)
4803 (*p)->print_merge_stats();
4804 }
4805
4806 // Write_sections_task methods.
4807
4808 // We can always run this task.
4809
4810 Task_token*
4811 Write_sections_task::is_runnable()
4812 {
4813 return NULL;
4814 }
4815
4816 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4817 // when finished.
4818
4819 void
4820 Write_sections_task::locks(Task_locker* tl)
4821 {
4822 tl->add(this, this->output_sections_blocker_);
4823 tl->add(this, this->final_blocker_);
4824 }
4825
4826 // Run the task--write out the data.
4827
4828 void
4829 Write_sections_task::run(Workqueue*)
4830 {
4831 this->layout_->write_output_sections(this->of_);
4832 }
4833
4834 // Write_data_task methods.
4835
4836 // We can always run this task.
4837
4838 Task_token*
4839 Write_data_task::is_runnable()
4840 {
4841 return NULL;
4842 }
4843
4844 // We need to unlock FINAL_BLOCKER when finished.
4845
4846 void
4847 Write_data_task::locks(Task_locker* tl)
4848 {
4849 tl->add(this, this->final_blocker_);
4850 }
4851
4852 // Run the task--write out the data.
4853
4854 void
4855 Write_data_task::run(Workqueue*)
4856 {
4857 this->layout_->write_data(this->symtab_, this->of_);
4858 }
4859
4860 // Write_symbols_task methods.
4861
4862 // We can always run this task.
4863
4864 Task_token*
4865 Write_symbols_task::is_runnable()
4866 {
4867 return NULL;
4868 }
4869
4870 // We need to unlock FINAL_BLOCKER when finished.
4871
4872 void
4873 Write_symbols_task::locks(Task_locker* tl)
4874 {
4875 tl->add(this, this->final_blocker_);
4876 }
4877
4878 // Run the task--write out the symbols.
4879
4880 void
4881 Write_symbols_task::run(Workqueue*)
4882 {
4883 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4884 this->layout_->symtab_xindex(),
4885 this->layout_->dynsym_xindex(), this->of_);
4886 }
4887
4888 // Write_after_input_sections_task methods.
4889
4890 // We can only run this task after the input sections have completed.
4891
4892 Task_token*
4893 Write_after_input_sections_task::is_runnable()
4894 {
4895 if (this->input_sections_blocker_->is_blocked())
4896 return this->input_sections_blocker_;
4897 return NULL;
4898 }
4899
4900 // We need to unlock FINAL_BLOCKER when finished.
4901
4902 void
4903 Write_after_input_sections_task::locks(Task_locker* tl)
4904 {
4905 tl->add(this, this->final_blocker_);
4906 }
4907
4908 // Run the task.
4909
4910 void
4911 Write_after_input_sections_task::run(Workqueue*)
4912 {
4913 this->layout_->write_sections_after_input_sections(this->of_);
4914 }
4915
4916 // Close_task_runner methods.
4917
4918 // Run the task--close the file.
4919
4920 void
4921 Close_task_runner::run(Workqueue*, const Task*)
4922 {
4923 // If we need to compute a checksum for the BUILD if, we do so here.
4924 this->layout_->write_build_id(this->of_);
4925
4926 // If we've been asked to create a binary file, we do so here.
4927 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4928 this->layout_->write_binary(this->of_);
4929
4930 this->of_->close();
4931 }
4932
4933 // Instantiate the templates we need. We could use the configure
4934 // script to restrict this to only the ones for implemented targets.
4935
4936 #ifdef HAVE_TARGET_32_LITTLE
4937 template
4938 Output_section*
4939 Layout::init_fixed_output_section<32, false>(
4940 const char* name,
4941 elfcpp::Shdr<32, false>& shdr);
4942 #endif
4943
4944 #ifdef HAVE_TARGET_32_BIG
4945 template
4946 Output_section*
4947 Layout::init_fixed_output_section<32, true>(
4948 const char* name,
4949 elfcpp::Shdr<32, true>& shdr);
4950 #endif
4951
4952 #ifdef HAVE_TARGET_64_LITTLE
4953 template
4954 Output_section*
4955 Layout::init_fixed_output_section<64, false>(
4956 const char* name,
4957 elfcpp::Shdr<64, false>& shdr);
4958 #endif
4959
4960 #ifdef HAVE_TARGET_64_BIG
4961 template
4962 Output_section*
4963 Layout::init_fixed_output_section<64, true>(
4964 const char* name,
4965 elfcpp::Shdr<64, true>& shdr);
4966 #endif
4967
4968 #ifdef HAVE_TARGET_32_LITTLE
4969 template
4970 Output_section*
4971 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4972 unsigned int shndx,
4973 const char* name,
4974 const elfcpp::Shdr<32, false>& shdr,
4975 unsigned int, unsigned int, off_t*);
4976 #endif
4977
4978 #ifdef HAVE_TARGET_32_BIG
4979 template
4980 Output_section*
4981 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4982 unsigned int shndx,
4983 const char* name,
4984 const elfcpp::Shdr<32, true>& shdr,
4985 unsigned int, unsigned int, off_t*);
4986 #endif
4987
4988 #ifdef HAVE_TARGET_64_LITTLE
4989 template
4990 Output_section*
4991 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4992 unsigned int shndx,
4993 const char* name,
4994 const elfcpp::Shdr<64, false>& shdr,
