gold/
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
249 {
250 for(Layout::Section_list::const_iterator p = sections.begin();
251 p != sections.end();
252 ++p)
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
257 ++p)
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
266 {
267 for(Layout::Section_list::const_iterator p = sections.begin();
268 p != sections.end();
269 ++p)
270 {
271 Output_section* os = *p;
272 Section_info info;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
278 }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
286 {
287 size_t i = 0;
288 for(Layout::Section_list::const_iterator p = sections.begin();
289 p != sections.end();
290 ++p, ++i)
291 {
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297 if (i >= this->section_infos_.size())
298 {
299 gold_fatal("Section_info of %s missing.\n", os->name());
300 }
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
309 }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections. This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320 Layout* layout = this->layout_;
321 off_t file_size = layout->finalize(this->input_objects_,
322 this->symtab_,
323 this->target_,
324 task);
325
326 // Now we know the final size of the output file and we know where
327 // each piece of information goes.
328
329 if (this->mapfile_ != NULL)
330 {
331 this->mapfile_->print_discarded_sections(this->input_objects_);
332 layout->print_to_mapfile(this->mapfile_);
333 }
334
335 Output_file* of;
336 if (layout->incremental_base() == NULL)
337 {
338 of = new Output_file(parameters->options().output_file_name());
339 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340 of->set_is_temporary();
341 of->open(file_size);
342 }
343 else
344 {
345 of = layout->incremental_base()->output_file();
346
347 // Apply the incremental relocations for symbols whose values
348 // have changed. We do this before we resize the file and start
349 // writing anything else to it, so that we can read the old
350 // incremental information from the file before (possibly)
351 // overwriting it.
352 if (parameters->incremental_update())
353 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354 this->layout_,
355 of);
356
357 of->resize(file_size);
358 }
359
360 // Queue up the final set of tasks.
361 gold::queue_final_tasks(this->options_, this->input_objects_,
362 this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368 : number_of_input_files_(number_of_input_files),
369 script_options_(script_options),
370 namepool_(),
371 sympool_(),
372 dynpool_(),
373 signatures_(),
374 section_name_map_(),
375 segment_list_(),
376 section_list_(),
377 unattached_section_list_(),
378 special_output_list_(),
379 section_headers_(NULL),
380 tls_segment_(NULL),
381 relro_segment_(NULL),
382 interp_segment_(NULL),
383 increase_relro_(0),
384 symtab_section_(NULL),
385 symtab_xindex_(NULL),
386 dynsym_section_(NULL),
387 dynsym_xindex_(NULL),
388 dynamic_section_(NULL),
389 dynamic_symbol_(NULL),
390 dynamic_data_(NULL),
391 eh_frame_section_(NULL),
392 eh_frame_data_(NULL),
393 added_eh_frame_data_(false),
394 eh_frame_hdr_section_(NULL),
395 gdb_index_data_(NULL),
396 build_id_note_(NULL),
397 debug_abbrev_(NULL),
398 debug_info_(NULL),
399 group_signatures_(),
400 output_file_size_(-1),
401 have_added_input_section_(false),
402 sections_are_attached_(false),
403 input_requires_executable_stack_(false),
404 input_with_gnu_stack_note_(false),
405 input_without_gnu_stack_note_(false),
406 has_static_tls_(false),
407 any_postprocessing_sections_(false),
408 resized_signatures_(false),
409 have_stabstr_section_(false),
410 section_ordering_specified_(false),
411 incremental_inputs_(NULL),
412 record_output_section_data_from_script_(false),
413 script_output_section_data_list_(),
414 segment_states_(NULL),
415 relaxation_debug_check_(NULL),
416 section_order_map_(),
417 input_section_position_(),
418 input_section_glob_(),
419 incremental_base_(NULL),
420 free_list_()
421 {
422 // Make space for more than enough segments for a typical file.
423 // This is just for efficiency--it's OK if we wind up needing more.
424 this->segment_list_.reserve(12);
425
426 // We expect two unattached Output_data objects: the file header and
427 // the segment headers.
428 this->special_output_list_.reserve(2);
429
430 // Initialize structure needed for an incremental build.
431 if (parameters->incremental())
432 this->incremental_inputs_ = new Incremental_inputs;
433
434 // The section name pool is worth optimizing in all cases, because
435 // it is small, but there are often overlaps due to .rel sections.
436 this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444 this->incremental_base_ = base;
445 this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453 return k.first + k.second.first + k.second.second;
454 }
455
456 // Returns whether the given section is in the list of
457 // debug-sections-used-by-some-version-of-gdb. Currently,
458 // we've checked versions of gdb up to and including 7.4.
459
460 static const char* gdb_sections[] =
461 { ".debug_abbrev",
462 ".debug_addr", // Fission extension
463 // ".debug_aranges", // not used by gdb as of 7.4
464 ".debug_frame",
465 ".debug_info",
466 ".debug_types",
467 ".debug_line",
468 ".debug_loc",
469 ".debug_macinfo",
470 // ".debug_pubnames", // not used by gdb as of 7.4
471 // ".debug_pubtypes", // not used by gdb as of 7.4
472 ".debug_ranges",
473 ".debug_str",
474 };
475
476 static const char* lines_only_debug_sections[] =
477 { ".debug_abbrev",
478 // ".debug_addr", // Fission extension
479 // ".debug_aranges", // not used by gdb as of 7.4
480 // ".debug_frame",
481 ".debug_info",
482 // ".debug_types",
483 ".debug_line",
484 // ".debug_loc",
485 // ".debug_macinfo",
486 // ".debug_pubnames", // not used by gdb as of 7.4
487 // ".debug_pubtypes", // not used by gdb as of 7.4
488 // ".debug_ranges",
489 ".debug_str",
490 };
491
492 static inline bool
493 is_gdb_debug_section(const char* str)
494 {
495 // We can do this faster: binary search or a hashtable. But why bother?
496 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
497 if (strcmp(str, gdb_sections[i]) == 0)
498 return true;
499 return false;
500 }
501
502 static inline bool
503 is_lines_only_debug_section(const char* str)
504 {
505 // We can do this faster: binary search or a hashtable. But why bother?
506 for (size_t i = 0;
507 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
508 ++i)
509 if (strcmp(str, lines_only_debug_sections[i]) == 0)
510 return true;
511 return false;
512 }
513
514 // Sometimes we compress sections. This is typically done for
515 // sections that are not part of normal program execution (such as
516 // .debug_* sections), and where the readers of these sections know
517 // how to deal with compressed sections. This routine doesn't say for
518 // certain whether we'll compress -- it depends on commandline options
519 // as well -- just whether this section is a candidate for compression.
520 // (The Output_compressed_section class decides whether to compress
521 // a given section, and picks the name of the compressed section.)
522
523 static bool
524 is_compressible_debug_section(const char* secname)
525 {
526 return (is_prefix_of(".debug", secname));
527 }
528
529 // We may see compressed debug sections in input files. Return TRUE
530 // if this is the name of a compressed debug section.
531
532 bool
533 is_compressed_debug_section(const char* secname)
534 {
535 return (is_prefix_of(".zdebug", secname));
536 }
537
538 // Whether to include this section in the link.
539
540 template<int size, bool big_endian>
541 bool
542 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
543 const elfcpp::Shdr<size, big_endian>& shdr)
544 {
545 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
546 return false;
547
548 switch (shdr.get_sh_type())
549 {
550 case elfcpp::SHT_NULL:
551 case elfcpp::SHT_SYMTAB:
552 case elfcpp::SHT_DYNSYM:
553 case elfcpp::SHT_HASH:
554 case elfcpp::SHT_DYNAMIC:
555 case elfcpp::SHT_SYMTAB_SHNDX:
556 return false;
557
558 case elfcpp::SHT_STRTAB:
559 // Discard the sections which have special meanings in the ELF
560 // ABI. Keep others (e.g., .stabstr). We could also do this by
561 // checking the sh_link fields of the appropriate sections.
562 return (strcmp(name, ".dynstr") != 0
563 && strcmp(name, ".strtab") != 0
564 && strcmp(name, ".shstrtab") != 0);
565
566 case elfcpp::SHT_RELA:
567 case elfcpp::SHT_REL:
568 case elfcpp::SHT_GROUP:
569 // If we are emitting relocations these should be handled
570 // elsewhere.
571 gold_assert(!parameters->options().relocatable()
572 && !parameters->options().emit_relocs());
573 return false;
574
575 case elfcpp::SHT_PROGBITS:
576 if (parameters->options().strip_debug()
577 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
578 {
579 if (is_debug_info_section(name))
580 return false;
581 }
582 if (parameters->options().strip_debug_non_line()
583 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
584 {
585 // Debugging sections can only be recognized by name.
586 if (is_prefix_of(".debug", name)
587 && !is_lines_only_debug_section(name))
588 return false;
589 }
590 if (parameters->options().strip_debug_gdb()
591 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
592 {
593 // Debugging sections can only be recognized by name.
594 if (is_prefix_of(".debug", name)
595 && !is_gdb_debug_section(name))
596 return false;
597 }
598 if (parameters->options().strip_lto_sections()
599 && !parameters->options().relocatable()
600 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
601 {
602 // Ignore LTO sections containing intermediate code.
603 if (is_prefix_of(".gnu.lto_", name))
604 return false;
605 }
606 // The GNU linker strips .gnu_debuglink sections, so we do too.
607 // This is a feature used to keep debugging information in
608 // separate files.
609 if (strcmp(name, ".gnu_debuglink") == 0)
610 return false;
611 return true;
612
613 default:
614 return true;
615 }
616 }
617
618 // Return an output section named NAME, or NULL if there is none.
619
620 Output_section*
621 Layout::find_output_section(const char* name) const
622 {
623 for (Section_list::const_iterator p = this->section_list_.begin();
624 p != this->section_list_.end();
625 ++p)
626 if (strcmp((*p)->name(), name) == 0)
627 return *p;
628 return NULL;
629 }
630
631 // Return an output segment of type TYPE, with segment flags SET set
632 // and segment flags CLEAR clear. Return NULL if there is none.
633
634 Output_segment*
635 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
636 elfcpp::Elf_Word clear) const
637 {
638 for (Segment_list::const_iterator p = this->segment_list_.begin();
639 p != this->segment_list_.end();
640 ++p)
641 if (static_cast<elfcpp::PT>((*p)->type()) == type
642 && ((*p)->flags() & set) == set
643 && ((*p)->flags() & clear) == 0)
644 return *p;
645 return NULL;
646 }
647
648 // When we put a .ctors or .dtors section with more than one word into
649 // a .init_array or .fini_array section, we need to reverse the words
650 // in the .ctors/.dtors section. This is because .init_array executes
651 // constructors front to back, where .ctors executes them back to
652 // front, and vice-versa for .fini_array/.dtors. Although we do want
653 // to remap .ctors/.dtors into .init_array/.fini_array because it can
654 // be more efficient, we don't want to change the order in which
655 // constructors/destructors are run. This set just keeps track of
656 // these sections which need to be reversed. It is only changed by
657 // Layout::layout. It should be a private member of Layout, but that
658 // would require layout.h to #include object.h to get the definition
659 // of Section_id.
660 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
661
662 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
663 // .init_array/.fini_array section.
664
665 bool
666 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
667 {
668 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
669 != ctors_sections_in_init_array.end());
670 }
671
672 // Return the output section to use for section NAME with type TYPE
673 // and section flags FLAGS. NAME must be canonicalized in the string
674 // pool, and NAME_KEY is the key. ORDER is where this should appear
675 // in the output sections. IS_RELRO is true for a relro section.
676
677 Output_section*
678 Layout::get_output_section(const char* name, Stringpool::Key name_key,
679 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
680 Output_section_order order, bool is_relro)
681 {
682 elfcpp::Elf_Word lookup_type = type;
683
684 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
685 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
686 // .init_array, .fini_array, and .preinit_array sections by name
687 // whatever their type in the input file. We do this because the
688 // types are not always right in the input files.
689 if (lookup_type == elfcpp::SHT_INIT_ARRAY
690 || lookup_type == elfcpp::SHT_FINI_ARRAY
691 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
692 lookup_type = elfcpp::SHT_PROGBITS;
693
694 elfcpp::Elf_Xword lookup_flags = flags;
695
696 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
697 // read-write with read-only sections. Some other ELF linkers do
698 // not do this. FIXME: Perhaps there should be an option
699 // controlling this.
700 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
701
702 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
703 const std::pair<Key, Output_section*> v(key, NULL);
704 std::pair<Section_name_map::iterator, bool> ins(
705 this->section_name_map_.insert(v));
706
707 if (!ins.second)
708 return ins.first->second;
709 else
710 {
711 // This is the first time we've seen this name/type/flags
712 // combination. For compatibility with the GNU linker, we
713 // combine sections with contents and zero flags with sections
714 // with non-zero flags. This is a workaround for cases where
715 // assembler code forgets to set section flags. FIXME: Perhaps
716 // there should be an option to control this.
717 Output_section* os = NULL;
718
719 if (lookup_type == elfcpp::SHT_PROGBITS)
720 {
721 if (flags == 0)
722 {
723 Output_section* same_name = this->find_output_section(name);
724 if (same_name != NULL
725 && (same_name->type() == elfcpp::SHT_PROGBITS
726 || same_name->type() == elfcpp::SHT_INIT_ARRAY
727 || same_name->type() == elfcpp::SHT_FINI_ARRAY
728 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
729 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
730 os = same_name;
731 }
732 else if ((flags & elfcpp::SHF_TLS) == 0)
733 {
734 elfcpp::Elf_Xword zero_flags = 0;
735 const Key zero_key(name_key, std::make_pair(lookup_type,
736 zero_flags));
737 Section_name_map::iterator p =
738 this->section_name_map_.find(zero_key);
739 if (p != this->section_name_map_.end())
740 os = p->second;
741 }
742 }
743
744 if (os == NULL)
745 os = this->make_output_section(name, type, flags, order, is_relro);
746
747 ins.first->second = os;
748 return os;
749 }
750 }
751
752 // Pick the output section to use for section NAME, in input file
753 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
754 // linker created section. IS_INPUT_SECTION is true if we are
755 // choosing an output section for an input section found in a input
756 // file. ORDER is where this section should appear in the output
757 // sections. IS_RELRO is true for a relro section. This will return
758 // NULL if the input section should be discarded.
759
760 Output_section*
761 Layout::choose_output_section(const Relobj* relobj, const char* name,
762 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
763 bool is_input_section, Output_section_order order,
764 bool is_relro)
765 {
766 // We should not see any input sections after we have attached
767 // sections to segments.
768 gold_assert(!is_input_section || !this->sections_are_attached_);
769
770 // Some flags in the input section should not be automatically
771 // copied to the output section.
772 flags &= ~ (elfcpp::SHF_INFO_LINK
773 | elfcpp::SHF_GROUP
774 | elfcpp::SHF_MERGE
775 | elfcpp::SHF_STRINGS);
776
777 // We only clear the SHF_LINK_ORDER flag in for
778 // a non-relocatable link.
779 if (!parameters->options().relocatable())
780 flags &= ~elfcpp::SHF_LINK_ORDER;
781
782 if (this->script_options_->saw_sections_clause())
783 {
784 // We are using a SECTIONS clause, so the output section is
785 // chosen based only on the name.
786
787 Script_sections* ss = this->script_options_->script_sections();
788 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
789 Output_section** output_section_slot;
790 Script_sections::Section_type script_section_type;
791 const char* orig_name = name;
792 name = ss->output_section_name(file_name, name, &output_section_slot,
793 &script_section_type);
794 if (name == NULL)
795 {
796 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
797 "because it is not allowed by the "
798 "SECTIONS clause of the linker script"),
799 orig_name);
800 // The SECTIONS clause says to discard this input section.
801 return NULL;
802 }
803
804 // We can only handle script section types ST_NONE and ST_NOLOAD.
805 switch (script_section_type)
806 {
807 case Script_sections::ST_NONE:
808 break;
809 case Script_sections::ST_NOLOAD:
810 flags &= elfcpp::SHF_ALLOC;
811 break;
812 default:
813 gold_unreachable();
814 }
815
816 // If this is an orphan section--one not mentioned in the linker
817 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
818 // default processing below.
819
820 if (output_section_slot != NULL)
821 {
822 if (*output_section_slot != NULL)
823 {
824 (*output_section_slot)->update_flags_for_input_section(flags);
825 return *output_section_slot;
826 }
827
828 // We don't put sections found in the linker script into
829 // SECTION_NAME_MAP_. That keeps us from getting confused
830 // if an orphan section is mapped to a section with the same
831 // name as one in the linker script.
832
833 name = this->namepool_.add(name, false, NULL);
834
835 Output_section* os = this->make_output_section(name, type, flags,
836 order, is_relro);
837
838 os->set_found_in_sections_clause();
839
840 // Special handling for NOLOAD sections.
841 if (script_section_type == Script_sections::ST_NOLOAD)
842 {
843 os->set_is_noload();
844
845 // The constructor of Output_section sets addresses of non-ALLOC
846 // sections to 0 by default. We don't want that for NOLOAD
847 // sections even if they have no SHF_ALLOC flag.
848 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
849 && os->is_address_valid())
850 {
851 gold_assert(os->address() == 0
852 && !os->is_offset_valid()
853 && !os->is_data_size_valid());
854 os->reset_address_and_file_offset();
855 }
856 }
857
858 *output_section_slot = os;
859 return os;
860 }
861 }
862
863 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
864
865 size_t len = strlen(name);
866 char* uncompressed_name = NULL;
867
868 // Compressed debug sections should be mapped to the corresponding
869 // uncompressed section.
870 if (is_compressed_debug_section(name))
871 {
872 uncompressed_name = new char[len];
873 uncompressed_name[0] = '.';
874 gold_assert(name[0] == '.' && name[1] == 'z');
875 strncpy(&uncompressed_name[1], &name[2], len - 2);
876 uncompressed_name[len - 1] = '\0';
877 len -= 1;
878 name = uncompressed_name;
879 }
880
881 // Turn NAME from the name of the input section into the name of the
882 // output section.
883 if (is_input_section
884 && !this->script_options_->saw_sections_clause()
885 && !parameters->options().relocatable())
886 name = Layout::output_section_name(relobj, name, &len);
887
888 Stringpool::Key name_key;
889 name = this->namepool_.add_with_length(name, len, true, &name_key);
890
891 if (uncompressed_name != NULL)
892 delete[] uncompressed_name;
893
894 // Find or make the output section. The output section is selected
895 // based on the section name, type, and flags.
896 return this->get_output_section(name, name_key, type, flags, order, is_relro);
897 }
898
899 // For incremental links, record the initial fixed layout of a section
900 // from the base file, and return a pointer to the Output_section.
901
902 template<int size, bool big_endian>
903 Output_section*
904 Layout::init_fixed_output_section(const char* name,
905 elfcpp::Shdr<size, big_endian>& shdr)
906 {
907 unsigned int sh_type = shdr.get_sh_type();
908
909 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
910 // PRE_INIT_ARRAY, and NOTE sections.
911 // All others will be created from scratch and reallocated.
912 if (!can_incremental_update(sh_type))
913 return NULL;
914
915 // If we're generating a .gdb_index section, we need to regenerate
916 // it from scratch.
917 if (parameters->options().gdb_index()
918 && sh_type == elfcpp::SHT_PROGBITS
919 && strcmp(name, ".gdb_index") == 0)
920 return NULL;
921
922 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
923 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
924 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
925 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
926 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
927 shdr.get_sh_addralign();
928
929 // Make the output section.
930 Stringpool::Key name_key;
931 name = this->namepool_.add(name, true, &name_key);
932 Output_section* os = this->get_output_section(name, name_key, sh_type,
933 sh_flags, ORDER_INVALID, false);
934 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
935 if (sh_type != elfcpp::SHT_NOBITS)
936 this->free_list_.remove(sh_offset, sh_offset + sh_size);
937 return os;
938 }
939
940 // Return the output section to use for input section SHNDX, with name
941 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
942 // index of a relocation section which applies to this section, or 0
943 // if none, or -1U if more than one. RELOC_TYPE is the type of the
944 // relocation section if there is one. Set *OFF to the offset of this
945 // input section without the output section. Return NULL if the
946 // section should be discarded. Set *OFF to -1 if the section
947 // contents should not be written directly to the output file, but
948 // will instead receive special handling.
