2012-08-22 Cary Coutant <ccoutant@google.com>
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
249 {
250 for(Layout::Section_list::const_iterator p = sections.begin();
251 p != sections.end();
252 ++p)
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
257 ++p)
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
266 {
267 for(Layout::Section_list::const_iterator p = sections.begin();
268 p != sections.end();
269 ++p)
270 {
271 Output_section* os = *p;
272 Section_info info;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
278 }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
286 {
287 size_t i = 0;
288 for(Layout::Section_list::const_iterator p = sections.begin();
289 p != sections.end();
290 ++p, ++i)
291 {
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297 if (i >= this->section_infos_.size())
298 {
299 gold_fatal("Section_info of %s missing.\n", os->name());
300 }
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
309 }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections. This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320 Layout* layout = this->layout_;
321 off_t file_size = layout->finalize(this->input_objects_,
322 this->symtab_,
323 this->target_,
324 task);
325
326 // Now we know the final size of the output file and we know where
327 // each piece of information goes.
328
329 if (this->mapfile_ != NULL)
330 {
331 this->mapfile_->print_discarded_sections(this->input_objects_);
332 layout->print_to_mapfile(this->mapfile_);
333 }
334
335 Output_file* of;
336 if (layout->incremental_base() == NULL)
337 {
338 of = new Output_file(parameters->options().output_file_name());
339 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340 of->set_is_temporary();
341 of->open(file_size);
342 }
343 else
344 {
345 of = layout->incremental_base()->output_file();
346
347 // Apply the incremental relocations for symbols whose values
348 // have changed. We do this before we resize the file and start
349 // writing anything else to it, so that we can read the old
350 // incremental information from the file before (possibly)
351 // overwriting it.
352 if (parameters->incremental_update())
353 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354 this->layout_,
355 of);
356
357 of->resize(file_size);
358 }
359
360 // Queue up the final set of tasks.
361 gold::queue_final_tasks(this->options_, this->input_objects_,
362 this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368 : number_of_input_files_(number_of_input_files),
369 script_options_(script_options),
370 namepool_(),
371 sympool_(),
372 dynpool_(),
373 signatures_(),
374 section_name_map_(),
375 segment_list_(),
376 section_list_(),
377 unattached_section_list_(),
378 special_output_list_(),
379 section_headers_(NULL),
380 tls_segment_(NULL),
381 relro_segment_(NULL),
382 interp_segment_(NULL),
383 increase_relro_(0),
384 symtab_section_(NULL),
385 symtab_xindex_(NULL),
386 dynsym_section_(NULL),
387 dynsym_xindex_(NULL),
388 dynamic_section_(NULL),
389 dynamic_symbol_(NULL),
390 dynamic_data_(NULL),
391 eh_frame_section_(NULL),
392 eh_frame_data_(NULL),
393 added_eh_frame_data_(false),
394 eh_frame_hdr_section_(NULL),
395 gdb_index_data_(NULL),
396 build_id_note_(NULL),
397 debug_abbrev_(NULL),
398 debug_info_(NULL),
399 group_signatures_(),
400 output_file_size_(-1),
401 have_added_input_section_(false),
402 sections_are_attached_(false),
403 input_requires_executable_stack_(false),
404 input_with_gnu_stack_note_(false),
405 input_without_gnu_stack_note_(false),
406 has_static_tls_(false),
407 any_postprocessing_sections_(false),
408 resized_signatures_(false),
409 have_stabstr_section_(false),
410 section_ordering_specified_(false),
411 incremental_inputs_(NULL),
412 record_output_section_data_from_script_(false),
413 script_output_section_data_list_(),
414 segment_states_(NULL),
415 relaxation_debug_check_(NULL),
416 section_order_map_(),
417 input_section_position_(),
418 input_section_glob_(),
419 incremental_base_(NULL),
420 free_list_()
421 {
422 // Make space for more than enough segments for a typical file.
423 // This is just for efficiency--it's OK if we wind up needing more.
424 this->segment_list_.reserve(12);
425
426 // We expect two unattached Output_data objects: the file header and
427 // the segment headers.
428 this->special_output_list_.reserve(2);
429
430 // Initialize structure needed for an incremental build.
431 if (parameters->incremental())
432 this->incremental_inputs_ = new Incremental_inputs;
433
434 // The section name pool is worth optimizing in all cases, because
435 // it is small, but there are often overlaps due to .rel sections.
436 this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444 this->incremental_base_ = base;
445 this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453 return k.first + k.second.first + k.second.second;
454 }
455
456 // These are the debug sections that are actually used by gdb.
457 // Currently, we've checked versions of gdb up to and including 7.4.
458 // We only check the part of the name that follows ".debug_" or
459 // ".zdebug_".
460
461 static const char* gdb_sections[] =
462 {
463 "abbrev",
464 "addr", // Fission extension
465 // "aranges", // not used by gdb as of 7.4
466 "frame",
467 "info",
468 "types",
469 "line",
470 "loc",
471 "macinfo",
472 "macro",
473 // "pubnames", // not used by gdb as of 7.4
474 // "pubtypes", // not used by gdb as of 7.4
475 "ranges",
476 "str",
477 };
478
479 // This is the minimum set of sections needed for line numbers.
480
481 static const char* lines_only_debug_sections[] =
482 {
483 "abbrev",
484 // "addr", // Fission extension
485 // "aranges", // not used by gdb as of 7.4
486 // "frame",
487 "info",
488 // "types",
489 "line",
490 // "loc",
491 // "macinfo",
492 // "macro",
493 // "pubnames", // not used by gdb as of 7.4
494 // "pubtypes", // not used by gdb as of 7.4
495 // "ranges",
496 "str",
497 };
498
499 // These sections are the DWARF fast-lookup tables, and are not needed
500 // when building a .gdb_index section.
501
502 static const char* gdb_fast_lookup_sections[] =
503 {
504 "aranges",
505 "pubnames",
506 "pubtypes",
507 };
508
509 // Returns whether the given debug section is in the list of
510 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
511 // portion of the name following ".debug_" or ".zdebug_".
512
513 static inline bool
514 is_gdb_debug_section(const char* suffix)
515 {
516 // We can do this faster: binary search or a hashtable. But why bother?
517 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
518 if (strcmp(suffix, gdb_sections[i]) == 0)
519 return true;
520 return false;
521 }
522
523 // Returns whether the given section is needed for lines-only debugging.
524
525 static inline bool
526 is_lines_only_debug_section(const char* suffix)
527 {
528 // We can do this faster: binary search or a hashtable. But why bother?
529 for (size_t i = 0;
530 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
531 ++i)
532 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
533 return true;
534 return false;
535 }
536
537 // Returns whether the given section is a fast-lookup section that
538 // will not be needed when building a .gdb_index section.
539
540 static inline bool
541 is_gdb_fast_lookup_section(const char* suffix)
542 {
543 // We can do this faster: binary search or a hashtable. But why bother?
544 for (size_t i = 0;
545 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
546 ++i)
547 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
548 return true;
549 return false;
550 }
551
552 // Sometimes we compress sections. This is typically done for
553 // sections that are not part of normal program execution (such as
554 // .debug_* sections), and where the readers of these sections know
555 // how to deal with compressed sections. This routine doesn't say for
556 // certain whether we'll compress -- it depends on commandline options
557 // as well -- just whether this section is a candidate for compression.
558 // (The Output_compressed_section class decides whether to compress
559 // a given section, and picks the name of the compressed section.)
560
561 static bool
562 is_compressible_debug_section(const char* secname)
563 {
564 return (is_prefix_of(".debug", secname));
565 }
566
567 // We may see compressed debug sections in input files. Return TRUE
568 // if this is the name of a compressed debug section.
569
570 bool
571 is_compressed_debug_section(const char* secname)
572 {
573 return (is_prefix_of(".zdebug", secname));
574 }
575
576 // Whether to include this section in the link.
577
578 template<int size, bool big_endian>
579 bool
580 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
581 const elfcpp::Shdr<size, big_endian>& shdr)
582 {
583 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
584 return false;
585
586 switch (shdr.get_sh_type())
587 {
588 case elfcpp::SHT_NULL:
589 case elfcpp::SHT_SYMTAB:
590 case elfcpp::SHT_DYNSYM:
591 case elfcpp::SHT_HASH:
592 case elfcpp::SHT_DYNAMIC:
593 case elfcpp::SHT_SYMTAB_SHNDX:
594 return false;
595
596 case elfcpp::SHT_STRTAB:
597 // Discard the sections which have special meanings in the ELF
598 // ABI. Keep others (e.g., .stabstr). We could also do this by
599 // checking the sh_link fields of the appropriate sections.
600 return (strcmp(name, ".dynstr") != 0
601 && strcmp(name, ".strtab") != 0
602 && strcmp(name, ".shstrtab") != 0);
603
604 case elfcpp::SHT_RELA:
605 case elfcpp::SHT_REL:
606 case elfcpp::SHT_GROUP:
607 // If we are emitting relocations these should be handled
608 // elsewhere.
609 gold_assert(!parameters->options().relocatable());
610 return false;
611
612 case elfcpp::SHT_PROGBITS:
613 if (parameters->options().strip_debug()
614 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
615 {
616 if (is_debug_info_section(name))
617 return false;
618 }
619 if (parameters->options().strip_debug_non_line()
620 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
621 {
622 // Debugging sections can only be recognized by name.
623 if (is_prefix_of(".debug_", name)
624 && !is_lines_only_debug_section(name + 7))
625 return false;
626 if (is_prefix_of(".zdebug_", name)
627 && !is_lines_only_debug_section(name + 8))
628 return false;
629 }
630 if (parameters->options().strip_debug_gdb()
631 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
632 {
633 // Debugging sections can only be recognized by name.
634 if (is_prefix_of(".debug_", name)
635 && !is_gdb_debug_section(name + 7))
636 return false;
637 if (is_prefix_of(".zdebug_", name)
638 && !is_gdb_debug_section(name + 8))
639 return false;
640 }
641 if (parameters->options().gdb_index()
642 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
643 {
644 // When building .gdb_index, we can strip .debug_pubnames,
645 // .debug_pubtypes, and .debug_aranges sections.
646 if (is_prefix_of(".debug_", name)
647 && is_gdb_fast_lookup_section(name + 7))
648 return false;
649 if (is_prefix_of(".zdebug_", name)
650 && is_gdb_fast_lookup_section(name + 8))
651 return false;
652 }
653 if (parameters->options().strip_lto_sections()
654 && !parameters->options().relocatable()
655 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
656 {
657 // Ignore LTO sections containing intermediate code.
658 if (is_prefix_of(".gnu.lto_", name))
659 return false;
660 }
661 // The GNU linker strips .gnu_debuglink sections, so we do too.
662 // This is a feature used to keep debugging information in
663 // separate files.
664 if (strcmp(name, ".gnu_debuglink") == 0)
665 return false;
666 return true;
667
668 default:
669 return true;
670 }
671 }
672
673 // Return an output section named NAME, or NULL if there is none.
674
675 Output_section*
676 Layout::find_output_section(const char* name) const
677 {
678 for (Section_list::const_iterator p = this->section_list_.begin();
679 p != this->section_list_.end();
680 ++p)
681 if (strcmp((*p)->name(), name) == 0)
682 return *p;
683 return NULL;
684 }
685
686 // Return an output segment of type TYPE, with segment flags SET set
687 // and segment flags CLEAR clear. Return NULL if there is none.
688
689 Output_segment*
690 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
691 elfcpp::Elf_Word clear) const
692 {
693 for (Segment_list::const_iterator p = this->segment_list_.begin();
694 p != this->segment_list_.end();
695 ++p)
696 if (static_cast<elfcpp::PT>((*p)->type()) == type
697 && ((*p)->flags() & set) == set
698 && ((*p)->flags() & clear) == 0)
699 return *p;
700 return NULL;
701 }
702
703 // When we put a .ctors or .dtors section with more than one word into
704 // a .init_array or .fini_array section, we need to reverse the words
705 // in the .ctors/.dtors section. This is because .init_array executes
706 // constructors front to back, where .ctors executes them back to
707 // front, and vice-versa for .fini_array/.dtors. Although we do want
708 // to remap .ctors/.dtors into .init_array/.fini_array because it can
709 // be more efficient, we don't want to change the order in which
710 // constructors/destructors are run. This set just keeps track of
711 // these sections which need to be reversed. It is only changed by
712 // Layout::layout. It should be a private member of Layout, but that
713 // would require layout.h to #include object.h to get the definition
714 // of Section_id.
715 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
716
717 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
718 // .init_array/.fini_array section.
719
720 bool
721 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
722 {
723 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
724 != ctors_sections_in_init_array.end());
725 }
726
727 // Return the output section to use for section NAME with type TYPE
728 // and section flags FLAGS. NAME must be canonicalized in the string
729 // pool, and NAME_KEY is the key. ORDER is where this should appear
730 // in the output sections. IS_RELRO is true for a relro section.
731
732 Output_section*
733 Layout::get_output_section(const char* name, Stringpool::Key name_key,
734 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
735 Output_section_order order, bool is_relro)
736 {
737 elfcpp::Elf_Word lookup_type = type;
738
739 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
740 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
741 // .init_array, .fini_array, and .preinit_array sections by name
742 // whatever their type in the input file. We do this because the
743 // types are not always right in the input files.
744 if (lookup_type == elfcpp::SHT_INIT_ARRAY
745 || lookup_type == elfcpp::SHT_FINI_ARRAY
746 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
747 lookup_type = elfcpp::SHT_PROGBITS;
748
749 elfcpp::Elf_Xword lookup_flags = flags;
750
751 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
752 // read-write with read-only sections. Some other ELF linkers do
753 // not do this. FIXME: Perhaps there should be an option
754 // controlling this.
755 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
756
757 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
758 const std::pair<Key, Output_section*> v(key, NULL);
759 std::pair<Section_name_map::iterator, bool> ins(
760 this->section_name_map_.insert(v));
761
762 if (!ins.second)
763 return ins.first->second;
764 else
765 {
766 // This is the first time we've seen this name/type/flags
767 // combination. For compatibility with the GNU linker, we
768 // combine sections with contents and zero flags with sections
769 // with non-zero flags. This is a workaround for cases where
770 // assembler code forgets to set section flags. FIXME: Perhaps
771 // there should be an option to control this.
772 Output_section* os = NULL;
773
774 if (lookup_type == elfcpp::SHT_PROGBITS)
775 {
776 if (flags == 0)
777 {
778 Output_section* same_name = this->find_output_section(name);
779 if (same_name != NULL
780 && (same_name->type() == elfcpp::SHT_PROGBITS
781 || same_name->type() == elfcpp::SHT_INIT_ARRAY
782 || same_name->type() == elfcpp::SHT_FINI_ARRAY
783 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
784 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
785 os = same_name;
786 }
787 else if ((flags & elfcpp::SHF_TLS) == 0)
788 {
789 elfcpp::Elf_Xword zero_flags = 0;
790 const Key zero_key(name_key, std::make_pair(lookup_type,
791 zero_flags));
792 Section_name_map::iterator p =
793 this->section_name_map_.find(zero_key);
794 if (p != this->section_name_map_.end())
795 os = p->second;
796 }
797 }
798
799 if (os == NULL)
800 os = this->make_output_section(name, type, flags, order, is_relro);
801
802 ins.first->second = os;
803 return os;
804 }
805 }
806
807 // Returns TRUE iff NAME (an input section from RELOBJ) will
808 // be mapped to an output section that should be KEPT.
809
810 bool
811 Layout::keep_input_section(const Relobj* relobj, const char* name)
812 {
813 if (! this->script_options_->saw_sections_clause())
814 return false;
815
816 Script_sections* ss = this->script_options_->script_sections();
817 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
818 Output_section** output_section_slot;
819 Script_sections::Section_type script_section_type;
820 bool keep;
821
822 name = ss->output_section_name(file_name, name, &output_section_slot,
823 &script_section_type, &keep);
824 return name != NULL && keep;
825 }
826
827 // Pick the output section to use for section NAME, in input file
828 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
829 // linker created section. IS_INPUT_SECTION is true if we are
830 // choosing an output section for an input section found in a input
831 // file. ORDER is where this section should appear in the output
832 // sections. IS_RELRO is true for a relro section. This will return
833 // NULL if the input section should be discarded.
834
835 Output_section*
836 Layout::choose_output_section(const Relobj* relobj, const char* name,
837 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
838 bool is_input_section, Output_section_order order,
839 bool is_relro)
840 {
841 // We should not see any input sections after we have attached
842 // sections to segments.
843 gold_assert(!is_input_section || !this->sections_are_attached_);
844
845 // Some flags in the input section should not be automatically
846 // copied to the output section.
847 flags &= ~ (elfcpp::SHF_INFO_LINK
848 | elfcpp::SHF_GROUP
849 | elfcpp::SHF_MERGE
850 | elfcpp::SHF_STRINGS);
851
852 // We only clear the SHF_LINK_ORDER flag in for
853 // a non-relocatable link.
854 if (!parameters->options().relocatable())
855 flags &= ~elfcpp::SHF_LINK_ORDER;
856
857 if (this->script_options_->saw_sections_clause())
858 {
859 // We are using a SECTIONS clause, so the output section is
860 // chosen based only on the name.
861
862 Script_sections* ss = this->script_options_->script_sections();
863 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
864 Output_section** output_section_slot;
865 Script_sections::Section_type script_section_type;
866 const char* orig_name = name;
867 bool keep;
868 name = ss->output_section_name(file_name, name, &output_section_slot,
869 &script_section_type, &keep);
870
871 if (name == NULL)
872 {
873 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
874 "because it is not allowed by the "
875 "SECTIONS clause of the linker script"),
876 orig_name);
877 // The SECTIONS clause says to discard this input section.
878 return NULL;
879 }
880
881 // We can only handle script section types ST_NONE and ST_NOLOAD.
882 switch (script_section_type)
883 {
884 case Script_sections::ST_NONE:
885 break;
886 case Script_sections::ST_NOLOAD:
887 flags &= elfcpp::SHF_ALLOC;
888 break;
889 default:
890 gold_unreachable();
891 }
892
893 // If this is an orphan section--one not mentioned in the linker
894 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
895 // default processing below.
896
897 if (output_section_slot != NULL)
898 {
899 if (*output_section_slot != NULL)
900 {
901 (*output_section_slot)->update_flags_for_input_section(flags);
902 return *output_section_slot;
903 }
904
905 // We don't put sections found in the linker script into
906 // SECTION_NAME_MAP_. That keeps us from getting confused
907 // if an orphan section is mapped to a section with the same
908 // name as one in the linker script.
909
910 name = this->namepool_.add(name, false, NULL);
911
912 Output_section* os = this->make_output_section(name, type, flags,
913 order, is_relro);
914
915 os->set_found_in_sections_clause();
916
917 // Special handling for NOLOAD sections.
918 if (script_section_type == Script_sections::ST_NOLOAD)
919 {
920 os->set_is_noload();
921
922 // The constructor of Output_section sets addresses of non-ALLOC
923 // sections to 0 by default. We don't want that for NOLOAD
924 // sections even if they have no SHF_ALLOC flag.
925 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
926 && os->is_address_valid())
927 {
928 gold_assert(os->address() == 0
929 && !os->is_offset_valid()
930 && !os->is_data_size_valid());
931 os->reset_address_and_file_offset();
932 }
933 }
934
935 *output_section_slot = os;
936 return os;
937 }
938 }
939
940 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
941
942 size_t len = strlen(name);
943 char* uncompressed_name = NULL;
944
945 // Compressed debug sections should be mapped to the corresponding
946 // uncompressed section.
947 if (is_compressed_debug_section(name))
948 {
949 uncompressed_name = new char[len];
950 uncompressed_name[0] = '.';
951 gold_assert(name[0] == '.' && name[1] == 'z');
952 strncpy(&uncompressed_name[1], &name[2], len - 2);
953 uncompressed_name[len - 1] = '\0';
954 len -= 1;
955 name = uncompressed_name;
956 }
957
958 // Turn NAME from the name of the input section into the name of the
959 // output section.
960 if (is_input_section
961 && !this->script_options_->saw_sections_clause()
962 && !parameters->options().relocatable())
963 {
964 const char *orig_name = name;
965 name = parameters->target().output_section_name(relobj, name, &len);
966 if (name == NULL)
967 name = Layout::output_section_name(relobj, orig_name, &len);
968 }
969
970 Stringpool::Key name_key;
971 name = this->namepool_.add_with_length(name, len, true, &name_key);
972
973 if (uncompressed_name != NULL)
974 delete[] uncompressed_name;
975
976 // Find or make the output section. The output section is selected
977 // based on the section name, type, and flags.
978 return this->get_output_section(name, name_key, type, flags, order, is_relro);
979 }
980
981 // For incremental links, record the initial fixed layout of a section
982 // from the base file, and return a pointer to the Output_section.
