Update copyright years
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list. Creates a single free list node that
76 // describes the entire region of length LEN. If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83 this->list_.push_front(Free_list_node(0, len));
84 this->last_remove_ = this->list_.begin();
85 this->extend_ = extend;
86 this->length_ = len;
87 ++Free_list::num_lists;
88 ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list. Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node. We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103 if (start == end)
104 return;
105 gold_assert(start < end);
106
107 ++Free_list::num_removes;
108
109 Iterator p = this->last_remove_;
110 if (p->start_ > start)
111 p = this->list_.begin();
112
113 for (; p != this->list_.end(); ++p)
114 {
115 ++Free_list::num_remove_visits;
116 // Find a node that wholly contains the indicated region.
117 if (p->start_ <= start && p->end_ >= end)
118 {
119 // Case 1: the indicated region spans the whole node.
120 // Add some fuzz to avoid creating tiny free chunks.
121 if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 p = this->list_.erase(p);
123 // Case 2: remove a chunk from the start of the node.
124 else if (p->start_ + 3 >= start)
125 p->start_ = end;
126 // Case 3: remove a chunk from the end of the node.
127 else if (p->end_ <= end + 3)
128 p->end_ = start;
129 // Case 4: remove a chunk from the middle, and split
130 // the node into two.
131 else
132 {
133 Free_list_node newnode(p->start_, start);
134 p->start_ = end;
135 this->list_.insert(p, newnode);
136 ++Free_list::num_nodes;
137 }
138 this->last_remove_ = p;
139 return;
140 }
141 }
142
143 // Did not find a node containing the given chunk. This could happen
144 // because a small chunk was already removed due to the fuzz.
145 gold_debug(DEBUG_INCREMENTAL,
146 "Free_list::remove(%d,%d) not found",
147 static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list. Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157 gold_debug(DEBUG_INCREMENTAL,
158 "Free_list::allocate(%08lx, %d, %08lx)",
159 static_cast<long>(len), static_cast<int>(align),
160 static_cast<long>(minoff));
161 if (len == 0)
162 return align_address(minoff, align);
163
164 ++Free_list::num_allocates;
165
166 // We usually want to drop free chunks smaller than 4 bytes.
167 // If we need to guarantee a minimum hole size, though, we need
168 // to keep track of all free chunks.
169 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172 {
173 ++Free_list::num_allocate_visits;
174 off_t start = p->start_ > minoff ? p->start_ : minoff;
175 start = align_address(start, align);
176 off_t end = start + len;
177 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178 {
179 this->length_ = end;
180 p->end_ = end;
181 }
182 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183 {
184 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 this->list_.erase(p);
186 else if (p->start_ + fuzz >= start)
187 p->start_ = end;
188 else if (p->end_ <= end + fuzz)
189 p->end_ = start;
190 else
191 {
192 Free_list_node newnode(p->start_, start);
193 p->start_ = end;
194 this->list_.insert(p, newnode);
195 ++Free_list::num_nodes;
196 }
197 return start;
198 }
199 }
200 if (this->extend_)
201 {
202 off_t start = align_address(this->length_, align);
203 this->length_ = start + len;
204 return start;
205 }
206 return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213 gold_info("Free list:\n start end length\n");
214 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
216 static_cast<long>(p->end_),
217 static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224 fprintf(stderr, _("%s: total free lists: %u\n"),
225 program_name, Free_list::num_lists);
226 fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 program_name, Free_list::num_nodes);
228 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 program_name, Free_list::num_removes);
230 fprintf(stderr, _("%s: nodes visited: %u\n"),
231 program_name, Free_list::num_remove_visits);
232 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 program_name, Free_list::num_allocates);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244 public:
245 Hash_task(const unsigned char* src,
246 size_t size,
247 unsigned char* dst,
248 Task_token* build_id_blocker,
249 Task_token* final_blocker)
250 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251 final_blocker_(final_blocker)
252 { }
253
254 void
255 run(Workqueue*)
256 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258 Task_token*
259 is_runnable();
260
261 // Unblock FINAL_BLOCKER_ when done.
262 void
263 locks(Task_locker* tl)
264 { tl->add(this, this->final_blocker_); }
265
266 std::string
267 get_name() const
268 { return "Hash_task"; }
269
270 private:
271 const unsigned char* const src_;
272 const size_t size_;
273 unsigned char* const dst_;
274 Task_token* const build_id_blocker_;
275 Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281 if (this->build_id_blocker_->is_blocked())
282 return this->build_id_blocker_;
283 return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 array_of_hashes_(NULL),
453 size_of_array_of_hashes_(0),
454 input_view_(NULL),
455 debug_abbrev_(NULL),
456 debug_info_(NULL),
457 group_signatures_(),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL),
471 record_output_section_data_from_script_(false),
472 script_output_section_data_list_(),
473 segment_states_(NULL),
474 relaxation_debug_check_(NULL),
475 section_order_map_(),
476 section_segment_map_(),
477 input_section_position_(),
478 input_section_glob_(),
479 incremental_base_(NULL),
480 free_list_()
481 {
482 // Make space for more than enough segments for a typical file.
483 // This is just for efficiency--it's OK if we wind up needing more.
484 this->segment_list_.reserve(12);
485
486 // We expect two unattached Output_data objects: the file header and
487 // the segment headers.
488 this->special_output_list_.reserve(2);
489
490 // Initialize structure needed for an incremental build.
491 if (parameters->incremental())
492 this->incremental_inputs_ = new Incremental_inputs;
493
494 // The section name pool is worth optimizing in all cases, because
495 // it is small, but there are often overlaps due to .rel sections.
