* dwp.cc (Dwp_output_file::add_contribution): Avoid signed/unsigned
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
249 {
250 for(Layout::Section_list::const_iterator p = sections.begin();
251 p != sections.end();
252 ++p)
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
257 ++p)
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
266 {
267 for(Layout::Section_list::const_iterator p = sections.begin();
268 p != sections.end();
269 ++p)
270 {
271 Output_section* os = *p;
272 Section_info info;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
278 }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
286 {
287 size_t i = 0;
288 for(Layout::Section_list::const_iterator p = sections.begin();
289 p != sections.end();
290 ++p, ++i)
291 {
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297 if (i >= this->section_infos_.size())
298 {
299 gold_fatal("Section_info of %s missing.\n", os->name());
300 }
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
309 }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections. This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320 // See if any of the input definitions violate the One Definition Rule.
321 // TODO: if this is too slow, do this as a task, rather than inline.
322 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
323
324 Layout* layout = this->layout_;
325 off_t file_size = layout->finalize(this->input_objects_,
326 this->symtab_,
327 this->target_,
328 task);
329
330 // Now we know the final size of the output file and we know where
331 // each piece of information goes.
332
333 if (this->mapfile_ != NULL)
334 {
335 this->mapfile_->print_discarded_sections(this->input_objects_);
336 layout->print_to_mapfile(this->mapfile_);
337 }
338
339 Output_file* of;
340 if (layout->incremental_base() == NULL)
341 {
342 of = new Output_file(parameters->options().output_file_name());
343 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
344 of->set_is_temporary();
345 of->open(file_size);
346 }
347 else
348 {
349 of = layout->incremental_base()->output_file();
350
351 // Apply the incremental relocations for symbols whose values
352 // have changed. We do this before we resize the file and start
353 // writing anything else to it, so that we can read the old
354 // incremental information from the file before (possibly)
355 // overwriting it.
356 if (parameters->incremental_update())
357 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
358 this->layout_,
359 of);
360
361 of->resize(file_size);
362 }
363
364 // Queue up the final set of tasks.
365 gold::queue_final_tasks(this->options_, this->input_objects_,
366 this->symtab_, layout, workqueue, of);
367 }
368
369 // Layout methods.
370
371 Layout::Layout(int number_of_input_files, Script_options* script_options)
372 : number_of_input_files_(number_of_input_files),
373 script_options_(script_options),
374 namepool_(),
375 sympool_(),
376 dynpool_(),
377 signatures_(),
378 section_name_map_(),
379 segment_list_(),
380 section_list_(),
381 unattached_section_list_(),
382 special_output_list_(),
383 section_headers_(NULL),
384 tls_segment_(NULL),
385 relro_segment_(NULL),
386 interp_segment_(NULL),
387 increase_relro_(0),
388 symtab_section_(NULL),
389 symtab_xindex_(NULL),
390 dynsym_section_(NULL),
391 dynsym_xindex_(NULL),
392 dynamic_section_(NULL),
393 dynamic_symbol_(NULL),
394 dynamic_data_(NULL),
395 eh_frame_section_(NULL),
396 eh_frame_data_(NULL),
397 added_eh_frame_data_(false),
398 eh_frame_hdr_section_(NULL),
399 gdb_index_data_(NULL),
400 build_id_note_(NULL),
401 debug_abbrev_(NULL),
402 debug_info_(NULL),
403 group_signatures_(),
404 output_file_size_(-1),
405 have_added_input_section_(false),
406 sections_are_attached_(false),
407 input_requires_executable_stack_(false),
408 input_with_gnu_stack_note_(false),
409 input_without_gnu_stack_note_(false),
410 has_static_tls_(false),
411 any_postprocessing_sections_(false),
412 resized_signatures_(false),
413 have_stabstr_section_(false),
414 section_ordering_specified_(false),
415 unique_segment_for_sections_specified_(false),
416 incremental_inputs_(NULL),
417 record_output_section_data_from_script_(false),
418 script_output_section_data_list_(),
419 segment_states_(NULL),
420 relaxation_debug_check_(NULL),
421 section_order_map_(),
422 section_segment_map_(),
423 input_section_position_(),
424 input_section_glob_(),
425 incremental_base_(NULL),
426 free_list_()
427 {
428 // Make space for more than enough segments for a typical file.
429 // This is just for efficiency--it's OK if we wind up needing more.
430 this->segment_list_.reserve(12);
431
432 // We expect two unattached Output_data objects: the file header and
433 // the segment headers.
434 this->special_output_list_.reserve(2);
435
436 // Initialize structure needed for an incremental build.
437 if (parameters->incremental())
438 this->incremental_inputs_ = new Incremental_inputs;
439
440 // The section name pool is worth optimizing in all cases, because
441 // it is small, but there are often overlaps due to .rel sections.
442 this->namepool_.set_optimize();
443 }
444
445 // For incremental links, record the base file to be modified.
446
447 void
448 Layout::set_incremental_base(Incremental_binary* base)
449 {
450 this->incremental_base_ = base;
451 this->free_list_.init(base->output_file()->filesize(), true);
452 }
453
454 // Hash a key we use to look up an output section mapping.
455
456 size_t
457 Layout::Hash_key::operator()(const Layout::Key& k) const
458 {
459 return k.first + k.second.first + k.second.second;
460 }
461
462 // These are the debug sections that are actually used by gdb.
463 // Currently, we've checked versions of gdb up to and including 7.4.
464 // We only check the part of the name that follows ".debug_" or
465 // ".zdebug_".
466
467 static const char* gdb_sections[] =
468 {
469 "abbrev",
470 "addr", // Fission extension
471 // "aranges", // not used by gdb as of 7.4
472 "frame",
473 "info",
474 "types",
475 "line",
476 "loc",
477 "macinfo",
478 "macro",
479 // "pubnames", // not used by gdb as of 7.4
480 // "pubtypes", // not used by gdb as of 7.4
481 "ranges",
482 "str",
483 };
484
485 // This is the minimum set of sections needed for line numbers.
486
487 static const char* lines_only_debug_sections[] =
488 {
489 "abbrev",
490 // "addr", // Fission extension
491 // "aranges", // not used by gdb as of 7.4
492 // "frame",
493 "info",
494 // "types",
495 "line",
496 // "loc",
497 // "macinfo",
498 // "macro",
499 // "pubnames", // not used by gdb as of 7.4
500 // "pubtypes", // not used by gdb as of 7.4
501 // "ranges",
502 "str",
503 };
504
505 // These sections are the DWARF fast-lookup tables, and are not needed
506 // when building a .gdb_index section.
507
508 static const char* gdb_fast_lookup_sections[] =
509 {
510 "aranges",
511 "pubnames",
512 "pubtypes",
513 };
514
515 // Returns whether the given debug section is in the list of
516 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
517 // portion of the name following ".debug_" or ".zdebug_".
518
519 static inline bool
520 is_gdb_debug_section(const char* suffix)
521 {
522 // We can do this faster: binary search or a hashtable. But why bother?
523 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
524 if (strcmp(suffix, gdb_sections[i]) == 0)
525 return true;
526 return false;
527 }
528
529 // Returns whether the given section is needed for lines-only debugging.
530
531 static inline bool
532 is_lines_only_debug_section(const char* suffix)
533 {
534 // We can do this faster: binary search or a hashtable. But why bother?
535 for (size_t i = 0;
536 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
537 ++i)
538 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
539 return true;
540 return false;
541 }
542
543 // Returns whether the given section is a fast-lookup section that
544 // will not be needed when building a .gdb_index section.
545
546 static inline bool
547 is_gdb_fast_lookup_section(const char* suffix)
548 {
549 // We can do this faster: binary search or a hashtable. But why bother?
550 for (size_t i = 0;
551 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
552 ++i)
553 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
554 return true;
555 return false;
556 }
557
558 // Sometimes we compress sections. This is typically done for
559 // sections that are not part of normal program execution (such as
560 // .debug_* sections), and where the readers of these sections know
561 // how to deal with compressed sections. This routine doesn't say for
562 // certain whether we'll compress -- it depends on commandline options
563 // as well -- just whether this section is a candidate for compression.
564 // (The Output_compressed_section class decides whether to compress
565 // a given section, and picks the name of the compressed section.)
566
567 static bool
568 is_compressible_debug_section(const char* secname)
569 {
570 return (is_prefix_of(".debug", secname));
571 }
572
573 // We may see compressed debug sections in input files. Return TRUE
574 // if this is the name of a compressed debug section.
575
576 bool
577 is_compressed_debug_section(const char* secname)
578 {
579 return (is_prefix_of(".zdebug", secname));
580 }
581
582 // Whether to include this section in the link.
583
584 template<int size, bool big_endian>
585 bool
586 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
587 const elfcpp::Shdr<size, big_endian>& shdr)
588 {
589 if (!parameters->options().relocatable()
590 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
591 return false;
592
593 switch (shdr.get_sh_type())
594 {
595 case elfcpp::SHT_NULL:
596 case elfcpp::SHT_SYMTAB:
597 case elfcpp::SHT_DYNSYM:
598 case elfcpp::SHT_HASH:
599 case elfcpp::SHT_DYNAMIC:
600 case elfcpp::SHT_SYMTAB_SHNDX:
601 return false;
602
603 case elfcpp::SHT_STRTAB:
604 // Discard the sections which have special meanings in the ELF
605 // ABI. Keep others (e.g., .stabstr). We could also do this by
606 // checking the sh_link fields of the appropriate sections.
607 return (strcmp(name, ".dynstr") != 0
608 && strcmp(name, ".strtab") != 0
609 && strcmp(name, ".shstrtab") != 0);
610
611 case elfcpp::SHT_RELA:
612 case elfcpp::SHT_REL:
613 case elfcpp::SHT_GROUP:
614 // If we are emitting relocations these should be handled
615 // elsewhere.
616 gold_assert(!parameters->options().relocatable());
617 return false;
618
619 case elfcpp::SHT_PROGBITS:
620 if (parameters->options().strip_debug()
621 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
622 {
623 if (is_debug_info_section(name))
624 return false;
625 }
626 if (parameters->options().strip_debug_non_line()
627 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
628 {
629 // Debugging sections can only be recognized by name.
630 if (is_prefix_of(".debug_", name)
631 && !is_lines_only_debug_section(name + 7))
632 return false;
633 if (is_prefix_of(".zdebug_", name)
634 && !is_lines_only_debug_section(name + 8))
635 return false;
636 }
637 if (parameters->options().strip_debug_gdb()
638 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
639 {
640 // Debugging sections can only be recognized by name.
641 if (is_prefix_of(".debug_", name)
642 && !is_gdb_debug_section(name + 7))
643 return false;
644 if (is_prefix_of(".zdebug_", name)
645 && !is_gdb_debug_section(name + 8))
646 return false;
647 }
648 if (parameters->options().gdb_index()
649 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
650 {
651 // When building .gdb_index, we can strip .debug_pubnames,
652 // .debug_pubtypes, and .debug_aranges sections.
653 if (is_prefix_of(".debug_", name)
654 && is_gdb_fast_lookup_section(name + 7))
655 return false;
656 if (is_prefix_of(".zdebug_", name)
657 && is_gdb_fast_lookup_section(name + 8))
658 return false;
659 }
660 if (parameters->options().strip_lto_sections()
661 && !parameters->options().relocatable()
662 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
663 {
664 // Ignore LTO sections containing intermediate code.
665 if (is_prefix_of(".gnu.lto_", name))
666 return false;
667 }
668 // The GNU linker strips .gnu_debuglink sections, so we do too.
669 // This is a feature used to keep debugging information in
670 // separate files.
671 if (strcmp(name, ".gnu_debuglink") == 0)
672 return false;
673 return true;
674
675 default:
676 return true;
677 }
678 }
679
680 // Return an output section named NAME, or NULL if there is none.
681
682 Output_section*
683 Layout::find_output_section(const char* name) const
684 {
685 for (Section_list::const_iterator p = this->section_list_.begin();
686 p != this->section_list_.end();
687 ++p)
688 if (strcmp((*p)->name(), name) == 0)
689 return *p;
690 return NULL;
691 }
692
693 // Return an output segment of type TYPE, with segment flags SET set
694 // and segment flags CLEAR clear. Return NULL if there is none.
695
696 Output_segment*
697 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
698 elfcpp::Elf_Word clear) const
699 {
700 for (Segment_list::const_iterator p = this->segment_list_.begin();
701 p != this->segment_list_.end();
702 ++p)
703 if (static_cast<elfcpp::PT>((*p)->type()) == type
704 && ((*p)->flags() & set) == set
705 && ((*p)->flags() & clear) == 0)
706 return *p;
707 return NULL;
708 }
709
710 // When we put a .ctors or .dtors section with more than one word into
711 // a .init_array or .fini_array section, we need to reverse the words
712 // in the .ctors/.dtors section. This is because .init_array executes
713 // constructors front to back, where .ctors executes them back to
714 // front, and vice-versa for .fini_array/.dtors. Although we do want
715 // to remap .ctors/.dtors into .init_array/.fini_array because it can
716 // be more efficient, we don't want to change the order in which
717 // constructors/destructors are run. This set just keeps track of
718 // these sections which need to be reversed. It is only changed by
719 // Layout::layout. It should be a private member of Layout, but that
720 // would require layout.h to #include object.h to get the definition
721 // of Section_id.
722 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
723
724 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
725 // .init_array/.fini_array section.
726
727 bool
728 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
729 {
730 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
731 != ctors_sections_in_init_array.end());
732 }
733
734 // Return the output section to use for section NAME with type TYPE
735 // and section flags FLAGS. NAME must be canonicalized in the string
736 // pool, and NAME_KEY is the key. ORDER is where this should appear
737 // in the output sections. IS_RELRO is true for a relro section.
738
739 Output_section*
740 Layout::get_output_section(const char* name, Stringpool::Key name_key,
741 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
742 Output_section_order order, bool is_relro)
743 {
744 elfcpp::Elf_Word lookup_type = type;
745
746 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
747 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
748 // .init_array, .fini_array, and .preinit_array sections by name
749 // whatever their type in the input file. We do this because the
750 // types are not always right in the input files.
751 if (lookup_type == elfcpp::SHT_INIT_ARRAY
752 || lookup_type == elfcpp::SHT_FINI_ARRAY
753 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
754 lookup_type = elfcpp::SHT_PROGBITS;
755
756 elfcpp::Elf_Xword lookup_flags = flags;
757
758 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
759 // read-write with read-only sections. Some other ELF linkers do
760 // not do this. FIXME: Perhaps there should be an option
761 // controlling this.
762 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
763
764 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
765 const std::pair<Key, Output_section*> v(key, NULL);
766 std::pair<Section_name_map::iterator, bool> ins(
767 this->section_name_map_.insert(v));
768
769 if (!ins.second)
770 return ins.first->second;
771 else
772 {
773 // This is the first time we've seen this name/type/flags
774 // combination. For compatibility with the GNU linker, we
775 // combine sections with contents and zero flags with sections
776 // with non-zero flags. This is a workaround for cases where
777 // assembler code forgets to set section flags. FIXME: Perhaps
778 // there should be an option to control this.
779 Output_section* os = NULL;
780
781 if (lookup_type == elfcpp::SHT_PROGBITS)
782 {
783 if (flags == 0)
784 {
785 Output_section* same_name = this->find_output_section(name);
786 if (same_name != NULL
787 && (same_name->type() == elfcpp::SHT_PROGBITS
788 || same_name->type() == elfcpp::SHT_INIT_ARRAY
789 || same_name->type() == elfcpp::SHT_FINI_ARRAY
790 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
791 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
792 os = same_name;
793 }
794 else if ((flags & elfcpp::SHF_TLS) == 0)
795 {
796 elfcpp::Elf_Xword zero_flags = 0;
797 const Key zero_key(name_key, std::make_pair(lookup_type,
798 zero_flags));
799 Section_name_map::iterator p =
800 this->section_name_map_.find(zero_key);
801 if (p != this->section_name_map_.end())
802 os = p->second;
803 }
804 }
805
806 if (os == NULL)
807 os = this->make_output_section(name, type, flags, order, is_relro);
808
809 ins.first->second = os;
810 return os;
811 }
812 }
813
814 // Returns TRUE iff NAME (an input section from RELOBJ) will
815 // be mapped to an output section that should be KEPT.
816
817 bool
818 Layout::keep_input_section(const Relobj* relobj, const char* name)
819 {
820 if (! this->script_options_->saw_sections_clause())
821 return false;
822
823 Script_sections* ss = this->script_options_->script_sections();
824 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
825 Output_section** output_section_slot;
826 Script_sections::Section_type script_section_type;
827 bool keep;
828
829 name = ss->output_section_name(file_name, name, &output_section_slot,
830 &script_section_type, &keep);
831 return name != NULL && keep;
832 }
833
834 // Clear the input section flags that should not be copied to the
835 // output section.
836
837 elfcpp::Elf_Xword
838 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
839 {
840 // Some flags in the input section should not be automatically
841 // copied to the output section.
842 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
843 | elfcpp::SHF_GROUP
844 | elfcpp::SHF_MERGE
845 | elfcpp::SHF_STRINGS);
846
847 // We only clear the SHF_LINK_ORDER flag in for
848 // a non-relocatable link.
849 if (!parameters->options().relocatable())
850 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
851
852 return input_section_flags;
853 }
854
855 // Pick the output section to use for section NAME, in input file
856 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
857 // linker created section. IS_INPUT_SECTION is true if we are
858 // choosing an output section for an input section found in a input
859 // file. ORDER is where this section should appear in the output
860 // sections. IS_RELRO is true for a relro section. This will return
861 // NULL if the input section should be discarded.
862
863 Output_section*
864 Layout::choose_output_section(const Relobj* relobj, const char* name,
865 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
866 bool is_input_section, Output_section_order order,
867 bool is_relro)
868 {
869 // We should not see any input sections after we have attached
870 // sections to segments.
871 gold_assert(!is_input_section || !this->sections_are_attached_);
872
873 flags = this->get_output_section_flags(flags);
874
875 if (this->script_options_->saw_sections_clause())
876 {
877 // We are using a SECTIONS clause, so the output section is
878 // chosen based only on the name.
879
880 Script_sections* ss = this->script_options_->script_sections();
881 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
882 Output_section** output_section_slot;
883 Script_sections::Section_type script_section_type;
884 const char* orig_name = name;
885 bool keep;
886 name = ss->output_section_name(file_name, name, &output_section_slot,
887 &script_section_type, &keep);
888
889 if (name == NULL)
890 {
891 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
892 "because it is not allowed by the "
893 "SECTIONS clause of the linker script"),
894 orig_name);
895 // The SECTIONS clause says to discard this input section.
896 return NULL;
897 }
898
899 // We can only handle script section types ST_NONE and ST_NOLOAD.
900 switch (script_section_type)
901 {
902 case Script_sections::ST_NONE:
903 break;
904 case Script_sections::ST_NOLOAD:
905 flags &= elfcpp::SHF_ALLOC;
906 break;
907 default:
908 gold_unreachable();
909 }
910
911 // If this is an orphan section--one not mentioned in the linker
912 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
913 // default processing below.
914
915 if (output_section_slot != NULL)
916 {
917 if (*output_section_slot != NULL)
918 {
919 (*output_section_slot)->update_flags_for_input_section(flags);
920 return *output_section_slot;
921 }
922
923 // We don't put sections found in the linker script into
924 // SECTION_NAME_MAP_. That keeps us from getting confused
925 // if an orphan section is mapped to a section with the same
926 // name as one in the linker script.
927
928 name = this->namepool_.add(name, false, NULL);
929
930 Output_section* os = this->make_output_section(name, type, flags,
931 order, is_relro);
932
933 os->set_found_in_sections_clause();
934
935 // Special handling for NOLOAD sections.
936 if (script_section_type == Script_sections::ST_NOLOAD)
937 {
938 os->set_is_noload();
939
940 // The constructor of Output_section sets addresses of non-ALLOC
941 // sections to 0 by default. We don't want that for NOLOAD
942 // sections even if they have no SHF_ALLOC flag.
943 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
944 && os->is_address_valid())
945 {
946 gold_assert(os->address() == 0
947 && !os->is_offset_valid()
948 && !os->is_data_size_valid());
949 os->reset_address_and_file_offset();
950 }
951 }
952
953 *output_section_slot = os;
954 return os;
955 }
956 }
957
958 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
959
960 size_t len = strlen(name);
961 char* uncompressed_name = NULL;
962
963 // Compressed debug sections should be mapped to the corresponding
964 // uncompressed section.
965 if (is_compressed_debug_section(name))
966 {
967 uncompressed_name = new char[len];
968 uncompressed_name[0] = '.';
969 gold_assert(name[0] == '.' && name[1] == 'z');
970 strncpy(&uncompressed_name[1], &name[2], len - 2);
971 uncompressed_name[len - 1] = '\0';
972 len -= 1;
973 name = uncompressed_name;
974 }
975
976 // Turn NAME from the name of the input section into the name of the
977 // output section.
978 if (is_input_section
979 && !this->script_options_->saw_sections_clause()
980 && !parameters->options().relocatable())
981 {
982 const char *orig_name = name;
983 name = parameters->target().output_section_name(relobj, name, &len);
984 if (name == NULL)
985 name = Layout::output_section_name(relobj, orig_name, &len);
986 }
987
988 Stringpool::Key name_key;
989 name = this->namepool_.add_with_length(name, len, true, &name_key);
990
991 if (uncompressed_name != NULL)
992 delete[] uncompressed_name;
993
994 // Find or make the output section. The output section is selected
995 // based on the section name, type, and flags.