949
950 template<int size, bool big_endian>
951 Output_section*
952 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
953 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
954 unsigned int reloc_shndx, unsigned int, off_t* off)
955 {
956 *off = 0;
957
958 if (!this->include_section(object, name, shdr))
959 return NULL;
960
961 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
962
963 // In a relocatable link a grouped section must not be combined with
964 // any other sections.
965 Output_section* os;
966 if (parameters->options().relocatable()
967 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
968 {
969 name = this->namepool_.add(name, true, NULL);
970 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
971 ORDER_INVALID, false);
972 }
973 else
974 {
975 os = this->choose_output_section(object, name, sh_type,
976 shdr.get_sh_flags(), true,
977 ORDER_INVALID, false);
978 if (os == NULL)
979 return NULL;
980 }
981
982 // By default the GNU linker sorts input sections whose names match
983 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
984 // sections are sorted by name. This is used to implement
985 // constructor priority ordering. We are compatible. When we put
986 // .ctor sections in .init_array and .dtor sections in .fini_array,
987 // we must also sort plain .ctor and .dtor sections.
988 if (!this->script_options_->saw_sections_clause()
989 && !parameters->options().relocatable()
990 && (is_prefix_of(".ctors.", name)
991 || is_prefix_of(".dtors.", name)
992 || is_prefix_of(".init_array.", name)
993 || is_prefix_of(".fini_array.", name)
994 || (parameters->options().ctors_in_init_array()
995 && (strcmp(name, ".ctors") == 0
996 || strcmp(name, ".dtors") == 0))))
997 os->set_must_sort_attached_input_sections();
998
999 // If this is a .ctors or .ctors.* section being mapped to a
1000 // .init_array section, or a .dtors or .dtors.* section being mapped
1001 // to a .fini_array section, we will need to reverse the words if
1002 // there is more than one. Record this section for later. See
1003 // ctors_sections_in_init_array above.
1004 if (!this->script_options_->saw_sections_clause()
1005 && !parameters->options().relocatable()
1006 && shdr.get_sh_size() > size / 8
1007 && (((strcmp(name, ".ctors") == 0
1008 || is_prefix_of(".ctors.", name))
1009 && strcmp(os->name(), ".init_array") == 0)
1010 || ((strcmp(name, ".dtors") == 0
1011 || is_prefix_of(".dtors.", name))
1012 && strcmp(os->name(), ".fini_array") == 0)))
1013 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1014
1015 // FIXME: Handle SHF_LINK_ORDER somewhere.
1016
1017 elfcpp::Elf_Xword orig_flags = os->flags();
1018
1019 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1020 this->script_options_->saw_sections_clause());
1021
1022 // If the flags changed, we may have to change the order.
1023 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1024 {
1025 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1026 elfcpp::Elf_Xword new_flags =
1027 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1028 if (orig_flags != new_flags)
1029 os->set_order(this->default_section_order(os, false));
1030 }
1031
1032 this->have_added_input_section_ = true;
1033
1034 return os;
1035 }
1036
1037 // Handle a relocation section when doing a relocatable link.
1038
1039 template<int size, bool big_endian>
1040 Output_section*
1041 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1042 unsigned int,
1043 const elfcpp::Shdr<size, big_endian>& shdr,
1044 Output_section* data_section,
1045 Relocatable_relocs* rr)
1046 {
1047 gold_assert(parameters->options().relocatable()
1048 || parameters->options().emit_relocs());
1049
1050 int sh_type = shdr.get_sh_type();
1051
1052 std::string name;
1053 if (sh_type == elfcpp::SHT_REL)
1054 name = ".rel";
1055 else if (sh_type == elfcpp::SHT_RELA)
1056 name = ".rela";
1057 else
1058 gold_unreachable();
1059 name += data_section->name();
1060
1061 // In a relocatable link relocs for a grouped section must not be
1062 // combined with other reloc sections.
1063 Output_section* os;
1064 if (!parameters->options().relocatable()
1065 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1066 os = this->choose_output_section(object, name.c_str(), sh_type,
1067 shdr.get_sh_flags(), false,
1068 ORDER_INVALID, false);
1069 else
1070 {
1071 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1072 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1073 ORDER_INVALID, false);
1074 }
1075
1076 os->set_should_link_to_symtab();
1077 os->set_info_section(data_section);
1078
1079 Output_section_data* posd;
1080 if (sh_type == elfcpp::SHT_REL)
1081 {
1082 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1083 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1084 size,
1085 big_endian>(rr);
1086 }
1087 else if (sh_type == elfcpp::SHT_RELA)
1088 {
1089 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1090 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1091 size,
1092 big_endian>(rr);
1093 }
1094 else
1095 gold_unreachable();
1096
1097 os->add_output_section_data(posd);
1098 rr->set_output_data(posd);
1099
1100 return os;
1101 }
1102
1103 // Handle a group section when doing a relocatable link.
1104
1105 template<int size, bool big_endian>
1106 void
1107 Layout::layout_group(Symbol_table* symtab,
1108 Sized_relobj_file<size, big_endian>* object,
1109 unsigned int,
1110 const char* group_section_name,
1111 const char* signature,
1112 const elfcpp::Shdr<size, big_endian>& shdr,
1113 elfcpp::Elf_Word flags,
1114 std::vector<unsigned int>* shndxes)
1115 {
1116 gold_assert(parameters->options().relocatable());
1117 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1118 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1119 Output_section* os = this->make_output_section(group_section_name,
1120 elfcpp::SHT_GROUP,
1121 shdr.get_sh_flags(),
1122 ORDER_INVALID, false);
1123
1124 // We need to find a symbol with the signature in the symbol table.
1125 // If we don't find one now, we need to look again later.
1126 Symbol* sym = symtab->lookup(signature, NULL);
1127 if (sym != NULL)
1128 os->set_info_symndx(sym);
1129 else
1130 {
1131 // Reserve some space to minimize reallocations.
1132 if (this->group_signatures_.empty())
1133 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1134
1135 // We will wind up using a symbol whose name is the signature.
1136 // So just put the signature in the symbol name pool to save it.
1137 signature = symtab->canonicalize_name(signature);
1138 this->group_signatures_.push_back(Group_signature(os, signature));
1139 }
1140
1141 os->set_should_link_to_symtab();
1142 os->set_entsize(4);
1143
1144 section_size_type entry_count =
1145 convert_to_section_size_type(shdr.get_sh_size() / 4);
1146 Output_section_data* posd =
1147 new Output_data_group<size, big_endian>(object, entry_count, flags,
1148 shndxes);
1149 os->add_output_section_data(posd);
1150 }
1151
1152 // Special GNU handling of sections name .eh_frame. They will
1153 // normally hold exception frame data as defined by the C++ ABI
1154 // (http://codesourcery.com/cxx-abi/).
1155
1156 template<int size, bool big_endian>
1157 Output_section*
1158 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1159 const unsigned char* symbols,
1160 off_t symbols_size,
1161 const unsigned char* symbol_names,
1162 off_t symbol_names_size,
1163 unsigned int shndx,
1164 const elfcpp::Shdr<size, big_endian>& shdr,
1165 unsigned int reloc_shndx, unsigned int reloc_type,
1166 off_t* off)
1167 {
1168 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1169 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1170 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1171
1172 Output_section* os = this->make_eh_frame_section(object);
1173 if (os == NULL)
1174 return NULL;
1175
1176 gold_assert(this->eh_frame_section_ == os);
1177
1178 elfcpp::Elf_Xword orig_flags = os->flags();
1179
1180 if (!parameters->incremental()
1181 && this->eh_frame_data_->add_ehframe_input_section(object,
1182 symbols,
1183 symbols_size,
1184 symbol_names,
1185 symbol_names_size,
1186 shndx,
1187 reloc_shndx,
1188 reloc_type))
1189 {
1190 os->update_flags_for_input_section(shdr.get_sh_flags());
1191
1192 // A writable .eh_frame section is a RELRO section.
1193 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1194 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1195 {
1196 os->set_is_relro();
1197 os->set_order(ORDER_RELRO);
1198 }
1199
1200 // We found a .eh_frame section we are going to optimize, so now
1201 // we can add the set of optimized sections to the output
1202 // section. We need to postpone adding this until we've found a
1203 // section we can optimize so that the .eh_frame section in
1204 // crtbegin.o winds up at the start of the output section.
1205 if (!this->added_eh_frame_data_)
1206 {
1207 os->add_output_section_data(this->eh_frame_data_);
1208 this->added_eh_frame_data_ = true;
1209 }
1210 *off = -1;
1211 }
1212 else
1213 {
1214 // We couldn't handle this .eh_frame section for some reason.
1215 // Add it as a normal section.
1216 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1217 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1218 reloc_shndx, saw_sections_clause);
1219 this->have_added_input_section_ = true;
1220
1221 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1222 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1223 os->set_order(this->default_section_order(os, false));
1224 }
1225
1226 return os;
1227 }
1228
1229 // Create and return the magic .eh_frame section. Create
1230 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1231 // input .eh_frame section; it may be NULL.
1232
1233 Output_section*
1234 Layout::make_eh_frame_section(const Relobj* object)
1235 {
1236 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1237 // SHT_PROGBITS.
1238 Output_section* os = this->choose_output_section(object, ".eh_frame",
1239 elfcpp::SHT_PROGBITS,
1240 elfcpp::SHF_ALLOC, false,
1241 ORDER_EHFRAME, false);
1242 if (os == NULL)
1243 return NULL;
1244
1245 if (this->eh_frame_section_ == NULL)
1246 {
1247 this->eh_frame_section_ = os;
1248 this->eh_frame_data_ = new Eh_frame();
1249
1250 // For incremental linking, we do not optimize .eh_frame sections
1251 // or create a .eh_frame_hdr section.
1252 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1253 {
1254 Output_section* hdr_os =
1255 this->choose_output_section(NULL, ".eh_frame_hdr",
1256 elfcpp::SHT_PROGBITS,
1257 elfcpp::SHF_ALLOC, false,
1258 ORDER_EHFRAME, false);
1259
1260 if (hdr_os != NULL)
1261 {
1262 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1263 this->eh_frame_data_);
1264 hdr_os->add_output_section_data(hdr_posd);
1265
1266 hdr_os->set_after_input_sections();
1267
1268 if (!this->script_options_->saw_phdrs_clause())
1269 {
1270 Output_segment* hdr_oseg;
1271 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1272 elfcpp::PF_R);
1273 hdr_oseg->add_output_section_to_nonload(hdr_os,
1274 elfcpp::PF_R);
1275 }
1276
1277 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1278 }
1279 }
1280 }
1281
1282 return os;
1283 }
1284
1285 // Add an exception frame for a PLT. This is called from target code.
1286
1287 void
1288 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1289 size_t cie_length, const unsigned char* fde_data,
1290 size_t fde_length)
1291 {
1292 if (parameters->incremental())
1293 {
1294 // FIXME: Maybe this could work some day....
1295 return;
1296 }
1297 Output_section* os = this->make_eh_frame_section(NULL);
1298 if (os == NULL)
1299 return;
1300 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1301 fde_data, fde_length);
1302 if (!this->added_eh_frame_data_)
1303 {
1304 os->add_output_section_data(this->eh_frame_data_);
1305 this->added_eh_frame_data_ = true;
1306 }
1307 }
1308
1309 // Scan a .debug_info or .debug_types section, and add summary
1310 // information to the .gdb_index section.
1311
1312 template<int size, bool big_endian>
1313 void
1314 Layout::add_to_gdb_index(bool is_type_unit,
1315 Sized_relobj<size, big_endian>* object,
1316 const unsigned char* symbols,
1317 off_t symbols_size,
1318 unsigned int shndx,
1319 unsigned int reloc_shndx,
1320 unsigned int reloc_type)
1321 {
1322 if (this->gdb_index_data_ == NULL)
1323 {
1324 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1325 elfcpp::SHT_PROGBITS, 0,
1326 false, ORDER_INVALID,
1327 false);
1328 if (os == NULL)
1329 return;
1330
1331 this->gdb_index_data_ = new Gdb_index(os);
1332 os->add_output_section_data(this->gdb_index_data_);
1333 os->set_after_input_sections();
1334 }
1335
1336 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1337 symbols_size, shndx, reloc_shndx,
1338 reloc_type);
1339 }
1340
1341 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1342 // the output section.
1343
1344 Output_section*
1345 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1346 elfcpp::Elf_Xword flags,
1347 Output_section_data* posd,
1348 Output_section_order order, bool is_relro)
1349 {
1350 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1351 false, order, is_relro);
1352 if (os != NULL)
1353 os->add_output_section_data(posd);
1354 return os;
1355 }
1356
1357 // Map section flags to segment flags.
1358
1359 elfcpp::Elf_Word
1360 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1361 {
1362 elfcpp::Elf_Word ret = elfcpp::PF_R;
1363 if ((flags & elfcpp::SHF_WRITE) != 0)
1364 ret |= elfcpp::PF_W;
1365 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1366 ret |= elfcpp::PF_X;
1367 return ret;
1368 }
1369
1370 // Make a new Output_section, and attach it to segments as
1371 // appropriate. ORDER is the order in which this section should
1372 // appear in the output segment. IS_RELRO is true if this is a relro
1373 // (read-only after relocations) section.
1374
1375 Output_section*
1376 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1377 elfcpp::Elf_Xword flags,
1378 Output_section_order order, bool is_relro)
1379 {
1380 Output_section* os;
1381 if ((flags & elfcpp::SHF_ALLOC) == 0
1382 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1383 && is_compressible_debug_section(name))
1384 os = new Output_compressed_section(&parameters->options(), name, type,
1385 flags);
1386 else if ((flags & elfcpp::SHF_ALLOC) == 0
1387 && parameters->options().strip_debug_non_line()
1388 && strcmp(".debug_abbrev", name) == 0)
1389 {
1390 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1391 name, type, flags);
1392 if (this->debug_info_)
1393 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1394 }
1395 else if ((flags & elfcpp::SHF_ALLOC) == 0
1396 && parameters->options().strip_debug_non_line()
1397 && strcmp(".debug_info", name) == 0)
1398 {
1399 os = this->debug_info_ = new Output_reduced_debug_info_section(
1400 name, type, flags);
1401 if (this->debug_abbrev_)
1402 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1403 }
1404 else
1405 {
1406 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1407 // not have correct section types. Force them here.
1408 if (type == elfcpp::SHT_PROGBITS)
1409 {
1410 if (is_prefix_of(".init_array", name))
1411 type = elfcpp::SHT_INIT_ARRAY;
1412 else if (is_prefix_of(".preinit_array", name))
1413 type = elfcpp::SHT_PREINIT_ARRAY;
1414 else if (is_prefix_of(".fini_array", name))
1415 type = elfcpp::SHT_FINI_ARRAY;
1416 }
1417
1418 // FIXME: const_cast is ugly.
1419 Target* target = const_cast<Target*>(&parameters->target());
1420 os = target->make_output_section(name, type, flags);
1421 }
1422
1423 // With -z relro, we have to recognize the special sections by name.
1424 // There is no other way.
1425 bool is_relro_local = false;
1426 if (!this->script_options_->saw_sections_clause()
1427 && parameters->options().relro()
1428 && (flags & elfcpp::SHF_ALLOC) != 0
1429 && (flags & elfcpp::SHF_WRITE) != 0)
1430 {
1431 if (type == elfcpp::SHT_PROGBITS)
1432 {
1433 if ((flags & elfcpp::SHF_TLS) != 0)
1434 is_relro = true;
1435 else if (strcmp(name, ".data.rel.ro") == 0)
1436 is_relro = true;
1437 else if (strcmp(name, ".data.rel.ro.local") == 0)
1438 {
1439 is_relro = true;
1440 is_relro_local = true;
1441 }
1442 else if (strcmp(name, ".ctors") == 0
1443 || strcmp(name, ".dtors") == 0
1444 || strcmp(name, ".jcr") == 0)
1445 is_relro = true;
1446 }
1447 else if (type == elfcpp::SHT_INIT_ARRAY
1448 || type == elfcpp::SHT_FINI_ARRAY
1449 || type == elfcpp::SHT_PREINIT_ARRAY)
1450 is_relro = true;
1451 }
1452
1453 if (is_relro)
1454 os->set_is_relro();
1455
1456 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1457 order = this->default_section_order(os, is_relro_local);
1458
1459 os->set_order(order);
1460
1461 parameters->target().new_output_section(os);
1462
1463 this->section_list_.push_back(os);
1464
1465 // The GNU linker by default sorts some sections by priority, so we
1466 // do the same. We need to know that this might happen before we
1467 // attach any input sections.
1468 if (!this->script_options_->saw_sections_clause()
1469 && !parameters->options().relocatable()
1470 && (strcmp(name, ".init_array") == 0
1471 || strcmp(name, ".fini_array") == 0
1472 || (!parameters->options().ctors_in_init_array()
1473 && (strcmp(name, ".ctors") == 0
1474 || strcmp(name, ".dtors") == 0))))
1475 os->set_may_sort_attached_input_sections();
1476
1477 // Check for .stab*str sections, as .stab* sections need to link to
1478 // them.
1479 if (type == elfcpp::SHT_STRTAB
1480 && !this->have_stabstr_section_
1481 && strncmp(name, ".stab", 5) == 0
1482 && strcmp(name + strlen(name) - 3, "str") == 0)
1483 this->have_stabstr_section_ = true;
1484
1485 // During a full incremental link, we add patch space to most
1486 // PROGBITS and NOBITS sections. Flag those that may be
1487 // arbitrarily padded.
1488 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1489 && order != ORDER_INTERP
1490 && order != ORDER_INIT
1491 && order != ORDER_PLT
1492 && order != ORDER_FINI
1493 && order != ORDER_RELRO_LAST
1494 && order != ORDER_NON_RELRO_FIRST
1495 && strcmp(name, ".eh_frame") != 0
1496 && strcmp(name, ".ctors") != 0
1497 && strcmp(name, ".dtors") != 0
1498 && strcmp(name, ".jcr") != 0)
1499 {
1500 os->set_is_patch_space_allowed();
1501
1502 // Certain sections require "holes" to be filled with
1503 // specific fill patterns. These fill patterns may have
1504 // a minimum size, so we must prevent allocations from the
1505 // free list that leave a hole smaller than the minimum.
1506 if (strcmp(name, ".debug_info") == 0)
1507 os->set_free_space_fill(new Output_fill_debug_info(false));
1508 else if (strcmp(name, ".debug_types") == 0)
1509 os->set_free_space_fill(new Output_fill_debug_info(true));
1510 else if (strcmp(name, ".debug_line") == 0)
1511 os->set_free_space_fill(new Output_fill_debug_line());
1512 }
1513
1514 // If we have already attached the sections to segments, then we
1515 // need to attach this one now. This happens for sections created
1516 // directly by the linker.
1517 if (this->sections_are_attached_)
1518 this->attach_section_to_segment(&parameters->target(), os);
1519
1520 return os;
1521 }
1522
1523 // Return the default order in which a section should be placed in an
1524 // output segment. This function captures a lot of the ideas in
1525 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1526 // linker created section is normally set when the section is created;
1527 // this function is used for input sections.
1528
1529 Output_section_order
1530 Layout::default_section_order(Output_section* os, bool is_relro_local)
1531 {
1532 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1533 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1534 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1535 bool is_bss = false;
1536
1537 switch (os->type())
1538 {
1539 default:
1540 case elfcpp::SHT_PROGBITS:
1541 break;
1542 case elfcpp::SHT_NOBITS:
1543 is_bss = true;
1544 break;
1545 case elfcpp::SHT_RELA:
1546 case elfcpp::SHT_REL:
1547 if (!is_write)
1548 return ORDER_DYNAMIC_RELOCS;
1549 break;
1550 case elfcpp::SHT_HASH:
1551 case elfcpp::SHT_DYNAMIC:
1552 case elfcpp::SHT_SHLIB:
1553 case elfcpp::SHT_DYNSYM:
1554 case elfcpp::SHT_GNU_HASH:
1555 case elfcpp::SHT_GNU_verdef:
1556 case elfcpp::SHT_GNU_verneed:
1557 case elfcpp::SHT_GNU_versym:
1558 if (!is_write)
1559 return ORDER_DYNAMIC_LINKER;
1560 break;
1561 case elfcpp::SHT_NOTE:
1562 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1563 }
1564
1565 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1566 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1567
1568 if (!is_bss && !is_write)
1569 {
1570 if (is_execinstr)
1571 {
1572 if (strcmp(os->name(), ".init") == 0)
1573 return ORDER_INIT;
1574 else if (strcmp(os->name(), ".fini") == 0)
1575 return ORDER_FINI;
1576 }
1577 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1578 }
1579
1580 if (os->is_relro())
1581 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1582
1583 if (os->is_small_section())
1584 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1585 if (os->is_large_section())
1586 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1587
1588 return is_bss ? ORDER_BSS : ORDER_DATA;
1589 }
1590
1591 // Attach output sections to segments. This is called after we have
1592 // seen all the input sections.