496 this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504 this->incremental_base_ = base;
505 this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513 return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523 "abbrev",
524 "addr", // Fission extension
525 // "aranges", // not used by gdb as of 7.4
526 "frame",
527 "info",
528 "types",
529 "line",
530 "loc",
531 "macinfo",
532 "macro",
533 // "pubnames", // not used by gdb as of 7.4
534 // "pubtypes", // not used by gdb as of 7.4
535 "ranges",
536 "str",
537 };
538
539 // This is the minimum set of sections needed for line numbers.
540
541 static const char* lines_only_debug_sections[] =
542 {
543 "abbrev",
544 // "addr", // Fission extension
545 // "aranges", // not used by gdb as of 7.4
546 // "frame",
547 "info",
548 // "types",
549 "line",
550 // "loc",
551 // "macinfo",
552 // "macro",
553 // "pubnames", // not used by gdb as of 7.4
554 // "pubtypes", // not used by gdb as of 7.4
555 // "ranges",
556 "str",
557 };
558
559 // These sections are the DWARF fast-lookup tables, and are not needed
560 // when building a .gdb_index section.
561
562 static const char* gdb_fast_lookup_sections[] =
563 {
564 "aranges",
565 "pubnames",
566 "pubtypes",
567 };
568
569 // Returns whether the given debug section is in the list of
570 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
571 // portion of the name following ".debug_" or ".zdebug_".
572
573 static inline bool
574 is_gdb_debug_section(const char* suffix)
575 {
576 // We can do this faster: binary search or a hashtable. But why bother?
577 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
578 if (strcmp(suffix, gdb_sections[i]) == 0)
579 return true;
580 return false;
581 }
582
583 // Returns whether the given section is needed for lines-only debugging.
584
585 static inline bool
586 is_lines_only_debug_section(const char* suffix)
587 {
588 // We can do this faster: binary search or a hashtable. But why bother?
589 for (size_t i = 0;
590 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
591 ++i)
592 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
593 return true;
594 return false;
595 }
596
597 // Returns whether the given section is a fast-lookup section that
598 // will not be needed when building a .gdb_index section.
599
600 static inline bool
601 is_gdb_fast_lookup_section(const char* suffix)
602 {
603 // We can do this faster: binary search or a hashtable. But why bother?
604 for (size_t i = 0;
605 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
606 ++i)
607 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
608 return true;
609 return false;
610 }
611
612 // Sometimes we compress sections. This is typically done for
613 // sections that are not part of normal program execution (such as
614 // .debug_* sections), and where the readers of these sections know
615 // how to deal with compressed sections. This routine doesn't say for
616 // certain whether we'll compress -- it depends on commandline options
617 // as well -- just whether this section is a candidate for compression.
618 // (The Output_compressed_section class decides whether to compress
619 // a given section, and picks the name of the compressed section.)
620
621 static bool
622 is_compressible_debug_section(const char* secname)
623 {
624 return (is_prefix_of(".debug", secname));
625 }
626
627 // We may see compressed debug sections in input files. Return TRUE
628 // if this is the name of a compressed debug section.
629
630 bool
631 is_compressed_debug_section(const char* secname)
632 {
633 return (is_prefix_of(".zdebug", secname));
634 }
635
636 // Whether to include this section in the link.
637
638 template<int size, bool big_endian>
639 bool
640 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
641 const elfcpp::Shdr<size, big_endian>& shdr)
642 {
643 if (!parameters->options().relocatable()
644 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
645 return false;
646
647 switch (shdr.get_sh_type())
648 {
649 case elfcpp::SHT_NULL:
650 case elfcpp::SHT_SYMTAB:
651 case elfcpp::SHT_DYNSYM:
652 case elfcpp::SHT_HASH:
653 case elfcpp::SHT_DYNAMIC:
654 case elfcpp::SHT_SYMTAB_SHNDX:
655 return false;
656
657 case elfcpp::SHT_STRTAB:
658 // Discard the sections which have special meanings in the ELF
659 // ABI. Keep others (e.g., .stabstr). We could also do this by
660 // checking the sh_link fields of the appropriate sections.
661 return (strcmp(name, ".dynstr") != 0
662 && strcmp(name, ".strtab") != 0
663 && strcmp(name, ".shstrtab") != 0);
664
665 case elfcpp::SHT_RELA:
666 case elfcpp::SHT_REL:
667 case elfcpp::SHT_GROUP:
668 // If we are emitting relocations these should be handled
669 // elsewhere.
670 gold_assert(!parameters->options().relocatable());
671 return false;
672
673 case elfcpp::SHT_PROGBITS:
674 if (parameters->options().strip_debug()
675 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
676 {
677 if (is_debug_info_section(name))
678 return false;
679 }
680 if (parameters->options().strip_debug_non_line()
681 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
682 {
683 // Debugging sections can only be recognized by name.
684 if (is_prefix_of(".debug_", name)
685 && !is_lines_only_debug_section(name + 7))
686 return false;
687 if (is_prefix_of(".zdebug_", name)
688 && !is_lines_only_debug_section(name + 8))
689 return false;
690 }
691 if (parameters->options().strip_debug_gdb()
692 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
693 {
694 // Debugging sections can only be recognized by name.
695 if (is_prefix_of(".debug_", name)
696 && !is_gdb_debug_section(name + 7))
697 return false;
698 if (is_prefix_of(".zdebug_", name)
699 && !is_gdb_debug_section(name + 8))
700 return false;
701 }
702 if (parameters->options().gdb_index()
703 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704 {
705 // When building .gdb_index, we can strip .debug_pubnames,
706 // .debug_pubtypes, and .debug_aranges sections.
