New gold linker option -z,text-unlikely-segment.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107 if (start == end)
108 return;
109 gold_assert(start < end);
110
111 ++Free_list::num_removes;
112
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
116
117 for (; p != this->list_.end(); ++p)
118 {
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
122 {
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
136 {
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
141 }
142 this->last_remove_ = p;
143 return;
144 }
145 }
146
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
167
168 ++Free_list::num_allocates;
169
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176 {
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 {
183 this->length_ = end;
184 p->end_ = end;
185 }
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 {
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
195 {
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
200 }
201 return start;
202 }
203 }
204 if (this->extend_)
205 {
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
209 }
210 return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
254 { }
255
256 void
257 run(Workqueue*)
258 {
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
263 }
264
265 Task_token*
266 is_runnable()
267 { return NULL; }
268
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
273
274 std::string
275 get_name() const
276 { return "Hash_task"; }
277
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_()
478 {
479 // Make space for more than enough segments for a typical file.
480 // This is just for efficiency--it's OK if we wind up needing more.
481 this->segment_list_.reserve(12);
482
483 // We expect two unattached Output_data objects: the file header and
484 // the segment headers.
485 this->special_output_list_.reserve(2);
486
487 // Initialize structure needed for an incremental build.
488 if (parameters->incremental())
489 this->incremental_inputs_ = new Incremental_inputs;
490
491 // The section name pool is worth optimizing in all cases, because
492 // it is small, but there are often overlaps due to .rel sections.
493 this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501 this->incremental_base_ = base;
502 this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510 return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520 "abbrev",
521 "addr", // Fission extension
522 // "aranges", // not used by gdb as of 7.4
523 "frame",
524 "gdb_scripts",
525 "info",
526 "types",
527 "line",
528 "loc",
529 "macinfo",
530 "macro",
531 // "pubnames", // not used by gdb as of 7.4
532 // "pubtypes", // not used by gdb as of 7.4
533 // "gnu_pubnames", // Fission extension
534 // "gnu_pubtypes", // Fission extension
535 "ranges",
536 "str",
537 "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544 "abbrev",
545 // "addr", // Fission extension
546 // "aranges", // not used by gdb as of 7.4
547 // "frame",
548 // "gdb_scripts",
549 "info",
550 // "types",
551 "line",
552 // "loc",
553 // "macinfo",
554 // "macro",
555 // "pubnames", // not used by gdb as of 7.4
556 // "pubtypes", // not used by gdb as of 7.4
557 // "gnu_pubnames", // Fission extension
558 // "gnu_pubtypes", // Fission extension
559 // "ranges",
560 "str",
561 "str_offsets", // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569 "aranges",
570 "pubnames",
571 "gnu_pubnames",
572 "pubtypes",
573 "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583 // We can do this faster: binary search or a hashtable. But why bother?
584 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585 if (strcmp(suffix, gdb_sections[i]) == 0)
586 return true;
587 return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595 // We can do this faster: binary search or a hashtable. But why bother?
596 for (size_t i = 0;
597 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598 ++i)
599 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600 return true;
601 return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610 // We can do this faster: binary search or a hashtable. But why bother?
611 for (size_t i = 0;
612 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613 ++i)
614 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615 return true;
616 return false;
617 }
618
619 // Sometimes we compress sections. This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections. This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631 return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files. Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640 return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646 gold_assert(secname[0] == '.' && secname[1] == 'z');
647 std::string ret(".");
648 ret.append(secname, 2, std::string::npos);
649 return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657 const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659 if (!parameters->options().relocatable()
660 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661 return false;
662
663 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667 return parameters->target().should_include_section(sh_type);
668
669 switch (sh_type)
670 {
671 case elfcpp::SHT_NULL:
672 case elfcpp::SHT_SYMTAB:
673 case elfcpp::SHT_DYNSYM:
674 case elfcpp::SHT_HASH:
675 case elfcpp::SHT_DYNAMIC:
676 case elfcpp::SHT_SYMTAB_SHNDX:
677 return false;
678
679 case elfcpp::SHT_STRTAB:
680 // Discard the sections which have special meanings in the ELF
681 // ABI. Keep others (e.g., .stabstr). We could also do this by
682 // checking the sh_link fields of the appropriate sections.
683 return (strcmp(name, ".dynstr") != 0
684 && strcmp(name, ".strtab") != 0
685 && strcmp(name, ".shstrtab") != 0);
686
687 case elfcpp::SHT_RELA:
688 case elfcpp::SHT_REL:
689 case elfcpp::SHT_GROUP:
690 // If we are emitting relocations these should be handled
691 // elsewhere.
692 gold_assert(!parameters->options().relocatable());
693 return false;
694
695 case elfcpp::SHT_PROGBITS:
696 if (parameters->options().strip_debug()
697 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698 {
699 if (is_debug_info_section(name))
700 return false;
701 }
702 if (parameters->options().strip_debug_non_line()
703 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704 {
705 // Debugging sections can only be recognized by name.
706 if (is_prefix_of(".debug_", name)
707 && !is_lines_only_debug_section(name + 7))
708 return false;
709 if (is_prefix_of(".zdebug_", name)
710 && !is_lines_only_debug_section(name + 8))
711 return false;
712 }
713 if (parameters->options().strip_debug_gdb()
714 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715 {
716 // Debugging sections can only be recognized by name.
717 if (is_prefix_of(".debug_", name)
718 && !is_gdb_debug_section(name + 7))
719 return false;
720 if (is_prefix_of(".zdebug_", name)
721 && !is_gdb_debug_section(name + 8))
722 return false;
723 }
724 if (parameters->options().gdb_index()
725 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726 {
727 // When building .gdb_index, we can strip .debug_pubnames,
728 // .debug_pubtypes, and .debug_aranges sections.
729 if (is_prefix_of(".debug_", name)
730 && is_gdb_fast_lookup_section(name + 7))
731 return false;
732 if (is_prefix_of(".zdebug_", name)
733 && is_gdb_fast_lookup_section(name + 8))
734 return false;
735 }
736 if (parameters->options().strip_lto_sections()
737 && !parameters->options().relocatable()
738 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739 {
740 // Ignore LTO sections containing intermediate code.
741 if (is_prefix_of(".gnu.lto_", name))
742 return false;
743 }
744 // The GNU linker strips .gnu_debuglink sections, so we do too.
745 // This is a feature used to keep debugging information in
746 // separate files.
747 if (strcmp(name, ".gnu_debuglink") == 0)
748 return false;
749 return true;
750
751 default:
752 return true;
753 }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761 for (Section_list::const_iterator p = this->section_list_.begin();
762 p != this->section_list_.end();
763 ++p)
764 if (strcmp((*p)->name(), name) == 0)
765 return *p;
766 return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear. Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774 elfcpp::Elf_Word clear) const
775 {
776 for (Segment_list::const_iterator p = this->segment_list_.begin();
777 p != this->segment_list_.end();
778 ++p)
779 if (static_cast<elfcpp::PT>((*p)->type()) == type
780 && ((*p)->flags() & set) == set
781 && ((*p)->flags() & clear) == 0)
782 return *p;
783 return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section. This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors. Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run. This set just keeps track of
794 // these sections which need to be reversed. It is only changed by
795 // Layout::layout. It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807 != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS. NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key. ORDER is where this should appear
813 // in the output sections. IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818 Output_section_order order, bool is_relro)
819 {
820 elfcpp::Elf_Word lookup_type = type;
821
822 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
824 // .init_array, .fini_array, and .preinit_array sections by name
825 // whatever their type in the input file. We do this because the
826 // types are not always right in the input files.
827 if (lookup_type == elfcpp::SHT_INIT_ARRAY
828 || lookup_type == elfcpp::SHT_FINI_ARRAY
829 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830 lookup_type = elfcpp::SHT_PROGBITS;
831
832 elfcpp::Elf_Xword lookup_flags = flags;
833
834 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835 // read-write with read-only sections. Some other ELF linkers do
836 // not do this. FIXME: Perhaps there should be an option
837 // controlling this.
838 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841 const std::pair<Key, Output_section*> v(key, NULL);
842 std::pair<Section_name_map::iterator, bool> ins(
843 this->section_name_map_.insert(v));
844
845 if (!ins.second)
846 return ins.first->second;
847 else
848 {
849 // This is the first time we've seen this name/type/flags
850 // combination. For compatibility with the GNU linker, we
851 // combine sections with contents and zero flags with sections
852 // with non-zero flags. This is a workaround for cases where
853 // assembler code forgets to set section flags. FIXME: Perhaps
854 // there should be an option to control this.
855 Output_section* os = NULL;
856
857 if (lookup_type == elfcpp::SHT_PROGBITS)
858 {
859 if (flags == 0)
860 {
861 Output_section* same_name = this->find_output_section(name);
862 if (same_name != NULL
863 && (same_name->type() == elfcpp::SHT_PROGBITS
864 || same_name->type() == elfcpp::SHT_INIT_ARRAY
865 || same_name->type() == elfcpp::SHT_FINI_ARRAY
866 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868 os = same_name;
869 }
870 else if ((flags & elfcpp::SHF_TLS) == 0)
871 {
872 elfcpp::Elf_Xword zero_flags = 0;
873 const Key zero_key(name_key, std::make_pair(lookup_type,
874 zero_flags));
875 Section_name_map::iterator p =
876 this->section_name_map_.find(zero_key);
877 if (p != this->section_name_map_.end())
878 os = p->second;
879 }
880 }
881
882 if (os == NULL)
883 os = this->make_output_section(name, type, flags, order, is_relro);
884
885 ins.first->second = os;
886 return os;
887 }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896 if (! this->script_options_->saw_sections_clause())
897 return false;
898
899 Script_sections* ss = this->script_options_->script_sections();
900 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901 Output_section** output_section_slot;
902 Script_sections::Section_type script_section_type;
903 bool keep;
904
905 name = ss->output_section_name(file_name, name, &output_section_slot,
906 &script_section_type, &keep, true);
907 return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916 // Some flags in the input section should not be automatically
917 // copied to the output section.
918 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919 | elfcpp::SHF_GROUP
920 | elfcpp::SHF_COMPRESSED
921 | elfcpp::SHF_MERGE
922 | elfcpp::SHF_STRINGS);
923
924 // We only clear the SHF_LINK_ORDER flag in for
925 // a non-relocatable link.
926 if (!parameters->options().relocatable())
927 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929 return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
934 // linker created section. IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file. ORDER is where this section should appear in the output
937 // sections. IS_RELRO is true for a relro section. This will return
938 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
939 // is true if the section name should be matched against input specs
940 // in a linker script.
941
942 Output_section*
943 Layout::choose_output_section(const Relobj* relobj, const char* name,
944 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
945 bool is_input_section, Output_section_order order,
946 bool is_relro, bool is_reloc,
947 bool match_input_spec)
948 {
949 // We should not see any input sections after we have attached
950 // sections to segments.
951 gold_assert(!is_input_section || !this->sections_are_attached_);
952
953 flags = this->get_output_section_flags(flags);
954
955 if (this->script_options_->saw_sections_clause() && !is_reloc)
956 {
957 // We are using a SECTIONS clause, so the output section is
958 // chosen based only on the name.
959
960 Script_sections* ss = this->script_options_->script_sections();
961 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
962 Output_section** output_section_slot;
963 Script_sections::Section_type script_section_type;
964 const char* orig_name = name;
965 bool keep;
966 name = ss->output_section_name(file_name, name, &output_section_slot,
967 &script_section_type, &keep,
968 match_input_spec);
969
970 if (name == NULL)
971 {
972 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
973 "because it is not allowed by the "
974 "SECTIONS clause of the linker script"),
975 orig_name);
976 // The SECTIONS clause says to discard this input section.
977 return NULL;
978 }
979
980 // We can only handle script section types ST_NONE and ST_NOLOAD.
981 switch (script_section_type)
982 {
983 case Script_sections::ST_NONE:
984 break;
985 case Script_sections::ST_NOLOAD:
986 flags &= elfcpp::SHF_ALLOC;
987 break;
988 default:
989 gold_unreachable();
990 }
991
992 // If this is an orphan section--one not mentioned in the linker
993 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
994 // default processing below.
995
996 if (output_section_slot != NULL)
997 {
998 if (*output_section_slot != NULL)
999 {
1000 (*output_section_slot)->update_flags_for_input_section(flags);
1001 return *output_section_slot;
1002 }
1003
1004 // We don't put sections found in the linker script into
1005 // SECTION_NAME_MAP_. That keeps us from getting confused
1006 // if an orphan section is mapped to a section with the same
1007 // name as one in the linker script.
1008
1009 name = this->namepool_.add(name, false, NULL);
1010
1011 Output_section* os = this->make_output_section(name, type, flags,
1012 order, is_relro);
1013
1014 os->set_found_in_sections_clause();
1015
1016 // Special handling for NOLOAD sections.
1017 if (script_section_type == Script_sections::ST_NOLOAD)
1018 {
1019 os->set_is_noload();
1020
1021 // The constructor of Output_section sets addresses of non-ALLOC
1022 // sections to 0 by default. We don't want that for NOLOAD
1023 // sections even if they have no SHF_ALLOC flag.
1024 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1025 && os->is_address_valid())
1026 {
1027 gold_assert(os->address() == 0
1028 && !os->is_offset_valid()
1029 && !os->is_data_size_valid());
1030 os->reset_address_and_file_offset();
1031 }
1032 }
1033
1034 *output_section_slot = os;
1035 return os;
1036 }
1037 }
1038
1039 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1040
1041 size_t len = strlen(name);
1042 std::string uncompressed_name;
1043
1044 // Compressed debug sections should be mapped to the corresponding
1045 // uncompressed section.
1046 if (is_compressed_debug_section(name))
1047 {
1048 uncompressed_name =
1049 corresponding_uncompressed_section_name(std::string(name, len));
1050 name = uncompressed_name.c_str();
1051 len = uncompressed_name.length();
1052 }
1053
1054 // Turn NAME from the name of the input section into the name of the
1055 // output section.
1056 if (is_input_section
1057 && !this->script_options_->saw_sections_clause()
1058 && !parameters->options().relocatable())
1059 {
1060 const char *orig_name = name;
1061 name = parameters->target().output_section_name(relobj, name, &len);
1062 if (name == NULL)
1063 name = Layout::output_section_name(relobj, orig_name, &len);
1064 }
1065
1066 Stringpool::Key name_key;
1067 name = this->namepool_.add_with_length(name, len, true, &name_key);
1068
1069 // Find or make the output section. The output section is selected
1070 // based on the section name, type, and flags.
1071 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1072 }
1073
1074 // For incremental links, record the initial fixed layout of a section
1075 // from the base file, and return a pointer to the Output_section.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::init_fixed_output_section(const char* name,
1080 elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082 unsigned int sh_type = shdr.get_sh_type();
1083
1084 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1085 // PRE_INIT_ARRAY, and NOTE sections.
1086 // All others will be created from scratch and reallocated.
1087 if (!can_incremental_update(sh_type))
1088 return NULL;
1089
1090 // If we're generating a .gdb_index section, we need to regenerate
1091 // it from scratch.
1092 if (parameters->options().gdb_index()
1093 && sh_type == elfcpp::SHT_PROGBITS
1094 && strcmp(name, ".gdb_index") == 0)
1095 return NULL;
1096
1097 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1098 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1099 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1100 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1101 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1102 shdr.get_sh_addralign();
1103
1104 // Make the output section.
1105 Stringpool::Key name_key;
1106 name = this->namepool_.add(name, true, &name_key);
1107 Output_section* os = this->get_output_section(name, name_key, sh_type,
1108 sh_flags, ORDER_INVALID, false);
1109 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1110 if (sh_type != elfcpp::SHT_NOBITS)
1111 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1112 return os;
1113 }
1114
1115 // Return the index by which an input section should be ordered. This
1116 // is used to sort some .text sections, for compatibility with GNU ld.
1117
1118 int
1119 Layout::special_ordering_of_input_section(const char* name)
1120 {
1121 // The GNU linker has some special handling for some sections that
1122 // wind up in the .text section. Sections that start with these
1123 // prefixes must appear first, and must appear in the order listed
1124 // here.
1125 static const char* const text_section_sort[] =
1126 {
1127 ".text.unlikely",
1128 ".text.exit",
1129 ".text.startup",
1130 ".text.hot"
1131 };
1132
1133 for (size_t i = 0;
1134 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1135 i++)
1136 if (is_prefix_of(text_section_sort[i], name))
1137 return i;
1138
1139 return -1;
1140 }
1141
1142 // Return the output section to use for input section SHNDX, with name
1143 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1144 // index of a relocation section which applies to this section, or 0
1145 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1146 // relocation section if there is one. Set *OFF to the offset of this
1147 // input section without the output section. Return NULL if the
1148 // section should be discarded. Set *OFF to -1 if the section
1149 // contents should not be written directly to the output file, but
1150 // will instead receive special handling.
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1155 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1156 unsigned int reloc_shndx, unsigned int, off_t* off)
1157 {
1158 *off = 0;
1159
1160 if (!this->include_section(object, name, shdr))
1161 return NULL;
1162
1163 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1164
1165 // In a relocatable link a grouped section must not be combined with
1166 // any other sections.
1167 Output_section* os;
1168 if (parameters->options().relocatable()
1169 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170 {
1171 // Some flags in the input section should not be automatically
1172 // copied to the output section.
1173 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174 & ~ elfcpp::SHF_COMPRESSED);
1175 name = this->namepool_.add(name, true, NULL);
1176 os = this->make_output_section(name, sh_type, flags,
1177 ORDER_INVALID, false);
1178 }
1179 else
1180 {
1181 // All ".text.unlikely.*" sections can be moved to a unique
1182 // segment with --text-unlikely-segment option.
1183 bool text_unlikely_segment
1184 = (parameters->options().text_unlikely_segment()
1185 && is_prefix_of(".text.unlikely",
1186 object->section_name(shndx).c_str()));
1187 if (text_unlikely_segment)
1188 {
1189 elfcpp::Elf_Xword flags
1190 = this->get_output_section_flags(shdr.get_sh_flags());
1191
1192 Stringpool::Key name_key;
1193 const char* os_name = this->namepool_.add(".text.unlikely", true,
1194 &name_key);
1195 os = this->get_output_section(os_name, name_key, sh_type, flags,
1196 ORDER_INVALID, false);
1197 // Map this output section to a unique segment. This is done to
1198 // separate "text" that is not likely to be executed from "text"
1199 // that is likely executed.
1200 os->set_is_unique_segment();
1201 }
1202 else
1203 {
1204 // Plugins can choose to place one or more subsets of sections in
1205 // unique segments and this is done by mapping these section subsets
1206 // to unique output sections. Check if this section needs to be
1207 // remapped to a unique output section.
1208 Section_segment_map::iterator it
1209 = this->section_segment_map_.find(Const_section_id(object, shndx));
1210 if (it == this->section_segment_map_.end())
1211 {
1212 os = this->choose_output_section(object, name, sh_type,
1213 shdr.get_sh_flags(), true,
1214 ORDER_INVALID, false, false,
1215 true);
1216 }
1217 else
1218 {
1219 // We know the name of the output section, directly call
1220 // get_output_section here by-passing choose_output_section.
1221 elfcpp::Elf_Xword flags
1222 = this->get_output_section_flags(shdr.get_sh_flags());
1223
1224 const char* os_name = it->second->name;
1225 Stringpool::Key name_key;
1226 os_name = this->namepool_.add(os_name, true, &name_key);
1227 os = this->get_output_section(os_name, name_key, sh_type, flags,
1228 ORDER_INVALID, false);
1229 if (!os->is_unique_segment())
1230 {
1231 os->set_is_unique_segment();
1232 os->set_extra_segment_flags(it->second->flags);
1233 os->set_segment_alignment(it->second->align);
1234 }
1235 }
1236 }
1237 if (os == NULL)
1238 return NULL;
1239 }
1240
1241 // By default the GNU linker sorts input sections whose names match
1242 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1243 // sections are sorted by name. This is used to implement
1244 // constructor priority ordering. We are compatible. When we put
1245 // .ctor sections in .init_array and .dtor sections in .fini_array,
1246 // we must also sort plain .ctor and .dtor sections.
1247 if (!this->script_options_->saw_sections_clause()
1248 && !parameters->options().relocatable()
1249 && (is_prefix_of(".ctors.", name)
1250 || is_prefix_of(".dtors.", name)
1251 || is_prefix_of(".init_array.", name)
1252 || is_prefix_of(".fini_array.", name)
1253 || (parameters->options().ctors_in_init_array()
1254 && (strcmp(name, ".ctors") == 0
1255 || strcmp(name, ".dtors") == 0))))
1256 os->set_must_sort_attached_input_sections();
1257
1258 // By default the GNU linker sorts some special text sections ahead
1259 // of others. We are compatible.
1260 if (parameters->options().text_reorder()
1261 && !this->script_options_->saw_sections_clause()
1262 && !this->is_section_ordering_specified()
1263 && !parameters->options().relocatable()
1264 && Layout::special_ordering_of_input_section(name) >= 0)
1265 os->set_must_sort_attached_input_sections();
1266
1267 // If this is a .ctors or .ctors.* section being mapped to a
1268 // .init_array section, or a .dtors or .dtors.* section being mapped
1269 // to a .fini_array section, we will need to reverse the words if
1270 // there is more than one. Record this section for later. See
1271 // ctors_sections_in_init_array above.
1272 if (!this->script_options_->saw_sections_clause()
1273 && !parameters->options().relocatable()
1274 && shdr.get_sh_size() > size / 8
1275 && (((strcmp(name, ".ctors") == 0
1276 || is_prefix_of(".ctors.", name))
1277 && strcmp(os->name(), ".init_array") == 0)
1278 || ((strcmp(name, ".dtors") == 0
1279 || is_prefix_of(".dtors.", name))
1280 && strcmp(os->name(), ".fini_array") == 0)))
1281 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1282
1283 // FIXME: Handle SHF_LINK_ORDER somewhere.