1593
1594 void
1595 Layout::attach_sections_to_segments(const Target* target)
1596 {
1597 for (Section_list::iterator p = this->section_list_.begin();
1598 p != this->section_list_.end();
1599 ++p)
1600 this->attach_section_to_segment(target, *p);
1601
1602 this->sections_are_attached_ = true;
1603 }
1604
1605 // Attach an output section to a segment.
1606
1607 void
1608 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1609 {
1610 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1611 this->unattached_section_list_.push_back(os);
1612 else
1613 this->attach_allocated_section_to_segment(target, os);
1614 }
1615
1616 // Attach an allocated output section to a segment.
1617
1618 void
1619 Layout::attach_allocated_section_to_segment(const Target* target,
1620 Output_section* os)
1621 {
1622 elfcpp::Elf_Xword flags = os->flags();
1623 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1624
1625 if (parameters->options().relocatable())
1626 return;
1627
1628 // If we have a SECTIONS clause, we can't handle the attachment to
1629 // segments until after we've seen all the sections.
1630 if (this->script_options_->saw_sections_clause())
1631 return;
1632
1633 gold_assert(!this->script_options_->saw_phdrs_clause());
1634
1635 // This output section goes into a PT_LOAD segment.
1636
1637 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1638
1639 // Check for --section-start.
1640 uint64_t addr;
1641 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1642
1643 // In general the only thing we really care about for PT_LOAD
1644 // segments is whether or not they are writable or executable,
1645 // so that is how we search for them.
1646 // Large data sections also go into their own PT_LOAD segment.
1647 // People who need segments sorted on some other basis will
1648 // have to use a linker script.
1649
1650 Segment_list::const_iterator p;
1651 for (p = this->segment_list_.begin();
1652 p != this->segment_list_.end();
1653 ++p)
1654 {
1655 if ((*p)->type() != elfcpp::PT_LOAD)
1656 continue;
1657 if (!parameters->options().omagic()
1658 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1659 continue;
1660 if ((target->isolate_execinstr() || parameters->options().rosegment())
1661 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1662 continue;
1663 // If -Tbss was specified, we need to separate the data and BSS
1664 // segments.
1665 if (parameters->options().user_set_Tbss())
1666 {
1667 if ((os->type() == elfcpp::SHT_NOBITS)
1668 == (*p)->has_any_data_sections())
1669 continue;
1670 }
1671 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1672 continue;
1673
1674 if (is_address_set)
1675 {
1676 if ((*p)->are_addresses_set())
1677 continue;
1678
1679 (*p)->add_initial_output_data(os);
1680 (*p)->update_flags_for_output_section(seg_flags);
1681 (*p)->set_addresses(addr, addr);
1682 break;
1683 }
1684
1685 (*p)->add_output_section_to_load(this, os, seg_flags);
1686 break;
1687 }
1688
1689 if (p == this->segment_list_.end())
1690 {
1691 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1692 seg_flags);
1693 if (os->is_large_data_section())
1694 oseg->set_is_large_data_segment();
1695 oseg->add_output_section_to_load(this, os, seg_flags);
1696 if (is_address_set)
1697 oseg->set_addresses(addr, addr);
1698 }
1699
1700 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1701 // segment.
1702 if (os->type() == elfcpp::SHT_NOTE)
1703 {
1704 // See if we already have an equivalent PT_NOTE segment.
1705 for (p = this->segment_list_.begin();
1706 p != segment_list_.end();
1707 ++p)
1708 {
1709 if ((*p)->type() == elfcpp::PT_NOTE
1710 && (((*p)->flags() & elfcpp::PF_W)
1711 == (seg_flags & elfcpp::PF_W)))
1712 {
1713 (*p)->add_output_section_to_nonload(os, seg_flags);
1714 break;
1715 }
1716 }
1717
1718 if (p == this->segment_list_.end())
1719 {
1720 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1721 seg_flags);
1722 oseg->add_output_section_to_nonload(os, seg_flags);
1723 }
1724 }
1725
1726 // If we see a loadable SHF_TLS section, we create a PT_TLS
1727 // segment. There can only be one such segment.
1728 if ((flags & elfcpp::SHF_TLS) != 0)
1729 {
1730 if (this->tls_segment_ == NULL)
1731 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1732 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1733 }
1734
1735 // If -z relro is in effect, and we see a relro section, we create a
1736 // PT_GNU_RELRO segment. There can only be one such segment.
1737 if (os->is_relro() && parameters->options().relro())
1738 {
1739 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1740 if (this->relro_segment_ == NULL)
1741 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1742 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1743 }
1744
1745 // If we see a section named .interp, put it into a PT_INTERP
1746 // segment. This seems broken to me, but this is what GNU ld does,
1747 // and glibc expects it.
1748 if (strcmp(os->name(), ".interp") == 0
1749 && !this->script_options_->saw_phdrs_clause())
1750 {
1751 if (this->interp_segment_ == NULL)
1752 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1753 else
1754 gold_warning(_("multiple '.interp' sections in input files "
1755 "may cause confusing PT_INTERP segment"));
1756 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1757 }
1758 }
1759
1760 // Make an output section for a script.
1761
1762 Output_section*
1763 Layout::make_output_section_for_script(
1764 const char* name,
1765 Script_sections::Section_type section_type)
1766 {
1767 name = this->namepool_.add(name, false, NULL);
1768 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1769 if (section_type == Script_sections::ST_NOLOAD)
1770 sh_flags = 0;
1771 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1772 sh_flags, ORDER_INVALID,
1773 false);
1774 os->set_found_in_sections_clause();
1775 if (section_type == Script_sections::ST_NOLOAD)
1776 os->set_is_noload();
1777 return os;
1778 }
1779
1780 // Return the number of segments we expect to see.
1781
1782 size_t
1783 Layout::expected_segment_count() const
1784 {
1785 size_t ret = this->segment_list_.size();
1786
1787 // If we didn't see a SECTIONS clause in a linker script, we should
1788 // already have the complete list of segments. Otherwise we ask the
1789 // SECTIONS clause how many segments it expects, and add in the ones
1790 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1791
1792 if (!this->script_options_->saw_sections_clause())
1793 return ret;
1794 else
1795 {
1796 const Script_sections* ss = this->script_options_->script_sections();
1797 return ret + ss->expected_segment_count(this);
1798 }
1799 }
1800
1801 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1802 // is whether we saw a .note.GNU-stack section in the object file.
1803 // GNU_STACK_FLAGS is the section flags. The flags give the
1804 // protection required for stack memory. We record this in an
1805 // executable as a PT_GNU_STACK segment. If an object file does not
1806 // have a .note.GNU-stack segment, we must assume that it is an old
1807 // object. On some targets that will force an executable stack.
1808
1809 void
1810 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1811 const Object* obj)
1812 {
1813 if (!seen_gnu_stack)
1814 {
1815 this->input_without_gnu_stack_note_ = true;
1816 if (parameters->options().warn_execstack()
1817 && parameters->target().is_default_stack_executable())
1818 gold_warning(_("%s: missing .note.GNU-stack section"
1819 " implies executable stack"),
1820 obj->name().c_str());
1821 }
1822 else
1823 {
1824 this->input_with_gnu_stack_note_ = true;
1825 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1826 {
1827 this->input_requires_executable_stack_ = true;
1828 if (parameters->options().warn_execstack()
1829 || parameters->options().is_stack_executable())
1830 gold_warning(_("%s: requires executable stack"),
1831 obj->name().c_str());
1832 }
1833 }
1834 }
1835
1836 // Create automatic note sections.
1837
1838 void
1839 Layout::create_notes()
1840 {
1841 this->create_gold_note();
1842 this->create_executable_stack_info();
1843 this->create_build_id();
1844 }
1845
1846 // Create the dynamic sections which are needed before we read the
1847 // relocs.
1848
1849 void
1850 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1851 {
1852 if (parameters->doing_static_link())
1853 return;
1854
1855 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1856 elfcpp::SHT_DYNAMIC,
1857 (elfcpp::SHF_ALLOC
1858 | elfcpp::SHF_WRITE),
1859 false, ORDER_RELRO,
1860 true);
1861
1862 // A linker script may discard .dynamic, so check for NULL.
1863 if (this->dynamic_section_ != NULL)
1864 {
1865 this->dynamic_symbol_ =
1866 symtab->define_in_output_data("_DYNAMIC", NULL,
1867 Symbol_table::PREDEFINED,
1868 this->dynamic_section_, 0, 0,
1869 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1870 elfcpp::STV_HIDDEN, 0, false, false);
1871
1872 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1873
1874 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1875 }
1876 }
1877
1878 // For each output section whose name can be represented as C symbol,
1879 // define __start and __stop symbols for the section. This is a GNU
1880 // extension.
1881
1882 void
1883 Layout::define_section_symbols(Symbol_table* symtab)
1884 {
1885 for (Section_list::const_iterator p = this->section_list_.begin();
1886 p != this->section_list_.end();
1887 ++p)
1888 {
1889 const char* const name = (*p)->name();
1890 if (is_cident(name))
1891 {
1892 const std::string name_string(name);
1893 const std::string start_name(cident_section_start_prefix
1894 + name_string);
1895 const std::string stop_name(cident_section_stop_prefix
1896 + name_string);
1897
1898 symtab->define_in_output_data(start_name.c_str(),
1899 NULL, // version
1900 Symbol_table::PREDEFINED,
1901 *p,
1902 0, // value
1903 0, // symsize
1904 elfcpp::STT_NOTYPE,
1905 elfcpp::STB_GLOBAL,
1906 elfcpp::STV_DEFAULT,
1907 0, // nonvis
1908 false, // offset_is_from_end
1909 true); // only_if_ref
1910
1911 symtab->define_in_output_data(stop_name.c_str(),
1912 NULL, // version
1913 Symbol_table::PREDEFINED,
1914 *p,
1915 0, // value
1916 0, // symsize
1917 elfcpp::STT_NOTYPE,
1918 elfcpp::STB_GLOBAL,
1919 elfcpp::STV_DEFAULT,
1920 0, // nonvis
1921 true, // offset_is_from_end
1922 true); // only_if_ref
1923 }
1924 }
1925 }
1926
1927 // Define symbols for group signatures.
1928
1929 void
1930 Layout::define_group_signatures(Symbol_table* symtab)
1931 {
1932 for (Group_signatures::iterator p = this->group_signatures_.begin();
1933 p != this->group_signatures_.end();
1934 ++p)
1935 {
1936 Symbol* sym = symtab->lookup(p->signature, NULL);
1937 if (sym != NULL)
1938 p->section->set_info_symndx(sym);
1939 else
1940 {
1941 // Force the name of the group section to the group
1942 // signature, and use the group's section symbol as the
1943 // signature symbol.
1944 if (strcmp(p->section->name(), p->signature) != 0)
1945 {
1946 const char* name = this->namepool_.add(p->signature,
1947 true, NULL);
1948 p->section->set_name(name);
1949 }
1950 p->section->set_needs_symtab_index();
1951 p->section->set_info_section_symndx(p->section);
1952 }
1953 }
1954
1955 this->group_signatures_.clear();
1956 }
1957
1958 // Find the first read-only PT_LOAD segment, creating one if
1959 // necessary.
1960
1961 Output_segment*
1962 Layout::find_first_load_seg(const Target* target)
1963 {
1964 Output_segment* best = NULL;
1965 for (Segment_list::const_iterator p = this->segment_list_.begin();
1966 p != this->segment_list_.end();
1967 ++p)
1968 {
1969 if ((*p)->type() == elfcpp::PT_LOAD
1970 && ((*p)->flags() & elfcpp::PF_R) != 0
1971 && (parameters->options().omagic()
1972 || ((*p)->flags() & elfcpp::PF_W) == 0)
1973 && (!target->isolate_execinstr()
1974 || ((*p)->flags() & elfcpp::PF_X) == 0))
1975 {
1976 if (best == NULL || this->segment_precedes(*p, best))
1977 best = *p;
1978 }
1979 }
1980 if (best != NULL)
1981 return best;
1982
1983 gold_assert(!this->script_options_->saw_phdrs_clause());
1984
1985 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1986 elfcpp::PF_R);
1987 return load_seg;
1988 }
1989
1990 // Save states of all current output segments. Store saved states
1991 // in SEGMENT_STATES.
1992
1993 void
1994 Layout::save_segments(Segment_states* segment_states)
1995 {
1996 for (Segment_list::const_iterator p = this->segment_list_.begin();
1997 p != this->segment_list_.end();
1998 ++p)
1999 {
2000 Output_segment* segment = *p;
2001 // Shallow copy.
2002 Output_segment* copy = new Output_segment(*segment);
2003 (*segment_states)[segment] = copy;
2004 }
2005 }
2006
2007 // Restore states of output segments and delete any segment not found in
2008 // SEGMENT_STATES.
2009
2010 void
2011 Layout::restore_segments(const Segment_states* segment_states)
2012 {
2013 // Go through the segment list and remove any segment added in the
2014 // relaxation loop.
2015 this->tls_segment_ = NULL;
2016 this->relro_segment_ = NULL;
2017 Segment_list::iterator list_iter = this->segment_list_.begin();
2018 while (list_iter != this->segment_list_.end())
2019 {
2020 Output_segment* segment = *list_iter;
2021 Segment_states::const_iterator states_iter =
2022 segment_states->find(segment);
2023 if (states_iter != segment_states->end())
2024 {
2025 const Output_segment* copy = states_iter->second;
2026 // Shallow copy to restore states.
2027 *segment = *copy;
2028
2029 // Also fix up TLS and RELRO segment pointers as appropriate.
2030 if (segment->type() == elfcpp::PT_TLS)
2031 this->tls_segment_ = segment;
2032 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2033 this->relro_segment_ = segment;
2034
2035 ++list_iter;
2036 }
2037 else
2038 {
2039 list_iter = this->segment_list_.erase(list_iter);
2040 // This is a segment created during section layout. It should be
2041 // safe to remove it since we should have removed all pointers to it.
2042 delete segment;
2043 }
2044 }
2045 }
2046
2047 // Clean up after relaxation so that sections can be laid out again.
2048
2049 void
2050 Layout::clean_up_after_relaxation()
2051 {
2052 // Restore the segments to point state just prior to the relaxation loop.
2053 Script_sections* script_section = this->script_options_->script_sections();
2054 script_section->release_segments();
2055 this->restore_segments(this->segment_states_);
2056
2057 // Reset section addresses and file offsets
2058 for (Section_list::iterator p = this->section_list_.begin();
2059 p != this->section_list_.end();
2060 ++p)
2061 {
2062 (*p)->restore_states();
2063
2064 // If an input section changes size because of relaxation,
2065 // we need to adjust the section offsets of all input sections.
2066 // after such a section.
2067 if ((*p)->section_offsets_need_adjustment())
2068 (*p)->adjust_section_offsets();
2069
2070 (*p)->reset_address_and_file_offset();
2071 }
2072
2073 // Reset special output object address and file offsets.
2074 for (Data_list::iterator p = this->special_output_list_.begin();
2075 p != this->special_output_list_.end();
2076 ++p)
2077 (*p)->reset_address_and_file_offset();
2078
2079 // A linker script may have created some output section data objects.
2080 // They are useless now.
2081 for (Output_section_data_list::const_iterator p =
2082 this->script_output_section_data_list_.begin();
2083 p != this->script_output_section_data_list_.end();
2084 ++p)
2085 delete *p;
2086 this->script_output_section_data_list_.clear();
2087 }
2088
2089 // Prepare for relaxation.
2090
2091 void
2092 Layout::prepare_for_relaxation()
2093 {
2094 // Create an relaxation debug check if in debugging mode.
2095 if (is_debugging_enabled(DEBUG_RELAXATION))
2096 this->relaxation_debug_check_ = new Relaxation_debug_check();
2097
2098 // Save segment states.
2099 this->segment_states_ = new Segment_states();
2100 this->save_segments(this->segment_states_);
2101
2102 for(Section_list::const_iterator p = this->section_list_.begin();
2103 p != this->section_list_.end();
2104 ++p)
2105 (*p)->save_states();
2106
2107 if (is_debugging_enabled(DEBUG_RELAXATION))
2108 this->relaxation_debug_check_->check_output_data_for_reset_values(
2109 this->section_list_, this->special_output_list_);
2110
2111 // Also enable recording of output section data from scripts.
2112 this->record_output_section_data_from_script_ = true;
2113 }
2114
2115 // Relaxation loop body: If target has no relaxation, this runs only once
2116 // Otherwise, the target relaxation hook is called at the end of
2117 // each iteration. If the hook returns true, it means re-layout of
2118 // section is required.
2119 //
2120 // The number of segments created by a linking script without a PHDRS
2121 // clause may be affected by section sizes and alignments. There is
2122 // a remote chance that relaxation causes different number of PT_LOAD
2123 // segments are created and sections are attached to different segments.
2124 // Therefore, we always throw away all segments created during section
2125 // layout. In order to be able to restart the section layout, we keep
2126 // a copy of the segment list right before the relaxation loop and use
2127 // that to restore the segments.
2128 //
2129 // PASS is the current relaxation pass number.
2130 // SYMTAB is a symbol table.
2131 // PLOAD_SEG is the address of a pointer for the load segment.
2132 // PHDR_SEG is a pointer to the PHDR segment.
2133 // SEGMENT_HEADERS points to the output segment header.
2134 // FILE_HEADER points to the output file header.
2135 // PSHNDX is the address to store the output section index.
2136
2137 off_t inline
2138 Layout::relaxation_loop_body(
2139 int pass,
2140 Target* target,
2141 Symbol_table* symtab,
2142 Output_segment** pload_seg,
2143 Output_segment* phdr_seg,
2144 Output_segment_headers* segment_headers,
2145 Output_file_header* file_header,
2146 unsigned int* pshndx)
2147 {
2148 // If this is not the first iteration, we need to clean up after
2149 // relaxation so that we can lay out the sections again.
2150 if (pass != 0)
2151 this->clean_up_after_relaxation();
2152
2153 // If there is a SECTIONS clause, put all the input sections into
2154 // the required order.
2155 Output_segment* load_seg;
2156 if (this->script_options_->saw_sections_clause())
2157 load_seg = this->set_section_addresses_from_script(symtab);
2158 else if (parameters->options().relocatable())
2159 load_seg = NULL;
2160 else
2161 load_seg = this->find_first_load_seg(target);
2162
2163 if (parameters->options().oformat_enum()
2164 != General_options::OBJECT_FORMAT_ELF)
2165 load_seg = NULL;
2166
2167 // If the user set the address of the text segment, that may not be
2168 // compatible with putting the segment headers and file headers into
2169 // that segment.
2170 if (parameters->options().user_set_Ttext()
2171 && parameters->options().Ttext() % target->common_pagesize() != 0)
2172 {
2173 load_seg = NULL;
2174 phdr_seg = NULL;
2175 }
2176
2177 gold_assert(phdr_seg == NULL
2178 || load_seg != NULL
2179 || this->script_options_->saw_sections_clause());
2180
2181 // If the address of the load segment we found has been set by
2182 // --section-start rather than by a script, then adjust the VMA and
2183 // LMA downward if possible to include the file and section headers.
2184 uint64_t header_gap = 0;
2185 if (load_seg != NULL
2186 && load_seg->are_addresses_set()
2187 && !this->script_options_->saw_sections_clause()
2188 && !parameters->options().relocatable())
2189 {
2190 file_header->finalize_data_size();
2191 segment_headers->finalize_data_size();
2192 size_t sizeof_headers = (file_header->data_size()
2193 + segment_headers->data_size());
2194 const uint64_t abi_pagesize = target->abi_pagesize();
2195 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2196 hdr_paddr &= ~(abi_pagesize - 1);
2197 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2198 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2199 load_seg = NULL;
2200 else
2201 {
2202 load_seg->set_addresses(load_seg->vaddr() - subtract,
2203 load_seg->paddr() - subtract);
2204 header_gap = subtract - sizeof_headers;
2205 }
2206 }
2207
2208 // Lay out the segment headers.