707 if (is_prefix_of(".debug_", name)
708 && is_gdb_fast_lookup_section(name + 7))
709 return false;
710 if (is_prefix_of(".zdebug_", name)
711 && is_gdb_fast_lookup_section(name + 8))
712 return false;
713 }
714 if (parameters->options().strip_lto_sections()
715 && !parameters->options().relocatable()
716 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
717 {
718 // Ignore LTO sections containing intermediate code.
719 if (is_prefix_of(".gnu.lto_", name))
720 return false;
721 }
722 // The GNU linker strips .gnu_debuglink sections, so we do too.
723 // This is a feature used to keep debugging information in
724 // separate files.
725 if (strcmp(name, ".gnu_debuglink") == 0)
726 return false;
727 return true;
728
729 default:
730 return true;
731 }
732 }
733
734 // Return an output section named NAME, or NULL if there is none.
735
736 Output_section*
737 Layout::find_output_section(const char* name) const
738 {
739 for (Section_list::const_iterator p = this->section_list_.begin();
740 p != this->section_list_.end();
741 ++p)
742 if (strcmp((*p)->name(), name) == 0)
743 return *p;
744 return NULL;
745 }
746
747 // Return an output segment of type TYPE, with segment flags SET set
748 // and segment flags CLEAR clear. Return NULL if there is none.
749
750 Output_segment*
751 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
752 elfcpp::Elf_Word clear) const
753 {
754 for (Segment_list::const_iterator p = this->segment_list_.begin();
755 p != this->segment_list_.end();
756 ++p)
757 if (static_cast<elfcpp::PT>((*p)->type()) == type
758 && ((*p)->flags() & set) == set
759 && ((*p)->flags() & clear) == 0)
760 return *p;
761 return NULL;
762 }
763
764 // When we put a .ctors or .dtors section with more than one word into
765 // a .init_array or .fini_array section, we need to reverse the words
766 // in the .ctors/.dtors section. This is because .init_array executes
767 // constructors front to back, where .ctors executes them back to
768 // front, and vice-versa for .fini_array/.dtors. Although we do want
769 // to remap .ctors/.dtors into .init_array/.fini_array because it can
770 // be more efficient, we don't want to change the order in which
771 // constructors/destructors are run. This set just keeps track of
772 // these sections which need to be reversed. It is only changed by
773 // Layout::layout. It should be a private member of Layout, but that
774 // would require layout.h to #include object.h to get the definition
775 // of Section_id.
776 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
777
778 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
779 // .init_array/.fini_array section.
780
781 bool
782 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
783 {
784 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
785 != ctors_sections_in_init_array.end());
786 }
787
788 // Return the output section to use for section NAME with type TYPE
789 // and section flags FLAGS. NAME must be canonicalized in the string
790 // pool, and NAME_KEY is the key. ORDER is where this should appear
791 // in the output sections. IS_RELRO is true for a relro section.
792
793 Output_section*
794 Layout::get_output_section(const char* name, Stringpool::Key name_key,
795 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
796 Output_section_order order, bool is_relro)
797 {
798 elfcpp::Elf_Word lookup_type = type;
799
800 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
801 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
802 // .init_array, .fini_array, and .preinit_array sections by name
803 // whatever their type in the input file. We do this because the
804 // types are not always right in the input files.
805 if (lookup_type == elfcpp::SHT_INIT_ARRAY
806 || lookup_type == elfcpp::SHT_FINI_ARRAY
807 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
808 lookup_type = elfcpp::SHT_PROGBITS;
809
810 elfcpp::Elf_Xword lookup_flags = flags;
811
812 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
813 // read-write with read-only sections. Some other ELF linkers do
814 // not do this. FIXME: Perhaps there should be an option
815 // controlling this.
816 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
817
818 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
819 const std::pair<Key, Output_section*> v(key, NULL);
820 std::pair<Section_name_map::iterator, bool> ins(
821 this->section_name_map_.insert(v));
822
823 if (!ins.second)
824 return ins.first->second;
825 else
826 {
827 // This is the first time we've seen this name/type/flags
828 // combination. For compatibility with the GNU linker, we
829 // combine sections with contents and zero flags with sections
830 // with non-zero flags. This is a workaround for cases where
831 // assembler code forgets to set section flags. FIXME: Perhaps
832 // there should be an option to control this.
833 Output_section* os = NULL;
834
835 if (lookup_type == elfcpp::SHT_PROGBITS)
836 {
837 if (flags == 0)
838 {
839 Output_section* same_name = this->find_output_section(name);
840 if (same_name != NULL
841 && (same_name->type() == elfcpp::SHT_PROGBITS
842 || same_name->type() == elfcpp::SHT_INIT_ARRAY
843 || same_name->type() == elfcpp::SHT_FINI_ARRAY
844 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
845 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
846 os = same_name;
847 }
848 else if ((flags & elfcpp::SHF_TLS) == 0)
849 {
850 elfcpp::Elf_Xword zero_flags = 0;
851 const Key zero_key(name_key, std::make_pair(lookup_type,
852 zero_flags));
853 Section_name_map::iterator p =
854 this->section_name_map_.find(zero_key);
855 if (p != this->section_name_map_.end())
856 os = p->second;
857 }
858 }
859
860 if (os == NULL)
861 os = this->make_output_section(name, type, flags, order, is_relro);
862
863 ins.first->second = os;
864 return os;
865 }
866 }
867
868 // Returns TRUE iff NAME (an input section from RELOBJ) will
869 // be mapped to an output section that should be KEPT.