1284
1285 elfcpp::Elf_Xword orig_flags = os->flags();
1286
1287 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1288 this->script_options_->saw_sections_clause());
1289
1290 // If the flags changed, we may have to change the order.
1291 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1292 {
1293 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1294 elfcpp::Elf_Xword new_flags =
1295 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296 if (orig_flags != new_flags)
1297 os->set_order(this->default_section_order(os, false));
1298 }
1299
1300 this->have_added_input_section_ = true;
1301
1302 return os;
1303 }
1304
1305 // Maps section SECN to SEGMENT s.
1306 void
1307 Layout::insert_section_segment_map(Const_section_id secn,
1308 Unique_segment_info *s)
1309 {
1310 gold_assert(this->unique_segment_for_sections_specified_);
1311 this->section_segment_map_[secn] = s;
1312 }
1313
1314 // Handle a relocation section when doing a relocatable link.
1315
1316 template<int size, bool big_endian>
1317 Output_section*
1318 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1319 unsigned int,
1320 const elfcpp::Shdr<size, big_endian>& shdr,
1321 Output_section* data_section,
1322 Relocatable_relocs* rr)
1323 {
1324 gold_assert(parameters->options().relocatable()
1325 || parameters->options().emit_relocs());
1326
1327 int sh_type = shdr.get_sh_type();
1328
1329 std::string name;
1330 if (sh_type == elfcpp::SHT_REL)
1331 name = ".rel";
1332 else if (sh_type == elfcpp::SHT_RELA)
1333 name = ".rela";
1334 else
1335 gold_unreachable();
1336 name += data_section->name();
1337
1338 // In a relocatable link relocs for a grouped section must not be
1339 // combined with other reloc sections.
1340 Output_section* os;
1341 if (!parameters->options().relocatable()
1342 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1343 os = this->choose_output_section(object, name.c_str(), sh_type,
1344 shdr.get_sh_flags(), false,
1345 ORDER_INVALID, false, true, false);
1346 else
1347 {
1348 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1349 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1350 ORDER_INVALID, false);
1351 }
1352
1353 os->set_should_link_to_symtab();
1354 os->set_info_section(data_section);
1355
1356 Output_section_data* posd;
1357 if (sh_type == elfcpp::SHT_REL)
1358 {
1359 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1360 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1361 size,
1362 big_endian>(rr);
1363 }
1364 else if (sh_type == elfcpp::SHT_RELA)
1365 {
1366 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1367 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1368 size,
1369 big_endian>(rr);
1370 }
1371 else
1372 gold_unreachable();
1373
1374 os->add_output_section_data(posd);
1375 rr->set_output_data(posd);
1376
1377 return os;
1378 }
1379
1380 // Handle a group section when doing a relocatable link.
1381
1382 template<int size, bool big_endian>
1383 void
1384 Layout::layout_group(Symbol_table* symtab,
1385 Sized_relobj_file<size, big_endian>* object,
1386 unsigned int,
1387 const char* group_section_name,
1388 const char* signature,
1389 const elfcpp::Shdr<size, big_endian>& shdr,
1390 elfcpp::Elf_Word flags,
1391 std::vector<unsigned int>* shndxes)
1392 {
1393 gold_assert(parameters->options().relocatable());
1394 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1395 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1396 Output_section* os = this->make_output_section(group_section_name,
1397 elfcpp::SHT_GROUP,
1398 shdr.get_sh_flags(),
1399 ORDER_INVALID, false);
1400
1401 // We need to find a symbol with the signature in the symbol table.
1402 // If we don't find one now, we need to look again later.
1403 Symbol* sym = symtab->lookup(signature, NULL);
1404 if (sym != NULL)
1405 os->set_info_symndx(sym);
1406 else
1407 {
1408 // Reserve some space to minimize reallocations.
1409 if (this->group_signatures_.empty())
1410 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1411
1412 // We will wind up using a symbol whose name is the signature.
1413 // So just put the signature in the symbol name pool to save it.
1414 signature = symtab->canonicalize_name(signature);
1415 this->group_signatures_.push_back(Group_signature(os, signature));
1416 }
1417
1418 os->set_should_link_to_symtab();
1419 os->set_entsize(4);
1420
1421 section_size_type entry_count =
1422 convert_to_section_size_type(shdr.get_sh_size() / 4);
1423 Output_section_data* posd =
1424 new Output_data_group<size, big_endian>(object, entry_count, flags,
1425 shndxes);
1426 os->add_output_section_data(posd);
1427 }
1428
1429 // Special GNU handling of sections name .eh_frame. They will
1430 // normally hold exception frame data as defined by the C++ ABI
1431 // (http://codesourcery.com/cxx-abi/).
1432
1433 template<int size, bool big_endian>
1434 Output_section*
1435 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1436 const unsigned char* symbols,
1437 off_t symbols_size,
1438 const unsigned char* symbol_names,
1439 off_t symbol_names_size,
1440 unsigned int shndx,
1441 const elfcpp::Shdr<size, big_endian>& shdr,
1442 unsigned int reloc_shndx, unsigned int reloc_type,
1443 off_t* off)
1444 {
1445 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1446 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1447 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1448
1449 Output_section* os = this->make_eh_frame_section(object);
1450 if (os == NULL)
1451 return NULL;
1452
1453 gold_assert(this->eh_frame_section_ == os);
1454
1455 elfcpp::Elf_Xword orig_flags = os->flags();
1456
1457 Eh_frame::Eh_frame_section_disposition disp =
1458 Eh_frame::EH_UNRECOGNIZED_SECTION;
1459 if (!parameters->incremental())
1460 {
1461 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1462 symbols,
1463 symbols_size,
1464 symbol_names,
1465 symbol_names_size,
1466 shndx,
1467 reloc_shndx,
1468 reloc_type);
1469 }
1470
1471 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1472 {
1473 os->update_flags_for_input_section(shdr.get_sh_flags());
1474
1475 // A writable .eh_frame section is a RELRO section.
1476 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478 {
1479 os->set_is_relro();
1480 os->set_order(ORDER_RELRO);
1481 }
1482
1483 *off = -1;
1484 return os;
1485 }
1486
1487 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1488 {
1489 // We found the end marker section, so now we can add the set of
1490 // optimized sections to the output section. We need to postpone
1491 // adding this until we've found a section we can optimize so that
1492 // the .eh_frame section in crtbeginT.o winds up at the start of
1493 // the output section.
1494 os->add_output_section_data(this->eh_frame_data_);
1495 this->added_eh_frame_data_ = true;
1496 }
1497
1498 // We couldn't handle this .eh_frame section for some reason.
1499 // Add it as a normal section.
1500 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1501 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1502 reloc_shndx, saw_sections_clause);
1503 this->have_added_input_section_ = true;
1504
1505 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1506 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1507 os->set_order(this->default_section_order(os, false));
1508
1509 return os;
1510 }
1511
1512 void
1513 Layout::finalize_eh_frame_section()
1514 {
1515 // If we never found an end marker section, we need to add the
1516 // optimized eh sections to the output section now.
1517 if (!parameters->incremental()
1518 && this->eh_frame_section_ != NULL
1519 && !this->added_eh_frame_data_)
1520 {
1521 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1522 this->added_eh_frame_data_ = true;
1523 }
1524 }
1525
1526 // Create and return the magic .eh_frame section. Create
1527 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1528 // input .eh_frame section; it may be NULL.
1529
1530 Output_section*
1531 Layout::make_eh_frame_section(const Relobj* object)
1532 {
1533 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1534 // SHT_PROGBITS.
1535 Output_section* os = this->choose_output_section(object, ".eh_frame",
1536 elfcpp::SHT_PROGBITS,
1537 elfcpp::SHF_ALLOC, false,
1538 ORDER_EHFRAME, false, false,
1539 false);
1540 if (os == NULL)
1541 return NULL;
1542
1543 if (this->eh_frame_section_ == NULL)
1544 {
1545 this->eh_frame_section_ = os;
1546 this->eh_frame_data_ = new Eh_frame();
1547
1548 // For incremental linking, we do not optimize .eh_frame sections
1549 // or create a .eh_frame_hdr section.
1550 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1551 {
1552 Output_section* hdr_os =
1553 this->choose_output_section(NULL, ".eh_frame_hdr",
1554 elfcpp::SHT_PROGBITS,
1555 elfcpp::SHF_ALLOC, false,
1556 ORDER_EHFRAME, false, false,
1557 false);
1558
1559 if (hdr_os != NULL)
1560 {
1561 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1562 this->eh_frame_data_);
1563 hdr_os->add_output_section_data(hdr_posd);
1564
1565 hdr_os->set_after_input_sections();
1566
1567 if (!this->script_options_->saw_phdrs_clause())
1568 {
1569 Output_segment* hdr_oseg;
1570 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1571 elfcpp::PF_R);
1572 hdr_oseg->add_output_section_to_nonload(hdr_os,
1573 elfcpp::PF_R);
1574 }
1575
1576 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1577 }
1578 }
1579 }
1580
1581 return os;
1582 }
1583
1584 // Add an exception frame for a PLT. This is called from target code.
1585
1586 void
1587 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1588 size_t cie_length, const unsigned char* fde_data,
1589 size_t fde_length)
1590 {
1591 if (parameters->incremental())
1592 {
1593 // FIXME: Maybe this could work some day....
1594 return;
1595 }
1596 Output_section* os = this->make_eh_frame_section(NULL);
1597 if (os == NULL)
1598 return;
1599 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1600 fde_data, fde_length);
1601 if (!this->added_eh_frame_data_)
1602 {
1603 os->add_output_section_data(this->eh_frame_data_);
1604 this->added_eh_frame_data_ = true;
1605 }
1606 }
1607
1608 // Remove .eh_frame information for a PLT. FDEs using the CIE must
1609 // be removed in reverse order to the order they were added.
1610
1611 void
1612 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1613 size_t cie_length, const unsigned char* fde_data,
1614 size_t fde_length)
1615 {
1616 if (parameters->incremental())
1617 {
1618 // FIXME: Maybe this could work some day....
1619 return;
1620 }
1621 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1622 fde_data, fde_length);
1623 }
1624
1625 // Scan a .debug_info or .debug_types section, and add summary
1626 // information to the .gdb_index section.
1627
1628 template<int size, bool big_endian>
1629 void
1630 Layout::add_to_gdb_index(bool is_type_unit,
1631 Sized_relobj<size, big_endian>* object,
1632 const unsigned char* symbols,
1633 off_t symbols_size,
1634 unsigned int shndx,
1635 unsigned int reloc_shndx,
1636 unsigned int reloc_type)
1637 {
1638 if (this->gdb_index_data_ == NULL)
1639 {
1640 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1641 elfcpp::SHT_PROGBITS, 0,
1642 false, ORDER_INVALID,
1643 false, false, false);
1644 if (os == NULL)
1645 return;
1646
1647 this->gdb_index_data_ = new Gdb_index(os);
1648 os->add_output_section_data(this->gdb_index_data_);
1649 os->set_after_input_sections();
1650 }
1651
1652 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1653 symbols_size, shndx, reloc_shndx,
1654 reloc_type);
1655 }
1656
1657 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1658 // the output section.
1659
1660 Output_section*
1661 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1662 elfcpp::Elf_Xword flags,
1663 Output_section_data* posd,
1664 Output_section_order order, bool is_relro)
1665 {
1666 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1667 false, order, is_relro,
1668 false, false);
1669 if (os != NULL)
1670 os->add_output_section_data(posd);
1671 return os;
1672 }
1673
1674 // Map section flags to segment flags.
1675
1676 elfcpp::Elf_Word
1677 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1678 {
1679 elfcpp::Elf_Word ret = elfcpp::PF_R;
1680 if ((flags & elfcpp::SHF_WRITE) != 0)
1681 ret |= elfcpp::PF_W;
1682 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1683 ret |= elfcpp::PF_X;
1684 return ret;
1685 }
1686
1687 // Make a new Output_section, and attach it to segments as
1688 // appropriate. ORDER is the order in which this section should
1689 // appear in the output segment. IS_RELRO is true if this is a relro
1690 // (read-only after relocations) section.
1691
1692 Output_section*
1693 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1694 elfcpp::Elf_Xword flags,
1695 Output_section_order order, bool is_relro)
1696 {
1697 Output_section* os;
1698 if ((flags & elfcpp::SHF_ALLOC) == 0
1699 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1700 && is_compressible_debug_section(name))
1701 os = new Output_compressed_section(&parameters->options(), name, type,
1702 flags);
1703 else if ((flags & elfcpp::SHF_ALLOC) == 0
1704 && parameters->options().strip_debug_non_line()
1705 && strcmp(".debug_abbrev", name) == 0)
1706 {
1707 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1708 name, type, flags);
1709 if (this->debug_info_)
1710 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1711 }
1712 else if ((flags & elfcpp::SHF_ALLOC) == 0
1713 && parameters->options().strip_debug_non_line()
1714 && strcmp(".debug_info", name) == 0)
1715 {
1716 os = this->debug_info_ = new Output_reduced_debug_info_section(
1717 name, type, flags);
1718 if (this->debug_abbrev_)
1719 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1720 }
1721 else
1722 {
1723 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1724 // not have correct section types. Force them here.
1725 if (type == elfcpp::SHT_PROGBITS)
1726 {
1727 if (is_prefix_of(".init_array", name))
1728 type = elfcpp::SHT_INIT_ARRAY;
1729 else if (is_prefix_of(".preinit_array", name))
1730 type = elfcpp::SHT_PREINIT_ARRAY;
1731 else if (is_prefix_of(".fini_array", name))
1732 type = elfcpp::SHT_FINI_ARRAY;
1733 }
1734
1735 // FIXME: const_cast is ugly.
1736 Target* target = const_cast<Target*>(&parameters->target());
1737 os = target->make_output_section(name, type, flags);
1738 }
1739
1740 // With -z relro, we have to recognize the special sections by name.
1741 // There is no other way.
1742 bool is_relro_local = false;
1743 if (!this->script_options_->saw_sections_clause()
1744 && parameters->options().relro()
1745 && (flags & elfcpp::SHF_ALLOC) != 0
1746 && (flags & elfcpp::SHF_WRITE) != 0)
1747 {
1748 if (type == elfcpp::SHT_PROGBITS)
1749 {
1750 if ((flags & elfcpp::SHF_TLS) != 0)
1751 is_relro = true;
1752 else if (strcmp(name, ".data.rel.ro") == 0)
1753 is_relro = true;
1754 else if (strcmp(name, ".data.rel.ro.local") == 0)
1755 {
1756 is_relro = true;
1757 is_relro_local = true;
1758 }
1759 else if (strcmp(name, ".ctors") == 0
1760 || strcmp(name, ".dtors") == 0
1761 || strcmp(name, ".jcr") == 0)
1762 is_relro = true;
1763 }
1764 else if (type == elfcpp::SHT_INIT_ARRAY
1765 || type == elfcpp::SHT_FINI_ARRAY
1766 || type == elfcpp::SHT_PREINIT_ARRAY)
1767 is_relro = true;
1768 }
1769
1770 if (is_relro)
1771 os->set_is_relro();
1772
1773 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1774 order = this->default_section_order(os, is_relro_local);
1775
1776 os->set_order(order);
1777
1778 parameters->target().new_output_section(os);
1779
1780 this->section_list_.push_back(os);
1781
1782 // The GNU linker by default sorts some sections by priority, so we
1783 // do the same. We need to know that this might happen before we
1784 // attach any input sections.
1785 if (!this->script_options_->saw_sections_clause()
1786 && !parameters->options().relocatable()
1787 && (strcmp(name, ".init_array") == 0
1788 || strcmp(name, ".fini_array") == 0
1789 || (!parameters->options().ctors_in_init_array()
1790 && (strcmp(name, ".ctors") == 0
1791 || strcmp(name, ".dtors") == 0))))
1792 os->set_may_sort_attached_input_sections();
1793
1794 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1795 // sections before other .text sections. We are compatible. We
1796 // need to know that this might happen before we attach any input
1797 // sections.
1798 if (parameters->options().text_reorder()
1799 && !this->script_options_->saw_sections_clause()
1800 && !this->is_section_ordering_specified()
1801 && !parameters->options().relocatable()
1802 && strcmp(name, ".text") == 0)
1803 os->set_may_sort_attached_input_sections();
1804
1805 // GNU linker sorts section by name with --sort-section=name.
1806 if (strcmp(parameters->options().sort_section(), "name") == 0)
1807 os->set_must_sort_attached_input_sections();
1808
1809 // Check for .stab*str sections, as .stab* sections need to link to
1810 // them.
1811 if (type == elfcpp::SHT_STRTAB
1812 && !this->have_stabstr_section_
1813 && strncmp(name, ".stab", 5) == 0
1814 && strcmp(name + strlen(name) - 3, "str") == 0)
1815 this->have_stabstr_section_ = true;
1816
1817 // During a full incremental link, we add patch space to most
1818 // PROGBITS and NOBITS sections. Flag those that may be
1819 // arbitrarily padded.
1820 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1821 && order != ORDER_INTERP
1822 && order != ORDER_INIT
1823 && order != ORDER_PLT
1824 && order != ORDER_FINI
1825 && order != ORDER_RELRO_LAST
1826 && order != ORDER_NON_RELRO_FIRST
1827 && strcmp(name, ".eh_frame") != 0
1828 && strcmp(name, ".ctors") != 0
1829 && strcmp(name, ".dtors") != 0
1830 && strcmp(name, ".jcr") != 0)
1831 {
1832 os->set_is_patch_space_allowed();
1833
1834 // Certain sections require "holes" to be filled with
1835 // specific fill patterns. These fill patterns may have
1836 // a minimum size, so we must prevent allocations from the
1837 // free list that leave a hole smaller than the minimum.
1838 if (strcmp(name, ".debug_info") == 0)
1839 os->set_free_space_fill(new Output_fill_debug_info(false));
1840 else if (strcmp(name, ".debug_types") == 0)
1841 os->set_free_space_fill(new Output_fill_debug_info(true));
1842 else if (strcmp(name, ".debug_line") == 0)
1843 os->set_free_space_fill(new Output_fill_debug_line());
1844 }
1845
1846 // If we have already attached the sections to segments, then we
1847 // need to attach this one now. This happens for sections created
1848 // directly by the linker.
1849 if (this->sections_are_attached_)
1850 this->attach_section_to_segment(&parameters->target(), os);
1851
1852 return os;
1853 }
1854
1855 // Return the default order in which a section should be placed in an
1856 // output segment. This function captures a lot of the ideas in
1857 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1858 // linker created section is normally set when the section is created;
1859 // this function is used for input sections.
1860
1861 Output_section_order
1862 Layout::default_section_order(Output_section* os, bool is_relro_local)
1863 {
1864 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1865 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1866 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1867 bool is_bss = false;
1868
1869 switch (os->type())
1870 {
1871 default:
1872 case elfcpp::SHT_PROGBITS:
1873 break;
1874 case elfcpp::SHT_NOBITS:
1875 is_bss = true;
1876 break;
1877 case elfcpp::SHT_RELA:
1878 case elfcpp::SHT_REL:
1879 if (!is_write)
1880 return ORDER_DYNAMIC_RELOCS;
1881 break;
1882 case elfcpp::SHT_HASH:
1883 case elfcpp::SHT_DYNAMIC:
1884 case elfcpp::SHT_SHLIB:
1885 case elfcpp::SHT_DYNSYM:
1886 case elfcpp::SHT_GNU_HASH:
1887 case elfcpp::SHT_GNU_verdef:
1888 case elfcpp::SHT_GNU_verneed:
1889 case elfcpp::SHT_GNU_versym:
1890 if (!is_write)
1891 return ORDER_DYNAMIC_LINKER;
1892 break;
1893 case elfcpp::SHT_NOTE:
1894 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1895 }
1896
1897 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1898 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1899
1900 if (!is_bss && !is_write)
1901 {
1902 if (is_execinstr)
1903 {
1904 if (strcmp(os->name(), ".init") == 0)
1905 return ORDER_INIT;
1906 else if (strcmp(os->name(), ".fini") == 0)
1907 return ORDER_FINI;
1908 }
1909 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1910 }
1911
1912 if (os->is_relro())
1913 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1914
1915 if (os->is_small_section())
1916 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1917 if (os->is_large_section())
1918 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1919
1920 return is_bss ? ORDER_BSS : ORDER_DATA;
1921 }
1922
1923 // Attach output sections to segments. This is called after we have
1924 // seen all the input sections.
1925
1926 void
1927 Layout::attach_sections_to_segments(const Target* target)
1928 {
1929 for (Section_list::iterator p = this->section_list_.begin();
1930 p != this->section_list_.end();
1931 ++p)
1932 this->attach_section_to_segment(target, *p);
1933
1934 this->sections_are_attached_ = true;
1935 }
1936
1937 // Attach an output section to a segment.
1938
1939 void
1940 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1941 {
1942 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1943 this->unattached_section_list_.push_back(os);
1944 else
1945 this->attach_allocated_section_to_segment(target, os);
1946 }
1947
1948 // Attach an allocated output section to a segment.
1949
1950 void
1951 Layout::attach_allocated_section_to_segment(const Target* target,
1952 Output_section* os)
1953 {
1954 elfcpp::Elf_Xword flags = os->flags();
1955 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1956
1957 if (parameters->options().relocatable())
1958 return;
1959
1960 // If we have a SECTIONS clause, we can't handle the attachment to
1961 // segments until after we've seen all the sections.
1962 if (this->script_options_->saw_sections_clause())
1963 return;
1964
1965 gold_assert(!this->script_options_->saw_phdrs_clause());
1966
1967 // This output section goes into a PT_LOAD segment.