983
984 template<int size, bool big_endian>
985 Output_section*
986 Layout::init_fixed_output_section(const char* name,
987 elfcpp::Shdr<size, big_endian>& shdr)
988 {
989 unsigned int sh_type = shdr.get_sh_type();
990
991 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
992 // PRE_INIT_ARRAY, and NOTE sections.
993 // All others will be created from scratch and reallocated.
994 if (!can_incremental_update(sh_type))
995 return NULL;
996
997 // If we're generating a .gdb_index section, we need to regenerate
998 // it from scratch.
999 if (parameters->options().gdb_index()
1000 && sh_type == elfcpp::SHT_PROGBITS
1001 && strcmp(name, ".gdb_index") == 0)
1002 return NULL;
1003
1004 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1005 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1006 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1007 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1008 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1009 shdr.get_sh_addralign();
1010
1011 // Make the output section.
1012 Stringpool::Key name_key;
1013 name = this->namepool_.add(name, true, &name_key);
1014 Output_section* os = this->get_output_section(name, name_key, sh_type,
1015 sh_flags, ORDER_INVALID, false);
1016 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1017 if (sh_type != elfcpp::SHT_NOBITS)
1018 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1019 return os;
1020 }
1021
1022 // Return the output section to use for input section SHNDX, with name
1023 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1024 // index of a relocation section which applies to this section, or 0
1025 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1026 // relocation section if there is one. Set *OFF to the offset of this
1027 // input section without the output section. Return NULL if the
1028 // section should be discarded. Set *OFF to -1 if the section
1029 // contents should not be written directly to the output file, but
1030 // will instead receive special handling.
1031
1032 template<int size, bool big_endian>
1033 Output_section*
1034 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1035 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1036 unsigned int reloc_shndx, unsigned int, off_t* off)
1037 {
1038 *off = 0;
1039
1040 if (!this->include_section(object, name, shdr))
1041 return NULL;
1042
1043 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1044
1045 // In a relocatable link a grouped section must not be combined with
1046 // any other sections.
1047 Output_section* os;
1048 if (parameters->options().relocatable()
1049 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1050 {
1051 name = this->namepool_.add(name, true, NULL);
1052 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1053 ORDER_INVALID, false);
1054 }
1055 else
1056 {
1057 os = this->choose_output_section(object, name, sh_type,
1058 shdr.get_sh_flags(), true,
1059 ORDER_INVALID, false);
1060 if (os == NULL)
1061 return NULL;
1062 }
1063
1064 // By default the GNU linker sorts input sections whose names match
1065 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1066 // sections are sorted by name. This is used to implement
1067 // constructor priority ordering. We are compatible. When we put
1068 // .ctor sections in .init_array and .dtor sections in .fini_array,
1069 // we must also sort plain .ctor and .dtor sections.
1070 if (!this->script_options_->saw_sections_clause()
1071 && !parameters->options().relocatable()
1072 && (is_prefix_of(".ctors.", name)
1073 || is_prefix_of(".dtors.", name)
1074 || is_prefix_of(".init_array.", name)
1075 || is_prefix_of(".fini_array.", name)
1076 || (parameters->options().ctors_in_init_array()
1077 && (strcmp(name, ".ctors") == 0
1078 || strcmp(name, ".dtors") == 0))))
1079 os->set_must_sort_attached_input_sections();
1080
1081 // If this is a .ctors or .ctors.* section being mapped to a
1082 // .init_array section, or a .dtors or .dtors.* section being mapped
1083 // to a .fini_array section, we will need to reverse the words if
1084 // there is more than one. Record this section for later. See
1085 // ctors_sections_in_init_array above.
1086 if (!this->script_options_->saw_sections_clause()
1087 && !parameters->options().relocatable()
1088 && shdr.get_sh_size() > size / 8
1089 && (((strcmp(name, ".ctors") == 0
1090 || is_prefix_of(".ctors.", name))
1091 && strcmp(os->name(), ".init_array") == 0)
1092 || ((strcmp(name, ".dtors") == 0
1093 || is_prefix_of(".dtors.", name))
1094 && strcmp(os->name(), ".fini_array") == 0)))
1095 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1096
1097 // FIXME: Handle SHF_LINK_ORDER somewhere.
1098
1099 elfcpp::Elf_Xword orig_flags = os->flags();
1100
1101 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1102 this->script_options_->saw_sections_clause());
1103
1104 // If the flags changed, we may have to change the order.
1105 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1106 {
1107 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1108 elfcpp::Elf_Xword new_flags =
1109 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1110 if (orig_flags != new_flags)
1111 os->set_order(this->default_section_order(os, false));
1112 }
1113
1114 this->have_added_input_section_ = true;
1115
1116 return os;
1117 }
1118
1119 // Handle a relocation section when doing a relocatable link.
1120
1121 template<int size, bool big_endian>
1122 Output_section*
1123 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1124 unsigned int,
1125 const elfcpp::Shdr<size, big_endian>& shdr,
1126 Output_section* data_section,
1127 Relocatable_relocs* rr)
1128 {
1129 gold_assert(parameters->options().relocatable()
1130 || parameters->options().emit_relocs());
1131
1132 int sh_type = shdr.get_sh_type();
1133
1134 std::string name;
1135 if (sh_type == elfcpp::SHT_REL)
1136 name = ".rel";
1137 else if (sh_type == elfcpp::SHT_RELA)
1138 name = ".rela";
1139 else
1140 gold_unreachable();
1141 name += data_section->name();
1142
1143 // In a relocatable link relocs for a grouped section must not be
1144 // combined with other reloc sections.
1145 Output_section* os;
1146 if (!parameters->options().relocatable()
1147 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1148 os = this->choose_output_section(object, name.c_str(), sh_type,
1149 shdr.get_sh_flags(), false,
1150 ORDER_INVALID, false);
1151 else
1152 {
1153 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1154 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1155 ORDER_INVALID, false);
1156 }
1157
1158 os->set_should_link_to_symtab();
1159 os->set_info_section(data_section);
1160
1161 Output_section_data* posd;
1162 if (sh_type == elfcpp::SHT_REL)
1163 {
1164 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1165 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1166 size,
1167 big_endian>(rr);
1168 }
1169 else if (sh_type == elfcpp::SHT_RELA)
1170 {
1171 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1172 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1173 size,
1174 big_endian>(rr);
1175 }
1176 else
1177 gold_unreachable();
1178
1179 os->add_output_section_data(posd);
1180 rr->set_output_data(posd);
1181
1182 return os;
1183 }
1184
1185 // Handle a group section when doing a relocatable link.
1186
1187 template<int size, bool big_endian>
1188 void
1189 Layout::layout_group(Symbol_table* symtab,
1190 Sized_relobj_file<size, big_endian>* object,
1191 unsigned int,
1192 const char* group_section_name,
1193 const char* signature,
1194 const elfcpp::Shdr<size, big_endian>& shdr,
1195 elfcpp::Elf_Word flags,
1196 std::vector<unsigned int>* shndxes)
1197 {
1198 gold_assert(parameters->options().relocatable());
1199 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1200 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1201 Output_section* os = this->make_output_section(group_section_name,
1202 elfcpp::SHT_GROUP,
1203 shdr.get_sh_flags(),
1204 ORDER_INVALID, false);
1205
1206 // We need to find a symbol with the signature in the symbol table.
1207 // If we don't find one now, we need to look again later.
1208 Symbol* sym = symtab->lookup(signature, NULL);
1209 if (sym != NULL)
1210 os->set_info_symndx(sym);
1211 else
1212 {
1213 // Reserve some space to minimize reallocations.
1214 if (this->group_signatures_.empty())
1215 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1216
1217 // We will wind up using a symbol whose name is the signature.
1218 // So just put the signature in the symbol name pool to save it.
1219 signature = symtab->canonicalize_name(signature);
1220 this->group_signatures_.push_back(Group_signature(os, signature));
1221 }
1222
1223 os->set_should_link_to_symtab();
1224 os->set_entsize(4);
1225
1226 section_size_type entry_count =
1227 convert_to_section_size_type(shdr.get_sh_size() / 4);
1228 Output_section_data* posd =
1229 new Output_data_group<size, big_endian>(object, entry_count, flags,
1230 shndxes);
1231 os->add_output_section_data(posd);
1232 }
1233
1234 // Special GNU handling of sections name .eh_frame. They will
1235 // normally hold exception frame data as defined by the C++ ABI
1236 // (http://codesourcery.com/cxx-abi/).
1237
1238 template<int size, bool big_endian>
1239 Output_section*
1240 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1241 const unsigned char* symbols,
1242 off_t symbols_size,
1243 const unsigned char* symbol_names,
1244 off_t symbol_names_size,
1245 unsigned int shndx,
1246 const elfcpp::Shdr<size, big_endian>& shdr,
1247 unsigned int reloc_shndx, unsigned int reloc_type,
1248 off_t* off)
1249 {
1250 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1251 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1252 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1253
1254 Output_section* os = this->make_eh_frame_section(object);
1255 if (os == NULL)
1256 return NULL;
1257
1258 gold_assert(this->eh_frame_section_ == os);
1259
1260 elfcpp::Elf_Xword orig_flags = os->flags();
1261
1262 if (!parameters->incremental()
1263 && this->eh_frame_data_->add_ehframe_input_section(object,
1264 symbols,
1265 symbols_size,
1266 symbol_names,
1267 symbol_names_size,
1268 shndx,
1269 reloc_shndx,
1270 reloc_type))
1271 {
1272 os->update_flags_for_input_section(shdr.get_sh_flags());
1273
1274 // A writable .eh_frame section is a RELRO section.
1275 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1276 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1277 {
1278 os->set_is_relro();
1279 os->set_order(ORDER_RELRO);
1280 }
1281
1282 // We found a .eh_frame section we are going to optimize, so now
1283 // we can add the set of optimized sections to the output
1284 // section. We need to postpone adding this until we've found a
1285 // section we can optimize so that the .eh_frame section in
1286 // crtbegin.o winds up at the start of the output section.
1287 if (!this->added_eh_frame_data_)
1288 {
1289 os->add_output_section_data(this->eh_frame_data_);
1290 this->added_eh_frame_data_ = true;
1291 }
1292 *off = -1;
1293 }
1294 else
1295 {
1296 // We couldn't handle this .eh_frame section for some reason.
1297 // Add it as a normal section.
1298 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1299 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1300 reloc_shndx, saw_sections_clause);
1301 this->have_added_input_section_ = true;
1302
1303 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1304 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1305 os->set_order(this->default_section_order(os, false));
1306 }
1307
1308 return os;
1309 }
1310
1311 // Create and return the magic .eh_frame section. Create
1312 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1313 // input .eh_frame section; it may be NULL.
1314
1315 Output_section*
1316 Layout::make_eh_frame_section(const Relobj* object)
1317 {
1318 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1319 // SHT_PROGBITS.
1320 Output_section* os = this->choose_output_section(object, ".eh_frame",
1321 elfcpp::SHT_PROGBITS,
1322 elfcpp::SHF_ALLOC, false,
1323 ORDER_EHFRAME, false);
1324 if (os == NULL)
1325 return NULL;
1326
1327 if (this->eh_frame_section_ == NULL)
1328 {
1329 this->eh_frame_section_ = os;
1330 this->eh_frame_data_ = new Eh_frame();
1331
1332 // For incremental linking, we do not optimize .eh_frame sections
1333 // or create a .eh_frame_hdr section.
1334 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1335 {
1336 Output_section* hdr_os =
1337 this->choose_output_section(NULL, ".eh_frame_hdr",
1338 elfcpp::SHT_PROGBITS,
1339 elfcpp::SHF_ALLOC, false,
1340 ORDER_EHFRAME, false);
1341
1342 if (hdr_os != NULL)
1343 {
1344 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1345 this->eh_frame_data_);
1346 hdr_os->add_output_section_data(hdr_posd);
1347
1348 hdr_os->set_after_input_sections();
1349
1350 if (!this->script_options_->saw_phdrs_clause())
1351 {
1352 Output_segment* hdr_oseg;
1353 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1354 elfcpp::PF_R);
1355 hdr_oseg->add_output_section_to_nonload(hdr_os,
1356 elfcpp::PF_R);
1357 }
1358
1359 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1360 }
1361 }
1362 }
1363
1364 return os;
1365 }
1366
1367 // Add an exception frame for a PLT. This is called from target code.
1368
1369 void
1370 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1371 size_t cie_length, const unsigned char* fde_data,
1372 size_t fde_length)
1373 {
1374 if (parameters->incremental())
1375 {
1376 // FIXME: Maybe this could work some day....
1377 return;
1378 }
1379 Output_section* os = this->make_eh_frame_section(NULL);
1380 if (os == NULL)
1381 return;
1382 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1383 fde_data, fde_length);
1384 if (!this->added_eh_frame_data_)
1385 {
1386 os->add_output_section_data(this->eh_frame_data_);
1387 this->added_eh_frame_data_ = true;
1388 }
1389 }
1390
1391 // Scan a .debug_info or .debug_types section, and add summary
1392 // information to the .gdb_index section.
1393
1394 template<int size, bool big_endian>
1395 void
1396 Layout::add_to_gdb_index(bool is_type_unit,
1397 Sized_relobj<size, big_endian>* object,
1398 const unsigned char* symbols,
1399 off_t symbols_size,
1400 unsigned int shndx,
1401 unsigned int reloc_shndx,
1402 unsigned int reloc_type)
1403 {
1404 if (this->gdb_index_data_ == NULL)
1405 {
1406 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1407 elfcpp::SHT_PROGBITS, 0,
1408 false, ORDER_INVALID,
1409 false);
1410 if (os == NULL)
1411 return;
1412
1413 this->gdb_index_data_ = new Gdb_index(os);
1414 os->add_output_section_data(this->gdb_index_data_);
1415 os->set_after_input_sections();
1416 }
1417
1418 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1419 symbols_size, shndx, reloc_shndx,
1420 reloc_type);
1421 }
1422
1423 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1424 // the output section.
1425
1426 Output_section*
1427 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1428 elfcpp::Elf_Xword flags,
1429 Output_section_data* posd,
1430 Output_section_order order, bool is_relro)
1431 {
1432 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1433 false, order, is_relro);
1434 if (os != NULL)
1435 os->add_output_section_data(posd);
1436 return os;
1437 }
1438
1439 // Map section flags to segment flags.
1440
1441 elfcpp::Elf_Word
1442 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1443 {
1444 elfcpp::Elf_Word ret = elfcpp::PF_R;
1445 if ((flags & elfcpp::SHF_WRITE) != 0)
1446 ret |= elfcpp::PF_W;
1447 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1448 ret |= elfcpp::PF_X;
1449 return ret;
1450 }
1451
1452 // Make a new Output_section, and attach it to segments as
1453 // appropriate. ORDER is the order in which this section should
1454 // appear in the output segment. IS_RELRO is true if this is a relro
1455 // (read-only after relocations) section.
1456
1457 Output_section*
1458 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1459 elfcpp::Elf_Xword flags,
1460 Output_section_order order, bool is_relro)
1461 {
1462 Output_section* os;
1463 if ((flags & elfcpp::SHF_ALLOC) == 0
1464 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1465 && is_compressible_debug_section(name))
1466 os = new Output_compressed_section(&parameters->options(), name, type,
1467 flags);
1468 else if ((flags & elfcpp::SHF_ALLOC) == 0
1469 && parameters->options().strip_debug_non_line()
1470 && strcmp(".debug_abbrev", name) == 0)
1471 {
1472 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1473 name, type, flags);
1474 if (this->debug_info_)
1475 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1476 }
1477 else if ((flags & elfcpp::SHF_ALLOC) == 0
1478 && parameters->options().strip_debug_non_line()
1479 && strcmp(".debug_info", name) == 0)
1480 {
1481 os = this->debug_info_ = new Output_reduced_debug_info_section(
1482 name, type, flags);
1483 if (this->debug_abbrev_)
1484 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1485 }
1486 else
1487 {
1488 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1489 // not have correct section types. Force them here.
1490 if (type == elfcpp::SHT_PROGBITS)
1491 {
1492 if (is_prefix_of(".init_array", name))
1493 type = elfcpp::SHT_INIT_ARRAY;
1494 else if (is_prefix_of(".preinit_array", name))
1495 type = elfcpp::SHT_PREINIT_ARRAY;
1496 else if (is_prefix_of(".fini_array", name))
1497 type = elfcpp::SHT_FINI_ARRAY;
1498 }
1499
1500 // FIXME: const_cast is ugly.
1501 Target* target = const_cast<Target*>(&parameters->target());
1502 os = target->make_output_section(name, type, flags);
1503 }
1504
1505 // With -z relro, we have to recognize the special sections by name.
1506 // There is no other way.
1507 bool is_relro_local = false;
1508 if (!this->script_options_->saw_sections_clause()
1509 && parameters->options().relro()
1510 && (flags & elfcpp::SHF_ALLOC) != 0
1511 && (flags & elfcpp::SHF_WRITE) != 0)
1512 {
1513 if (type == elfcpp::SHT_PROGBITS)
1514 {
1515 if ((flags & elfcpp::SHF_TLS) != 0)
1516 is_relro = true;
1517 else if (strcmp(name, ".data.rel.ro") == 0)
1518 is_relro = true;
1519 else if (strcmp(name, ".data.rel.ro.local") == 0)
1520 {
1521 is_relro = true;
1522 is_relro_local = true;
1523 }
1524 else if (strcmp(name, ".ctors") == 0
1525 || strcmp(name, ".dtors") == 0
1526 || strcmp(name, ".jcr") == 0)
1527 is_relro = true;
1528 }
1529 else if (type == elfcpp::SHT_INIT_ARRAY
1530 || type == elfcpp::SHT_FINI_ARRAY
1531 || type == elfcpp::SHT_PREINIT_ARRAY)
1532 is_relro = true;
1533 }
1534
1535 if (is_relro)
1536 os->set_is_relro();
1537
1538 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1539 order = this->default_section_order(os, is_relro_local);
1540
1541 os->set_order(order);
1542
1543 parameters->target().new_output_section(os);
1544
1545 this->section_list_.push_back(os);
1546
1547 // The GNU linker by default sorts some sections by priority, so we
1548 // do the same. We need to know that this might happen before we
1549 // attach any input sections.
1550 if (!this->script_options_->saw_sections_clause()
1551 && !parameters->options().relocatable()
1552 && (strcmp(name, ".init_array") == 0
1553 || strcmp(name, ".fini_array") == 0
1554 || (!parameters->options().ctors_in_init_array()
1555 && (strcmp(name, ".ctors") == 0
1556 || strcmp(name, ".dtors") == 0))))
1557 os->set_may_sort_attached_input_sections();
1558
1559 // Check for .stab*str sections, as .stab* sections need to link to
1560 // them.
1561 if (type == elfcpp::SHT_STRTAB
1562 && !this->have_stabstr_section_
1563 && strncmp(name, ".stab", 5) == 0
1564 && strcmp(name + strlen(name) - 3, "str") == 0)
1565 this->have_stabstr_section_ = true;
1566
1567 // During a full incremental link, we add patch space to most
1568 // PROGBITS and NOBITS sections. Flag those that may be
1569 // arbitrarily padded.
1570 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1571 && order != ORDER_INTERP
1572 && order != ORDER_INIT
1573 && order != ORDER_PLT
1574 && order != ORDER_FINI
1575 && order != ORDER_RELRO_LAST
1576 && order != ORDER_NON_RELRO_FIRST
1577 && strcmp(name, ".eh_frame") != 0
1578 && strcmp(name, ".ctors") != 0
1579 && strcmp(name, ".dtors") != 0
1580 && strcmp(name, ".jcr") != 0)
1581 {
1582 os->set_is_patch_space_allowed();
1583
1584 // Certain sections require "holes" to be filled with
1585 // specific fill patterns. These fill patterns may have
1586 // a minimum size, so we must prevent allocations from the
1587 // free list that leave a hole smaller than the minimum.
1588 if (strcmp(name, ".debug_info") == 0)
1589 os->set_free_space_fill(new Output_fill_debug_info(false));
1590 else if (strcmp(name, ".debug_types") == 0)
1591 os->set_free_space_fill(new Output_fill_debug_info(true));
1592 else if (strcmp(name, ".debug_line") == 0)
1593 os->set_free_space_fill(new Output_fill_debug_line());
1594 }
1595
1596 // If we have already attached the sections to segments, then we
1597 // need to attach this one now. This happens for sections created
1598 // directly by the linker.
1599 if (this->sections_are_attached_)
1600 this->attach_section_to_segment(&parameters->target(), os);
1601
1602 return os;
1603 }
1604
1605 // Return the default order in which a section should be placed in an
1606 // output segment. This function captures a lot of the ideas in
1607 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1608 // linker created section is normally set when the section is created;
1609 // this function is used for input sections.