996 return this->get_output_section(name, name_key, type, flags, order, is_relro);
997 }
998
999 // For incremental links, record the initial fixed layout of a section
1000 // from the base file, and return a pointer to the Output_section.
1001
1002 template<int size, bool big_endian>
1003 Output_section*
1004 Layout::init_fixed_output_section(const char* name,
1005 elfcpp::Shdr<size, big_endian>& shdr)
1006 {
1007 unsigned int sh_type = shdr.get_sh_type();
1008
1009 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1010 // PRE_INIT_ARRAY, and NOTE sections.
1011 // All others will be created from scratch and reallocated.
1012 if (!can_incremental_update(sh_type))
1013 return NULL;
1014
1015 // If we're generating a .gdb_index section, we need to regenerate
1016 // it from scratch.
1017 if (parameters->options().gdb_index()
1018 && sh_type == elfcpp::SHT_PROGBITS
1019 && strcmp(name, ".gdb_index") == 0)
1020 return NULL;
1021
1022 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1023 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1024 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1025 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1026 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1027 shdr.get_sh_addralign();
1028
1029 // Make the output section.
1030 Stringpool::Key name_key;
1031 name = this->namepool_.add(name, true, &name_key);
1032 Output_section* os = this->get_output_section(name, name_key, sh_type,
1033 sh_flags, ORDER_INVALID, false);
1034 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1035 if (sh_type != elfcpp::SHT_NOBITS)
1036 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1037 return os;
1038 }
1039
1040 // Return the index by which an input section should be ordered. This
1041 // is used to sort some .text sections, for compatibility with GNU ld.
1042
1043 int
1044 Layout::special_ordering_of_input_section(const char* name)
1045 {
1046 // The GNU linker has some special handling for some sections that
1047 // wind up in the .text section. Sections that start with these
1048 // prefixes must appear first, and must appear in the order listed
1049 // here.
1050 static const char* const text_section_sort[] =
1051 {
1052 ".text.unlikely",
1053 ".text.exit",
1054 ".text.startup",
1055 ".text.hot"
1056 };
1057
1058 for (size_t i = 0;
1059 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1060 i++)
1061 if (is_prefix_of(text_section_sort[i], name))
1062 return i;
1063
1064 return -1;
1065 }
1066
1067 // Return the output section to use for input section SHNDX, with name
1068 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1069 // index of a relocation section which applies to this section, or 0
1070 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1071 // relocation section if there is one. Set *OFF to the offset of this
1072 // input section without the output section. Return NULL if the
1073 // section should be discarded. Set *OFF to -1 if the section
1074 // contents should not be written directly to the output file, but
1075 // will instead receive special handling.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1080 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1081 unsigned int reloc_shndx, unsigned int, off_t* off)
1082 {
1083 *off = 0;
1084
1085 if (!this->include_section(object, name, shdr))
1086 return NULL;
1087
1088 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1089
1090 // In a relocatable link a grouped section must not be combined with
1091 // any other sections.
1092 Output_section* os;
1093 if (parameters->options().relocatable()
1094 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1095 {
1096 name = this->namepool_.add(name, true, NULL);
1097 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1098 ORDER_INVALID, false);
1099 }
1100 else
1101 {
1102 // Plugins can choose to place one or more subsets of sections in
1103 // unique segments and this is done by mapping these section subsets
1104 // to unique output sections. Check if this section needs to be
1105 // remapped to a unique output section.
1106 Section_segment_map::iterator it
1107 = this->section_segment_map_.find(Const_section_id(object, shndx));
1108 if (it == this->section_segment_map_.end())
1109 {
1110 os = this->choose_output_section(object, name, sh_type,
1111 shdr.get_sh_flags(), true,
1112 ORDER_INVALID, false);
1113 }
1114 else
1115 {
1116 // We know the name of the output section, directly call
1117 // get_output_section here by-passing choose_output_section.
1118 elfcpp::Elf_Xword flags
1119 = this->get_output_section_flags(shdr.get_sh_flags());
1120
1121 const char* os_name = it->second->name;
1122 Stringpool::Key name_key;
1123 os_name = this->namepool_.add(os_name, true, &name_key);
1124 os = this->get_output_section(os_name, name_key, sh_type, flags,
1125 ORDER_INVALID, false);
1126 if (!os->is_unique_segment())
1127 {
1128 os->set_is_unique_segment();
1129 os->set_extra_segment_flags(it->second->flags);
1130 os->set_segment_alignment(it->second->align);
1131 }
1132 }
1133 if (os == NULL)
1134 return NULL;
1135 }
1136
1137 // By default the GNU linker sorts input sections whose names match
1138 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1139 // sections are sorted by name. This is used to implement
1140 // constructor priority ordering. We are compatible. When we put
1141 // .ctor sections in .init_array and .dtor sections in .fini_array,
1142 // we must also sort plain .ctor and .dtor sections.
1143 if (!this->script_options_->saw_sections_clause()
1144 && !parameters->options().relocatable()
1145 && (is_prefix_of(".ctors.", name)
1146 || is_prefix_of(".dtors.", name)
1147 || is_prefix_of(".init_array.", name)
1148 || is_prefix_of(".fini_array.", name)
1149 || (parameters->options().ctors_in_init_array()
1150 && (strcmp(name, ".ctors") == 0
1151 || strcmp(name, ".dtors") == 0))))
1152 os->set_must_sort_attached_input_sections();
1153
1154 // By default the GNU linker sorts some special text sections ahead
1155 // of others. We are compatible.
1156 if (parameters->options().text_reorder()
1157 && !this->script_options_->saw_sections_clause()
1158 && !this->is_section_ordering_specified()
1159 && !parameters->options().relocatable()
1160 && Layout::special_ordering_of_input_section(name) >= 0)
1161 os->set_must_sort_attached_input_sections();
1162
1163 // If this is a .ctors or .ctors.* section being mapped to a
1164 // .init_array section, or a .dtors or .dtors.* section being mapped
1165 // to a .fini_array section, we will need to reverse the words if
1166 // there is more than one. Record this section for later. See
1167 // ctors_sections_in_init_array above.
1168 if (!this->script_options_->saw_sections_clause()
1169 && !parameters->options().relocatable()
1170 && shdr.get_sh_size() > size / 8
1171 && (((strcmp(name, ".ctors") == 0
1172 || is_prefix_of(".ctors.", name))
1173 && strcmp(os->name(), ".init_array") == 0)
1174 || ((strcmp(name, ".dtors") == 0
1175 || is_prefix_of(".dtors.", name))
1176 && strcmp(os->name(), ".fini_array") == 0)))
1177 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1178
1179 // FIXME: Handle SHF_LINK_ORDER somewhere.
1180
1181 elfcpp::Elf_Xword orig_flags = os->flags();
1182
1183 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1184 this->script_options_->saw_sections_clause());
1185
1186 // If the flags changed, we may have to change the order.
1187 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1188 {
1189 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1190 elfcpp::Elf_Xword new_flags =
1191 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1192 if (orig_flags != new_flags)
1193 os->set_order(this->default_section_order(os, false));
1194 }
1195
1196 this->have_added_input_section_ = true;
1197
1198 return os;
1199 }
1200
1201 // Maps section SECN to SEGMENT s.
1202 void
1203 Layout::insert_section_segment_map(Const_section_id secn,
1204 Unique_segment_info *s)
1205 {
1206 gold_assert(this->unique_segment_for_sections_specified_);
1207 this->section_segment_map_[secn] = s;
1208 }
1209
1210 // Handle a relocation section when doing a relocatable link.
1211
1212 template<int size, bool big_endian>
1213 Output_section*
1214 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1215 unsigned int,
1216 const elfcpp::Shdr<size, big_endian>& shdr,
1217 Output_section* data_section,
1218 Relocatable_relocs* rr)
1219 {
1220 gold_assert(parameters->options().relocatable()
1221 || parameters->options().emit_relocs());
1222
1223 int sh_type = shdr.get_sh_type();
1224
1225 std::string name;
1226 if (sh_type == elfcpp::SHT_REL)
1227 name = ".rel";
1228 else if (sh_type == elfcpp::SHT_RELA)
1229 name = ".rela";
1230 else
1231 gold_unreachable();
1232 name += data_section->name();
1233
1234 // In a relocatable link relocs for a grouped section must not be
1235 // combined with other reloc sections.
1236 Output_section* os;
1237 if (!parameters->options().relocatable()
1238 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1239 os = this->choose_output_section(object, name.c_str(), sh_type,
1240 shdr.get_sh_flags(), false,
1241 ORDER_INVALID, false);
1242 else
1243 {
1244 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1245 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1246 ORDER_INVALID, false);
1247 }
1248
1249 os->set_should_link_to_symtab();
1250 os->set_info_section(data_section);
1251
1252 Output_section_data* posd;
1253 if (sh_type == elfcpp::SHT_REL)
1254 {
1255 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1256 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1257 size,
1258 big_endian>(rr);
1259 }
1260 else if (sh_type == elfcpp::SHT_RELA)
1261 {
1262 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1263 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1264 size,
1265 big_endian>(rr);
1266 }
1267 else
1268 gold_unreachable();
1269
1270 os->add_output_section_data(posd);
1271 rr->set_output_data(posd);
1272
1273 return os;
1274 }
1275
1276 // Handle a group section when doing a relocatable link.
1277
1278 template<int size, bool big_endian>
1279 void
1280 Layout::layout_group(Symbol_table* symtab,
1281 Sized_relobj_file<size, big_endian>* object,
1282 unsigned int,
1283 const char* group_section_name,
1284 const char* signature,
1285 const elfcpp::Shdr<size, big_endian>& shdr,
1286 elfcpp::Elf_Word flags,
1287 std::vector<unsigned int>* shndxes)
1288 {
1289 gold_assert(parameters->options().relocatable());
1290 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1291 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1292 Output_section* os = this->make_output_section(group_section_name,
1293 elfcpp::SHT_GROUP,
1294 shdr.get_sh_flags(),
1295 ORDER_INVALID, false);
1296
1297 // We need to find a symbol with the signature in the symbol table.
1298 // If we don't find one now, we need to look again later.
1299 Symbol* sym = symtab->lookup(signature, NULL);
1300 if (sym != NULL)
1301 os->set_info_symndx(sym);
1302 else
1303 {
1304 // Reserve some space to minimize reallocations.
1305 if (this->group_signatures_.empty())
1306 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1307
1308 // We will wind up using a symbol whose name is the signature.
1309 // So just put the signature in the symbol name pool to save it.
1310 signature = symtab->canonicalize_name(signature);
1311 this->group_signatures_.push_back(Group_signature(os, signature));
1312 }
1313
1314 os->set_should_link_to_symtab();
1315 os->set_entsize(4);
1316
1317 section_size_type entry_count =
1318 convert_to_section_size_type(shdr.get_sh_size() / 4);
1319 Output_section_data* posd =
1320 new Output_data_group<size, big_endian>(object, entry_count, flags,
1321 shndxes);
1322 os->add_output_section_data(posd);
1323 }
1324
1325 // Special GNU handling of sections name .eh_frame. They will
1326 // normally hold exception frame data as defined by the C++ ABI
1327 // (http://codesourcery.com/cxx-abi/).
1328
1329 template<int size, bool big_endian>
1330 Output_section*
1331 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1332 const unsigned char* symbols,
1333 off_t symbols_size,
1334 const unsigned char* symbol_names,
1335 off_t symbol_names_size,
1336 unsigned int shndx,
1337 const elfcpp::Shdr<size, big_endian>& shdr,
1338 unsigned int reloc_shndx, unsigned int reloc_type,
1339 off_t* off)
1340 {
1341 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1342 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1343 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1344
1345 Output_section* os = this->make_eh_frame_section(object);
1346 if (os == NULL)
1347 return NULL;
1348
1349 gold_assert(this->eh_frame_section_ == os);
1350
1351 elfcpp::Elf_Xword orig_flags = os->flags();
1352
1353 if (!parameters->incremental()
1354 && this->eh_frame_data_->add_ehframe_input_section(object,
1355 symbols,
1356 symbols_size,
1357 symbol_names,
1358 symbol_names_size,
1359 shndx,
1360 reloc_shndx,
1361 reloc_type))
1362 {
1363 os->update_flags_for_input_section(shdr.get_sh_flags());
1364
1365 // A writable .eh_frame section is a RELRO section.
1366 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1367 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1368 {
1369 os->set_is_relro();
1370 os->set_order(ORDER_RELRO);
1371 }
1372
1373 // We found a .eh_frame section we are going to optimize, so now
1374 // we can add the set of optimized sections to the output
1375 // section. We need to postpone adding this until we've found a
1376 // section we can optimize so that the .eh_frame section in
1377 // crtbegin.o winds up at the start of the output section.
1378 if (!this->added_eh_frame_data_)
1379 {
1380 os->add_output_section_data(this->eh_frame_data_);
1381 this->added_eh_frame_data_ = true;
1382 }
1383 *off = -1;
1384 }
1385 else
1386 {
1387 // We couldn't handle this .eh_frame section for some reason.
1388 // Add it as a normal section.
1389 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1390 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1391 reloc_shndx, saw_sections_clause);
1392 this->have_added_input_section_ = true;
1393
1394 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1395 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1396 os->set_order(this->default_section_order(os, false));
1397 }
1398
1399 return os;
1400 }
1401
1402 // Create and return the magic .eh_frame section. Create
1403 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1404 // input .eh_frame section; it may be NULL.
1405
1406 Output_section*
1407 Layout::make_eh_frame_section(const Relobj* object)
1408 {
1409 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1410 // SHT_PROGBITS.
1411 Output_section* os = this->choose_output_section(object, ".eh_frame",
1412 elfcpp::SHT_PROGBITS,
1413 elfcpp::SHF_ALLOC, false,
1414 ORDER_EHFRAME, false);
1415 if (os == NULL)
1416 return NULL;
1417
1418 if (this->eh_frame_section_ == NULL)
1419 {
1420 this->eh_frame_section_ = os;
1421 this->eh_frame_data_ = new Eh_frame();
1422
1423 // For incremental linking, we do not optimize .eh_frame sections
1424 // or create a .eh_frame_hdr section.
1425 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1426 {
1427 Output_section* hdr_os =
1428 this->choose_output_section(NULL, ".eh_frame_hdr",
1429 elfcpp::SHT_PROGBITS,
1430 elfcpp::SHF_ALLOC, false,
1431 ORDER_EHFRAME, false);
1432
1433 if (hdr_os != NULL)
1434 {
1435 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1436 this->eh_frame_data_);
1437 hdr_os->add_output_section_data(hdr_posd);
1438
1439 hdr_os->set_after_input_sections();
1440
1441 if (!this->script_options_->saw_phdrs_clause())
1442 {
1443 Output_segment* hdr_oseg;
1444 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1445 elfcpp::PF_R);
1446 hdr_oseg->add_output_section_to_nonload(hdr_os,
1447 elfcpp::PF_R);
1448 }
1449
1450 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1451 }
1452 }
1453 }
1454
1455 return os;
1456 }
1457
1458 // Add an exception frame for a PLT. This is called from target code.
1459
1460 void
1461 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1462 size_t cie_length, const unsigned char* fde_data,
1463 size_t fde_length)
1464 {
1465 if (parameters->incremental())
1466 {
1467 // FIXME: Maybe this could work some day....
1468 return;
1469 }
1470 Output_section* os = this->make_eh_frame_section(NULL);
1471 if (os == NULL)
1472 return;
1473 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1474 fde_data, fde_length);
1475 if (!this->added_eh_frame_data_)
1476 {
1477 os->add_output_section_data(this->eh_frame_data_);
1478 this->added_eh_frame_data_ = true;
1479 }
1480 }
1481
1482 // Scan a .debug_info or .debug_types section, and add summary
1483 // information to the .gdb_index section.
1484
1485 template<int size, bool big_endian>
1486 void
1487 Layout::add_to_gdb_index(bool is_type_unit,
1488 Sized_relobj<size, big_endian>* object,
1489 const unsigned char* symbols,
1490 off_t symbols_size,
1491 unsigned int shndx,
1492 unsigned int reloc_shndx,
1493 unsigned int reloc_type)
1494 {
1495 if (this->gdb_index_data_ == NULL)
1496 {
1497 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1498 elfcpp::SHT_PROGBITS, 0,
1499 false, ORDER_INVALID,
1500 false);
1501 if (os == NULL)
1502 return;
1503
1504 this->gdb_index_data_ = new Gdb_index(os);
1505 os->add_output_section_data(this->gdb_index_data_);
1506 os->set_after_input_sections();
1507 }
1508
1509 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1510 symbols_size, shndx, reloc_shndx,
1511 reloc_type);
1512 }
1513
1514 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1515 // the output section.
1516
1517 Output_section*
1518 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1519 elfcpp::Elf_Xword flags,
1520 Output_section_data* posd,
1521 Output_section_order order, bool is_relro)
1522 {
1523 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1524 false, order, is_relro);
1525 if (os != NULL)
1526 os->add_output_section_data(posd);
1527 return os;
1528 }
1529
1530 // Map section flags to segment flags.
1531
1532 elfcpp::Elf_Word
1533 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1534 {
1535 elfcpp::Elf_Word ret = elfcpp::PF_R;
1536 if ((flags & elfcpp::SHF_WRITE) != 0)
1537 ret |= elfcpp::PF_W;
1538 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1539 ret |= elfcpp::PF_X;
1540 return ret;
1541 }
1542
1543 // Make a new Output_section, and attach it to segments as
1544 // appropriate. ORDER is the order in which this section should
1545 // appear in the output segment. IS_RELRO is true if this is a relro
1546 // (read-only after relocations) section.
1547
1548 Output_section*
1549 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1550 elfcpp::Elf_Xword flags,
1551 Output_section_order order, bool is_relro)
1552 {
1553 Output_section* os;
1554 if ((flags & elfcpp::SHF_ALLOC) == 0
1555 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1556 && is_compressible_debug_section(name))
1557 os = new Output_compressed_section(&parameters->options(), name, type,
1558 flags);
1559 else if ((flags & elfcpp::SHF_ALLOC) == 0
1560 && parameters->options().strip_debug_non_line()
1561 && strcmp(".debug_abbrev", name) == 0)
1562 {
1563 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1564 name, type, flags);
1565 if (this->debug_info_)
1566 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1567 }
1568 else if ((flags & elfcpp::SHF_ALLOC) == 0
1569 && parameters->options().strip_debug_non_line()
1570 && strcmp(".debug_info", name) == 0)
1571 {
1572 os = this->debug_info_ = new Output_reduced_debug_info_section(
1573 name, type, flags);
1574 if (this->debug_abbrev_)
1575 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1576 }
1577 else
1578 {
1579 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1580 // not have correct section types. Force them here.
1581 if (type == elfcpp::SHT_PROGBITS)
1582 {
1583 if (is_prefix_of(".init_array", name))
1584 type = elfcpp::SHT_INIT_ARRAY;
1585 else if (is_prefix_of(".preinit_array", name))
1586 type = elfcpp::SHT_PREINIT_ARRAY;
1587 else if (is_prefix_of(".fini_array", name))
1588 type = elfcpp::SHT_FINI_ARRAY;
1589 }
1590
1591 // FIXME: const_cast is ugly.
1592 Target* target = const_cast<Target*>(&parameters->target());
1593 os = target->make_output_section(name, type, flags);
1594 }
1595
1596 // With -z relro, we have to recognize the special sections by name.
1597 // There is no other way.
1598 bool is_relro_local = false;
1599 if (!this->script_options_->saw_sections_clause()
1600 && parameters->options().relro()
1601 && (flags & elfcpp::SHF_ALLOC) != 0
1602 && (flags & elfcpp::SHF_WRITE) != 0)
1603 {
1604 if (type == elfcpp::SHT_PROGBITS)
1605 {
1606 if ((flags & elfcpp::SHF_TLS) != 0)
1607 is_relro = true;
1608 else if (strcmp(name, ".data.rel.ro") == 0)
1609 is_relro = true;
1610 else if (strcmp(name, ".data.rel.ro.local") == 0)
1611 {
1612 is_relro = true;
1613 is_relro_local = true;
1614 }
1615 else if (strcmp(name, ".ctors") == 0
1616 || strcmp(name, ".dtors") == 0
1617 || strcmp(name, ".jcr") == 0)
1618 is_relro = true;
1619 }
1620 else if (type == elfcpp::SHT_INIT_ARRAY
1621 || type == elfcpp::SHT_FINI_ARRAY
1622 || type == elfcpp::SHT_PREINIT_ARRAY)
1623 is_relro = true;
1624 }
1625
1626 if (is_relro)
1627 os->set_is_relro();
1628
1629 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1630 order = this->default_section_order(os, is_relro_local);
1631
1632 os->set_order(order);
1633
1634 parameters->target().new_output_section(os);
1635
1636 this->section_list_.push_back(os);
1637
1638 // The GNU linker by default sorts some sections by priority, so we
1639 // do the same. We need to know that this might happen before we
1640 // attach any input sections.
1641 if (!this->script_options_->saw_sections_clause()
1642 && !parameters->options().relocatable()
1643 && (strcmp(name, ".init_array") == 0
1644 || strcmp(name, ".fini_array") == 0
1645 || (!parameters->options().ctors_in_init_array()
1646 && (strcmp(name, ".ctors") == 0
1647 || strcmp(name, ".dtors") == 0))))
1648 os->set_may_sort_attached_input_sections();
1649
1650 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1651 // sections before other .text sections. We are compatible. We
1652 // need to know that this might happen before we attach any input
1653 // sections.