1968
1969 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1970
1971 // If this output section's segment has extra flags that need to be set,
1972 // coming from a linker plugin, do that.
1973 seg_flags |= os->extra_segment_flags();
1974
1975 // Check for --section-start.
1976 uint64_t addr;
1977 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1978
1979 // In general the only thing we really care about for PT_LOAD
1980 // segments is whether or not they are writable or executable,
1981 // so that is how we search for them.
1982 // Large data sections also go into their own PT_LOAD segment.
1983 // People who need segments sorted on some other basis will
1984 // have to use a linker script.
1985
1986 Segment_list::const_iterator p;
1987 if (!os->is_unique_segment())
1988 {
1989 for (p = this->segment_list_.begin();
1990 p != this->segment_list_.end();
1991 ++p)
1992 {
1993 if ((*p)->type() != elfcpp::PT_LOAD)
1994 continue;
1995 if ((*p)->is_unique_segment())
1996 continue;
1997 if (!parameters->options().omagic()
1998 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1999 continue;
2000 if ((target->isolate_execinstr() || parameters->options().rosegment())
2001 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2002 continue;
2003 // If -Tbss was specified, we need to separate the data and BSS
2004 // segments.
2005 if (parameters->options().user_set_Tbss())
2006 {
2007 if ((os->type() == elfcpp::SHT_NOBITS)
2008 == (*p)->has_any_data_sections())
2009 continue;
2010 }
2011 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2012 continue;
2013
2014 if (is_address_set)
2015 {
2016 if ((*p)->are_addresses_set())
2017 continue;
2018
2019 (*p)->add_initial_output_data(os);
2020 (*p)->update_flags_for_output_section(seg_flags);
2021 (*p)->set_addresses(addr, addr);
2022 break;
2023 }
2024
2025 (*p)->add_output_section_to_load(this, os, seg_flags);
2026 break;
2027 }
2028 }
2029
2030 if (p == this->segment_list_.end()
2031 || os->is_unique_segment())
2032 {
2033 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2034 seg_flags);
2035 if (os->is_large_data_section())
2036 oseg->set_is_large_data_segment();
2037 oseg->add_output_section_to_load(this, os, seg_flags);
2038 if (is_address_set)
2039 oseg->set_addresses(addr, addr);
2040 // Check if segment should be marked unique. For segments marked
2041 // unique by linker plugins, set the new alignment if specified.
2042 if (os->is_unique_segment())
2043 {
2044 oseg->set_is_unique_segment();
2045 if (os->segment_alignment() != 0)
2046 oseg->set_minimum_p_align(os->segment_alignment());
2047 }
2048 }
2049
2050 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2051 // segment.
2052 if (os->type() == elfcpp::SHT_NOTE)
2053 {
2054 // See if we already have an equivalent PT_NOTE segment.
2055 for (p = this->segment_list_.begin();
2056 p != segment_list_.end();
2057 ++p)
2058 {
2059 if ((*p)->type() == elfcpp::PT_NOTE
2060 && (((*p)->flags() & elfcpp::PF_W)
2061 == (seg_flags & elfcpp::PF_W)))
2062 {
2063 (*p)->add_output_section_to_nonload(os, seg_flags);
2064 break;
2065 }
2066 }
2067
2068 if (p == this->segment_list_.end())
2069 {
2070 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2071 seg_flags);
2072 oseg->add_output_section_to_nonload(os, seg_flags);
2073 }
2074 }
2075
2076 // If we see a loadable SHF_TLS section, we create a PT_TLS
2077 // segment. There can only be one such segment.
2078 if ((flags & elfcpp::SHF_TLS) != 0)
2079 {
2080 if (this->tls_segment_ == NULL)
2081 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2082 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2083 }
2084
2085 // If -z relro is in effect, and we see a relro section, we create a
2086 // PT_GNU_RELRO segment. There can only be one such segment.
2087 if (os->is_relro() && parameters->options().relro())
2088 {
2089 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2090 if (this->relro_segment_ == NULL)
2091 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2092 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2093 }
2094
2095 // If we see a section named .interp, put it into a PT_INTERP
2096 // segment. This seems broken to me, but this is what GNU ld does,
2097 // and glibc expects it.
2098 if (strcmp(os->name(), ".interp") == 0
2099 && !this->script_options_->saw_phdrs_clause())
2100 {
2101 if (this->interp_segment_ == NULL)
2102 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2103 else
2104 gold_warning(_("multiple '.interp' sections in input files "
2105 "may cause confusing PT_INTERP segment"));
2106 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2107 }
2108 }
2109
2110 // Make an output section for a script.
2111
2112 Output_section*
2113 Layout::make_output_section_for_script(
2114 const char* name,
2115 Script_sections::Section_type section_type)
2116 {
2117 name = this->namepool_.add(name, false, NULL);
2118 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2119 if (section_type == Script_sections::ST_NOLOAD)
2120 sh_flags = 0;
2121 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2122 sh_flags, ORDER_INVALID,
2123 false);
2124 os->set_found_in_sections_clause();
2125 if (section_type == Script_sections::ST_NOLOAD)
2126 os->set_is_noload();
2127 return os;
2128 }
2129
2130 // Return the number of segments we expect to see.
2131
2132 size_t
2133 Layout::expected_segment_count() const
2134 {
2135 size_t ret = this->segment_list_.size();
2136
2137 // If we didn't see a SECTIONS clause in a linker script, we should
2138 // already have the complete list of segments. Otherwise we ask the
2139 // SECTIONS clause how many segments it expects, and add in the ones
2140 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2141
2142 if (!this->script_options_->saw_sections_clause())
2143 return ret;
2144 else
2145 {
2146 const Script_sections* ss = this->script_options_->script_sections();
2147 return ret + ss->expected_segment_count(this);
2148 }
2149 }
2150
2151 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2152 // is whether we saw a .note.GNU-stack section in the object file.
2153 // GNU_STACK_FLAGS is the section flags. The flags give the
2154 // protection required for stack memory. We record this in an
2155 // executable as a PT_GNU_STACK segment. If an object file does not
2156 // have a .note.GNU-stack segment, we must assume that it is an old
2157 // object. On some targets that will force an executable stack.
2158
2159 void
2160 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2161 const Object* obj)
2162 {
2163 if (!seen_gnu_stack)
2164 {
2165 this->input_without_gnu_stack_note_ = true;
2166 if (parameters->options().warn_execstack()
2167 && parameters->target().is_default_stack_executable())
2168 gold_warning(_("%s: missing .note.GNU-stack section"
2169 " implies executable stack"),
2170 obj->name().c_str());
2171 }
2172 else
2173 {
2174 this->input_with_gnu_stack_note_ = true;
2175 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2176 {
2177 this->input_requires_executable_stack_ = true;
2178 if (parameters->options().warn_execstack())
2179 gold_warning(_("%s: requires executable stack"),
2180 obj->name().c_str());
2181 }
2182 }
2183 }
2184
2185 // Create automatic note sections.
2186
2187 void
2188 Layout::create_notes()
2189 {
2190 this->create_gold_note();
2191 this->create_stack_segment();
2192 this->create_build_id();
2193 }
2194
2195 // Create the dynamic sections which are needed before we read the
2196 // relocs.
2197
2198 void
2199 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2200 {
2201 if (parameters->doing_static_link())
2202 return;
2203
2204 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2205 elfcpp::SHT_DYNAMIC,
2206 (elfcpp::SHF_ALLOC
2207 | elfcpp::SHF_WRITE),
2208 false, ORDER_RELRO,
2209 true, false, false);
2210
2211 // A linker script may discard .dynamic, so check for NULL.
2212 if (this->dynamic_section_ != NULL)
2213 {
2214 this->dynamic_symbol_ =
2215 symtab->define_in_output_data("_DYNAMIC", NULL,
2216 Symbol_table::PREDEFINED,
2217 this->dynamic_section_, 0, 0,
2218 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2219 elfcpp::STV_HIDDEN, 0, false, false);
2220
2221 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2222
2223 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2224 }
2225 }
2226
2227 // For each output section whose name can be represented as C symbol,
2228 // define __start and __stop symbols for the section. This is a GNU
2229 // extension.
2230
2231 void
2232 Layout::define_section_symbols(Symbol_table* symtab)
2233 {
2234 for (Section_list::const_iterator p = this->section_list_.begin();
2235 p != this->section_list_.end();
2236 ++p)
2237 {
2238 const char* const name = (*p)->name();
2239 if (is_cident(name))
2240 {
2241 const std::string name_string(name);
2242 const std::string start_name(cident_section_start_prefix
2243 + name_string);
2244 const std::string stop_name(cident_section_stop_prefix
2245 + name_string);
2246
2247 symtab->define_in_output_data(start_name.c_str(),
2248 NULL, // version
2249 Symbol_table::PREDEFINED,
2250 *p,
2251 0, // value
2252 0, // symsize
2253 elfcpp::STT_NOTYPE,
2254 elfcpp::STB_GLOBAL,
2255 elfcpp::STV_DEFAULT,
2256 0, // nonvis
2257 false, // offset_is_from_end
2258 true); // only_if_ref
2259
2260 symtab->define_in_output_data(stop_name.c_str(),
2261 NULL, // version
2262 Symbol_table::PREDEFINED,
2263 *p,
2264 0, // value
2265 0, // symsize
2266 elfcpp::STT_NOTYPE,
2267 elfcpp::STB_GLOBAL,
2268 elfcpp::STV_DEFAULT,
2269 0, // nonvis
2270 true, // offset_is_from_end
2271 true); // only_if_ref
2272 }
2273 }
2274 }
2275
2276 // Define symbols for group signatures.
2277
2278 void
2279 Layout::define_group_signatures(Symbol_table* symtab)
2280 {
2281 for (Group_signatures::iterator p = this->group_signatures_.begin();
2282 p != this->group_signatures_.end();
2283 ++p)
2284 {
2285 Symbol* sym = symtab->lookup(p->signature, NULL);
2286 if (sym != NULL)
2287 p->section->set_info_symndx(sym);
2288 else
2289 {
2290 // Force the name of the group section to the group
2291 // signature, and use the group's section symbol as the
2292 // signature symbol.
2293 if (strcmp(p->section->name(), p->signature) != 0)
2294 {
2295 const char* name = this->namepool_.add(p->signature,
2296 true, NULL);
2297 p->section->set_name(name);
2298 }
2299 p->section->set_needs_symtab_index();
2300 p->section->set_info_section_symndx(p->section);
2301 }
2302 }
2303
2304 this->group_signatures_.clear();
2305 }
2306
2307 // Find the first read-only PT_LOAD segment, creating one if
2308 // necessary.
2309
2310 Output_segment*
2311 Layout::find_first_load_seg(const Target* target)
2312 {
2313 Output_segment* best = NULL;
2314 for (Segment_list::const_iterator p = this->segment_list_.begin();
2315 p != this->segment_list_.end();
2316 ++p)
2317 {
2318 if ((*p)->type() == elfcpp::PT_LOAD
2319 && ((*p)->flags() & elfcpp::PF_R) != 0
2320 && (parameters->options().omagic()
2321 || ((*p)->flags() & elfcpp::PF_W) == 0)
2322 && (!target->isolate_execinstr()
2323 || ((*p)->flags() & elfcpp::PF_X) == 0))
2324 {
2325 if (best == NULL || this->segment_precedes(*p, best))
2326 best = *p;
2327 }
2328 }
2329 if (best != NULL)
2330 return best;
2331
2332 gold_assert(!this->script_options_->saw_phdrs_clause());
2333
2334 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2335 elfcpp::PF_R);
2336 return load_seg;
2337 }
2338
2339 // Save states of all current output segments. Store saved states
2340 // in SEGMENT_STATES.
2341
2342 void
2343 Layout::save_segments(Segment_states* segment_states)
2344 {
2345 for (Segment_list::const_iterator p = this->segment_list_.begin();
2346 p != this->segment_list_.end();
2347 ++p)
2348 {
2349 Output_segment* segment = *p;
2350 // Shallow copy.
2351 Output_segment* copy = new Output_segment(*segment);
2352 (*segment_states)[segment] = copy;
2353 }
2354 }
2355
2356 // Restore states of output segments and delete any segment not found in
2357 // SEGMENT_STATES.
2358
2359 void
2360 Layout::restore_segments(const Segment_states* segment_states)
2361 {
2362 // Go through the segment list and remove any segment added in the
2363 // relaxation loop.
2364 this->tls_segment_ = NULL;
2365 this->relro_segment_ = NULL;
2366 Segment_list::iterator list_iter = this->segment_list_.begin();
2367 while (list_iter != this->segment_list_.end())
2368 {
2369 Output_segment* segment = *list_iter;
2370 Segment_states::const_iterator states_iter =
2371 segment_states->find(segment);
2372 if (states_iter != segment_states->end())
2373 {
2374 const Output_segment* copy = states_iter->second;
2375 // Shallow copy to restore states.
2376 *segment = *copy;
2377
2378 // Also fix up TLS and RELRO segment pointers as appropriate.
2379 if (segment->type() == elfcpp::PT_TLS)
2380 this->tls_segment_ = segment;
2381 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2382 this->relro_segment_ = segment;
2383
2384 ++list_iter;
2385 }
2386 else
2387 {
2388 list_iter = this->segment_list_.erase(list_iter);
2389 // This is a segment created during section layout. It should be
2390 // safe to remove it since we should have removed all pointers to it.
2391 delete segment;
2392 }
2393 }
2394 }
2395
2396 // Clean up after relaxation so that sections can be laid out again.
2397
2398 void
2399 Layout::clean_up_after_relaxation()
2400 {
2401 // Restore the segments to point state just prior to the relaxation loop.
2402 Script_sections* script_section = this->script_options_->script_sections();
2403 script_section->release_segments();
2404 this->restore_segments(this->segment_states_);
2405
2406 // Reset section addresses and file offsets
2407 for (Section_list::iterator p = this->section_list_.begin();
2408 p != this->section_list_.end();
2409 ++p)
2410 {
2411 (*p)->restore_states();
2412
2413 // If an input section changes size because of relaxation,
2414 // we need to adjust the section offsets of all input sections.
2415 // after such a section.
2416 if ((*p)->section_offsets_need_adjustment())
2417 (*p)->adjust_section_offsets();
2418
2419 (*p)->reset_address_and_file_offset();
2420 }
2421
2422 // Reset special output object address and file offsets.
2423 for (Data_list::iterator p = this->special_output_list_.begin();
2424 p != this->special_output_list_.end();
2425 ++p)
2426 (*p)->reset_address_and_file_offset();
2427
2428 // A linker script may have created some output section data objects.
2429 // They are useless now.
2430 for (Output_section_data_list::const_iterator p =
2431 this->script_output_section_data_list_.begin();
2432 p != this->script_output_section_data_list_.end();
2433 ++p)
2434 delete *p;
2435 this->script_output_section_data_list_.clear();
2436
2437 // Special-case fill output objects are recreated each time through
2438 // the relaxation loop.
2439 this->reset_relax_output();
2440 }
2441
2442 void
2443 Layout::reset_relax_output()
2444 {
2445 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2446 p != this->relax_output_list_.end();
2447 ++p)
2448 delete *p;
2449 this->relax_output_list_.clear();
2450 }
2451
2452 // Prepare for relaxation.
2453
2454 void
2455 Layout::prepare_for_relaxation()
2456 {
2457 // Create an relaxation debug check if in debugging mode.
2458 if (is_debugging_enabled(DEBUG_RELAXATION))
2459 this->relaxation_debug_check_ = new Relaxation_debug_check();
2460
2461 // Save segment states.
2462 this->segment_states_ = new Segment_states();
2463 this->save_segments(this->segment_states_);
2464
2465 for(Section_list::const_iterator p = this->section_list_.begin();
2466 p != this->section_list_.end();
2467 ++p)
2468 (*p)->save_states();
2469
2470 if (is_debugging_enabled(DEBUG_RELAXATION))
2471 this->relaxation_debug_check_->check_output_data_for_reset_values(
2472 this->section_list_, this->special_output_list_,
2473 this->relax_output_list_);
2474
2475 // Also enable recording of output section data from scripts.
2476 this->record_output_section_data_from_script_ = true;
2477 }
2478
2479 // If the user set the address of the text segment, that may not be
2480 // compatible with putting the segment headers and file headers into
2481 // that segment. For isolate_execinstr() targets, it's the rodata
2482 // segment rather than text where we might put the headers.
2483 static inline bool
2484 load_seg_unusable_for_headers(const Target* target)
2485 {
2486 const General_options& options = parameters->options();
2487 if (target->isolate_execinstr())
2488 return (options.user_set_Trodata_segment()
2489 && options.Trodata_segment() % target->abi_pagesize() != 0);
2490 else
2491 return (options.user_set_Ttext()
2492 && options.Ttext() % target->abi_pagesize() != 0);
2493 }
2494
2495 // Relaxation loop body: If target has no relaxation, this runs only once
2496 // Otherwise, the target relaxation hook is called at the end of
2497 // each iteration. If the hook returns true, it means re-layout of
2498 // section is required.
2499 //
2500 // The number of segments created by a linking script without a PHDRS
2501 // clause may be affected by section sizes and alignments. There is
2502 // a remote chance that relaxation causes different number of PT_LOAD
2503 // segments are created and sections are attached to different segments.
2504 // Therefore, we always throw away all segments created during section
2505 // layout. In order to be able to restart the section layout, we keep
2506 // a copy of the segment list right before the relaxation loop and use
2507 // that to restore the segments.
2508 //
2509 // PASS is the current relaxation pass number.
2510 // SYMTAB is a symbol table.
2511 // PLOAD_SEG is the address of a pointer for the load segment.
2512 // PHDR_SEG is a pointer to the PHDR segment.
2513 // SEGMENT_HEADERS points to the output segment header.
2514 // FILE_HEADER points to the output file header.
2515 // PSHNDX is the address to store the output section index.
2516
2517 off_t inline
2518 Layout::relaxation_loop_body(
2519 int pass,
2520 Target* target,
2521 Symbol_table* symtab,
2522 Output_segment** pload_seg,
2523 Output_segment* phdr_seg,
2524 Output_segment_headers* segment_headers,
2525 Output_file_header* file_header,
2526 unsigned int* pshndx)
2527 {
2528 // If this is not the first iteration, we need to clean up after
2529 // relaxation so that we can lay out the sections again.
2530 if (pass != 0)
2531 this->clean_up_after_relaxation();
2532
2533 // If there is a SECTIONS clause, put all the input sections into
2534 // the required order.
2535 Output_segment* load_seg;
2536 if (this->script_options_->saw_sections_clause())
2537 load_seg = this->set_section_addresses_from_script(symtab);
2538 else if (parameters->options().relocatable())
2539 load_seg = NULL;
2540 else
2541 load_seg = this->find_first_load_seg(target);
2542
2543 if (parameters->options().oformat_enum()
2544 != General_options::OBJECT_FORMAT_ELF)
2545 load_seg = NULL;
2546
2547 if (load_seg_unusable_for_headers(target))
2548 {
2549 load_seg = NULL;
2550 phdr_seg = NULL;
2551 }
2552
2553 gold_assert(phdr_seg == NULL
2554 || load_seg != NULL
2555 || this->script_options_->saw_sections_clause());
2556
2557 // If the address of the load segment we found has been set by
2558 // --section-start rather than by a script, then adjust the VMA and
2559 // LMA downward if possible to include the file and section headers.
2560 uint64_t header_gap = 0;
2561 if (load_seg != NULL
2562 && load_seg->are_addresses_set()
2563 && !this->script_options_->saw_sections_clause()
2564 && !parameters->options().relocatable())
2565 {
2566 file_header->finalize_data_size();
2567 segment_headers->finalize_data_size();
2568 size_t sizeof_headers = (file_header->data_size()
2569 + segment_headers->data_size());
2570 const uint64_t abi_pagesize = target->abi_pagesize();
2571 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2572 hdr_paddr &= ~(abi_pagesize - 1);
2573 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2574 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2575 load_seg = NULL;
2576 else
2577 {
2578 load_seg->set_addresses(load_seg->vaddr() - subtract,
2579 load_seg->paddr() - subtract);
2580 header_gap = subtract - sizeof_headers;
2581 }
2582 }
2583
2584 // Lay out the segment headers.
2585 if (!parameters->options().relocatable())
2586 {
2587 gold_assert(segment_headers != NULL);
2588 if (header_gap != 0 && load_seg != NULL)
2589 {
2590 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2591 load_seg->add_initial_output_data(z);
2592 }
2593 if (load_seg != NULL)
2594 load_seg->add_initial_output_data(segment_headers);
2595 if (phdr_seg != NULL)
2596 phdr_seg->add_initial_output_data(segment_headers);
2597 }
2598
2599 // Lay out the file header.
2600 if (load_seg != NULL)
2601 load_seg->add_initial_output_data(file_header);
2602
2603 if (this->script_options_->saw_phdrs_clause()
2604 && !parameters->options().relocatable())
2605 {
2606 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2607 // clause in a linker script.
2608 Script_sections* ss = this->script_options_->script_sections();
2609 ss->put_headers_in_phdrs(file_header, segment_headers);
2610 }
2611
2612 // We set the output section indexes in set_segment_offsets and
2613 // set_section_indexes.
2614 *pshndx = 1;
2615
2616 // Set the file offsets of all the segments, and all the sections
2617 // they contain.
2618 off_t off;
2619 if (!parameters->options().relocatable())
2620 off = this->set_segment_offsets(target, load_seg, pshndx);
2621 else
2622 off = this->set_relocatable_section_offsets(file_header, pshndx);
2623
2624 // Verify that the dummy relaxation does not change anything.