2209 if (!parameters->options().relocatable())
2210 {
2211 gold_assert(segment_headers != NULL);
2212 if (header_gap != 0 && load_seg != NULL)
2213 {
2214 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2215 load_seg->add_initial_output_data(z);
2216 }
2217 if (load_seg != NULL)
2218 load_seg->add_initial_output_data(segment_headers);
2219 if (phdr_seg != NULL)
2220 phdr_seg->add_initial_output_data(segment_headers);
2221 }
2222
2223 // Lay out the file header.
2224 if (load_seg != NULL)
2225 load_seg->add_initial_output_data(file_header);
2226
2227 if (this->script_options_->saw_phdrs_clause()
2228 && !parameters->options().relocatable())
2229 {
2230 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2231 // clause in a linker script.
2232 Script_sections* ss = this->script_options_->script_sections();
2233 ss->put_headers_in_phdrs(file_header, segment_headers);
2234 }
2235
2236 // We set the output section indexes in set_segment_offsets and
2237 // set_section_indexes.
2238 *pshndx = 1;
2239
2240 // Set the file offsets of all the segments, and all the sections
2241 // they contain.
2242 off_t off;
2243 if (!parameters->options().relocatable())
2244 off = this->set_segment_offsets(target, load_seg, pshndx);
2245 else
2246 off = this->set_relocatable_section_offsets(file_header, pshndx);
2247
2248 // Verify that the dummy relaxation does not change anything.
2249 if (is_debugging_enabled(DEBUG_RELAXATION))
2250 {
2251 if (pass == 0)
2252 this->relaxation_debug_check_->read_sections(this->section_list_);
2253 else
2254 this->relaxation_debug_check_->verify_sections(this->section_list_);
2255 }
2256
2257 *pload_seg = load_seg;
2258 return off;
2259 }
2260
2261 // Search the list of patterns and find the postion of the given section
2262 // name in the output section. If the section name matches a glob
2263 // pattern and a non-glob name, then the non-glob position takes
2264 // precedence. Return 0 if no match is found.
2265
2266 unsigned int
2267 Layout::find_section_order_index(const std::string& section_name)
2268 {
2269 Unordered_map<std::string, unsigned int>::iterator map_it;
2270 map_it = this->input_section_position_.find(section_name);
2271 if (map_it != this->input_section_position_.end())
2272 return map_it->second;
2273
2274 // Absolute match failed. Linear search the glob patterns.
2275 std::vector<std::string>::iterator it;
2276 for (it = this->input_section_glob_.begin();
2277 it != this->input_section_glob_.end();
2278 ++it)
2279 {
2280 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2281 {
2282 map_it = this->input_section_position_.find(*it);
2283 gold_assert(map_it != this->input_section_position_.end());
2284 return map_it->second;
2285 }
2286 }
2287 return 0;
2288 }
2289
2290 // Read the sequence of input sections from the file specified with
2291 // option --section-ordering-file.
2292
2293 void
2294 Layout::read_layout_from_file()
2295 {
2296 const char* filename = parameters->options().section_ordering_file();
2297 std::ifstream in;
2298 std::string line;
2299
2300 in.open(filename);
2301 if (!in)
2302 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2303 filename, strerror(errno));
2304
2305 std::getline(in, line); // this chops off the trailing \n, if any
2306 unsigned int position = 1;
2307 this->set_section_ordering_specified();
2308
2309 while (in)
2310 {
2311 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2312 line.resize(line.length() - 1);
2313 // Ignore comments, beginning with '#'
2314 if (line[0] == '#')
2315 {
2316 std::getline(in, line);
2317 continue;
2318 }
2319 this->input_section_position_[line] = position;
2320 // Store all glob patterns in a vector.
2321 if (is_wildcard_string(line.c_str()))
2322 this->input_section_glob_.push_back(line);
2323 position++;
2324 std::getline(in, line);
2325 }
2326 }
2327
2328 // Finalize the layout. When this is called, we have created all the
2329 // output sections and all the output segments which are based on
2330 // input sections. We have several things to do, and we have to do
2331 // them in the right order, so that we get the right results correctly
2332 // and efficiently.
2333
2334 // 1) Finalize the list of output segments and create the segment
2335 // table header.
2336
2337 // 2) Finalize the dynamic symbol table and associated sections.
2338
2339 // 3) Determine the final file offset of all the output segments.
2340
2341 // 4) Determine the final file offset of all the SHF_ALLOC output
2342 // sections.
2343
2344 // 5) Create the symbol table sections and the section name table
2345 // section.
2346
2347 // 6) Finalize the symbol table: set symbol values to their final
2348 // value and make a final determination of which symbols are going
2349 // into the output symbol table.
2350
2351 // 7) Create the section table header.
2352
2353 // 8) Determine the final file offset of all the output sections which
2354 // are not SHF_ALLOC, including the section table header.
2355
2356 // 9) Finalize the ELF file header.
2357
2358 // This function returns the size of the output file.
2359
2360 off_t
2361 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2362 Target* target, const Task* task)
2363 {
2364 target->finalize_sections(this, input_objects, symtab);
2365
2366 this->count_local_symbols(task, input_objects);
2367
2368 this->link_stabs_sections();
2369
2370 Output_segment* phdr_seg = NULL;
2371 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2372 {
2373 // There was a dynamic object in the link. We need to create
2374 // some information for the dynamic linker.
2375
2376 // Create the PT_PHDR segment which will hold the program
2377 // headers.
2378 if (!this->script_options_->saw_phdrs_clause())
2379 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2380
2381 // Create the dynamic symbol table, including the hash table.
2382 Output_section* dynstr;
2383 std::vector<Symbol*> dynamic_symbols;
2384 unsigned int local_dynamic_count;
2385 Versions versions(*this->script_options()->version_script_info(),
2386 &this->dynpool_);
2387 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2388 &local_dynamic_count, &dynamic_symbols,
2389 &versions);
2390
2391 // Create the .interp section to hold the name of the
2392 // interpreter, and put it in a PT_INTERP segment. Don't do it
2393 // if we saw a .interp section in an input file.
2394 if ((!parameters->options().shared()
2395 || parameters->options().dynamic_linker() != NULL)
2396 && this->interp_segment_ == NULL)
2397 this->create_interp(target);
2398
2399 // Finish the .dynamic section to hold the dynamic data, and put
2400 // it in a PT_DYNAMIC segment.
2401 this->finish_dynamic_section(input_objects, symtab);
2402
2403 // We should have added everything we need to the dynamic string
2404 // table.
2405 this->dynpool_.set_string_offsets();
2406
2407 // Create the version sections. We can't do this until the
2408 // dynamic string table is complete.
2409 this->create_version_sections(&versions, symtab, local_dynamic_count,
2410 dynamic_symbols, dynstr);
2411
2412 // Set the size of the _DYNAMIC symbol. We can't do this until
2413 // after we call create_version_sections.
2414 this->set_dynamic_symbol_size(symtab);
2415 }
2416
2417 // Create segment headers.
2418 Output_segment_headers* segment_headers =
2419 (parameters->options().relocatable()
2420 ? NULL
2421 : new Output_segment_headers(this->segment_list_));
2422
2423 // Lay out the file header.
2424 Output_file_header* file_header = new Output_file_header(target, symtab,
2425 segment_headers);
2426
2427 this->special_output_list_.push_back(file_header);
2428 if (segment_headers != NULL)
2429 this->special_output_list_.push_back(segment_headers);
2430
2431 // Find approriate places for orphan output sections if we are using
2432 // a linker script.
2433 if (this->script_options_->saw_sections_clause())
2434 this->place_orphan_sections_in_script();
2435
2436 Output_segment* load_seg;
2437 off_t off;
2438 unsigned int shndx;
2439 int pass = 0;
2440
2441 // Take a snapshot of the section layout as needed.
2442 if (target->may_relax())
2443 this->prepare_for_relaxation();
2444
2445 // Run the relaxation loop to lay out sections.
2446 do
2447 {
2448 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2449 phdr_seg, segment_headers, file_header,
2450 &shndx);
2451 pass++;
2452 }
2453 while (target->may_relax()
2454 && target->relax(pass, input_objects, symtab, this, task));
2455
2456 // Set the file offsets of all the non-data sections we've seen so
2457 // far which don't have to wait for the input sections. We need
2458 // this in order to finalize local symbols in non-allocated
2459 // sections.
2460 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2461
2462 // Set the section indexes of all unallocated sections seen so far,
2463 // in case any of them are somehow referenced by a symbol.
2464 shndx = this->set_section_indexes(shndx);
2465
2466 // Create the symbol table sections.
2467 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2468 if (!parameters->doing_static_link())
2469 this->assign_local_dynsym_offsets(input_objects);
2470
2471 // Process any symbol assignments from a linker script. This must
2472 // be called after the symbol table has been finalized.
2473 this->script_options_->finalize_symbols(symtab, this);
2474
2475 // Create the incremental inputs sections.
2476 if (this->incremental_inputs_)
2477 {
2478 this->incremental_inputs_->finalize();
2479 this->create_incremental_info_sections(symtab);
2480 }
2481
2482 // Create the .shstrtab section.
2483 Output_section* shstrtab_section = this->create_shstrtab();
2484
2485 // Set the file offsets of the rest of the non-data sections which
2486 // don't have to wait for the input sections.
2487 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2488
2489 // Now that all sections have been created, set the section indexes
2490 // for any sections which haven't been done yet.
2491 shndx = this->set_section_indexes(shndx);
2492
2493 // Create the section table header.
2494 this->create_shdrs(shstrtab_section, &off);
2495
2496 // If there are no sections which require postprocessing, we can
2497 // handle the section names now, and avoid a resize later.
2498 if (!this->any_postprocessing_sections_)
2499 {
2500 off = this->set_section_offsets(off,
2501 POSTPROCESSING_SECTIONS_PASS);
2502 off =
2503 this->set_section_offsets(off,
2504 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2505 }
2506
2507 file_header->set_section_info(this->section_headers_, shstrtab_section);
2508
2509 // Now we know exactly where everything goes in the output file
2510 // (except for non-allocated sections which require postprocessing).
2511 Output_data::layout_complete();
2512
2513 this->output_file_size_ = off;
2514
2515 return off;
2516 }
2517
2518 // Create a note header following the format defined in the ELF ABI.
2519 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2520 // of the section to create, DESCSZ is the size of the descriptor.
2521 // ALLOCATE is true if the section should be allocated in memory.
2522 // This returns the new note section. It sets *TRAILING_PADDING to
2523 // the number of trailing zero bytes required.
2524
2525 Output_section*
2526 Layout::create_note(const char* name, int note_type,
2527 const char* section_name, size_t descsz,
2528 bool allocate, size_t* trailing_padding)
2529 {
2530 // Authorities all agree that the values in a .note field should
2531 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2532 // they differ on what the alignment is for 64-bit binaries.
2533 // The GABI says unambiguously they take 8-byte alignment:
2534 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2535 // Other documentation says alignment should always be 4 bytes:
2536 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2537 // GNU ld and GNU readelf both support the latter (at least as of
2538 // version 2.16.91), and glibc always generates the latter for
2539 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2540 // here.
2541 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2542 const int size = parameters->target().get_size();
2543 #else
2544 const int size = 32;
2545 #endif
2546
2547 // The contents of the .note section.
2548 size_t namesz = strlen(name) + 1;
2549 size_t aligned_namesz = align_address(namesz, size / 8);
2550 size_t aligned_descsz = align_address(descsz, size / 8);
2551
2552 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2553
2554 unsigned char* buffer = new unsigned char[notehdrsz];
2555 memset(buffer, 0, notehdrsz);
2556
2557 bool is_big_endian = parameters->target().is_big_endian();
2558
2559 if (size == 32)
2560 {
2561 if (!is_big_endian)
2562 {
2563 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2564 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2565 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2566 }
2567 else
2568 {
2569 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2570 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2571 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2572 }
2573 }
2574 else if (size == 64)
2575 {
2576 if (!is_big_endian)
2577 {
2578 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2579 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2580 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2581 }
2582 else
2583 {
2584 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2585 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2586 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2587 }
2588 }
2589 else
2590 gold_unreachable();
2591
2592 memcpy(buffer + 3 * (size / 8), name, namesz);
2593
2594 elfcpp::Elf_Xword flags = 0;
2595 Output_section_order order = ORDER_INVALID;
2596 if (allocate)
2597 {
2598 flags = elfcpp::SHF_ALLOC;
2599 order = ORDER_RO_NOTE;
2600 }
2601 Output_section* os = this->choose_output_section(NULL, section_name,
2602 elfcpp::SHT_NOTE,
2603 flags, false, order, false);
2604 if (os == NULL)
2605 return NULL;
2606
2607 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2608 size / 8,
2609 "** note header");
2610 os->add_output_section_data(posd);
2611
2612 *trailing_padding = aligned_descsz - descsz;
2613
2614 return os;
2615 }
2616
2617 // For an executable or shared library, create a note to record the
2618 // version of gold used to create the binary.
2619
2620 void
2621 Layout::create_gold_note()
2622 {
2623 if (parameters->options().relocatable()
2624 || parameters->incremental_update())
2625 return;
2626
2627 std::string desc = std::string("gold ") + gold::get_version_string();
2628
2629 size_t trailing_padding;
2630 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2631 ".note.gnu.gold-version", desc.size(),
2632 false, &trailing_padding);
2633 if (os == NULL)
2634 return;
2635
2636 Output_section_data* posd = new Output_data_const(desc, 4);
2637 os->add_output_section_data(posd);
2638
2639 if (trailing_padding > 0)
2640 {
2641 posd = new Output_data_zero_fill(trailing_padding, 0);
2642 os->add_output_section_data(posd);
2643 }
2644 }
2645
2646 // Record whether the stack should be executable. This can be set
2647 // from the command line using the -z execstack or -z noexecstack
2648 // options. Otherwise, if any input file has a .note.GNU-stack
2649 // section with the SHF_EXECINSTR flag set, the stack should be
2650 // executable. Otherwise, if at least one input file a
2651 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2652 // section, we use the target default for whether the stack should be
2653 // executable. Otherwise, we don't generate a stack note. When
2654 // generating a object file, we create a .note.GNU-stack section with
2655 // the appropriate marking. When generating an executable or shared
2656 // library, we create a PT_GNU_STACK segment.
2657
2658 void
2659 Layout::create_executable_stack_info()
2660 {
2661 bool is_stack_executable;
2662 if (parameters->options().is_execstack_set())
2663 is_stack_executable = parameters->options().is_stack_executable();
2664 else if (!this->input_with_gnu_stack_note_)
2665 return;
2666 else
2667 {
2668 if (this->input_requires_executable_stack_)
2669 is_stack_executable = true;
2670 else if (this->input_without_gnu_stack_note_)
2671 is_stack_executable =
2672 parameters->target().is_default_stack_executable();
2673 else
2674 is_stack_executable = false;
2675 }
2676
2677 if (parameters->options().relocatable())
2678 {
2679 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2680 elfcpp::Elf_Xword flags = 0;
2681 if (is_stack_executable)
2682 flags |= elfcpp::SHF_EXECINSTR;
2683 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2684 ORDER_INVALID, false);
2685 }
2686 else
2687 {
2688 if (this->script_options_->saw_phdrs_clause())
2689 return;
2690 int flags = elfcpp::PF_R | elfcpp::PF_W;
2691 if (is_stack_executable)
2692 flags |= elfcpp::PF_X;
2693 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2694 }
2695 }
2696
2697 // If --build-id was used, set up the build ID note.
2698
2699 void
2700 Layout::create_build_id()
2701 {
2702 if (!parameters->options().user_set_build_id())
2703 return;
2704
2705 const char* style = parameters->options().build_id();
2706 if (strcmp(style, "none") == 0)
2707 return;
2708
2709 // Set DESCSZ to the size of the note descriptor. When possible,
2710 // set DESC to the note descriptor contents.
2711 size_t descsz;
2712 std::string desc;
2713 if (strcmp(style, "md5") == 0)
2714 descsz = 128 / 8;
2715 else if (strcmp(style, "sha1") == 0)
2716 descsz = 160 / 8;
2717 else if (strcmp(style, "uuid") == 0)
2718 {
2719 const size_t uuidsz = 128 / 8;
2720
2721 char buffer[uuidsz];
2722 memset(buffer, 0, uuidsz);
2723
2724 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2725 if (descriptor < 0)
2726 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2727 strerror(errno));
2728 else
2729 {
2730 ssize_t got = ::read(descriptor, buffer, uuidsz);
2731 release_descriptor(descriptor, true);
2732 if (got < 0)
2733 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2734 else if (static_cast<size_t>(got) != uuidsz)
2735 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2736 uuidsz, got);
2737 }
2738
2739 desc.assign(buffer, uuidsz);
2740 descsz = uuidsz;
2741 }
2742 else if (strncmp(style, "0x", 2) == 0)
2743 {
2744 hex_init();
2745 const char* p = style + 2;
2746 while (*p != '\0')
2747 {
2748 if (hex_p(p[0]) && hex_p(p[1]))
2749 {
2750 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2751 desc += c;
2752 p += 2;
2753 }
2754 else if (*p == '-' || *p == ':')
2755 ++p;
2756 else
2757 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2758 style);
2759 }
2760 descsz = desc.size();
2761 }
2762 else
2763 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2764
2765 // Create the note.
2766 size_t trailing_padding;
2767 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2768 ".note.gnu.build-id", descsz, true,
2769 &trailing_padding);
2770 if (os == NULL)
2771 return;
2772
2773 if (!desc.empty())
2774 {
2775 // We know the value already, so we fill it in now.
2776 gold_assert(desc.size() == descsz);
2777
2778 Output_section_data* posd = new Output_data_const(desc, 4);
2779 os->add_output_section_data(posd);
2780
2781 if (trailing_padding != 0)
2782 {
2783 posd = new Output_data_zero_fill(trailing_padding, 0);
2784 os->add_output_section_data(posd);
2785 }
2786 }
2787 else
2788 {
2789 // We need to compute a checksum after we have completed the
2790 // link.
2791 gold_assert(trailing_padding == 0);
2792 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2793 os->add_output_section_data(this->build_id_note_);
2794 }
2795 }
2796
2797 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2798 // field of the former should point to the latter. I'm not sure who
2799 // started this, but the GNU linker does it, and some tools depend
2800 // upon it.
2801
2802 void
2803 Layout::link_stabs_sections()
2804 {
2805 if (!this->have_stabstr_section_)
2806 return;
2807
2808 for (Section_list::iterator p = this->section_list_.begin();
2809 p != this->section_list_.end();
2810 ++p)
2811 {
2812 if ((*p)->type() != elfcpp::SHT_STRTAB)
2813 continue;
2814
2815 const char* name = (*p)->name();
2816 if (strncmp(name, ".stab", 5) != 0)
2817 continue;
2818
2819 size_t len = strlen(name);
2820 if (strcmp(name + len - 3, "str") != 0)
2821 continue;
2822
2823 std::string stab_name(name, len - 3);
2824 Output_section* stab_sec;
2825 stab_sec = this->find_output_section(stab_name.c_str());
2826 if (stab_sec != NULL)
2827 stab_sec->set_link_section(*p);
2828 }
2829 }
2830
2831 // Create .gnu_incremental_inputs and related sections needed
2832 // for the next run of incremental linking to check what has changed.
2833
2834 void
2835 Layout::create_incremental_info_sections(Symbol_table* symtab)
2836 {
2837 Incremental_inputs* incr = this->incremental_inputs_;
2838
2839 gold_assert(incr != NULL);
2840
2841 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2842 incr->create_data_sections(symtab);
2843
2844 // Add the .gnu_incremental_inputs section.
2845 const char* incremental_inputs_name =
2846 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2847 Output_section* incremental_inputs_os =
2848 this->make_output_section(incremental_inputs_name,
2849 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2850 ORDER_INVALID, false);
2851 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2852
2853 // Add the .gnu_incremental_symtab section.
2854 const char* incremental_symtab_name =
2855 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2856 Output_section* incremental_symtab_os =
2857 this->make_output_section(incremental_symtab_name,
2858 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2859 ORDER_INVALID, false);
2860 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2861 incremental_symtab_os->set_entsize(4);
2862
2863 // Add the .gnu_incremental_relocs section.
2864 const char* incremental_relocs_name =
2865 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2866 Output_section* incremental_relocs_os =
2867 this->make_output_section(incremental_relocs_name,
2868 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2869 ORDER_INVALID, false);
2870 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2871 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2872
2873 // Add the .gnu_incremental_got_plt section.
2874 const char* incremental_got_plt_name =
2875 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2876 Output_section* incremental_got_plt_os =
2877 this->make_output_section(incremental_got_plt_name,
2878 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2879 ORDER_INVALID, false);
2880 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2881
2882 // Add the .gnu_incremental_strtab section.