870
871 bool
872 Layout::keep_input_section(const Relobj* relobj, const char* name)
873 {
874 if (! this->script_options_->saw_sections_clause())
875 return false;
876
877 Script_sections* ss = this->script_options_->script_sections();
878 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
879 Output_section** output_section_slot;
880 Script_sections::Section_type script_section_type;
881 bool keep;
882
883 name = ss->output_section_name(file_name, name, &output_section_slot,
884 &script_section_type, &keep);
885 return name != NULL && keep;
886 }
887
888 // Clear the input section flags that should not be copied to the
889 // output section.
890
891 elfcpp::Elf_Xword
892 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
893 {
894 // Some flags in the input section should not be automatically
895 // copied to the output section.
896 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
897 | elfcpp::SHF_GROUP
898 | elfcpp::SHF_MERGE
899 | elfcpp::SHF_STRINGS);
900
901 // We only clear the SHF_LINK_ORDER flag in for
902 // a non-relocatable link.
903 if (!parameters->options().relocatable())
904 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
905
906 return input_section_flags;
907 }
908
909 // Pick the output section to use for section NAME, in input file
910 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
911 // linker created section. IS_INPUT_SECTION is true if we are
912 // choosing an output section for an input section found in a input
913 // file. ORDER is where this section should appear in the output
914 // sections. IS_RELRO is true for a relro section. This will return
915 // NULL if the input section should be discarded.
916
917 Output_section*
918 Layout::choose_output_section(const Relobj* relobj, const char* name,
919 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
920 bool is_input_section, Output_section_order order,
921 bool is_relro)
922 {
923 // We should not see any input sections after we have attached
924 // sections to segments.
925 gold_assert(!is_input_section || !this->sections_are_attached_);
926
927 flags = this->get_output_section_flags(flags);
928
929 if (this->script_options_->saw_sections_clause())
930 {
931 // We are using a SECTIONS clause, so the output section is
932 // chosen based only on the name.
933
934 Script_sections* ss = this->script_options_->script_sections();
935 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
936 Output_section** output_section_slot;
937 Script_sections::Section_type script_section_type;
938 const char* orig_name = name;
939 bool keep;
940 name = ss->output_section_name(file_name, name, &output_section_slot,
941 &script_section_type, &keep);
942
943 if (name == NULL)
944 {
945 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
946 "because it is not allowed by the "
947 "SECTIONS clause of the linker script"),
948 orig_name);
949 // The SECTIONS clause says to discard this input section.
950 return NULL;
951 }
952
953 // We can only handle script section types ST_NONE and ST_NOLOAD.
954 switch (script_section_type)
955 {
956 case Script_sections::ST_NONE:
957 break;
958 case Script_sections::ST_NOLOAD:
959 flags &= elfcpp::SHF_ALLOC;
960 break;
961 default:
962 gold_unreachable();
963 }
964
965 // If this is an orphan section--one not mentioned in the linker
966 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
967 // default processing below.
968
969 if (output_section_slot != NULL)
970 {
971 if (*output_section_slot != NULL)
972 {
973 (*output_section_slot)->update_flags_for_input_section(flags);
974 return *output_section_slot;
975 }
976
977 // We don't put sections found in the linker script into
978 // SECTION_NAME_MAP_. That keeps us from getting confused
979 // if an orphan section is mapped to a section with the same
980 // name as one in the linker script.
981
982 name = this->namepool_.add(name, false, NULL);
983
984 Output_section* os = this->make_output_section(name, type, flags,
985 order, is_relro);
986
987 os->set_found_in_sections_clause();
988
989 // Special handling for NOLOAD sections.
990 if (script_section_type == Script_sections::ST_NOLOAD)
991 {
992 os->set_is_noload();
993
994 // The constructor of Output_section sets addresses of non-ALLOC
995 // sections to 0 by default. We don't want that for NOLOAD
996 // sections even if they have no SHF_ALLOC flag.
997 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
998 && os->is_address_valid())
999 {
1000 gold_assert(os->address() == 0
1001 && !os->is_offset_valid()
1002 && !os->is_data_size_valid());
1003 os->reset_address_and_file_offset();
1004 }
1005 }
1006
1007 *output_section_slot = os;
1008 return os;
1009 }
1010 }
1011
1012 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1013
1014 size_t len = strlen(name);
1015 char* uncompressed_name = NULL;
1016
1017 // Compressed debug sections should be mapped to the corresponding
1018 // uncompressed section.
1019 if (is_compressed_debug_section(name))
1020 {
1021 uncompressed_name = new char[len];
1022 uncompressed_name[0] = '.';
1023 gold_assert(name[0] == '.' && name[1] == 'z');
1024 strncpy(&uncompressed_name[1], &name[2], len - 2);
1025 uncompressed_name[len - 1] = '\0';
1026 len -= 1;
1027 name = uncompressed_name;
1028 }
1029
1030 // Turn NAME from the name of the input section into the name of the
1031 // output section.
1032 if (is_input_section
1033 && !this->script_options_->saw_sections_clause()
1034 && !parameters->options().relocatable())
1035 {
1036 const char *orig_name = name;
1037 name = parameters->target().output_section_name(relobj, name, &len);
1038 if (name == NULL)
1039 name = Layout::output_section_name(relobj, orig_name, &len);
1040 }
1041
1042 Stringpool::Key name_key;
1043 name = this->namepool_.add_with_length(name, len, true, &name_key);
1044
1045 if (uncompressed_name != NULL)
1046 delete[] uncompressed_name;
1047
1048 // Find or make the output section. The output section is selected
1049 // based on the section name, type, and flags.
1050 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1051 }
1052
1053 // For incremental links, record the initial fixed layout of a section
1054 // from the base file, and return a pointer to the Output_section.