1610
1611 Output_section_order
1612 Layout::default_section_order(Output_section* os, bool is_relro_local)
1613 {
1614 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1615 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1616 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1617 bool is_bss = false;
1618
1619 switch (os->type())
1620 {
1621 default:
1622 case elfcpp::SHT_PROGBITS:
1623 break;
1624 case elfcpp::SHT_NOBITS:
1625 is_bss = true;
1626 break;
1627 case elfcpp::SHT_RELA:
1628 case elfcpp::SHT_REL:
1629 if (!is_write)
1630 return ORDER_DYNAMIC_RELOCS;
1631 break;
1632 case elfcpp::SHT_HASH:
1633 case elfcpp::SHT_DYNAMIC:
1634 case elfcpp::SHT_SHLIB:
1635 case elfcpp::SHT_DYNSYM:
1636 case elfcpp::SHT_GNU_HASH:
1637 case elfcpp::SHT_GNU_verdef:
1638 case elfcpp::SHT_GNU_verneed:
1639 case elfcpp::SHT_GNU_versym:
1640 if (!is_write)
1641 return ORDER_DYNAMIC_LINKER;
1642 break;
1643 case elfcpp::SHT_NOTE:
1644 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1645 }
1646
1647 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1648 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1649
1650 if (!is_bss && !is_write)
1651 {
1652 if (is_execinstr)
1653 {
1654 if (strcmp(os->name(), ".init") == 0)
1655 return ORDER_INIT;
1656 else if (strcmp(os->name(), ".fini") == 0)
1657 return ORDER_FINI;
1658 }
1659 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1660 }
1661
1662 if (os->is_relro())
1663 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1664
1665 if (os->is_small_section())
1666 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1667 if (os->is_large_section())
1668 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1669
1670 return is_bss ? ORDER_BSS : ORDER_DATA;
1671 }
1672
1673 // Attach output sections to segments. This is called after we have
1674 // seen all the input sections.
1675
1676 void
1677 Layout::attach_sections_to_segments(const Target* target)
1678 {
1679 for (Section_list::iterator p = this->section_list_.begin();
1680 p != this->section_list_.end();
1681 ++p)
1682 this->attach_section_to_segment(target, *p);
1683
1684 this->sections_are_attached_ = true;
1685 }
1686
1687 // Attach an output section to a segment.
1688
1689 void
1690 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1691 {
1692 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1693 this->unattached_section_list_.push_back(os);
1694 else
1695 this->attach_allocated_section_to_segment(target, os);
1696 }
1697
1698 // Attach an allocated output section to a segment.
1699
1700 void
1701 Layout::attach_allocated_section_to_segment(const Target* target,
1702 Output_section* os)
1703 {
1704 elfcpp::Elf_Xword flags = os->flags();
1705 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1706
1707 if (parameters->options().relocatable())
1708 return;
1709
1710 // If we have a SECTIONS clause, we can't handle the attachment to
1711 // segments until after we've seen all the sections.
1712 if (this->script_options_->saw_sections_clause())
1713 return;
1714
1715 gold_assert(!this->script_options_->saw_phdrs_clause());
1716
1717 // This output section goes into a PT_LOAD segment.
1718
1719 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1720
1721 // Check for --section-start.
1722 uint64_t addr;
1723 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1724
1725 // In general the only thing we really care about for PT_LOAD
1726 // segments is whether or not they are writable or executable,
1727 // so that is how we search for them.
1728 // Large data sections also go into their own PT_LOAD segment.
1729 // People who need segments sorted on some other basis will
1730 // have to use a linker script.
1731
1732 Segment_list::const_iterator p;
1733 for (p = this->segment_list_.begin();
1734 p != this->segment_list_.end();
1735 ++p)
1736 {
1737 if ((*p)->type() != elfcpp::PT_LOAD)
1738 continue;
1739 if (!parameters->options().omagic()
1740 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1741 continue;
1742 if ((target->isolate_execinstr() || parameters->options().rosegment())
1743 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1744 continue;
1745 // If -Tbss was specified, we need to separate the data and BSS
1746 // segments.
1747 if (parameters->options().user_set_Tbss())
1748 {
1749 if ((os->type() == elfcpp::SHT_NOBITS)
1750 == (*p)->has_any_data_sections())
1751 continue;
1752 }
1753 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1754 continue;
1755
1756 if (is_address_set)
1757 {
1758 if ((*p)->are_addresses_set())
1759 continue;
1760
1761 (*p)->add_initial_output_data(os);
1762 (*p)->update_flags_for_output_section(seg_flags);
1763 (*p)->set_addresses(addr, addr);
1764 break;
1765 }
1766
1767 (*p)->add_output_section_to_load(this, os, seg_flags);
1768 break;
1769 }
1770
1771 if (p == this->segment_list_.end())
1772 {
1773 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1774 seg_flags);
1775 if (os->is_large_data_section())
1776 oseg->set_is_large_data_segment();
1777 oseg->add_output_section_to_load(this, os, seg_flags);
1778 if (is_address_set)
1779 oseg->set_addresses(addr, addr);
1780 }
1781
1782 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1783 // segment.
1784 if (os->type() == elfcpp::SHT_NOTE)
1785 {
1786 // See if we already have an equivalent PT_NOTE segment.
1787 for (p = this->segment_list_.begin();
1788 p != segment_list_.end();
1789 ++p)
1790 {
1791 if ((*p)->type() == elfcpp::PT_NOTE
1792 && (((*p)->flags() & elfcpp::PF_W)
1793 == (seg_flags & elfcpp::PF_W)))
1794 {
1795 (*p)->add_output_section_to_nonload(os, seg_flags);
1796 break;
1797 }
1798 }
1799
1800 if (p == this->segment_list_.end())
1801 {
1802 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1803 seg_flags);
1804 oseg->add_output_section_to_nonload(os, seg_flags);
1805 }
1806 }
1807
1808 // If we see a loadable SHF_TLS section, we create a PT_TLS
1809 // segment. There can only be one such segment.
1810 if ((flags & elfcpp::SHF_TLS) != 0)
1811 {
1812 if (this->tls_segment_ == NULL)
1813 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1814 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1815 }
1816
1817 // If -z relro is in effect, and we see a relro section, we create a
1818 // PT_GNU_RELRO segment. There can only be one such segment.
1819 if (os->is_relro() && parameters->options().relro())
1820 {
1821 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1822 if (this->relro_segment_ == NULL)
1823 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1824 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1825 }
1826
1827 // If we see a section named .interp, put it into a PT_INTERP
1828 // segment. This seems broken to me, but this is what GNU ld does,
1829 // and glibc expects it.
1830 if (strcmp(os->name(), ".interp") == 0
1831 && !this->script_options_->saw_phdrs_clause())
1832 {
1833 if (this->interp_segment_ == NULL)
1834 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1835 else
1836 gold_warning(_("multiple '.interp' sections in input files "
1837 "may cause confusing PT_INTERP segment"));
1838 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1839 }
1840 }
1841
1842 // Make an output section for a script.
1843
1844 Output_section*
1845 Layout::make_output_section_for_script(
1846 const char* name,
1847 Script_sections::Section_type section_type)
1848 {
1849 name = this->namepool_.add(name, false, NULL);
1850 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1851 if (section_type == Script_sections::ST_NOLOAD)
1852 sh_flags = 0;
1853 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1854 sh_flags, ORDER_INVALID,
1855 false);
1856 os->set_found_in_sections_clause();
1857 if (section_type == Script_sections::ST_NOLOAD)
1858 os->set_is_noload();
1859 return os;
1860 }
1861
1862 // Return the number of segments we expect to see.
1863
1864 size_t
1865 Layout::expected_segment_count() const
1866 {
1867 size_t ret = this->segment_list_.size();
1868
1869 // If we didn't see a SECTIONS clause in a linker script, we should
1870 // already have the complete list of segments. Otherwise we ask the
1871 // SECTIONS clause how many segments it expects, and add in the ones
1872 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1873
1874 if (!this->script_options_->saw_sections_clause())
1875 return ret;
1876 else
1877 {
1878 const Script_sections* ss = this->script_options_->script_sections();
1879 return ret + ss->expected_segment_count(this);
1880 }
1881 }
1882
1883 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1884 // is whether we saw a .note.GNU-stack section in the object file.
1885 // GNU_STACK_FLAGS is the section flags. The flags give the
1886 // protection required for stack memory. We record this in an
1887 // executable as a PT_GNU_STACK segment. If an object file does not
1888 // have a .note.GNU-stack segment, we must assume that it is an old
1889 // object. On some targets that will force an executable stack.
1890
1891 void
1892 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1893 const Object* obj)
1894 {
1895 if (!seen_gnu_stack)
1896 {
1897 this->input_without_gnu_stack_note_ = true;
1898 if (parameters->options().warn_execstack()
1899 && parameters->target().is_default_stack_executable())
1900 gold_warning(_("%s: missing .note.GNU-stack section"
1901 " implies executable stack"),
1902 obj->name().c_str());
1903 }
1904 else
1905 {
1906 this->input_with_gnu_stack_note_ = true;
1907 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1908 {
1909 this->input_requires_executable_stack_ = true;
1910 if (parameters->options().warn_execstack()
1911 || parameters->options().is_stack_executable())
1912 gold_warning(_("%s: requires executable stack"),
1913 obj->name().c_str());
1914 }
1915 }
1916 }
1917
1918 // Create automatic note sections.
1919
1920 void
1921 Layout::create_notes()
1922 {
1923 this->create_gold_note();
1924 this->create_executable_stack_info();
1925 this->create_build_id();
1926 }
1927
1928 // Create the dynamic sections which are needed before we read the
1929 // relocs.
1930
1931 void
1932 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1933 {
1934 if (parameters->doing_static_link())
1935 return;
1936
1937 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1938 elfcpp::SHT_DYNAMIC,
1939 (elfcpp::SHF_ALLOC
1940 | elfcpp::SHF_WRITE),
1941 false, ORDER_RELRO,
1942 true);
1943
1944 // A linker script may discard .dynamic, so check for NULL.
1945 if (this->dynamic_section_ != NULL)
1946 {
1947 this->dynamic_symbol_ =
1948 symtab->define_in_output_data("_DYNAMIC", NULL,
1949 Symbol_table::PREDEFINED,
1950 this->dynamic_section_, 0, 0,
1951 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1952 elfcpp::STV_HIDDEN, 0, false, false);
1953
1954 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1955
1956 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1957 }
1958 }
1959
1960 // For each output section whose name can be represented as C symbol,
1961 // define __start and __stop symbols for the section. This is a GNU
1962 // extension.
1963
1964 void
1965 Layout::define_section_symbols(Symbol_table* symtab)
1966 {
1967 for (Section_list::const_iterator p = this->section_list_.begin();
1968 p != this->section_list_.end();
1969 ++p)
1970 {
1971 const char* const name = (*p)->name();
1972 if (is_cident(name))
1973 {
1974 const std::string name_string(name);
1975 const std::string start_name(cident_section_start_prefix
1976 + name_string);
1977 const std::string stop_name(cident_section_stop_prefix
1978 + name_string);
1979
1980 symtab->define_in_output_data(start_name.c_str(),
1981 NULL, // version
1982 Symbol_table::PREDEFINED,
1983 *p,
1984 0, // value
1985 0, // symsize
1986 elfcpp::STT_NOTYPE,
1987 elfcpp::STB_GLOBAL,
1988 elfcpp::STV_DEFAULT,
1989 0, // nonvis
1990 false, // offset_is_from_end
1991 true); // only_if_ref
1992
1993 symtab->define_in_output_data(stop_name.c_str(),
1994 NULL, // version
1995 Symbol_table::PREDEFINED,
1996 *p,
1997 0, // value
1998 0, // symsize
1999 elfcpp::STT_NOTYPE,
2000 elfcpp::STB_GLOBAL,
2001 elfcpp::STV_DEFAULT,
2002 0, // nonvis
2003 true, // offset_is_from_end
2004 true); // only_if_ref
2005 }
2006 }
2007 }
2008
2009 // Define symbols for group signatures.
2010
2011 void
2012 Layout::define_group_signatures(Symbol_table* symtab)
2013 {
2014 for (Group_signatures::iterator p = this->group_signatures_.begin();
2015 p != this->group_signatures_.end();
2016 ++p)
2017 {
2018 Symbol* sym = symtab->lookup(p->signature, NULL);
2019 if (sym != NULL)
2020 p->section->set_info_symndx(sym);
2021 else
2022 {
2023 // Force the name of the group section to the group
2024 // signature, and use the group's section symbol as the
2025 // signature symbol.
2026 if (strcmp(p->section->name(), p->signature) != 0)
2027 {
2028 const char* name = this->namepool_.add(p->signature,
2029 true, NULL);
2030 p->section->set_name(name);
2031 }
2032 p->section->set_needs_symtab_index();
2033 p->section->set_info_section_symndx(p->section);
2034 }
2035 }
2036
2037 this->group_signatures_.clear();
2038 }
2039
2040 // Find the first read-only PT_LOAD segment, creating one if
2041 // necessary.
2042
2043 Output_segment*
2044 Layout::find_first_load_seg(const Target* target)
2045 {
2046 Output_segment* best = NULL;
2047 for (Segment_list::const_iterator p = this->segment_list_.begin();
2048 p != this->segment_list_.end();
2049 ++p)
2050 {
2051 if ((*p)->type() == elfcpp::PT_LOAD
2052 && ((*p)->flags() & elfcpp::PF_R) != 0
2053 && (parameters->options().omagic()
2054 || ((*p)->flags() & elfcpp::PF_W) == 0)
2055 && (!target->isolate_execinstr()
2056 || ((*p)->flags() & elfcpp::PF_X) == 0))
2057 {
2058 if (best == NULL || this->segment_precedes(*p, best))
2059 best = *p;
2060 }
2061 }
2062 if (best != NULL)
2063 return best;
2064
2065 gold_assert(!this->script_options_->saw_phdrs_clause());
2066
2067 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2068 elfcpp::PF_R);
2069 return load_seg;
2070 }
2071
2072 // Save states of all current output segments. Store saved states
2073 // in SEGMENT_STATES.
2074
2075 void
2076 Layout::save_segments(Segment_states* segment_states)
2077 {
2078 for (Segment_list::const_iterator p = this->segment_list_.begin();
2079 p != this->segment_list_.end();
2080 ++p)
2081 {
2082 Output_segment* segment = *p;
2083 // Shallow copy.
2084 Output_segment* copy = new Output_segment(*segment);
2085 (*segment_states)[segment] = copy;
2086 }
2087 }
2088
2089 // Restore states of output segments and delete any segment not found in
2090 // SEGMENT_STATES.
2091
2092 void
2093 Layout::restore_segments(const Segment_states* segment_states)
2094 {
2095 // Go through the segment list and remove any segment added in the
2096 // relaxation loop.
2097 this->tls_segment_ = NULL;
2098 this->relro_segment_ = NULL;
2099 Segment_list::iterator list_iter = this->segment_list_.begin();
2100 while (list_iter != this->segment_list_.end())
2101 {
2102 Output_segment* segment = *list_iter;
2103 Segment_states::const_iterator states_iter =
2104 segment_states->find(segment);
2105 if (states_iter != segment_states->end())
2106 {
2107 const Output_segment* copy = states_iter->second;
2108 // Shallow copy to restore states.
2109 *segment = *copy;
2110
2111 // Also fix up TLS and RELRO segment pointers as appropriate.
2112 if (segment->type() == elfcpp::PT_TLS)
2113 this->tls_segment_ = segment;
2114 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2115 this->relro_segment_ = segment;
2116
2117 ++list_iter;
2118 }
2119 else
2120 {
2121 list_iter = this->segment_list_.erase(list_iter);
2122 // This is a segment created during section layout. It should be
2123 // safe to remove it since we should have removed all pointers to it.
2124 delete segment;
2125 }
2126 }
2127 }
2128
2129 // Clean up after relaxation so that sections can be laid out again.
2130
2131 void
2132 Layout::clean_up_after_relaxation()
2133 {
2134 // Restore the segments to point state just prior to the relaxation loop.
2135 Script_sections* script_section = this->script_options_->script_sections();
2136 script_section->release_segments();
2137 this->restore_segments(this->segment_states_);
2138
2139 // Reset section addresses and file offsets
2140 for (Section_list::iterator p = this->section_list_.begin();
2141 p != this->section_list_.end();
2142 ++p)
2143 {
2144 (*p)->restore_states();
2145
2146 // If an input section changes size because of relaxation,
2147 // we need to adjust the section offsets of all input sections.
2148 // after such a section.
2149 if ((*p)->section_offsets_need_adjustment())
2150 (*p)->adjust_section_offsets();
2151
2152 (*p)->reset_address_and_file_offset();
2153 }
2154
2155 // Reset special output object address and file offsets.
2156 for (Data_list::iterator p = this->special_output_list_.begin();
2157 p != this->special_output_list_.end();
2158 ++p)
2159 (*p)->reset_address_and_file_offset();
2160
2161 // A linker script may have created some output section data objects.
2162 // They are useless now.
2163 for (Output_section_data_list::const_iterator p =
2164 this->script_output_section_data_list_.begin();
2165 p != this->script_output_section_data_list_.end();
2166 ++p)
2167 delete *p;
2168 this->script_output_section_data_list_.clear();
2169 }
2170
2171 // Prepare for relaxation.
2172
2173 void
2174 Layout::prepare_for_relaxation()
2175 {
2176 // Create an relaxation debug check if in debugging mode.
2177 if (is_debugging_enabled(DEBUG_RELAXATION))
2178 this->relaxation_debug_check_ = new Relaxation_debug_check();
2179
2180 // Save segment states.
2181 this->segment_states_ = new Segment_states();
2182 this->save_segments(this->segment_states_);
2183
2184 for(Section_list::const_iterator p = this->section_list_.begin();
2185 p != this->section_list_.end();
2186 ++p)
2187 (*p)->save_states();
2188
2189 if (is_debugging_enabled(DEBUG_RELAXATION))
2190 this->relaxation_debug_check_->check_output_data_for_reset_values(
2191 this->section_list_, this->special_output_list_);
2192
2193 // Also enable recording of output section data from scripts.
2194 this->record_output_section_data_from_script_ = true;
2195 }
2196
2197 // Relaxation loop body: If target has no relaxation, this runs only once
2198 // Otherwise, the target relaxation hook is called at the end of
2199 // each iteration. If the hook returns true, it means re-layout of
2200 // section is required.
2201 //
2202 // The number of segments created by a linking script without a PHDRS
2203 // clause may be affected by section sizes and alignments. There is
2204 // a remote chance that relaxation causes different number of PT_LOAD
2205 // segments are created and sections are attached to different segments.
2206 // Therefore, we always throw away all segments created during section
2207 // layout. In order to be able to restart the section layout, we keep
2208 // a copy of the segment list right before the relaxation loop and use
2209 // that to restore the segments.
2210 //
2211 // PASS is the current relaxation pass number.
2212 // SYMTAB is a symbol table.
2213 // PLOAD_SEG is the address of a pointer for the load segment.
2214 // PHDR_SEG is a pointer to the PHDR segment.
2215 // SEGMENT_HEADERS points to the output segment header.
2216 // FILE_HEADER points to the output file header.
2217 // PSHNDX is the address to store the output section index.
2218
2219 off_t inline
2220 Layout::relaxation_loop_body(
2221 int pass,
2222 Target* target,
2223 Symbol_table* symtab,
2224 Output_segment** pload_seg,
2225 Output_segment* phdr_seg,
2226 Output_segment_headers* segment_headers,
2227 Output_file_header* file_header,
2228 unsigned int* pshndx)
2229 {
2230 // If this is not the first iteration, we need to clean up after
2231 // relaxation so that we can lay out the sections again.
2232 if (pass != 0)
2233 this->clean_up_after_relaxation();
2234
2235 // If there is a SECTIONS clause, put all the input sections into
2236 // the required order.
2237 Output_segment* load_seg;
2238 if (this->script_options_->saw_sections_clause())
2239 load_seg = this->set_section_addresses_from_script(symtab);
2240 else if (parameters->options().relocatable())
2241 load_seg = NULL;
2242 else
2243 load_seg = this->find_first_load_seg(target);
2244
2245 if (parameters->options().oformat_enum()
2246 != General_options::OBJECT_FORMAT_ELF)
2247 load_seg = NULL;
2248
2249 // If the user set the address of the text segment, that may not be
2250 // compatible with putting the segment headers and file headers into
2251 // that segment.
2252 if (parameters->options().user_set_Ttext()
2253 && parameters->options().Ttext() % target->common_pagesize() != 0)
2254 {
2255 load_seg = NULL;
2256 phdr_seg = NULL;
2257 }
2258
2259 gold_assert(phdr_seg == NULL
2260 || load_seg != NULL
2261 || this->script_options_->saw_sections_clause());
2262
2263 // If the address of the load segment we found has been set by
2264 // --section-start rather than by a script, then adjust the VMA and
2265 // LMA downward if possible to include the file and section headers.