2883 const char* incremental_strtab_name =
2884 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2885 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2886 elfcpp::SHT_STRTAB, 0,
2887 ORDER_INVALID, false);
2888 Output_data_strtab* strtab_data =
2889 new Output_data_strtab(incr->get_stringpool());
2890 incremental_strtab_os->add_output_section_data(strtab_data);
2891
2892 incremental_inputs_os->set_after_input_sections();
2893 incremental_symtab_os->set_after_input_sections();
2894 incremental_relocs_os->set_after_input_sections();
2895 incremental_got_plt_os->set_after_input_sections();
2896
2897 incremental_inputs_os->set_link_section(incremental_strtab_os);
2898 incremental_symtab_os->set_link_section(incremental_inputs_os);
2899 incremental_relocs_os->set_link_section(incremental_inputs_os);
2900 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2901 }
2902
2903 // Return whether SEG1 should be before SEG2 in the output file. This
2904 // is based entirely on the segment type and flags. When this is
2905 // called the segment addresses have normally not yet been set.
2906
2907 bool
2908 Layout::segment_precedes(const Output_segment* seg1,
2909 const Output_segment* seg2)
2910 {
2911 elfcpp::Elf_Word type1 = seg1->type();
2912 elfcpp::Elf_Word type2 = seg2->type();
2913
2914 // The single PT_PHDR segment is required to precede any loadable
2915 // segment. We simply make it always first.
2916 if (type1 == elfcpp::PT_PHDR)
2917 {
2918 gold_assert(type2 != elfcpp::PT_PHDR);
2919 return true;
2920 }
2921 if (type2 == elfcpp::PT_PHDR)
2922 return false;
2923
2924 // The single PT_INTERP segment is required to precede any loadable
2925 // segment. We simply make it always second.
2926 if (type1 == elfcpp::PT_INTERP)
2927 {
2928 gold_assert(type2 != elfcpp::PT_INTERP);
2929 return true;
2930 }
2931 if (type2 == elfcpp::PT_INTERP)
2932 return false;
2933
2934 // We then put PT_LOAD segments before any other segments.
2935 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2936 return true;
2937 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2938 return false;
2939
2940 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2941 // segment, because that is where the dynamic linker expects to find
2942 // it (this is just for efficiency; other positions would also work
2943 // correctly).
2944 if (type1 == elfcpp::PT_TLS
2945 && type2 != elfcpp::PT_TLS
2946 && type2 != elfcpp::PT_GNU_RELRO)
2947 return false;
2948 if (type2 == elfcpp::PT_TLS
2949 && type1 != elfcpp::PT_TLS
2950 && type1 != elfcpp::PT_GNU_RELRO)
2951 return true;
2952
2953 // We put the PT_GNU_RELRO segment last, because that is where the
2954 // dynamic linker expects to find it (as with PT_TLS, this is just
2955 // for efficiency).
2956 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2957 return false;
2958 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2959 return true;
2960
2961 const elfcpp::Elf_Word flags1 = seg1->flags();
2962 const elfcpp::Elf_Word flags2 = seg2->flags();
2963
2964 // The order of non-PT_LOAD segments is unimportant. We simply sort
2965 // by the numeric segment type and flags values. There should not
2966 // be more than one segment with the same type and flags.
2967 if (type1 != elfcpp::PT_LOAD)
2968 {
2969 if (type1 != type2)
2970 return type1 < type2;
2971 gold_assert(flags1 != flags2);
2972 return flags1 < flags2;
2973 }
2974
2975 // If the addresses are set already, sort by load address.
2976 if (seg1->are_addresses_set())
2977 {
2978 if (!seg2->are_addresses_set())
2979 return true;
2980
2981 unsigned int section_count1 = seg1->output_section_count();
2982 unsigned int section_count2 = seg2->output_section_count();
2983 if (section_count1 == 0 && section_count2 > 0)
2984 return true;
2985 if (section_count1 > 0 && section_count2 == 0)
2986 return false;
2987
2988 uint64_t paddr1 = (seg1->are_addresses_set()
2989 ? seg1->paddr()
2990 : seg1->first_section_load_address());
2991 uint64_t paddr2 = (seg2->are_addresses_set()
2992 ? seg2->paddr()
2993 : seg2->first_section_load_address());
2994
2995 if (paddr1 != paddr2)
2996 return paddr1 < paddr2;
2997 }
2998 else if (seg2->are_addresses_set())
2999 return false;
3000
3001 // A segment which holds large data comes after a segment which does
3002 // not hold large data.
3003 if (seg1->is_large_data_segment())
3004 {
3005 if (!seg2->is_large_data_segment())
3006 return false;
3007 }
3008 else if (seg2->is_large_data_segment())
3009 return true;
3010
3011 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3012 // segments come before writable segments. Then writable segments
3013 // with data come before writable segments without data. Then
3014 // executable segments come before non-executable segments. Then
3015 // the unlikely case of a non-readable segment comes before the
3016 // normal case of a readable segment. If there are multiple
3017 // segments with the same type and flags, we require that the
3018 // address be set, and we sort by virtual address and then physical
3019 // address.
3020 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3021 return (flags1 & elfcpp::PF_W) == 0;
3022 if ((flags1 & elfcpp::PF_W) != 0
3023 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3024 return seg1->has_any_data_sections();
3025 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3026 return (flags1 & elfcpp::PF_X) != 0;
3027 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3028 return (flags1 & elfcpp::PF_R) == 0;
3029
3030 // We shouldn't get here--we shouldn't create segments which we
3031 // can't distinguish. Unless of course we are using a weird linker
3032 // script or overlapping --section-start options.
3033 gold_assert(this->script_options_->saw_phdrs_clause()
3034 || parameters->options().any_section_start());
3035 return false;
3036 }
3037
3038 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3039
3040 static off_t
3041 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3042 {
3043 uint64_t unsigned_off = off;
3044 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3045 | (addr & (abi_pagesize - 1)));
3046 if (aligned_off < unsigned_off)
3047 aligned_off += abi_pagesize;
3048 return aligned_off;
3049 }
3050
3051 // Set the file offsets of all the segments, and all the sections they
3052 // contain. They have all been created. LOAD_SEG must be be laid out
3053 // first. Return the offset of the data to follow.
3054
3055 off_t
3056 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3057 unsigned int* pshndx)
3058 {
3059 // Sort them into the final order. We use a stable sort so that we
3060 // don't randomize the order of indistinguishable segments created
3061 // by linker scripts.
3062 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3063 Layout::Compare_segments(this));
3064
3065 // Find the PT_LOAD segments, and set their addresses and offsets
3066 // and their section's addresses and offsets.
3067 uint64_t start_addr;
3068 if (parameters->options().user_set_Ttext())
3069 start_addr = parameters->options().Ttext();
3070 else if (parameters->options().output_is_position_independent())
3071 start_addr = 0;
3072 else
3073 start_addr = target->default_text_segment_address();
3074
3075 uint64_t addr = start_addr;
3076 off_t off = 0;
3077
3078 // If LOAD_SEG is NULL, then the file header and segment headers
3079 // will not be loadable. But they still need to be at offset 0 in
3080 // the file. Set their offsets now.
3081 if (load_seg == NULL)
3082 {
3083 for (Data_list::iterator p = this->special_output_list_.begin();
3084 p != this->special_output_list_.end();
3085 ++p)
3086 {
3087 off = align_address(off, (*p)->addralign());
3088 (*p)->set_address_and_file_offset(0, off);
3089 off += (*p)->data_size();
3090 }
3091 }
3092
3093 unsigned int increase_relro = this->increase_relro_;
3094 if (this->script_options_->saw_sections_clause())
3095 increase_relro = 0;
3096
3097 const bool check_sections = parameters->options().check_sections();
3098 Output_segment* last_load_segment = NULL;
3099
3100 unsigned int shndx_begin = *pshndx;
3101 unsigned int shndx_load_seg = *pshndx;
3102
3103 for (Segment_list::iterator p = this->segment_list_.begin();
3104 p != this->segment_list_.end();
3105 ++p)
3106 {
3107 if ((*p)->type() == elfcpp::PT_LOAD)
3108 {
3109 if (target->isolate_execinstr())
3110 {
3111 // When we hit the segment that should contain the
3112 // file headers, reset the file offset so we place
3113 // it and subsequent segments appropriately.
3114 // We'll fix up the preceding segments below.
3115 if (load_seg == *p)
3116 {
3117 if (off == 0)
3118 load_seg = NULL;
3119 else
3120 {
3121 off = 0;
3122 shndx_load_seg = *pshndx;
3123 }
3124 }
3125 }
3126 else
3127 {
3128 // Verify that the file headers fall into the first segment.
3129 if (load_seg != NULL && load_seg != *p)
3130 gold_unreachable();
3131 load_seg = NULL;
3132 }
3133
3134 bool are_addresses_set = (*p)->are_addresses_set();
3135 if (are_addresses_set)
3136 {
3137 // When it comes to setting file offsets, we care about
3138 // the physical address.
3139 addr = (*p)->paddr();
3140 }
3141 else if (parameters->options().user_set_Ttext()
3142 && ((*p)->flags() & elfcpp::PF_W) == 0)
3143 {
3144 are_addresses_set = true;
3145 }
3146 else if (parameters->options().user_set_Tdata()
3147 && ((*p)->flags() & elfcpp::PF_W) != 0
3148 && (!parameters->options().user_set_Tbss()
3149 || (*p)->has_any_data_sections()))
3150 {
3151 addr = parameters->options().Tdata();
3152 are_addresses_set = true;
3153 }
3154 else if (parameters->options().user_set_Tbss()
3155 && ((*p)->flags() & elfcpp::PF_W) != 0
3156 && !(*p)->has_any_data_sections())
3157 {
3158 addr = parameters->options().Tbss();
3159 are_addresses_set = true;
3160 }
3161
3162 uint64_t orig_addr = addr;
3163 uint64_t orig_off = off;
3164
3165 uint64_t aligned_addr = 0;
3166 uint64_t abi_pagesize = target->abi_pagesize();
3167 uint64_t common_pagesize = target->common_pagesize();
3168
3169 if (!parameters->options().nmagic()
3170 && !parameters->options().omagic())
3171 (*p)->set_minimum_p_align(common_pagesize);
3172
3173 if (!are_addresses_set)
3174 {
3175 // Skip the address forward one page, maintaining the same
3176 // position within the page. This lets us store both segments
3177 // overlapping on a single page in the file, but the loader will
3178 // put them on different pages in memory. We will revisit this
3179 // decision once we know the size of the segment.
3180
3181 addr = align_address(addr, (*p)->maximum_alignment());
3182 aligned_addr = addr;
3183
3184 if (load_seg == *p)
3185 {
3186 // This is the segment that will contain the file
3187 // headers, so its offset will have to be exactly zero.
3188 gold_assert(orig_off == 0);
3189
3190 // If the target wants a fixed minimum distance from the
3191 // text segment to the read-only segment, move up now.
3192 uint64_t min_addr = start_addr + target->rosegment_gap();
3193 if (addr < min_addr)
3194 addr = min_addr;
3195
3196 // But this is not the first segment! To make its
3197 // address congruent with its offset, that address better
3198 // be aligned to the ABI-mandated page size.
3199 addr = align_address(addr, abi_pagesize);
3200 aligned_addr = addr;
3201 }
3202 else
3203 {
3204 if ((addr & (abi_pagesize - 1)) != 0)
3205 addr = addr + abi_pagesize;
3206
3207 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3208 }
3209 }
3210
3211 if (!parameters->options().nmagic()
3212 && !parameters->options().omagic())
3213 off = align_file_offset(off, addr, abi_pagesize);
3214 else
3215 {
3216 // This is -N or -n with a section script which prevents
3217 // us from using a load segment. We need to ensure that
3218 // the file offset is aligned to the alignment of the
3219 // segment. This is because the linker script
3220 // implicitly assumed a zero offset. If we don't align
3221 // here, then the alignment of the sections in the
3222 // linker script may not match the alignment of the
3223 // sections in the set_section_addresses call below,
3224 // causing an error about dot moving backward.
3225 off = align_address(off, (*p)->maximum_alignment());
3226 }
3227
3228 unsigned int shndx_hold = *pshndx;
3229 bool has_relro = false;
3230 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3231 &increase_relro,
3232 &has_relro,
3233 &off, pshndx);
3234
3235 // Now that we know the size of this segment, we may be able
3236 // to save a page in memory, at the cost of wasting some
3237 // file space, by instead aligning to the start of a new
3238 // page. Here we use the real machine page size rather than
3239 // the ABI mandated page size. If the segment has been
3240 // aligned so that the relro data ends at a page boundary,
3241 // we do not try to realign it.
3242
3243 if (!are_addresses_set
3244 && !has_relro
3245 && aligned_addr != addr
3246 && !parameters->incremental())
3247 {
3248 uint64_t first_off = (common_pagesize
3249 - (aligned_addr
3250 & (common_pagesize - 1)));
3251 uint64_t last_off = new_addr & (common_pagesize - 1);
3252 if (first_off > 0
3253 && last_off > 0
3254 && ((aligned_addr & ~ (common_pagesize - 1))
3255 != (new_addr & ~ (common_pagesize - 1)))
3256 && first_off + last_off <= common_pagesize)
3257 {
3258 *pshndx = shndx_hold;
3259 addr = align_address(aligned_addr, common_pagesize);
3260 addr = align_address(addr, (*p)->maximum_alignment());
3261 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3262 off = align_file_offset(off, addr, abi_pagesize);
3263
3264 increase_relro = this->increase_relro_;
3265 if (this->script_options_->saw_sections_clause())
3266 increase_relro = 0;
3267 has_relro = false;
3268
3269 new_addr = (*p)->set_section_addresses(this, true, addr,
3270 &increase_relro,
3271 &has_relro,
3272 &off, pshndx);
3273 }
3274 }
3275
3276 addr = new_addr;
3277
3278 // Implement --check-sections. We know that the segments
3279 // are sorted by LMA.
3280 if (check_sections && last_load_segment != NULL)
3281 {
3282 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3283 if (last_load_segment->paddr() + last_load_segment->memsz()
3284 > (*p)->paddr())
3285 {
3286 unsigned long long lb1 = last_load_segment->paddr();
3287 unsigned long long le1 = lb1 + last_load_segment->memsz();
3288 unsigned long long lb2 = (*p)->paddr();
3289 unsigned long long le2 = lb2 + (*p)->memsz();
3290 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3291 "[0x%llx -> 0x%llx]"),
3292 lb1, le1, lb2, le2);
3293 }
3294 }
3295 last_load_segment = *p;
3296 }
3297 }
3298
3299 if (load_seg != NULL && target->isolate_execinstr())
3300 {
3301 // Process the early segments again, setting their file offsets
3302 // so they land after the segments starting at LOAD_SEG.
3303 off = align_file_offset(off, 0, target->abi_pagesize());
3304
3305 for (Segment_list::iterator p = this->segment_list_.begin();
3306 *p != load_seg;
3307 ++p)
3308 {
3309 if ((*p)->type() == elfcpp::PT_LOAD)
3310 {
3311 // We repeat the whole job of assigning addresses and
3312 // offsets, but we really only want to change the offsets and
3313 // must ensure that the addresses all come out the same as
3314 // they did the first time through.
3315 bool has_relro = false;
3316 const uint64_t old_addr = (*p)->vaddr();
3317 const uint64_t old_end = old_addr + (*p)->memsz();
3318 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3319 old_addr,
3320 &increase_relro,
3321 &has_relro,
3322 &off,
3323 &shndx_begin);
3324 gold_assert(new_addr == old_end);
3325 }
3326 }
3327
3328 gold_assert(shndx_begin == shndx_load_seg);
3329 }
3330
3331 // Handle the non-PT_LOAD segments, setting their offsets from their
3332 // section's offsets.
3333 for (Segment_list::iterator p = this->segment_list_.begin();
3334 p != this->segment_list_.end();
3335 ++p)
3336 {
3337 if ((*p)->type() != elfcpp::PT_LOAD)
3338 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3339 ? increase_relro
3340 : 0);
3341 }
3342
3343 // Set the TLS offsets for each section in the PT_TLS segment.
3344 if (this->tls_segment_ != NULL)
3345 this->tls_segment_->set_tls_offsets();
3346
3347 return off;
3348 }
3349
3350 // Set the offsets of all the allocated sections when doing a
3351 // relocatable link. This does the same jobs as set_segment_offsets,
3352 // only for a relocatable link.
3353
3354 off_t
3355 Layout::set_relocatable_section_offsets(Output_data* file_header,
3356 unsigned int* pshndx)
3357 {
3358 off_t off = 0;
3359
3360 file_header->set_address_and_file_offset(0, 0);
3361 off += file_header->data_size();
3362
3363 for (Section_list::iterator p = this->section_list_.begin();
3364 p != this->section_list_.end();
3365 ++p)
3366 {
3367 // We skip unallocated sections here, except that group sections
3368 // have to come first.
3369 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3370 && (*p)->type() != elfcpp::SHT_GROUP)
3371 continue;
3372
3373 off = align_address(off, (*p)->addralign());
3374
3375 // The linker script might have set the address.
3376 if (!(*p)->is_address_valid())
3377 (*p)->set_address(0);
3378 (*p)->set_file_offset(off);
3379 (*p)->finalize_data_size();
3380 off += (*p)->data_size();
3381
3382 (*p)->set_out_shndx(*pshndx);
3383 ++*pshndx;
3384 }
3385
3386 return off;
3387 }
3388
3389 // Set the file offset of all the sections not associated with a
3390 // segment.
3391
3392 off_t
3393 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3394 {
3395 off_t startoff = off;
3396 off_t maxoff = off;
3397
3398 for (Section_list::iterator p = this->unattached_section_list_.begin();
3399 p != this->unattached_section_list_.end();
3400 ++p)
3401 {
3402 // The symtab section is handled in create_symtab_sections.
3403 if (*p == this->symtab_section_)
3404 continue;
3405
3406 // If we've already set the data size, don't set it again.
3407 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3408 continue;
3409
3410 if (pass == BEFORE_INPUT_SECTIONS_PASS
3411 && (*p)->requires_postprocessing())
3412 {
3413 (*p)->create_postprocessing_buffer();
3414 this->any_postprocessing_sections_ = true;
3415 }
3416
3417 if (pass == BEFORE_INPUT_SECTIONS_PASS
3418 && (*p)->after_input_sections())
3419 continue;
3420 else if (pass == POSTPROCESSING_SECTIONS_PASS
3421 && (!(*p)->after_input_sections()
3422 || (*p)->type() == elfcpp::SHT_STRTAB))
3423 continue;
3424 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3425 && (!(*p)->after_input_sections()
3426 || (*p)->type() != elfcpp::SHT_STRTAB))
3427 continue;
3428
3429 if (!parameters->incremental_update())
3430 {
3431 off = align_address(off, (*p)->addralign());
3432 (*p)->set_file_offset(off);
3433 (*p)->finalize_data_size();
3434 }
3435 else
3436 {
3437 // Incremental update: allocate file space from free list.
3438 (*p)->pre_finalize_data_size();
3439 off_t current_size = (*p)->current_data_size();
3440 off = this->allocate(current_size, (*p)->addralign(), startoff);
3441 if (off == -1)
3442 {
3443 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3444 this->free_list_.dump();
3445 gold_assert((*p)->output_section() != NULL);
3446 gold_fallback(_("out of patch space for section %s; "
3447 "relink with --incremental-full"),
3448 (*p)->output_section()->name());
3449 }
3450 (*p)->set_file_offset(off);
3451 (*p)->finalize_data_size();
3452 if ((*p)->data_size() > current_size)
3453 {
3454 gold_assert((*p)->output_section() != NULL);
3455 gold_fallback(_("%s: section changed size; "
3456 "relink with --incremental-full"),
3457 (*p)->output_section()->name());
3458 }
3459 gold_debug(DEBUG_INCREMENTAL,
3460 "set_section_offsets: %08lx %08lx %s",
3461 static_cast<long>(off),
3462 static_cast<long>((*p)->data_size()),
3463 ((*p)->output_section() != NULL
3464 ? (*p)->output_section()->name() : "(special)"));
3465 }
3466
3467 off += (*p)->data_size();
3468 if (off > maxoff)
3469 maxoff = off;
3470
3471 // At this point the name must be set.