1055
1056 template<int size, bool big_endian>
1057 Output_section*
1058 Layout::init_fixed_output_section(const char* name,
1059 elfcpp::Shdr<size, big_endian>& shdr)
1060 {
1061 unsigned int sh_type = shdr.get_sh_type();
1062
1063 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1064 // PRE_INIT_ARRAY, and NOTE sections.
1065 // All others will be created from scratch and reallocated.
1066 if (!can_incremental_update(sh_type))
1067 return NULL;
1068
1069 // If we're generating a .gdb_index section, we need to regenerate
1070 // it from scratch.
1071 if (parameters->options().gdb_index()
1072 && sh_type == elfcpp::SHT_PROGBITS
1073 && strcmp(name, ".gdb_index") == 0)
1074 return NULL;
1075
1076 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1077 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1078 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1079 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1080 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1081 shdr.get_sh_addralign();
1082
1083 // Make the output section.
1084 Stringpool::Key name_key;
1085 name = this->namepool_.add(name, true, &name_key);
1086 Output_section* os = this->get_output_section(name, name_key, sh_type,
1087 sh_flags, ORDER_INVALID, false);
1088 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1089 if (sh_type != elfcpp::SHT_NOBITS)
1090 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1091 return os;
1092 }
1093
1094 // Return the index by which an input section should be ordered. This
1095 // is used to sort some .text sections, for compatibility with GNU ld.
1096
1097 int
1098 Layout::special_ordering_of_input_section(const char* name)
1099 {
1100 // The GNU linker has some special handling for some sections that
1101 // wind up in the .text section. Sections that start with these
1102 // prefixes must appear first, and must appear in the order listed
1103 // here.
1104 static const char* const text_section_sort[] =
1105 {
1106 ".text.unlikely",
1107 ".text.exit",
1108 ".text.startup",
1109 ".text.hot"
1110 };
1111
1112 for (size_t i = 0;
1113 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1114 i++)
1115 if (is_prefix_of(text_section_sort[i], name))
1116 return i;
1117
1118 return -1;
1119 }
1120
1121 // Return the output section to use for input section SHNDX, with name
1122 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1123 // index of a relocation section which applies to this section, or 0
1124 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1125 // relocation section if there is one. Set *OFF to the offset of this
1126 // input section without the output section. Return NULL if the
1127 // section should be discarded. Set *OFF to -1 if the section
1128 // contents should not be written directly to the output file, but
1129 // will instead receive special handling.
1130
1131 template<int size, bool big_endian>
1132 Output_section*
1133 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1134 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1135 unsigned int reloc_shndx, unsigned int, off_t* off)
1136 {
1137 *off = 0;
1138
1139 if (!this->include_section(object, name, shdr))
1140 return NULL;
1141
1142 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1143
1144 // In a relocatable link a grouped section must not be combined with
1145 // any other sections.
1146 Output_section* os;
1147 if (parameters->options().relocatable()
1148 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1149 {
1150 name = this->namepool_.add(name, true, NULL);
1151 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1152 ORDER_INVALID, false);
1153 }
1154 else
1155 {
1156 // Plugins can choose to place one or more subsets of sections in
1157 // unique segments and this is done by mapping these section subsets
1158 // to unique output sections. Check if this section needs to be
1159 // remapped to a unique output section.
1160 Section_segment_map::iterator it
1161 = this->section_segment_map_.find(Const_section_id(object, shndx));
1162 if (it == this->section_segment_map_.end())
1163 {
1164 os = this->choose_output_section(object, name, sh_type,
1165 shdr.get_sh_flags(), true,
1166 ORDER_INVALID, false);
1167 }
1168 else
1169 {
1170 // We know the name of the output section, directly call
1171 // get_output_section here by-passing choose_output_section.
1172 elfcpp::Elf_Xword flags
1173 = this->get_output_section_flags(shdr.get_sh_flags());
1174
1175 const char* os_name = it->second->name;
1176 Stringpool::Key name_key;
1177 os_name = this->namepool_.add(os_name, true, &name_key);
1178 os = this->get_output_section(os_name, name_key, sh_type, flags,
1179 ORDER_INVALID, false);
1180 if (!os->is_unique_segment())
1181 {
1182 os->set_is_unique_segment();
1183 os->set_extra_segment_flags(it->second->flags);
1184 os->set_segment_alignment(it->second->align);
1185 }
1186 }
1187 if (os == NULL)
1188 return NULL;
1189 }
1190
1191 // By default the GNU linker sorts input sections whose names match
1192 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1193 // sections are sorted by name. This is used to implement
1194 // constructor priority ordering. We are compatible. When we put
1195 // .ctor sections in .init_array and .dtor sections in .fini_array,
1196 // we must also sort plain .ctor and .dtor sections.
1197 if (!this->script_options_->saw_sections_clause()
1198 && !parameters->options().relocatable()
1199 && (is_prefix_of(".ctors.", name)
1200 || is_prefix_of(".dtors.", name)
1201 || is_prefix_of(".init_array.", name)
1202 || is_prefix_of(".fini_array.", name)
1203 || (parameters->options().ctors_in_init_array()
1204 && (strcmp(name, ".ctors") == 0
1205 || strcmp(name, ".dtors") == 0))))
1206 os->set_must_sort_attached_input_sections();
1207
1208 // By default the GNU linker sorts some special text sections ahead
1209 // of others. We are compatible.
1210 if (parameters->options().text_reorder()
1211 && !this->script_options_->saw_sections_clause()
1212 && !this->is_section_ordering_specified()
1213 && !parameters->options().relocatable()
1214 && Layout::special_ordering_of_input_section(name) >= 0)
1215 os->set_must_sort_attached_input_sections();
1216
1217 // If this is a .ctors or .ctors.* section being mapped to a
1218 // .init_array section, or a .dtors or .dtors.* section being mapped
1219 // to a .fini_array section, we will need to reverse the words if
1220 // there is more than one. Record this section for later. See
1221 // ctors_sections_in_init_array above.