1654 if (parameters->options().text_reorder()
1655 && !this->script_options_->saw_sections_clause()
1656 && !this->is_section_ordering_specified()
1657 && !parameters->options().relocatable()
1658 && strcmp(name, ".text") == 0)
1659 os->set_may_sort_attached_input_sections();
1660
1661 // Check for .stab*str sections, as .stab* sections need to link to
1662 // them.
1663 if (type == elfcpp::SHT_STRTAB
1664 && !this->have_stabstr_section_
1665 && strncmp(name, ".stab", 5) == 0
1666 && strcmp(name + strlen(name) - 3, "str") == 0)
1667 this->have_stabstr_section_ = true;
1668
1669 // During a full incremental link, we add patch space to most
1670 // PROGBITS and NOBITS sections. Flag those that may be
1671 // arbitrarily padded.
1672 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1673 && order != ORDER_INTERP
1674 && order != ORDER_INIT
1675 && order != ORDER_PLT
1676 && order != ORDER_FINI
1677 && order != ORDER_RELRO_LAST
1678 && order != ORDER_NON_RELRO_FIRST
1679 && strcmp(name, ".eh_frame") != 0
1680 && strcmp(name, ".ctors") != 0
1681 && strcmp(name, ".dtors") != 0
1682 && strcmp(name, ".jcr") != 0)
1683 {
1684 os->set_is_patch_space_allowed();
1685
1686 // Certain sections require "holes" to be filled with
1687 // specific fill patterns. These fill patterns may have
1688 // a minimum size, so we must prevent allocations from the
1689 // free list that leave a hole smaller than the minimum.
1690 if (strcmp(name, ".debug_info") == 0)
1691 os->set_free_space_fill(new Output_fill_debug_info(false));
1692 else if (strcmp(name, ".debug_types") == 0)
1693 os->set_free_space_fill(new Output_fill_debug_info(true));
1694 else if (strcmp(name, ".debug_line") == 0)
1695 os->set_free_space_fill(new Output_fill_debug_line());
1696 }
1697
1698 // If we have already attached the sections to segments, then we
1699 // need to attach this one now. This happens for sections created
1700 // directly by the linker.
1701 if (this->sections_are_attached_)
1702 this->attach_section_to_segment(&parameters->target(), os);
1703
1704 return os;
1705 }
1706
1707 // Return the default order in which a section should be placed in an
1708 // output segment. This function captures a lot of the ideas in
1709 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1710 // linker created section is normally set when the section is created;
1711 // this function is used for input sections.
1712
1713 Output_section_order
1714 Layout::default_section_order(Output_section* os, bool is_relro_local)
1715 {
1716 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1717 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1718 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1719 bool is_bss = false;
1720
1721 switch (os->type())
1722 {
1723 default:
1724 case elfcpp::SHT_PROGBITS:
1725 break;
1726 case elfcpp::SHT_NOBITS:
1727 is_bss = true;
1728 break;
1729 case elfcpp::SHT_RELA:
1730 case elfcpp::SHT_REL:
1731 if (!is_write)
1732 return ORDER_DYNAMIC_RELOCS;
1733 break;
1734 case elfcpp::SHT_HASH:
1735 case elfcpp::SHT_DYNAMIC:
1736 case elfcpp::SHT_SHLIB:
1737 case elfcpp::SHT_DYNSYM:
1738 case elfcpp::SHT_GNU_HASH:
1739 case elfcpp::SHT_GNU_verdef:
1740 case elfcpp::SHT_GNU_verneed:
1741 case elfcpp::SHT_GNU_versym:
1742 if (!is_write)
1743 return ORDER_DYNAMIC_LINKER;
1744 break;
1745 case elfcpp::SHT_NOTE:
1746 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1747 }
1748
1749 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1750 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1751
1752 if (!is_bss && !is_write)
1753 {
1754 if (is_execinstr)
1755 {
1756 if (strcmp(os->name(), ".init") == 0)
1757 return ORDER_INIT;
1758 else if (strcmp(os->name(), ".fini") == 0)
1759 return ORDER_FINI;
1760 }
1761 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1762 }
1763
1764 if (os->is_relro())
1765 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1766
1767 if (os->is_small_section())
1768 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1769 if (os->is_large_section())
1770 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1771
1772 return is_bss ? ORDER_BSS : ORDER_DATA;
1773 }
1774
1775 // Attach output sections to segments. This is called after we have
1776 // seen all the input sections.
1777
1778 void
1779 Layout::attach_sections_to_segments(const Target* target)
1780 {
1781 for (Section_list::iterator p = this->section_list_.begin();
1782 p != this->section_list_.end();
1783 ++p)
1784 this->attach_section_to_segment(target, *p);
1785
1786 this->sections_are_attached_ = true;
1787 }
1788
1789 // Attach an output section to a segment.
1790
1791 void
1792 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1793 {
1794 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1795 this->unattached_section_list_.push_back(os);
1796 else
1797 this->attach_allocated_section_to_segment(target, os);
1798 }
1799
1800 // Attach an allocated output section to a segment.
1801
1802 void
1803 Layout::attach_allocated_section_to_segment(const Target* target,
1804 Output_section* os)
1805 {
1806 elfcpp::Elf_Xword flags = os->flags();
1807 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1808
1809 if (parameters->options().relocatable())
1810 return;
1811
1812 // If we have a SECTIONS clause, we can't handle the attachment to
1813 // segments until after we've seen all the sections.
1814 if (this->script_options_->saw_sections_clause())
1815 return;
1816
1817 gold_assert(!this->script_options_->saw_phdrs_clause());
1818
1819 // This output section goes into a PT_LOAD segment.
1820
1821 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1822
1823 // If this output section's segment has extra flags that need to be set,
1824 // coming from a linker plugin, do that.
1825 seg_flags |= os->extra_segment_flags();
1826
1827 // Check for --section-start.
1828 uint64_t addr;
1829 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1830
1831 // In general the only thing we really care about for PT_LOAD
1832 // segments is whether or not they are writable or executable,
1833 // so that is how we search for them.
1834 // Large data sections also go into their own PT_LOAD segment.
1835 // People who need segments sorted on some other basis will
1836 // have to use a linker script.
1837
1838 Segment_list::const_iterator p;
1839 if (!os->is_unique_segment())
1840 {
1841 for (p = this->segment_list_.begin();
1842 p != this->segment_list_.end();
1843 ++p)
1844 {
1845 if ((*p)->type() != elfcpp::PT_LOAD)
1846 continue;
1847 if ((*p)->is_unique_segment())
1848 continue;
1849 if (!parameters->options().omagic()
1850 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1851 continue;
1852 if ((target->isolate_execinstr() || parameters->options().rosegment())
1853 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1854 continue;
1855 // If -Tbss was specified, we need to separate the data and BSS
1856 // segments.
1857 if (parameters->options().user_set_Tbss())
1858 {
1859 if ((os->type() == elfcpp::SHT_NOBITS)
1860 == (*p)->has_any_data_sections())
1861 continue;
1862 }
1863 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1864 continue;
1865
1866 if (is_address_set)
1867 {
1868 if ((*p)->are_addresses_set())
1869 continue;
1870
1871 (*p)->add_initial_output_data(os);
1872 (*p)->update_flags_for_output_section(seg_flags);
1873 (*p)->set_addresses(addr, addr);
1874 break;
1875 }
1876
1877 (*p)->add_output_section_to_load(this, os, seg_flags);
1878 break;
1879 }
1880 }
1881
1882 if (p == this->segment_list_.end()
1883 || os->is_unique_segment())
1884 {
1885 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1886 seg_flags);
1887 if (os->is_large_data_section())
1888 oseg->set_is_large_data_segment();
1889 oseg->add_output_section_to_load(this, os, seg_flags);
1890 if (is_address_set)
1891 oseg->set_addresses(addr, addr);
1892 // Check if segment should be marked unique. For segments marked
1893 // unique by linker plugins, set the new alignment if specified.
1894 if (os->is_unique_segment())
1895 {
1896 oseg->set_is_unique_segment();
1897 if (os->segment_alignment() != 0)
1898 oseg->set_minimum_p_align(os->segment_alignment());
1899 }
1900 }
1901
1902 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1903 // segment.
1904 if (os->type() == elfcpp::SHT_NOTE)
1905 {
1906 // See if we already have an equivalent PT_NOTE segment.
1907 for (p = this->segment_list_.begin();
1908 p != segment_list_.end();
1909 ++p)
1910 {
1911 if ((*p)->type() == elfcpp::PT_NOTE
1912 && (((*p)->flags() & elfcpp::PF_W)
1913 == (seg_flags & elfcpp::PF_W)))
1914 {
1915 (*p)->add_output_section_to_nonload(os, seg_flags);
1916 break;
1917 }
1918 }
1919
1920 if (p == this->segment_list_.end())
1921 {
1922 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1923 seg_flags);
1924 oseg->add_output_section_to_nonload(os, seg_flags);
1925 }
1926 }
1927
1928 // If we see a loadable SHF_TLS section, we create a PT_TLS
1929 // segment. There can only be one such segment.
1930 if ((flags & elfcpp::SHF_TLS) != 0)
1931 {
1932 if (this->tls_segment_ == NULL)
1933 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1934 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1935 }
1936
1937 // If -z relro is in effect, and we see a relro section, we create a
1938 // PT_GNU_RELRO segment. There can only be one such segment.
1939 if (os->is_relro() && parameters->options().relro())
1940 {
1941 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1942 if (this->relro_segment_ == NULL)
1943 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1944 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1945 }
1946
1947 // If we see a section named .interp, put it into a PT_INTERP
1948 // segment. This seems broken to me, but this is what GNU ld does,
1949 // and glibc expects it.
1950 if (strcmp(os->name(), ".interp") == 0
1951 && !this->script_options_->saw_phdrs_clause())
1952 {
1953 if (this->interp_segment_ == NULL)
1954 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1955 else
1956 gold_warning(_("multiple '.interp' sections in input files "
1957 "may cause confusing PT_INTERP segment"));
1958 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1959 }
1960 }
1961
1962 // Make an output section for a script.
1963
1964 Output_section*
1965 Layout::make_output_section_for_script(
1966 const char* name,
1967 Script_sections::Section_type section_type)
1968 {
1969 name = this->namepool_.add(name, false, NULL);
1970 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1971 if (section_type == Script_sections::ST_NOLOAD)
1972 sh_flags = 0;
1973 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1974 sh_flags, ORDER_INVALID,
1975 false);
1976 os->set_found_in_sections_clause();
1977 if (section_type == Script_sections::ST_NOLOAD)
1978 os->set_is_noload();
1979 return os;
1980 }
1981
1982 // Return the number of segments we expect to see.
1983
1984 size_t
1985 Layout::expected_segment_count() const
1986 {
1987 size_t ret = this->segment_list_.size();
1988
1989 // If we didn't see a SECTIONS clause in a linker script, we should
1990 // already have the complete list of segments. Otherwise we ask the
1991 // SECTIONS clause how many segments it expects, and add in the ones
1992 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1993
1994 if (!this->script_options_->saw_sections_clause())
1995 return ret;
1996 else
1997 {
1998 const Script_sections* ss = this->script_options_->script_sections();
1999 return ret + ss->expected_segment_count(this);
2000 }
2001 }
2002
2003 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2004 // is whether we saw a .note.GNU-stack section in the object file.
2005 // GNU_STACK_FLAGS is the section flags. The flags give the
2006 // protection required for stack memory. We record this in an
2007 // executable as a PT_GNU_STACK segment. If an object file does not
2008 // have a .note.GNU-stack segment, we must assume that it is an old
2009 // object. On some targets that will force an executable stack.
2010
2011 void
2012 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2013 const Object* obj)
2014 {
2015 if (!seen_gnu_stack)
2016 {
2017 this->input_without_gnu_stack_note_ = true;
2018 if (parameters->options().warn_execstack()
2019 && parameters->target().is_default_stack_executable())
2020 gold_warning(_("%s: missing .note.GNU-stack section"
2021 " implies executable stack"),
2022 obj->name().c_str());
2023 }
2024 else
2025 {
2026 this->input_with_gnu_stack_note_ = true;
2027 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2028 {
2029 this->input_requires_executable_stack_ = true;
2030 if (parameters->options().warn_execstack()
2031 || parameters->options().is_stack_executable())
2032 gold_warning(_("%s: requires executable stack"),
2033 obj->name().c_str());
2034 }
2035 }
2036 }
2037
2038 // Create automatic note sections.
2039
2040 void
2041 Layout::create_notes()
2042 {
2043 this->create_gold_note();
2044 this->create_executable_stack_info();
2045 this->create_build_id();
2046 }
2047
2048 // Create the dynamic sections which are needed before we read the
2049 // relocs.
2050
2051 void
2052 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2053 {
2054 if (parameters->doing_static_link())
2055 return;
2056
2057 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2058 elfcpp::SHT_DYNAMIC,
2059 (elfcpp::SHF_ALLOC
2060 | elfcpp::SHF_WRITE),
2061 false, ORDER_RELRO,
2062 true);
2063
2064 // A linker script may discard .dynamic, so check for NULL.
2065 if (this->dynamic_section_ != NULL)
2066 {
2067 this->dynamic_symbol_ =
2068 symtab->define_in_output_data("_DYNAMIC", NULL,
2069 Symbol_table::PREDEFINED,
2070 this->dynamic_section_, 0, 0,
2071 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2072 elfcpp::STV_HIDDEN, 0, false, false);
2073
2074 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2075
2076 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2077 }
2078 }
2079
2080 // For each output section whose name can be represented as C symbol,
2081 // define __start and __stop symbols for the section. This is a GNU
2082 // extension.
2083
2084 void
2085 Layout::define_section_symbols(Symbol_table* symtab)
2086 {
2087 for (Section_list::const_iterator p = this->section_list_.begin();
2088 p != this->section_list_.end();
2089 ++p)
2090 {
2091 const char* const name = (*p)->name();
2092 if (is_cident(name))
2093 {
2094 const std::string name_string(name);
2095 const std::string start_name(cident_section_start_prefix
2096 + name_string);
2097 const std::string stop_name(cident_section_stop_prefix
2098 + name_string);
2099
2100 symtab->define_in_output_data(start_name.c_str(),
2101 NULL, // version
2102 Symbol_table::PREDEFINED,
2103 *p,
2104 0, // value
2105 0, // symsize
2106 elfcpp::STT_NOTYPE,
2107 elfcpp::STB_GLOBAL,
2108 elfcpp::STV_DEFAULT,
2109 0, // nonvis
2110 false, // offset_is_from_end
2111 true); // only_if_ref
2112
2113 symtab->define_in_output_data(stop_name.c_str(),
2114 NULL, // version
2115 Symbol_table::PREDEFINED,
2116 *p,
2117 0, // value
2118 0, // symsize
2119 elfcpp::STT_NOTYPE,
2120 elfcpp::STB_GLOBAL,
2121 elfcpp::STV_DEFAULT,
2122 0, // nonvis
2123 true, // offset_is_from_end
2124 true); // only_if_ref
2125 }
2126 }
2127 }
2128
2129 // Define symbols for group signatures.
2130
2131 void
2132 Layout::define_group_signatures(Symbol_table* symtab)
2133 {
2134 for (Group_signatures::iterator p = this->group_signatures_.begin();
2135 p != this->group_signatures_.end();
2136 ++p)
2137 {
2138 Symbol* sym = symtab->lookup(p->signature, NULL);
2139 if (sym != NULL)
2140 p->section->set_info_symndx(sym);
2141 else
2142 {
2143 // Force the name of the group section to the group
2144 // signature, and use the group's section symbol as the
2145 // signature symbol.
2146 if (strcmp(p->section->name(), p->signature) != 0)
2147 {
2148 const char* name = this->namepool_.add(p->signature,
2149 true, NULL);
2150 p->section->set_name(name);
2151 }
2152 p->section->set_needs_symtab_index();
2153 p->section->set_info_section_symndx(p->section);
2154 }
2155 }
2156
2157 this->group_signatures_.clear();
2158 }
2159
2160 // Find the first read-only PT_LOAD segment, creating one if
2161 // necessary.
2162
2163 Output_segment*
2164 Layout::find_first_load_seg(const Target* target)
2165 {
2166 Output_segment* best = NULL;
2167 for (Segment_list::const_iterator p = this->segment_list_.begin();
2168 p != this->segment_list_.end();
2169 ++p)
2170 {
2171 if ((*p)->type() == elfcpp::PT_LOAD
2172 && ((*p)->flags() & elfcpp::PF_R) != 0
2173 && (parameters->options().omagic()
2174 || ((*p)->flags() & elfcpp::PF_W) == 0)
2175 && (!target->isolate_execinstr()
2176 || ((*p)->flags() & elfcpp::PF_X) == 0))
2177 {
2178 if (best == NULL || this->segment_precedes(*p, best))
2179 best = *p;
2180 }
2181 }
2182 if (best != NULL)
2183 return best;
2184
2185 gold_assert(!this->script_options_->saw_phdrs_clause());
2186
2187 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2188 elfcpp::PF_R);
2189 return load_seg;
2190 }
2191
2192 // Save states of all current output segments. Store saved states
2193 // in SEGMENT_STATES.
2194
2195 void
2196 Layout::save_segments(Segment_states* segment_states)
2197 {
2198 for (Segment_list::const_iterator p = this->segment_list_.begin();
2199 p != this->segment_list_.end();
2200 ++p)
2201 {
2202 Output_segment* segment = *p;
2203 // Shallow copy.
2204 Output_segment* copy = new Output_segment(*segment);
2205 (*segment_states)[segment] = copy;
2206 }
2207 }
2208
2209 // Restore states of output segments and delete any segment not found in
2210 // SEGMENT_STATES.
2211
2212 void
2213 Layout::restore_segments(const Segment_states* segment_states)
2214 {
2215 // Go through the segment list and remove any segment added in the
2216 // relaxation loop.
2217 this->tls_segment_ = NULL;
2218 this->relro_segment_ = NULL;
2219 Segment_list::iterator list_iter = this->segment_list_.begin();
2220 while (list_iter != this->segment_list_.end())
2221 {
2222 Output_segment* segment = *list_iter;
2223 Segment_states::const_iterator states_iter =
2224 segment_states->find(segment);
2225 if (states_iter != segment_states->end())
2226 {
2227 const Output_segment* copy = states_iter->second;
2228 // Shallow copy to restore states.
2229 *segment = *copy;
2230
2231 // Also fix up TLS and RELRO segment pointers as appropriate.
2232 if (segment->type() == elfcpp::PT_TLS)
2233 this->tls_segment_ = segment;
2234 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2235 this->relro_segment_ = segment;
2236
2237 ++list_iter;
2238 }
2239 else
2240 {
2241 list_iter = this->segment_list_.erase(list_iter);
2242 // This is a segment created during section layout. It should be
2243 // safe to remove it since we should have removed all pointers to it.
2244 delete segment;
2245 }
2246 }
2247 }
2248
2249 // Clean up after relaxation so that sections can be laid out again.
2250
2251 void
2252 Layout::clean_up_after_relaxation()
2253 {
2254 // Restore the segments to point state just prior to the relaxation loop.
2255 Script_sections* script_section = this->script_options_->script_sections();
2256 script_section->release_segments();
2257 this->restore_segments(this->segment_states_);
2258
2259 // Reset section addresses and file offsets
2260 for (Section_list::iterator p = this->section_list_.begin();
2261 p != this->section_list_.end();
2262 ++p)
2263 {
2264 (*p)->restore_states();
2265
2266 // If an input section changes size because of relaxation,
2267 // we need to adjust the section offsets of all input sections.
2268 // after such a section.
2269 if ((*p)->section_offsets_need_adjustment())
2270 (*p)->adjust_section_offsets();
2271
2272 (*p)->reset_address_and_file_offset();
2273 }
2274
2275 // Reset special output object address and file offsets.
2276 for (Data_list::iterator p = this->special_output_list_.begin();
2277 p != this->special_output_list_.end();
2278 ++p)
2279 (*p)->reset_address_and_file_offset();
2280
2281 // A linker script may have created some output section data objects.
2282 // They are useless now.
2283 for (Output_section_data_list::const_iterator p =
2284 this->script_output_section_data_list_.begin();
2285 p != this->script_output_section_data_list_.end();
2286 ++p)
2287 delete *p;
2288 this->script_output_section_data_list_.clear();
2289 }
2290
2291 // Prepare for relaxation.
2292
2293 void
2294 Layout::prepare_for_relaxation()
2295 {
2296 // Create an relaxation debug check if in debugging mode.
2297 if (is_debugging_enabled(DEBUG_RELAXATION))
2298 this->relaxation_debug_check_ = new Relaxation_debug_check();
2299
2300 // Save segment states.
2301 this->segment_states_ = new Segment_states();
2302 this->save_segments(this->segment_states_);
2303
2304 for(Section_list::const_iterator p = this->section_list_.begin();
2305 p != this->section_list_.end();
2306 ++p)
2307 (*p)->save_states();
2308
2309 if (is_debugging_enabled(DEBUG_RELAXATION))
2310 this->relaxation_debug_check_->check_output_data_for_reset_values(
2311 this->section_list_, this->special_output_list_);
2312
2313 // Also enable recording of output section data from scripts.
2314 this->record_output_section_data_from_script_ = true;
2315 }
2316
2317 // Relaxation loop body: If target has no relaxation, this runs only once
2318 // Otherwise, the target relaxation hook is called at the end of
2319 // each iteration. If the hook returns true, it means re-layout of
2320 // section is required.