3472 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3473 this->namepool_.add((*p)->name(), false, NULL);
3474 }
3475 return maxoff;
3476 }
3477
3478 // Set the section indexes of all the sections not associated with a
3479 // segment.
3480
3481 unsigned int
3482 Layout::set_section_indexes(unsigned int shndx)
3483 {
3484 for (Section_list::iterator p = this->unattached_section_list_.begin();
3485 p != this->unattached_section_list_.end();
3486 ++p)
3487 {
3488 if (!(*p)->has_out_shndx())
3489 {
3490 (*p)->set_out_shndx(shndx);
3491 ++shndx;
3492 }
3493 }
3494 return shndx;
3495 }
3496
3497 // Set the section addresses according to the linker script. This is
3498 // only called when we see a SECTIONS clause. This returns the
3499 // program segment which should hold the file header and segment
3500 // headers, if any. It will return NULL if they should not be in a
3501 // segment.
3502
3503 Output_segment*
3504 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3505 {
3506 Script_sections* ss = this->script_options_->script_sections();
3507 gold_assert(ss->saw_sections_clause());
3508 return this->script_options_->set_section_addresses(symtab, this);
3509 }
3510
3511 // Place the orphan sections in the linker script.
3512
3513 void
3514 Layout::place_orphan_sections_in_script()
3515 {
3516 Script_sections* ss = this->script_options_->script_sections();
3517 gold_assert(ss->saw_sections_clause());
3518
3519 // Place each orphaned output section in the script.
3520 for (Section_list::iterator p = this->section_list_.begin();
3521 p != this->section_list_.end();
3522 ++p)
3523 {
3524 if (!(*p)->found_in_sections_clause())
3525 ss->place_orphan(*p);
3526 }
3527 }
3528
3529 // Count the local symbols in the regular symbol table and the dynamic
3530 // symbol table, and build the respective string pools.
3531
3532 void
3533 Layout::count_local_symbols(const Task* task,
3534 const Input_objects* input_objects)
3535 {
3536 // First, figure out an upper bound on the number of symbols we'll
3537 // be inserting into each pool. This helps us create the pools with
3538 // the right size, to avoid unnecessary hashtable resizing.
3539 unsigned int symbol_count = 0;
3540 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3541 p != input_objects->relobj_end();
3542 ++p)
3543 symbol_count += (*p)->local_symbol_count();
3544
3545 // Go from "upper bound" to "estimate." We overcount for two
3546 // reasons: we double-count symbols that occur in more than one
3547 // object file, and we count symbols that are dropped from the
3548 // output. Add it all together and assume we overcount by 100%.
3549 symbol_count /= 2;
3550
3551 // We assume all symbols will go into both the sympool and dynpool.
3552 this->sympool_.reserve(symbol_count);
3553 this->dynpool_.reserve(symbol_count);
3554
3555 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3556 p != input_objects->relobj_end();
3557 ++p)
3558 {
3559 Task_lock_obj<Object> tlo(task, *p);
3560 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3561 }
3562 }
3563
3564 // Create the symbol table sections. Here we also set the final
3565 // values of the symbols. At this point all the loadable sections are
3566 // fully laid out. SHNUM is the number of sections so far.
3567
3568 void
3569 Layout::create_symtab_sections(const Input_objects* input_objects,
3570 Symbol_table* symtab,
3571 unsigned int shnum,
3572 off_t* poff)
3573 {
3574 int symsize;
3575 unsigned int align;
3576 if (parameters->target().get_size() == 32)
3577 {
3578 symsize = elfcpp::Elf_sizes<32>::sym_size;
3579 align = 4;
3580 }
3581 else if (parameters->target().get_size() == 64)
3582 {
3583 symsize = elfcpp::Elf_sizes<64>::sym_size;
3584 align = 8;
3585 }
3586 else
3587 gold_unreachable();
3588
3589 // Compute file offsets relative to the start of the symtab section.
3590 off_t off = 0;
3591
3592 // Save space for the dummy symbol at the start of the section. We
3593 // never bother to write this out--it will just be left as zero.
3594 off += symsize;
3595 unsigned int local_symbol_index = 1;
3596
3597 // Add STT_SECTION symbols for each Output section which needs one.
3598 for (Section_list::iterator p = this->section_list_.begin();
3599 p != this->section_list_.end();
3600 ++p)
3601 {
3602 if (!(*p)->needs_symtab_index())
3603 (*p)->set_symtab_index(-1U);
3604 else
3605 {
3606 (*p)->set_symtab_index(local_symbol_index);
3607 ++local_symbol_index;
3608 off += symsize;
3609 }
3610 }
3611
3612 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3613 p != input_objects->relobj_end();
3614 ++p)
3615 {
3616 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3617 off, symtab);
3618 off += (index - local_symbol_index) * symsize;
3619 local_symbol_index = index;
3620 }
3621
3622 unsigned int local_symcount = local_symbol_index;
3623 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3624
3625 off_t dynoff;
3626 size_t dyn_global_index;
3627 size_t dyncount;
3628 if (this->dynsym_section_ == NULL)
3629 {
3630 dynoff = 0;
3631 dyn_global_index = 0;
3632 dyncount = 0;
3633 }
3634 else
3635 {
3636 dyn_global_index = this->dynsym_section_->info();
3637 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3638 dynoff = this->dynsym_section_->offset() + locsize;
3639 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3640 gold_assert(static_cast<off_t>(dyncount * symsize)
3641 == this->dynsym_section_->data_size() - locsize);
3642 }
3643
3644 off_t global_off = off;
3645 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3646 &this->sympool_, &local_symcount);
3647
3648 if (!parameters->options().strip_all())
3649 {
3650 this->sympool_.set_string_offsets();
3651
3652 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3653 Output_section* osymtab = this->make_output_section(symtab_name,
3654 elfcpp::SHT_SYMTAB,
3655 0, ORDER_INVALID,
3656 false);
3657 this->symtab_section_ = osymtab;
3658
3659 Output_section_data* pos = new Output_data_fixed_space(off, align,
3660 "** symtab");
3661 osymtab->add_output_section_data(pos);
3662
3663 // We generate a .symtab_shndx section if we have more than
3664 // SHN_LORESERVE sections. Technically it is possible that we
3665 // don't need one, because it is possible that there are no
3666 // symbols in any of sections with indexes larger than
3667 // SHN_LORESERVE. That is probably unusual, though, and it is
3668 // easier to always create one than to compute section indexes
3669 // twice (once here, once when writing out the symbols).
3670 if (shnum >= elfcpp::SHN_LORESERVE)
3671 {
3672 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3673 false, NULL);
3674 Output_section* osymtab_xindex =
3675 this->make_output_section(symtab_xindex_name,
3676 elfcpp::SHT_SYMTAB_SHNDX, 0,
3677 ORDER_INVALID, false);
3678
3679 size_t symcount = off / symsize;
3680 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3681
3682 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3683
3684 osymtab_xindex->set_link_section(osymtab);
3685 osymtab_xindex->set_addralign(4);
3686 osymtab_xindex->set_entsize(4);
3687
3688 osymtab_xindex->set_after_input_sections();
3689
3690 // This tells the driver code to wait until the symbol table
3691 // has written out before writing out the postprocessing
3692 // sections, including the .symtab_shndx section.
3693 this->any_postprocessing_sections_ = true;
3694 }
3695
3696 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3697 Output_section* ostrtab = this->make_output_section(strtab_name,
3698 elfcpp::SHT_STRTAB,
3699 0, ORDER_INVALID,
3700 false);
3701
3702 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3703 ostrtab->add_output_section_data(pstr);
3704
3705 off_t symtab_off;
3706 if (!parameters->incremental_update())
3707 symtab_off = align_address(*poff, align);
3708 else
3709 {
3710 symtab_off = this->allocate(off, align, *poff);
3711 if (off == -1)
3712 gold_fallback(_("out of patch space for symbol table; "
3713 "relink with --incremental-full"));
3714 gold_debug(DEBUG_INCREMENTAL,
3715 "create_symtab_sections: %08lx %08lx .symtab",
3716 static_cast<long>(symtab_off),
3717 static_cast<long>(off));
3718 }
3719
3720 symtab->set_file_offset(symtab_off + global_off);
3721 osymtab->set_file_offset(symtab_off);
3722 osymtab->finalize_data_size();
3723 osymtab->set_link_section(ostrtab);
3724 osymtab->set_info(local_symcount);
3725 osymtab->set_entsize(symsize);
3726
3727 if (symtab_off + off > *poff)
3728 *poff = symtab_off + off;
3729 }
3730 }
3731
3732 // Create the .shstrtab section, which holds the names of the
3733 // sections. At the time this is called, we have created all the
3734 // output sections except .shstrtab itself.
3735
3736 Output_section*
3737 Layout::create_shstrtab()
3738 {
3739 // FIXME: We don't need to create a .shstrtab section if we are
3740 // stripping everything.
3741
3742 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3743
3744 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3745 ORDER_INVALID, false);
3746
3747 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3748 {
3749 // We can't write out this section until we've set all the
3750 // section names, and we don't set the names of compressed
3751 // output sections until relocations are complete. FIXME: With
3752 // the current names we use, this is unnecessary.
3753 os->set_after_input_sections();
3754 }
3755
3756 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3757 os->add_output_section_data(posd);
3758
3759 return os;
3760 }
3761
3762 // Create the section headers. SIZE is 32 or 64. OFF is the file
3763 // offset.
3764
3765 void
3766 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3767 {
3768 Output_section_headers* oshdrs;
3769 oshdrs = new Output_section_headers(this,
3770 &this->segment_list_,
3771 &this->section_list_,
3772 &this->unattached_section_list_,
3773 &this->namepool_,
3774 shstrtab_section);
3775 off_t off;
3776 if (!parameters->incremental_update())
3777 off = align_address(*poff, oshdrs->addralign());
3778 else
3779 {
3780 oshdrs->pre_finalize_data_size();
3781 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3782 if (off == -1)
3783 gold_fallback(_("out of patch space for section header table; "
3784 "relink with --incremental-full"));
3785 gold_debug(DEBUG_INCREMENTAL,
3786 "create_shdrs: %08lx %08lx (section header table)",
3787 static_cast<long>(off),
3788 static_cast<long>(off + oshdrs->data_size()));
3789 }
3790 oshdrs->set_address_and_file_offset(0, off);
3791 off += oshdrs->data_size();
3792 if (off > *poff)
3793 *poff = off;
3794 this->section_headers_ = oshdrs;
3795 }
3796
3797 // Count the allocated sections.
3798
3799 size_t
3800 Layout::allocated_output_section_count() const
3801 {
3802 size_t section_count = 0;
3803 for (Segment_list::const_iterator p = this->segment_list_.begin();
3804 p != this->segment_list_.end();
3805 ++p)
3806 section_count += (*p)->output_section_count();
3807 return section_count;
3808 }
3809
3810 // Create the dynamic symbol table.
3811
3812 void
3813 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3814 Symbol_table* symtab,
3815 Output_section** pdynstr,
3816 unsigned int* plocal_dynamic_count,
3817 std::vector<Symbol*>* pdynamic_symbols,
3818 Versions* pversions)
3819 {
3820 // Count all the symbols in the dynamic symbol table, and set the
3821 // dynamic symbol indexes.
3822
3823 // Skip symbol 0, which is always all zeroes.
3824 unsigned int index = 1;
3825
3826 // Add STT_SECTION symbols for each Output section which needs one.
3827 for (Section_list::iterator p = this->section_list_.begin();
3828 p != this->section_list_.end();
3829 ++p)
3830 {
3831 if (!(*p)->needs_dynsym_index())
3832 (*p)->set_dynsym_index(-1U);
3833 else
3834 {
3835 (*p)->set_dynsym_index(index);
3836 ++index;
3837 }
3838 }
3839
3840 // Count the local symbols that need to go in the dynamic symbol table,
3841 // and set the dynamic symbol indexes.
3842 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3843 p != input_objects->relobj_end();
3844 ++p)
3845 {
3846 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3847 index = new_index;
3848 }
3849
3850 unsigned int local_symcount = index;
3851 *plocal_dynamic_count = local_symcount;
3852
3853 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3854 &this->dynpool_, pversions);
3855
3856 int symsize;
3857 unsigned int align;
3858 const int size = parameters->target().get_size();
3859 if (size == 32)
3860 {
3861 symsize = elfcpp::Elf_sizes<32>::sym_size;
3862 align = 4;
3863 }
3864 else if (size == 64)
3865 {
3866 symsize = elfcpp::Elf_sizes<64>::sym_size;
3867 align = 8;
3868 }
3869 else
3870 gold_unreachable();
3871
3872 // Create the dynamic symbol table section.
3873
3874 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3875 elfcpp::SHT_DYNSYM,
3876 elfcpp::SHF_ALLOC,
3877 false,
3878 ORDER_DYNAMIC_LINKER,
3879 false);
3880
3881 // Check for NULL as a linker script may discard .dynsym.
3882 if (dynsym != NULL)
3883 {
3884 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3885 align,
3886 "** dynsym");
3887 dynsym->add_output_section_data(odata);
3888
3889 dynsym->set_info(local_symcount);
3890 dynsym->set_entsize(symsize);
3891 dynsym->set_addralign(align);
3892
3893 this->dynsym_section_ = dynsym;
3894 }
3895
3896 Output_data_dynamic* const odyn = this->dynamic_data_;
3897 if (odyn != NULL)
3898 {
3899 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3900 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3901 }
3902
3903 // If there are more than SHN_LORESERVE allocated sections, we
3904 // create a .dynsym_shndx section. It is possible that we don't
3905 // need one, because it is possible that there are no dynamic
3906 // symbols in any of the sections with indexes larger than
3907 // SHN_LORESERVE. This is probably unusual, though, and at this
3908 // time we don't know the actual section indexes so it is
3909 // inconvenient to check.
3910 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3911 {
3912 Output_section* dynsym_xindex =
3913 this->choose_output_section(NULL, ".dynsym_shndx",
3914 elfcpp::SHT_SYMTAB_SHNDX,
3915 elfcpp::SHF_ALLOC,
3916 false, ORDER_DYNAMIC_LINKER, false);
3917
3918 if (dynsym_xindex != NULL)
3919 {
3920 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3921
3922 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3923
3924 dynsym_xindex->set_link_section(dynsym);
3925 dynsym_xindex->set_addralign(4);
3926 dynsym_xindex->set_entsize(4);
3927
3928 dynsym_xindex->set_after_input_sections();
3929
3930 // This tells the driver code to wait until the symbol table
3931 // has written out before writing out the postprocessing
3932 // sections, including the .dynsym_shndx section.
3933 this->any_postprocessing_sections_ = true;
3934 }
3935 }
3936
3937 // Create the dynamic string table section.
3938
3939 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3940 elfcpp::SHT_STRTAB,
3941 elfcpp::SHF_ALLOC,
3942 false,
3943 ORDER_DYNAMIC_LINKER,
3944 false);
3945
3946 if (dynstr != NULL)
3947 {
3948 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3949 dynstr->add_output_section_data(strdata);
3950
3951 if (dynsym != NULL)
3952 dynsym->set_link_section(dynstr);
3953 if (this->dynamic_section_ != NULL)
3954 this->dynamic_section_->set_link_section(dynstr);
3955
3956 if (odyn != NULL)
3957 {
3958 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3959 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3960 }
3961
3962 *pdynstr = dynstr;
3963 }
3964
3965 // Create the hash tables.
3966
3967 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3968 || strcmp(parameters->options().hash_style(), "both") == 0)
3969 {
3970 unsigned char* phash;
3971 unsigned int hashlen;
3972 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3973 &phash, &hashlen);
3974
3975 Output_section* hashsec =
3976 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3977 elfcpp::SHF_ALLOC, false,
3978 ORDER_DYNAMIC_LINKER, false);
3979
3980 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3981 hashlen,
3982 align,
3983 "** hash");
3984 if (hashsec != NULL && hashdata != NULL)
3985 hashsec->add_output_section_data(hashdata);
3986
3987 if (hashsec != NULL)
3988 {
3989 if (dynsym != NULL)
3990 hashsec->set_link_section(dynsym);
3991 hashsec->set_entsize(4);
3992 }
3993
3994 if (odyn != NULL)
3995 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3996 }
3997
3998 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3999 || strcmp(parameters->options().hash_style(), "both") == 0)
4000 {
4001 unsigned char* phash;
4002 unsigned int hashlen;
4003 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4004 &phash, &hashlen);
4005
4006 Output_section* hashsec =
4007 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4008 elfcpp::SHF_ALLOC, false,
4009 ORDER_DYNAMIC_LINKER, false);
4010
4011 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4012 hashlen,
4013 align,
4014 "** hash");
4015 if (hashsec != NULL && hashdata != NULL)
4016 hashsec->add_output_section_data(hashdata);
4017
4018 if (hashsec != NULL)
4019 {
4020 if (dynsym != NULL)
4021 hashsec->set_link_section(dynsym);
4022
4023 // For a 64-bit target, the entries in .gnu.hash do not have
4024 // a uniform size, so we only set the entry size for a
4025 // 32-bit target.
4026 if (parameters->target().get_size() == 32)
4027 hashsec->set_entsize(4);
4028
4029 if (odyn != NULL)
4030 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4031 }
4032 }
4033 }
4034
4035 // Assign offsets to each local portion of the dynamic symbol table.
4036
4037 void
4038 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4039 {
4040 Output_section* dynsym = this->dynsym_section_;
4041 if (dynsym == NULL)
4042 return;
4043
4044 off_t off = dynsym->offset();
4045
4046 // Skip the dummy symbol at the start of the section.
4047 off += dynsym->entsize();
4048
4049 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4050 p != input_objects->relobj_end();
4051 ++p)
4052 {
4053 unsigned int count = (*p)->set_local_dynsym_offset(off);
4054 off += count * dynsym->entsize();
4055 }
4056 }
4057
4058 // Create the version sections.
4059
4060 void
4061 Layout::create_version_sections(const Versions* versions,
4062 const Symbol_table* symtab,
4063 unsigned int local_symcount,
4064 const std::vector<Symbol*>& dynamic_symbols,
4065 const Output_section* dynstr)
4066 {
4067 if (!versions->any_defs() && !versions->any_needs())
4068 return;
4069
4070 switch (parameters->size_and_endianness())
4071 {
4072 #ifdef HAVE_TARGET_32_LITTLE
4073 case Parameters::TARGET_32_LITTLE:
4074 this->sized_create_version_sections<32, false>(versions, symtab,
4075 local_symcount,
4076 dynamic_symbols, dynstr);
4077 break;
4078 #endif
4079 #ifdef HAVE_TARGET_32_BIG
4080 case Parameters::TARGET_32_BIG:
4081 this->sized_create_version_sections<32, true>(versions, symtab,
4082 local_symcount,
4083 dynamic_symbols, dynstr);
4084 break;
4085 #endif
4086 #ifdef HAVE_TARGET_64_LITTLE
4087 case Parameters::TARGET_64_LITTLE:
4088 this->sized_create_version_sections<64, false>(versions, symtab,
4089 local_symcount,
4090 dynamic_symbols, dynstr);
4091 break;
4092 #endif
4093 #ifdef HAVE_TARGET_64_BIG
4094 case Parameters::TARGET_64_BIG:
4095 this->sized_create_version_sections<64, true>(versions, symtab,
4096 local_symcount,
4097 dynamic_symbols, dynstr);
4098 break;
4099 #endif
4100 default:
4101 gold_unreachable();
4102 }
4103 }
4104
4105 // Create the version sections, sized version.
4106
4107 template<int size, bool big_endian>
4108 void
4109 Layout::sized_create_version_sections(
4110 const Versions* versions,
4111 const Symbol_table* symtab,
4112 unsigned int local_symcount,
4113 const std::vector<Symbol*>& dynamic_symbols,
4114 const Output_section* dynstr)
4115 {
4116 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4117 elfcpp::SHT_GNU_versym,
4118 elfcpp::SHF_ALLOC,
4119 false,
4120 ORDER_DYNAMIC_LINKER,
4121 false);
4122
4123 // Check for NULL since a linker script may discard this section.