2625 if (is_debugging_enabled(DEBUG_RELAXATION))
2626 {
2627 if (pass == 0)
2628 this->relaxation_debug_check_->read_sections(this->section_list_);
2629 else
2630 this->relaxation_debug_check_->verify_sections(this->section_list_);
2631 }
2632
2633 *pload_seg = load_seg;
2634 return off;
2635 }
2636
2637 // Search the list of patterns and find the position of the given section
2638 // name in the output section. If the section name matches a glob
2639 // pattern and a non-glob name, then the non-glob position takes
2640 // precedence. Return 0 if no match is found.
2641
2642 unsigned int
2643 Layout::find_section_order_index(const std::string& section_name)
2644 {
2645 Unordered_map<std::string, unsigned int>::iterator map_it;
2646 map_it = this->input_section_position_.find(section_name);
2647 if (map_it != this->input_section_position_.end())
2648 return map_it->second;
2649
2650 // Absolute match failed. Linear search the glob patterns.
2651 std::vector<std::string>::iterator it;
2652 for (it = this->input_section_glob_.begin();
2653 it != this->input_section_glob_.end();
2654 ++it)
2655 {
2656 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2657 {
2658 map_it = this->input_section_position_.find(*it);
2659 gold_assert(map_it != this->input_section_position_.end());
2660 return map_it->second;
2661 }
2662 }
2663 return 0;
2664 }
2665
2666 // Read the sequence of input sections from the file specified with
2667 // option --section-ordering-file.
2668
2669 void
2670 Layout::read_layout_from_file()
2671 {
2672 const char* filename = parameters->options().section_ordering_file();
2673 std::ifstream in;
2674 std::string line;
2675
2676 in.open(filename);
2677 if (!in)
2678 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2679 filename, strerror(errno));
2680
2681 std::getline(in, line); // this chops off the trailing \n, if any
2682 unsigned int position = 1;
2683 this->set_section_ordering_specified();
2684
2685 while (in)
2686 {
2687 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2688 line.resize(line.length() - 1);
2689 // Ignore comments, beginning with '#'
2690 if (line[0] == '#')
2691 {
2692 std::getline(in, line);
2693 continue;
2694 }
2695 this->input_section_position_[line] = position;
2696 // Store all glob patterns in a vector.
2697 if (is_wildcard_string(line.c_str()))
2698 this->input_section_glob_.push_back(line);
2699 position++;
2700 std::getline(in, line);
2701 }
2702 }
2703
2704 // Finalize the layout. When this is called, we have created all the
2705 // output sections and all the output segments which are based on
2706 // input sections. We have several things to do, and we have to do
2707 // them in the right order, so that we get the right results correctly
2708 // and efficiently.
2709
2710 // 1) Finalize the list of output segments and create the segment
2711 // table header.
2712
2713 // 2) Finalize the dynamic symbol table and associated sections.
2714
2715 // 3) Determine the final file offset of all the output segments.
2716
2717 // 4) Determine the final file offset of all the SHF_ALLOC output
2718 // sections.
2719
2720 // 5) Create the symbol table sections and the section name table
2721 // section.
2722
2723 // 6) Finalize the symbol table: set symbol values to their final
2724 // value and make a final determination of which symbols are going
2725 // into the output symbol table.
2726
2727 // 7) Create the section table header.
2728
2729 // 8) Determine the final file offset of all the output sections which
2730 // are not SHF_ALLOC, including the section table header.
2731
2732 // 9) Finalize the ELF file header.
2733
2734 // This function returns the size of the output file.
2735
2736 off_t
2737 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2738 Target* target, const Task* task)
2739 {
2740 unsigned int local_dynamic_count = 0;
2741 unsigned int forced_local_dynamic_count = 0;
2742
2743 target->finalize_sections(this, input_objects, symtab);
2744
2745 this->count_local_symbols(task, input_objects);
2746
2747 this->link_stabs_sections();
2748
2749 Output_segment* phdr_seg = NULL;
2750 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2751 {
2752 // There was a dynamic object in the link. We need to create
2753 // some information for the dynamic linker.
2754
2755 // Create the PT_PHDR segment which will hold the program
2756 // headers.
2757 if (!this->script_options_->saw_phdrs_clause())
2758 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2759
2760 // Create the dynamic symbol table, including the hash table.
2761 Output_section* dynstr;
2762 std::vector<Symbol*> dynamic_symbols;
2763 Versions versions(*this->script_options()->version_script_info(),
2764 &this->dynpool_);
2765 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2766 &local_dynamic_count,
2767 &forced_local_dynamic_count,
2768 &dynamic_symbols,
2769 &versions);
2770
2771 // Create the .interp section to hold the name of the
2772 // interpreter, and put it in a PT_INTERP segment. Don't do it
2773 // if we saw a .interp section in an input file.
2774 if ((!parameters->options().shared()
2775 || parameters->options().dynamic_linker() != NULL)
2776 && this->interp_segment_ == NULL)
2777 this->create_interp(target);
2778
2779 // Finish the .dynamic section to hold the dynamic data, and put
2780 // it in a PT_DYNAMIC segment.
2781 this->finish_dynamic_section(input_objects, symtab);
2782
2783 // We should have added everything we need to the dynamic string
2784 // table.
2785 this->dynpool_.set_string_offsets();
2786
2787 // Create the version sections. We can't do this until the
2788 // dynamic string table is complete.
2789 this->create_version_sections(&versions, symtab,
2790 (local_dynamic_count
2791 + forced_local_dynamic_count),
2792 dynamic_symbols, dynstr);
2793
2794 // Set the size of the _DYNAMIC symbol. We can't do this until
2795 // after we call create_version_sections.
2796 this->set_dynamic_symbol_size(symtab);
2797 }
2798
2799 // Create segment headers.
2800 Output_segment_headers* segment_headers =
2801 (parameters->options().relocatable()
2802 ? NULL
2803 : new Output_segment_headers(this->segment_list_));
2804
2805 // Lay out the file header.
2806 Output_file_header* file_header = new Output_file_header(target, symtab,
2807 segment_headers);
2808
2809 this->special_output_list_.push_back(file_header);
2810 if (segment_headers != NULL)
2811 this->special_output_list_.push_back(segment_headers);
2812
2813 // Find approriate places for orphan output sections if we are using
2814 // a linker script.
2815 if (this->script_options_->saw_sections_clause())
2816 this->place_orphan_sections_in_script();
2817
2818 Output_segment* load_seg;
2819 off_t off;
2820 unsigned int shndx;
2821 int pass = 0;
2822
2823 // Take a snapshot of the section layout as needed.
2824 if (target->may_relax())
2825 this->prepare_for_relaxation();
2826
2827 // Run the relaxation loop to lay out sections.
2828 do
2829 {
2830 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2831 phdr_seg, segment_headers, file_header,
2832 &shndx);
2833 pass++;
2834 }
2835 while (target->may_relax()
2836 && target->relax(pass, input_objects, symtab, this, task));
2837
2838 // If there is a load segment that contains the file and program headers,
2839 // provide a symbol __ehdr_start pointing there.
2840 // A program can use this to examine itself robustly.
2841 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2842 if (ehdr_start != NULL && ehdr_start->is_predefined())
2843 {
2844 if (load_seg != NULL)
2845 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2846 else
2847 ehdr_start->set_undefined();
2848 }
2849
2850 // Set the file offsets of all the non-data sections we've seen so
2851 // far which don't have to wait for the input sections. We need
2852 // this in order to finalize local symbols in non-allocated
2853 // sections.
2854 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2855
2856 // Set the section indexes of all unallocated sections seen so far,
2857 // in case any of them are somehow referenced by a symbol.
2858 shndx = this->set_section_indexes(shndx);
2859
2860 // Create the symbol table sections.
2861 this->create_symtab_sections(input_objects, symtab, shndx, &off,
2862 local_dynamic_count);
2863 if (!parameters->doing_static_link())
2864 this->assign_local_dynsym_offsets(input_objects);
2865
2866 // Process any symbol assignments from a linker script. This must
2867 // be called after the symbol table has been finalized.
2868 this->script_options_->finalize_symbols(symtab, this);
2869
2870 // Create the incremental inputs sections.
2871 if (this->incremental_inputs_)
2872 {
2873 this->incremental_inputs_->finalize();
2874 this->create_incremental_info_sections(symtab);
2875 }
2876
2877 // Create the .shstrtab section.
2878 Output_section* shstrtab_section = this->create_shstrtab();
2879
2880 // Set the file offsets of the rest of the non-data sections which
2881 // don't have to wait for the input sections.
2882 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2883
2884 // Now that all sections have been created, set the section indexes
2885 // for any sections which haven't been done yet.
2886 shndx = this->set_section_indexes(shndx);
2887
2888 // Create the section table header.
2889 this->create_shdrs(shstrtab_section, &off);
2890
2891 // If there are no sections which require postprocessing, we can
2892 // handle the section names now, and avoid a resize later.
2893 if (!this->any_postprocessing_sections_)
2894 {
2895 off = this->set_section_offsets(off,
2896 POSTPROCESSING_SECTIONS_PASS);
2897 off =
2898 this->set_section_offsets(off,
2899 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2900 }
2901
2902 file_header->set_section_info(this->section_headers_, shstrtab_section);
2903
2904 // Now we know exactly where everything goes in the output file
2905 // (except for non-allocated sections which require postprocessing).
2906 Output_data::layout_complete();
2907
2908 this->output_file_size_ = off;
2909
2910 return off;
2911 }
2912
2913 // Create a note header following the format defined in the ELF ABI.
2914 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2915 // of the section to create, DESCSZ is the size of the descriptor.
2916 // ALLOCATE is true if the section should be allocated in memory.
2917 // This returns the new note section. It sets *TRAILING_PADDING to
2918 // the number of trailing zero bytes required.
2919
2920 Output_section*
2921 Layout::create_note(const char* name, int note_type,
2922 const char* section_name, size_t descsz,
2923 bool allocate, size_t* trailing_padding)
2924 {
2925 // Authorities all agree that the values in a .note field should
2926 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2927 // they differ on what the alignment is for 64-bit binaries.
2928 // The GABI says unambiguously they take 8-byte alignment:
2929 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2930 // Other documentation says alignment should always be 4 bytes:
2931 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2932 // GNU ld and GNU readelf both support the latter (at least as of
2933 // version 2.16.91), and glibc always generates the latter for
2934 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2935 // here.
2936 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2937 const int size = parameters->target().get_size();
2938 #else
2939 const int size = 32;
2940 #endif
2941
2942 // The contents of the .note section.
2943 size_t namesz = strlen(name) + 1;
2944 size_t aligned_namesz = align_address(namesz, size / 8);
2945 size_t aligned_descsz = align_address(descsz, size / 8);
2946
2947 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2948
2949 unsigned char* buffer = new unsigned char[notehdrsz];
2950 memset(buffer, 0, notehdrsz);
2951
2952 bool is_big_endian = parameters->target().is_big_endian();
2953
2954 if (size == 32)
2955 {
2956 if (!is_big_endian)
2957 {
2958 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2959 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2960 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2961 }
2962 else
2963 {
2964 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2965 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2966 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2967 }
2968 }
2969 else if (size == 64)
2970 {
2971 if (!is_big_endian)
2972 {
2973 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2974 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2975 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2976 }
2977 else
2978 {
2979 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2980 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2981 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2982 }
2983 }
2984 else
2985 gold_unreachable();
2986
2987 memcpy(buffer + 3 * (size / 8), name, namesz);
2988
2989 elfcpp::Elf_Xword flags = 0;
2990 Output_section_order order = ORDER_INVALID;
2991 if (allocate)
2992 {
2993 flags = elfcpp::SHF_ALLOC;
2994 order = ORDER_RO_NOTE;
2995 }
2996 Output_section* os = this->choose_output_section(NULL, section_name,
2997 elfcpp::SHT_NOTE,
2998 flags, false, order, false,
2999 false, true);
3000 if (os == NULL)
3001 return NULL;
3002
3003 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3004 size / 8,
3005 "** note header");
3006 os->add_output_section_data(posd);
3007
3008 *trailing_padding = aligned_descsz - descsz;
3009
3010 return os;
3011 }
3012
3013 // For an executable or shared library, create a note to record the
3014 // version of gold used to create the binary.
3015
3016 void
3017 Layout::create_gold_note()
3018 {
3019 if (parameters->options().relocatable()
3020 || parameters->incremental_update())
3021 return;
3022
3023 std::string desc = std::string("gold ") + gold::get_version_string();
3024
3025 size_t trailing_padding;
3026 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3027 ".note.gnu.gold-version", desc.size(),
3028 false, &trailing_padding);
3029 if (os == NULL)
3030 return;
3031
3032 Output_section_data* posd = new Output_data_const(desc, 4);
3033 os->add_output_section_data(posd);
3034
3035 if (trailing_padding > 0)
3036 {
3037 posd = new Output_data_zero_fill(trailing_padding, 0);
3038 os->add_output_section_data(posd);
3039 }
3040 }
3041
3042 // Record whether the stack should be executable. This can be set
3043 // from the command line using the -z execstack or -z noexecstack
3044 // options. Otherwise, if any input file has a .note.GNU-stack
3045 // section with the SHF_EXECINSTR flag set, the stack should be
3046 // executable. Otherwise, if at least one input file a
3047 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3048 // section, we use the target default for whether the stack should be
3049 // executable. If -z stack-size was used to set a p_memsz value for
3050 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3051 // don't generate a stack note. When generating a object file, we
3052 // create a .note.GNU-stack section with the appropriate marking.
3053 // When generating an executable or shared library, we create a
3054 // PT_GNU_STACK segment.
3055
3056 void
3057 Layout::create_stack_segment()
3058 {
3059 bool is_stack_executable;
3060 if (parameters->options().is_execstack_set())
3061 {
3062 is_stack_executable = parameters->options().is_stack_executable();
3063 if (!is_stack_executable
3064 && this->input_requires_executable_stack_
3065 && parameters->options().warn_execstack())
3066 gold_warning(_("one or more inputs require executable stack, "
3067 "but -z noexecstack was given"));
3068 }
3069 else if (!this->input_with_gnu_stack_note_
3070 && (!parameters->options().user_set_stack_size()
3071 || parameters->options().relocatable()))
3072 return;
3073 else
3074 {
3075 if (this->input_requires_executable_stack_)
3076 is_stack_executable = true;
3077 else if (this->input_without_gnu_stack_note_)
3078 is_stack_executable =
3079 parameters->target().is_default_stack_executable();
3080 else
3081 is_stack_executable = false;
3082 }
3083
3084 if (parameters->options().relocatable())
3085 {
3086 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3087 elfcpp::Elf_Xword flags = 0;
3088 if (is_stack_executable)
3089 flags |= elfcpp::SHF_EXECINSTR;
3090 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3091 ORDER_INVALID, false);
3092 }
3093 else
3094 {
3095 if (this->script_options_->saw_phdrs_clause())
3096 return;
3097 int flags = elfcpp::PF_R | elfcpp::PF_W;
3098 if (is_stack_executable)
3099 flags |= elfcpp::PF_X;
3100 Output_segment* seg =
3101 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3102 seg->set_size(parameters->options().stack_size());
3103 // BFD lets targets override this default alignment, but the only
3104 // targets that do so are ones that Gold does not support so far.
3105 seg->set_minimum_p_align(16);
3106 }
3107 }
3108
3109 // If --build-id was used, set up the build ID note.
3110
3111 void
3112 Layout::create_build_id()
3113 {
3114 if (!parameters->options().user_set_build_id())
3115 return;
3116
3117 const char* style = parameters->options().build_id();
3118 if (strcmp(style, "none") == 0)
3119 return;
3120
3121 // Set DESCSZ to the size of the note descriptor. When possible,
3122 // set DESC to the note descriptor contents.
3123 size_t descsz;
3124 std::string desc;
3125 if (strcmp(style, "md5") == 0)
3126 descsz = 128 / 8;
3127 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3128 descsz = 160 / 8;
3129 else if (strcmp(style, "uuid") == 0)
3130 {
3131 #ifndef __MINGW32__
3132 const size_t uuidsz = 128 / 8;
3133
3134 char buffer[uuidsz];
3135 memset(buffer, 0, uuidsz);
3136
3137 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3138 if (descriptor < 0)
3139 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3140 strerror(errno));
3141 else
3142 {
3143 ssize_t got = ::read(descriptor, buffer, uuidsz);
3144 release_descriptor(descriptor, true);
3145 if (got < 0)
3146 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3147 else if (static_cast<size_t>(got) != uuidsz)
3148 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3149 uuidsz, got);
3150 }
3151
3152 desc.assign(buffer, uuidsz);
3153 descsz = uuidsz;
3154 #else // __MINGW32__
3155 UUID uuid;
3156 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3157
3158 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3159 if (!rpc_library)
3160 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3161 else
3162 {
3163 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3164 GetProcAddress(rpc_library, "UuidCreate"));
3165 if (!uuid_create)
3166 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3167 else if (uuid_create(&uuid) != RPC_S_OK)
3168 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3169 FreeLibrary(rpc_library);
3170 }
3171 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3172 descsz = sizeof(UUID);
3173 #endif // __MINGW32__
3174 }
3175 else if (strncmp(style, "0x", 2) == 0)
3176 {
3177 hex_init();
3178 const char* p = style + 2;
3179 while (*p != '\0')
3180 {
3181 if (hex_p(p[0]) && hex_p(p[1]))
3182 {
3183 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3184 desc += c;
3185 p += 2;
3186 }
3187 else if (*p == '-' || *p == ':')
3188 ++p;
3189 else
3190 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3191 style);
3192 }
3193 descsz = desc.size();
3194 }
3195 else
3196 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3197
3198 // Create the note.
3199 size_t trailing_padding;
3200 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3201 ".note.gnu.build-id", descsz, true,
3202 &trailing_padding);
3203 if (os == NULL)
3204 return;
3205
3206 if (!desc.empty())
3207 {
3208 // We know the value already, so we fill it in now.
3209 gold_assert(desc.size() == descsz);
3210
3211 Output_section_data* posd = new Output_data_const(desc, 4);
3212 os->add_output_section_data(posd);
3213
3214 if (trailing_padding != 0)
3215 {
3216 posd = new Output_data_zero_fill(trailing_padding, 0);
3217 os->add_output_section_data(posd);
3218 }
3219 }
3220 else
3221 {
3222 // We need to compute a checksum after we have completed the
3223 // link.
3224 gold_assert(trailing_padding == 0);
3225 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3226 os->add_output_section_data(this->build_id_note_);
3227 }
3228 }
3229
3230 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3231 // field of the former should point to the latter. I'm not sure who
3232 // started this, but the GNU linker does it, and some tools depend
3233 // upon it.
3234
3235 void
3236 Layout::link_stabs_sections()
3237 {
3238 if (!this->have_stabstr_section_)
3239 return;
3240
3241 for (Section_list::iterator p = this->section_list_.begin();
3242 p != this->section_list_.end();
3243 ++p)
3244 {
3245 if ((*p)->type() != elfcpp::SHT_STRTAB)
3246 continue;
3247
3248 const char* name = (*p)->name();
3249 if (strncmp(name, ".stab", 5) != 0)
3250 continue;
3251
3252 size_t len = strlen(name);
3253 if (strcmp(name + len - 3, "str") != 0)
3254 continue;
3255
3256 std::string stab_name(name, len - 3);
3257 Output_section* stab_sec;
3258 stab_sec = this->find_output_section(stab_name.c_str());
3259 if (stab_sec != NULL)
3260 stab_sec->set_link_section(*p);
3261 }
3262 }
3263
3264 // Create .gnu_incremental_inputs and related sections needed
3265 // for the next run of incremental linking to check what has changed.
3266
3267 void
3268 Layout::create_incremental_info_sections(Symbol_table* symtab)
3269 {
3270 Incremental_inputs* incr = this->incremental_inputs_;
3271
3272 gold_assert(incr != NULL);
3273
3274 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3275 incr->create_data_sections(symtab);
3276
3277 // Add the .gnu_incremental_inputs section.
3278 const char* incremental_inputs_name =
3279 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3280 Output_section* incremental_inputs_os =
3281 this->make_output_section(incremental_inputs_name,
3282 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3283 ORDER_INVALID, false);
3284 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3285
3286 // Add the .gnu_incremental_symtab section.
3287 const char* incremental_symtab_name =
3288 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3289 Output_section* incremental_symtab_os =
3290 this->make_output_section(incremental_symtab_name,
3291 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3292 ORDER_INVALID, false);
3293 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3294 incremental_symtab_os->set_entsize(4);
3295
3296 // Add the .gnu_incremental_relocs section.
3297 const char* incremental_relocs_name =
3298 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3299 Output_section* incremental_relocs_os =
3300 this->make_output_section(incremental_relocs_name,
3301 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3302 ORDER_INVALID, false);
3303 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3304 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3305
3306 // Add the .gnu_incremental_got_plt section.
3307 const char* incremental_got_plt_name =
3308 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3309 Output_section* incremental_got_plt_os =
3310 this->make_output_section(incremental_got_plt_name,
3311 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3312 ORDER_INVALID, false);
3313 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3314
3315 // Add the .gnu_incremental_strtab section.
3316 const char* incremental_strtab_name =
3317 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3318 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3319 elfcpp::SHT_STRTAB, 0,
3320 ORDER_INVALID, false);
3321 Output_data_strtab* strtab_data =
3322 new Output_data_strtab(incr->get_stringpool());
3323 incremental_strtab_os->add_output_section_data(strtab_data);
3324
3325 incremental_inputs_os->set_after_input_sections();
3326 incremental_symtab_os->set_after_input_sections();
3327 incremental_relocs_os->set_after_input_sections();
3328 incremental_got_plt_os->set_after_input_sections();
3329
3330 incremental_inputs_os->set_link_section(incremental_strtab_os);
3331 incremental_symtab_os->set_link_section(incremental_inputs_os);
3332 incremental_relocs_os->set_link_section(incremental_inputs_os);
3333 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3334 }
3335
3336 // Return whether SEG1 should be before SEG2 in the output file. This
3337 // is based entirely on the segment type and flags. When this is
3338 // called the segment addresses have normally not yet been set.