2321 //
2322 // The number of segments created by a linking script without a PHDRS
2323 // clause may be affected by section sizes and alignments. There is
2324 // a remote chance that relaxation causes different number of PT_LOAD
2325 // segments are created and sections are attached to different segments.
2326 // Therefore, we always throw away all segments created during section
2327 // layout. In order to be able to restart the section layout, we keep
2328 // a copy of the segment list right before the relaxation loop and use
2329 // that to restore the segments.
2330 //
2331 // PASS is the current relaxation pass number.
2332 // SYMTAB is a symbol table.
2333 // PLOAD_SEG is the address of a pointer for the load segment.
2334 // PHDR_SEG is a pointer to the PHDR segment.
2335 // SEGMENT_HEADERS points to the output segment header.
2336 // FILE_HEADER points to the output file header.
2337 // PSHNDX is the address to store the output section index.
2338
2339 off_t inline
2340 Layout::relaxation_loop_body(
2341 int pass,
2342 Target* target,
2343 Symbol_table* symtab,
2344 Output_segment** pload_seg,
2345 Output_segment* phdr_seg,
2346 Output_segment_headers* segment_headers,
2347 Output_file_header* file_header,
2348 unsigned int* pshndx)
2349 {
2350 // If this is not the first iteration, we need to clean up after
2351 // relaxation so that we can lay out the sections again.
2352 if (pass != 0)
2353 this->clean_up_after_relaxation();
2354
2355 // If there is a SECTIONS clause, put all the input sections into
2356 // the required order.
2357 Output_segment* load_seg;
2358 if (this->script_options_->saw_sections_clause())
2359 load_seg = this->set_section_addresses_from_script(symtab);
2360 else if (parameters->options().relocatable())
2361 load_seg = NULL;
2362 else
2363 load_seg = this->find_first_load_seg(target);
2364
2365 if (parameters->options().oformat_enum()
2366 != General_options::OBJECT_FORMAT_ELF)
2367 load_seg = NULL;
2368
2369 // If the user set the address of the text segment, that may not be
2370 // compatible with putting the segment headers and file headers into
2371 // that segment.
2372 if (parameters->options().user_set_Ttext()
2373 && parameters->options().Ttext() % target->abi_pagesize() != 0)
2374 {
2375 load_seg = NULL;
2376 phdr_seg = NULL;
2377 }
2378
2379 gold_assert(phdr_seg == NULL
2380 || load_seg != NULL
2381 || this->script_options_->saw_sections_clause());
2382
2383 // If the address of the load segment we found has been set by
2384 // --section-start rather than by a script, then adjust the VMA and
2385 // LMA downward if possible to include the file and section headers.
2386 uint64_t header_gap = 0;
2387 if (load_seg != NULL
2388 && load_seg->are_addresses_set()
2389 && !this->script_options_->saw_sections_clause()
2390 && !parameters->options().relocatable())
2391 {
2392 file_header->finalize_data_size();
2393 segment_headers->finalize_data_size();
2394 size_t sizeof_headers = (file_header->data_size()
2395 + segment_headers->data_size());
2396 const uint64_t abi_pagesize = target->abi_pagesize();
2397 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2398 hdr_paddr &= ~(abi_pagesize - 1);
2399 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2400 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2401 load_seg = NULL;
2402 else
2403 {
2404 load_seg->set_addresses(load_seg->vaddr() - subtract,
2405 load_seg->paddr() - subtract);
2406 header_gap = subtract - sizeof_headers;
2407 }
2408 }
2409
2410 // Lay out the segment headers.
2411 if (!parameters->options().relocatable())
2412 {
2413 gold_assert(segment_headers != NULL);
2414 if (header_gap != 0 && load_seg != NULL)
2415 {
2416 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2417 load_seg->add_initial_output_data(z);
2418 }
2419 if (load_seg != NULL)
2420 load_seg->add_initial_output_data(segment_headers);
2421 if (phdr_seg != NULL)
2422 phdr_seg->add_initial_output_data(segment_headers);
2423 }
2424
2425 // Lay out the file header.
2426 if (load_seg != NULL)
2427 load_seg->add_initial_output_data(file_header);
2428
2429 if (this->script_options_->saw_phdrs_clause()
2430 && !parameters->options().relocatable())
2431 {
2432 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2433 // clause in a linker script.
2434 Script_sections* ss = this->script_options_->script_sections();
2435 ss->put_headers_in_phdrs(file_header, segment_headers);
2436 }
2437
2438 // We set the output section indexes in set_segment_offsets and
2439 // set_section_indexes.
2440 *pshndx = 1;
2441
2442 // Set the file offsets of all the segments, and all the sections
2443 // they contain.
2444 off_t off;
2445 if (!parameters->options().relocatable())
2446 off = this->set_segment_offsets(target, load_seg, pshndx);
2447 else
2448 off = this->set_relocatable_section_offsets(file_header, pshndx);
2449
2450 // Verify that the dummy relaxation does not change anything.
2451 if (is_debugging_enabled(DEBUG_RELAXATION))
2452 {
2453 if (pass == 0)
2454 this->relaxation_debug_check_->read_sections(this->section_list_);
2455 else
2456 this->relaxation_debug_check_->verify_sections(this->section_list_);
2457 }
2458
2459 *pload_seg = load_seg;
2460 return off;
2461 }
2462
2463 // Search the list of patterns and find the postion of the given section
2464 // name in the output section. If the section name matches a glob
2465 // pattern and a non-glob name, then the non-glob position takes
2466 // precedence. Return 0 if no match is found.
2467
2468 unsigned int
2469 Layout::find_section_order_index(const std::string& section_name)
2470 {
2471 Unordered_map<std::string, unsigned int>::iterator map_it;
2472 map_it = this->input_section_position_.find(section_name);
2473 if (map_it != this->input_section_position_.end())
2474 return map_it->second;
2475
2476 // Absolute match failed. Linear search the glob patterns.
2477 std::vector<std::string>::iterator it;
2478 for (it = this->input_section_glob_.begin();
2479 it != this->input_section_glob_.end();
2480 ++it)
2481 {
2482 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2483 {
2484 map_it = this->input_section_position_.find(*it);
2485 gold_assert(map_it != this->input_section_position_.end());
2486 return map_it->second;
2487 }
2488 }
2489 return 0;
2490 }
2491
2492 // Read the sequence of input sections from the file specified with
2493 // option --section-ordering-file.
2494
2495 void
2496 Layout::read_layout_from_file()
2497 {
2498 const char* filename = parameters->options().section_ordering_file();
2499 std::ifstream in;
2500 std::string line;
2501
2502 in.open(filename);
2503 if (!in)
2504 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2505 filename, strerror(errno));
2506
2507 std::getline(in, line); // this chops off the trailing \n, if any
2508 unsigned int position = 1;
2509 this->set_section_ordering_specified();
2510
2511 while (in)
2512 {
2513 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2514 line.resize(line.length() - 1);
2515 // Ignore comments, beginning with '#'
2516 if (line[0] == '#')
2517 {
2518 std::getline(in, line);
2519 continue;
2520 }
2521 this->input_section_position_[line] = position;
2522 // Store all glob patterns in a vector.
2523 if (is_wildcard_string(line.c_str()))
2524 this->input_section_glob_.push_back(line);
2525 position++;
2526 std::getline(in, line);
2527 }
2528 }
2529
2530 // Finalize the layout. When this is called, we have created all the
2531 // output sections and all the output segments which are based on
2532 // input sections. We have several things to do, and we have to do
2533 // them in the right order, so that we get the right results correctly
2534 // and efficiently.
2535
2536 // 1) Finalize the list of output segments and create the segment
2537 // table header.
2538
2539 // 2) Finalize the dynamic symbol table and associated sections.
2540
2541 // 3) Determine the final file offset of all the output segments.
2542
2543 // 4) Determine the final file offset of all the SHF_ALLOC output
2544 // sections.
2545
2546 // 5) Create the symbol table sections and the section name table
2547 // section.
2548
2549 // 6) Finalize the symbol table: set symbol values to their final
2550 // value and make a final determination of which symbols are going
2551 // into the output symbol table.
2552
2553 // 7) Create the section table header.
2554
2555 // 8) Determine the final file offset of all the output sections which
2556 // are not SHF_ALLOC, including the section table header.
2557
2558 // 9) Finalize the ELF file header.
2559
2560 // This function returns the size of the output file.
2561
2562 off_t
2563 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2564 Target* target, const Task* task)
2565 {
2566 target->finalize_sections(this, input_objects, symtab);
2567
2568 this->count_local_symbols(task, input_objects);
2569
2570 this->link_stabs_sections();
2571
2572 Output_segment* phdr_seg = NULL;
2573 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2574 {
2575 // There was a dynamic object in the link. We need to create
2576 // some information for the dynamic linker.
2577
2578 // Create the PT_PHDR segment which will hold the program
2579 // headers.
2580 if (!this->script_options_->saw_phdrs_clause())
2581 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2582
2583 // Create the dynamic symbol table, including the hash table.
2584 Output_section* dynstr;
2585 std::vector<Symbol*> dynamic_symbols;
2586 unsigned int local_dynamic_count;
2587 Versions versions(*this->script_options()->version_script_info(),
2588 &this->dynpool_);
2589 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2590 &local_dynamic_count, &dynamic_symbols,
2591 &versions);
2592
2593 // Create the .interp section to hold the name of the
2594 // interpreter, and put it in a PT_INTERP segment. Don't do it
2595 // if we saw a .interp section in an input file.
2596 if ((!parameters->options().shared()
2597 || parameters->options().dynamic_linker() != NULL)
2598 && this->interp_segment_ == NULL)
2599 this->create_interp(target);
2600
2601 // Finish the .dynamic section to hold the dynamic data, and put
2602 // it in a PT_DYNAMIC segment.
2603 this->finish_dynamic_section(input_objects, symtab);
2604
2605 // We should have added everything we need to the dynamic string
2606 // table.
2607 this->dynpool_.set_string_offsets();
2608
2609 // Create the version sections. We can't do this until the
2610 // dynamic string table is complete.
2611 this->create_version_sections(&versions, symtab, local_dynamic_count,
2612 dynamic_symbols, dynstr);
2613
2614 // Set the size of the _DYNAMIC symbol. We can't do this until
2615 // after we call create_version_sections.
2616 this->set_dynamic_symbol_size(symtab);
2617 }
2618
2619 // Create segment headers.
2620 Output_segment_headers* segment_headers =
2621 (parameters->options().relocatable()
2622 ? NULL
2623 : new Output_segment_headers(this->segment_list_));
2624
2625 // Lay out the file header.
2626 Output_file_header* file_header = new Output_file_header(target, symtab,
2627 segment_headers);
2628
2629 this->special_output_list_.push_back(file_header);
2630 if (segment_headers != NULL)
2631 this->special_output_list_.push_back(segment_headers);
2632
2633 // Find approriate places for orphan output sections if we are using
2634 // a linker script.
2635 if (this->script_options_->saw_sections_clause())
2636 this->place_orphan_sections_in_script();
2637
2638 Output_segment* load_seg;
2639 off_t off;
2640 unsigned int shndx;
2641 int pass = 0;
2642
2643 // Take a snapshot of the section layout as needed.
2644 if (target->may_relax())
2645 this->prepare_for_relaxation();
2646
2647 // Run the relaxation loop to lay out sections.
2648 do
2649 {
2650 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2651 phdr_seg, segment_headers, file_header,
2652 &shndx);
2653 pass++;
2654 }
2655 while (target->may_relax()
2656 && target->relax(pass, input_objects, symtab, this, task));
2657
2658 // If there is a load segment that contains the file and program headers,
2659 // provide a symbol __ehdr_start pointing there.
2660 // A program can use this to examine itself robustly.
2661 if (load_seg != NULL)
2662 symtab->define_in_output_segment("__ehdr_start", NULL,
2663 Symbol_table::PREDEFINED, load_seg, 0, 0,
2664 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2665 elfcpp::STV_DEFAULT, 0,
2666 Symbol::SEGMENT_START, true);
2667
2668 // Set the file offsets of all the non-data sections we've seen so
2669 // far which don't have to wait for the input sections. We need
2670 // this in order to finalize local symbols in non-allocated
2671 // sections.
2672 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2673
2674 // Set the section indexes of all unallocated sections seen so far,
2675 // in case any of them are somehow referenced by a symbol.
2676 shndx = this->set_section_indexes(shndx);
2677
2678 // Create the symbol table sections.
2679 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2680 if (!parameters->doing_static_link())
2681 this->assign_local_dynsym_offsets(input_objects);
2682
2683 // Process any symbol assignments from a linker script. This must
2684 // be called after the symbol table has been finalized.
2685 this->script_options_->finalize_symbols(symtab, this);
2686
2687 // Create the incremental inputs sections.
2688 if (this->incremental_inputs_)
2689 {
2690 this->incremental_inputs_->finalize();
2691 this->create_incremental_info_sections(symtab);
2692 }
2693
2694 // Create the .shstrtab section.
2695 Output_section* shstrtab_section = this->create_shstrtab();
2696
2697 // Set the file offsets of the rest of the non-data sections which
2698 // don't have to wait for the input sections.
2699 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2700
2701 // Now that all sections have been created, set the section indexes
2702 // for any sections which haven't been done yet.
2703 shndx = this->set_section_indexes(shndx);
2704
2705 // Create the section table header.
2706 this->create_shdrs(shstrtab_section, &off);
2707
2708 // If there are no sections which require postprocessing, we can
2709 // handle the section names now, and avoid a resize later.
2710 if (!this->any_postprocessing_sections_)
2711 {
2712 off = this->set_section_offsets(off,
2713 POSTPROCESSING_SECTIONS_PASS);
2714 off =
2715 this->set_section_offsets(off,
2716 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2717 }
2718
2719 file_header->set_section_info(this->section_headers_, shstrtab_section);
2720
2721 // Now we know exactly where everything goes in the output file
2722 // (except for non-allocated sections which require postprocessing).
2723 Output_data::layout_complete();
2724
2725 this->output_file_size_ = off;
2726
2727 return off;
2728 }
2729
2730 // Create a note header following the format defined in the ELF ABI.
2731 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2732 // of the section to create, DESCSZ is the size of the descriptor.
2733 // ALLOCATE is true if the section should be allocated in memory.
2734 // This returns the new note section. It sets *TRAILING_PADDING to
2735 // the number of trailing zero bytes required.
2736
2737 Output_section*
2738 Layout::create_note(const char* name, int note_type,
2739 const char* section_name, size_t descsz,
2740 bool allocate, size_t* trailing_padding)
2741 {
2742 // Authorities all agree that the values in a .note field should
2743 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2744 // they differ on what the alignment is for 64-bit binaries.
2745 // The GABI says unambiguously they take 8-byte alignment:
2746 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2747 // Other documentation says alignment should always be 4 bytes:
2748 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2749 // GNU ld and GNU readelf both support the latter (at least as of
2750 // version 2.16.91), and glibc always generates the latter for
2751 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2752 // here.
2753 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2754 const int size = parameters->target().get_size();
2755 #else
2756 const int size = 32;
2757 #endif
2758
2759 // The contents of the .note section.
2760 size_t namesz = strlen(name) + 1;
2761 size_t aligned_namesz = align_address(namesz, size / 8);
2762 size_t aligned_descsz = align_address(descsz, size / 8);
2763
2764 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2765
2766 unsigned char* buffer = new unsigned char[notehdrsz];
2767 memset(buffer, 0, notehdrsz);
2768
2769 bool is_big_endian = parameters->target().is_big_endian();
2770
2771 if (size == 32)
2772 {
2773 if (!is_big_endian)
2774 {
2775 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2776 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2777 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2778 }
2779 else
2780 {
2781 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2782 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2783 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2784 }
2785 }
2786 else if (size == 64)
2787 {
2788 if (!is_big_endian)
2789 {
2790 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2791 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2792 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2793 }
2794 else
2795 {
2796 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2797 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2798 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2799 }
2800 }
2801 else
2802 gold_unreachable();
2803
2804 memcpy(buffer + 3 * (size / 8), name, namesz);
2805
2806 elfcpp::Elf_Xword flags = 0;
2807 Output_section_order order = ORDER_INVALID;
2808 if (allocate)
2809 {
2810 flags = elfcpp::SHF_ALLOC;
2811 order = ORDER_RO_NOTE;
2812 }
2813 Output_section* os = this->choose_output_section(NULL, section_name,
2814 elfcpp::SHT_NOTE,
2815 flags, false, order, false);
2816 if (os == NULL)
2817 return NULL;
2818
2819 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2820 size / 8,
2821 "** note header");
2822 os->add_output_section_data(posd);
2823
2824 *trailing_padding = aligned_descsz - descsz;
2825
2826 return os;
2827 }
2828
2829 // For an executable or shared library, create a note to record the
2830 // version of gold used to create the binary.
2831
2832 void
2833 Layout::create_gold_note()
2834 {
2835 if (parameters->options().relocatable()
2836 || parameters->incremental_update())
2837 return;
2838
2839 std::string desc = std::string("gold ") + gold::get_version_string();
2840
2841 size_t trailing_padding;
2842 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2843 ".note.gnu.gold-version", desc.size(),
2844 false, &trailing_padding);
2845 if (os == NULL)
2846 return;
2847
2848 Output_section_data* posd = new Output_data_const(desc, 4);
2849 os->add_output_section_data(posd);
2850
2851 if (trailing_padding > 0)
2852 {
2853 posd = new Output_data_zero_fill(trailing_padding, 0);
2854 os->add_output_section_data(posd);
2855 }
2856 }
2857
2858 // Record whether the stack should be executable. This can be set
2859 // from the command line using the -z execstack or -z noexecstack
2860 // options. Otherwise, if any input file has a .note.GNU-stack
2861 // section with the SHF_EXECINSTR flag set, the stack should be
2862 // executable. Otherwise, if at least one input file a
2863 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2864 // section, we use the target default for whether the stack should be
2865 // executable. Otherwise, we don't generate a stack note. When
2866 // generating a object file, we create a .note.GNU-stack section with
2867 // the appropriate marking. When generating an executable or shared
2868 // library, we create a PT_GNU_STACK segment.
2869
2870 void
2871 Layout::create_executable_stack_info()
2872 {
2873 bool is_stack_executable;
2874 if (parameters->options().is_execstack_set())
2875 is_stack_executable = parameters->options().is_stack_executable();
2876 else if (!this->input_with_gnu_stack_note_)
2877 return;
2878 else
2879 {
2880 if (this->input_requires_executable_stack_)
2881 is_stack_executable = true;
2882 else if (this->input_without_gnu_stack_note_)
2883 is_stack_executable =
2884 parameters->target().is_default_stack_executable();
2885 else
2886 is_stack_executable = false;
2887 }
2888
2889 if (parameters->options().relocatable())
2890 {
2891 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2892 elfcpp::Elf_Xword flags = 0;
2893 if (is_stack_executable)
2894 flags |= elfcpp::SHF_EXECINSTR;
2895 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2896 ORDER_INVALID, false);
2897 }
2898 else
2899 {
2900 if (this->script_options_->saw_phdrs_clause())
2901 return;
2902 int flags = elfcpp::PF_R | elfcpp::PF_W;
2903 if (is_stack_executable)
2904 flags |= elfcpp::PF_X;
2905 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2906 }
2907 }
2908
2909 // If --build-id was used, set up the build ID note.
2910
2911 void
2912 Layout::create_build_id()
2913 {
2914 if (!parameters->options().user_set_build_id())
2915 return;
2916
2917 const char* style = parameters->options().build_id();
2918 if (strcmp(style, "none") == 0)
2919 return;
2920
2921 // Set DESCSZ to the size of the note descriptor. When possible,
2922 // set DESC to the note descriptor contents.
2923 size_t descsz;
2924 std::string desc;
2925 if (strcmp(style, "md5") == 0)
2926 descsz = 128 / 8;
2927 else if (strcmp(style, "sha1") == 0)
2928 descsz = 160 / 8;
2929 else if (strcmp(style, "uuid") == 0)
2930 {
2931 const size_t uuidsz = 128 / 8;
2932
2933 char buffer[uuidsz];
2934 memset(buffer, 0, uuidsz);
2935
2936 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2937 if (descriptor < 0)
2938 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2939 strerror(errno));
2940 else
2941 {
2942 ssize_t got = ::read(descriptor, buffer, uuidsz);
2943 release_descriptor(descriptor, true);
2944 if (got < 0)
2945 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2946 else if (static_cast<size_t>(got) != uuidsz)
2947 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2948 uuidsz, got);
2949 }
2950
2951 desc.assign(buffer, uuidsz);
2952 descsz = uuidsz;
2953 }
2954 else if (strncmp(style, "0x", 2) == 0)
2955 {
2956 hex_init();
2957 const char* p = style + 2;
2958 while (*p != '\0')
2959 {
2960 if (hex_p(p[0]) && hex_p(p[1]))
2961 {
2962 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2963 desc += c;
2964 p += 2;
2965 }
2966 else if (*p == '-' || *p == ':')
2967 ++p;
2968 else
2969 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2970 style);
2971 }
2972 descsz = desc.size();
2973 }
2974 else
2975 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2976
2977 // Create the note.
2978 size_t trailing_padding;
2979 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2980 ".note.gnu.build-id", descsz, true,
2981 &trailing_padding);
2982 if (os == NULL)
2983 return;
2984
2985 if (!desc.empty())
2986 {
2987 // We know the value already, so we fill it in now.