4124 if (vsec != NULL)
4125 {
4126 unsigned char* vbuf;
4127 unsigned int vsize;
4128 versions->symbol_section_contents<size, big_endian>(symtab,
4129 &this->dynpool_,
4130 local_symcount,
4131 dynamic_symbols,
4132 &vbuf, &vsize);
4133
4134 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4135 "** versions");
4136
4137 vsec->add_output_section_data(vdata);
4138 vsec->set_entsize(2);
4139 vsec->set_link_section(this->dynsym_section_);
4140 }
4141
4142 Output_data_dynamic* const odyn = this->dynamic_data_;
4143 if (odyn != NULL && vsec != NULL)
4144 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4145
4146 if (versions->any_defs())
4147 {
4148 Output_section* vdsec;
4149 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4150 elfcpp::SHT_GNU_verdef,
4151 elfcpp::SHF_ALLOC,
4152 false, ORDER_DYNAMIC_LINKER, false);
4153
4154 if (vdsec != NULL)
4155 {
4156 unsigned char* vdbuf;
4157 unsigned int vdsize;
4158 unsigned int vdentries;
4159 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4160 &vdbuf, &vdsize,
4161 &vdentries);
4162
4163 Output_section_data* vddata =
4164 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4165
4166 vdsec->add_output_section_data(vddata);
4167 vdsec->set_link_section(dynstr);
4168 vdsec->set_info(vdentries);
4169
4170 if (odyn != NULL)
4171 {
4172 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4173 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4174 }
4175 }
4176 }
4177
4178 if (versions->any_needs())
4179 {
4180 Output_section* vnsec;
4181 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4182 elfcpp::SHT_GNU_verneed,
4183 elfcpp::SHF_ALLOC,
4184 false, ORDER_DYNAMIC_LINKER, false);
4185
4186 if (vnsec != NULL)
4187 {
4188 unsigned char* vnbuf;
4189 unsigned int vnsize;
4190 unsigned int vnentries;
4191 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4192 &vnbuf, &vnsize,
4193 &vnentries);
4194
4195 Output_section_data* vndata =
4196 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4197
4198 vnsec->add_output_section_data(vndata);
4199 vnsec->set_link_section(dynstr);
4200 vnsec->set_info(vnentries);
4201
4202 if (odyn != NULL)
4203 {
4204 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4205 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4206 }
4207 }
4208 }
4209 }
4210
4211 // Create the .interp section and PT_INTERP segment.
4212
4213 void
4214 Layout::create_interp(const Target* target)
4215 {
4216 gold_assert(this->interp_segment_ == NULL);
4217
4218 const char* interp = parameters->options().dynamic_linker();
4219 if (interp == NULL)
4220 {
4221 interp = target->dynamic_linker();
4222 gold_assert(interp != NULL);
4223 }
4224
4225 size_t len = strlen(interp) + 1;
4226
4227 Output_section_data* odata = new Output_data_const(interp, len, 1);
4228
4229 Output_section* osec = this->choose_output_section(NULL, ".interp",
4230 elfcpp::SHT_PROGBITS,
4231 elfcpp::SHF_ALLOC,
4232 false, ORDER_INTERP,
4233 false);
4234 if (osec != NULL)
4235 osec->add_output_section_data(odata);
4236 }
4237
4238 // Add dynamic tags for the PLT and the dynamic relocs. This is
4239 // called by the target-specific code. This does nothing if not doing
4240 // a dynamic link.
4241
4242 // USE_REL is true for REL relocs rather than RELA relocs.
4243
4244 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4245
4246 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4247 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4248 // some targets have multiple reloc sections in PLT_REL.
4249
4250 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4251 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4252 // section.
4253
4254 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4255 // executable.
4256
4257 void
4258 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4259 const Output_data* plt_rel,
4260 const Output_data_reloc_generic* dyn_rel,
4261 bool add_debug, bool dynrel_includes_plt)
4262 {
4263 Output_data_dynamic* odyn = this->dynamic_data_;
4264 if (odyn == NULL)
4265 return;
4266
4267 if (plt_got != NULL && plt_got->output_section() != NULL)
4268 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4269
4270 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4271 {
4272 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4273 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4274 odyn->add_constant(elfcpp::DT_PLTREL,
4275 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4276 }
4277
4278 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4279 {
4280 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4281 dyn_rel->output_section());
4282 if (plt_rel != NULL
4283 && plt_rel->output_section() != NULL
4284 && dynrel_includes_plt)
4285 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4286 dyn_rel->output_section(),
4287 plt_rel->output_section());
4288 else
4289 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4290 dyn_rel->output_section());
4291 const int size = parameters->target().get_size();
4292 elfcpp::DT rel_tag;
4293 int rel_size;
4294 if (use_rel)
4295 {
4296 rel_tag = elfcpp::DT_RELENT;
4297 if (size == 32)
4298 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4299 else if (size == 64)
4300 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4301 else
4302 gold_unreachable();
4303 }
4304 else
4305 {
4306 rel_tag = elfcpp::DT_RELAENT;
4307 if (size == 32)
4308 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4309 else if (size == 64)
4310 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4311 else
4312 gold_unreachable();
4313 }
4314 odyn->add_constant(rel_tag, rel_size);
4315
4316 if (parameters->options().combreloc())
4317 {
4318 size_t c = dyn_rel->relative_reloc_count();
4319 if (c > 0)
4320 odyn->add_constant((use_rel
4321 ? elfcpp::DT_RELCOUNT
4322 : elfcpp::DT_RELACOUNT),
4323 c);
4324 }
4325 }
4326
4327 if (add_debug && !parameters->options().shared())
4328 {
4329 // The value of the DT_DEBUG tag is filled in by the dynamic
4330 // linker at run time, and used by the debugger.
4331 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4332 }
4333 }
4334
4335 // Finish the .dynamic section and PT_DYNAMIC segment.
4336
4337 void
4338 Layout::finish_dynamic_section(const Input_objects* input_objects,
4339 const Symbol_table* symtab)
4340 {
4341 if (!this->script_options_->saw_phdrs_clause()
4342 && this->dynamic_section_ != NULL)
4343 {
4344 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4345 (elfcpp::PF_R
4346 | elfcpp::PF_W));
4347 oseg->add_output_section_to_nonload(this->dynamic_section_,
4348 elfcpp::PF_R | elfcpp::PF_W);
4349 }
4350
4351 Output_data_dynamic* const odyn = this->dynamic_data_;
4352 if (odyn == NULL)
4353 return;
4354
4355 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4356 p != input_objects->dynobj_end();
4357 ++p)
4358 {
4359 if (!(*p)->is_needed() && (*p)->as_needed())
4360 {
4361 // This dynamic object was linked with --as-needed, but it
4362 // is not needed.
4363 continue;
4364 }
4365
4366 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4367 }
4368
4369 if (parameters->options().shared())
4370 {
4371 const char* soname = parameters->options().soname();
4372 if (soname != NULL)
4373 odyn->add_string(elfcpp::DT_SONAME, soname);
4374 }
4375
4376 Symbol* sym = symtab->lookup(parameters->options().init());
4377 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4378 odyn->add_symbol(elfcpp::DT_INIT, sym);
4379
4380 sym = symtab->lookup(parameters->options().fini());
4381 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4382 odyn->add_symbol(elfcpp::DT_FINI, sym);
4383
4384 // Look for .init_array, .preinit_array and .fini_array by checking
4385 // section types.
4386 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4387 p != this->section_list_.end();
4388 ++p)
4389 switch((*p)->type())
4390 {
4391 case elfcpp::SHT_FINI_ARRAY:
4392 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4393 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4394 break;
4395 case elfcpp::SHT_INIT_ARRAY:
4396 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4397 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4398 break;
4399 case elfcpp::SHT_PREINIT_ARRAY:
4400 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4401 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4402 break;
4403 default:
4404 break;
4405 }
4406
4407 // Add a DT_RPATH entry if needed.
4408 const General_options::Dir_list& rpath(parameters->options().rpath());
4409 if (!rpath.empty())
4410 {
4411 std::string rpath_val;
4412 for (General_options::Dir_list::const_iterator p = rpath.begin();
4413 p != rpath.end();
4414 ++p)
4415 {
4416 if (rpath_val.empty())
4417 rpath_val = p->name();
4418 else
4419 {
4420 // Eliminate duplicates.
4421 General_options::Dir_list::const_iterator q;
4422 for (q = rpath.begin(); q != p; ++q)
4423 if (q->name() == p->name())
4424 break;
4425 if (q == p)
4426 {
4427 rpath_val += ':';
4428 rpath_val += p->name();
4429 }
4430 }
4431 }
4432
4433 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4434 if (parameters->options().enable_new_dtags())
4435 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4436 }
4437
4438 // Look for text segments that have dynamic relocations.
4439 bool have_textrel = false;
4440 if (!this->script_options_->saw_sections_clause())
4441 {
4442 for (Segment_list::const_iterator p = this->segment_list_.begin();
4443 p != this->segment_list_.end();
4444 ++p)
4445 {
4446 if ((*p)->type() == elfcpp::PT_LOAD
4447 && ((*p)->flags() & elfcpp::PF_W) == 0
4448 && (*p)->has_dynamic_reloc())
4449 {
4450 have_textrel = true;
4451 break;
4452 }
4453 }
4454 }
4455 else
4456 {
4457 // We don't know the section -> segment mapping, so we are
4458 // conservative and just look for readonly sections with
4459 // relocations. If those sections wind up in writable segments,
4460 // then we have created an unnecessary DT_TEXTREL entry.
4461 for (Section_list::const_iterator p = this->section_list_.begin();
4462 p != this->section_list_.end();
4463 ++p)
4464 {
4465 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4466 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4467 && (*p)->has_dynamic_reloc())
4468 {
4469 have_textrel = true;
4470 break;
4471 }
4472 }
4473 }
4474
4475 if (parameters->options().filter() != NULL)
4476 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4477 if (parameters->options().any_auxiliary())
4478 {
4479 for (options::String_set::const_iterator p =
4480 parameters->options().auxiliary_begin();
4481 p != parameters->options().auxiliary_end();
4482 ++p)
4483 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4484 }
4485
4486 // Add a DT_FLAGS entry if necessary.
4487 unsigned int flags = 0;
4488 if (have_textrel)
4489 {
4490 // Add a DT_TEXTREL for compatibility with older loaders.
4491 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4492 flags |= elfcpp::DF_TEXTREL;
4493
4494 if (parameters->options().text())
4495 gold_error(_("read-only segment has dynamic relocations"));
4496 else if (parameters->options().warn_shared_textrel()
4497 && parameters->options().shared())
4498 gold_warning(_("shared library text segment is not shareable"));
4499 }
4500 if (parameters->options().shared() && this->has_static_tls())
4501 flags |= elfcpp::DF_STATIC_TLS;
4502 if (parameters->options().origin())
4503 flags |= elfcpp::DF_ORIGIN;
4504 if (parameters->options().Bsymbolic())
4505 {
4506 flags |= elfcpp::DF_SYMBOLIC;
4507 // Add DT_SYMBOLIC for compatibility with older loaders.
4508 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4509 }
4510 if (parameters->options().now())
4511 flags |= elfcpp::DF_BIND_NOW;
4512 if (flags != 0)
4513 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4514
4515 flags = 0;
4516 if (parameters->options().initfirst())
4517 flags |= elfcpp::DF_1_INITFIRST;
4518 if (parameters->options().interpose())
4519 flags |= elfcpp::DF_1_INTERPOSE;
4520 if (parameters->options().loadfltr())
4521 flags |= elfcpp::DF_1_LOADFLTR;
4522 if (parameters->options().nodefaultlib())
4523 flags |= elfcpp::DF_1_NODEFLIB;
4524 if (parameters->options().nodelete())
4525 flags |= elfcpp::DF_1_NODELETE;
4526 if (parameters->options().nodlopen())
4527 flags |= elfcpp::DF_1_NOOPEN;
4528 if (parameters->options().nodump())
4529 flags |= elfcpp::DF_1_NODUMP;
4530 if (!parameters->options().shared())
4531 flags &= ~(elfcpp::DF_1_INITFIRST
4532 | elfcpp::DF_1_NODELETE
4533 | elfcpp::DF_1_NOOPEN);
4534 if (parameters->options().origin())
4535 flags |= elfcpp::DF_1_ORIGIN;
4536 if (parameters->options().now())
4537 flags |= elfcpp::DF_1_NOW;
4538 if (parameters->options().Bgroup())
4539 flags |= elfcpp::DF_1_GROUP;
4540 if (flags != 0)
4541 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4542 }
4543
4544 // Set the size of the _DYNAMIC symbol table to be the size of the
4545 // dynamic data.
4546
4547 void
4548 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4549 {
4550 Output_data_dynamic* const odyn = this->dynamic_data_;
4551 if (odyn == NULL)
4552 return;
4553 odyn->finalize_data_size();
4554 if (this->dynamic_symbol_ == NULL)
4555 return;
4556 off_t data_size = odyn->data_size();
4557 const int size = parameters->target().get_size();
4558 if (size == 32)
4559 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4560 else if (size == 64)
4561 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4562 else
4563 gold_unreachable();
4564 }
4565
4566 // The mapping of input section name prefixes to output section names.
4567 // In some cases one prefix is itself a prefix of another prefix; in
4568 // such a case the longer prefix must come first. These prefixes are
4569 // based on the GNU linker default ELF linker script.
4570
4571 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4572 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4573 {
4574 MAPPING_INIT(".text.", ".text"),
4575 MAPPING_INIT(".rodata.", ".rodata"),
4576 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4577 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4578 MAPPING_INIT(".data.", ".data"),
4579 MAPPING_INIT(".bss.", ".bss"),
4580 MAPPING_INIT(".tdata.", ".tdata"),
4581 MAPPING_INIT(".tbss.", ".tbss"),
4582 MAPPING_INIT(".init_array.", ".init_array"),
4583 MAPPING_INIT(".fini_array.", ".fini_array"),
4584 MAPPING_INIT(".sdata.", ".sdata"),
4585 MAPPING_INIT(".sbss.", ".sbss"),
4586 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4587 // differently depending on whether it is creating a shared library.
4588 MAPPING_INIT(".sdata2.", ".sdata"),
4589 MAPPING_INIT(".sbss2.", ".sbss"),
4590 MAPPING_INIT(".lrodata.", ".lrodata"),
4591 MAPPING_INIT(".ldata.", ".ldata"),
4592 MAPPING_INIT(".lbss.", ".lbss"),
4593 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4594 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4595 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4596 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4597 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4598 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4599 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4600 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4601 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4602 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4603 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4604 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4605 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4606 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4607 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4608 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4609 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4610 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4611 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4612 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4613 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4614 };
4615 #undef MAPPING_INIT
4616
4617 const int Layout::section_name_mapping_count =
4618 (sizeof(Layout::section_name_mapping)
4619 / sizeof(Layout::section_name_mapping[0]));
4620
4621 // Choose the output section name to use given an input section name.
4622 // Set *PLEN to the length of the name. *PLEN is initialized to the
4623 // length of NAME.
4624
4625 const char*
4626 Layout::output_section_name(const Relobj* relobj, const char* name,
4627 size_t* plen)
4628 {
4629 // gcc 4.3 generates the following sorts of section names when it
4630 // needs a section name specific to a function:
4631 // .text.FN
4632 // .rodata.FN
4633 // .sdata2.FN
4634 // .data.FN
4635 // .data.rel.FN
4636 // .data.rel.local.FN
4637 // .data.rel.ro.FN
4638 // .data.rel.ro.local.FN
4639 // .sdata.FN
4640 // .bss.FN
4641 // .sbss.FN
4642 // .tdata.FN
4643 // .tbss.FN
4644
4645 // The GNU linker maps all of those to the part before the .FN,
4646 // except that .data.rel.local.FN is mapped to .data, and
4647 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4648 // beginning with .data.rel.ro.local are grouped together.
4649
4650 // For an anonymous namespace, the string FN can contain a '.'.
4651
4652 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4653 // GNU linker maps to .rodata.
4654
4655 // The .data.rel.ro sections are used with -z relro. The sections
4656 // are recognized by name. We use the same names that the GNU
4657 // linker does for these sections.
4658
4659 // It is hard to handle this in a principled way, so we don't even
4660 // try. We use a table of mappings. If the input section name is
4661 // not found in the table, we simply use it as the output section
4662 // name.
4663
4664 const Section_name_mapping* psnm = section_name_mapping;
4665 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4666 {
4667 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4668 {
4669 *plen = psnm->tolen;
4670 return psnm->to;
4671 }
4672 }
4673
4674 // As an additional complication, .ctors sections are output in
4675 // either .ctors or .init_array sections, and .dtors sections are
4676 // output in either .dtors or .fini_array sections.
4677 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4678 {
4679 if (parameters->options().ctors_in_init_array())
4680 {
4681 *plen = 11;
4682 return name[1] == 'c' ? ".init_array" : ".fini_array";
4683 }
4684 else
4685 {
4686 *plen = 6;
4687 return name[1] == 'c' ? ".ctors" : ".dtors";
4688 }
4689 }
4690 if (parameters->options().ctors_in_init_array()
4691 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4692 {
4693 // To make .init_array/.fini_array work with gcc we must exclude
4694 // .ctors and .dtors sections from the crtbegin and crtend
4695 // files.
4696 if (relobj == NULL
4697 || (!Layout::match_file_name(relobj, "crtbegin")
4698 && !Layout::match_file_name(relobj, "crtend")))
4699 {
4700 *plen = 11;
4701 return name[1] == 'c' ? ".init_array" : ".fini_array";
4702 }
4703 }
4704
4705 return name;
4706 }
4707
4708 // Return true if RELOBJ is an input file whose base name matches
4709 // FILE_NAME. The base name must have an extension of ".o", and must
4710 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4711 // to match crtbegin.o as well as crtbeginS.o without getting confused
4712 // by other possibilities. Overall matching the file name this way is
4713 // a dreadful hack, but the GNU linker does it in order to better
4714 // support gcc, and we need to be compatible.
4715
4716 bool
4717 Layout::match_file_name(const Relobj* relobj, const char* match)
4718 {
4719 const std::string& file_name(relobj->name());
4720 const char* base_name = lbasename(file_name.c_str());
4721 size_t match_len = strlen(match);
4722 if (strncmp(base_name, match, match_len) != 0)
4723 return false;
4724 size_t base_len = strlen(base_name);
4725 if (base_len != match_len + 2 && base_len != match_len + 3)
4726 return false;
4727 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4728 }
4729
4730 // Check if a comdat group or .gnu.linkonce section with the given
4731 // NAME is selected for the link. If there is already a section,
4732 // *KEPT_SECTION is set to point to the existing section and the
4733 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4734 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4735 // *KEPT_SECTION is set to the internal copy and the function returns
4736 // true.
4737
4738 bool
4739 Layout::find_or_add_kept_section(const std::string& name,
4740 Relobj* object,
4741 unsigned int shndx,
4742 bool is_comdat,
4743 bool is_group_name,
4744 Kept_section** kept_section)
4745 {
4746 // It's normal to see a couple of entries here, for the x86 thunk
4747 // sections. If we see more than a few, we're linking a C++
4748 // program, and we resize to get more space to minimize rehashing.
4749 if (this->signatures_.size() > 4
4750 && !this->resized_signatures_)
4751 {
4752 reserve_unordered_map(&this->signatures_,
4753 this->number_of_input_files_ * 64);
4754 this->resized_signatures_ = true;
4755 }
4756
4757 Kept_section candidate;
4758 std::pair<Signatures::iterator, bool> ins =
4759 this->signatures_.insert(std::make_pair(name, candidate));
4760
4761 if (kept_section != NULL)
4762 *kept_section = &ins.first->second;
4763 if (ins.second)
4764 {
4765 // This is the first time we've seen this signature.
4766 ins.first->second.set_object(object);
4767 ins.first->second.set_shndx(shndx);
4768 if (is_comdat)
4769 ins.first->second.set_is_comdat();
4770 if (is_group_name)
4771 ins.first->second.set_is_group_name();
4772 return true;
4773 }
4774
4775 // We have already seen this signature.
4776
4777 if (ins.first->second.is_group_name())
4778 {
4779 // We've already seen a real section group with this signature.
4780 // If the kept group is from a plugin object, and we're in the
4781 // replacement phase, accept the new one as a replacement.
4782 if (ins.first->second.object() == NULL
4783 && parameters->options().plugins()->in_replacement_phase())
4784 {
4785 ins.first->second.set_object(object);
4786 ins.first->second.set_shndx(shndx);
4787 return true;
4788 }
4789 return false;
4790 }
4791 else if (is_group_name)
4792 {
4793 // This is a real section group, and we've already seen a
4794 // linkonce section with this signature. Record that we've seen
4795 // a section group, and don't include this section group.
4796 ins.first->second.set_is_group_name();
4797 return false;
4798 }
4799 else
4800 {
4801 // We've already seen a linkonce section and this is a linkonce
4802 // section. These don't block each other--this may be the same
4803 // symbol name with different section types.