1222 if (!this->script_options_->saw_sections_clause()
1223 && !parameters->options().relocatable()
1224 && shdr.get_sh_size() > size / 8
1225 && (((strcmp(name, ".ctors") == 0
1226 || is_prefix_of(".ctors.", name))
1227 && strcmp(os->name(), ".init_array") == 0)
1228 || ((strcmp(name, ".dtors") == 0
1229 || is_prefix_of(".dtors.", name))
1230 && strcmp(os->name(), ".fini_array") == 0)))
1231 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1232
1233 // FIXME: Handle SHF_LINK_ORDER somewhere.
1234
1235 elfcpp::Elf_Xword orig_flags = os->flags();
1236
1237 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1238 this->script_options_->saw_sections_clause());
1239
1240 // If the flags changed, we may have to change the order.
1241 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1242 {
1243 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1244 elfcpp::Elf_Xword new_flags =
1245 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1246 if (orig_flags != new_flags)
1247 os->set_order(this->default_section_order(os, false));
1248 }
1249
1250 this->have_added_input_section_ = true;
1251
1252 return os;
1253 }
1254
1255 // Maps section SECN to SEGMENT s.
1256 void
1257 Layout::insert_section_segment_map(Const_section_id secn,
1258 Unique_segment_info *s)
1259 {
1260 gold_assert(this->unique_segment_for_sections_specified_);
1261 this->section_segment_map_[secn] = s;
1262 }
1263
1264 // Handle a relocation section when doing a relocatable link.
1265
1266 template<int size, bool big_endian>
1267 Output_section*
1268 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1269 unsigned int,
1270 const elfcpp::Shdr<size, big_endian>& shdr,
1271 Output_section* data_section,
1272 Relocatable_relocs* rr)
1273 {
1274 gold_assert(parameters->options().relocatable()
1275 || parameters->options().emit_relocs());
1276
1277 int sh_type = shdr.get_sh_type();
1278
1279 std::string name;
1280 if (sh_type == elfcpp::SHT_REL)
1281 name = ".rel";
1282 else if (sh_type == elfcpp::SHT_RELA)
1283 name = ".rela";
1284 else
1285 gold_unreachable();
1286 name += data_section->name();
1287
1288 // In a relocatable link relocs for a grouped section must not be
1289 // combined with other reloc sections.
1290 Output_section* os;
1291 if (!parameters->options().relocatable()
1292 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1293 os = this->choose_output_section(object, name.c_str(), sh_type,
1294 shdr.get_sh_flags(), false,
1295 ORDER_INVALID, false);
1296 else
1297 {
1298 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1299 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1300 ORDER_INVALID, false);
1301 }
1302
1303 os->set_should_link_to_symtab();
1304 os->set_info_section(data_section);
1305
1306 Output_section_data* posd;
1307 if (sh_type == elfcpp::SHT_REL)
1308 {
1309 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1310 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1311 size,
1312 big_endian>(rr);
1313 }
1314 else if (sh_type == elfcpp::SHT_RELA)
1315 {
1316 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1317 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1318 size,
1319 big_endian>(rr);
1320 }
1321 else
1322 gold_unreachable();
1323
1324 os->add_output_section_data(posd);
1325 rr->set_output_data(posd);
1326
1327 return os;
1328 }
1329
1330 // Handle a group section when doing a relocatable link.
1331
1332 template<int size, bool big_endian>
1333 void
1334 Layout::layout_group(Symbol_table* symtab,
1335 Sized_relobj_file<size, big_endian>* object,
1336 unsigned int,
1337 const char* group_section_name,
1338 const char* signature,
1339 const elfcpp::Shdr<size, big_endian>& shdr,
1340 elfcpp::Elf_Word flags,
1341 std::vector<unsigned int>* shndxes)
1342 {
1343 gold_assert(parameters->options().relocatable());
1344 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1345 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1346 Output_section* os = this->make_output_section(group_section_name,
1347 elfcpp::SHT_GROUP,
1348 shdr.get_sh_flags(),
1349 ORDER_INVALID, false);
1350
1351 // We need to find a symbol with the signature in the symbol table.
1352 // If we don't find one now, we need to look again later.
1353 Symbol* sym = symtab->lookup(signature, NULL);
1354 if (sym != NULL)
1355 os->set_info_symndx(sym);
1356 else
1357 {
1358 // Reserve some space to minimize reallocations.
1359 if (this->group_signatures_.empty())
1360 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1361
1362 // We will wind up using a symbol whose name is the signature.
1363 // So just put the signature in the symbol name pool to save it.
1364 signature = symtab->canonicalize_name(signature);
1365 this->group_signatures_.push_back(Group_signature(os, signature));
1366 }
1367
1368 os->set_should_link_to_symtab();
1369 os->set_entsize(4);
1370
1371 section_size_type entry_count =
1372 convert_to_section_size_type(shdr.get_sh_size() / 4);
1373 Output_section_data* posd =
1374 new Output_data_group<size, big_endian>(object, entry_count, flags,
1375 shndxes);
1376 os->add_output_section_data(posd);
1377 }
1378
1379 // Special GNU handling of sections name .eh_frame. They will
1380 // normally hold exception frame data as defined by the C++ ABI
1381 // (http://codesourcery.com/cxx-abi/).