3339
3340 bool
3341 Layout::segment_precedes(const Output_segment* seg1,
3342 const Output_segment* seg2)
3343 {
3344 // In order to produce a stable ordering if we're called with the same pointer
3345 // return false.
3346 if (seg1 == seg2)
3347 return false;
3348
3349 elfcpp::Elf_Word type1 = seg1->type();
3350 elfcpp::Elf_Word type2 = seg2->type();
3351
3352 // The single PT_PHDR segment is required to precede any loadable
3353 // segment. We simply make it always first.
3354 if (type1 == elfcpp::PT_PHDR)
3355 {
3356 gold_assert(type2 != elfcpp::PT_PHDR);
3357 return true;
3358 }
3359 if (type2 == elfcpp::PT_PHDR)
3360 return false;
3361
3362 // The single PT_INTERP segment is required to precede any loadable
3363 // segment. We simply make it always second.
3364 if (type1 == elfcpp::PT_INTERP)
3365 {
3366 gold_assert(type2 != elfcpp::PT_INTERP);
3367 return true;
3368 }
3369 if (type2 == elfcpp::PT_INTERP)
3370 return false;
3371
3372 // We then put PT_LOAD segments before any other segments.
3373 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3374 return true;
3375 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3376 return false;
3377
3378 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3379 // segment, because that is where the dynamic linker expects to find
3380 // it (this is just for efficiency; other positions would also work
3381 // correctly).
3382 if (type1 == elfcpp::PT_TLS
3383 && type2 != elfcpp::PT_TLS
3384 && type2 != elfcpp::PT_GNU_RELRO)
3385 return false;
3386 if (type2 == elfcpp::PT_TLS
3387 && type1 != elfcpp::PT_TLS
3388 && type1 != elfcpp::PT_GNU_RELRO)
3389 return true;
3390
3391 // We put the PT_GNU_RELRO segment last, because that is where the
3392 // dynamic linker expects to find it (as with PT_TLS, this is just
3393 // for efficiency).
3394 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3395 return false;
3396 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3397 return true;
3398
3399 const elfcpp::Elf_Word flags1 = seg1->flags();
3400 const elfcpp::Elf_Word flags2 = seg2->flags();
3401
3402 // The order of non-PT_LOAD segments is unimportant. We simply sort
3403 // by the numeric segment type and flags values. There should not
3404 // be more than one segment with the same type and flags, except
3405 // when a linker script specifies such.
3406 if (type1 != elfcpp::PT_LOAD)
3407 {
3408 if (type1 != type2)
3409 return type1 < type2;
3410 gold_assert(flags1 != flags2
3411 || this->script_options_->saw_phdrs_clause());
3412 return flags1 < flags2;
3413 }
3414
3415 // If the addresses are set already, sort by load address.
3416 if (seg1->are_addresses_set())
3417 {
3418 if (!seg2->are_addresses_set())
3419 return true;
3420
3421 unsigned int section_count1 = seg1->output_section_count();
3422 unsigned int section_count2 = seg2->output_section_count();
3423 if (section_count1 == 0 && section_count2 > 0)
3424 return true;
3425 if (section_count1 > 0 && section_count2 == 0)
3426 return false;
3427
3428 uint64_t paddr1 = (seg1->are_addresses_set()
3429 ? seg1->paddr()
3430 : seg1->first_section_load_address());
3431 uint64_t paddr2 = (seg2->are_addresses_set()
3432 ? seg2->paddr()
3433 : seg2->first_section_load_address());
3434
3435 if (paddr1 != paddr2)
3436 return paddr1 < paddr2;
3437 }
3438 else if (seg2->are_addresses_set())
3439 return false;
3440
3441 // A segment which holds large data comes after a segment which does
3442 // not hold large data.
3443 if (seg1->is_large_data_segment())
3444 {
3445 if (!seg2->is_large_data_segment())
3446 return false;
3447 }
3448 else if (seg2->is_large_data_segment())
3449 return true;
3450
3451 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3452 // segments come before writable segments. Then writable segments
3453 // with data come before writable segments without data. Then
3454 // executable segments come before non-executable segments. Then
3455 // the unlikely case of a non-readable segment comes before the
3456 // normal case of a readable segment. If there are multiple
3457 // segments with the same type and flags, we require that the
3458 // address be set, and we sort by virtual address and then physical
3459 // address.
3460 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3461 return (flags1 & elfcpp::PF_W) == 0;
3462 if ((flags1 & elfcpp::PF_W) != 0
3463 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3464 return seg1->has_any_data_sections();
3465 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3466 return (flags1 & elfcpp::PF_X) != 0;
3467 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3468 return (flags1 & elfcpp::PF_R) == 0;
3469
3470 // We shouldn't get here--we shouldn't create segments which we
3471 // can't distinguish. Unless of course we are using a weird linker
3472 // script or overlapping --section-start options. We could also get
3473 // here if plugins want unique segments for subsets of sections.
3474 gold_assert(this->script_options_->saw_phdrs_clause()
3475 || parameters->options().any_section_start()
3476 || this->is_unique_segment_for_sections_specified()
3477 || parameters->options().text_unlikely_segment());
3478 return false;
3479 }
3480
3481 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3482
3483 static off_t
3484 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3485 {
3486 uint64_t unsigned_off = off;
3487 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3488 | (addr & (abi_pagesize - 1)));
3489 if (aligned_off < unsigned_off)
3490 aligned_off += abi_pagesize;
3491 return aligned_off;
3492 }
3493
3494 // On targets where the text segment contains only executable code,
3495 // a non-executable segment is never the text segment.
3496
3497 static inline bool
3498 is_text_segment(const Target* target, const Output_segment* seg)
3499 {
3500 elfcpp::Elf_Xword flags = seg->flags();
3501 if ((flags & elfcpp::PF_W) != 0)
3502 return false;
3503 if ((flags & elfcpp::PF_X) == 0)
3504 return !target->isolate_execinstr();
3505 return true;
3506 }
3507
3508 // Set the file offsets of all the segments, and all the sections they
3509 // contain. They have all been created. LOAD_SEG must be laid out
3510 // first. Return the offset of the data to follow.
3511
3512 off_t
3513 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3514 unsigned int* pshndx)
3515 {
3516 // Sort them into the final order. We use a stable sort so that we
3517 // don't randomize the order of indistinguishable segments created
3518 // by linker scripts.
3519 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3520 Layout::Compare_segments(this));
3521
3522 // Find the PT_LOAD segments, and set their addresses and offsets
3523 // and their section's addresses and offsets.
3524 uint64_t start_addr;
3525 if (parameters->options().user_set_Ttext())
3526 start_addr = parameters->options().Ttext();
3527 else if (parameters->options().output_is_position_independent())
3528 start_addr = 0;
3529 else
3530 start_addr = target->default_text_segment_address();
3531
3532 uint64_t addr = start_addr;
3533 off_t off = 0;
3534
3535 // If LOAD_SEG is NULL, then the file header and segment headers
3536 // will not be loadable. But they still need to be at offset 0 in
3537 // the file. Set their offsets now.
3538 if (load_seg == NULL)
3539 {
3540 for (Data_list::iterator p = this->special_output_list_.begin();
3541 p != this->special_output_list_.end();
3542 ++p)
3543 {
3544 off = align_address(off, (*p)->addralign());
3545 (*p)->set_address_and_file_offset(0, off);
3546 off += (*p)->data_size();
3547 }
3548 }
3549
3550 unsigned int increase_relro = this->increase_relro_;
3551 if (this->script_options_->saw_sections_clause())
3552 increase_relro = 0;
3553
3554 const bool check_sections = parameters->options().check_sections();
3555 Output_segment* last_load_segment = NULL;
3556
3557 unsigned int shndx_begin = *pshndx;
3558 unsigned int shndx_load_seg = *pshndx;
3559
3560 for (Segment_list::iterator p = this->segment_list_.begin();
3561 p != this->segment_list_.end();
3562 ++p)
3563 {
3564 if ((*p)->type() == elfcpp::PT_LOAD)
3565 {
3566 if (target->isolate_execinstr())
3567 {
3568 // When we hit the segment that should contain the
3569 // file headers, reset the file offset so we place
3570 // it and subsequent segments appropriately.
3571 // We'll fix up the preceding segments below.
3572 if (load_seg == *p)
3573 {
3574 if (off == 0)
3575 load_seg = NULL;
3576 else
3577 {
3578 off = 0;
3579 shndx_load_seg = *pshndx;
3580 }
3581 }
3582 }
3583 else
3584 {
3585 // Verify that the file headers fall into the first segment.
3586 if (load_seg != NULL && load_seg != *p)
3587 gold_unreachable();
3588 load_seg = NULL;
3589 }
3590
3591 bool are_addresses_set = (*p)->are_addresses_set();
3592 if (are_addresses_set)
3593 {
3594 // When it comes to setting file offsets, we care about
3595 // the physical address.
3596 addr = (*p)->paddr();
3597 }
3598 else if (parameters->options().user_set_Ttext()
3599 && (parameters->options().omagic()
3600 || is_text_segment(target, *p)))
3601 {
3602 are_addresses_set = true;
3603 }
3604 else if (parameters->options().user_set_Trodata_segment()
3605 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3606 {
3607 addr = parameters->options().Trodata_segment();
3608 are_addresses_set = true;
3609 }
3610 else if (parameters->options().user_set_Tdata()
3611 && ((*p)->flags() & elfcpp::PF_W) != 0
3612 && (!parameters->options().user_set_Tbss()
3613 || (*p)->has_any_data_sections()))
3614 {
3615 addr = parameters->options().Tdata();
3616 are_addresses_set = true;
3617 }
3618 else if (parameters->options().user_set_Tbss()
3619 && ((*p)->flags() & elfcpp::PF_W) != 0
3620 && !(*p)->has_any_data_sections())
3621 {
3622 addr = parameters->options().Tbss();
3623 are_addresses_set = true;
3624 }
3625
3626 uint64_t orig_addr = addr;
3627 uint64_t orig_off = off;
3628
3629 uint64_t aligned_addr = 0;
3630 uint64_t abi_pagesize = target->abi_pagesize();
3631 uint64_t common_pagesize = target->common_pagesize();
3632
3633 if (!parameters->options().nmagic()
3634 && !parameters->options().omagic())
3635 (*p)->set_minimum_p_align(abi_pagesize);
3636
3637 if (!are_addresses_set)
3638 {
3639 // Skip the address forward one page, maintaining the same
3640 // position within the page. This lets us store both segments
3641 // overlapping on a single page in the file, but the loader will
3642 // put them on different pages in memory. We will revisit this
3643 // decision once we know the size of the segment.
3644
3645 uint64_t max_align = (*p)->maximum_alignment();
3646 if (max_align > abi_pagesize)
3647 addr = align_address(addr, max_align);
3648 aligned_addr = addr;
3649
3650 if (load_seg == *p)
3651 {
3652 // This is the segment that will contain the file
3653 // headers, so its offset will have to be exactly zero.
3654 gold_assert(orig_off == 0);
3655
3656 // If the target wants a fixed minimum distance from the
3657 // text segment to the read-only segment, move up now.
3658 uint64_t min_addr =
3659 start_addr + (parameters->options().user_set_rosegment_gap()
3660 ? parameters->options().rosegment_gap()
3661 : target->rosegment_gap());
3662 if (addr < min_addr)
3663 addr = min_addr;
3664
3665 // But this is not the first segment! To make its
3666 // address congruent with its offset, that address better
3667 // be aligned to the ABI-mandated page size.
3668 addr = align_address(addr, abi_pagesize);
3669 aligned_addr = addr;
3670 }
3671 else
3672 {
3673 if ((addr & (abi_pagesize - 1)) != 0)
3674 addr = addr + abi_pagesize;
3675
3676 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3677 }
3678 }
3679
3680 if (!parameters->options().nmagic()
3681 && !parameters->options().omagic())
3682 {
3683 // Here we are also taking care of the case when
3684 // the maximum segment alignment is larger than the page size.
3685 off = align_file_offset(off, addr,
3686 std::max(abi_pagesize,
3687 (*p)->maximum_alignment()));
3688 }
3689 else
3690 {
3691 // This is -N or -n with a section script which prevents
3692 // us from using a load segment. We need to ensure that
3693 // the file offset is aligned to the alignment of the
3694 // segment. This is because the linker script
3695 // implicitly assumed a zero offset. If we don't align
3696 // here, then the alignment of the sections in the
3697 // linker script may not match the alignment of the
3698 // sections in the set_section_addresses call below,
3699 // causing an error about dot moving backward.
3700 off = align_address(off, (*p)->maximum_alignment());
3701 }
3702
3703 unsigned int shndx_hold = *pshndx;
3704 bool has_relro = false;
3705 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3706 false, addr,
3707 &increase_relro,
3708 &has_relro,
3709 &off, pshndx);
3710
3711 // Now that we know the size of this segment, we may be able
3712 // to save a page in memory, at the cost of wasting some
3713 // file space, by instead aligning to the start of a new
3714 // page. Here we use the real machine page size rather than
3715 // the ABI mandated page size. If the segment has been
3716 // aligned so that the relro data ends at a page boundary,
3717 // we do not try to realign it.
3718
3719 if (!are_addresses_set
3720 && !has_relro
3721 && aligned_addr != addr
3722 && !parameters->incremental())
3723 {
3724 uint64_t first_off = (common_pagesize
3725 - (aligned_addr
3726 & (common_pagesize - 1)));
3727 uint64_t last_off = new_addr & (common_pagesize - 1);
3728 if (first_off > 0
3729 && last_off > 0
3730 && ((aligned_addr & ~ (common_pagesize - 1))
3731 != (new_addr & ~ (common_pagesize - 1)))
3732 && first_off + last_off <= common_pagesize)
3733 {
3734 *pshndx = shndx_hold;
3735 addr = align_address(aligned_addr, common_pagesize);
3736 addr = align_address(addr, (*p)->maximum_alignment());
3737 if ((addr & (abi_pagesize - 1)) != 0)
3738 addr = addr + abi_pagesize;
3739 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3740 off = align_file_offset(off, addr, abi_pagesize);
3741
3742 increase_relro = this->increase_relro_;
3743 if (this->script_options_->saw_sections_clause())
3744 increase_relro = 0;
3745 has_relro = false;
3746
3747 new_addr = (*p)->set_section_addresses(target, this,
3748 true, addr,
3749 &increase_relro,
3750 &has_relro,
3751 &off, pshndx);
3752 }
3753 }
3754
3755 addr = new_addr;
3756
3757 // Implement --check-sections. We know that the segments
3758 // are sorted by LMA.
3759 if (check_sections && last_load_segment != NULL)
3760 {
3761 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3762 if (last_load_segment->paddr() + last_load_segment->memsz()
3763 > (*p)->paddr())
3764 {
3765 unsigned long long lb1 = last_load_segment->paddr();
3766 unsigned long long le1 = lb1 + last_load_segment->memsz();
3767 unsigned long long lb2 = (*p)->paddr();
3768 unsigned long long le2 = lb2 + (*p)->memsz();
3769 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3770 "[0x%llx -> 0x%llx]"),
3771 lb1, le1, lb2, le2);
3772 }
3773 }
3774 last_load_segment = *p;
3775 }
3776 }
3777
3778 if (load_seg != NULL && target->isolate_execinstr())
3779 {
3780 // Process the early segments again, setting their file offsets
3781 // so they land after the segments starting at LOAD_SEG.
3782 off = align_file_offset(off, 0, target->abi_pagesize());
3783
3784 this->reset_relax_output();
3785
3786 for (Segment_list::iterator p = this->segment_list_.begin();
3787 *p != load_seg;
3788 ++p)
3789 {
3790 if ((*p)->type() == elfcpp::PT_LOAD)
3791 {
3792 // We repeat the whole job of assigning addresses and
3793 // offsets, but we really only want to change the offsets and
3794 // must ensure that the addresses all come out the same as
3795 // they did the first time through.
3796 bool has_relro = false;
3797 const uint64_t old_addr = (*p)->vaddr();
3798 const uint64_t old_end = old_addr + (*p)->memsz();
3799 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3800 true, old_addr,
3801 &increase_relro,
3802 &has_relro,
3803 &off,
3804 &shndx_begin);
3805 gold_assert(new_addr == old_end);
3806 }
3807 }
3808
3809 gold_assert(shndx_begin == shndx_load_seg);
3810 }
3811
3812 // Handle the non-PT_LOAD segments, setting their offsets from their
3813 // section's offsets.
3814 for (Segment_list::iterator p = this->segment_list_.begin();
3815 p != this->segment_list_.end();
3816 ++p)
3817 {
3818 // PT_GNU_STACK was set up correctly when it was created.
3819 if ((*p)->type() != elfcpp::PT_LOAD
3820 && (*p)->type() != elfcpp::PT_GNU_STACK)
3821 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3822 ? increase_relro
3823 : 0);
3824 }
3825
3826 // Set the TLS offsets for each section in the PT_TLS segment.
3827 if (this->tls_segment_ != NULL)
3828 this->tls_segment_->set_tls_offsets();
3829
3830 return off;
3831 }
3832
3833 // Set the offsets of all the allocated sections when doing a
3834 // relocatable link. This does the same jobs as set_segment_offsets,
3835 // only for a relocatable link.
3836
3837 off_t
3838 Layout::set_relocatable_section_offsets(Output_data* file_header,
3839 unsigned int* pshndx)
3840 {
3841 off_t off = 0;
3842
3843 file_header->set_address_and_file_offset(0, 0);
3844 off += file_header->data_size();
3845
3846 for (Section_list::iterator p = this->section_list_.begin();
3847 p != this->section_list_.end();
3848 ++p)
3849 {
3850 // We skip unallocated sections here, except that group sections
3851 // have to come first.
3852 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3853 && (*p)->type() != elfcpp::SHT_GROUP)
3854 continue;
3855
3856 off = align_address(off, (*p)->addralign());
3857
3858 // The linker script might have set the address.
3859 if (!(*p)->is_address_valid())
3860 (*p)->set_address(0);
3861 (*p)->set_file_offset(off);
3862 (*p)->finalize_data_size();
3863 if ((*p)->type() != elfcpp::SHT_NOBITS)
3864 off += (*p)->data_size();
3865
3866 (*p)->set_out_shndx(*pshndx);
3867 ++*pshndx;
3868 }
3869
3870 return off;
3871 }
3872
3873 // Set the file offset of all the sections not associated with a
3874 // segment.
3875
3876 off_t
3877 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3878 {
3879 off_t startoff = off;
3880 off_t maxoff = off;
3881
3882 for (Section_list::iterator p = this->unattached_section_list_.begin();
3883 p != this->unattached_section_list_.end();
3884 ++p)
3885 {
3886 // The symtab section is handled in create_symtab_sections.
3887 if (*p == this->symtab_section_)
3888 continue;
3889
3890 // If we've already set the data size, don't set it again.
3891 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3892 continue;
3893
3894 if (pass == BEFORE_INPUT_SECTIONS_PASS
3895 && (*p)->requires_postprocessing())
3896 {
3897 (*p)->create_postprocessing_buffer();
3898 this->any_postprocessing_sections_ = true;
3899 }
3900
3901 if (pass == BEFORE_INPUT_SECTIONS_PASS
3902 && (*p)->after_input_sections())
3903 continue;
3904 else if (pass == POSTPROCESSING_SECTIONS_PASS
3905 && (!(*p)->after_input_sections()
3906 || (*p)->type() == elfcpp::SHT_STRTAB))
3907 continue;
3908 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3909 && (!(*p)->after_input_sections()
3910 || (*p)->type() != elfcpp::SHT_STRTAB))
3911 continue;
3912
3913 if (!parameters->incremental_update())
3914 {
3915 off = align_address(off, (*p)->addralign());
3916 (*p)->set_file_offset(off);
3917 (*p)->finalize_data_size();
3918 }
3919 else
3920 {
3921 // Incremental update: allocate file space from free list.
3922 (*p)->pre_finalize_data_size();
3923 off_t current_size = (*p)->current_data_size();
3924 off = this->allocate(current_size, (*p)->addralign(), startoff);
3925 if (off == -1)
3926 {
3927 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3928 this->free_list_.dump();
3929 gold_assert((*p)->output_section() != NULL);
3930 gold_fallback(_("out of patch space for section %s; "
3931 "relink with --incremental-full"),
3932 (*p)->output_section()->name());
3933 }
3934 (*p)->set_file_offset(off);
3935 (*p)->finalize_data_size();
3936 if ((*p)->data_size() > current_size)
3937 {
3938 gold_assert((*p)->output_section() != NULL);
3939 gold_fallback(_("%s: section changed size; "
3940 "relink with --incremental-full"),
3941 (*p)->output_section()->name());
3942 }
3943 gold_debug(DEBUG_INCREMENTAL,
3944 "set_section_offsets: %08lx %08lx %s",
3945 static_cast<long>(off),
3946 static_cast<long>((*p)->data_size()),
3947 ((*p)->output_section() != NULL
3948 ? (*p)->output_section()->name() : "(special)"));
3949 }
3950
3951 off += (*p)->data_size();
3952 if (off > maxoff)
3953 maxoff = off;
3954
3955 // At this point the name must be set.
3956 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3957 this->namepool_.add((*p)->name(), false, NULL);
3958 }
3959 return maxoff;
3960 }
3961
3962 // Set the section indexes of all the sections not associated with a
3963 // segment.