4995 unsigned int, unsigned int, off_t*);
4996 #endif
4997
4998 #ifdef HAVE_TARGET_64_BIG
4999 template
5000 Output_section*
5001 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5002 unsigned int shndx,
5003 const char* name,
5004 const elfcpp::Shdr<64, true>& shdr,
5005 unsigned int, unsigned int, off_t*);
5006 #endif
5007
5008 #ifdef HAVE_TARGET_32_LITTLE
5009 template
5010 Output_section*
5011 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5012 unsigned int reloc_shndx,
5013 const elfcpp::Shdr<32, false>& shdr,
5014 Output_section* data_section,
5015 Relocatable_relocs* rr);
5016 #endif
5017
5018 #ifdef HAVE_TARGET_32_BIG
5019 template
5020 Output_section*
5021 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5022 unsigned int reloc_shndx,
5023 const elfcpp::Shdr<32, true>& shdr,
5024 Output_section* data_section,
5025 Relocatable_relocs* rr);
5026 #endif
5027
5028 #ifdef HAVE_TARGET_64_LITTLE
5029 template
5030 Output_section*
5031 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5032 unsigned int reloc_shndx,
5033 const elfcpp::Shdr<64, false>& shdr,
5034 Output_section* data_section,
5035 Relocatable_relocs* rr);
5036 #endif
5037
5038 #ifdef HAVE_TARGET_64_BIG
5039 template
5040 Output_section*
5041 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5042 unsigned int reloc_shndx,
5043 const elfcpp::Shdr<64, true>& shdr,
5044 Output_section* data_section,
5045 Relocatable_relocs* rr);
5046 #endif
5047
5048 #ifdef HAVE_TARGET_32_LITTLE
5049 template
5050 void
5051 Layout::layout_group<32, false>(Symbol_table* symtab,
5052 Sized_relobj_file<32, false>* object,
5053 unsigned int,
5054 const char* group_section_name,
5055 const char* signature,
5056 const elfcpp::Shdr<32, false>& shdr,
5057 elfcpp::Elf_Word flags,
5058 std::vector<unsigned int>* shndxes);
5059 #endif
5060
5061 #ifdef HAVE_TARGET_32_BIG
5062 template
5063 void
5064 Layout::layout_group<32, true>(Symbol_table* symtab,
5065 Sized_relobj_file<32, true>* object,
5066 unsigned int,
5067 const char* group_section_name,
5068 const char* signature,
5069 const elfcpp::Shdr<32, true>& shdr,
5070 elfcpp::Elf_Word flags,
5071 std::vector<unsigned int>* shndxes);
5072 #endif
5073
5074 #ifdef HAVE_TARGET_64_LITTLE
5075 template
5076 void
5077 Layout::layout_group<64, false>(Symbol_table* symtab,
5078 Sized_relobj_file<64, false>* object,
5079 unsigned int,
5080 const char* group_section_name,
5081 const char* signature,
5082 const elfcpp::Shdr<64, false>& shdr,
5083 elfcpp::Elf_Word flags,
5084 std::vector<unsigned int>* shndxes);
5085 #endif
5086
5087 #ifdef HAVE_TARGET_64_BIG
5088 template
5089 void
5090 Layout::layout_group<64, true>(Symbol_table* symtab,
5091 Sized_relobj_file<64, true>* object,
5092 unsigned int,
5093 const char* group_section_name,
5094 const char* signature,
5095 const elfcpp::Shdr<64, true>& shdr,
5096 elfcpp::Elf_Word flags,
5097 std::vector<unsigned int>* shndxes);
5098 #endif
5099
5100 #ifdef HAVE_TARGET_32_LITTLE
5101 template
5102 Output_section*
5103 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5104 const unsigned char* symbols,
5105 off_t symbols_size,
5106 const unsigned char* symbol_names,
5107 off_t symbol_names_size,
5108 unsigned int shndx,
5109 const elfcpp::Shdr<32, false>& shdr,
5110 unsigned int reloc_shndx,
5111 unsigned int reloc_type,
5112 off_t* off);
5113 #endif
5114
5115 #ifdef HAVE_TARGET_32_BIG
5116 template
5117 Output_section*
5118 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5119 const unsigned char* symbols,
5120 off_t symbols_size,
5121 const unsigned char* symbol_names,
5122 off_t symbol_names_size,
5123 unsigned int shndx,
5124 const elfcpp::Shdr<32, true>& shdr,
5125 unsigned int reloc_shndx,
5126 unsigned int reloc_type,
5127 off_t* off);
5128 #endif
5129
5130 #ifdef HAVE_TARGET_64_LITTLE
5131 template
5132 Output_section*
5133 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5134 const unsigned char* symbols,
5135 off_t symbols_size,
5136 const unsigned char* symbol_names,
5137 off_t symbol_names_size,
5138 unsigned int shndx,
5139 const elfcpp::Shdr<64, false>& shdr,
5140 unsigned int reloc_shndx,
5141 unsigned int reloc_type,
5142 off_t* off);
5143 #endif
5144
5145 #ifdef HAVE_TARGET_64_BIG
5146 template
5147 Output_section*
5148 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5149 const unsigned char* symbols,
5150 off_t symbols_size,
5151 const unsigned char* symbol_names,
5152 off_t symbol_names_size,
5153 unsigned int shndx,
5154 const elfcpp::Shdr<64, true>& shdr,
5155 unsigned int reloc_shndx,
5156 unsigned int reloc_type,
5157 off_t* off);
5158 #endif
5159
5160 } // End namespace gold.
This page took 0.207349 seconds and 5 git commands to generate.