2266 uint64_t header_gap = 0;
2267 if (load_seg != NULL
2268 && load_seg->are_addresses_set()
2269 && !this->script_options_->saw_sections_clause()
2270 && !parameters->options().relocatable())
2271 {
2272 file_header->finalize_data_size();
2273 segment_headers->finalize_data_size();
2274 size_t sizeof_headers = (file_header->data_size()
2275 + segment_headers->data_size());
2276 const uint64_t abi_pagesize = target->abi_pagesize();
2277 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2278 hdr_paddr &= ~(abi_pagesize - 1);
2279 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2280 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2281 load_seg = NULL;
2282 else
2283 {
2284 load_seg->set_addresses(load_seg->vaddr() - subtract,
2285 load_seg->paddr() - subtract);
2286 header_gap = subtract - sizeof_headers;
2287 }
2288 }
2289
2290 // Lay out the segment headers.
2291 if (!parameters->options().relocatable())
2292 {
2293 gold_assert(segment_headers != NULL);
2294 if (header_gap != 0 && load_seg != NULL)
2295 {
2296 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2297 load_seg->add_initial_output_data(z);
2298 }
2299 if (load_seg != NULL)
2300 load_seg->add_initial_output_data(segment_headers);
2301 if (phdr_seg != NULL)
2302 phdr_seg->add_initial_output_data(segment_headers);
2303 }
2304
2305 // Lay out the file header.
2306 if (load_seg != NULL)
2307 load_seg->add_initial_output_data(file_header);
2308
2309 if (this->script_options_->saw_phdrs_clause()
2310 && !parameters->options().relocatable())
2311 {
2312 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2313 // clause in a linker script.
2314 Script_sections* ss = this->script_options_->script_sections();
2315 ss->put_headers_in_phdrs(file_header, segment_headers);
2316 }
2317
2318 // We set the output section indexes in set_segment_offsets and
2319 // set_section_indexes.
2320 *pshndx = 1;
2321
2322 // Set the file offsets of all the segments, and all the sections
2323 // they contain.
2324 off_t off;
2325 if (!parameters->options().relocatable())
2326 off = this->set_segment_offsets(target, load_seg, pshndx);
2327 else
2328 off = this->set_relocatable_section_offsets(file_header, pshndx);
2329
2330 // Verify that the dummy relaxation does not change anything.
2331 if (is_debugging_enabled(DEBUG_RELAXATION))
2332 {
2333 if (pass == 0)
2334 this->relaxation_debug_check_->read_sections(this->section_list_);
2335 else
2336 this->relaxation_debug_check_->verify_sections(this->section_list_);
2337 }
2338
2339 *pload_seg = load_seg;
2340 return off;
2341 }
2342
2343 // Search the list of patterns and find the postion of the given section
2344 // name in the output section. If the section name matches a glob
2345 // pattern and a non-glob name, then the non-glob position takes
2346 // precedence. Return 0 if no match is found.
2347
2348 unsigned int
2349 Layout::find_section_order_index(const std::string& section_name)
2350 {
2351 Unordered_map<std::string, unsigned int>::iterator map_it;
2352 map_it = this->input_section_position_.find(section_name);
2353 if (map_it != this->input_section_position_.end())
2354 return map_it->second;
2355
2356 // Absolute match failed. Linear search the glob patterns.
2357 std::vector<std::string>::iterator it;
2358 for (it = this->input_section_glob_.begin();
2359 it != this->input_section_glob_.end();
2360 ++it)
2361 {
2362 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2363 {
2364 map_it = this->input_section_position_.find(*it);
2365 gold_assert(map_it != this->input_section_position_.end());
2366 return map_it->second;
2367 }
2368 }
2369 return 0;
2370 }
2371
2372 // Read the sequence of input sections from the file specified with
2373 // option --section-ordering-file.
2374
2375 void
2376 Layout::read_layout_from_file()
2377 {
2378 const char* filename = parameters->options().section_ordering_file();
2379 std::ifstream in;
2380 std::string line;
2381
2382 in.open(filename);
2383 if (!in)
2384 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2385 filename, strerror(errno));
2386
2387 std::getline(in, line); // this chops off the trailing \n, if any
2388 unsigned int position = 1;
2389 this->set_section_ordering_specified();
2390
2391 while (in)
2392 {
2393 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2394 line.resize(line.length() - 1);
2395 // Ignore comments, beginning with '#'
2396 if (line[0] == '#')
2397 {
2398 std::getline(in, line);
2399 continue;
2400 }
2401 this->input_section_position_[line] = position;
2402 // Store all glob patterns in a vector.
2403 if (is_wildcard_string(line.c_str()))
2404 this->input_section_glob_.push_back(line);
2405 position++;
2406 std::getline(in, line);
2407 }
2408 }
2409
2410 // Finalize the layout. When this is called, we have created all the
2411 // output sections and all the output segments which are based on
2412 // input sections. We have several things to do, and we have to do
2413 // them in the right order, so that we get the right results correctly
2414 // and efficiently.
2415
2416 // 1) Finalize the list of output segments and create the segment
2417 // table header.
2418
2419 // 2) Finalize the dynamic symbol table and associated sections.
2420
2421 // 3) Determine the final file offset of all the output segments.
2422
2423 // 4) Determine the final file offset of all the SHF_ALLOC output
2424 // sections.
2425
2426 // 5) Create the symbol table sections and the section name table
2427 // section.
2428
2429 // 6) Finalize the symbol table: set symbol values to their final
2430 // value and make a final determination of which symbols are going
2431 // into the output symbol table.
2432
2433 // 7) Create the section table header.
2434
2435 // 8) Determine the final file offset of all the output sections which
2436 // are not SHF_ALLOC, including the section table header.
2437
2438 // 9) Finalize the ELF file header.
2439
2440 // This function returns the size of the output file.
2441
2442 off_t
2443 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2444 Target* target, const Task* task)
2445 {
2446 target->finalize_sections(this, input_objects, symtab);
2447
2448 this->count_local_symbols(task, input_objects);
2449
2450 this->link_stabs_sections();
2451
2452 Output_segment* phdr_seg = NULL;
2453 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2454 {
2455 // There was a dynamic object in the link. We need to create
2456 // some information for the dynamic linker.
2457
2458 // Create the PT_PHDR segment which will hold the program
2459 // headers.
2460 if (!this->script_options_->saw_phdrs_clause())
2461 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2462
2463 // Create the dynamic symbol table, including the hash table.
2464 Output_section* dynstr;
2465 std::vector<Symbol*> dynamic_symbols;
2466 unsigned int local_dynamic_count;
2467 Versions versions(*this->script_options()->version_script_info(),
2468 &this->dynpool_);
2469 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2470 &local_dynamic_count, &dynamic_symbols,
2471 &versions);
2472
2473 // Create the .interp section to hold the name of the
2474 // interpreter, and put it in a PT_INTERP segment. Don't do it
2475 // if we saw a .interp section in an input file.
2476 if ((!parameters->options().shared()
2477 || parameters->options().dynamic_linker() != NULL)
2478 && this->interp_segment_ == NULL)
2479 this->create_interp(target);
2480
2481 // Finish the .dynamic section to hold the dynamic data, and put
2482 // it in a PT_DYNAMIC segment.
2483 this->finish_dynamic_section(input_objects, symtab);
2484
2485 // We should have added everything we need to the dynamic string
2486 // table.
2487 this->dynpool_.set_string_offsets();
2488
2489 // Create the version sections. We can't do this until the
2490 // dynamic string table is complete.
2491 this->create_version_sections(&versions, symtab, local_dynamic_count,
2492 dynamic_symbols, dynstr);
2493
2494 // Set the size of the _DYNAMIC symbol. We can't do this until
2495 // after we call create_version_sections.
2496 this->set_dynamic_symbol_size(symtab);
2497 }
2498
2499 // Create segment headers.
2500 Output_segment_headers* segment_headers =
2501 (parameters->options().relocatable()
2502 ? NULL
2503 : new Output_segment_headers(this->segment_list_));
2504
2505 // Lay out the file header.
2506 Output_file_header* file_header = new Output_file_header(target, symtab,
2507 segment_headers);
2508
2509 this->special_output_list_.push_back(file_header);
2510 if (segment_headers != NULL)
2511 this->special_output_list_.push_back(segment_headers);
2512
2513 // Find approriate places for orphan output sections if we are using
2514 // a linker script.
2515 if (this->script_options_->saw_sections_clause())
2516 this->place_orphan_sections_in_script();
2517
2518 Output_segment* load_seg;
2519 off_t off;
2520 unsigned int shndx;
2521 int pass = 0;
2522
2523 // Take a snapshot of the section layout as needed.
2524 if (target->may_relax())
2525 this->prepare_for_relaxation();
2526
2527 // Run the relaxation loop to lay out sections.
2528 do
2529 {
2530 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2531 phdr_seg, segment_headers, file_header,
2532 &shndx);
2533 pass++;
2534 }
2535 while (target->may_relax()
2536 && target->relax(pass, input_objects, symtab, this, task));
2537
2538 // If there is a load segment that contains the file and program headers,
2539 // provide a symbol __ehdr_start pointing there.
2540 // A program can use this to examine itself robustly.
2541 if (load_seg != NULL)
2542 symtab->define_in_output_segment("__ehdr_start", NULL,
2543 Symbol_table::PREDEFINED, load_seg, 0, 0,
2544 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2545 elfcpp::STV_DEFAULT, 0,
2546 Symbol::SEGMENT_START, true);
2547
2548 // Set the file offsets of all the non-data sections we've seen so
2549 // far which don't have to wait for the input sections. We need
2550 // this in order to finalize local symbols in non-allocated
2551 // sections.
2552 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2553
2554 // Set the section indexes of all unallocated sections seen so far,
2555 // in case any of them are somehow referenced by a symbol.
2556 shndx = this->set_section_indexes(shndx);
2557
2558 // Create the symbol table sections.
2559 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2560 if (!parameters->doing_static_link())
2561 this->assign_local_dynsym_offsets(input_objects);
2562
2563 // Process any symbol assignments from a linker script. This must
2564 // be called after the symbol table has been finalized.
2565 this->script_options_->finalize_symbols(symtab, this);
2566
2567 // Create the incremental inputs sections.
2568 if (this->incremental_inputs_)
2569 {
2570 this->incremental_inputs_->finalize();
2571 this->create_incremental_info_sections(symtab);
2572 }
2573
2574 // Create the .shstrtab section.
2575 Output_section* shstrtab_section = this->create_shstrtab();
2576
2577 // Set the file offsets of the rest of the non-data sections which
2578 // don't have to wait for the input sections.
2579 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2580
2581 // Now that all sections have been created, set the section indexes
2582 // for any sections which haven't been done yet.
2583 shndx = this->set_section_indexes(shndx);
2584
2585 // Create the section table header.
2586 this->create_shdrs(shstrtab_section, &off);
2587
2588 // If there are no sections which require postprocessing, we can
2589 // handle the section names now, and avoid a resize later.
2590 if (!this->any_postprocessing_sections_)
2591 {
2592 off = this->set_section_offsets(off,
2593 POSTPROCESSING_SECTIONS_PASS);
2594 off =
2595 this->set_section_offsets(off,
2596 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2597 }
2598
2599 file_header->set_section_info(this->section_headers_, shstrtab_section);
2600
2601 // Now we know exactly where everything goes in the output file
2602 // (except for non-allocated sections which require postprocessing).
2603 Output_data::layout_complete();
2604
2605 this->output_file_size_ = off;
2606
2607 return off;
2608 }
2609
2610 // Create a note header following the format defined in the ELF ABI.
2611 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2612 // of the section to create, DESCSZ is the size of the descriptor.
2613 // ALLOCATE is true if the section should be allocated in memory.
2614 // This returns the new note section. It sets *TRAILING_PADDING to
2615 // the number of trailing zero bytes required.
2616
2617 Output_section*
2618 Layout::create_note(const char* name, int note_type,
2619 const char* section_name, size_t descsz,
2620 bool allocate, size_t* trailing_padding)
2621 {
2622 // Authorities all agree that the values in a .note field should
2623 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2624 // they differ on what the alignment is for 64-bit binaries.
2625 // The GABI says unambiguously they take 8-byte alignment:
2626 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2627 // Other documentation says alignment should always be 4 bytes:
2628 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2629 // GNU ld and GNU readelf both support the latter (at least as of
2630 // version 2.16.91), and glibc always generates the latter for
2631 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2632 // here.
2633 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2634 const int size = parameters->target().get_size();
2635 #else
2636 const int size = 32;
2637 #endif
2638
2639 // The contents of the .note section.
2640 size_t namesz = strlen(name) + 1;
2641 size_t aligned_namesz = align_address(namesz, size / 8);
2642 size_t aligned_descsz = align_address(descsz, size / 8);
2643
2644 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2645
2646 unsigned char* buffer = new unsigned char[notehdrsz];
2647 memset(buffer, 0, notehdrsz);
2648
2649 bool is_big_endian = parameters->target().is_big_endian();
2650
2651 if (size == 32)
2652 {
2653 if (!is_big_endian)
2654 {
2655 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2656 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2657 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2658 }
2659 else
2660 {
2661 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2662 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2663 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2664 }
2665 }
2666 else if (size == 64)
2667 {
2668 if (!is_big_endian)
2669 {
2670 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2671 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2672 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2673 }
2674 else
2675 {
2676 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2677 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2678 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2679 }
2680 }
2681 else
2682 gold_unreachable();
2683
2684 memcpy(buffer + 3 * (size / 8), name, namesz);
2685
2686 elfcpp::Elf_Xword flags = 0;
2687 Output_section_order order = ORDER_INVALID;
2688 if (allocate)
2689 {
2690 flags = elfcpp::SHF_ALLOC;
2691 order = ORDER_RO_NOTE;
2692 }
2693 Output_section* os = this->choose_output_section(NULL, section_name,
2694 elfcpp::SHT_NOTE,
2695 flags, false, order, false);
2696 if (os == NULL)
2697 return NULL;
2698
2699 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2700 size / 8,
2701 "** note header");
2702 os->add_output_section_data(posd);
2703
2704 *trailing_padding = aligned_descsz - descsz;
2705
2706 return os;
2707 }
2708
2709 // For an executable or shared library, create a note to record the
2710 // version of gold used to create the binary.
2711
2712 void
2713 Layout::create_gold_note()
2714 {
2715 if (parameters->options().relocatable()
2716 || parameters->incremental_update())
2717 return;
2718
2719 std::string desc = std::string("gold ") + gold::get_version_string();
2720
2721 size_t trailing_padding;
2722 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2723 ".note.gnu.gold-version", desc.size(),
2724 false, &trailing_padding);
2725 if (os == NULL)
2726 return;
2727
2728 Output_section_data* posd = new Output_data_const(desc, 4);
2729 os->add_output_section_data(posd);
2730
2731 if (trailing_padding > 0)
2732 {
2733 posd = new Output_data_zero_fill(trailing_padding, 0);
2734 os->add_output_section_data(posd);
2735 }
2736 }
2737
2738 // Record whether the stack should be executable. This can be set
2739 // from the command line using the -z execstack or -z noexecstack
2740 // options. Otherwise, if any input file has a .note.GNU-stack
2741 // section with the SHF_EXECINSTR flag set, the stack should be
2742 // executable. Otherwise, if at least one input file a
2743 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2744 // section, we use the target default for whether the stack should be
2745 // executable. Otherwise, we don't generate a stack note. When
2746 // generating a object file, we create a .note.GNU-stack section with
2747 // the appropriate marking. When generating an executable or shared
2748 // library, we create a PT_GNU_STACK segment.
2749
2750 void
2751 Layout::create_executable_stack_info()
2752 {
2753 bool is_stack_executable;
2754 if (parameters->options().is_execstack_set())
2755 is_stack_executable = parameters->options().is_stack_executable();
2756 else if (!this->input_with_gnu_stack_note_)
2757 return;
2758 else
2759 {
2760 if (this->input_requires_executable_stack_)
2761 is_stack_executable = true;
2762 else if (this->input_without_gnu_stack_note_)
2763 is_stack_executable =
2764 parameters->target().is_default_stack_executable();
2765 else
2766 is_stack_executable = false;
2767 }
2768
2769 if (parameters->options().relocatable())
2770 {
2771 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2772 elfcpp::Elf_Xword flags = 0;
2773 if (is_stack_executable)
2774 flags |= elfcpp::SHF_EXECINSTR;
2775 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2776 ORDER_INVALID, false);
2777 }
2778 else
2779 {
2780 if (this->script_options_->saw_phdrs_clause())
2781 return;
2782 int flags = elfcpp::PF_R | elfcpp::PF_W;
2783 if (is_stack_executable)
2784 flags |= elfcpp::PF_X;
2785 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2786 }
2787 }
2788
2789 // If --build-id was used, set up the build ID note.
2790
2791 void
2792 Layout::create_build_id()
2793 {
2794 if (!parameters->options().user_set_build_id())
2795 return;
2796
2797 const char* style = parameters->options().build_id();
2798 if (strcmp(style, "none") == 0)
2799 return;
2800
2801 // Set DESCSZ to the size of the note descriptor. When possible,
2802 // set DESC to the note descriptor contents.
2803 size_t descsz;
2804 std::string desc;
2805 if (strcmp(style, "md5") == 0)
2806 descsz = 128 / 8;
2807 else if (strcmp(style, "sha1") == 0)
2808 descsz = 160 / 8;
2809 else if (strcmp(style, "uuid") == 0)
2810 {
2811 const size_t uuidsz = 128 / 8;
2812
2813 char buffer[uuidsz];
2814 memset(buffer, 0, uuidsz);
2815
2816 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2817 if (descriptor < 0)
2818 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2819 strerror(errno));
2820 else
2821 {
2822 ssize_t got = ::read(descriptor, buffer, uuidsz);
2823 release_descriptor(descriptor, true);
2824 if (got < 0)
2825 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2826 else if (static_cast<size_t>(got) != uuidsz)
2827 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2828 uuidsz, got);
2829 }
2830
2831 desc.assign(buffer, uuidsz);
2832 descsz = uuidsz;
2833 }
2834 else if (strncmp(style, "0x", 2) == 0)
2835 {
2836 hex_init();
2837 const char* p = style + 2;
2838 while (*p != '\0')
2839 {
2840 if (hex_p(p[0]) && hex_p(p[1]))
2841 {
2842 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2843 desc += c;
2844 p += 2;
2845 }
2846 else if (*p == '-' || *p == ':')
2847 ++p;
2848 else
2849 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2850 style);
2851 }
2852 descsz = desc.size();
2853 }
2854 else
2855 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2856
2857 // Create the note.
2858 size_t trailing_padding;
2859 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2860 ".note.gnu.build-id", descsz, true,
2861 &trailing_padding);
2862 if (os == NULL)
2863 return;
2864
2865 if (!desc.empty())
2866 {
2867 // We know the value already, so we fill it in now.
2868 gold_assert(desc.size() == descsz);
2869
2870 Output_section_data* posd = new Output_data_const(desc, 4);
2871 os->add_output_section_data(posd);
2872
2873 if (trailing_padding != 0)
2874 {
2875 posd = new Output_data_zero_fill(trailing_padding, 0);
2876 os->add_output_section_data(posd);
2877 }
2878 }
2879 else
2880 {
2881 // We need to compute a checksum after we have completed the
2882 // link.
2883 gold_assert(trailing_padding == 0);
2884 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2885 os->add_output_section_data(this->build_id_note_);
2886 }
2887 }
2888
2889 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2890 // field of the former should point to the latter. I'm not sure who
2891 // started this, but the GNU linker does it, and some tools depend
2892 // upon it.
2893
2894 void
2895 Layout::link_stabs_sections()
2896 {
2897 if (!this->have_stabstr_section_)
2898 return;
2899
2900 for (Section_list::iterator p = this->section_list_.begin();
2901 p != this->section_list_.end();
2902 ++p)
2903 {
2904 if ((*p)->type() != elfcpp::SHT_STRTAB)
2905 continue;
2906
2907 const char* name = (*p)->name();
2908 if (strncmp(name, ".stab", 5) != 0)
2909 continue;
2910
2911 size_t len = strlen(name);
2912 if (strcmp(name + len - 3, "str") != 0)
2913 continue;
2914
2915 std::string stab_name(name, len - 3);
2916 Output_section* stab_sec;
2917 stab_sec = this->find_output_section(stab_name.c_str());
2918 if (stab_sec != NULL)
2919 stab_sec->set_link_section(*p);
2920 }
2921 }
2922
2923 // Create .gnu_incremental_inputs and related sections needed
2924 // for the next run of incremental linking to check what has changed.
2925
2926 void
2927 Layout::create_incremental_info_sections(Symbol_table* symtab)
2928 {
2929 Incremental_inputs* incr = this->incremental_inputs_;
2930
2931 gold_assert(incr != NULL);
2932
2933 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2934 incr->create_data_sections(symtab);
2935
2936 // Add the .gnu_incremental_inputs section.