2988 gold_assert(desc.size() == descsz);
2989
2990 Output_section_data* posd = new Output_data_const(desc, 4);
2991 os->add_output_section_data(posd);
2992
2993 if (trailing_padding != 0)
2994 {
2995 posd = new Output_data_zero_fill(trailing_padding, 0);
2996 os->add_output_section_data(posd);
2997 }
2998 }
2999 else
3000 {
3001 // We need to compute a checksum after we have completed the
3002 // link.
3003 gold_assert(trailing_padding == 0);
3004 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3005 os->add_output_section_data(this->build_id_note_);
3006 }
3007 }
3008
3009 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3010 // field of the former should point to the latter. I'm not sure who
3011 // started this, but the GNU linker does it, and some tools depend
3012 // upon it.
3013
3014 void
3015 Layout::link_stabs_sections()
3016 {
3017 if (!this->have_stabstr_section_)
3018 return;
3019
3020 for (Section_list::iterator p = this->section_list_.begin();
3021 p != this->section_list_.end();
3022 ++p)
3023 {
3024 if ((*p)->type() != elfcpp::SHT_STRTAB)
3025 continue;
3026
3027 const char* name = (*p)->name();
3028 if (strncmp(name, ".stab", 5) != 0)
3029 continue;
3030
3031 size_t len = strlen(name);
3032 if (strcmp(name + len - 3, "str") != 0)
3033 continue;
3034
3035 std::string stab_name(name, len - 3);
3036 Output_section* stab_sec;
3037 stab_sec = this->find_output_section(stab_name.c_str());
3038 if (stab_sec != NULL)
3039 stab_sec->set_link_section(*p);
3040 }
3041 }
3042
3043 // Create .gnu_incremental_inputs and related sections needed
3044 // for the next run of incremental linking to check what has changed.
3045
3046 void
3047 Layout::create_incremental_info_sections(Symbol_table* symtab)
3048 {
3049 Incremental_inputs* incr = this->incremental_inputs_;
3050
3051 gold_assert(incr != NULL);
3052
3053 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3054 incr->create_data_sections(symtab);
3055
3056 // Add the .gnu_incremental_inputs section.
3057 const char* incremental_inputs_name =
3058 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3059 Output_section* incremental_inputs_os =
3060 this->make_output_section(incremental_inputs_name,
3061 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3062 ORDER_INVALID, false);
3063 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3064
3065 // Add the .gnu_incremental_symtab section.
3066 const char* incremental_symtab_name =
3067 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3068 Output_section* incremental_symtab_os =
3069 this->make_output_section(incremental_symtab_name,
3070 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3071 ORDER_INVALID, false);
3072 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3073 incremental_symtab_os->set_entsize(4);
3074
3075 // Add the .gnu_incremental_relocs section.
3076 const char* incremental_relocs_name =
3077 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3078 Output_section* incremental_relocs_os =
3079 this->make_output_section(incremental_relocs_name,
3080 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3081 ORDER_INVALID, false);
3082 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3083 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3084
3085 // Add the .gnu_incremental_got_plt section.
3086 const char* incremental_got_plt_name =
3087 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3088 Output_section* incremental_got_plt_os =
3089 this->make_output_section(incremental_got_plt_name,
3090 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3091 ORDER_INVALID, false);
3092 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3093
3094 // Add the .gnu_incremental_strtab section.
3095 const char* incremental_strtab_name =
3096 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3097 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3098 elfcpp::SHT_STRTAB, 0,
3099 ORDER_INVALID, false);
3100 Output_data_strtab* strtab_data =
3101 new Output_data_strtab(incr->get_stringpool());
3102 incremental_strtab_os->add_output_section_data(strtab_data);
3103
3104 incremental_inputs_os->set_after_input_sections();
3105 incremental_symtab_os->set_after_input_sections();
3106 incremental_relocs_os->set_after_input_sections();
3107 incremental_got_plt_os->set_after_input_sections();
3108
3109 incremental_inputs_os->set_link_section(incremental_strtab_os);
3110 incremental_symtab_os->set_link_section(incremental_inputs_os);
3111 incremental_relocs_os->set_link_section(incremental_inputs_os);
3112 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3113 }
3114
3115 // Return whether SEG1 should be before SEG2 in the output file. This
3116 // is based entirely on the segment type and flags. When this is
3117 // called the segment addresses have normally not yet been set.
3118
3119 bool
3120 Layout::segment_precedes(const Output_segment* seg1,
3121 const Output_segment* seg2)
3122 {
3123 elfcpp::Elf_Word type1 = seg1->type();
3124 elfcpp::Elf_Word type2 = seg2->type();
3125
3126 // The single PT_PHDR segment is required to precede any loadable
3127 // segment. We simply make it always first.
3128 if (type1 == elfcpp::PT_PHDR)
3129 {
3130 gold_assert(type2 != elfcpp::PT_PHDR);
3131 return true;
3132 }
3133 if (type2 == elfcpp::PT_PHDR)
3134 return false;
3135
3136 // The single PT_INTERP segment is required to precede any loadable
3137 // segment. We simply make it always second.
3138 if (type1 == elfcpp::PT_INTERP)
3139 {
3140 gold_assert(type2 != elfcpp::PT_INTERP);
3141 return true;
3142 }
3143 if (type2 == elfcpp::PT_INTERP)
3144 return false;
3145
3146 // We then put PT_LOAD segments before any other segments.
3147 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3148 return true;
3149 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3150 return false;
3151
3152 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3153 // segment, because that is where the dynamic linker expects to find
3154 // it (this is just for efficiency; other positions would also work
3155 // correctly).
3156 if (type1 == elfcpp::PT_TLS
3157 && type2 != elfcpp::PT_TLS
3158 && type2 != elfcpp::PT_GNU_RELRO)
3159 return false;
3160 if (type2 == elfcpp::PT_TLS
3161 && type1 != elfcpp::PT_TLS
3162 && type1 != elfcpp::PT_GNU_RELRO)
3163 return true;
3164
3165 // We put the PT_GNU_RELRO segment last, because that is where the
3166 // dynamic linker expects to find it (as with PT_TLS, this is just
3167 // for efficiency).
3168 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3169 return false;
3170 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3171 return true;
3172
3173 const elfcpp::Elf_Word flags1 = seg1->flags();
3174 const elfcpp::Elf_Word flags2 = seg2->flags();
3175
3176 // The order of non-PT_LOAD segments is unimportant. We simply sort
3177 // by the numeric segment type and flags values. There should not
3178 // be more than one segment with the same type and flags.
3179 if (type1 != elfcpp::PT_LOAD)
3180 {
3181 if (type1 != type2)
3182 return type1 < type2;
3183 gold_assert(flags1 != flags2);
3184 return flags1 < flags2;
3185 }
3186
3187 // If the addresses are set already, sort by load address.
3188 if (seg1->are_addresses_set())
3189 {
3190 if (!seg2->are_addresses_set())
3191 return true;
3192
3193 unsigned int section_count1 = seg1->output_section_count();
3194 unsigned int section_count2 = seg2->output_section_count();
3195 if (section_count1 == 0 && section_count2 > 0)
3196 return true;
3197 if (section_count1 > 0 && section_count2 == 0)
3198 return false;
3199
3200 uint64_t paddr1 = (seg1->are_addresses_set()
3201 ? seg1->paddr()
3202 : seg1->first_section_load_address());
3203 uint64_t paddr2 = (seg2->are_addresses_set()
3204 ? seg2->paddr()
3205 : seg2->first_section_load_address());
3206
3207 if (paddr1 != paddr2)
3208 return paddr1 < paddr2;
3209 }
3210 else if (seg2->are_addresses_set())
3211 return false;
3212
3213 // A segment which holds large data comes after a segment which does
3214 // not hold large data.
3215 if (seg1->is_large_data_segment())
3216 {
3217 if (!seg2->is_large_data_segment())
3218 return false;
3219 }
3220 else if (seg2->is_large_data_segment())
3221 return true;
3222
3223 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3224 // segments come before writable segments. Then writable segments
3225 // with data come before writable segments without data. Then
3226 // executable segments come before non-executable segments. Then
3227 // the unlikely case of a non-readable segment comes before the
3228 // normal case of a readable segment. If there are multiple
3229 // segments with the same type and flags, we require that the
3230 // address be set, and we sort by virtual address and then physical
3231 // address.
3232 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3233 return (flags1 & elfcpp::PF_W) == 0;
3234 if ((flags1 & elfcpp::PF_W) != 0
3235 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3236 return seg1->has_any_data_sections();
3237 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3238 return (flags1 & elfcpp::PF_X) != 0;
3239 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3240 return (flags1 & elfcpp::PF_R) == 0;
3241
3242 // We shouldn't get here--we shouldn't create segments which we
3243 // can't distinguish. Unless of course we are using a weird linker
3244 // script or overlapping --section-start options. We could also get
3245 // here if plugins want unique segments for subsets of sections.
3246 gold_assert(this->script_options_->saw_phdrs_clause()
3247 || parameters->options().any_section_start()
3248 || this->is_unique_segment_for_sections_specified());
3249 return false;
3250 }
3251
3252 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3253
3254 static off_t
3255 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3256 {
3257 uint64_t unsigned_off = off;
3258 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3259 | (addr & (abi_pagesize - 1)));
3260 if (aligned_off < unsigned_off)
3261 aligned_off += abi_pagesize;
3262 return aligned_off;
3263 }
3264
3265 // Set the file offsets of all the segments, and all the sections they
3266 // contain. They have all been created. LOAD_SEG must be be laid out
3267 // first. Return the offset of the data to follow.
3268
3269 off_t
3270 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3271 unsigned int* pshndx)
3272 {
3273 // Sort them into the final order. We use a stable sort so that we
3274 // don't randomize the order of indistinguishable segments created
3275 // by linker scripts.
3276 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3277 Layout::Compare_segments(this));
3278
3279 // Find the PT_LOAD segments, and set their addresses and offsets
3280 // and their section's addresses and offsets.
3281 uint64_t start_addr;
3282 if (parameters->options().user_set_Ttext())
3283 start_addr = parameters->options().Ttext();
3284 else if (parameters->options().output_is_position_independent())
3285 start_addr = 0;
3286 else
3287 start_addr = target->default_text_segment_address();
3288
3289 uint64_t addr = start_addr;
3290 off_t off = 0;
3291
3292 // If LOAD_SEG is NULL, then the file header and segment headers
3293 // will not be loadable. But they still need to be at offset 0 in
3294 // the file. Set their offsets now.
3295 if (load_seg == NULL)
3296 {
3297 for (Data_list::iterator p = this->special_output_list_.begin();
3298 p != this->special_output_list_.end();
3299 ++p)
3300 {
3301 off = align_address(off, (*p)->addralign());
3302 (*p)->set_address_and_file_offset(0, off);
3303 off += (*p)->data_size();
3304 }
3305 }
3306
3307 unsigned int increase_relro = this->increase_relro_;
3308 if (this->script_options_->saw_sections_clause())
3309 increase_relro = 0;
3310
3311 const bool check_sections = parameters->options().check_sections();
3312 Output_segment* last_load_segment = NULL;
3313
3314 unsigned int shndx_begin = *pshndx;
3315 unsigned int shndx_load_seg = *pshndx;
3316
3317 for (Segment_list::iterator p = this->segment_list_.begin();
3318 p != this->segment_list_.end();
3319 ++p)
3320 {
3321 if ((*p)->type() == elfcpp::PT_LOAD)
3322 {
3323 if (target->isolate_execinstr())
3324 {
3325 // When we hit the segment that should contain the
3326 // file headers, reset the file offset so we place
3327 // it and subsequent segments appropriately.
3328 // We'll fix up the preceding segments below.
3329 if (load_seg == *p)
3330 {
3331 if (off == 0)
3332 load_seg = NULL;
3333 else
3334 {
3335 off = 0;
3336 shndx_load_seg = *pshndx;
3337 }
3338 }
3339 }
3340 else
3341 {
3342 // Verify that the file headers fall into the first segment.
3343 if (load_seg != NULL && load_seg != *p)
3344 gold_unreachable();
3345 load_seg = NULL;
3346 }
3347
3348 bool are_addresses_set = (*p)->are_addresses_set();
3349 if (are_addresses_set)
3350 {
3351 // When it comes to setting file offsets, we care about
3352 // the physical address.
3353 addr = (*p)->paddr();
3354 }
3355 else if (parameters->options().user_set_Ttext()
3356 && ((*p)->flags() & elfcpp::PF_W) == 0)
3357 {
3358 are_addresses_set = true;
3359 }
3360 else if (parameters->options().user_set_Tdata()
3361 && ((*p)->flags() & elfcpp::PF_W) != 0
3362 && (!parameters->options().user_set_Tbss()
3363 || (*p)->has_any_data_sections()))
3364 {
3365 addr = parameters->options().Tdata();
3366 are_addresses_set = true;
3367 }
3368 else if (parameters->options().user_set_Tbss()
3369 && ((*p)->flags() & elfcpp::PF_W) != 0
3370 && !(*p)->has_any_data_sections())
3371 {
3372 addr = parameters->options().Tbss();
3373 are_addresses_set = true;
3374 }
3375
3376 uint64_t orig_addr = addr;
3377 uint64_t orig_off = off;
3378
3379 uint64_t aligned_addr = 0;
3380 uint64_t abi_pagesize = target->abi_pagesize();
3381 uint64_t common_pagesize = target->common_pagesize();
3382
3383 if (!parameters->options().nmagic()
3384 && !parameters->options().omagic())
3385 (*p)->set_minimum_p_align(abi_pagesize);
3386
3387 if (!are_addresses_set)
3388 {
3389 // Skip the address forward one page, maintaining the same
3390 // position within the page. This lets us store both segments
3391 // overlapping on a single page in the file, but the loader will
3392 // put them on different pages in memory. We will revisit this
3393 // decision once we know the size of the segment.
3394
3395 addr = align_address(addr, (*p)->maximum_alignment());
3396 aligned_addr = addr;
3397
3398 if (load_seg == *p)
3399 {
3400 // This is the segment that will contain the file
3401 // headers, so its offset will have to be exactly zero.
3402 gold_assert(orig_off == 0);
3403
3404 // If the target wants a fixed minimum distance from the
3405 // text segment to the read-only segment, move up now.
3406 uint64_t min_addr = start_addr + target->rosegment_gap();
3407 if (addr < min_addr)
3408 addr = min_addr;
3409
3410 // But this is not the first segment! To make its
3411 // address congruent with its offset, that address better
3412 // be aligned to the ABI-mandated page size.
3413 addr = align_address(addr, abi_pagesize);
3414 aligned_addr = addr;
3415 }
3416 else
3417 {
3418 if ((addr & (abi_pagesize - 1)) != 0)
3419 addr = addr + abi_pagesize;
3420
3421 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3422 }
3423 }
3424
3425 if (!parameters->options().nmagic()
3426 && !parameters->options().omagic())
3427 off = align_file_offset(off, addr, abi_pagesize);
3428 else
3429 {
3430 // This is -N or -n with a section script which prevents
3431 // us from using a load segment. We need to ensure that
3432 // the file offset is aligned to the alignment of the
3433 // segment. This is because the linker script
3434 // implicitly assumed a zero offset. If we don't align
3435 // here, then the alignment of the sections in the
3436 // linker script may not match the alignment of the
3437 // sections in the set_section_addresses call below,
3438 // causing an error about dot moving backward.
3439 off = align_address(off, (*p)->maximum_alignment());
3440 }
3441
3442 unsigned int shndx_hold = *pshndx;
3443 bool has_relro = false;
3444 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3445 &increase_relro,
3446 &has_relro,
3447 &off, pshndx);
3448
3449 // Now that we know the size of this segment, we may be able
3450 // to save a page in memory, at the cost of wasting some
3451 // file space, by instead aligning to the start of a new
3452 // page. Here we use the real machine page size rather than
3453 // the ABI mandated page size. If the segment has been
3454 // aligned so that the relro data ends at a page boundary,
3455 // we do not try to realign it.
3456
3457 if (!are_addresses_set
3458 && !has_relro
3459 && aligned_addr != addr
3460 && !parameters->incremental())
3461 {
3462 uint64_t first_off = (common_pagesize
3463 - (aligned_addr
3464 & (common_pagesize - 1)));
3465 uint64_t last_off = new_addr & (common_pagesize - 1);
3466 if (first_off > 0
3467 && last_off > 0
3468 && ((aligned_addr & ~ (common_pagesize - 1))
3469 != (new_addr & ~ (common_pagesize - 1)))
3470 && first_off + last_off <= common_pagesize)
3471 {
3472 *pshndx = shndx_hold;
3473 addr = align_address(aligned_addr, common_pagesize);
3474 addr = align_address(addr, (*p)->maximum_alignment());
3475 if ((addr & (abi_pagesize - 1)) != 0)
3476 addr = addr + abi_pagesize;
3477 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3478 off = align_file_offset(off, addr, abi_pagesize);
3479
3480 increase_relro = this->increase_relro_;
3481 if (this->script_options_->saw_sections_clause())
3482 increase_relro = 0;
3483 has_relro = false;
3484
3485 new_addr = (*p)->set_section_addresses(this, true, addr,
3486 &increase_relro,
3487 &has_relro,
3488 &off, pshndx);
3489 }
3490 }
3491
3492 addr = new_addr;
3493
3494 // Implement --check-sections. We know that the segments
3495 // are sorted by LMA.
3496 if (check_sections && last_load_segment != NULL)
3497 {
3498 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3499 if (last_load_segment->paddr() + last_load_segment->memsz()
3500 > (*p)->paddr())
3501 {
3502 unsigned long long lb1 = last_load_segment->paddr();
3503 unsigned long long le1 = lb1 + last_load_segment->memsz();
3504 unsigned long long lb2 = (*p)->paddr();
3505 unsigned long long le2 = lb2 + (*p)->memsz();
3506 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3507 "[0x%llx -> 0x%llx]"),
3508 lb1, le1, lb2, le2);
3509 }
3510 }
3511 last_load_segment = *p;
3512 }
3513 }
3514
3515 if (load_seg != NULL && target->isolate_execinstr())
3516 {
3517 // Process the early segments again, setting their file offsets
3518 // so they land after the segments starting at LOAD_SEG.
3519 off = align_file_offset(off, 0, target->abi_pagesize());
3520
3521 for (Segment_list::iterator p = this->segment_list_.begin();
3522 *p != load_seg;
3523 ++p)
3524 {
3525 if ((*p)->type() == elfcpp::PT_LOAD)
3526 {
3527 // We repeat the whole job of assigning addresses and
3528 // offsets, but we really only want to change the offsets and
3529 // must ensure that the addresses all come out the same as
3530 // they did the first time through.
3531 bool has_relro = false;
3532 const uint64_t old_addr = (*p)->vaddr();
3533 const uint64_t old_end = old_addr + (*p)->memsz();
3534 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3535 old_addr,
3536 &increase_relro,
3537 &has_relro,
3538 &off,
3539 &shndx_begin);
3540 gold_assert(new_addr == old_end);
3541 }
3542 }
3543
3544 gold_assert(shndx_begin == shndx_load_seg);
3545 }
3546
3547 // Handle the non-PT_LOAD segments, setting their offsets from their
3548 // section's offsets.
3549 for (Segment_list::iterator p = this->segment_list_.begin();
3550 p != this->segment_list_.end();
3551 ++p)
3552 {
3553 if ((*p)->type() != elfcpp::PT_LOAD)
3554 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3555 ? increase_relro
3556 : 0);
3557 }
3558
3559 // Set the TLS offsets for each section in the PT_TLS segment.
3560 if (this->tls_segment_ != NULL)
3561 this->tls_segment_->set_tls_offsets();
3562
3563 return off;
3564 }
3565
3566 // Set the offsets of all the allocated sections when doing a
3567 // relocatable link. This does the same jobs as set_segment_offsets,
3568 // only for a relocatable link.
3569
3570 off_t
3571 Layout::set_relocatable_section_offsets(Output_data* file_header,
3572 unsigned int* pshndx)
3573 {
3574 off_t off = 0;
3575
3576 file_header->set_address_and_file_offset(0, 0);
3577 off += file_header->data_size();
3578
3579 for (Section_list::iterator p = this->section_list_.begin();
3580 p != this->section_list_.end();
3581 ++p)
3582 {
3583 // We skip unallocated sections here, except that group sections
3584 // have to come first.
3585 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3586 && (*p)->type() != elfcpp::SHT_GROUP)
3587 continue;
3588
3589 off = align_address(off, (*p)->addralign());
3590
3591 // The linker script might have set the address.
3592 if (!(*p)->is_address_valid())
3593 (*p)->set_address(0);
3594 (*p)->set_file_offset(off);
3595 (*p)->finalize_data_size();
3596 off += (*p)->data_size();
3597
3598 (*p)->set_out_shndx(*pshndx);
3599 ++*pshndx;
3600 }
3601
3602 return off;
3603 }
3604
3605 // Set the file offset of all the sections not associated with a
3606 // segment.
3607
3608 off_t
3609 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3610 {
3611 off_t startoff = off;
3612 off_t maxoff = off;
3613
3614 for (Section_list::iterator p = this->unattached_section_list_.begin();
3615 p != this->unattached_section_list_.end();
3616 ++p)
3617 {
3618 // The symtab section is handled in create_symtab_sections.
3619 if (*p == this->symtab_section_)
3620 continue;
3621
3622 // If we've already set the data size, don't set it again.