1382
1383 template<int size, bool big_endian>
1384 Output_section*
1385 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1386 const unsigned char* symbols,
1387 off_t symbols_size,
1388 const unsigned char* symbol_names,
1389 off_t symbol_names_size,
1390 unsigned int shndx,
1391 const elfcpp::Shdr<size, big_endian>& shdr,
1392 unsigned int reloc_shndx, unsigned int reloc_type,
1393 off_t* off)
1394 {
1395 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1396 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1397 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1398
1399 Output_section* os = this->make_eh_frame_section(object);
1400 if (os == NULL)
1401 return NULL;
1402
1403 gold_assert(this->eh_frame_section_ == os);
1404
1405 elfcpp::Elf_Xword orig_flags = os->flags();
1406
1407 if (!parameters->incremental()
1408 && this->eh_frame_data_->add_ehframe_input_section(object,
1409 symbols,
1410 symbols_size,
1411 symbol_names,
1412 symbol_names_size,
1413 shndx,
1414 reloc_shndx,
1415 reloc_type))
1416 {
1417 os->update_flags_for_input_section(shdr.get_sh_flags());
1418
1419 // A writable .eh_frame section is a RELRO section.
1420 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1421 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1422 {
1423 os->set_is_relro();
1424 os->set_order(ORDER_RELRO);
1425 }
1426
1427 // We found a .eh_frame section we are going to optimize, so now
1428 // we can add the set of optimized sections to the output
1429 // section. We need to postpone adding this until we've found a
1430 // section we can optimize so that the .eh_frame section in
1431 // crtbegin.o winds up at the start of the output section.
1432 if (!this->added_eh_frame_data_)
1433 {
1434 os->add_output_section_data(this->eh_frame_data_);
1435 this->added_eh_frame_data_ = true;
1436 }
1437 *off = -1;
1438 }
1439 else
1440 {
1441 // We couldn't handle this .eh_frame section for some reason.
1442 // Add it as a normal section.
1443 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1444 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1445 reloc_shndx, saw_sections_clause);
1446 this->have_added_input_section_ = true;
1447
1448 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1449 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1450 os->set_order(this->default_section_order(os, false));
1451 }
1452
1453 return os;
1454 }
1455
1456 // Create and return the magic .eh_frame section. Create
1457 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1458 // input .eh_frame section; it may be NULL.
1459
1460 Output_section*
1461 Layout::make_eh_frame_section(const Relobj* object)
1462 {
1463 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1464 // SHT_PROGBITS.
1465 Output_section* os = this->choose_output_section(object, ".eh_frame",
1466 elfcpp::SHT_PROGBITS,
1467 elfcpp::SHF_ALLOC, false,
1468 ORDER_EHFRAME, false);
1469 if (os == NULL)
1470 return NULL;
1471
1472 if (this->eh_frame_section_ == NULL)
1473 {
1474 this->eh_frame_section_ = os;
1475 this->eh_frame_data_ = new Eh_frame();
1476
1477 // For incremental linking, we do not optimize .eh_frame sections
1478 // or create a .eh_frame_hdr section.
1479 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1480 {
1481 Output_section* hdr_os =
1482 this->choose_output_section(NULL, ".eh_frame_hdr",
1483 elfcpp::SHT_PROGBITS,
1484 elfcpp::SHF_ALLOC, false,
1485 ORDER_EHFRAME, false);
1486
1487 if (hdr_os != NULL)
1488 {
1489 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1490 this->eh_frame_data_);
1491 hdr_os->add_output_section_data(hdr_posd);
1492
1493 hdr_os->set_after_input_sections();
1494
1495 if (!this->script_options_->saw_phdrs_clause())
1496 {
1497 Output_segment* hdr_oseg;
1498 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1499 elfcpp::PF_R);
1500 hdr_oseg->add_output_section_to_nonload(hdr_os,
1501 elfcpp::PF_R);
1502 }
1503
1504 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1505 }
1506 }
1507 }
1508
1509 return os;
1510 }
1511
1512 // Add an exception frame for a PLT. This is called from target code.
1513
1514 void
1515 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1516 size_t cie_length, const unsigned char* fde_data,
1517 size_t fde_length)
1518 {
1519 if (parameters->incremental())
1520 {
1521 // FIXME: Maybe this could work some day....
1522 return;
1523 }
1524 Output_section* os = this->make_eh_frame_section(NULL);
1525 if (os == NULL)
1526 return;
1527 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1528 fde_data, fde_length);
1529 if (!this->added_eh_frame_data_)
1530 {
1531 os->add_output_section_data(this->eh_frame_data_);
1532 this->added_eh_frame_data_ = true;
1533 }
1534 }
1535
1536 // Scan a .debug_info or .debug_types section, and add summary
1537 // information to the .gdb_index section.
1538
1539 template<int size, bool big_endian>
1540 void
1541 Layout::add_to_gdb_index(bool is_type_unit,
1542 Sized_relobj<size, big_endian>* object,
1543 const unsigned char* symbols,
1544 off_t symbols_size,
1545 unsigned int shndx,
1546 unsigned int reloc_shndx,
1547 unsigned int reloc_type)
1548 {
1549 if (this->gdb_index_data_ == NULL)
1550 {
1551 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1552 elfcpp::SHT_PROGBITS, 0,
1553 false, ORDER_INVALID,
1554 false);
1555 if (os == NULL)
1556 return;
1557
1558 this->gdb_index_data_ = new Gdb_index(os);
1559 os->add_output_section_data(this->gdb_index_data_);
1560 os->set_after_input_sections();
1561 }
1562
1563 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1564 symbols_size, shndx, reloc_shndx,
1565 reloc_type);
1566 }
1567
1568 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1569 // the output section.
1570
1571 Output_section*
1572 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1573 elfcpp::Elf_Xword flags,
1574 Output_section_data* posd,
1575 Output_section_order order, bool is_relro)
1576 {
1577 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1578 false, order, is_relro);
1579 if (os != NULL)
1580 os->add_output_section_data(posd);
1581 return os;
1582 }
1583
1584 // Map section flags to segment flags.