4804 return true;
4805 }
4806 }
4807
4808 // Store the allocated sections into the section list.
4809
4810 void
4811 Layout::get_allocated_sections(Section_list* section_list) const
4812 {
4813 for (Section_list::const_iterator p = this->section_list_.begin();
4814 p != this->section_list_.end();
4815 ++p)
4816 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4817 section_list->push_back(*p);
4818 }
4819
4820 // Create an output segment.
4821
4822 Output_segment*
4823 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4824 {
4825 gold_assert(!parameters->options().relocatable());
4826 Output_segment* oseg = new Output_segment(type, flags);
4827 this->segment_list_.push_back(oseg);
4828
4829 if (type == elfcpp::PT_TLS)
4830 this->tls_segment_ = oseg;
4831 else if (type == elfcpp::PT_GNU_RELRO)
4832 this->relro_segment_ = oseg;
4833 else if (type == elfcpp::PT_INTERP)
4834 this->interp_segment_ = oseg;
4835
4836 return oseg;
4837 }
4838
4839 // Return the file offset of the normal symbol table.
4840
4841 off_t
4842 Layout::symtab_section_offset() const
4843 {
4844 if (this->symtab_section_ != NULL)
4845 return this->symtab_section_->offset();
4846 return 0;
4847 }
4848
4849 // Return the section index of the normal symbol table. It may have
4850 // been stripped by the -s/--strip-all option.
4851
4852 unsigned int
4853 Layout::symtab_section_shndx() const
4854 {
4855 if (this->symtab_section_ != NULL)
4856 return this->symtab_section_->out_shndx();
4857 return 0;
4858 }
4859
4860 // Write out the Output_sections. Most won't have anything to write,
4861 // since most of the data will come from input sections which are
4862 // handled elsewhere. But some Output_sections do have Output_data.
4863
4864 void
4865 Layout::write_output_sections(Output_file* of) const
4866 {
4867 for (Section_list::const_iterator p = this->section_list_.begin();
4868 p != this->section_list_.end();
4869 ++p)
4870 {
4871 if (!(*p)->after_input_sections())
4872 (*p)->write(of);
4873 }
4874 }
4875
4876 // Write out data not associated with a section or the symbol table.
4877
4878 void
4879 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4880 {
4881 if (!parameters->options().strip_all())
4882 {
4883 const Output_section* symtab_section = this->symtab_section_;
4884 for (Section_list::const_iterator p = this->section_list_.begin();
4885 p != this->section_list_.end();
4886 ++p)
4887 {
4888 if ((*p)->needs_symtab_index())
4889 {
4890 gold_assert(symtab_section != NULL);
4891 unsigned int index = (*p)->symtab_index();
4892 gold_assert(index > 0 && index != -1U);
4893 off_t off = (symtab_section->offset()
4894 + index * symtab_section->entsize());
4895 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4896 }
4897 }
4898 }
4899
4900 const Output_section* dynsym_section = this->dynsym_section_;
4901 for (Section_list::const_iterator p = this->section_list_.begin();
4902 p != this->section_list_.end();
4903 ++p)
4904 {
4905 if ((*p)->needs_dynsym_index())
4906 {
4907 gold_assert(dynsym_section != NULL);
4908 unsigned int index = (*p)->dynsym_index();
4909 gold_assert(index > 0 && index != -1U);
4910 off_t off = (dynsym_section->offset()
4911 + index * dynsym_section->entsize());
4912 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4913 }
4914 }
4915
4916 // Write out the Output_data which are not in an Output_section.
4917 for (Data_list::const_iterator p = this->special_output_list_.begin();
4918 p != this->special_output_list_.end();
4919 ++p)
4920 (*p)->write(of);
4921 }
4922
4923 // Write out the Output_sections which can only be written after the
4924 // input sections are complete.
4925
4926 void
4927 Layout::write_sections_after_input_sections(Output_file* of)
4928 {
4929 // Determine the final section offsets, and thus the final output
4930 // file size. Note we finalize the .shstrab last, to allow the
4931 // after_input_section sections to modify their section-names before
4932 // writing.
4933 if (this->any_postprocessing_sections_)
4934 {
4935 off_t off = this->output_file_size_;
4936 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4937
4938 // Now that we've finalized the names, we can finalize the shstrab.
4939 off =
4940 this->set_section_offsets(off,
4941 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4942
4943 if (off > this->output_file_size_)
4944 {
4945 of->resize(off);
4946 this->output_file_size_ = off;
4947 }
4948 }
4949
4950 for (Section_list::const_iterator p = this->section_list_.begin();
4951 p != this->section_list_.end();
4952 ++p)
4953 {
4954 if ((*p)->after_input_sections())
4955 (*p)->write(of);
4956 }
4957
4958 this->section_headers_->write(of);
4959 }
4960
4961 // If the build ID requires computing a checksum, do so here, and
4962 // write it out. We compute a checksum over the entire file because
4963 // that is simplest.
4964
4965 void
4966 Layout::write_build_id(Output_file* of) const
4967 {
4968 if (this->build_id_note_ == NULL)
4969 return;
4970
4971 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4972
4973 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4974 this->build_id_note_->data_size());
4975
4976 const char* style = parameters->options().build_id();
4977 if (strcmp(style, "sha1") == 0)
4978 {
4979 sha1_ctx ctx;
4980 sha1_init_ctx(&ctx);
4981 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4982 sha1_finish_ctx(&ctx, ov);
4983 }
4984 else if (strcmp(style, "md5") == 0)
4985 {
4986 md5_ctx ctx;
4987 md5_init_ctx(&ctx);
4988 md5_process_bytes(iv, this->output_file_size_, &ctx);
4989 md5_finish_ctx(&ctx, ov);
4990 }
4991 else
4992 gold_unreachable();
4993
4994 of->write_output_view(this->build_id_note_->offset(),
4995 this->build_id_note_->data_size(),
4996 ov);
4997
4998 of->free_input_view(0, this->output_file_size_, iv);
4999 }
5000
5001 // Write out a binary file. This is called after the link is
5002 // complete. IN is the temporary output file we used to generate the
5003 // ELF code. We simply walk through the segments, read them from
5004 // their file offset in IN, and write them to their load address in
5005 // the output file. FIXME: with a bit more work, we could support
5006 // S-records and/or Intel hex format here.
5007
5008 void
5009 Layout::write_binary(Output_file* in) const
5010 {
5011 gold_assert(parameters->options().oformat_enum()
5012 == General_options::OBJECT_FORMAT_BINARY);
5013
5014 // Get the size of the binary file.
5015 uint64_t max_load_address = 0;
5016 for (Segment_list::const_iterator p = this->segment_list_.begin();
5017 p != this->segment_list_.end();
5018 ++p)
5019 {
5020 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5021 {
5022 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5023 if (max_paddr > max_load_address)
5024 max_load_address = max_paddr;
5025 }
5026 }
5027
5028 Output_file out(parameters->options().output_file_name());
5029 out.open(max_load_address);
5030
5031 for (Segment_list::const_iterator p = this->segment_list_.begin();
5032 p != this->segment_list_.end();
5033 ++p)
5034 {
5035 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5036 {
5037 const unsigned char* vin = in->get_input_view((*p)->offset(),
5038 (*p)->filesz());
5039 unsigned char* vout = out.get_output_view((*p)->paddr(),
5040 (*p)->filesz());
5041 memcpy(vout, vin, (*p)->filesz());
5042 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5043 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5044 }
5045 }
5046
5047 out.close();
5048 }
5049
5050 // Print the output sections to the map file.
5051
5052 void
5053 Layout::print_to_mapfile(Mapfile* mapfile) const
5054 {
5055 for (Segment_list::const_iterator p = this->segment_list_.begin();
5056 p != this->segment_list_.end();
5057 ++p)
5058 (*p)->print_sections_to_mapfile(mapfile);
5059 }
5060
5061 // Print statistical information to stderr. This is used for --stats.
5062
5063 void
5064 Layout::print_stats() const
5065 {
5066 this->namepool_.print_stats("section name pool");
5067 this->sympool_.print_stats("output symbol name pool");
5068 this->dynpool_.print_stats("dynamic name pool");
5069
5070 for (Section_list::const_iterator p = this->section_list_.begin();
5071 p != this->section_list_.end();
5072 ++p)
5073 (*p)->print_merge_stats();
5074 }
5075
5076 // Write_sections_task methods.
5077
5078 // We can always run this task.
5079
5080 Task_token*
5081 Write_sections_task::is_runnable()
5082 {
5083 return NULL;
5084 }
5085
5086 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5087 // when finished.
5088
5089 void
5090 Write_sections_task::locks(Task_locker* tl)
5091 {
5092 tl->add(this, this->output_sections_blocker_);
5093 tl->add(this, this->final_blocker_);
5094 }
5095
5096 // Run the task--write out the data.
5097
5098 void
5099 Write_sections_task::run(Workqueue*)
5100 {
5101 this->layout_->write_output_sections(this->of_);
5102 }
5103
5104 // Write_data_task methods.
5105
5106 // We can always run this task.
5107
5108 Task_token*
5109 Write_data_task::is_runnable()
5110 {
5111 return NULL;
5112 }
5113
5114 // We need to unlock FINAL_BLOCKER when finished.
5115
5116 void
5117 Write_data_task::locks(Task_locker* tl)
5118 {
5119 tl->add(this, this->final_blocker_);
5120 }
5121
5122 // Run the task--write out the data.
5123
5124 void
5125 Write_data_task::run(Workqueue*)
5126 {
5127 this->layout_->write_data(this->symtab_, this->of_);
5128 }
5129
5130 // Write_symbols_task methods.
5131
5132 // We can always run this task.
5133
5134 Task_token*
5135 Write_symbols_task::is_runnable()
5136 {
5137 return NULL;
5138 }
5139
5140 // We need to unlock FINAL_BLOCKER when finished.
5141
5142 void
5143 Write_symbols_task::locks(Task_locker* tl)
5144 {
5145 tl->add(this, this->final_blocker_);
5146 }
5147
5148 // Run the task--write out the symbols.
5149
5150 void
5151 Write_symbols_task::run(Workqueue*)
5152 {
5153 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5154 this->layout_->symtab_xindex(),
5155 this->layout_->dynsym_xindex(), this->of_);
5156 }
5157
5158 // Write_after_input_sections_task methods.
5159
5160 // We can only run this task after the input sections have completed.
5161
5162 Task_token*
5163 Write_after_input_sections_task::is_runnable()
5164 {
5165 if (this->input_sections_blocker_->is_blocked())
5166 return this->input_sections_blocker_;
5167 return NULL;
5168 }
5169
5170 // We need to unlock FINAL_BLOCKER when finished.
5171
5172 void
5173 Write_after_input_sections_task::locks(Task_locker* tl)
5174 {
5175 tl->add(this, this->final_blocker_);
5176 }
5177
5178 // Run the task.
5179
5180 void
5181 Write_after_input_sections_task::run(Workqueue*)
5182 {
5183 this->layout_->write_sections_after_input_sections(this->of_);
5184 }
5185
5186 // Close_task_runner methods.
5187
5188 // Run the task--close the file.
5189
5190 void
5191 Close_task_runner::run(Workqueue*, const Task*)
5192 {
5193 // If we need to compute a checksum for the BUILD if, we do so here.
5194 this->layout_->write_build_id(this->of_);
5195
5196 // If we've been asked to create a binary file, we do so here.
5197 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5198 this->layout_->write_binary(this->of_);
5199
5200 this->of_->close();
5201 }
5202
5203 // Instantiate the templates we need. We could use the configure
5204 // script to restrict this to only the ones for implemented targets.
5205
5206 #ifdef HAVE_TARGET_32_LITTLE
5207 template
5208 Output_section*
5209 Layout::init_fixed_output_section<32, false>(
5210 const char* name,
5211 elfcpp::Shdr<32, false>& shdr);
5212 #endif
5213
5214 #ifdef HAVE_TARGET_32_BIG
5215 template
5216 Output_section*
5217 Layout::init_fixed_output_section<32, true>(
5218 const char* name,
5219 elfcpp::Shdr<32, true>& shdr);
5220 #endif
5221
5222 #ifdef HAVE_TARGET_64_LITTLE
5223 template
5224 Output_section*
5225 Layout::init_fixed_output_section<64, false>(
5226 const char* name,
5227 elfcpp::Shdr<64, false>& shdr);
5228 #endif
5229
5230 #ifdef HAVE_TARGET_64_BIG
5231 template
5232 Output_section*
5233 Layout::init_fixed_output_section<64, true>(
5234 const char* name,
5235 elfcpp::Shdr<64, true>& shdr);
5236 #endif
5237
5238 #ifdef HAVE_TARGET_32_LITTLE
5239 template
5240 Output_section*
5241 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5242 unsigned int shndx,
5243 const char* name,
5244 const elfcpp::Shdr<32, false>& shdr,
5245 unsigned int, unsigned int, off_t*);
5246 #endif
5247
5248 #ifdef HAVE_TARGET_32_BIG
5249 template
5250 Output_section*
5251 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5252 unsigned int shndx,
5253 const char* name,
5254 const elfcpp::Shdr<32, true>& shdr,
5255 unsigned int, unsigned int, off_t*);
5256 #endif
5257
5258 #ifdef HAVE_TARGET_64_LITTLE
5259 template
5260 Output_section*
5261 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5262 unsigned int shndx,
5263 const char* name,
5264 const elfcpp::Shdr<64, false>& shdr,
5265 unsigned int, unsigned int, off_t*);
5266 #endif
5267
5268 #ifdef HAVE_TARGET_64_BIG
5269 template
5270 Output_section*
5271 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5272 unsigned int shndx,
5273 const char* name,
5274 const elfcpp::Shdr<64, true>& shdr,
5275 unsigned int, unsigned int, off_t*);
5276 #endif
5277
5278 #ifdef HAVE_TARGET_32_LITTLE
5279 template
5280 Output_section*
5281 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5282 unsigned int reloc_shndx,
5283 const elfcpp::Shdr<32, false>& shdr,
5284 Output_section* data_section,
5285 Relocatable_relocs* rr);
5286 #endif
5287
5288 #ifdef HAVE_TARGET_32_BIG
5289 template
5290 Output_section*
5291 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5292 unsigned int reloc_shndx,
5293 const elfcpp::Shdr<32, true>& shdr,
5294 Output_section* data_section,
5295 Relocatable_relocs* rr);
5296 #endif
5297
5298 #ifdef HAVE_TARGET_64_LITTLE
5299 template
5300 Output_section*
5301 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5302 unsigned int reloc_shndx,
5303 const elfcpp::Shdr<64, false>& shdr,
5304 Output_section* data_section,
5305 Relocatable_relocs* rr);
5306 #endif
5307
5308 #ifdef HAVE_TARGET_64_BIG
5309 template
5310 Output_section*
5311 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5312 unsigned int reloc_shndx,
5313 const elfcpp::Shdr<64, true>& shdr,
5314 Output_section* data_section,
5315 Relocatable_relocs* rr);
5316 #endif
5317
5318 #ifdef HAVE_TARGET_32_LITTLE
5319 template
5320 void
5321 Layout::layout_group<32, false>(Symbol_table* symtab,
5322 Sized_relobj_file<32, false>* object,
5323 unsigned int,
5324 const char* group_section_name,
5325 const char* signature,
5326 const elfcpp::Shdr<32, false>& shdr,
5327 elfcpp::Elf_Word flags,
5328 std::vector<unsigned int>* shndxes);
5329 #endif
5330
5331 #ifdef HAVE_TARGET_32_BIG
5332 template
5333 void
5334 Layout::layout_group<32, true>(Symbol_table* symtab,
5335 Sized_relobj_file<32, true>* object,
5336 unsigned int,
5337 const char* group_section_name,
5338 const char* signature,
5339 const elfcpp::Shdr<32, true>& shdr,
5340 elfcpp::Elf_Word flags,
5341 std::vector<unsigned int>* shndxes);
5342 #endif
5343
5344 #ifdef HAVE_TARGET_64_LITTLE
5345 template
5346 void
5347 Layout::layout_group<64, false>(Symbol_table* symtab,
5348 Sized_relobj_file<64, false>* object,
5349 unsigned int,
5350 const char* group_section_name,
5351 const char* signature,
5352 const elfcpp::Shdr<64, false>& shdr,
5353 elfcpp::Elf_Word flags,
5354 std::vector<unsigned int>* shndxes);
5355 #endif
5356
5357 #ifdef HAVE_TARGET_64_BIG
5358 template
5359 void
5360 Layout::layout_group<64, true>(Symbol_table* symtab,
5361 Sized_relobj_file<64, true>* object,
5362 unsigned int,
5363 const char* group_section_name,
5364 const char* signature,
5365 const elfcpp::Shdr<64, true>& shdr,
5366 elfcpp::Elf_Word flags,
5367 std::vector<unsigned int>* shndxes);
5368 #endif
5369
5370 #ifdef HAVE_TARGET_32_LITTLE
5371 template
5372 Output_section*
5373 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5374 const unsigned char* symbols,
5375 off_t symbols_size,
5376 const unsigned char* symbol_names,
5377 off_t symbol_names_size,
5378 unsigned int shndx,
5379 const elfcpp::Shdr<32, false>& shdr,
5380 unsigned int reloc_shndx,
5381 unsigned int reloc_type,
5382 off_t* off);
5383 #endif
5384
5385 #ifdef HAVE_TARGET_32_BIG
5386 template
5387 Output_section*
5388 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5389 const unsigned char* symbols,
5390 off_t symbols_size,
5391 const unsigned char* symbol_names,
5392 off_t symbol_names_size,
5393 unsigned int shndx,
5394 const elfcpp::Shdr<32, true>& shdr,
5395 unsigned int reloc_shndx,
5396 unsigned int reloc_type,
5397 off_t* off);
5398 #endif
5399
5400 #ifdef HAVE_TARGET_64_LITTLE
5401 template
5402 Output_section*
5403 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5404 const unsigned char* symbols,
5405 off_t symbols_size,
5406 const unsigned char* symbol_names,
5407 off_t symbol_names_size,
5408 unsigned int shndx,
5409 const elfcpp::Shdr<64, false>& shdr,
5410 unsigned int reloc_shndx,
5411 unsigned int reloc_type,
5412 off_t* off);
5413 #endif
5414
5415 #ifdef HAVE_TARGET_64_BIG
5416 template
5417 Output_section*
5418 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5419 const unsigned char* symbols,
5420 off_t symbols_size,
5421 const unsigned char* symbol_names,
5422 off_t symbol_names_size,
5423 unsigned int shndx,
5424 const elfcpp::Shdr<64, true>& shdr,
5425 unsigned int reloc_shndx,
5426 unsigned int reloc_type,
5427 off_t* off);
5428 #endif
5429
5430 #ifdef HAVE_TARGET_32_LITTLE
5431 template
5432 void
5433 Layout::add_to_gdb_index(bool is_type_unit,
5434 Sized_relobj<32, false>* object,
5435 const unsigned char* symbols,
5436 off_t symbols_size,
5437 unsigned int shndx,
5438 unsigned int reloc_shndx,
5439 unsigned int reloc_type);
5440 #endif
5441
5442 #ifdef HAVE_TARGET_32_BIG
5443 template
5444 void
5445 Layout::add_to_gdb_index(bool is_type_unit,
5446 Sized_relobj<32, true>* object,
5447 const unsigned char* symbols,
5448 off_t symbols_size,
5449 unsigned int shndx,
5450 unsigned int reloc_shndx,
5451 unsigned int reloc_type);
5452 #endif
5453
5454 #ifdef HAVE_TARGET_64_LITTLE
5455 template
5456 void
5457 Layout::add_to_gdb_index(bool is_type_unit,
5458 Sized_relobj<64, false>* object,
5459 const unsigned char* symbols,
5460 off_t symbols_size,
5461 unsigned int shndx,
5462 unsigned int reloc_shndx,
5463 unsigned int reloc_type);
5464 #endif
5465
5466 #ifdef HAVE_TARGET_64_BIG
5467 template
5468 void
5469 Layout::add_to_gdb_index(bool is_type_unit,
5470 Sized_relobj<64, true>* object,
5471 const unsigned char* symbols,
5472 off_t symbols_size,
5473 unsigned int shndx,
5474 unsigned int reloc_shndx,
5475 unsigned int reloc_type);
5476 #endif
5477
5478 } // End namespace gold.
This page took 0.155845 seconds and 5 git commands to generate.