2937 const char* incremental_inputs_name =
2938 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2939 Output_section* incremental_inputs_os =
2940 this->make_output_section(incremental_inputs_name,
2941 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2942 ORDER_INVALID, false);
2943 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2944
2945 // Add the .gnu_incremental_symtab section.
2946 const char* incremental_symtab_name =
2947 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2948 Output_section* incremental_symtab_os =
2949 this->make_output_section(incremental_symtab_name,
2950 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2951 ORDER_INVALID, false);
2952 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2953 incremental_symtab_os->set_entsize(4);
2954
2955 // Add the .gnu_incremental_relocs section.
2956 const char* incremental_relocs_name =
2957 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2958 Output_section* incremental_relocs_os =
2959 this->make_output_section(incremental_relocs_name,
2960 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2961 ORDER_INVALID, false);
2962 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2963 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2964
2965 // Add the .gnu_incremental_got_plt section.
2966 const char* incremental_got_plt_name =
2967 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2968 Output_section* incremental_got_plt_os =
2969 this->make_output_section(incremental_got_plt_name,
2970 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2971 ORDER_INVALID, false);
2972 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2973
2974 // Add the .gnu_incremental_strtab section.
2975 const char* incremental_strtab_name =
2976 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2977 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2978 elfcpp::SHT_STRTAB, 0,
2979 ORDER_INVALID, false);
2980 Output_data_strtab* strtab_data =
2981 new Output_data_strtab(incr->get_stringpool());
2982 incremental_strtab_os->add_output_section_data(strtab_data);
2983
2984 incremental_inputs_os->set_after_input_sections();
2985 incremental_symtab_os->set_after_input_sections();
2986 incremental_relocs_os->set_after_input_sections();
2987 incremental_got_plt_os->set_after_input_sections();
2988
2989 incremental_inputs_os->set_link_section(incremental_strtab_os);
2990 incremental_symtab_os->set_link_section(incremental_inputs_os);
2991 incremental_relocs_os->set_link_section(incremental_inputs_os);
2992 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2993 }
2994
2995 // Return whether SEG1 should be before SEG2 in the output file. This
2996 // is based entirely on the segment type and flags. When this is
2997 // called the segment addresses have normally not yet been set.
2998
2999 bool
3000 Layout::segment_precedes(const Output_segment* seg1,
3001 const Output_segment* seg2)
3002 {
3003 elfcpp::Elf_Word type1 = seg1->type();
3004 elfcpp::Elf_Word type2 = seg2->type();
3005
3006 // The single PT_PHDR segment is required to precede any loadable
3007 // segment. We simply make it always first.
3008 if (type1 == elfcpp::PT_PHDR)
3009 {
3010 gold_assert(type2 != elfcpp::PT_PHDR);
3011 return true;
3012 }
3013 if (type2 == elfcpp::PT_PHDR)
3014 return false;
3015
3016 // The single PT_INTERP segment is required to precede any loadable
3017 // segment. We simply make it always second.
3018 if (type1 == elfcpp::PT_INTERP)
3019 {
3020 gold_assert(type2 != elfcpp::PT_INTERP);
3021 return true;
3022 }
3023 if (type2 == elfcpp::PT_INTERP)
3024 return false;
3025
3026 // We then put PT_LOAD segments before any other segments.
3027 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3028 return true;
3029 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3030 return false;
3031
3032 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3033 // segment, because that is where the dynamic linker expects to find
3034 // it (this is just for efficiency; other positions would also work
3035 // correctly).
3036 if (type1 == elfcpp::PT_TLS
3037 && type2 != elfcpp::PT_TLS
3038 && type2 != elfcpp::PT_GNU_RELRO)
3039 return false;
3040 if (type2 == elfcpp::PT_TLS
3041 && type1 != elfcpp::PT_TLS
3042 && type1 != elfcpp::PT_GNU_RELRO)
3043 return true;
3044
3045 // We put the PT_GNU_RELRO segment last, because that is where the
3046 // dynamic linker expects to find it (as with PT_TLS, this is just
3047 // for efficiency).
3048 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3049 return false;
3050 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3051 return true;
3052
3053 const elfcpp::Elf_Word flags1 = seg1->flags();
3054 const elfcpp::Elf_Word flags2 = seg2->flags();
3055
3056 // The order of non-PT_LOAD segments is unimportant. We simply sort
3057 // by the numeric segment type and flags values. There should not
3058 // be more than one segment with the same type and flags.
3059 if (type1 != elfcpp::PT_LOAD)
3060 {
3061 if (type1 != type2)
3062 return type1 < type2;
3063 gold_assert(flags1 != flags2);
3064 return flags1 < flags2;
3065 }
3066
3067 // If the addresses are set already, sort by load address.
3068 if (seg1->are_addresses_set())
3069 {
3070 if (!seg2->are_addresses_set())
3071 return true;
3072
3073 unsigned int section_count1 = seg1->output_section_count();
3074 unsigned int section_count2 = seg2->output_section_count();
3075 if (section_count1 == 0 && section_count2 > 0)
3076 return true;
3077 if (section_count1 > 0 && section_count2 == 0)
3078 return false;
3079
3080 uint64_t paddr1 = (seg1->are_addresses_set()
3081 ? seg1->paddr()
3082 : seg1->first_section_load_address());
3083 uint64_t paddr2 = (seg2->are_addresses_set()
3084 ? seg2->paddr()
3085 : seg2->first_section_load_address());
3086
3087 if (paddr1 != paddr2)
3088 return paddr1 < paddr2;
3089 }
3090 else if (seg2->are_addresses_set())
3091 return false;
3092
3093 // A segment which holds large data comes after a segment which does
3094 // not hold large data.
3095 if (seg1->is_large_data_segment())
3096 {
3097 if (!seg2->is_large_data_segment())
3098 return false;
3099 }
3100 else if (seg2->is_large_data_segment())
3101 return true;
3102
3103 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3104 // segments come before writable segments. Then writable segments
3105 // with data come before writable segments without data. Then
3106 // executable segments come before non-executable segments. Then
3107 // the unlikely case of a non-readable segment comes before the
3108 // normal case of a readable segment. If there are multiple
3109 // segments with the same type and flags, we require that the
3110 // address be set, and we sort by virtual address and then physical
3111 // address.
3112 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3113 return (flags1 & elfcpp::PF_W) == 0;
3114 if ((flags1 & elfcpp::PF_W) != 0
3115 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3116 return seg1->has_any_data_sections();
3117 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3118 return (flags1 & elfcpp::PF_X) != 0;
3119 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3120 return (flags1 & elfcpp::PF_R) == 0;
3121
3122 // We shouldn't get here--we shouldn't create segments which we
3123 // can't distinguish. Unless of course we are using a weird linker
3124 // script or overlapping --section-start options.
3125 gold_assert(this->script_options_->saw_phdrs_clause()
3126 || parameters->options().any_section_start());
3127 return false;
3128 }
3129
3130 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3131
3132 static off_t
3133 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3134 {
3135 uint64_t unsigned_off = off;
3136 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3137 | (addr & (abi_pagesize - 1)));
3138 if (aligned_off < unsigned_off)
3139 aligned_off += abi_pagesize;
3140 return aligned_off;
3141 }
3142
3143 // Set the file offsets of all the segments, and all the sections they
3144 // contain. They have all been created. LOAD_SEG must be be laid out
3145 // first. Return the offset of the data to follow.
3146
3147 off_t
3148 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3149 unsigned int* pshndx)
3150 {
3151 // Sort them into the final order. We use a stable sort so that we
3152 // don't randomize the order of indistinguishable segments created
3153 // by linker scripts.
3154 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3155 Layout::Compare_segments(this));
3156
3157 // Find the PT_LOAD segments, and set their addresses and offsets
3158 // and their section's addresses and offsets.
3159 uint64_t start_addr;
3160 if (parameters->options().user_set_Ttext())
3161 start_addr = parameters->options().Ttext();
3162 else if (parameters->options().output_is_position_independent())
3163 start_addr = 0;
3164 else
3165 start_addr = target->default_text_segment_address();
3166
3167 uint64_t addr = start_addr;
3168 off_t off = 0;
3169
3170 // If LOAD_SEG is NULL, then the file header and segment headers
3171 // will not be loadable. But they still need to be at offset 0 in
3172 // the file. Set their offsets now.
3173 if (load_seg == NULL)
3174 {
3175 for (Data_list::iterator p = this->special_output_list_.begin();
3176 p != this->special_output_list_.end();
3177 ++p)
3178 {
3179 off = align_address(off, (*p)->addralign());
3180 (*p)->set_address_and_file_offset(0, off);
3181 off += (*p)->data_size();
3182 }
3183 }
3184
3185 unsigned int increase_relro = this->increase_relro_;
3186 if (this->script_options_->saw_sections_clause())
3187 increase_relro = 0;
3188
3189 const bool check_sections = parameters->options().check_sections();
3190 Output_segment* last_load_segment = NULL;
3191
3192 unsigned int shndx_begin = *pshndx;
3193 unsigned int shndx_load_seg = *pshndx;
3194
3195 for (Segment_list::iterator p = this->segment_list_.begin();
3196 p != this->segment_list_.end();
3197 ++p)
3198 {
3199 if ((*p)->type() == elfcpp::PT_LOAD)
3200 {
3201 if (target->isolate_execinstr())
3202 {
3203 // When we hit the segment that should contain the
3204 // file headers, reset the file offset so we place
3205 // it and subsequent segments appropriately.
3206 // We'll fix up the preceding segments below.
3207 if (load_seg == *p)
3208 {
3209 if (off == 0)
3210 load_seg = NULL;
3211 else
3212 {
3213 off = 0;
3214 shndx_load_seg = *pshndx;
3215 }
3216 }
3217 }
3218 else
3219 {
3220 // Verify that the file headers fall into the first segment.
3221 if (load_seg != NULL && load_seg != *p)
3222 gold_unreachable();
3223 load_seg = NULL;
3224 }
3225
3226 bool are_addresses_set = (*p)->are_addresses_set();
3227 if (are_addresses_set)
3228 {
3229 // When it comes to setting file offsets, we care about
3230 // the physical address.
3231 addr = (*p)->paddr();
3232 }
3233 else if (parameters->options().user_set_Ttext()
3234 && ((*p)->flags() & elfcpp::PF_W) == 0)
3235 {
3236 are_addresses_set = true;
3237 }
3238 else if (parameters->options().user_set_Tdata()
3239 && ((*p)->flags() & elfcpp::PF_W) != 0
3240 && (!parameters->options().user_set_Tbss()
3241 || (*p)->has_any_data_sections()))
3242 {
3243 addr = parameters->options().Tdata();
3244 are_addresses_set = true;
3245 }
3246 else if (parameters->options().user_set_Tbss()
3247 && ((*p)->flags() & elfcpp::PF_W) != 0
3248 && !(*p)->has_any_data_sections())
3249 {
3250 addr = parameters->options().Tbss();
3251 are_addresses_set = true;
3252 }
3253
3254 uint64_t orig_addr = addr;
3255 uint64_t orig_off = off;
3256
3257 uint64_t aligned_addr = 0;
3258 uint64_t abi_pagesize = target->abi_pagesize();
3259 uint64_t common_pagesize = target->common_pagesize();
3260
3261 if (!parameters->options().nmagic()
3262 && !parameters->options().omagic())
3263 (*p)->set_minimum_p_align(common_pagesize);
3264
3265 if (!are_addresses_set)
3266 {
3267 // Skip the address forward one page, maintaining the same
3268 // position within the page. This lets us store both segments
3269 // overlapping on a single page in the file, but the loader will
3270 // put them on different pages in memory. We will revisit this
3271 // decision once we know the size of the segment.
3272
3273 addr = align_address(addr, (*p)->maximum_alignment());
3274 aligned_addr = addr;
3275
3276 if (load_seg == *p)
3277 {
3278 // This is the segment that will contain the file
3279 // headers, so its offset will have to be exactly zero.
3280 gold_assert(orig_off == 0);
3281
3282 // If the target wants a fixed minimum distance from the
3283 // text segment to the read-only segment, move up now.
3284 uint64_t min_addr = start_addr + target->rosegment_gap();
3285 if (addr < min_addr)
3286 addr = min_addr;
3287
3288 // But this is not the first segment! To make its
3289 // address congruent with its offset, that address better
3290 // be aligned to the ABI-mandated page size.
3291 addr = align_address(addr, abi_pagesize);
3292 aligned_addr = addr;
3293 }
3294 else
3295 {
3296 if ((addr & (abi_pagesize - 1)) != 0)
3297 addr = addr + abi_pagesize;
3298
3299 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3300 }
3301 }
3302
3303 if (!parameters->options().nmagic()
3304 && !parameters->options().omagic())
3305 off = align_file_offset(off, addr, abi_pagesize);
3306 else
3307 {
3308 // This is -N or -n with a section script which prevents
3309 // us from using a load segment. We need to ensure that
3310 // the file offset is aligned to the alignment of the
3311 // segment. This is because the linker script
3312 // implicitly assumed a zero offset. If we don't align
3313 // here, then the alignment of the sections in the
3314 // linker script may not match the alignment of the
3315 // sections in the set_section_addresses call below,
3316 // causing an error about dot moving backward.
3317 off = align_address(off, (*p)->maximum_alignment());
3318 }
3319
3320 unsigned int shndx_hold = *pshndx;
3321 bool has_relro = false;
3322 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3323 &increase_relro,
3324 &has_relro,
3325 &off, pshndx);
3326
3327 // Now that we know the size of this segment, we may be able
3328 // to save a page in memory, at the cost of wasting some
3329 // file space, by instead aligning to the start of a new
3330 // page. Here we use the real machine page size rather than
3331 // the ABI mandated page size. If the segment has been
3332 // aligned so that the relro data ends at a page boundary,
3333 // we do not try to realign it.
3334
3335 if (!are_addresses_set
3336 && !has_relro
3337 && aligned_addr != addr
3338 && !parameters->incremental())
3339 {
3340 uint64_t first_off = (common_pagesize
3341 - (aligned_addr
3342 & (common_pagesize - 1)));
3343 uint64_t last_off = new_addr & (common_pagesize - 1);
3344 if (first_off > 0
3345 && last_off > 0
3346 && ((aligned_addr & ~ (common_pagesize - 1))
3347 != (new_addr & ~ (common_pagesize - 1)))
3348 && first_off + last_off <= common_pagesize)
3349 {
3350 *pshndx = shndx_hold;
3351 addr = align_address(aligned_addr, common_pagesize);
3352 addr = align_address(addr, (*p)->maximum_alignment());
3353 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3354 off = align_file_offset(off, addr, abi_pagesize);
3355
3356 increase_relro = this->increase_relro_;
3357 if (this->script_options_->saw_sections_clause())
3358 increase_relro = 0;
3359 has_relro = false;
3360
3361 new_addr = (*p)->set_section_addresses(this, true, addr,
3362 &increase_relro,
3363 &has_relro,
3364 &off, pshndx);
3365 }
3366 }
3367
3368 addr = new_addr;
3369
3370 // Implement --check-sections. We know that the segments
3371 // are sorted by LMA.
3372 if (check_sections && last_load_segment != NULL)
3373 {
3374 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3375 if (last_load_segment->paddr() + last_load_segment->memsz()
3376 > (*p)->paddr())
3377 {
3378 unsigned long long lb1 = last_load_segment->paddr();
3379 unsigned long long le1 = lb1 + last_load_segment->memsz();
3380 unsigned long long lb2 = (*p)->paddr();
3381 unsigned long long le2 = lb2 + (*p)->memsz();
3382 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3383 "[0x%llx -> 0x%llx]"),
3384 lb1, le1, lb2, le2);
3385 }
3386 }
3387 last_load_segment = *p;
3388 }
3389 }
3390
3391 if (load_seg != NULL && target->isolate_execinstr())
3392 {
3393 // Process the early segments again, setting their file offsets
3394 // so they land after the segments starting at LOAD_SEG.
3395 off = align_file_offset(off, 0, target->abi_pagesize());
3396
3397 for (Segment_list::iterator p = this->segment_list_.begin();
3398 *p != load_seg;
3399 ++p)
3400 {
3401 if ((*p)->type() == elfcpp::PT_LOAD)
3402 {
3403 // We repeat the whole job of assigning addresses and
3404 // offsets, but we really only want to change the offsets and
3405 // must ensure that the addresses all come out the same as
3406 // they did the first time through.
3407 bool has_relro = false;
3408 const uint64_t old_addr = (*p)->vaddr();
3409 const uint64_t old_end = old_addr + (*p)->memsz();
3410 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3411 old_addr,
3412 &increase_relro,
3413 &has_relro,
3414 &off,
3415 &shndx_begin);
3416 gold_assert(new_addr == old_end);
3417 }
3418 }
3419
3420 gold_assert(shndx_begin == shndx_load_seg);
3421 }
3422
3423 // Handle the non-PT_LOAD segments, setting their offsets from their
3424 // section's offsets.
3425 for (Segment_list::iterator p = this->segment_list_.begin();
3426 p != this->segment_list_.end();
3427 ++p)
3428 {
3429 if ((*p)->type() != elfcpp::PT_LOAD)
3430 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3431 ? increase_relro
3432 : 0);
3433 }
3434
3435 // Set the TLS offsets for each section in the PT_TLS segment.
3436 if (this->tls_segment_ != NULL)
3437 this->tls_segment_->set_tls_offsets();
3438
3439 return off;
3440 }
3441
3442 // Set the offsets of all the allocated sections when doing a
3443 // relocatable link. This does the same jobs as set_segment_offsets,
3444 // only for a relocatable link.
3445
3446 off_t
3447 Layout::set_relocatable_section_offsets(Output_data* file_header,
3448 unsigned int* pshndx)
3449 {
3450 off_t off = 0;
3451
3452 file_header->set_address_and_file_offset(0, 0);
3453 off += file_header->data_size();
3454
3455 for (Section_list::iterator p = this->section_list_.begin();
3456 p != this->section_list_.end();
3457 ++p)
3458 {
3459 // We skip unallocated sections here, except that group sections
3460 // have to come first.
3461 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3462 && (*p)->type() != elfcpp::SHT_GROUP)
3463 continue;
3464
3465 off = align_address(off, (*p)->addralign());
3466
3467 // The linker script might have set the address.
3468 if (!(*p)->is_address_valid())
3469 (*p)->set_address(0);
3470 (*p)->set_file_offset(off);
3471 (*p)->finalize_data_size();
3472 off += (*p)->data_size();
3473
3474 (*p)->set_out_shndx(*pshndx);
3475 ++*pshndx;
3476 }
3477
3478 return off;
3479 }
3480
3481 // Set the file offset of all the sections not associated with a
3482 // segment.
3483
3484 off_t
3485 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3486 {
3487 off_t startoff = off;
3488 off_t maxoff = off;
3489
3490 for (Section_list::iterator p = this->unattached_section_list_.begin();
3491 p != this->unattached_section_list_.end();
3492 ++p)
3493 {
3494 // The symtab section is handled in create_symtab_sections.
3495 if (*p == this->symtab_section_)
3496 continue;
3497
3498 // If we've already set the data size, don't set it again.
3499 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3500 continue;
3501
3502 if (pass == BEFORE_INPUT_SECTIONS_PASS
3503 && (*p)->requires_postprocessing())
3504 {
3505 (*p)->create_postprocessing_buffer();
3506 this->any_postprocessing_sections_ = true;
3507 }
3508
3509 if (pass == BEFORE_INPUT_SECTIONS_PASS
3510 && (*p)->after_input_sections())
3511 continue;
3512 else if (pass == POSTPROCESSING_SECTIONS_PASS
3513 && (!(*p)->after_input_sections()
3514 || (*p)->type() == elfcpp::SHT_STRTAB))
3515 continue;
3516 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3517 && (!(*p)->after_input_sections()
3518 || (*p)->type() != elfcpp::SHT_STRTAB))
3519 continue;
3520
3521 if (!parameters->incremental_update())
3522 {
3523 off = align_address(off, (*p)->addralign());
3524 (*p)->set_file_offset(off);
3525 (*p)->finalize_data_size();
3526 }
3527 else
3528 {
3529 // Incremental update: allocate file space from free list.
3530 (*p)->pre_finalize_data_size();
3531 off_t current_size = (*p)->current_data_size();
3532 off = this->allocate(current_size, (*p)->addralign(), startoff);
3533 if (off == -1)
3534 {
3535 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3536 this->free_list_.dump();
3537 gold_assert((*p)->output_section() != NULL);
3538 gold_fallback(_("out of patch space for section %s; "
3539 "relink with --incremental-full"),
3540 (*p)->output_section()->name());
3541 }
3542 (*p)->set_file_offset(off);
3543 (*p)->finalize_data_size();
3544 if ((*p)->data_size() > current_size)
3545 {
3546 gold_assert((*p)->output_section() != NULL);
3547 gold_fallback(_("%s: section changed size; "
3548 "relink with --incremental-full"),
3549 (*p)->output_section()->name());
3550 }
3551 gold_debug(DEBUG_INCREMENTAL,
3552 "set_section_offsets: %08lx %08lx %s",
3553 static_cast<long>(off),
3554 static_cast<long>((*p)->data_size()),
3555 ((*p)->output_section() != NULL
3556 ? (*p)->output_section()->name() : "(special)"));
3557 }
3558
3559 off += (*p)->data_size();
3560 if (off > maxoff)
3561 maxoff = off;
3562
3563 // At this point the name must be set.