3964
3965 unsigned int
3966 Layout::set_section_indexes(unsigned int shndx)
3967 {
3968 for (Section_list::iterator p = this->unattached_section_list_.begin();
3969 p != this->unattached_section_list_.end();
3970 ++p)
3971 {
3972 if (!(*p)->has_out_shndx())
3973 {
3974 (*p)->set_out_shndx(shndx);
3975 ++shndx;
3976 }
3977 }
3978 return shndx;
3979 }
3980
3981 // Set the section addresses according to the linker script. This is
3982 // only called when we see a SECTIONS clause. This returns the
3983 // program segment which should hold the file header and segment
3984 // headers, if any. It will return NULL if they should not be in a
3985 // segment.
3986
3987 Output_segment*
3988 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3989 {
3990 Script_sections* ss = this->script_options_->script_sections();
3991 gold_assert(ss->saw_sections_clause());
3992 return this->script_options_->set_section_addresses(symtab, this);
3993 }
3994
3995 // Place the orphan sections in the linker script.
3996
3997 void
3998 Layout::place_orphan_sections_in_script()
3999 {
4000 Script_sections* ss = this->script_options_->script_sections();
4001 gold_assert(ss->saw_sections_clause());
4002
4003 // Place each orphaned output section in the script.
4004 for (Section_list::iterator p = this->section_list_.begin();
4005 p != this->section_list_.end();
4006 ++p)
4007 {
4008 if (!(*p)->found_in_sections_clause())
4009 ss->place_orphan(*p);
4010 }
4011 }
4012
4013 // Count the local symbols in the regular symbol table and the dynamic
4014 // symbol table, and build the respective string pools.
4015
4016 void
4017 Layout::count_local_symbols(const Task* task,
4018 const Input_objects* input_objects)
4019 {
4020 // First, figure out an upper bound on the number of symbols we'll
4021 // be inserting into each pool. This helps us create the pools with
4022 // the right size, to avoid unnecessary hashtable resizing.
4023 unsigned int symbol_count = 0;
4024 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4025 p != input_objects->relobj_end();
4026 ++p)
4027 symbol_count += (*p)->local_symbol_count();
4028
4029 // Go from "upper bound" to "estimate." We overcount for two
4030 // reasons: we double-count symbols that occur in more than one
4031 // object file, and we count symbols that are dropped from the
4032 // output. Add it all together and assume we overcount by 100%.
4033 symbol_count /= 2;
4034
4035 // We assume all symbols will go into both the sympool and dynpool.
4036 this->sympool_.reserve(symbol_count);
4037 this->dynpool_.reserve(symbol_count);
4038
4039 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4040 p != input_objects->relobj_end();
4041 ++p)
4042 {
4043 Task_lock_obj<Object> tlo(task, *p);
4044 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4045 }
4046 }
4047
4048 // Create the symbol table sections. Here we also set the final
4049 // values of the symbols. At this point all the loadable sections are
4050 // fully laid out. SHNUM is the number of sections so far.
4051
4052 void
4053 Layout::create_symtab_sections(const Input_objects* input_objects,
4054 Symbol_table* symtab,
4055 unsigned int shnum,
4056 off_t* poff,
4057 unsigned int local_dynamic_count)
4058 {
4059 int symsize;
4060 unsigned int align;
4061 if (parameters->target().get_size() == 32)
4062 {
4063 symsize = elfcpp::Elf_sizes<32>::sym_size;
4064 align = 4;
4065 }
4066 else if (parameters->target().get_size() == 64)
4067 {
4068 symsize = elfcpp::Elf_sizes<64>::sym_size;
4069 align = 8;
4070 }
4071 else
4072 gold_unreachable();
4073
4074 // Compute file offsets relative to the start of the symtab section.
4075 off_t off = 0;
4076
4077 // Save space for the dummy symbol at the start of the section. We
4078 // never bother to write this out--it will just be left as zero.
4079 off += symsize;
4080 unsigned int local_symbol_index = 1;
4081
4082 // Add STT_SECTION symbols for each Output section which needs one.
4083 for (Section_list::iterator p = this->section_list_.begin();
4084 p != this->section_list_.end();
4085 ++p)
4086 {
4087 if (!(*p)->needs_symtab_index())
4088 (*p)->set_symtab_index(-1U);
4089 else
4090 {
4091 (*p)->set_symtab_index(local_symbol_index);
4092 ++local_symbol_index;
4093 off += symsize;
4094 }
4095 }
4096
4097 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4098 p != input_objects->relobj_end();
4099 ++p)
4100 {
4101 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4102 off, symtab);
4103 off += (index - local_symbol_index) * symsize;
4104 local_symbol_index = index;
4105 }
4106
4107 unsigned int local_symcount = local_symbol_index;
4108 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4109
4110 off_t dynoff;
4111 size_t dyncount;
4112 if (this->dynsym_section_ == NULL)
4113 {
4114 dynoff = 0;
4115 dyncount = 0;
4116 }
4117 else
4118 {
4119 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4120 dynoff = this->dynsym_section_->offset() + locsize;
4121 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4122 gold_assert(static_cast<off_t>(dyncount * symsize)
4123 == this->dynsym_section_->data_size() - locsize);
4124 }
4125
4126 off_t global_off = off;
4127 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4128 &this->sympool_, &local_symcount);
4129
4130 if (!parameters->options().strip_all())
4131 {
4132 this->sympool_.set_string_offsets();
4133
4134 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4135 Output_section* osymtab = this->make_output_section(symtab_name,
4136 elfcpp::SHT_SYMTAB,
4137 0, ORDER_INVALID,
4138 false);
4139 this->symtab_section_ = osymtab;
4140
4141 Output_section_data* pos = new Output_data_fixed_space(off, align,
4142 "** symtab");
4143 osymtab->add_output_section_data(pos);
4144
4145 // We generate a .symtab_shndx section if we have more than
4146 // SHN_LORESERVE sections. Technically it is possible that we
4147 // don't need one, because it is possible that there are no
4148 // symbols in any of sections with indexes larger than
4149 // SHN_LORESERVE. That is probably unusual, though, and it is
4150 // easier to always create one than to compute section indexes
4151 // twice (once here, once when writing out the symbols).
4152 if (shnum >= elfcpp::SHN_LORESERVE)
4153 {
4154 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4155 false, NULL);
4156 Output_section* osymtab_xindex =
4157 this->make_output_section(symtab_xindex_name,
4158 elfcpp::SHT_SYMTAB_SHNDX, 0,
4159 ORDER_INVALID, false);
4160
4161 size_t symcount = off / symsize;
4162 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4163
4164 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4165
4166 osymtab_xindex->set_link_section(osymtab);
4167 osymtab_xindex->set_addralign(4);
4168 osymtab_xindex->set_entsize(4);
4169
4170 osymtab_xindex->set_after_input_sections();
4171
4172 // This tells the driver code to wait until the symbol table
4173 // has written out before writing out the postprocessing
4174 // sections, including the .symtab_shndx section.
4175 this->any_postprocessing_sections_ = true;
4176 }
4177
4178 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4179 Output_section* ostrtab = this->make_output_section(strtab_name,
4180 elfcpp::SHT_STRTAB,
4181 0, ORDER_INVALID,
4182 false);
4183
4184 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4185 ostrtab->add_output_section_data(pstr);
4186
4187 off_t symtab_off;
4188 if (!parameters->incremental_update())
4189 symtab_off = align_address(*poff, align);
4190 else
4191 {
4192 symtab_off = this->allocate(off, align, *poff);
4193 if (off == -1)
4194 gold_fallback(_("out of patch space for symbol table; "
4195 "relink with --incremental-full"));
4196 gold_debug(DEBUG_INCREMENTAL,
4197 "create_symtab_sections: %08lx %08lx .symtab",
4198 static_cast<long>(symtab_off),
4199 static_cast<long>(off));
4200 }
4201
4202 symtab->set_file_offset(symtab_off + global_off);
4203 osymtab->set_file_offset(symtab_off);
4204 osymtab->finalize_data_size();
4205 osymtab->set_link_section(ostrtab);
4206 osymtab->set_info(local_symcount);
4207 osymtab->set_entsize(symsize);
4208
4209 if (symtab_off + off > *poff)
4210 *poff = symtab_off + off;
4211 }
4212 }
4213
4214 // Create the .shstrtab section, which holds the names of the
4215 // sections. At the time this is called, we have created all the
4216 // output sections except .shstrtab itself.
4217
4218 Output_section*
4219 Layout::create_shstrtab()
4220 {
4221 // FIXME: We don't need to create a .shstrtab section if we are
4222 // stripping everything.
4223
4224 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4225
4226 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4227 ORDER_INVALID, false);
4228
4229 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4230 {
4231 // We can't write out this section until we've set all the
4232 // section names, and we don't set the names of compressed
4233 // output sections until relocations are complete. FIXME: With
4234 // the current names we use, this is unnecessary.
4235 os->set_after_input_sections();
4236 }
4237
4238 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4239 os->add_output_section_data(posd);
4240
4241 return os;
4242 }
4243
4244 // Create the section headers. SIZE is 32 or 64. OFF is the file
4245 // offset.
4246
4247 void
4248 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4249 {
4250 Output_section_headers* oshdrs;
4251 oshdrs = new Output_section_headers(this,
4252 &this->segment_list_,
4253 &this->section_list_,
4254 &this->unattached_section_list_,
4255 &this->namepool_,
4256 shstrtab_section);
4257 off_t off;
4258 if (!parameters->incremental_update())
4259 off = align_address(*poff, oshdrs->addralign());
4260 else
4261 {
4262 oshdrs->pre_finalize_data_size();
4263 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4264 if (off == -1)
4265 gold_fallback(_("out of patch space for section header table; "
4266 "relink with --incremental-full"));
4267 gold_debug(DEBUG_INCREMENTAL,
4268 "create_shdrs: %08lx %08lx (section header table)",
4269 static_cast<long>(off),
4270 static_cast<long>(off + oshdrs->data_size()));
4271 }
4272 oshdrs->set_address_and_file_offset(0, off);
4273 off += oshdrs->data_size();
4274 if (off > *poff)
4275 *poff = off;
4276 this->section_headers_ = oshdrs;
4277 }
4278
4279 // Count the allocated sections.
4280
4281 size_t
4282 Layout::allocated_output_section_count() const
4283 {
4284 size_t section_count = 0;
4285 for (Segment_list::const_iterator p = this->segment_list_.begin();
4286 p != this->segment_list_.end();
4287 ++p)
4288 section_count += (*p)->output_section_count();
4289 return section_count;
4290 }
4291
4292 // Create the dynamic symbol table.
4293 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4294 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4295 // to the number of global symbols that have been forced local.
4296 // We need to remember the former because the forced-local symbols are
4297 // written along with the global symbols in Symtab::write_globals().
4298
4299 void
4300 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4301 Symbol_table* symtab,
4302 Output_section** pdynstr,
4303 unsigned int* plocal_dynamic_count,
4304 unsigned int* pforced_local_dynamic_count,
4305 std::vector<Symbol*>* pdynamic_symbols,
4306 Versions* pversions)
4307 {
4308 // Count all the symbols in the dynamic symbol table, and set the
4309 // dynamic symbol indexes.
4310
4311 // Skip symbol 0, which is always all zeroes.
4312 unsigned int index = 1;
4313
4314 // Add STT_SECTION symbols for each Output section which needs one.
4315 for (Section_list::iterator p = this->section_list_.begin();
4316 p != this->section_list_.end();
4317 ++p)
4318 {
4319 if (!(*p)->needs_dynsym_index())
4320 (*p)->set_dynsym_index(-1U);
4321 else
4322 {
4323 (*p)->set_dynsym_index(index);
4324 ++index;
4325 }
4326 }
4327
4328 // Count the local symbols that need to go in the dynamic symbol table,
4329 // and set the dynamic symbol indexes.
4330 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4331 p != input_objects->relobj_end();
4332 ++p)
4333 {
4334 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4335 index = new_index;
4336 }
4337
4338 unsigned int local_symcount = index;
4339 unsigned int forced_local_count = 0;
4340
4341 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4342 pdynamic_symbols, &this->dynpool_,
4343 pversions);
4344
4345 *plocal_dynamic_count = local_symcount;
4346 *pforced_local_dynamic_count = forced_local_count;
4347
4348 int symsize;
4349 unsigned int align;
4350 const int size = parameters->target().get_size();
4351 if (size == 32)
4352 {
4353 symsize = elfcpp::Elf_sizes<32>::sym_size;
4354 align = 4;
4355 }
4356 else if (size == 64)
4357 {
4358 symsize = elfcpp::Elf_sizes<64>::sym_size;
4359 align = 8;
4360 }
4361 else
4362 gold_unreachable();
4363
4364 // Create the dynamic symbol table section.
4365
4366 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4367 elfcpp::SHT_DYNSYM,
4368 elfcpp::SHF_ALLOC,
4369 false,
4370 ORDER_DYNAMIC_LINKER,
4371 false, false, false);
4372
4373 // Check for NULL as a linker script may discard .dynsym.
4374 if (dynsym != NULL)
4375 {
4376 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4377 align,
4378 "** dynsym");
4379 dynsym->add_output_section_data(odata);
4380
4381 dynsym->set_info(local_symcount + forced_local_count);
4382 dynsym->set_entsize(symsize);
4383 dynsym->set_addralign(align);
4384
4385 this->dynsym_section_ = dynsym;
4386 }
4387
4388 Output_data_dynamic* const odyn = this->dynamic_data_;
4389 if (odyn != NULL)
4390 {
4391 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4392 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4393 }
4394
4395 // If there are more than SHN_LORESERVE allocated sections, we
4396 // create a .dynsym_shndx section. It is possible that we don't
4397 // need one, because it is possible that there are no dynamic
4398 // symbols in any of the sections with indexes larger than
4399 // SHN_LORESERVE. This is probably unusual, though, and at this
4400 // time we don't know the actual section indexes so it is
4401 // inconvenient to check.
4402 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4403 {
4404 Output_section* dynsym_xindex =
4405 this->choose_output_section(NULL, ".dynsym_shndx",
4406 elfcpp::SHT_SYMTAB_SHNDX,
4407 elfcpp::SHF_ALLOC,
4408 false, ORDER_DYNAMIC_LINKER, false, false,
4409 false);
4410
4411 if (dynsym_xindex != NULL)
4412 {
4413 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4414
4415 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4416
4417 dynsym_xindex->set_link_section(dynsym);
4418 dynsym_xindex->set_addralign(4);
4419 dynsym_xindex->set_entsize(4);
4420
4421 dynsym_xindex->set_after_input_sections();
4422
4423 // This tells the driver code to wait until the symbol table
4424 // has written out before writing out the postprocessing
4425 // sections, including the .dynsym_shndx section.
4426 this->any_postprocessing_sections_ = true;
4427 }
4428 }
4429
4430 // Create the dynamic string table section.
4431
4432 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4433 elfcpp::SHT_STRTAB,
4434 elfcpp::SHF_ALLOC,
4435 false,
4436 ORDER_DYNAMIC_LINKER,
4437 false, false, false);
4438 *pdynstr = dynstr;
4439 if (dynstr != NULL)
4440 {
4441 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4442 dynstr->add_output_section_data(strdata);
4443
4444 if (dynsym != NULL)
4445 dynsym->set_link_section(dynstr);
4446 if (this->dynamic_section_ != NULL)
4447 this->dynamic_section_->set_link_section(dynstr);
4448
4449 if (odyn != NULL)
4450 {
4451 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4452 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4453 }
4454 }
4455
4456 // Create the hash tables. The Gnu-style hash table must be
4457 // built first, because it changes the order of the symbols
4458 // in the dynamic symbol table.
4459
4460 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4461 || strcmp(parameters->options().hash_style(), "both") == 0)
4462 {
4463 unsigned char* phash;
4464 unsigned int hashlen;
4465 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4466 local_symcount + forced_local_count,
4467 &phash, &hashlen);
4468
4469 Output_section* hashsec =
4470 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4471 elfcpp::SHF_ALLOC, false,
4472 ORDER_DYNAMIC_LINKER, false, false,
4473 false);
4474
4475 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4476 hashlen,
4477 align,
4478 "** hash");
4479 if (hashsec != NULL && hashdata != NULL)
4480 hashsec->add_output_section_data(hashdata);
4481
4482 if (hashsec != NULL)
4483 {
4484 if (dynsym != NULL)
4485 hashsec->set_link_section(dynsym);
4486
4487 // For a 64-bit target, the entries in .gnu.hash do not have
4488 // a uniform size, so we only set the entry size for a
4489 // 32-bit target.
4490 if (parameters->target().get_size() == 32)
4491 hashsec->set_entsize(4);
4492
4493 if (odyn != NULL)
4494 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4495 }
4496 }
4497
4498 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4499 || strcmp(parameters->options().hash_style(), "both") == 0)
4500 {
4501 unsigned char* phash;
4502 unsigned int hashlen;
4503 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4504 local_symcount + forced_local_count,
4505 &phash, &hashlen);
4506
4507 Output_section* hashsec =
4508 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4509 elfcpp::SHF_ALLOC, false,
4510 ORDER_DYNAMIC_LINKER, false, false,
4511 false);
4512
4513 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4514 hashlen,
4515 align,
4516 "** hash");
4517 if (hashsec != NULL && hashdata != NULL)
4518 hashsec->add_output_section_data(hashdata);
4519
4520 if (hashsec != NULL)
4521 {
4522 if (dynsym != NULL)
4523 hashsec->set_link_section(dynsym);
4524 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4525 }
4526
4527 if (odyn != NULL)
4528 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4529 }
4530 }
4531
4532 // Assign offsets to each local portion of the dynamic symbol table.
4533
4534 void
4535 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4536 {
4537 Output_section* dynsym = this->dynsym_section_;
4538 if (dynsym == NULL)
4539 return;
4540
4541 off_t off = dynsym->offset();
4542
4543 // Skip the dummy symbol at the start of the section.
4544 off += dynsym->entsize();
4545
4546 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4547 p != input_objects->relobj_end();
4548 ++p)
4549 {
4550 unsigned int count = (*p)->set_local_dynsym_offset(off);
4551 off += count * dynsym->entsize();
4552 }
4553 }
4554
4555 // Create the version sections.
4556
4557 void
4558 Layout::create_version_sections(const Versions* versions,
4559 const Symbol_table* symtab,
4560 unsigned int local_symcount,
4561 const std::vector<Symbol*>& dynamic_symbols,
4562 const Output_section* dynstr)
4563 {
4564 if (!versions->any_defs() && !versions->any_needs())
4565 return;
4566
4567 switch (parameters->size_and_endianness())
4568 {
4569 #ifdef HAVE_TARGET_32_LITTLE
4570 case Parameters::TARGET_32_LITTLE:
4571 this->sized_create_version_sections<32, false>(versions, symtab,
4572 local_symcount,
4573 dynamic_symbols, dynstr);
4574 break;
4575 #endif
4576 #ifdef HAVE_TARGET_32_BIG
4577 case Parameters::TARGET_32_BIG:
4578 this->sized_create_version_sections<32, true>(versions, symtab,
4579 local_symcount,
4580 dynamic_symbols, dynstr);
4581 break;
4582 #endif
4583 #ifdef HAVE_TARGET_64_LITTLE
4584 case Parameters::TARGET_64_LITTLE:
4585 this->sized_create_version_sections<64, false>(versions, symtab,
4586 local_symcount,
4587 dynamic_symbols, dynstr);
4588 break;
4589 #endif
4590 #ifdef HAVE_TARGET_64_BIG
4591 case Parameters::TARGET_64_BIG:
4592 this->sized_create_version_sections<64, true>(versions, symtab,
4593 local_symcount,
4594 dynamic_symbols, dynstr);
4595 break;
4596 #endif
4597 default:
4598 gold_unreachable();
4599 }
4600 }
4601
4602 // Create the version sections, sized version.
4603
4604 template<int size, bool big_endian>
4605 void
4606 Layout::sized_create_version_sections(
4607 const Versions* versions,
4608 const Symbol_table* symtab,
4609 unsigned int local_symcount,
4610 const std::vector<Symbol*>& dynamic_symbols,
4611 const Output_section* dynstr)
4612 {
4613 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4614 elfcpp::SHT_GNU_versym,
4615 elfcpp::SHF_ALLOC,
4616 false,
4617 ORDER_DYNAMIC_LINKER,
4618 false, false, false);
4619
4620 // Check for NULL since a linker script may discard this section.
4621 if (vsec != NULL)
4622 {
4623 unsigned char* vbuf;
4624 unsigned int vsize;
4625 versions->symbol_section_contents<size, big_endian>(symtab,
4626 &this->dynpool_,
4627 local_symcount,
4628 dynamic_symbols,
4629 &vbuf, &vsize);
4630
4631 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4632 "** versions");
4633
4634 vsec->add_output_section_data(vdata);
4635 vsec->set_entsize(2);
4636 vsec->set_link_section(this->dynsym_section_);
4637 }
4638
4639 Output_data_dynamic* const odyn = this->dynamic_data_;
4640 if (odyn != NULL && vsec != NULL)
4641 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4642
4643 if (versions->any_defs())
4644 {
4645 Output_section* vdsec;
4646 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4647 elfcpp::SHT_GNU_verdef,
4648 elfcpp::SHF_ALLOC,
4649 false, ORDER_DYNAMIC_LINKER, false,
4650 false, false);
4651
4652 if (vdsec != NULL)
4653 {
4654 unsigned char* vdbuf;
4655 unsigned int vdsize;
4656 unsigned int vdentries;
4657 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4658 &vdbuf, &vdsize,
4659 &vdentries);
4660
4661 Output_section_data* vddata =
4662 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4663
4664 vdsec->add_output_section_data(vddata);
4665 vdsec->set_link_section(dynstr);
4666 vdsec->set_info(vdentries);
4667
4668 if (odyn != NULL)
4669 {
4670 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4671 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4672 }
4673 }
4674 }
4675
4676 if (versions->any_needs())
4677 {
4678 Output_section* vnsec;
4679 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4680 elfcpp::SHT_GNU_verneed,
4681 elfcpp::SHF_ALLOC,
4682 false, ORDER_DYNAMIC_LINKER, false,
4683 false, false);
4684
4685 if (vnsec != NULL)
4686 {
4687 unsigned char* vnbuf;
4688 unsigned int vnsize;
4689 unsigned int vnentries;
4690 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4691 &vnbuf, &vnsize,
4692 &vnentries);
4693
4694 Output_section_data* vndata =
4695 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4696
4697 vnsec->add_output_section_data(vndata);
4698 vnsec->set_link_section(dynstr);
4699 vnsec->set_info(vnentries);
4700
4701 if (odyn != NULL)
4702 {
4703 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4704 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4705 }
4706 }
4707 }
4708 }
4709
4710 // Create the .interp section and PT_INTERP segment.