3623 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3624 continue;
3625
3626 if (pass == BEFORE_INPUT_SECTIONS_PASS
3627 && (*p)->requires_postprocessing())
3628 {
3629 (*p)->create_postprocessing_buffer();
3630 this->any_postprocessing_sections_ = true;
3631 }
3632
3633 if (pass == BEFORE_INPUT_SECTIONS_PASS
3634 && (*p)->after_input_sections())
3635 continue;
3636 else if (pass == POSTPROCESSING_SECTIONS_PASS
3637 && (!(*p)->after_input_sections()
3638 || (*p)->type() == elfcpp::SHT_STRTAB))
3639 continue;
3640 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3641 && (!(*p)->after_input_sections()
3642 || (*p)->type() != elfcpp::SHT_STRTAB))
3643 continue;
3644
3645 if (!parameters->incremental_update())
3646 {
3647 off = align_address(off, (*p)->addralign());
3648 (*p)->set_file_offset(off);
3649 (*p)->finalize_data_size();
3650 }
3651 else
3652 {
3653 // Incremental update: allocate file space from free list.
3654 (*p)->pre_finalize_data_size();
3655 off_t current_size = (*p)->current_data_size();
3656 off = this->allocate(current_size, (*p)->addralign(), startoff);
3657 if (off == -1)
3658 {
3659 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3660 this->free_list_.dump();
3661 gold_assert((*p)->output_section() != NULL);
3662 gold_fallback(_("out of patch space for section %s; "
3663 "relink with --incremental-full"),
3664 (*p)->output_section()->name());
3665 }
3666 (*p)->set_file_offset(off);
3667 (*p)->finalize_data_size();
3668 if ((*p)->data_size() > current_size)
3669 {
3670 gold_assert((*p)->output_section() != NULL);
3671 gold_fallback(_("%s: section changed size; "
3672 "relink with --incremental-full"),
3673 (*p)->output_section()->name());
3674 }
3675 gold_debug(DEBUG_INCREMENTAL,
3676 "set_section_offsets: %08lx %08lx %s",
3677 static_cast<long>(off),
3678 static_cast<long>((*p)->data_size()),
3679 ((*p)->output_section() != NULL
3680 ? (*p)->output_section()->name() : "(special)"));
3681 }
3682
3683 off += (*p)->data_size();
3684 if (off > maxoff)
3685 maxoff = off;
3686
3687 // At this point the name must be set.
3688 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3689 this->namepool_.add((*p)->name(), false, NULL);
3690 }
3691 return maxoff;
3692 }
3693
3694 // Set the section indexes of all the sections not associated with a
3695 // segment.
3696
3697 unsigned int
3698 Layout::set_section_indexes(unsigned int shndx)
3699 {
3700 for (Section_list::iterator p = this->unattached_section_list_.begin();
3701 p != this->unattached_section_list_.end();
3702 ++p)
3703 {
3704 if (!(*p)->has_out_shndx())
3705 {
3706 (*p)->set_out_shndx(shndx);
3707 ++shndx;
3708 }
3709 }
3710 return shndx;
3711 }
3712
3713 // Set the section addresses according to the linker script. This is
3714 // only called when we see a SECTIONS clause. This returns the
3715 // program segment which should hold the file header and segment
3716 // headers, if any. It will return NULL if they should not be in a
3717 // segment.
3718
3719 Output_segment*
3720 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3721 {
3722 Script_sections* ss = this->script_options_->script_sections();
3723 gold_assert(ss->saw_sections_clause());
3724 return this->script_options_->set_section_addresses(symtab, this);
3725 }
3726
3727 // Place the orphan sections in the linker script.
3728
3729 void
3730 Layout::place_orphan_sections_in_script()
3731 {
3732 Script_sections* ss = this->script_options_->script_sections();
3733 gold_assert(ss->saw_sections_clause());
3734
3735 // Place each orphaned output section in the script.
3736 for (Section_list::iterator p = this->section_list_.begin();
3737 p != this->section_list_.end();
3738 ++p)
3739 {
3740 if (!(*p)->found_in_sections_clause())
3741 ss->place_orphan(*p);
3742 }
3743 }
3744
3745 // Count the local symbols in the regular symbol table and the dynamic
3746 // symbol table, and build the respective string pools.
3747
3748 void
3749 Layout::count_local_symbols(const Task* task,
3750 const Input_objects* input_objects)
3751 {
3752 // First, figure out an upper bound on the number of symbols we'll
3753 // be inserting into each pool. This helps us create the pools with
3754 // the right size, to avoid unnecessary hashtable resizing.
3755 unsigned int symbol_count = 0;
3756 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3757 p != input_objects->relobj_end();
3758 ++p)
3759 symbol_count += (*p)->local_symbol_count();
3760
3761 // Go from "upper bound" to "estimate." We overcount for two
3762 // reasons: we double-count symbols that occur in more than one
3763 // object file, and we count symbols that are dropped from the
3764 // output. Add it all together and assume we overcount by 100%.
3765 symbol_count /= 2;
3766
3767 // We assume all symbols will go into both the sympool and dynpool.
3768 this->sympool_.reserve(symbol_count);
3769 this->dynpool_.reserve(symbol_count);
3770
3771 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3772 p != input_objects->relobj_end();
3773 ++p)
3774 {
3775 Task_lock_obj<Object> tlo(task, *p);
3776 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3777 }
3778 }
3779
3780 // Create the symbol table sections. Here we also set the final
3781 // values of the symbols. At this point all the loadable sections are
3782 // fully laid out. SHNUM is the number of sections so far.
3783
3784 void
3785 Layout::create_symtab_sections(const Input_objects* input_objects,
3786 Symbol_table* symtab,
3787 unsigned int shnum,
3788 off_t* poff)
3789 {
3790 int symsize;
3791 unsigned int align;
3792 if (parameters->target().get_size() == 32)
3793 {
3794 symsize = elfcpp::Elf_sizes<32>::sym_size;
3795 align = 4;
3796 }
3797 else if (parameters->target().get_size() == 64)
3798 {
3799 symsize = elfcpp::Elf_sizes<64>::sym_size;
3800 align = 8;
3801 }
3802 else
3803 gold_unreachable();
3804
3805 // Compute file offsets relative to the start of the symtab section.
3806 off_t off = 0;
3807
3808 // Save space for the dummy symbol at the start of the section. We
3809 // never bother to write this out--it will just be left as zero.
3810 off += symsize;
3811 unsigned int local_symbol_index = 1;
3812
3813 // Add STT_SECTION symbols for each Output section which needs one.
3814 for (Section_list::iterator p = this->section_list_.begin();
3815 p != this->section_list_.end();
3816 ++p)
3817 {
3818 if (!(*p)->needs_symtab_index())
3819 (*p)->set_symtab_index(-1U);
3820 else
3821 {
3822 (*p)->set_symtab_index(local_symbol_index);
3823 ++local_symbol_index;
3824 off += symsize;
3825 }
3826 }
3827
3828 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3829 p != input_objects->relobj_end();
3830 ++p)
3831 {
3832 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3833 off, symtab);
3834 off += (index - local_symbol_index) * symsize;
3835 local_symbol_index = index;
3836 }
3837
3838 unsigned int local_symcount = local_symbol_index;
3839 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3840
3841 off_t dynoff;
3842 size_t dyn_global_index;
3843 size_t dyncount;
3844 if (this->dynsym_section_ == NULL)
3845 {
3846 dynoff = 0;
3847 dyn_global_index = 0;
3848 dyncount = 0;
3849 }
3850 else
3851 {
3852 dyn_global_index = this->dynsym_section_->info();
3853 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3854 dynoff = this->dynsym_section_->offset() + locsize;
3855 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3856 gold_assert(static_cast<off_t>(dyncount * symsize)
3857 == this->dynsym_section_->data_size() - locsize);
3858 }
3859
3860 off_t global_off = off;
3861 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3862 &this->sympool_, &local_symcount);
3863
3864 if (!parameters->options().strip_all())
3865 {
3866 this->sympool_.set_string_offsets();
3867
3868 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3869 Output_section* osymtab = this->make_output_section(symtab_name,
3870 elfcpp::SHT_SYMTAB,
3871 0, ORDER_INVALID,
3872 false);
3873 this->symtab_section_ = osymtab;
3874
3875 Output_section_data* pos = new Output_data_fixed_space(off, align,
3876 "** symtab");
3877 osymtab->add_output_section_data(pos);
3878
3879 // We generate a .symtab_shndx section if we have more than
3880 // SHN_LORESERVE sections. Technically it is possible that we
3881 // don't need one, because it is possible that there are no
3882 // symbols in any of sections with indexes larger than
3883 // SHN_LORESERVE. That is probably unusual, though, and it is
3884 // easier to always create one than to compute section indexes
3885 // twice (once here, once when writing out the symbols).
3886 if (shnum >= elfcpp::SHN_LORESERVE)
3887 {
3888 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3889 false, NULL);
3890 Output_section* osymtab_xindex =
3891 this->make_output_section(symtab_xindex_name,
3892 elfcpp::SHT_SYMTAB_SHNDX, 0,
3893 ORDER_INVALID, false);
3894
3895 size_t symcount = off / symsize;
3896 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3897
3898 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3899
3900 osymtab_xindex->set_link_section(osymtab);
3901 osymtab_xindex->set_addralign(4);
3902 osymtab_xindex->set_entsize(4);
3903
3904 osymtab_xindex->set_after_input_sections();
3905
3906 // This tells the driver code to wait until the symbol table
3907 // has written out before writing out the postprocessing
3908 // sections, including the .symtab_shndx section.
3909 this->any_postprocessing_sections_ = true;
3910 }
3911
3912 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3913 Output_section* ostrtab = this->make_output_section(strtab_name,
3914 elfcpp::SHT_STRTAB,
3915 0, ORDER_INVALID,
3916 false);
3917
3918 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3919 ostrtab->add_output_section_data(pstr);
3920
3921 off_t symtab_off;
3922 if (!parameters->incremental_update())
3923 symtab_off = align_address(*poff, align);
3924 else
3925 {
3926 symtab_off = this->allocate(off, align, *poff);
3927 if (off == -1)
3928 gold_fallback(_("out of patch space for symbol table; "
3929 "relink with --incremental-full"));
3930 gold_debug(DEBUG_INCREMENTAL,
3931 "create_symtab_sections: %08lx %08lx .symtab",
3932 static_cast<long>(symtab_off),
3933 static_cast<long>(off));
3934 }
3935
3936 symtab->set_file_offset(symtab_off + global_off);
3937 osymtab->set_file_offset(symtab_off);
3938 osymtab->finalize_data_size();
3939 osymtab->set_link_section(ostrtab);
3940 osymtab->set_info(local_symcount);
3941 osymtab->set_entsize(symsize);
3942
3943 if (symtab_off + off > *poff)
3944 *poff = symtab_off + off;
3945 }
3946 }
3947
3948 // Create the .shstrtab section, which holds the names of the
3949 // sections. At the time this is called, we have created all the
3950 // output sections except .shstrtab itself.
3951
3952 Output_section*
3953 Layout::create_shstrtab()
3954 {
3955 // FIXME: We don't need to create a .shstrtab section if we are
3956 // stripping everything.
3957
3958 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3959
3960 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3961 ORDER_INVALID, false);
3962
3963 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3964 {
3965 // We can't write out this section until we've set all the
3966 // section names, and we don't set the names of compressed
3967 // output sections until relocations are complete. FIXME: With
3968 // the current names we use, this is unnecessary.
3969 os->set_after_input_sections();
3970 }
3971
3972 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3973 os->add_output_section_data(posd);
3974
3975 return os;
3976 }
3977
3978 // Create the section headers. SIZE is 32 or 64. OFF is the file
3979 // offset.
3980
3981 void
3982 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3983 {
3984 Output_section_headers* oshdrs;
3985 oshdrs = new Output_section_headers(this,
3986 &this->segment_list_,
3987 &this->section_list_,
3988 &this->unattached_section_list_,
3989 &this->namepool_,
3990 shstrtab_section);
3991 off_t off;
3992 if (!parameters->incremental_update())
3993 off = align_address(*poff, oshdrs->addralign());
3994 else
3995 {
3996 oshdrs->pre_finalize_data_size();
3997 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3998 if (off == -1)
3999 gold_fallback(_("out of patch space for section header table; "
4000 "relink with --incremental-full"));
4001 gold_debug(DEBUG_INCREMENTAL,
4002 "create_shdrs: %08lx %08lx (section header table)",
4003 static_cast<long>(off),
4004 static_cast<long>(off + oshdrs->data_size()));
4005 }
4006 oshdrs->set_address_and_file_offset(0, off);
4007 off += oshdrs->data_size();
4008 if (off > *poff)
4009 *poff = off;
4010 this->section_headers_ = oshdrs;
4011 }
4012
4013 // Count the allocated sections.
4014
4015 size_t
4016 Layout::allocated_output_section_count() const
4017 {
4018 size_t section_count = 0;
4019 for (Segment_list::const_iterator p = this->segment_list_.begin();
4020 p != this->segment_list_.end();
4021 ++p)
4022 section_count += (*p)->output_section_count();
4023 return section_count;
4024 }
4025
4026 // Create the dynamic symbol table.
4027
4028 void
4029 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4030 Symbol_table* symtab,
4031 Output_section** pdynstr,
4032 unsigned int* plocal_dynamic_count,
4033 std::vector<Symbol*>* pdynamic_symbols,
4034 Versions* pversions)
4035 {
4036 // Count all the symbols in the dynamic symbol table, and set the
4037 // dynamic symbol indexes.
4038
4039 // Skip symbol 0, which is always all zeroes.
4040 unsigned int index = 1;
4041
4042 // Add STT_SECTION symbols for each Output section which needs one.
4043 for (Section_list::iterator p = this->section_list_.begin();
4044 p != this->section_list_.end();
4045 ++p)
4046 {
4047 if (!(*p)->needs_dynsym_index())
4048 (*p)->set_dynsym_index(-1U);
4049 else
4050 {
4051 (*p)->set_dynsym_index(index);
4052 ++index;
4053 }
4054 }
4055
4056 // Count the local symbols that need to go in the dynamic symbol table,
4057 // and set the dynamic symbol indexes.
4058 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4059 p != input_objects->relobj_end();
4060 ++p)
4061 {
4062 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4063 index = new_index;
4064 }
4065
4066 unsigned int local_symcount = index;
4067 *plocal_dynamic_count = local_symcount;
4068
4069 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4070 &this->dynpool_, pversions);
4071
4072 int symsize;
4073 unsigned int align;
4074 const int size = parameters->target().get_size();
4075 if (size == 32)
4076 {
4077 symsize = elfcpp::Elf_sizes<32>::sym_size;
4078 align = 4;
4079 }
4080 else if (size == 64)
4081 {
4082 symsize = elfcpp::Elf_sizes<64>::sym_size;
4083 align = 8;
4084 }
4085 else
4086 gold_unreachable();
4087
4088 // Create the dynamic symbol table section.
4089
4090 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4091 elfcpp::SHT_DYNSYM,
4092 elfcpp::SHF_ALLOC,
4093 false,
4094 ORDER_DYNAMIC_LINKER,
4095 false);
4096
4097 // Check for NULL as a linker script may discard .dynsym.
4098 if (dynsym != NULL)
4099 {
4100 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4101 align,
4102 "** dynsym");
4103 dynsym->add_output_section_data(odata);
4104
4105 dynsym->set_info(local_symcount);
4106 dynsym->set_entsize(symsize);
4107 dynsym->set_addralign(align);
4108
4109 this->dynsym_section_ = dynsym;
4110 }
4111
4112 Output_data_dynamic* const odyn = this->dynamic_data_;
4113 if (odyn != NULL)
4114 {
4115 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4116 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4117 }
4118
4119 // If there are more than SHN_LORESERVE allocated sections, we
4120 // create a .dynsym_shndx section. It is possible that we don't
4121 // need one, because it is possible that there are no dynamic
4122 // symbols in any of the sections with indexes larger than
4123 // SHN_LORESERVE. This is probably unusual, though, and at this
4124 // time we don't know the actual section indexes so it is
4125 // inconvenient to check.
4126 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4127 {
4128 Output_section* dynsym_xindex =
4129 this->choose_output_section(NULL, ".dynsym_shndx",
4130 elfcpp::SHT_SYMTAB_SHNDX,
4131 elfcpp::SHF_ALLOC,
4132 false, ORDER_DYNAMIC_LINKER, false);
4133
4134 if (dynsym_xindex != NULL)
4135 {
4136 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4137
4138 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4139
4140 dynsym_xindex->set_link_section(dynsym);
4141 dynsym_xindex->set_addralign(4);
4142 dynsym_xindex->set_entsize(4);
4143
4144 dynsym_xindex->set_after_input_sections();
4145
4146 // This tells the driver code to wait until the symbol table
4147 // has written out before writing out the postprocessing
4148 // sections, including the .dynsym_shndx section.
4149 this->any_postprocessing_sections_ = true;
4150 }
4151 }
4152
4153 // Create the dynamic string table section.
4154
4155 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4156 elfcpp::SHT_STRTAB,
4157 elfcpp::SHF_ALLOC,
4158 false,
4159 ORDER_DYNAMIC_LINKER,
4160 false);
4161 *pdynstr = dynstr;
4162 if (dynstr != NULL)
4163 {
4164 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4165 dynstr->add_output_section_data(strdata);
4166
4167 if (dynsym != NULL)
4168 dynsym->set_link_section(dynstr);
4169 if (this->dynamic_section_ != NULL)
4170 this->dynamic_section_->set_link_section(dynstr);
4171
4172 if (odyn != NULL)
4173 {
4174 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4175 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4176 }
4177 }
4178
4179 // Create the hash tables.
4180
4181 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4182 || strcmp(parameters->options().hash_style(), "both") == 0)
4183 {
4184 unsigned char* phash;
4185 unsigned int hashlen;
4186 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4187 &phash, &hashlen);
4188
4189 Output_section* hashsec =
4190 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4191 elfcpp::SHF_ALLOC, false,
4192 ORDER_DYNAMIC_LINKER, false);
4193
4194 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4195 hashlen,
4196 align,
4197 "** hash");
4198 if (hashsec != NULL && hashdata != NULL)
4199 hashsec->add_output_section_data(hashdata);
4200
4201 if (hashsec != NULL)
4202 {
4203 if (dynsym != NULL)
4204 hashsec->set_link_section(dynsym);
4205 hashsec->set_entsize(4);
4206 }
4207
4208 if (odyn != NULL)
4209 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4210 }
4211
4212 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4213 || strcmp(parameters->options().hash_style(), "both") == 0)
4214 {
4215 unsigned char* phash;
4216 unsigned int hashlen;
4217 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4218 &phash, &hashlen);
4219
4220 Output_section* hashsec =
4221 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4222 elfcpp::SHF_ALLOC, false,
4223 ORDER_DYNAMIC_LINKER, false);
4224
4225 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4226 hashlen,
4227 align,
4228 "** hash");
4229 if (hashsec != NULL && hashdata != NULL)
4230 hashsec->add_output_section_data(hashdata);
4231
4232 if (hashsec != NULL)
4233 {
4234 if (dynsym != NULL)
4235 hashsec->set_link_section(dynsym);
4236
4237 // For a 64-bit target, the entries in .gnu.hash do not have
4238 // a uniform size, so we only set the entry size for a
4239 // 32-bit target.
4240 if (parameters->target().get_size() == 32)
4241 hashsec->set_entsize(4);
4242
4243 if (odyn != NULL)
4244 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4245 }
4246 }
4247 }
4248
4249 // Assign offsets to each local portion of the dynamic symbol table.
4250
4251 void
4252 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4253 {
4254 Output_section* dynsym = this->dynsym_section_;
4255 if (dynsym == NULL)
4256 return;
4257
4258 off_t off = dynsym->offset();
4259
4260 // Skip the dummy symbol at the start of the section.
4261 off += dynsym->entsize();
4262
4263 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4264 p != input_objects->relobj_end();
4265 ++p)
4266 {
4267 unsigned int count = (*p)->set_local_dynsym_offset(off);
4268 off += count * dynsym->entsize();
4269 }
4270 }
4271
4272 // Create the version sections.
4273
4274 void
4275 Layout::create_version_sections(const Versions* versions,
4276 const Symbol_table* symtab,
4277 unsigned int local_symcount,
4278 const std::vector<Symbol*>& dynamic_symbols,
4279 const Output_section* dynstr)
4280 {
4281 if (!versions->any_defs() && !versions->any_needs())
4282 return;
4283
4284 switch (parameters->size_and_endianness())
4285 {
4286 #ifdef HAVE_TARGET_32_LITTLE
4287 case Parameters::TARGET_32_LITTLE:
4288 this->sized_create_version_sections<32, false>(versions, symtab,
4289 local_symcount,
4290 dynamic_symbols, dynstr);
4291 break;
4292 #endif
4293 #ifdef HAVE_TARGET_32_BIG
4294 case Parameters::TARGET_32_BIG:
4295 this->sized_create_version_sections<32, true>(versions, symtab,
4296 local_symcount,
4297 dynamic_symbols, dynstr);
4298 break;
4299 #endif
4300 #ifdef HAVE_TARGET_64_LITTLE
4301 case Parameters::TARGET_64_LITTLE:
4302 this->sized_create_version_sections<64, false>(versions, symtab,
4303 local_symcount,
4304 dynamic_symbols, dynstr);
4305 break;
4306 #endif
4307 #ifdef HAVE_TARGET_64_BIG
4308 case Parameters::TARGET_64_BIG:
4309 this->sized_create_version_sections<64, true>(versions, symtab,
4310 local_symcount,
4311 dynamic_symbols, dynstr);
4312 break;
4313 #endif
4314 default:
4315 gold_unreachable();
4316 }
4317 }
4318
4319 // Create the version sections, sized version.