3564 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3565 this->namepool_.add((*p)->name(), false, NULL);
3566 }
3567 return maxoff;
3568 }
3569
3570 // Set the section indexes of all the sections not associated with a
3571 // segment.
3572
3573 unsigned int
3574 Layout::set_section_indexes(unsigned int shndx)
3575 {
3576 for (Section_list::iterator p = this->unattached_section_list_.begin();
3577 p != this->unattached_section_list_.end();
3578 ++p)
3579 {
3580 if (!(*p)->has_out_shndx())
3581 {
3582 (*p)->set_out_shndx(shndx);
3583 ++shndx;
3584 }
3585 }
3586 return shndx;
3587 }
3588
3589 // Set the section addresses according to the linker script. This is
3590 // only called when we see a SECTIONS clause. This returns the
3591 // program segment which should hold the file header and segment
3592 // headers, if any. It will return NULL if they should not be in a
3593 // segment.
3594
3595 Output_segment*
3596 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3597 {
3598 Script_sections* ss = this->script_options_->script_sections();
3599 gold_assert(ss->saw_sections_clause());
3600 return this->script_options_->set_section_addresses(symtab, this);
3601 }
3602
3603 // Place the orphan sections in the linker script.
3604
3605 void
3606 Layout::place_orphan_sections_in_script()
3607 {
3608 Script_sections* ss = this->script_options_->script_sections();
3609 gold_assert(ss->saw_sections_clause());
3610
3611 // Place each orphaned output section in the script.
3612 for (Section_list::iterator p = this->section_list_.begin();
3613 p != this->section_list_.end();
3614 ++p)
3615 {
3616 if (!(*p)->found_in_sections_clause())
3617 ss->place_orphan(*p);
3618 }
3619 }
3620
3621 // Count the local symbols in the regular symbol table and the dynamic
3622 // symbol table, and build the respective string pools.
3623
3624 void
3625 Layout::count_local_symbols(const Task* task,
3626 const Input_objects* input_objects)
3627 {
3628 // First, figure out an upper bound on the number of symbols we'll
3629 // be inserting into each pool. This helps us create the pools with
3630 // the right size, to avoid unnecessary hashtable resizing.
3631 unsigned int symbol_count = 0;
3632 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3633 p != input_objects->relobj_end();
3634 ++p)
3635 symbol_count += (*p)->local_symbol_count();
3636
3637 // Go from "upper bound" to "estimate." We overcount for two
3638 // reasons: we double-count symbols that occur in more than one
3639 // object file, and we count symbols that are dropped from the
3640 // output. Add it all together and assume we overcount by 100%.
3641 symbol_count /= 2;
3642
3643 // We assume all symbols will go into both the sympool and dynpool.
3644 this->sympool_.reserve(symbol_count);
3645 this->dynpool_.reserve(symbol_count);
3646
3647 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3648 p != input_objects->relobj_end();
3649 ++p)
3650 {
3651 Task_lock_obj<Object> tlo(task, *p);
3652 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3653 }
3654 }
3655
3656 // Create the symbol table sections. Here we also set the final
3657 // values of the symbols. At this point all the loadable sections are
3658 // fully laid out. SHNUM is the number of sections so far.
3659
3660 void
3661 Layout::create_symtab_sections(const Input_objects* input_objects,
3662 Symbol_table* symtab,
3663 unsigned int shnum,
3664 off_t* poff)
3665 {
3666 int symsize;
3667 unsigned int align;
3668 if (parameters->target().get_size() == 32)
3669 {
3670 symsize = elfcpp::Elf_sizes<32>::sym_size;
3671 align = 4;
3672 }
3673 else if (parameters->target().get_size() == 64)
3674 {
3675 symsize = elfcpp::Elf_sizes<64>::sym_size;
3676 align = 8;
3677 }
3678 else
3679 gold_unreachable();
3680
3681 // Compute file offsets relative to the start of the symtab section.
3682 off_t off = 0;
3683
3684 // Save space for the dummy symbol at the start of the section. We
3685 // never bother to write this out--it will just be left as zero.
3686 off += symsize;
3687 unsigned int local_symbol_index = 1;
3688
3689 // Add STT_SECTION symbols for each Output section which needs one.
3690 for (Section_list::iterator p = this->section_list_.begin();
3691 p != this->section_list_.end();
3692 ++p)
3693 {
3694 if (!(*p)->needs_symtab_index())
3695 (*p)->set_symtab_index(-1U);
3696 else
3697 {
3698 (*p)->set_symtab_index(local_symbol_index);
3699 ++local_symbol_index;
3700 off += symsize;
3701 }
3702 }
3703
3704 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3705 p != input_objects->relobj_end();
3706 ++p)
3707 {
3708 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3709 off, symtab);
3710 off += (index - local_symbol_index) * symsize;
3711 local_symbol_index = index;
3712 }
3713
3714 unsigned int local_symcount = local_symbol_index;
3715 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3716
3717 off_t dynoff;
3718 size_t dyn_global_index;
3719 size_t dyncount;
3720 if (this->dynsym_section_ == NULL)
3721 {
3722 dynoff = 0;
3723 dyn_global_index = 0;
3724 dyncount = 0;
3725 }
3726 else
3727 {
3728 dyn_global_index = this->dynsym_section_->info();
3729 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3730 dynoff = this->dynsym_section_->offset() + locsize;
3731 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3732 gold_assert(static_cast<off_t>(dyncount * symsize)
3733 == this->dynsym_section_->data_size() - locsize);
3734 }
3735
3736 off_t global_off = off;
3737 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3738 &this->sympool_, &local_symcount);
3739
3740 if (!parameters->options().strip_all())
3741 {
3742 this->sympool_.set_string_offsets();
3743
3744 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3745 Output_section* osymtab = this->make_output_section(symtab_name,
3746 elfcpp::SHT_SYMTAB,
3747 0, ORDER_INVALID,
3748 false);
3749 this->symtab_section_ = osymtab;
3750
3751 Output_section_data* pos = new Output_data_fixed_space(off, align,
3752 "** symtab");
3753 osymtab->add_output_section_data(pos);
3754
3755 // We generate a .symtab_shndx section if we have more than
3756 // SHN_LORESERVE sections. Technically it is possible that we
3757 // don't need one, because it is possible that there are no
3758 // symbols in any of sections with indexes larger than
3759 // SHN_LORESERVE. That is probably unusual, though, and it is
3760 // easier to always create one than to compute section indexes
3761 // twice (once here, once when writing out the symbols).
3762 if (shnum >= elfcpp::SHN_LORESERVE)
3763 {
3764 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3765 false, NULL);
3766 Output_section* osymtab_xindex =
3767 this->make_output_section(symtab_xindex_name,
3768 elfcpp::SHT_SYMTAB_SHNDX, 0,
3769 ORDER_INVALID, false);
3770
3771 size_t symcount = off / symsize;
3772 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3773
3774 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3775
3776 osymtab_xindex->set_link_section(osymtab);
3777 osymtab_xindex->set_addralign(4);
3778 osymtab_xindex->set_entsize(4);
3779
3780 osymtab_xindex->set_after_input_sections();
3781
3782 // This tells the driver code to wait until the symbol table
3783 // has written out before writing out the postprocessing
3784 // sections, including the .symtab_shndx section.
3785 this->any_postprocessing_sections_ = true;
3786 }
3787
3788 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3789 Output_section* ostrtab = this->make_output_section(strtab_name,
3790 elfcpp::SHT_STRTAB,
3791 0, ORDER_INVALID,
3792 false);
3793
3794 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3795 ostrtab->add_output_section_data(pstr);
3796
3797 off_t symtab_off;
3798 if (!parameters->incremental_update())
3799 symtab_off = align_address(*poff, align);
3800 else
3801 {
3802 symtab_off = this->allocate(off, align, *poff);
3803 if (off == -1)
3804 gold_fallback(_("out of patch space for symbol table; "
3805 "relink with --incremental-full"));
3806 gold_debug(DEBUG_INCREMENTAL,
3807 "create_symtab_sections: %08lx %08lx .symtab",
3808 static_cast<long>(symtab_off),
3809 static_cast<long>(off));
3810 }
3811
3812 symtab->set_file_offset(symtab_off + global_off);
3813 osymtab->set_file_offset(symtab_off);
3814 osymtab->finalize_data_size();
3815 osymtab->set_link_section(ostrtab);
3816 osymtab->set_info(local_symcount);
3817 osymtab->set_entsize(symsize);
3818
3819 if (symtab_off + off > *poff)
3820 *poff = symtab_off + off;
3821 }
3822 }
3823
3824 // Create the .shstrtab section, which holds the names of the
3825 // sections. At the time this is called, we have created all the
3826 // output sections except .shstrtab itself.
3827
3828 Output_section*
3829 Layout::create_shstrtab()
3830 {
3831 // FIXME: We don't need to create a .shstrtab section if we are
3832 // stripping everything.
3833
3834 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3835
3836 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3837 ORDER_INVALID, false);
3838
3839 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3840 {
3841 // We can't write out this section until we've set all the
3842 // section names, and we don't set the names of compressed
3843 // output sections until relocations are complete. FIXME: With
3844 // the current names we use, this is unnecessary.
3845 os->set_after_input_sections();
3846 }
3847
3848 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3849 os->add_output_section_data(posd);
3850
3851 return os;
3852 }
3853
3854 // Create the section headers. SIZE is 32 or 64. OFF is the file
3855 // offset.
3856
3857 void
3858 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3859 {
3860 Output_section_headers* oshdrs;
3861 oshdrs = new Output_section_headers(this,
3862 &this->segment_list_,
3863 &this->section_list_,
3864 &this->unattached_section_list_,
3865 &this->namepool_,
3866 shstrtab_section);
3867 off_t off;
3868 if (!parameters->incremental_update())
3869 off = align_address(*poff, oshdrs->addralign());
3870 else
3871 {
3872 oshdrs->pre_finalize_data_size();
3873 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3874 if (off == -1)
3875 gold_fallback(_("out of patch space for section header table; "
3876 "relink with --incremental-full"));
3877 gold_debug(DEBUG_INCREMENTAL,
3878 "create_shdrs: %08lx %08lx (section header table)",
3879 static_cast<long>(off),
3880 static_cast<long>(off + oshdrs->data_size()));
3881 }
3882 oshdrs->set_address_and_file_offset(0, off);
3883 off += oshdrs->data_size();
3884 if (off > *poff)
3885 *poff = off;
3886 this->section_headers_ = oshdrs;
3887 }
3888
3889 // Count the allocated sections.
3890
3891 size_t
3892 Layout::allocated_output_section_count() const
3893 {
3894 size_t section_count = 0;
3895 for (Segment_list::const_iterator p = this->segment_list_.begin();
3896 p != this->segment_list_.end();
3897 ++p)
3898 section_count += (*p)->output_section_count();
3899 return section_count;
3900 }
3901
3902 // Create the dynamic symbol table.
3903
3904 void
3905 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3906 Symbol_table* symtab,
3907 Output_section** pdynstr,
3908 unsigned int* plocal_dynamic_count,
3909 std::vector<Symbol*>* pdynamic_symbols,
3910 Versions* pversions)
3911 {
3912 // Count all the symbols in the dynamic symbol table, and set the
3913 // dynamic symbol indexes.
3914
3915 // Skip symbol 0, which is always all zeroes.
3916 unsigned int index = 1;
3917
3918 // Add STT_SECTION symbols for each Output section which needs one.
3919 for (Section_list::iterator p = this->section_list_.begin();
3920 p != this->section_list_.end();
3921 ++p)
3922 {
3923 if (!(*p)->needs_dynsym_index())
3924 (*p)->set_dynsym_index(-1U);
3925 else
3926 {
3927 (*p)->set_dynsym_index(index);
3928 ++index;
3929 }
3930 }
3931
3932 // Count the local symbols that need to go in the dynamic symbol table,
3933 // and set the dynamic symbol indexes.
3934 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3935 p != input_objects->relobj_end();
3936 ++p)
3937 {
3938 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3939 index = new_index;
3940 }
3941
3942 unsigned int local_symcount = index;
3943 *plocal_dynamic_count = local_symcount;
3944
3945 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3946 &this->dynpool_, pversions);
3947
3948 int symsize;
3949 unsigned int align;
3950 const int size = parameters->target().get_size();
3951 if (size == 32)
3952 {
3953 symsize = elfcpp::Elf_sizes<32>::sym_size;
3954 align = 4;
3955 }
3956 else if (size == 64)
3957 {
3958 symsize = elfcpp::Elf_sizes<64>::sym_size;
3959 align = 8;
3960 }
3961 else
3962 gold_unreachable();
3963
3964 // Create the dynamic symbol table section.
3965
3966 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3967 elfcpp::SHT_DYNSYM,
3968 elfcpp::SHF_ALLOC,
3969 false,
3970 ORDER_DYNAMIC_LINKER,
3971 false);
3972
3973 // Check for NULL as a linker script may discard .dynsym.
3974 if (dynsym != NULL)
3975 {
3976 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3977 align,
3978 "** dynsym");
3979 dynsym->add_output_section_data(odata);
3980
3981 dynsym->set_info(local_symcount);
3982 dynsym->set_entsize(symsize);
3983 dynsym->set_addralign(align);
3984
3985 this->dynsym_section_ = dynsym;
3986 }
3987
3988 Output_data_dynamic* const odyn = this->dynamic_data_;
3989 if (odyn != NULL)
3990 {
3991 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3992 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3993 }
3994
3995 // If there are more than SHN_LORESERVE allocated sections, we
3996 // create a .dynsym_shndx section. It is possible that we don't
3997 // need one, because it is possible that there are no dynamic
3998 // symbols in any of the sections with indexes larger than
3999 // SHN_LORESERVE. This is probably unusual, though, and at this
4000 // time we don't know the actual section indexes so it is
4001 // inconvenient to check.
4002 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4003 {
4004 Output_section* dynsym_xindex =
4005 this->choose_output_section(NULL, ".dynsym_shndx",
4006 elfcpp::SHT_SYMTAB_SHNDX,
4007 elfcpp::SHF_ALLOC,
4008 false, ORDER_DYNAMIC_LINKER, false);
4009
4010 if (dynsym_xindex != NULL)
4011 {
4012 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4013
4014 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4015
4016 dynsym_xindex->set_link_section(dynsym);
4017 dynsym_xindex->set_addralign(4);
4018 dynsym_xindex->set_entsize(4);
4019
4020 dynsym_xindex->set_after_input_sections();
4021
4022 // This tells the driver code to wait until the symbol table
4023 // has written out before writing out the postprocessing
4024 // sections, including the .dynsym_shndx section.
4025 this->any_postprocessing_sections_ = true;
4026 }
4027 }
4028
4029 // Create the dynamic string table section.
4030
4031 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4032 elfcpp::SHT_STRTAB,
4033 elfcpp::SHF_ALLOC,
4034 false,
4035 ORDER_DYNAMIC_LINKER,
4036 false);
4037
4038 if (dynstr != NULL)
4039 {
4040 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4041 dynstr->add_output_section_data(strdata);
4042
4043 if (dynsym != NULL)
4044 dynsym->set_link_section(dynstr);
4045 if (this->dynamic_section_ != NULL)
4046 this->dynamic_section_->set_link_section(dynstr);
4047
4048 if (odyn != NULL)
4049 {
4050 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4051 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4052 }
4053
4054 *pdynstr = dynstr;
4055 }
4056
4057 // Create the hash tables.
4058
4059 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4060 || strcmp(parameters->options().hash_style(), "both") == 0)
4061 {
4062 unsigned char* phash;
4063 unsigned int hashlen;
4064 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4065 &phash, &hashlen);
4066
4067 Output_section* hashsec =
4068 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4069 elfcpp::SHF_ALLOC, false,
4070 ORDER_DYNAMIC_LINKER, false);
4071
4072 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4073 hashlen,
4074 align,
4075 "** hash");
4076 if (hashsec != NULL && hashdata != NULL)
4077 hashsec->add_output_section_data(hashdata);
4078
4079 if (hashsec != NULL)
4080 {
4081 if (dynsym != NULL)
4082 hashsec->set_link_section(dynsym);
4083 hashsec->set_entsize(4);
4084 }
4085
4086 if (odyn != NULL)
4087 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4088 }
4089
4090 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4091 || strcmp(parameters->options().hash_style(), "both") == 0)
4092 {
4093 unsigned char* phash;
4094 unsigned int hashlen;
4095 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4096 &phash, &hashlen);
4097
4098 Output_section* hashsec =
4099 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4100 elfcpp::SHF_ALLOC, false,
4101 ORDER_DYNAMIC_LINKER, false);
4102
4103 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4104 hashlen,
4105 align,
4106 "** hash");
4107 if (hashsec != NULL && hashdata != NULL)
4108 hashsec->add_output_section_data(hashdata);
4109
4110 if (hashsec != NULL)
4111 {
4112 if (dynsym != NULL)
4113 hashsec->set_link_section(dynsym);
4114
4115 // For a 64-bit target, the entries in .gnu.hash do not have
4116 // a uniform size, so we only set the entry size for a
4117 // 32-bit target.
4118 if (parameters->target().get_size() == 32)
4119 hashsec->set_entsize(4);
4120
4121 if (odyn != NULL)
4122 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4123 }
4124 }
4125 }
4126
4127 // Assign offsets to each local portion of the dynamic symbol table.
4128
4129 void
4130 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4131 {
4132 Output_section* dynsym = this->dynsym_section_;
4133 if (dynsym == NULL)
4134 return;
4135
4136 off_t off = dynsym->offset();
4137
4138 // Skip the dummy symbol at the start of the section.
4139 off += dynsym->entsize();
4140
4141 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4142 p != input_objects->relobj_end();
4143 ++p)
4144 {
4145 unsigned int count = (*p)->set_local_dynsym_offset(off);
4146 off += count * dynsym->entsize();
4147 }
4148 }
4149
4150 // Create the version sections.
4151
4152 void
4153 Layout::create_version_sections(const Versions* versions,
4154 const Symbol_table* symtab,
4155 unsigned int local_symcount,
4156 const std::vector<Symbol*>& dynamic_symbols,
4157 const Output_section* dynstr)
4158 {
4159 if (!versions->any_defs() && !versions->any_needs())
4160 return;
4161
4162 switch (parameters->size_and_endianness())
4163 {
4164 #ifdef HAVE_TARGET_32_LITTLE
4165 case Parameters::TARGET_32_LITTLE:
4166 this->sized_create_version_sections<32, false>(versions, symtab,
4167 local_symcount,
4168 dynamic_symbols, dynstr);
4169 break;
4170 #endif
4171 #ifdef HAVE_TARGET_32_BIG
4172 case Parameters::TARGET_32_BIG:
4173 this->sized_create_version_sections<32, true>(versions, symtab,
4174 local_symcount,
4175 dynamic_symbols, dynstr);
4176 break;
4177 #endif
4178 #ifdef HAVE_TARGET_64_LITTLE
4179 case Parameters::TARGET_64_LITTLE:
4180 this->sized_create_version_sections<64, false>(versions, symtab,
4181 local_symcount,
4182 dynamic_symbols, dynstr);
4183 break;
4184 #endif
4185 #ifdef HAVE_TARGET_64_BIG
4186 case Parameters::TARGET_64_BIG:
4187 this->sized_create_version_sections<64, true>(versions, symtab,
4188 local_symcount,
4189 dynamic_symbols, dynstr);
4190 break;
4191 #endif
4192 default:
4193 gold_unreachable();
4194 }
4195 }
4196
4197 // Create the version sections, sized version.
4198
4199 template<int size, bool big_endian>
4200 void
4201 Layout::sized_create_version_sections(
4202 const Versions* versions,
4203 const Symbol_table* symtab,
4204 unsigned int local_symcount,
4205 const std::vector<Symbol*>& dynamic_symbols,
4206 const Output_section* dynstr)
4207 {
4208 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4209 elfcpp::SHT_GNU_versym,
4210 elfcpp::SHF_ALLOC,
4211 false,
4212 ORDER_DYNAMIC_LINKER,
4213 false);
4214
4215 // Check for NULL since a linker script may discard this section.