4711
4712 void
4713 Layout::create_interp(const Target* target)
4714 {
4715 gold_assert(this->interp_segment_ == NULL);
4716
4717 const char* interp = parameters->options().dynamic_linker();
4718 if (interp == NULL)
4719 {
4720 interp = target->dynamic_linker();
4721 gold_assert(interp != NULL);
4722 }
4723
4724 size_t len = strlen(interp) + 1;
4725
4726 Output_section_data* odata = new Output_data_const(interp, len, 1);
4727
4728 Output_section* osec = this->choose_output_section(NULL, ".interp",
4729 elfcpp::SHT_PROGBITS,
4730 elfcpp::SHF_ALLOC,
4731 false, ORDER_INTERP,
4732 false, false, false);
4733 if (osec != NULL)
4734 osec->add_output_section_data(odata);
4735 }
4736
4737 // Add dynamic tags for the PLT and the dynamic relocs. This is
4738 // called by the target-specific code. This does nothing if not doing
4739 // a dynamic link.
4740
4741 // USE_REL is true for REL relocs rather than RELA relocs.
4742
4743 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4744
4745 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4746 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4747 // some targets have multiple reloc sections in PLT_REL.
4748
4749 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4750 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4751 // section.
4752
4753 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4754 // executable.
4755
4756 void
4757 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4758 const Output_data* plt_rel,
4759 const Output_data_reloc_generic* dyn_rel,
4760 bool add_debug, bool dynrel_includes_plt)
4761 {
4762 Output_data_dynamic* odyn = this->dynamic_data_;
4763 if (odyn == NULL)
4764 return;
4765
4766 if (plt_got != NULL && plt_got->output_section() != NULL)
4767 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4768
4769 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4770 {
4771 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4772 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4773 odyn->add_constant(elfcpp::DT_PLTREL,
4774 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4775 }
4776
4777 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4778 || (dynrel_includes_plt
4779 && plt_rel != NULL
4780 && plt_rel->output_section() != NULL))
4781 {
4782 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4783 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4784 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4785 (have_dyn_rel
4786 ? dyn_rel->output_section()
4787 : plt_rel->output_section()));
4788 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4789 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4790 odyn->add_section_size(size_tag,
4791 dyn_rel->output_section(),
4792 plt_rel->output_section());
4793 else if (have_dyn_rel)
4794 odyn->add_section_size(size_tag, dyn_rel->output_section());
4795 else
4796 odyn->add_section_size(size_tag, plt_rel->output_section());
4797 const int size = parameters->target().get_size();
4798 elfcpp::DT rel_tag;
4799 int rel_size;
4800 if (use_rel)
4801 {
4802 rel_tag = elfcpp::DT_RELENT;
4803 if (size == 32)
4804 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4805 else if (size == 64)
4806 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4807 else
4808 gold_unreachable();
4809 }
4810 else
4811 {
4812 rel_tag = elfcpp::DT_RELAENT;
4813 if (size == 32)
4814 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4815 else if (size == 64)
4816 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4817 else
4818 gold_unreachable();
4819 }
4820 odyn->add_constant(rel_tag, rel_size);
4821
4822 if (parameters->options().combreloc() && have_dyn_rel)
4823 {
4824 size_t c = dyn_rel->relative_reloc_count();
4825 if (c > 0)
4826 odyn->add_constant((use_rel
4827 ? elfcpp::DT_RELCOUNT
4828 : elfcpp::DT_RELACOUNT),
4829 c);
4830 }
4831 }
4832
4833 if (add_debug && !parameters->options().shared())
4834 {
4835 // The value of the DT_DEBUG tag is filled in by the dynamic
4836 // linker at run time, and used by the debugger.
4837 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4838 }
4839 }
4840
4841 void
4842 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4843 {
4844 Output_data_dynamic* odyn = this->dynamic_data_;
4845 if (odyn == NULL)
4846 return;
4847 odyn->add_constant(tag, val);
4848 }
4849
4850 // Finish the .dynamic section and PT_DYNAMIC segment.
4851
4852 void
4853 Layout::finish_dynamic_section(const Input_objects* input_objects,
4854 const Symbol_table* symtab)
4855 {
4856 if (!this->script_options_->saw_phdrs_clause()
4857 && this->dynamic_section_ != NULL)
4858 {
4859 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4860 (elfcpp::PF_R
4861 | elfcpp::PF_W));
4862 oseg->add_output_section_to_nonload(this->dynamic_section_,
4863 elfcpp::PF_R | elfcpp::PF_W);
4864 }
4865
4866 Output_data_dynamic* const odyn = this->dynamic_data_;
4867 if (odyn == NULL)
4868 return;
4869
4870 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4871 p != input_objects->dynobj_end();
4872 ++p)
4873 {
4874 if (!(*p)->is_needed() && (*p)->as_needed())
4875 {
4876 // This dynamic object was linked with --as-needed, but it
4877 // is not needed.
4878 continue;
4879 }
4880
4881 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4882 }
4883
4884 if (parameters->options().shared())
4885 {
4886 const char* soname = parameters->options().soname();
4887 if (soname != NULL)
4888 odyn->add_string(elfcpp::DT_SONAME, soname);
4889 }
4890
4891 Symbol* sym = symtab->lookup(parameters->options().init());
4892 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4893 odyn->add_symbol(elfcpp::DT_INIT, sym);
4894
4895 sym = symtab->lookup(parameters->options().fini());
4896 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4897 odyn->add_symbol(elfcpp::DT_FINI, sym);
4898
4899 // Look for .init_array, .preinit_array and .fini_array by checking
4900 // section types.
4901 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4902 p != this->section_list_.end();
4903 ++p)
4904 switch((*p)->type())
4905 {
4906 case elfcpp::SHT_FINI_ARRAY:
4907 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4908 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4909 break;
4910 case elfcpp::SHT_INIT_ARRAY:
4911 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4912 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4913 break;
4914 case elfcpp::SHT_PREINIT_ARRAY:
4915 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4916 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4917 break;
4918 default:
4919 break;
4920 }
4921
4922 // Add a DT_RPATH entry if needed.
4923 const General_options::Dir_list& rpath(parameters->options().rpath());
4924 if (!rpath.empty())
4925 {
4926 std::string rpath_val;
4927 for (General_options::Dir_list::const_iterator p = rpath.begin();
4928 p != rpath.end();
4929 ++p)
4930 {
4931 if (rpath_val.empty())
4932 rpath_val = p->name();
4933 else
4934 {
4935 // Eliminate duplicates.
4936 General_options::Dir_list::const_iterator q;
4937 for (q = rpath.begin(); q != p; ++q)
4938 if (q->name() == p->name())
4939 break;
4940 if (q == p)
4941 {
4942 rpath_val += ':';
4943 rpath_val += p->name();
4944 }
4945 }
4946 }
4947
4948 if (!parameters->options().enable_new_dtags())
4949 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4950 else
4951 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4952 }
4953
4954 // Look for text segments that have dynamic relocations.
4955 bool have_textrel = false;
4956 if (!this->script_options_->saw_sections_clause())
4957 {
4958 for (Segment_list::const_iterator p = this->segment_list_.begin();
4959 p != this->segment_list_.end();
4960 ++p)
4961 {
4962 if ((*p)->type() == elfcpp::PT_LOAD
4963 && ((*p)->flags() & elfcpp::PF_W) == 0
4964 && (*p)->has_dynamic_reloc())
4965 {
4966 have_textrel = true;
4967 break;
4968 }
4969 }
4970 }
4971 else
4972 {
4973 // We don't know the section -> segment mapping, so we are
4974 // conservative and just look for readonly sections with
4975 // relocations. If those sections wind up in writable segments,
4976 // then we have created an unnecessary DT_TEXTREL entry.
4977 for (Section_list::const_iterator p = this->section_list_.begin();
4978 p != this->section_list_.end();
4979 ++p)
4980 {
4981 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4982 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4983 && (*p)->has_dynamic_reloc())
4984 {
4985 have_textrel = true;
4986 break;
4987 }
4988 }
4989 }
4990
4991 if (parameters->options().filter() != NULL)
4992 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4993 if (parameters->options().any_auxiliary())
4994 {
4995 for (options::String_set::const_iterator p =
4996 parameters->options().auxiliary_begin();
4997 p != parameters->options().auxiliary_end();
4998 ++p)
4999 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5000 }
5001
5002 // Add a DT_FLAGS entry if necessary.
5003 unsigned int flags = 0;
5004 if (have_textrel)
5005 {
5006 // Add a DT_TEXTREL for compatibility with older loaders.
5007 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5008 flags |= elfcpp::DF_TEXTREL;
5009
5010 if (parameters->options().text())
5011 gold_error(_("read-only segment has dynamic relocations"));
5012 else if (parameters->options().warn_shared_textrel()
5013 && parameters->options().shared())
5014 gold_warning(_("shared library text segment is not shareable"));
5015 }
5016 if (parameters->options().shared() && this->has_static_tls())
5017 flags |= elfcpp::DF_STATIC_TLS;
5018 if (parameters->options().origin())
5019 flags |= elfcpp::DF_ORIGIN;
5020 if (parameters->options().Bsymbolic()
5021 && !parameters->options().have_dynamic_list())
5022 {
5023 flags |= elfcpp::DF_SYMBOLIC;
5024 // Add DT_SYMBOLIC for compatibility with older loaders.
5025 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5026 }
5027 if (parameters->options().now())
5028 flags |= elfcpp::DF_BIND_NOW;
5029 if (flags != 0)
5030 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5031
5032 flags = 0;
5033 if (parameters->options().global())
5034 flags |= elfcpp::DF_1_GLOBAL;
5035 if (parameters->options().initfirst())
5036 flags |= elfcpp::DF_1_INITFIRST;
5037 if (parameters->options().interpose())
5038 flags |= elfcpp::DF_1_INTERPOSE;
5039 if (parameters->options().loadfltr())
5040 flags |= elfcpp::DF_1_LOADFLTR;
5041 if (parameters->options().nodefaultlib())
5042 flags |= elfcpp::DF_1_NODEFLIB;
5043 if (parameters->options().nodelete())
5044 flags |= elfcpp::DF_1_NODELETE;
5045 if (parameters->options().nodlopen())
5046 flags |= elfcpp::DF_1_NOOPEN;
5047 if (parameters->options().nodump())
5048 flags |= elfcpp::DF_1_NODUMP;
5049 if (!parameters->options().shared())
5050 flags &= ~(elfcpp::DF_1_INITFIRST
5051 | elfcpp::DF_1_NODELETE
5052 | elfcpp::DF_1_NOOPEN);
5053 if (parameters->options().origin())
5054 flags |= elfcpp::DF_1_ORIGIN;
5055 if (parameters->options().now())
5056 flags |= elfcpp::DF_1_NOW;
5057 if (parameters->options().Bgroup())
5058 flags |= elfcpp::DF_1_GROUP;
5059 if (flags != 0)
5060 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5061 }
5062
5063 // Set the size of the _DYNAMIC symbol table to be the size of the
5064 // dynamic data.
5065
5066 void
5067 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5068 {
5069 Output_data_dynamic* const odyn = this->dynamic_data_;
5070 if (odyn == NULL)
5071 return;
5072 odyn->finalize_data_size();
5073 if (this->dynamic_symbol_ == NULL)
5074 return;
5075 off_t data_size = odyn->data_size();
5076 const int size = parameters->target().get_size();
5077 if (size == 32)
5078 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5079 else if (size == 64)
5080 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5081 else
5082 gold_unreachable();
5083 }
5084
5085 // The mapping of input section name prefixes to output section names.
5086 // In some cases one prefix is itself a prefix of another prefix; in
5087 // such a case the longer prefix must come first. These prefixes are
5088 // based on the GNU linker default ELF linker script.
5089
5090 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5091 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5092 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5093 {
5094 MAPPING_INIT(".text.", ".text"),
5095 MAPPING_INIT(".rodata.", ".rodata"),
5096 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5097 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5098 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5099 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5100 MAPPING_INIT(".data.", ".data"),
5101 MAPPING_INIT(".bss.", ".bss"),
5102 MAPPING_INIT(".tdata.", ".tdata"),
5103 MAPPING_INIT(".tbss.", ".tbss"),
5104 MAPPING_INIT(".init_array.", ".init_array"),
5105 MAPPING_INIT(".fini_array.", ".fini_array"),
5106 MAPPING_INIT(".sdata.", ".sdata"),
5107 MAPPING_INIT(".sbss.", ".sbss"),
5108 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5109 // differently depending on whether it is creating a shared library.
5110 MAPPING_INIT(".sdata2.", ".sdata"),
5111 MAPPING_INIT(".sbss2.", ".sbss"),
5112 MAPPING_INIT(".lrodata.", ".lrodata"),
5113 MAPPING_INIT(".ldata.", ".ldata"),
5114 MAPPING_INIT(".lbss.", ".lbss"),
5115 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5116 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5117 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5118 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5119 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5120 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5121 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5122 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5123 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5124 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5125 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5126 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5127 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5128 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5129 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5130 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5131 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5132 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5133 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5134 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5135 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5136 };
5137 #undef MAPPING_INIT
5138 #undef MAPPING_INIT_EXACT
5139
5140 const int Layout::section_name_mapping_count =
5141 (sizeof(Layout::section_name_mapping)
5142 / sizeof(Layout::section_name_mapping[0]));
5143
5144 // Choose the output section name to use given an input section name.
5145 // Set *PLEN to the length of the name. *PLEN is initialized to the
5146 // length of NAME.
5147
5148 const char*
5149 Layout::output_section_name(const Relobj* relobj, const char* name,
5150 size_t* plen)
5151 {
5152 // gcc 4.3 generates the following sorts of section names when it
5153 // needs a section name specific to a function:
5154 // .text.FN
5155 // .rodata.FN
5156 // .sdata2.FN
5157 // .data.FN
5158 // .data.rel.FN
5159 // .data.rel.local.FN
5160 // .data.rel.ro.FN
5161 // .data.rel.ro.local.FN
5162 // .sdata.FN
5163 // .bss.FN
5164 // .sbss.FN
5165 // .tdata.FN
5166 // .tbss.FN
5167
5168 // The GNU linker maps all of those to the part before the .FN,
5169 // except that .data.rel.local.FN is mapped to .data, and
5170 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5171 // beginning with .data.rel.ro.local are grouped together.
5172
5173 // For an anonymous namespace, the string FN can contain a '.'.
5174
5175 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5176 // GNU linker maps to .rodata.
5177
5178 // The .data.rel.ro sections are used with -z relro. The sections
5179 // are recognized by name. We use the same names that the GNU
5180 // linker does for these sections.
5181
5182 // It is hard to handle this in a principled way, so we don't even
5183 // try. We use a table of mappings. If the input section name is
5184 // not found in the table, we simply use it as the output section
5185 // name.
5186
5187 const Section_name_mapping* psnm = section_name_mapping;
5188 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5189 {
5190 if (psnm->fromlen > 0)
5191 {
5192 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5193 {
5194 *plen = psnm->tolen;
5195 return psnm->to;
5196 }
5197 }
5198 else
5199 {
5200 if (strcmp(name, psnm->from) == 0)
5201 {
5202 *plen = psnm->tolen;
5203 return psnm->to;
5204 }
5205 }
5206 }
5207
5208 // As an additional complication, .ctors sections are output in
5209 // either .ctors or .init_array sections, and .dtors sections are
5210 // output in either .dtors or .fini_array sections.
5211 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5212 {
5213 if (parameters->options().ctors_in_init_array())
5214 {
5215 *plen = 11;
5216 return name[1] == 'c' ? ".init_array" : ".fini_array";
5217 }
5218 else
5219 {
5220 *plen = 6;
5221 return name[1] == 'c' ? ".ctors" : ".dtors";
5222 }
5223 }
5224 if (parameters->options().ctors_in_init_array()
5225 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5226 {
5227 // To make .init_array/.fini_array work with gcc we must exclude
5228 // .ctors and .dtors sections from the crtbegin and crtend
5229 // files.
5230 if (relobj == NULL
5231 || (!Layout::match_file_name(relobj, "crtbegin")
5232 && !Layout::match_file_name(relobj, "crtend")))
5233 {
5234 *plen = 11;
5235 return name[1] == 'c' ? ".init_array" : ".fini_array";
5236 }
5237 }
5238
5239 return name;
5240 }
5241
5242 // Return true if RELOBJ is an input file whose base name matches
5243 // FILE_NAME. The base name must have an extension of ".o", and must
5244 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5245 // to match crtbegin.o as well as crtbeginS.o without getting confused
5246 // by other possibilities. Overall matching the file name this way is
5247 // a dreadful hack, but the GNU linker does it in order to better
5248 // support gcc, and we need to be compatible.
5249
5250 bool
5251 Layout::match_file_name(const Relobj* relobj, const char* match)
5252 {
5253 const std::string& file_name(relobj->name());
5254 const char* base_name = lbasename(file_name.c_str());
5255 size_t match_len = strlen(match);
5256 if (strncmp(base_name, match, match_len) != 0)
5257 return false;
5258 size_t base_len = strlen(base_name);
5259 if (base_len != match_len + 2 && base_len != match_len + 3)
5260 return false;
5261 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5262 }
5263
5264 // Check if a comdat group or .gnu.linkonce section with the given
5265 // NAME is selected for the link. If there is already a section,
5266 // *KEPT_SECTION is set to point to the existing section and the
5267 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5268 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5269 // *KEPT_SECTION is set to the internal copy and the function returns
5270 // true.
5271
5272 bool
5273 Layout::find_or_add_kept_section(const std::string& name,
5274 Relobj* object,
5275 unsigned int shndx,
5276 bool is_comdat,
5277 bool is_group_name,
5278 Kept_section** kept_section)
5279 {
5280 // It's normal to see a couple of entries here, for the x86 thunk
5281 // sections. If we see more than a few, we're linking a C++
5282 // program, and we resize to get more space to minimize rehashing.
5283 if (this->signatures_.size() > 4
5284 && !this->resized_signatures_)
5285 {
5286 reserve_unordered_map(&this->signatures_,
5287 this->number_of_input_files_ * 64);
5288 this->resized_signatures_ = true;
5289 }
5290
5291 Kept_section candidate;
5292 std::pair<Signatures::iterator, bool> ins =
5293 this->signatures_.insert(std::make_pair(name, candidate));
5294
5295 if (kept_section != NULL)
5296 *kept_section = &ins.first->second;
5297 if (ins.second)
5298 {
5299 // This is the first time we've seen this signature.
5300 ins.first->second.set_object(object);
5301 ins.first->second.set_shndx(shndx);
5302 if (is_comdat)
5303 ins.first->second.set_is_comdat();
5304 if (is_group_name)
5305 ins.first->second.set_is_group_name();
5306 return true;
5307 }
5308
5309 // We have already seen this signature.
5310
5311 if (ins.first->second.is_group_name())
5312 {
5313 // We've already seen a real section group with this signature.
5314 // If the kept group is from a plugin object, and we're in the
5315 // replacement phase, accept the new one as a replacement.
5316 if (ins.first->second.object() == NULL
5317 && parameters->options().plugins()->in_replacement_phase())
5318 {
5319 ins.first->second.set_object(object);
5320 ins.first->second.set_shndx(shndx);
5321 return true;
5322 }
5323 return false;
5324 }
5325 else if (is_group_name)
5326 {
5327 // This is a real section group, and we've already seen a
5328 // linkonce section with this signature. Record that we've seen
5329 // a section group, and don't include this section group.
5330 ins.first->second.set_is_group_name();
5331 return false;
5332 }
5333 else
5334 {
5335 // We've already seen a linkonce section and this is a linkonce
5336 // section. These don't block each other--this may be the same
5337 // symbol name with different section types.
5338 return true;
5339 }
5340 }
5341
5342 // Store the allocated sections into the section list.
5343
5344 void
5345 Layout::get_allocated_sections(Section_list* section_list) const
5346 {
5347 for (Section_list::const_iterator p = this->section_list_.begin();
5348 p != this->section_list_.end();
5349 ++p)
5350 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5351 section_list->push_back(*p);
5352 }
5353
5354 // Store the executable sections into the section list.
5355
5356 void
5357 Layout::get_executable_sections(Section_list* section_list) const
5358 {
5359 for (Section_list::const_iterator p = this->section_list_.begin();
5360 p != this->section_list_.end();
5361 ++p)
5362 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5363 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5364 section_list->push_back(*p);
5365 }
5366
5367 // Create an output segment.
5368
5369 Output_segment*
5370 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5371 {
5372 gold_assert(!parameters->options().relocatable());
5373 Output_segment* oseg = new Output_segment(type, flags);
5374 this->segment_list_.push_back(oseg);
5375
5376 if (type == elfcpp::PT_TLS)
5377 this->tls_segment_ = oseg;
5378 else if (type == elfcpp::PT_GNU_RELRO)
5379 this->relro_segment_ = oseg;
5380 else if (type == elfcpp::PT_INTERP)
5381 this->interp_segment_ = oseg;
5382
5383 return oseg;
5384 }
5385
5386 // Return the file offset of the normal symbol table.