4320
4321 template<int size, bool big_endian>
4322 void
4323 Layout::sized_create_version_sections(
4324 const Versions* versions,
4325 const Symbol_table* symtab,
4326 unsigned int local_symcount,
4327 const std::vector<Symbol*>& dynamic_symbols,
4328 const Output_section* dynstr)
4329 {
4330 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4331 elfcpp::SHT_GNU_versym,
4332 elfcpp::SHF_ALLOC,
4333 false,
4334 ORDER_DYNAMIC_LINKER,
4335 false);
4336
4337 // Check for NULL since a linker script may discard this section.
4338 if (vsec != NULL)
4339 {
4340 unsigned char* vbuf;
4341 unsigned int vsize;
4342 versions->symbol_section_contents<size, big_endian>(symtab,
4343 &this->dynpool_,
4344 local_symcount,
4345 dynamic_symbols,
4346 &vbuf, &vsize);
4347
4348 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4349 "** versions");
4350
4351 vsec->add_output_section_data(vdata);
4352 vsec->set_entsize(2);
4353 vsec->set_link_section(this->dynsym_section_);
4354 }
4355
4356 Output_data_dynamic* const odyn = this->dynamic_data_;
4357 if (odyn != NULL && vsec != NULL)
4358 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4359
4360 if (versions->any_defs())
4361 {
4362 Output_section* vdsec;
4363 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4364 elfcpp::SHT_GNU_verdef,
4365 elfcpp::SHF_ALLOC,
4366 false, ORDER_DYNAMIC_LINKER, false);
4367
4368 if (vdsec != NULL)
4369 {
4370 unsigned char* vdbuf;
4371 unsigned int vdsize;
4372 unsigned int vdentries;
4373 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4374 &vdbuf, &vdsize,
4375 &vdentries);
4376
4377 Output_section_data* vddata =
4378 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4379
4380 vdsec->add_output_section_data(vddata);
4381 vdsec->set_link_section(dynstr);
4382 vdsec->set_info(vdentries);
4383
4384 if (odyn != NULL)
4385 {
4386 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4387 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4388 }
4389 }
4390 }
4391
4392 if (versions->any_needs())
4393 {
4394 Output_section* vnsec;
4395 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4396 elfcpp::SHT_GNU_verneed,
4397 elfcpp::SHF_ALLOC,
4398 false, ORDER_DYNAMIC_LINKER, false);
4399
4400 if (vnsec != NULL)
4401 {
4402 unsigned char* vnbuf;
4403 unsigned int vnsize;
4404 unsigned int vnentries;
4405 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4406 &vnbuf, &vnsize,
4407 &vnentries);
4408
4409 Output_section_data* vndata =
4410 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4411
4412 vnsec->add_output_section_data(vndata);
4413 vnsec->set_link_section(dynstr);
4414 vnsec->set_info(vnentries);
4415
4416 if (odyn != NULL)
4417 {
4418 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4419 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4420 }
4421 }
4422 }
4423 }
4424
4425 // Create the .interp section and PT_INTERP segment.
4426
4427 void
4428 Layout::create_interp(const Target* target)
4429 {
4430 gold_assert(this->interp_segment_ == NULL);
4431
4432 const char* interp = parameters->options().dynamic_linker();
4433 if (interp == NULL)
4434 {
4435 interp = target->dynamic_linker();
4436 gold_assert(interp != NULL);
4437 }
4438
4439 size_t len = strlen(interp) + 1;
4440
4441 Output_section_data* odata = new Output_data_const(interp, len, 1);
4442
4443 Output_section* osec = this->choose_output_section(NULL, ".interp",
4444 elfcpp::SHT_PROGBITS,
4445 elfcpp::SHF_ALLOC,
4446 false, ORDER_INTERP,
4447 false);
4448 if (osec != NULL)
4449 osec->add_output_section_data(odata);
4450 }
4451
4452 // Add dynamic tags for the PLT and the dynamic relocs. This is
4453 // called by the target-specific code. This does nothing if not doing
4454 // a dynamic link.
4455
4456 // USE_REL is true for REL relocs rather than RELA relocs.
4457
4458 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4459
4460 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4461 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4462 // some targets have multiple reloc sections in PLT_REL.
4463
4464 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4465 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4466 // section.
4467
4468 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4469 // executable.
4470
4471 void
4472 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4473 const Output_data* plt_rel,
4474 const Output_data_reloc_generic* dyn_rel,
4475 bool add_debug, bool dynrel_includes_plt)
4476 {
4477 Output_data_dynamic* odyn = this->dynamic_data_;
4478 if (odyn == NULL)
4479 return;
4480
4481 if (plt_got != NULL && plt_got->output_section() != NULL)
4482 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4483
4484 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4485 {
4486 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4487 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4488 odyn->add_constant(elfcpp::DT_PLTREL,
4489 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4490 }
4491
4492 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4493 || (dynrel_includes_plt
4494 && plt_rel != NULL
4495 && plt_rel->output_section() != NULL))
4496 {
4497 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4498 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4499 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4500 (have_dyn_rel
4501 ? dyn_rel->output_section()
4502 : plt_rel->output_section()));
4503 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4504 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4505 odyn->add_section_size(size_tag,
4506 dyn_rel->output_section(),
4507 plt_rel->output_section());
4508 else if (have_dyn_rel)
4509 odyn->add_section_size(size_tag, dyn_rel->output_section());
4510 else
4511 odyn->add_section_size(size_tag, plt_rel->output_section());
4512 const int size = parameters->target().get_size();
4513 elfcpp::DT rel_tag;
4514 int rel_size;
4515 if (use_rel)
4516 {
4517 rel_tag = elfcpp::DT_RELENT;
4518 if (size == 32)
4519 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4520 else if (size == 64)
4521 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4522 else
4523 gold_unreachable();
4524 }
4525 else
4526 {
4527 rel_tag = elfcpp::DT_RELAENT;
4528 if (size == 32)
4529 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4530 else if (size == 64)
4531 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4532 else
4533 gold_unreachable();
4534 }
4535 odyn->add_constant(rel_tag, rel_size);
4536
4537 if (parameters->options().combreloc() && have_dyn_rel)
4538 {
4539 size_t c = dyn_rel->relative_reloc_count();
4540 if (c > 0)
4541 odyn->add_constant((use_rel
4542 ? elfcpp::DT_RELCOUNT
4543 : elfcpp::DT_RELACOUNT),
4544 c);
4545 }
4546 }
4547
4548 if (add_debug && !parameters->options().shared())
4549 {
4550 // The value of the DT_DEBUG tag is filled in by the dynamic
4551 // linker at run time, and used by the debugger.
4552 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4553 }
4554 }
4555
4556 // Finish the .dynamic section and PT_DYNAMIC segment.
4557
4558 void
4559 Layout::finish_dynamic_section(const Input_objects* input_objects,
4560 const Symbol_table* symtab)
4561 {
4562 if (!this->script_options_->saw_phdrs_clause()
4563 && this->dynamic_section_ != NULL)
4564 {
4565 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4566 (elfcpp::PF_R
4567 | elfcpp::PF_W));
4568 oseg->add_output_section_to_nonload(this->dynamic_section_,
4569 elfcpp::PF_R | elfcpp::PF_W);
4570 }
4571
4572 Output_data_dynamic* const odyn = this->dynamic_data_;
4573 if (odyn == NULL)
4574 return;
4575
4576 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4577 p != input_objects->dynobj_end();
4578 ++p)
4579 {
4580 if (!(*p)->is_needed() && (*p)->as_needed())
4581 {
4582 // This dynamic object was linked with --as-needed, but it
4583 // is not needed.
4584 continue;
4585 }
4586
4587 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4588 }
4589
4590 if (parameters->options().shared())
4591 {
4592 const char* soname = parameters->options().soname();
4593 if (soname != NULL)
4594 odyn->add_string(elfcpp::DT_SONAME, soname);
4595 }
4596
4597 Symbol* sym = symtab->lookup(parameters->options().init());
4598 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4599 odyn->add_symbol(elfcpp::DT_INIT, sym);
4600
4601 sym = symtab->lookup(parameters->options().fini());
4602 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4603 odyn->add_symbol(elfcpp::DT_FINI, sym);
4604
4605 // Look for .init_array, .preinit_array and .fini_array by checking
4606 // section types.
4607 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4608 p != this->section_list_.end();
4609 ++p)
4610 switch((*p)->type())
4611 {
4612 case elfcpp::SHT_FINI_ARRAY:
4613 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4614 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4615 break;
4616 case elfcpp::SHT_INIT_ARRAY:
4617 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4618 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4619 break;
4620 case elfcpp::SHT_PREINIT_ARRAY:
4621 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4622 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4623 break;
4624 default:
4625 break;
4626 }
4627
4628 // Add a DT_RPATH entry if needed.
4629 const General_options::Dir_list& rpath(parameters->options().rpath());
4630 if (!rpath.empty())
4631 {
4632 std::string rpath_val;
4633 for (General_options::Dir_list::const_iterator p = rpath.begin();
4634 p != rpath.end();
4635 ++p)
4636 {
4637 if (rpath_val.empty())
4638 rpath_val = p->name();
4639 else
4640 {
4641 // Eliminate duplicates.
4642 General_options::Dir_list::const_iterator q;
4643 for (q = rpath.begin(); q != p; ++q)
4644 if (q->name() == p->name())
4645 break;
4646 if (q == p)
4647 {
4648 rpath_val += ':';
4649 rpath_val += p->name();
4650 }
4651 }
4652 }
4653
4654 if (!parameters->options().enable_new_dtags())
4655 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4656 else
4657 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4658 }
4659
4660 // Look for text segments that have dynamic relocations.
4661 bool have_textrel = false;
4662 if (!this->script_options_->saw_sections_clause())
4663 {
4664 for (Segment_list::const_iterator p = this->segment_list_.begin();
4665 p != this->segment_list_.end();
4666 ++p)
4667 {
4668 if ((*p)->type() == elfcpp::PT_LOAD
4669 && ((*p)->flags() & elfcpp::PF_W) == 0
4670 && (*p)->has_dynamic_reloc())
4671 {
4672 have_textrel = true;
4673 break;
4674 }
4675 }
4676 }
4677 else
4678 {
4679 // We don't know the section -> segment mapping, so we are
4680 // conservative and just look for readonly sections with
4681 // relocations. If those sections wind up in writable segments,
4682 // then we have created an unnecessary DT_TEXTREL entry.
4683 for (Section_list::const_iterator p = this->section_list_.begin();
4684 p != this->section_list_.end();
4685 ++p)
4686 {
4687 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4688 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4689 && (*p)->has_dynamic_reloc())
4690 {
4691 have_textrel = true;
4692 break;
4693 }
4694 }
4695 }
4696
4697 if (parameters->options().filter() != NULL)
4698 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4699 if (parameters->options().any_auxiliary())
4700 {
4701 for (options::String_set::const_iterator p =
4702 parameters->options().auxiliary_begin();
4703 p != parameters->options().auxiliary_end();
4704 ++p)
4705 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4706 }
4707
4708 // Add a DT_FLAGS entry if necessary.
4709 unsigned int flags = 0;
4710 if (have_textrel)
4711 {
4712 // Add a DT_TEXTREL for compatibility with older loaders.
4713 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4714 flags |= elfcpp::DF_TEXTREL;
4715
4716 if (parameters->options().text())
4717 gold_error(_("read-only segment has dynamic relocations"));
4718 else if (parameters->options().warn_shared_textrel()
4719 && parameters->options().shared())
4720 gold_warning(_("shared library text segment is not shareable"));
4721 }
4722 if (parameters->options().shared() && this->has_static_tls())
4723 flags |= elfcpp::DF_STATIC_TLS;
4724 if (parameters->options().origin())
4725 flags |= elfcpp::DF_ORIGIN;
4726 if (parameters->options().Bsymbolic())
4727 {
4728 flags |= elfcpp::DF_SYMBOLIC;
4729 // Add DT_SYMBOLIC for compatibility with older loaders.
4730 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4731 }
4732 if (parameters->options().now())
4733 flags |= elfcpp::DF_BIND_NOW;
4734 if (flags != 0)
4735 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4736
4737 flags = 0;
4738 if (parameters->options().initfirst())
4739 flags |= elfcpp::DF_1_INITFIRST;
4740 if (parameters->options().interpose())
4741 flags |= elfcpp::DF_1_INTERPOSE;
4742 if (parameters->options().loadfltr())
4743 flags |= elfcpp::DF_1_LOADFLTR;
4744 if (parameters->options().nodefaultlib())
4745 flags |= elfcpp::DF_1_NODEFLIB;
4746 if (parameters->options().nodelete())
4747 flags |= elfcpp::DF_1_NODELETE;
4748 if (parameters->options().nodlopen())
4749 flags |= elfcpp::DF_1_NOOPEN;
4750 if (parameters->options().nodump())
4751 flags |= elfcpp::DF_1_NODUMP;
4752 if (!parameters->options().shared())
4753 flags &= ~(elfcpp::DF_1_INITFIRST
4754 | elfcpp::DF_1_NODELETE
4755 | elfcpp::DF_1_NOOPEN);
4756 if (parameters->options().origin())
4757 flags |= elfcpp::DF_1_ORIGIN;
4758 if (parameters->options().now())
4759 flags |= elfcpp::DF_1_NOW;
4760 if (parameters->options().Bgroup())
4761 flags |= elfcpp::DF_1_GROUP;
4762 if (flags != 0)
4763 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4764 }
4765
4766 // Set the size of the _DYNAMIC symbol table to be the size of the
4767 // dynamic data.
4768
4769 void
4770 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4771 {
4772 Output_data_dynamic* const odyn = this->dynamic_data_;
4773 if (odyn == NULL)
4774 return;
4775 odyn->finalize_data_size();
4776 if (this->dynamic_symbol_ == NULL)
4777 return;
4778 off_t data_size = odyn->data_size();
4779 const int size = parameters->target().get_size();
4780 if (size == 32)
4781 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4782 else if (size == 64)
4783 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4784 else
4785 gold_unreachable();
4786 }
4787
4788 // The mapping of input section name prefixes to output section names.
4789 // In some cases one prefix is itself a prefix of another prefix; in
4790 // such a case the longer prefix must come first. These prefixes are
4791 // based on the GNU linker default ELF linker script.
4792
4793 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4794 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4795 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4796 {
4797 MAPPING_INIT(".text.", ".text"),
4798 MAPPING_INIT(".rodata.", ".rodata"),
4799 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4800 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4801 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4802 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4803 MAPPING_INIT(".data.", ".data"),
4804 MAPPING_INIT(".bss.", ".bss"),
4805 MAPPING_INIT(".tdata.", ".tdata"),
4806 MAPPING_INIT(".tbss.", ".tbss"),
4807 MAPPING_INIT(".init_array.", ".init_array"),
4808 MAPPING_INIT(".fini_array.", ".fini_array"),
4809 MAPPING_INIT(".sdata.", ".sdata"),
4810 MAPPING_INIT(".sbss.", ".sbss"),
4811 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4812 // differently depending on whether it is creating a shared library.
4813 MAPPING_INIT(".sdata2.", ".sdata"),
4814 MAPPING_INIT(".sbss2.", ".sbss"),
4815 MAPPING_INIT(".lrodata.", ".lrodata"),
4816 MAPPING_INIT(".ldata.", ".ldata"),
4817 MAPPING_INIT(".lbss.", ".lbss"),
4818 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4819 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4820 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4821 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4822 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4823 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4824 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4825 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4826 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4827 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4828 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4829 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4830 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4831 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4832 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4833 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4834 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4835 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4836 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4837 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4838 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4839 };
4840 #undef MAPPING_INIT
4841 #undef MAPPING_INIT_EXACT
4842
4843 const int Layout::section_name_mapping_count =
4844 (sizeof(Layout::section_name_mapping)
4845 / sizeof(Layout::section_name_mapping[0]));
4846
4847 // Choose the output section name to use given an input section name.
4848 // Set *PLEN to the length of the name. *PLEN is initialized to the
4849 // length of NAME.
4850
4851 const char*
4852 Layout::output_section_name(const Relobj* relobj, const char* name,
4853 size_t* plen)
4854 {
4855 // gcc 4.3 generates the following sorts of section names when it
4856 // needs a section name specific to a function:
4857 // .text.FN
4858 // .rodata.FN
4859 // .sdata2.FN
4860 // .data.FN
4861 // .data.rel.FN
4862 // .data.rel.local.FN
4863 // .data.rel.ro.FN
4864 // .data.rel.ro.local.FN
4865 // .sdata.FN
4866 // .bss.FN
4867 // .sbss.FN
4868 // .tdata.FN
4869 // .tbss.FN
4870
4871 // The GNU linker maps all of those to the part before the .FN,
4872 // except that .data.rel.local.FN is mapped to .data, and
4873 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4874 // beginning with .data.rel.ro.local are grouped together.
4875
4876 // For an anonymous namespace, the string FN can contain a '.'.
4877
4878 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4879 // GNU linker maps to .rodata.
4880
4881 // The .data.rel.ro sections are used with -z relro. The sections
4882 // are recognized by name. We use the same names that the GNU
4883 // linker does for these sections.
4884
4885 // It is hard to handle this in a principled way, so we don't even
4886 // try. We use a table of mappings. If the input section name is
4887 // not found in the table, we simply use it as the output section
4888 // name.
4889
4890 const Section_name_mapping* psnm = section_name_mapping;
4891 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4892 {
4893 if (psnm->fromlen > 0)
4894 {
4895 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4896 {
4897 *plen = psnm->tolen;
4898 return psnm->to;
4899 }
4900 }
4901 else
4902 {
4903 if (strcmp(name, psnm->from) == 0)
4904 {
4905 *plen = psnm->tolen;
4906 return psnm->to;
4907 }
4908 }
4909 }
4910
4911 // As an additional complication, .ctors sections are output in
4912 // either .ctors or .init_array sections, and .dtors sections are
4913 // output in either .dtors or .fini_array sections.
4914 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4915 {
4916 if (parameters->options().ctors_in_init_array())
4917 {
4918 *plen = 11;
4919 return name[1] == 'c' ? ".init_array" : ".fini_array";
4920 }
4921 else
4922 {
4923 *plen = 6;
4924 return name[1] == 'c' ? ".ctors" : ".dtors";
4925 }
4926 }
4927 if (parameters->options().ctors_in_init_array()
4928 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4929 {
4930 // To make .init_array/.fini_array work with gcc we must exclude
4931 // .ctors and .dtors sections from the crtbegin and crtend
4932 // files.
4933 if (relobj == NULL
4934 || (!Layout::match_file_name(relobj, "crtbegin")
4935 && !Layout::match_file_name(relobj, "crtend")))
4936 {
4937 *plen = 11;
4938 return name[1] == 'c' ? ".init_array" : ".fini_array";
4939 }
4940 }
4941
4942 return name;
4943 }
4944
4945 // Return true if RELOBJ is an input file whose base name matches
4946 // FILE_NAME. The base name must have an extension of ".o", and must
4947 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4948 // to match crtbegin.o as well as crtbeginS.o without getting confused
4949 // by other possibilities. Overall matching the file name this way is
4950 // a dreadful hack, but the GNU linker does it in order to better
4951 // support gcc, and we need to be compatible.
4952
4953 bool
4954 Layout::match_file_name(const Relobj* relobj, const char* match)
4955 {
4956 const std::string& file_name(relobj->name());
4957 const char* base_name = lbasename(file_name.c_str());
4958 size_t match_len = strlen(match);
4959 if (strncmp(base_name, match, match_len) != 0)
4960 return false;
4961 size_t base_len = strlen(base_name);
4962 if (base_len != match_len + 2 && base_len != match_len + 3)
4963 return false;
4964 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4965 }
4966
4967 // Check if a comdat group or .gnu.linkonce section with the given
4968 // NAME is selected for the link. If there is already a section,
4969 // *KEPT_SECTION is set to point to the existing section and the
4970 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4971 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4972 // *KEPT_SECTION is set to the internal copy and the function returns
4973 // true.
4974
4975 bool
4976 Layout::find_or_add_kept_section(const std::string& name,
4977 Relobj* object,
4978 unsigned int shndx,
4979 bool is_comdat,
4980 bool is_group_name,
4981 Kept_section** kept_section)
4982 {
4983 // It's normal to see a couple of entries here, for the x86 thunk
4984 // sections. If we see more than a few, we're linking a C++
4985 // program, and we resize to get more space to minimize rehashing.
4986 if (this->signatures_.size() > 4
4987 && !this->resized_signatures_)
4988 {
4989 reserve_unordered_map(&this->signatures_,
4990 this->number_of_input_files_ * 64);
4991 this->resized_signatures_ = true;
4992 }
4993
4994 Kept_section candidate;
4995 std::pair<Signatures::iterator, bool> ins =
4996 this->signatures_.insert(std::make_pair(name, candidate));
4997
4998 if (kept_section != NULL)
4999 *kept_section = &ins.first->second;
5000 if (ins.second)
5001 {
5002 // This is the first time we've seen this signature.
5003 ins.first->second.set_object(object);
5004 ins.first->second.set_shndx(shndx);
5005 if (is_comdat)
5006 ins.first->second.set_is_comdat();
5007 if (is_group_name)
5008 ins.first->second.set_is_group_name();
5009 return true;
5010 }
5011
5012 // We have already seen this signature.
5013
5014 if (ins.first->second.is_group_name())
5015 {
5016 // We've already seen a real section group with this signature.
5017 // If the kept group is from a plugin object, and we're in the
5018 // replacement phase, accept the new one as a replacement.