4216 if (vsec != NULL)
4217 {
4218 unsigned char* vbuf;
4219 unsigned int vsize;
4220 versions->symbol_section_contents<size, big_endian>(symtab,
4221 &this->dynpool_,
4222 local_symcount,
4223 dynamic_symbols,
4224 &vbuf, &vsize);
4225
4226 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4227 "** versions");
4228
4229 vsec->add_output_section_data(vdata);
4230 vsec->set_entsize(2);
4231 vsec->set_link_section(this->dynsym_section_);
4232 }
4233
4234 Output_data_dynamic* const odyn = this->dynamic_data_;
4235 if (odyn != NULL && vsec != NULL)
4236 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4237
4238 if (versions->any_defs())
4239 {
4240 Output_section* vdsec;
4241 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4242 elfcpp::SHT_GNU_verdef,
4243 elfcpp::SHF_ALLOC,
4244 false, ORDER_DYNAMIC_LINKER, false);
4245
4246 if (vdsec != NULL)
4247 {
4248 unsigned char* vdbuf;
4249 unsigned int vdsize;
4250 unsigned int vdentries;
4251 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4252 &vdbuf, &vdsize,
4253 &vdentries);
4254
4255 Output_section_data* vddata =
4256 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4257
4258 vdsec->add_output_section_data(vddata);
4259 vdsec->set_link_section(dynstr);
4260 vdsec->set_info(vdentries);
4261
4262 if (odyn != NULL)
4263 {
4264 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4265 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4266 }
4267 }
4268 }
4269
4270 if (versions->any_needs())
4271 {
4272 Output_section* vnsec;
4273 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4274 elfcpp::SHT_GNU_verneed,
4275 elfcpp::SHF_ALLOC,
4276 false, ORDER_DYNAMIC_LINKER, false);
4277
4278 if (vnsec != NULL)
4279 {
4280 unsigned char* vnbuf;
4281 unsigned int vnsize;
4282 unsigned int vnentries;
4283 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4284 &vnbuf, &vnsize,
4285 &vnentries);
4286
4287 Output_section_data* vndata =
4288 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4289
4290 vnsec->add_output_section_data(vndata);
4291 vnsec->set_link_section(dynstr);
4292 vnsec->set_info(vnentries);
4293
4294 if (odyn != NULL)
4295 {
4296 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4297 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4298 }
4299 }
4300 }
4301 }
4302
4303 // Create the .interp section and PT_INTERP segment.
4304
4305 void
4306 Layout::create_interp(const Target* target)
4307 {
4308 gold_assert(this->interp_segment_ == NULL);
4309
4310 const char* interp = parameters->options().dynamic_linker();
4311 if (interp == NULL)
4312 {
4313 interp = target->dynamic_linker();
4314 gold_assert(interp != NULL);
4315 }
4316
4317 size_t len = strlen(interp) + 1;
4318
4319 Output_section_data* odata = new Output_data_const(interp, len, 1);
4320
4321 Output_section* osec = this->choose_output_section(NULL, ".interp",
4322 elfcpp::SHT_PROGBITS,
4323 elfcpp::SHF_ALLOC,
4324 false, ORDER_INTERP,
4325 false);
4326 if (osec != NULL)
4327 osec->add_output_section_data(odata);
4328 }
4329
4330 // Add dynamic tags for the PLT and the dynamic relocs. This is
4331 // called by the target-specific code. This does nothing if not doing
4332 // a dynamic link.
4333
4334 // USE_REL is true for REL relocs rather than RELA relocs.
4335
4336 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4337
4338 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4339 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4340 // some targets have multiple reloc sections in PLT_REL.
4341
4342 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4343 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4344 // section.
4345
4346 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4347 // executable.
4348
4349 void
4350 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4351 const Output_data* plt_rel,
4352 const Output_data_reloc_generic* dyn_rel,
4353 bool add_debug, bool dynrel_includes_plt)
4354 {
4355 Output_data_dynamic* odyn = this->dynamic_data_;
4356 if (odyn == NULL)
4357 return;
4358
4359 if (plt_got != NULL && plt_got->output_section() != NULL)
4360 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4361
4362 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4363 {
4364 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4365 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4366 odyn->add_constant(elfcpp::DT_PLTREL,
4367 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4368 }
4369
4370 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4371 || (dynrel_includes_plt
4372 && plt_rel != NULL
4373 && plt_rel->output_section() != NULL))
4374 {
4375 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4376 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4377 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4378 (have_dyn_rel
4379 ? dyn_rel->output_section()
4380 : plt_rel->output_section()));
4381 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4382 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4383 odyn->add_section_size(size_tag,
4384 dyn_rel->output_section(),
4385 plt_rel->output_section());
4386 else if (have_dyn_rel)
4387 odyn->add_section_size(size_tag, dyn_rel->output_section());
4388 else
4389 odyn->add_section_size(size_tag, plt_rel->output_section());
4390 const int size = parameters->target().get_size();
4391 elfcpp::DT rel_tag;
4392 int rel_size;
4393 if (use_rel)
4394 {
4395 rel_tag = elfcpp::DT_RELENT;
4396 if (size == 32)
4397 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4398 else if (size == 64)
4399 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4400 else
4401 gold_unreachable();
4402 }
4403 else
4404 {
4405 rel_tag = elfcpp::DT_RELAENT;
4406 if (size == 32)
4407 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4408 else if (size == 64)
4409 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4410 else
4411 gold_unreachable();
4412 }
4413 odyn->add_constant(rel_tag, rel_size);
4414
4415 if (parameters->options().combreloc() && have_dyn_rel)
4416 {
4417 size_t c = dyn_rel->relative_reloc_count();
4418 if (c > 0)
4419 odyn->add_constant((use_rel
4420 ? elfcpp::DT_RELCOUNT
4421 : elfcpp::DT_RELACOUNT),
4422 c);
4423 }
4424 }
4425
4426 if (add_debug && !parameters->options().shared())
4427 {
4428 // The value of the DT_DEBUG tag is filled in by the dynamic
4429 // linker at run time, and used by the debugger.
4430 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4431 }
4432 }
4433
4434 // Finish the .dynamic section and PT_DYNAMIC segment.
4435
4436 void
4437 Layout::finish_dynamic_section(const Input_objects* input_objects,
4438 const Symbol_table* symtab)
4439 {
4440 if (!this->script_options_->saw_phdrs_clause()
4441 && this->dynamic_section_ != NULL)
4442 {
4443 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4444 (elfcpp::PF_R
4445 | elfcpp::PF_W));
4446 oseg->add_output_section_to_nonload(this->dynamic_section_,
4447 elfcpp::PF_R | elfcpp::PF_W);
4448 }
4449
4450 Output_data_dynamic* const odyn = this->dynamic_data_;
4451 if (odyn == NULL)
4452 return;
4453
4454 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4455 p != input_objects->dynobj_end();
4456 ++p)
4457 {
4458 if (!(*p)->is_needed() && (*p)->as_needed())
4459 {
4460 // This dynamic object was linked with --as-needed, but it
4461 // is not needed.
4462 continue;
4463 }
4464
4465 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4466 }
4467
4468 if (parameters->options().shared())
4469 {
4470 const char* soname = parameters->options().soname();
4471 if (soname != NULL)
4472 odyn->add_string(elfcpp::DT_SONAME, soname);
4473 }
4474
4475 Symbol* sym = symtab->lookup(parameters->options().init());
4476 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4477 odyn->add_symbol(elfcpp::DT_INIT, sym);
4478
4479 sym = symtab->lookup(parameters->options().fini());
4480 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4481 odyn->add_symbol(elfcpp::DT_FINI, sym);
4482
4483 // Look for .init_array, .preinit_array and .fini_array by checking
4484 // section types.
4485 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4486 p != this->section_list_.end();
4487 ++p)
4488 switch((*p)->type())
4489 {
4490 case elfcpp::SHT_FINI_ARRAY:
4491 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4492 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4493 break;
4494 case elfcpp::SHT_INIT_ARRAY:
4495 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4496 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4497 break;
4498 case elfcpp::SHT_PREINIT_ARRAY:
4499 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4500 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4501 break;
4502 default:
4503 break;
4504 }
4505
4506 // Add a DT_RPATH entry if needed.
4507 const General_options::Dir_list& rpath(parameters->options().rpath());
4508 if (!rpath.empty())
4509 {
4510 std::string rpath_val;
4511 for (General_options::Dir_list::const_iterator p = rpath.begin();
4512 p != rpath.end();
4513 ++p)
4514 {
4515 if (rpath_val.empty())
4516 rpath_val = p->name();
4517 else
4518 {
4519 // Eliminate duplicates.
4520 General_options::Dir_list::const_iterator q;
4521 for (q = rpath.begin(); q != p; ++q)
4522 if (q->name() == p->name())
4523 break;
4524 if (q == p)
4525 {
4526 rpath_val += ':';
4527 rpath_val += p->name();
4528 }
4529 }
4530 }
4531
4532 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4533 if (parameters->options().enable_new_dtags())
4534 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4535 }
4536
4537 // Look for text segments that have dynamic relocations.
4538 bool have_textrel = false;
4539 if (!this->script_options_->saw_sections_clause())
4540 {
4541 for (Segment_list::const_iterator p = this->segment_list_.begin();
4542 p != this->segment_list_.end();
4543 ++p)
4544 {
4545 if ((*p)->type() == elfcpp::PT_LOAD
4546 && ((*p)->flags() & elfcpp::PF_W) == 0
4547 && (*p)->has_dynamic_reloc())
4548 {
4549 have_textrel = true;
4550 break;
4551 }
4552 }
4553 }
4554 else
4555 {
4556 // We don't know the section -> segment mapping, so we are
4557 // conservative and just look for readonly sections with
4558 // relocations. If those sections wind up in writable segments,
4559 // then we have created an unnecessary DT_TEXTREL entry.
4560 for (Section_list::const_iterator p = this->section_list_.begin();
4561 p != this->section_list_.end();
4562 ++p)
4563 {
4564 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4565 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4566 && (*p)->has_dynamic_reloc())
4567 {
4568 have_textrel = true;
4569 break;
4570 }
4571 }
4572 }
4573
4574 if (parameters->options().filter() != NULL)
4575 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4576 if (parameters->options().any_auxiliary())
4577 {
4578 for (options::String_set::const_iterator p =
4579 parameters->options().auxiliary_begin();
4580 p != parameters->options().auxiliary_end();
4581 ++p)
4582 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4583 }
4584
4585 // Add a DT_FLAGS entry if necessary.
4586 unsigned int flags = 0;
4587 if (have_textrel)
4588 {
4589 // Add a DT_TEXTREL for compatibility with older loaders.
4590 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4591 flags |= elfcpp::DF_TEXTREL;
4592
4593 if (parameters->options().text())
4594 gold_error(_("read-only segment has dynamic relocations"));
4595 else if (parameters->options().warn_shared_textrel()
4596 && parameters->options().shared())
4597 gold_warning(_("shared library text segment is not shareable"));
4598 }
4599 if (parameters->options().shared() && this->has_static_tls())
4600 flags |= elfcpp::DF_STATIC_TLS;
4601 if (parameters->options().origin())
4602 flags |= elfcpp::DF_ORIGIN;
4603 if (parameters->options().Bsymbolic())
4604 {
4605 flags |= elfcpp::DF_SYMBOLIC;
4606 // Add DT_SYMBOLIC for compatibility with older loaders.
4607 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4608 }
4609 if (parameters->options().now())
4610 flags |= elfcpp::DF_BIND_NOW;
4611 if (flags != 0)
4612 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4613
4614 flags = 0;
4615 if (parameters->options().initfirst())
4616 flags |= elfcpp::DF_1_INITFIRST;
4617 if (parameters->options().interpose())
4618 flags |= elfcpp::DF_1_INTERPOSE;
4619 if (parameters->options().loadfltr())
4620 flags |= elfcpp::DF_1_LOADFLTR;
4621 if (parameters->options().nodefaultlib())
4622 flags |= elfcpp::DF_1_NODEFLIB;
4623 if (parameters->options().nodelete())
4624 flags |= elfcpp::DF_1_NODELETE;
4625 if (parameters->options().nodlopen())
4626 flags |= elfcpp::DF_1_NOOPEN;
4627 if (parameters->options().nodump())
4628 flags |= elfcpp::DF_1_NODUMP;
4629 if (!parameters->options().shared())
4630 flags &= ~(elfcpp::DF_1_INITFIRST
4631 | elfcpp::DF_1_NODELETE
4632 | elfcpp::DF_1_NOOPEN);
4633 if (parameters->options().origin())
4634 flags |= elfcpp::DF_1_ORIGIN;
4635 if (parameters->options().now())
4636 flags |= elfcpp::DF_1_NOW;
4637 if (parameters->options().Bgroup())
4638 flags |= elfcpp::DF_1_GROUP;
4639 if (flags != 0)
4640 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4641 }
4642
4643 // Set the size of the _DYNAMIC symbol table to be the size of the
4644 // dynamic data.
4645
4646 void
4647 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4648 {
4649 Output_data_dynamic* const odyn = this->dynamic_data_;
4650 if (odyn == NULL)
4651 return;
4652 odyn->finalize_data_size();
4653 if (this->dynamic_symbol_ == NULL)
4654 return;
4655 off_t data_size = odyn->data_size();
4656 const int size = parameters->target().get_size();
4657 if (size == 32)
4658 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4659 else if (size == 64)
4660 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4661 else
4662 gold_unreachable();
4663 }
4664
4665 // The mapping of input section name prefixes to output section names.
4666 // In some cases one prefix is itself a prefix of another prefix; in
4667 // such a case the longer prefix must come first. These prefixes are
4668 // based on the GNU linker default ELF linker script.
4669
4670 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4671 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4672 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4673 {
4674 MAPPING_INIT(".text.", ".text"),
4675 MAPPING_INIT(".rodata.", ".rodata"),
4676 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4677 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4678 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4679 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4680 MAPPING_INIT(".data.", ".data"),
4681 MAPPING_INIT(".bss.", ".bss"),
4682 MAPPING_INIT(".tdata.", ".tdata"),
4683 MAPPING_INIT(".tbss.", ".tbss"),
4684 MAPPING_INIT(".init_array.", ".init_array"),
4685 MAPPING_INIT(".fini_array.", ".fini_array"),
4686 MAPPING_INIT(".sdata.", ".sdata"),
4687 MAPPING_INIT(".sbss.", ".sbss"),
4688 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4689 // differently depending on whether it is creating a shared library.
4690 MAPPING_INIT(".sdata2.", ".sdata"),
4691 MAPPING_INIT(".sbss2.", ".sbss"),
4692 MAPPING_INIT(".lrodata.", ".lrodata"),
4693 MAPPING_INIT(".ldata.", ".ldata"),
4694 MAPPING_INIT(".lbss.", ".lbss"),
4695 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4696 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4697 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4698 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4699 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4700 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4701 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4702 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4703 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4704 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4705 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4706 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4707 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4708 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4709 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4710 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4711 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4712 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4713 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4714 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4715 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4716 };
4717 #undef MAPPING_INIT
4718 #undef MAPPING_INIT_EXACT
4719
4720 const int Layout::section_name_mapping_count =
4721 (sizeof(Layout::section_name_mapping)
4722 / sizeof(Layout::section_name_mapping[0]));
4723
4724 // Choose the output section name to use given an input section name.
4725 // Set *PLEN to the length of the name. *PLEN is initialized to the
4726 // length of NAME.
4727
4728 const char*
4729 Layout::output_section_name(const Relobj* relobj, const char* name,
4730 size_t* plen)
4731 {
4732 // gcc 4.3 generates the following sorts of section names when it
4733 // needs a section name specific to a function:
4734 // .text.FN
4735 // .rodata.FN
4736 // .sdata2.FN
4737 // .data.FN
4738 // .data.rel.FN
4739 // .data.rel.local.FN
4740 // .data.rel.ro.FN
4741 // .data.rel.ro.local.FN
4742 // .sdata.FN
4743 // .bss.FN
4744 // .sbss.FN
4745 // .tdata.FN
4746 // .tbss.FN
4747
4748 // The GNU linker maps all of those to the part before the .FN,
4749 // except that .data.rel.local.FN is mapped to .data, and
4750 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4751 // beginning with .data.rel.ro.local are grouped together.
4752
4753 // For an anonymous namespace, the string FN can contain a '.'.
4754
4755 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4756 // GNU linker maps to .rodata.
4757
4758 // The .data.rel.ro sections are used with -z relro. The sections
4759 // are recognized by name. We use the same names that the GNU
4760 // linker does for these sections.
4761
4762 // It is hard to handle this in a principled way, so we don't even
4763 // try. We use a table of mappings. If the input section name is
4764 // not found in the table, we simply use it as the output section
4765 // name.
4766
4767 const Section_name_mapping* psnm = section_name_mapping;
4768 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4769 {
4770 if (psnm->fromlen > 0)
4771 {
4772 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4773 {
4774 *plen = psnm->tolen;
4775 return psnm->to;
4776 }
4777 }
4778 else
4779 {
4780 if (strcmp(name, psnm->from) == 0)
4781 {
4782 *plen = psnm->tolen;
4783 return psnm->to;
4784 }
4785 }
4786 }
4787
4788 // As an additional complication, .ctors sections are output in
4789 // either .ctors or .init_array sections, and .dtors sections are
4790 // output in either .dtors or .fini_array sections.
4791 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4792 {
4793 if (parameters->options().ctors_in_init_array())
4794 {
4795 *plen = 11;
4796 return name[1] == 'c' ? ".init_array" : ".fini_array";
4797 }
4798 else
4799 {
4800 *plen = 6;
4801 return name[1] == 'c' ? ".ctors" : ".dtors";
4802 }
4803 }
4804 if (parameters->options().ctors_in_init_array()
4805 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4806 {
4807 // To make .init_array/.fini_array work with gcc we must exclude
4808 // .ctors and .dtors sections from the crtbegin and crtend
4809 // files.
4810 if (relobj == NULL
4811 || (!Layout::match_file_name(relobj, "crtbegin")
4812 && !Layout::match_file_name(relobj, "crtend")))
4813 {
4814 *plen = 11;
4815 return name[1] == 'c' ? ".init_array" : ".fini_array";
4816 }
4817 }
4818
4819 return name;
4820 }
4821
4822 // Return true if RELOBJ is an input file whose base name matches
4823 // FILE_NAME. The base name must have an extension of ".o", and must
4824 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4825 // to match crtbegin.o as well as crtbeginS.o without getting confused
4826 // by other possibilities. Overall matching the file name this way is
4827 // a dreadful hack, but the GNU linker does it in order to better
4828 // support gcc, and we need to be compatible.
4829
4830 bool
4831 Layout::match_file_name(const Relobj* relobj, const char* match)
4832 {
4833 const std::string& file_name(relobj->name());
4834 const char* base_name = lbasename(file_name.c_str());
4835 size_t match_len = strlen(match);
4836 if (strncmp(base_name, match, match_len) != 0)
4837 return false;
4838 size_t base_len = strlen(base_name);
4839 if (base_len != match_len + 2 && base_len != match_len + 3)
4840 return false;
4841 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4842 }
4843
4844 // Check if a comdat group or .gnu.linkonce section with the given
4845 // NAME is selected for the link. If there is already a section,
4846 // *KEPT_SECTION is set to point to the existing section and the
4847 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4848 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4849 // *KEPT_SECTION is set to the internal copy and the function returns
4850 // true.
4851
4852 bool
4853 Layout::find_or_add_kept_section(const std::string& name,
4854 Relobj* object,
4855 unsigned int shndx,
4856 bool is_comdat,
4857 bool is_group_name,
4858 Kept_section** kept_section)
4859 {
4860 // It's normal to see a couple of entries here, for the x86 thunk
4861 // sections. If we see more than a few, we're linking a C++
4862 // program, and we resize to get more space to minimize rehashing.
4863 if (this->signatures_.size() > 4
4864 && !this->resized_signatures_)
4865 {
4866 reserve_unordered_map(&this->signatures_,
4867 this->number_of_input_files_ * 64);
4868 this->resized_signatures_ = true;
4869 }
4870
4871 Kept_section candidate;
4872 std::pair<Signatures::iterator, bool> ins =
4873 this->signatures_.insert(std::make_pair(name, candidate));
4874
4875 if (kept_section != NULL)
4876 *kept_section = &ins.first->second;
4877 if (ins.second)
4878 {
4879 // This is the first time we've seen this signature.
4880 ins.first->second.set_object(object);
4881 ins.first->second.set_shndx(shndx);
4882 if (is_comdat)
4883 ins.first->second.set_is_comdat();
4884 if (is_group_name)
4885 ins.first->second.set_is_group_name();
4886 return true;
4887 }
4888
4889 // We have already seen this signature.
4890
4891 if (ins.first->second.is_group_name())
4892 {
4893 // We've already seen a real section group with this signature.
4894 // If the kept group is from a plugin object, and we're in the
4895 // replacement phase, accept the new one as a replacement.
4896 if (ins.first->second.object() == NULL
4897 && parameters->options().plugins()->in_replacement_phase())
4898 {
4899 ins.first->second.set_object(object);
4900 ins.first->second.set_shndx(shndx);
4901 return true;
4902 }
4903 return false;
4904 }
4905 else if (is_group_name)
4906 {
4907 // This is a real section group, and we've already seen a
4908 // linkonce section with this signature. Record that we've seen
4909 // a section group, and don't include this section group.