5387
5388 off_t
5389 Layout::symtab_section_offset() const
5390 {
5391 if (this->symtab_section_ != NULL)
5392 return this->symtab_section_->offset();
5393 return 0;
5394 }
5395
5396 // Return the section index of the normal symbol table. It may have
5397 // been stripped by the -s/--strip-all option.
5398
5399 unsigned int
5400 Layout::symtab_section_shndx() const
5401 {
5402 if (this->symtab_section_ != NULL)
5403 return this->symtab_section_->out_shndx();
5404 return 0;
5405 }
5406
5407 // Write out the Output_sections. Most won't have anything to write,
5408 // since most of the data will come from input sections which are
5409 // handled elsewhere. But some Output_sections do have Output_data.
5410
5411 void
5412 Layout::write_output_sections(Output_file* of) const
5413 {
5414 for (Section_list::const_iterator p = this->section_list_.begin();
5415 p != this->section_list_.end();
5416 ++p)
5417 {
5418 if (!(*p)->after_input_sections())
5419 (*p)->write(of);
5420 }
5421 }
5422
5423 // Write out data not associated with a section or the symbol table.
5424
5425 void
5426 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5427 {
5428 if (!parameters->options().strip_all())
5429 {
5430 const Output_section* symtab_section = this->symtab_section_;
5431 for (Section_list::const_iterator p = this->section_list_.begin();
5432 p != this->section_list_.end();
5433 ++p)
5434 {
5435 if ((*p)->needs_symtab_index())
5436 {
5437 gold_assert(symtab_section != NULL);
5438 unsigned int index = (*p)->symtab_index();
5439 gold_assert(index > 0 && index != -1U);
5440 off_t off = (symtab_section->offset()
5441 + index * symtab_section->entsize());
5442 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5443 }
5444 }
5445 }
5446
5447 const Output_section* dynsym_section = this->dynsym_section_;
5448 for (Section_list::const_iterator p = this->section_list_.begin();
5449 p != this->section_list_.end();
5450 ++p)
5451 {
5452 if ((*p)->needs_dynsym_index())
5453 {
5454 gold_assert(dynsym_section != NULL);
5455 unsigned int index = (*p)->dynsym_index();
5456 gold_assert(index > 0 && index != -1U);
5457 off_t off = (dynsym_section->offset()
5458 + index * dynsym_section->entsize());
5459 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5460 }
5461 }
5462
5463 // Write out the Output_data which are not in an Output_section.
5464 for (Data_list::const_iterator p = this->special_output_list_.begin();
5465 p != this->special_output_list_.end();
5466 ++p)
5467 (*p)->write(of);
5468
5469 // Write out the Output_data which are not in an Output_section
5470 // and are regenerated in each iteration of relaxation.
5471 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5472 p != this->relax_output_list_.end();
5473 ++p)
5474 (*p)->write(of);
5475 }
5476
5477 // Write out the Output_sections which can only be written after the
5478 // input sections are complete.
5479
5480 void
5481 Layout::write_sections_after_input_sections(Output_file* of)
5482 {
5483 // Determine the final section offsets, and thus the final output
5484 // file size. Note we finalize the .shstrab last, to allow the
5485 // after_input_section sections to modify their section-names before
5486 // writing.
5487 if (this->any_postprocessing_sections_)
5488 {
5489 off_t off = this->output_file_size_;
5490 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5491
5492 // Now that we've finalized the names, we can finalize the shstrab.
5493 off =
5494 this->set_section_offsets(off,
5495 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5496
5497 if (off > this->output_file_size_)
5498 {
5499 of->resize(off);
5500 this->output_file_size_ = off;
5501 }
5502 }
5503
5504 for (Section_list::const_iterator p = this->section_list_.begin();
5505 p != this->section_list_.end();
5506 ++p)
5507 {
5508 if ((*p)->after_input_sections())
5509 (*p)->write(of);
5510 }
5511
5512 this->section_headers_->write(of);
5513 }
5514
5515 // If a tree-style build ID was requested, the parallel part of that computation
5516 // is already done, and the final hash-of-hashes is computed here. For other
5517 // types of build IDs, all the work is done here.
5518
5519 void
5520 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5521 size_t size_of_hashes) const
5522 {
5523 if (this->build_id_note_ == NULL)
5524 return;
5525
5526 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5527 this->build_id_note_->data_size());
5528
5529 if (array_of_hashes == NULL)
5530 {
5531 const size_t output_file_size = this->output_file_size();
5532 const unsigned char* iv = of->get_input_view(0, output_file_size);
5533 const char* style = parameters->options().build_id();
5534
5535 // If we get here with style == "tree" then the output must be
5536 // too small for chunking, and we use SHA-1 in that case.
5537 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5538 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5539 else if (strcmp(style, "md5") == 0)
5540 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5541 else
5542 gold_unreachable();
5543
5544 of->free_input_view(0, output_file_size, iv);
5545 }
5546 else
5547 {
5548 // Non-overlapping substrings of the output file have been hashed.
5549 // Compute SHA-1 hash of the hashes.
5550 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5551 size_of_hashes, ov);
5552 delete[] array_of_hashes;
5553 }
5554
5555 of->write_output_view(this->build_id_note_->offset(),
5556 this->build_id_note_->data_size(),
5557 ov);
5558 }
5559
5560 // Write out a binary file. This is called after the link is
5561 // complete. IN is the temporary output file we used to generate the
5562 // ELF code. We simply walk through the segments, read them from
5563 // their file offset in IN, and write them to their load address in
5564 // the output file. FIXME: with a bit more work, we could support
5565 // S-records and/or Intel hex format here.
5566
5567 void
5568 Layout::write_binary(Output_file* in) const
5569 {
5570 gold_assert(parameters->options().oformat_enum()
5571 == General_options::OBJECT_FORMAT_BINARY);
5572
5573 // Get the size of the binary file.
5574 uint64_t max_load_address = 0;
5575 for (Segment_list::const_iterator p = this->segment_list_.begin();
5576 p != this->segment_list_.end();
5577 ++p)
5578 {
5579 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5580 {
5581 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5582 if (max_paddr > max_load_address)
5583 max_load_address = max_paddr;
5584 }
5585 }
5586
5587 Output_file out(parameters->options().output_file_name());
5588 out.open(max_load_address);
5589
5590 for (Segment_list::const_iterator p = this->segment_list_.begin();
5591 p != this->segment_list_.end();
5592 ++p)
5593 {
5594 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5595 {
5596 const unsigned char* vin = in->get_input_view((*p)->offset(),
5597 (*p)->filesz());
5598 unsigned char* vout = out.get_output_view((*p)->paddr(),
5599 (*p)->filesz());
5600 memcpy(vout, vin, (*p)->filesz());
5601 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5602 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5603 }
5604 }
5605
5606 out.close();
5607 }
5608
5609 // Print the output sections to the map file.
5610
5611 void
5612 Layout::print_to_mapfile(Mapfile* mapfile) const
5613 {
5614 for (Segment_list::const_iterator p = this->segment_list_.begin();
5615 p != this->segment_list_.end();
5616 ++p)
5617 (*p)->print_sections_to_mapfile(mapfile);
5618 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5619 p != this->unattached_section_list_.end();
5620 ++p)
5621 (*p)->print_to_mapfile(mapfile);
5622 }
5623
5624 // Print statistical information to stderr. This is used for --stats.
5625
5626 void
5627 Layout::print_stats() const
5628 {
5629 this->namepool_.print_stats("section name pool");
5630 this->sympool_.print_stats("output symbol name pool");
5631 this->dynpool_.print_stats("dynamic name pool");
5632
5633 for (Section_list::const_iterator p = this->section_list_.begin();
5634 p != this->section_list_.end();
5635 ++p)
5636 (*p)->print_merge_stats();
5637 }
5638
5639 // Write_sections_task methods.
5640
5641 // We can always run this task.
5642
5643 Task_token*
5644 Write_sections_task::is_runnable()
5645 {
5646 return NULL;
5647 }
5648
5649 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5650 // when finished.
5651
5652 void
5653 Write_sections_task::locks(Task_locker* tl)
5654 {
5655 tl->add(this, this->output_sections_blocker_);
5656 if (this->input_sections_blocker_ != NULL)
5657 tl->add(this, this->input_sections_blocker_);
5658 tl->add(this, this->final_blocker_);
5659 }
5660
5661 // Run the task--write out the data.
5662
5663 void
5664 Write_sections_task::run(Workqueue*)
5665 {
5666 this->layout_->write_output_sections(this->of_);
5667 }
5668
5669 // Write_data_task methods.
5670
5671 // We can always run this task.
5672
5673 Task_token*
5674 Write_data_task::is_runnable()
5675 {
5676 return NULL;
5677 }
5678
5679 // We need to unlock FINAL_BLOCKER when finished.
5680
5681 void
5682 Write_data_task::locks(Task_locker* tl)
5683 {
5684 tl->add(this, this->final_blocker_);
5685 }
5686
5687 // Run the task--write out the data.
5688
5689 void
5690 Write_data_task::run(Workqueue*)
5691 {
5692 this->layout_->write_data(this->symtab_, this->of_);
5693 }
5694
5695 // Write_symbols_task methods.
5696
5697 // We can always run this task.
5698
5699 Task_token*
5700 Write_symbols_task::is_runnable()
5701 {
5702 return NULL;
5703 }
5704
5705 // We need to unlock FINAL_BLOCKER when finished.
5706
5707 void
5708 Write_symbols_task::locks(Task_locker* tl)
5709 {
5710 tl->add(this, this->final_blocker_);
5711 }
5712
5713 // Run the task--write out the symbols.
5714
5715 void
5716 Write_symbols_task::run(Workqueue*)
5717 {
5718 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5719 this->layout_->symtab_xindex(),
5720 this->layout_->dynsym_xindex(), this->of_);
5721 }
5722
5723 // Write_after_input_sections_task methods.
5724
5725 // We can only run this task after the input sections have completed.
5726
5727 Task_token*
5728 Write_after_input_sections_task::is_runnable()
5729 {
5730 if (this->input_sections_blocker_->is_blocked())
5731 return this->input_sections_blocker_;
5732 return NULL;
5733 }
5734
5735 // We need to unlock FINAL_BLOCKER when finished.
5736
5737 void
5738 Write_after_input_sections_task::locks(Task_locker* tl)
5739 {
5740 tl->add(this, this->final_blocker_);
5741 }
5742
5743 // Run the task.
5744
5745 void
5746 Write_after_input_sections_task::run(Workqueue*)
5747 {
5748 this->layout_->write_sections_after_input_sections(this->of_);
5749 }
5750
5751 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5752 // or as a "tree" where each chunk of the string is hashed and then those
5753 // hashes are put into a (much smaller) string which is hashed with sha1.
5754 // We compute a checksum over the entire file because that is simplest.
5755
5756 void
5757 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5758 {
5759 Task_token* post_hash_tasks_blocker = new Task_token(true);
5760 const Layout* layout = this->layout_;
5761 Output_file* of = this->of_;
5762 const size_t filesize = (layout->output_file_size() <= 0 ? 0
5763 : static_cast<size_t>(layout->output_file_size()));
5764 unsigned char* array_of_hashes = NULL;
5765 size_t size_of_hashes = 0;
5766
5767 if (strcmp(this->options_->build_id(), "tree") == 0
5768 && this->options_->build_id_chunk_size_for_treehash() > 0
5769 && filesize > 0
5770 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5771 {
5772 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5773 const size_t chunk_size =
5774 this->options_->build_id_chunk_size_for_treehash();
5775 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5776 post_hash_tasks_blocker->add_blockers(num_hashes);
5777 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5778 array_of_hashes = new unsigned char[size_of_hashes];
5779 unsigned char *dst = array_of_hashes;
5780 for (size_t i = 0, src_offset = 0; i < num_hashes;
5781 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5782 {
5783 size_t size = std::min(chunk_size, filesize - src_offset);
5784 workqueue->queue(new Hash_task(of,
5785 src_offset,
5786 size,
5787 dst,
5788 post_hash_tasks_blocker));
5789 }
5790 }
5791
5792 // Queue the final task to write the build id and close the output file.
5793 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5794 layout,
5795 of,
5796 array_of_hashes,
5797 size_of_hashes),
5798 post_hash_tasks_blocker,
5799 "Task_function Close_task_runner"));
5800 }
5801
5802 // Close_task_runner methods.
5803
5804 // Finish up the build ID computation, if necessary, and write a binary file,
5805 // if necessary. Then close the output file.
5806
5807 void
5808 Close_task_runner::run(Workqueue*, const Task*)
5809 {
5810 // At this point the multi-threaded part of the build ID computation,
5811 // if any, is done. See Build_id_task_runner.
5812 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5813 this->size_of_hashes_);
5814
5815 // If we've been asked to create a binary file, we do so here.
5816 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5817 this->layout_->write_binary(this->of_);
5818
5819 this->of_->close();
5820 }
5821
5822 // Instantiate the templates we need. We could use the configure
5823 // script to restrict this to only the ones for implemented targets.
5824
5825 #ifdef HAVE_TARGET_32_LITTLE
5826 template
5827 Output_section*
5828 Layout::init_fixed_output_section<32, false>(
5829 const char* name,
5830 elfcpp::Shdr<32, false>& shdr);
5831 #endif
5832
5833 #ifdef HAVE_TARGET_32_BIG
5834 template
5835 Output_section*
5836 Layout::init_fixed_output_section<32, true>(
5837 const char* name,
5838 elfcpp::Shdr<32, true>& shdr);
5839 #endif
5840
5841 #ifdef HAVE_TARGET_64_LITTLE
5842 template
5843 Output_section*
5844 Layout::init_fixed_output_section<64, false>(
5845 const char* name,
5846 elfcpp::Shdr<64, false>& shdr);
5847 #endif
5848
5849 #ifdef HAVE_TARGET_64_BIG
5850 template
5851 Output_section*
5852 Layout::init_fixed_output_section<64, true>(
5853 const char* name,
5854 elfcpp::Shdr<64, true>& shdr);
5855 #endif
5856
5857 #ifdef HAVE_TARGET_32_LITTLE
5858 template
5859 Output_section*
5860 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5861 unsigned int shndx,
5862 const char* name,
5863 const elfcpp::Shdr<32, false>& shdr,
5864 unsigned int, unsigned int, off_t*);
5865 #endif
5866
5867 #ifdef HAVE_TARGET_32_BIG
5868 template
5869 Output_section*
5870 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5871 unsigned int shndx,
5872 const char* name,
5873 const elfcpp::Shdr<32, true>& shdr,
5874 unsigned int, unsigned int, off_t*);
5875 #endif
5876
5877 #ifdef HAVE_TARGET_64_LITTLE
5878 template
5879 Output_section*
5880 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5881 unsigned int shndx,
5882 const char* name,
5883 const elfcpp::Shdr<64, false>& shdr,
5884 unsigned int, unsigned int, off_t*);
5885 #endif
5886
5887 #ifdef HAVE_TARGET_64_BIG
5888 template
5889 Output_section*
5890 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5891 unsigned int shndx,
5892 const char* name,
5893 const elfcpp::Shdr<64, true>& shdr,
5894 unsigned int, unsigned int, off_t*);
5895 #endif
5896
5897 #ifdef HAVE_TARGET_32_LITTLE
5898 template
5899 Output_section*
5900 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5901 unsigned int reloc_shndx,
5902 const elfcpp::Shdr<32, false>& shdr,
5903 Output_section* data_section,
5904 Relocatable_relocs* rr);
5905 #endif
5906
5907 #ifdef HAVE_TARGET_32_BIG
5908 template
5909 Output_section*
5910 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5911 unsigned int reloc_shndx,
5912 const elfcpp::Shdr<32, true>& shdr,
5913 Output_section* data_section,
5914 Relocatable_relocs* rr);
5915 #endif
5916
5917 #ifdef HAVE_TARGET_64_LITTLE
5918 template
5919 Output_section*
5920 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5921 unsigned int reloc_shndx,
5922 const elfcpp::Shdr<64, false>& shdr,
5923 Output_section* data_section,
5924 Relocatable_relocs* rr);
5925 #endif
5926
5927 #ifdef HAVE_TARGET_64_BIG
5928 template
5929 Output_section*
5930 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5931 unsigned int reloc_shndx,
5932 const elfcpp::Shdr<64, true>& shdr,
5933 Output_section* data_section,
5934 Relocatable_relocs* rr);
5935 #endif
5936
5937 #ifdef HAVE_TARGET_32_LITTLE
5938 template
5939 void
5940 Layout::layout_group<32, false>(Symbol_table* symtab,
5941 Sized_relobj_file<32, false>* object,
5942 unsigned int,
5943 const char* group_section_name,
5944 const char* signature,
5945 const elfcpp::Shdr<32, false>& shdr,
5946 elfcpp::Elf_Word flags,
5947 std::vector<unsigned int>* shndxes);
5948 #endif
5949
5950 #ifdef HAVE_TARGET_32_BIG
5951 template
5952 void
5953 Layout::layout_group<32, true>(Symbol_table* symtab,
5954 Sized_relobj_file<32, true>* object,
5955 unsigned int,
5956 const char* group_section_name,
5957 const char* signature,
5958 const elfcpp::Shdr<32, true>& shdr,
5959 elfcpp::Elf_Word flags,
5960 std::vector<unsigned int>* shndxes);
5961 #endif
5962
5963 #ifdef HAVE_TARGET_64_LITTLE
5964 template
5965 void
5966 Layout::layout_group<64, false>(Symbol_table* symtab,
5967 Sized_relobj_file<64, false>* object,
5968 unsigned int,
5969 const char* group_section_name,
5970 const char* signature,
5971 const elfcpp::Shdr<64, false>& shdr,
5972 elfcpp::Elf_Word flags,
5973 std::vector<unsigned int>* shndxes);
5974 #endif
5975
5976 #ifdef HAVE_TARGET_64_BIG
5977 template
5978 void
5979 Layout::layout_group<64, true>(Symbol_table* symtab,
5980 Sized_relobj_file<64, true>* object,
5981 unsigned int,
5982 const char* group_section_name,
5983 const char* signature,
5984 const elfcpp::Shdr<64, true>& shdr,
5985 elfcpp::Elf_Word flags,
5986 std::vector<unsigned int>* shndxes);
5987 #endif
5988
5989 #ifdef HAVE_TARGET_32_LITTLE
5990 template
5991 Output_section*
5992 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5993 const unsigned char* symbols,
5994 off_t symbols_size,
5995 const unsigned char* symbol_names,
5996 off_t symbol_names_size,
5997 unsigned int shndx,
5998 const elfcpp::Shdr<32, false>& shdr,
5999 unsigned int reloc_shndx,
6000 unsigned int reloc_type,
6001 off_t* off);
6002 #endif
6003
6004 #ifdef HAVE_TARGET_32_BIG
6005 template
6006 Output_section*
6007 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6008 const unsigned char* symbols,
6009 off_t symbols_size,
6010 const unsigned char* symbol_names,
6011 off_t symbol_names_size,
6012 unsigned int shndx,
6013 const elfcpp::Shdr<32, true>& shdr,
6014 unsigned int reloc_shndx,
6015 unsigned int reloc_type,
6016 off_t* off);
6017 #endif
6018
6019 #ifdef HAVE_TARGET_64_LITTLE
6020 template
6021 Output_section*
6022 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6023 const unsigned char* symbols,
6024 off_t symbols_size,
6025 const unsigned char* symbol_names,
6026 off_t symbol_names_size,
6027 unsigned int shndx,
6028 const elfcpp::Shdr<64, false>& shdr,
6029 unsigned int reloc_shndx,
6030 unsigned int reloc_type,
6031 off_t* off);
6032 #endif
6033
6034 #ifdef HAVE_TARGET_64_BIG
6035 template
6036 Output_section*
6037 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6038 const unsigned char* symbols,
6039 off_t symbols_size,
6040 const unsigned char* symbol_names,
6041 off_t symbol_names_size,
6042 unsigned int shndx,
6043 const elfcpp::Shdr<64, true>& shdr,
6044 unsigned int reloc_shndx,
6045 unsigned int reloc_type,
6046 off_t* off);
6047 #endif
6048
6049 #ifdef HAVE_TARGET_32_LITTLE
6050 template
6051 void
6052 Layout::add_to_gdb_index(bool is_type_unit,
6053 Sized_relobj<32, false>* object,
6054 const unsigned char* symbols,
6055 off_t symbols_size,
6056 unsigned int shndx,
6057 unsigned int reloc_shndx,
6058 unsigned int reloc_type);
6059 #endif
6060
6061 #ifdef HAVE_TARGET_32_BIG
6062 template
6063 void
6064 Layout::add_to_gdb_index(bool is_type_unit,
6065 Sized_relobj<32, true>* object,
6066 const unsigned char* symbols,
6067 off_t symbols_size,
6068 unsigned int shndx,
6069 unsigned int reloc_shndx,
6070 unsigned int reloc_type);
6071 #endif
6072
6073 #ifdef HAVE_TARGET_64_LITTLE
6074 template
6075 void
6076 Layout::add_to_gdb_index(bool is_type_unit,
6077 Sized_relobj<64, false>* object,
6078 const unsigned char* symbols,
6079 off_t symbols_size,
6080 unsigned int shndx,
6081 unsigned int reloc_shndx,
6082 unsigned int reloc_type);
6083 #endif
6084
6085 #ifdef HAVE_TARGET_64_BIG
6086 template
6087 void
6088 Layout::add_to_gdb_index(bool is_type_unit,
6089 Sized_relobj<64, true>* object,
6090 const unsigned char* symbols,
6091 off_t symbols_size,
6092 unsigned int shndx,
6093 unsigned int reloc_shndx,
6094 unsigned int reloc_type);
6095 #endif
6096
6097 } // End namespace gold.
This page took 0.246106 seconds and 5 git commands to generate.