5019 if (ins.first->second.object() == NULL
5020 && parameters->options().plugins()->in_replacement_phase())
5021 {
5022 ins.first->second.set_object(object);
5023 ins.first->second.set_shndx(shndx);
5024 return true;
5025 }
5026 return false;
5027 }
5028 else if (is_group_name)
5029 {
5030 // This is a real section group, and we've already seen a
5031 // linkonce section with this signature. Record that we've seen
5032 // a section group, and don't include this section group.
5033 ins.first->second.set_is_group_name();
5034 return false;
5035 }
5036 else
5037 {
5038 // We've already seen a linkonce section and this is a linkonce
5039 // section. These don't block each other--this may be the same
5040 // symbol name with different section types.
5041 return true;
5042 }
5043 }
5044
5045 // Store the allocated sections into the section list.
5046
5047 void
5048 Layout::get_allocated_sections(Section_list* section_list) const
5049 {
5050 for (Section_list::const_iterator p = this->section_list_.begin();
5051 p != this->section_list_.end();
5052 ++p)
5053 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5054 section_list->push_back(*p);
5055 }
5056
5057 // Store the executable sections into the section list.
5058
5059 void
5060 Layout::get_executable_sections(Section_list* section_list) const
5061 {
5062 for (Section_list::const_iterator p = this->section_list_.begin();
5063 p != this->section_list_.end();
5064 ++p)
5065 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5066 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5067 section_list->push_back(*p);
5068 }
5069
5070 // Create an output segment.
5071
5072 Output_segment*
5073 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5074 {
5075 gold_assert(!parameters->options().relocatable());
5076 Output_segment* oseg = new Output_segment(type, flags);
5077 this->segment_list_.push_back(oseg);
5078
5079 if (type == elfcpp::PT_TLS)
5080 this->tls_segment_ = oseg;
5081 else if (type == elfcpp::PT_GNU_RELRO)
5082 this->relro_segment_ = oseg;
5083 else if (type == elfcpp::PT_INTERP)
5084 this->interp_segment_ = oseg;
5085
5086 return oseg;
5087 }
5088
5089 // Return the file offset of the normal symbol table.
5090
5091 off_t
5092 Layout::symtab_section_offset() const
5093 {
5094 if (this->symtab_section_ != NULL)
5095 return this->symtab_section_->offset();
5096 return 0;
5097 }
5098
5099 // Return the section index of the normal symbol table. It may have
5100 // been stripped by the -s/--strip-all option.
5101
5102 unsigned int
5103 Layout::symtab_section_shndx() const
5104 {
5105 if (this->symtab_section_ != NULL)
5106 return this->symtab_section_->out_shndx();
5107 return 0;
5108 }
5109
5110 // Write out the Output_sections. Most won't have anything to write,
5111 // since most of the data will come from input sections which are
5112 // handled elsewhere. But some Output_sections do have Output_data.
5113
5114 void
5115 Layout::write_output_sections(Output_file* of) const
5116 {
5117 for (Section_list::const_iterator p = this->section_list_.begin();
5118 p != this->section_list_.end();
5119 ++p)
5120 {
5121 if (!(*p)->after_input_sections())
5122 (*p)->write(of);
5123 }
5124 }
5125
5126 // Write out data not associated with a section or the symbol table.
5127
5128 void
5129 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5130 {
5131 if (!parameters->options().strip_all())
5132 {
5133 const Output_section* symtab_section = this->symtab_section_;
5134 for (Section_list::const_iterator p = this->section_list_.begin();
5135 p != this->section_list_.end();
5136 ++p)
5137 {
5138 if ((*p)->needs_symtab_index())
5139 {
5140 gold_assert(symtab_section != NULL);
5141 unsigned int index = (*p)->symtab_index();
5142 gold_assert(index > 0 && index != -1U);
5143 off_t off = (symtab_section->offset()
5144 + index * symtab_section->entsize());
5145 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5146 }
5147 }
5148 }
5149
5150 const Output_section* dynsym_section = this->dynsym_section_;
5151 for (Section_list::const_iterator p = this->section_list_.begin();
5152 p != this->section_list_.end();
5153 ++p)
5154 {
5155 if ((*p)->needs_dynsym_index())
5156 {
5157 gold_assert(dynsym_section != NULL);
5158 unsigned int index = (*p)->dynsym_index();
5159 gold_assert(index > 0 && index != -1U);
5160 off_t off = (dynsym_section->offset()
5161 + index * dynsym_section->entsize());
5162 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5163 }
5164 }
5165
5166 // Write out the Output_data which are not in an Output_section.
5167 for (Data_list::const_iterator p = this->special_output_list_.begin();
5168 p != this->special_output_list_.end();
5169 ++p)
5170 (*p)->write(of);
5171 }
5172
5173 // Write out the Output_sections which can only be written after the
5174 // input sections are complete.
5175
5176 void
5177 Layout::write_sections_after_input_sections(Output_file* of)
5178 {
5179 // Determine the final section offsets, and thus the final output
5180 // file size. Note we finalize the .shstrab last, to allow the
5181 // after_input_section sections to modify their section-names before
5182 // writing.
5183 if (this->any_postprocessing_sections_)
5184 {
5185 off_t off = this->output_file_size_;
5186 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5187
5188 // Now that we've finalized the names, we can finalize the shstrab.
5189 off =
5190 this->set_section_offsets(off,
5191 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5192
5193 if (off > this->output_file_size_)
5194 {
5195 of->resize(off);
5196 this->output_file_size_ = off;
5197 }
5198 }
5199
5200 for (Section_list::const_iterator p = this->section_list_.begin();
5201 p != this->section_list_.end();
5202 ++p)
5203 {
5204 if ((*p)->after_input_sections())
5205 (*p)->write(of);
5206 }
5207
5208 this->section_headers_->write(of);
5209 }
5210
5211 // If the build ID requires computing a checksum, do so here, and
5212 // write it out. We compute a checksum over the entire file because
5213 // that is simplest.
5214
5215 void
5216 Layout::write_build_id(Output_file* of) const
5217 {
5218 if (this->build_id_note_ == NULL)
5219 return;
5220
5221 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5222
5223 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5224 this->build_id_note_->data_size());
5225
5226 const char* style = parameters->options().build_id();
5227 if (strcmp(style, "sha1") == 0)
5228 {
5229 sha1_ctx ctx;
5230 sha1_init_ctx(&ctx);
5231 sha1_process_bytes(iv, this->output_file_size_, &ctx);
5232 sha1_finish_ctx(&ctx, ov);
5233 }
5234 else if (strcmp(style, "md5") == 0)
5235 {
5236 md5_ctx ctx;
5237 md5_init_ctx(&ctx);
5238 md5_process_bytes(iv, this->output_file_size_, &ctx);
5239 md5_finish_ctx(&ctx, ov);
5240 }
5241 else
5242 gold_unreachable();
5243
5244 of->write_output_view(this->build_id_note_->offset(),
5245 this->build_id_note_->data_size(),
5246 ov);
5247
5248 of->free_input_view(0, this->output_file_size_, iv);
5249 }
5250
5251 // Write out a binary file. This is called after the link is
5252 // complete. IN is the temporary output file we used to generate the
5253 // ELF code. We simply walk through the segments, read them from
5254 // their file offset in IN, and write them to their load address in
5255 // the output file. FIXME: with a bit more work, we could support
5256 // S-records and/or Intel hex format here.
5257
5258 void
5259 Layout::write_binary(Output_file* in) const
5260 {
5261 gold_assert(parameters->options().oformat_enum()
5262 == General_options::OBJECT_FORMAT_BINARY);
5263
5264 // Get the size of the binary file.
5265 uint64_t max_load_address = 0;
5266 for (Segment_list::const_iterator p = this->segment_list_.begin();
5267 p != this->segment_list_.end();
5268 ++p)
5269 {
5270 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5271 {
5272 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5273 if (max_paddr > max_load_address)
5274 max_load_address = max_paddr;
5275 }
5276 }
5277
5278 Output_file out(parameters->options().output_file_name());
5279 out.open(max_load_address);
5280
5281 for (Segment_list::const_iterator p = this->segment_list_.begin();
5282 p != this->segment_list_.end();
5283 ++p)
5284 {
5285 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5286 {
5287 const unsigned char* vin = in->get_input_view((*p)->offset(),
5288 (*p)->filesz());
5289 unsigned char* vout = out.get_output_view((*p)->paddr(),
5290 (*p)->filesz());
5291 memcpy(vout, vin, (*p)->filesz());
5292 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5293 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5294 }
5295 }
5296
5297 out.close();
5298 }
5299
5300 // Print the output sections to the map file.
5301
5302 void
5303 Layout::print_to_mapfile(Mapfile* mapfile) const
5304 {
5305 for (Segment_list::const_iterator p = this->segment_list_.begin();
5306 p != this->segment_list_.end();
5307 ++p)
5308 (*p)->print_sections_to_mapfile(mapfile);
5309 }
5310
5311 // Print statistical information to stderr. This is used for --stats.
5312
5313 void
5314 Layout::print_stats() const
5315 {
5316 this->namepool_.print_stats("section name pool");
5317 this->sympool_.print_stats("output symbol name pool");
5318 this->dynpool_.print_stats("dynamic name pool");
5319
5320 for (Section_list::const_iterator p = this->section_list_.begin();
5321 p != this->section_list_.end();
5322 ++p)
5323 (*p)->print_merge_stats();
5324 }
5325
5326 // Write_sections_task methods.
5327
5328 // We can always run this task.
5329
5330 Task_token*
5331 Write_sections_task::is_runnable()
5332 {
5333 return NULL;
5334 }
5335
5336 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5337 // when finished.
5338
5339 void
5340 Write_sections_task::locks(Task_locker* tl)
5341 {
5342 tl->add(this, this->output_sections_blocker_);
5343 tl->add(this, this->final_blocker_);
5344 }
5345
5346 // Run the task--write out the data.
5347
5348 void
5349 Write_sections_task::run(Workqueue*)
5350 {
5351 this->layout_->write_output_sections(this->of_);
5352 }
5353
5354 // Write_data_task methods.
5355
5356 // We can always run this task.
5357
5358 Task_token*
5359 Write_data_task::is_runnable()
5360 {
5361 return NULL;
5362 }
5363
5364 // We need to unlock FINAL_BLOCKER when finished.
5365
5366 void
5367 Write_data_task::locks(Task_locker* tl)
5368 {
5369 tl->add(this, this->final_blocker_);
5370 }
5371
5372 // Run the task--write out the data.
5373
5374 void
5375 Write_data_task::run(Workqueue*)
5376 {
5377 this->layout_->write_data(this->symtab_, this->of_);
5378 }
5379
5380 // Write_symbols_task methods.
5381
5382 // We can always run this task.
5383
5384 Task_token*
5385 Write_symbols_task::is_runnable()
5386 {
5387 return NULL;
5388 }
5389
5390 // We need to unlock FINAL_BLOCKER when finished.
5391
5392 void
5393 Write_symbols_task::locks(Task_locker* tl)
5394 {
5395 tl->add(this, this->final_blocker_);
5396 }
5397
5398 // Run the task--write out the symbols.
5399
5400 void
5401 Write_symbols_task::run(Workqueue*)
5402 {
5403 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5404 this->layout_->symtab_xindex(),
5405 this->layout_->dynsym_xindex(), this->of_);
5406 }
5407
5408 // Write_after_input_sections_task methods.
5409
5410 // We can only run this task after the input sections have completed.
5411
5412 Task_token*
5413 Write_after_input_sections_task::is_runnable()
5414 {
5415 if (this->input_sections_blocker_->is_blocked())
5416 return this->input_sections_blocker_;
5417 return NULL;
5418 }
5419
5420 // We need to unlock FINAL_BLOCKER when finished.
5421
5422 void
5423 Write_after_input_sections_task::locks(Task_locker* tl)
5424 {
5425 tl->add(this, this->final_blocker_);
5426 }
5427
5428 // Run the task.
5429
5430 void
5431 Write_after_input_sections_task::run(Workqueue*)
5432 {
5433 this->layout_->write_sections_after_input_sections(this->of_);
5434 }
5435
5436 // Close_task_runner methods.
5437
5438 // Run the task--close the file.
5439
5440 void
5441 Close_task_runner::run(Workqueue*, const Task*)
5442 {
5443 // If we need to compute a checksum for the BUILD if, we do so here.
5444 this->layout_->write_build_id(this->of_);
5445
5446 // If we've been asked to create a binary file, we do so here.
5447 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5448 this->layout_->write_binary(this->of_);
5449
5450 this->of_->close();
5451 }
5452
5453 // Instantiate the templates we need. We could use the configure
5454 // script to restrict this to only the ones for implemented targets.
5455
5456 #ifdef HAVE_TARGET_32_LITTLE
5457 template
5458 Output_section*
5459 Layout::init_fixed_output_section<32, false>(
5460 const char* name,
5461 elfcpp::Shdr<32, false>& shdr);
5462 #endif
5463
5464 #ifdef HAVE_TARGET_32_BIG
5465 template
5466 Output_section*
5467 Layout::init_fixed_output_section<32, true>(
5468 const char* name,
5469 elfcpp::Shdr<32, true>& shdr);
5470 #endif
5471
5472 #ifdef HAVE_TARGET_64_LITTLE
5473 template
5474 Output_section*
5475 Layout::init_fixed_output_section<64, false>(
5476 const char* name,
5477 elfcpp::Shdr<64, false>& shdr);
5478 #endif
5479
5480 #ifdef HAVE_TARGET_64_BIG
5481 template
5482 Output_section*
5483 Layout::init_fixed_output_section<64, true>(
5484 const char* name,
5485 elfcpp::Shdr<64, true>& shdr);
5486 #endif
5487
5488 #ifdef HAVE_TARGET_32_LITTLE
5489 template
5490 Output_section*
5491 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5492 unsigned int shndx,
5493 const char* name,
5494 const elfcpp::Shdr<32, false>& shdr,
5495 unsigned int, unsigned int, off_t*);
5496 #endif
5497
5498 #ifdef HAVE_TARGET_32_BIG
5499 template
5500 Output_section*
5501 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5502 unsigned int shndx,
5503 const char* name,
5504 const elfcpp::Shdr<32, true>& shdr,
5505 unsigned int, unsigned int, off_t*);
5506 #endif
5507
5508 #ifdef HAVE_TARGET_64_LITTLE
5509 template
5510 Output_section*
5511 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5512 unsigned int shndx,
5513 const char* name,
5514 const elfcpp::Shdr<64, false>& shdr,
5515 unsigned int, unsigned int, off_t*);
5516 #endif
5517
5518 #ifdef HAVE_TARGET_64_BIG
5519 template
5520 Output_section*
5521 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5522 unsigned int shndx,
5523 const char* name,
5524 const elfcpp::Shdr<64, true>& shdr,
5525 unsigned int, unsigned int, off_t*);
5526 #endif
5527
5528 #ifdef HAVE_TARGET_32_LITTLE
5529 template
5530 Output_section*
5531 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5532 unsigned int reloc_shndx,
5533 const elfcpp::Shdr<32, false>& shdr,
5534 Output_section* data_section,
5535 Relocatable_relocs* rr);
5536 #endif
5537
5538 #ifdef HAVE_TARGET_32_BIG
5539 template
5540 Output_section*
5541 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5542 unsigned int reloc_shndx,
5543 const elfcpp::Shdr<32, true>& shdr,
5544 Output_section* data_section,
5545 Relocatable_relocs* rr);
5546 #endif
5547
5548 #ifdef HAVE_TARGET_64_LITTLE
5549 template
5550 Output_section*
5551 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5552 unsigned int reloc_shndx,
5553 const elfcpp::Shdr<64, false>& shdr,
5554 Output_section* data_section,
5555 Relocatable_relocs* rr);
5556 #endif
5557
5558 #ifdef HAVE_TARGET_64_BIG
5559 template
5560 Output_section*
5561 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5562 unsigned int reloc_shndx,
5563 const elfcpp::Shdr<64, true>& shdr,
5564 Output_section* data_section,
5565 Relocatable_relocs* rr);
5566 #endif
5567
5568 #ifdef HAVE_TARGET_32_LITTLE
5569 template
5570 void
5571 Layout::layout_group<32, false>(Symbol_table* symtab,
5572 Sized_relobj_file<32, false>* object,
5573 unsigned int,
5574 const char* group_section_name,
5575 const char* signature,
5576 const elfcpp::Shdr<32, false>& shdr,
5577 elfcpp::Elf_Word flags,
5578 std::vector<unsigned int>* shndxes);
5579 #endif
5580
5581 #ifdef HAVE_TARGET_32_BIG
5582 template
5583 void
5584 Layout::layout_group<32, true>(Symbol_table* symtab,
5585 Sized_relobj_file<32, true>* object,
5586 unsigned int,
5587 const char* group_section_name,
5588 const char* signature,
5589 const elfcpp::Shdr<32, true>& shdr,
5590 elfcpp::Elf_Word flags,
5591 std::vector<unsigned int>* shndxes);
5592 #endif
5593
5594 #ifdef HAVE_TARGET_64_LITTLE
5595 template
5596 void
5597 Layout::layout_group<64, false>(Symbol_table* symtab,
5598 Sized_relobj_file<64, false>* object,
5599 unsigned int,
5600 const char* group_section_name,
5601 const char* signature,
5602 const elfcpp::Shdr<64, false>& shdr,
5603 elfcpp::Elf_Word flags,
5604 std::vector<unsigned int>* shndxes);
5605 #endif
5606
5607 #ifdef HAVE_TARGET_64_BIG
5608 template
5609 void
5610 Layout::layout_group<64, true>(Symbol_table* symtab,
5611 Sized_relobj_file<64, true>* object,
5612 unsigned int,
5613 const char* group_section_name,
5614 const char* signature,
5615 const elfcpp::Shdr<64, true>& shdr,
5616 elfcpp::Elf_Word flags,
5617 std::vector<unsigned int>* shndxes);
5618 #endif
5619
5620 #ifdef HAVE_TARGET_32_LITTLE
5621 template
5622 Output_section*
5623 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5624 const unsigned char* symbols,
5625 off_t symbols_size,
5626 const unsigned char* symbol_names,
5627 off_t symbol_names_size,
5628 unsigned int shndx,
5629 const elfcpp::Shdr<32, false>& shdr,
5630 unsigned int reloc_shndx,
5631 unsigned int reloc_type,
5632 off_t* off);
5633 #endif
5634
5635 #ifdef HAVE_TARGET_32_BIG
5636 template
5637 Output_section*
5638 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5639 const unsigned char* symbols,
5640 off_t symbols_size,
5641 const unsigned char* symbol_names,
5642 off_t symbol_names_size,
5643 unsigned int shndx,
5644 const elfcpp::Shdr<32, true>& shdr,
5645 unsigned int reloc_shndx,
5646 unsigned int reloc_type,
5647 off_t* off);
5648 #endif
5649
5650 #ifdef HAVE_TARGET_64_LITTLE
5651 template
5652 Output_section*
5653 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5654 const unsigned char* symbols,
5655 off_t symbols_size,
5656 const unsigned char* symbol_names,
5657 off_t symbol_names_size,
5658 unsigned int shndx,
5659 const elfcpp::Shdr<64, false>& shdr,
5660 unsigned int reloc_shndx,
5661 unsigned int reloc_type,
5662 off_t* off);
5663 #endif
5664
5665 #ifdef HAVE_TARGET_64_BIG
5666 template
5667 Output_section*
5668 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5669 const unsigned char* symbols,
5670 off_t symbols_size,
5671 const unsigned char* symbol_names,
5672 off_t symbol_names_size,
5673 unsigned int shndx,
5674 const elfcpp::Shdr<64, true>& shdr,
5675 unsigned int reloc_shndx,
5676 unsigned int reloc_type,
5677 off_t* off);
5678 #endif
5679
5680 #ifdef HAVE_TARGET_32_LITTLE
5681 template
5682 void
5683 Layout::add_to_gdb_index(bool is_type_unit,
5684 Sized_relobj<32, false>* object,
5685 const unsigned char* symbols,
5686 off_t symbols_size,
5687 unsigned int shndx,
5688 unsigned int reloc_shndx,
5689 unsigned int reloc_type);
5690 #endif
5691
5692 #ifdef HAVE_TARGET_32_BIG
5693 template
5694 void
5695 Layout::add_to_gdb_index(bool is_type_unit,
5696 Sized_relobj<32, true>* object,
5697 const unsigned char* symbols,
5698 off_t symbols_size,
5699 unsigned int shndx,
5700 unsigned int reloc_shndx,
5701 unsigned int reloc_type);
5702 #endif
5703
5704 #ifdef HAVE_TARGET_64_LITTLE
5705 template
5706 void
5707 Layout::add_to_gdb_index(bool is_type_unit,
5708 Sized_relobj<64, false>* object,
5709 const unsigned char* symbols,
5710 off_t symbols_size,
5711 unsigned int shndx,
5712 unsigned int reloc_shndx,
5713 unsigned int reloc_type);
5714 #endif
5715
5716 #ifdef HAVE_TARGET_64_BIG
5717 template
5718 void
5719 Layout::add_to_gdb_index(bool is_type_unit,
5720 Sized_relobj<64, true>* object,
5721 const unsigned char* symbols,
5722 off_t symbols_size,
5723 unsigned int shndx,
5724 unsigned int reloc_shndx,
5725 unsigned int reloc_type);
5726 #endif
5727
5728 } // End namespace gold.
This page took 0.220648 seconds and 5 git commands to generate.