4910 ins.first->second.set_is_group_name();
4911 return false;
4912 }
4913 else
4914 {
4915 // We've already seen a linkonce section and this is a linkonce
4916 // section. These don't block each other--this may be the same
4917 // symbol name with different section types.
4918 return true;
4919 }
4920 }
4921
4922 // Store the allocated sections into the section list.
4923
4924 void
4925 Layout::get_allocated_sections(Section_list* section_list) const
4926 {
4927 for (Section_list::const_iterator p = this->section_list_.begin();
4928 p != this->section_list_.end();
4929 ++p)
4930 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4931 section_list->push_back(*p);
4932 }
4933
4934 // Create an output segment.
4935
4936 Output_segment*
4937 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4938 {
4939 gold_assert(!parameters->options().relocatable());
4940 Output_segment* oseg = new Output_segment(type, flags);
4941 this->segment_list_.push_back(oseg);
4942
4943 if (type == elfcpp::PT_TLS)
4944 this->tls_segment_ = oseg;
4945 else if (type == elfcpp::PT_GNU_RELRO)
4946 this->relro_segment_ = oseg;
4947 else if (type == elfcpp::PT_INTERP)
4948 this->interp_segment_ = oseg;
4949
4950 return oseg;
4951 }
4952
4953 // Return the file offset of the normal symbol table.
4954
4955 off_t
4956 Layout::symtab_section_offset() const
4957 {
4958 if (this->symtab_section_ != NULL)
4959 return this->symtab_section_->offset();
4960 return 0;
4961 }
4962
4963 // Return the section index of the normal symbol table. It may have
4964 // been stripped by the -s/--strip-all option.
4965
4966 unsigned int
4967 Layout::symtab_section_shndx() const
4968 {
4969 if (this->symtab_section_ != NULL)
4970 return this->symtab_section_->out_shndx();
4971 return 0;
4972 }
4973
4974 // Write out the Output_sections. Most won't have anything to write,
4975 // since most of the data will come from input sections which are
4976 // handled elsewhere. But some Output_sections do have Output_data.
4977
4978 void
4979 Layout::write_output_sections(Output_file* of) const
4980 {
4981 for (Section_list::const_iterator p = this->section_list_.begin();
4982 p != this->section_list_.end();
4983 ++p)
4984 {
4985 if (!(*p)->after_input_sections())
4986 (*p)->write(of);
4987 }
4988 }
4989
4990 // Write out data not associated with a section or the symbol table.
4991
4992 void
4993 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4994 {
4995 if (!parameters->options().strip_all())
4996 {
4997 const Output_section* symtab_section = this->symtab_section_;
4998 for (Section_list::const_iterator p = this->section_list_.begin();
4999 p != this->section_list_.end();
5000 ++p)
5001 {
5002 if ((*p)->needs_symtab_index())
5003 {
5004 gold_assert(symtab_section != NULL);
5005 unsigned int index = (*p)->symtab_index();
5006 gold_assert(index > 0 && index != -1U);
5007 off_t off = (symtab_section->offset()
5008 + index * symtab_section->entsize());
5009 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5010 }
5011 }
5012 }
5013
5014 const Output_section* dynsym_section = this->dynsym_section_;
5015 for (Section_list::const_iterator p = this->section_list_.begin();
5016 p != this->section_list_.end();
5017 ++p)
5018 {
5019 if ((*p)->needs_dynsym_index())
5020 {
5021 gold_assert(dynsym_section != NULL);
5022 unsigned int index = (*p)->dynsym_index();
5023 gold_assert(index > 0 && index != -1U);
5024 off_t off = (dynsym_section->offset()
5025 + index * dynsym_section->entsize());
5026 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5027 }
5028 }
5029
5030 // Write out the Output_data which are not in an Output_section.
5031 for (Data_list::const_iterator p = this->special_output_list_.begin();
5032 p != this->special_output_list_.end();
5033 ++p)
5034 (*p)->write(of);
5035 }
5036
5037 // Write out the Output_sections which can only be written after the
5038 // input sections are complete.
5039
5040 void
5041 Layout::write_sections_after_input_sections(Output_file* of)
5042 {
5043 // Determine the final section offsets, and thus the final output
5044 // file size. Note we finalize the .shstrab last, to allow the
5045 // after_input_section sections to modify their section-names before
5046 // writing.
5047 if (this->any_postprocessing_sections_)
5048 {
5049 off_t off = this->output_file_size_;
5050 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5051
5052 // Now that we've finalized the names, we can finalize the shstrab.
5053 off =
5054 this->set_section_offsets(off,
5055 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5056
5057 if (off > this->output_file_size_)
5058 {
5059 of->resize(off);
5060 this->output_file_size_ = off;
5061 }
5062 }
5063
5064 for (Section_list::const_iterator p = this->section_list_.begin();
5065 p != this->section_list_.end();
5066 ++p)
5067 {
5068 if ((*p)->after_input_sections())
5069 (*p)->write(of);
5070 }
5071
5072 this->section_headers_->write(of);
5073 }
5074
5075 // If the build ID requires computing a checksum, do so here, and
5076 // write it out. We compute a checksum over the entire file because
5077 // that is simplest.
5078
5079 void
5080 Layout::write_build_id(Output_file* of) const
5081 {
5082 if (this->build_id_note_ == NULL)
5083 return;
5084
5085 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5086
5087 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5088 this->build_id_note_->data_size());
5089
5090 const char* style = parameters->options().build_id();
5091 if (strcmp(style, "sha1") == 0)
5092 {
5093 sha1_ctx ctx;
5094 sha1_init_ctx(&ctx);
5095 sha1_process_bytes(iv, this->output_file_size_, &ctx);
5096 sha1_finish_ctx(&ctx, ov);
5097 }
5098 else if (strcmp(style, "md5") == 0)
5099 {
5100 md5_ctx ctx;
5101 md5_init_ctx(&ctx);
5102 md5_process_bytes(iv, this->output_file_size_, &ctx);
5103 md5_finish_ctx(&ctx, ov);
5104 }
5105 else
5106 gold_unreachable();
5107
5108 of->write_output_view(this->build_id_note_->offset(),
5109 this->build_id_note_->data_size(),
5110 ov);
5111
5112 of->free_input_view(0, this->output_file_size_, iv);
5113 }
5114
5115 // Write out a binary file. This is called after the link is
5116 // complete. IN is the temporary output file we used to generate the
5117 // ELF code. We simply walk through the segments, read them from
5118 // their file offset in IN, and write them to their load address in
5119 // the output file. FIXME: with a bit more work, we could support
5120 // S-records and/or Intel hex format here.
5121
5122 void
5123 Layout::write_binary(Output_file* in) const
5124 {
5125 gold_assert(parameters->options().oformat_enum()
5126 == General_options::OBJECT_FORMAT_BINARY);
5127
5128 // Get the size of the binary file.
5129 uint64_t max_load_address = 0;
5130 for (Segment_list::const_iterator p = this->segment_list_.begin();
5131 p != this->segment_list_.end();
5132 ++p)
5133 {
5134 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5135 {
5136 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5137 if (max_paddr > max_load_address)
5138 max_load_address = max_paddr;
5139 }
5140 }
5141
5142 Output_file out(parameters->options().output_file_name());
5143 out.open(max_load_address);
5144
5145 for (Segment_list::const_iterator p = this->segment_list_.begin();
5146 p != this->segment_list_.end();
5147 ++p)
5148 {
5149 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5150 {
5151 const unsigned char* vin = in->get_input_view((*p)->offset(),
5152 (*p)->filesz());
5153 unsigned char* vout = out.get_output_view((*p)->paddr(),
5154 (*p)->filesz());
5155 memcpy(vout, vin, (*p)->filesz());
5156 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5157 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5158 }
5159 }
5160
5161 out.close();
5162 }
5163
5164 // Print the output sections to the map file.
5165
5166 void
5167 Layout::print_to_mapfile(Mapfile* mapfile) const
5168 {
5169 for (Segment_list::const_iterator p = this->segment_list_.begin();
5170 p != this->segment_list_.end();
5171 ++p)
5172 (*p)->print_sections_to_mapfile(mapfile);
5173 }
5174
5175 // Print statistical information to stderr. This is used for --stats.
5176
5177 void
5178 Layout::print_stats() const
5179 {
5180 this->namepool_.print_stats("section name pool");
5181 this->sympool_.print_stats("output symbol name pool");
5182 this->dynpool_.print_stats("dynamic name pool");
5183
5184 for (Section_list::const_iterator p = this->section_list_.begin();
5185 p != this->section_list_.end();
5186 ++p)
5187 (*p)->print_merge_stats();
5188 }
5189
5190 // Write_sections_task methods.
5191
5192 // We can always run this task.
5193
5194 Task_token*
5195 Write_sections_task::is_runnable()
5196 {
5197 return NULL;
5198 }
5199
5200 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5201 // when finished.
5202
5203 void
5204 Write_sections_task::locks(Task_locker* tl)
5205 {
5206 tl->add(this, this->output_sections_blocker_);
5207 tl->add(this, this->final_blocker_);
5208 }
5209
5210 // Run the task--write out the data.
5211
5212 void
5213 Write_sections_task::run(Workqueue*)
5214 {
5215 this->layout_->write_output_sections(this->of_);
5216 }
5217
5218 // Write_data_task methods.
5219
5220 // We can always run this task.
5221
5222 Task_token*
5223 Write_data_task::is_runnable()
5224 {
5225 return NULL;
5226 }
5227
5228 // We need to unlock FINAL_BLOCKER when finished.
5229
5230 void
5231 Write_data_task::locks(Task_locker* tl)
5232 {
5233 tl->add(this, this->final_blocker_);
5234 }
5235
5236 // Run the task--write out the data.
5237
5238 void
5239 Write_data_task::run(Workqueue*)
5240 {
5241 this->layout_->write_data(this->symtab_, this->of_);
5242 }
5243
5244 // Write_symbols_task methods.
5245
5246 // We can always run this task.
5247
5248 Task_token*
5249 Write_symbols_task::is_runnable()
5250 {
5251 return NULL;
5252 }
5253
5254 // We need to unlock FINAL_BLOCKER when finished.
5255
5256 void
5257 Write_symbols_task::locks(Task_locker* tl)
5258 {
5259 tl->add(this, this->final_blocker_);
5260 }
5261
5262 // Run the task--write out the symbols.
5263
5264 void
5265 Write_symbols_task::run(Workqueue*)
5266 {
5267 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5268 this->layout_->symtab_xindex(),
5269 this->layout_->dynsym_xindex(), this->of_);
5270 }
5271
5272 // Write_after_input_sections_task methods.
5273
5274 // We can only run this task after the input sections have completed.
5275
5276 Task_token*
5277 Write_after_input_sections_task::is_runnable()
5278 {
5279 if (this->input_sections_blocker_->is_blocked())
5280 return this->input_sections_blocker_;
5281 return NULL;
5282 }
5283
5284 // We need to unlock FINAL_BLOCKER when finished.
5285
5286 void
5287 Write_after_input_sections_task::locks(Task_locker* tl)
5288 {
5289 tl->add(this, this->final_blocker_);
5290 }
5291
5292 // Run the task.
5293
5294 void
5295 Write_after_input_sections_task::run(Workqueue*)
5296 {
5297 this->layout_->write_sections_after_input_sections(this->of_);
5298 }
5299
5300 // Close_task_runner methods.
5301
5302 // Run the task--close the file.
5303
5304 void
5305 Close_task_runner::run(Workqueue*, const Task*)
5306 {
5307 // If we need to compute a checksum for the BUILD if, we do so here.
5308 this->layout_->write_build_id(this->of_);
5309
5310 // If we've been asked to create a binary file, we do so here.
5311 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5312 this->layout_->write_binary(this->of_);
5313
5314 this->of_->close();
5315 }
5316
5317 // Instantiate the templates we need. We could use the configure
5318 // script to restrict this to only the ones for implemented targets.
5319
5320 #ifdef HAVE_TARGET_32_LITTLE
5321 template
5322 Output_section*
5323 Layout::init_fixed_output_section<32, false>(
5324 const char* name,
5325 elfcpp::Shdr<32, false>& shdr);
5326 #endif
5327
5328 #ifdef HAVE_TARGET_32_BIG
5329 template
5330 Output_section*
5331 Layout::init_fixed_output_section<32, true>(
5332 const char* name,
5333 elfcpp::Shdr<32, true>& shdr);
5334 #endif
5335
5336 #ifdef HAVE_TARGET_64_LITTLE
5337 template
5338 Output_section*
5339 Layout::init_fixed_output_section<64, false>(
5340 const char* name,
5341 elfcpp::Shdr<64, false>& shdr);
5342 #endif
5343
5344 #ifdef HAVE_TARGET_64_BIG
5345 template
5346 Output_section*
5347 Layout::init_fixed_output_section<64, true>(
5348 const char* name,
5349 elfcpp::Shdr<64, true>& shdr);
5350 #endif
5351
5352 #ifdef HAVE_TARGET_32_LITTLE
5353 template
5354 Output_section*
5355 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5356 unsigned int shndx,
5357 const char* name,
5358 const elfcpp::Shdr<32, false>& shdr,
5359 unsigned int, unsigned int, off_t*);
5360 #endif
5361
5362 #ifdef HAVE_TARGET_32_BIG
5363 template
5364 Output_section*
5365 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5366 unsigned int shndx,
5367 const char* name,
5368 const elfcpp::Shdr<32, true>& shdr,
5369 unsigned int, unsigned int, off_t*);
5370 #endif
5371
5372 #ifdef HAVE_TARGET_64_LITTLE
5373 template
5374 Output_section*
5375 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5376 unsigned int shndx,
5377 const char* name,
5378 const elfcpp::Shdr<64, false>& shdr,
5379 unsigned int, unsigned int, off_t*);
5380 #endif
5381
5382 #ifdef HAVE_TARGET_64_BIG
5383 template
5384 Output_section*
5385 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5386 unsigned int shndx,
5387 const char* name,
5388 const elfcpp::Shdr<64, true>& shdr,
5389 unsigned int, unsigned int, off_t*);
5390 #endif
5391
5392 #ifdef HAVE_TARGET_32_LITTLE
5393 template
5394 Output_section*
5395 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5396 unsigned int reloc_shndx,
5397 const elfcpp::Shdr<32, false>& shdr,
5398 Output_section* data_section,
5399 Relocatable_relocs* rr);
5400 #endif
5401
5402 #ifdef HAVE_TARGET_32_BIG
5403 template
5404 Output_section*
5405 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5406 unsigned int reloc_shndx,
5407 const elfcpp::Shdr<32, true>& shdr,
5408 Output_section* data_section,
5409 Relocatable_relocs* rr);
5410 #endif
5411
5412 #ifdef HAVE_TARGET_64_LITTLE
5413 template
5414 Output_section*
5415 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5416 unsigned int reloc_shndx,
5417 const elfcpp::Shdr<64, false>& shdr,
5418 Output_section* data_section,
5419 Relocatable_relocs* rr);
5420 #endif
5421
5422 #ifdef HAVE_TARGET_64_BIG
5423 template
5424 Output_section*
5425 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5426 unsigned int reloc_shndx,
5427 const elfcpp::Shdr<64, true>& shdr,
5428 Output_section* data_section,
5429 Relocatable_relocs* rr);
5430 #endif
5431
5432 #ifdef HAVE_TARGET_32_LITTLE
5433 template
5434 void
5435 Layout::layout_group<32, false>(Symbol_table* symtab,
5436 Sized_relobj_file<32, false>* object,
5437 unsigned int,
5438 const char* group_section_name,
5439 const char* signature,
5440 const elfcpp::Shdr<32, false>& shdr,
5441 elfcpp::Elf_Word flags,
5442 std::vector<unsigned int>* shndxes);
5443 #endif
5444
5445 #ifdef HAVE_TARGET_32_BIG
5446 template
5447 void
5448 Layout::layout_group<32, true>(Symbol_table* symtab,
5449 Sized_relobj_file<32, true>* object,
5450 unsigned int,
5451 const char* group_section_name,
5452 const char* signature,
5453 const elfcpp::Shdr<32, true>& shdr,
5454 elfcpp::Elf_Word flags,
5455 std::vector<unsigned int>* shndxes);
5456 #endif
5457
5458 #ifdef HAVE_TARGET_64_LITTLE
5459 template
5460 void
5461 Layout::layout_group<64, false>(Symbol_table* symtab,
5462 Sized_relobj_file<64, false>* object,
5463 unsigned int,
5464 const char* group_section_name,
5465 const char* signature,
5466 const elfcpp::Shdr<64, false>& shdr,
5467 elfcpp::Elf_Word flags,
5468 std::vector<unsigned int>* shndxes);
5469 #endif
5470
5471 #ifdef HAVE_TARGET_64_BIG
5472 template
5473 void
5474 Layout::layout_group<64, true>(Symbol_table* symtab,
5475 Sized_relobj_file<64, true>* object,
5476 unsigned int,
5477 const char* group_section_name,
5478 const char* signature,
5479 const elfcpp::Shdr<64, true>& shdr,
5480 elfcpp::Elf_Word flags,
5481 std::vector<unsigned int>* shndxes);
5482 #endif
5483
5484 #ifdef HAVE_TARGET_32_LITTLE
5485 template
5486 Output_section*
5487 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5488 const unsigned char* symbols,
5489 off_t symbols_size,
5490 const unsigned char* symbol_names,
5491 off_t symbol_names_size,
5492 unsigned int shndx,
5493 const elfcpp::Shdr<32, false>& shdr,
5494 unsigned int reloc_shndx,
5495 unsigned int reloc_type,
5496 off_t* off);
5497 #endif
5498
5499 #ifdef HAVE_TARGET_32_BIG
5500 template
5501 Output_section*
5502 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5503 const unsigned char* symbols,
5504 off_t symbols_size,
5505 const unsigned char* symbol_names,
5506 off_t symbol_names_size,
5507 unsigned int shndx,
5508 const elfcpp::Shdr<32, true>& shdr,
5509 unsigned int reloc_shndx,
5510 unsigned int reloc_type,
5511 off_t* off);
5512 #endif
5513
5514 #ifdef HAVE_TARGET_64_LITTLE
5515 template
5516 Output_section*
5517 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5518 const unsigned char* symbols,
5519 off_t symbols_size,
5520 const unsigned char* symbol_names,
5521 off_t symbol_names_size,
5522 unsigned int shndx,
5523 const elfcpp::Shdr<64, false>& shdr,
5524 unsigned int reloc_shndx,
5525 unsigned int reloc_type,
5526 off_t* off);
5527 #endif
5528
5529 #ifdef HAVE_TARGET_64_BIG
5530 template
5531 Output_section*
5532 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5533 const unsigned char* symbols,
5534 off_t symbols_size,
5535 const unsigned char* symbol_names,
5536 off_t symbol_names_size,
5537 unsigned int shndx,
5538 const elfcpp::Shdr<64, true>& shdr,
5539 unsigned int reloc_shndx,
5540 unsigned int reloc_type,
5541 off_t* off);
5542 #endif
5543
5544 #ifdef HAVE_TARGET_32_LITTLE
5545 template
5546 void
5547 Layout::add_to_gdb_index(bool is_type_unit,
5548 Sized_relobj<32, false>* object,
5549 const unsigned char* symbols,
5550 off_t symbols_size,
5551 unsigned int shndx,
5552 unsigned int reloc_shndx,
5553 unsigned int reloc_type);
5554 #endif
5555
5556 #ifdef HAVE_TARGET_32_BIG
5557 template
5558 void
5559 Layout::add_to_gdb_index(bool is_type_unit,
5560 Sized_relobj<32, true>* object,
5561 const unsigned char* symbols,
5562 off_t symbols_size,
5563 unsigned int shndx,
5564 unsigned int reloc_shndx,
5565 unsigned int reloc_type);
5566 #endif
5567
5568 #ifdef HAVE_TARGET_64_LITTLE
5569 template
5570 void
5571 Layout::add_to_gdb_index(bool is_type_unit,
5572 Sized_relobj<64, false>* object,
5573 const unsigned char* symbols,
5574 off_t symbols_size,
5575 unsigned int shndx,
5576 unsigned int reloc_shndx,
5577 unsigned int reloc_type);
5578 #endif
5579
5580 #ifdef HAVE_TARGET_64_BIG
5581 template
5582 void
5583 Layout::add_to_gdb_index(bool is_type_unit,
5584 Sized_relobj<64, true>* object,
5585 const unsigned char* symbols,
5586 off_t symbols_size,
5587 unsigned int shndx,
5588 unsigned int reloc_shndx,
5589 unsigned int reloc_type);
5590 #endif
5591
5592 } // End namespace gold.
This page took 0.143876 seconds and 5 git commands to generate.