1585
1586 elfcpp::Elf_Word
1587 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1588 {
1589 elfcpp::Elf_Word ret = elfcpp::PF_R;
1590 if ((flags & elfcpp::SHF_WRITE) != 0)
1591 ret |= elfcpp::PF_W;
1592 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1593 ret |= elfcpp::PF_X;
1594 return ret;
1595 }
1596
1597 // Make a new Output_section, and attach it to segments as
1598 // appropriate. ORDER is the order in which this section should
1599 // appear in the output segment. IS_RELRO is true if this is a relro
1600 // (read-only after relocations) section.
1601
1602 Output_section*
1603 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1604 elfcpp::Elf_Xword flags,
1605 Output_section_order order, bool is_relro)
1606 {
1607 Output_section* os;
1608 if ((flags & elfcpp::SHF_ALLOC) == 0
1609 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1610 && is_compressible_debug_section(name))
1611 os = new Output_compressed_section(&parameters->options(), name, type,
1612 flags);
1613 else if ((flags & elfcpp::SHF_ALLOC) == 0
1614 && parameters->options().strip_debug_non_line()
1615 && strcmp(".debug_abbrev", name) == 0)
1616 {
1617 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1618 name, type, flags);
1619 if (this->debug_info_)
1620 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1621 }
1622 else if ((flags & elfcpp::SHF_ALLOC) == 0
1623 && parameters->options().strip_debug_non_line()
1624 && strcmp(".debug_info", name) == 0)
1625 {
1626 os = this->debug_info_ = new Output_reduced_debug_info_section(
1627 name, type, flags);
1628 if (this->debug_abbrev_)
1629 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1630 }
1631 else
1632 {
1633 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1634 // not have correct section types. Force them here.
1635 if (type == elfcpp::SHT_PROGBITS)
1636 {
1637 if (is_prefix_of(".init_array", name))
1638 type = elfcpp::SHT_INIT_ARRAY;
1639 else if (is_prefix_of(".preinit_array", name))
1640 type = elfcpp::SHT_PREINIT_ARRAY;
1641 else if (is_prefix_of(".fini_array", name))
1642 type = elfcpp::SHT_FINI_ARRAY;
1643 }
1644
1645 // FIXME: const_cast is ugly.
1646 Target* target = const_cast<Target*>(&parameters->target());
1647 os = target->make_output_section(name, type, flags);
1648 }
1649
1650 // With -z relro, we have to recognize the special sections by name.
1651 // There is no other way.
1652 bool is_relro_local = false;
1653 if (!this->script_options_->saw_sections_clause()
1654 && parameters->options().relro()
1655 && (flags & elfcpp::SHF_ALLOC) != 0
1656 && (flags & elfcpp::SHF_WRITE) != 0)
1657 {
1658 if (type == elfcpp::SHT_PROGBITS)
1659 {
1660 if ((flags & elfcpp::SHF_TLS) != 0)
1661 is_relro = true;
1662 else if (strcmp(name, ".data.rel.ro") == 0)
1663 is_relro = true;
1664 else if (strcmp(name, ".data.rel.ro.local") == 0)
1665 {
1666 is_relro = true;
1667 is_relro_local = true;
1668 }
1669 else if (strcmp(name, ".ctors") == 0
1670 || strcmp(name, ".dtors") == 0
1671 || strcmp(name, ".jcr") == 0)
1672 is_relro = true;
1673 }
1674 else if (type == elfcpp::SHT_INIT_ARRAY
1675 || type == elfcpp::SHT_FINI_ARRAY
1676 || type == elfcpp::SHT_PREINIT_ARRAY)
1677 is_relro = true;
1678 }
1679
1680 if (is_relro)
1681 os->set_is_relro();
1682
1683 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1684 order = this->default_section_order(os, is_relro_local);
1685
1686 os->set_order(order);
1687
1688 parameters->target().new_output_section(os);
1689
1690 this->section_list_.push_back(os);
1691
1692 // The GNU linker by default sorts some sections by priority, so we
1693 // do the same. We need to know that this might happen before we
1694 // attach any input sections.
1695 if (!this->script_options_->saw_sections_clause()
1696 && !parameters->options().relocatable()
1697 && (strcmp(name, ".init_array") == 0
1698 || strcmp(name, ".fini_array") == 0
1699 || (!parameters->options().ctors_in_init_array()
1700 && (strcmp(name, ".ctors") == 0
1701 || strcmp(name, ".dtors") == 0))))
1702 os->set_may_sort_attached_input_sections();
1703
1704 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1705 // sections before other .text sections. We are compatible. We
1706 // need to know that this might happen before we attach any input
1707 // sections.
1708 if (parameters->options().text_reorder()
1709 && !this->script_options_->saw_sections_clause()
1710 && !this->is_section_ordering_specified()
1711 && !parameters->options().relocatable()
1712 && strcmp(name, ".text") == 0)
1713 os->set_may_sort_attached_input_sections();
1714
1715 // GNU linker sorts section by name with --sort-section=name.
1716 if (strcmp(parameters->options().sort_section(), "name") == 0)
1717 os->set_must_sort_attached_input_sections();
1718
1719 // Check for .stab*str sections, as .stab* sections need to link to
1720 // them.
1721 if (type == elfcpp::SHT_STRTAB
1722 && !this->have_stabstr_section_
1723 && strncmp(name, ".stab", 5) == 0
1724 && strcmp(name + strlen(name) - 3, "str") == 0)
1725 this->have_stabstr_section_ = true;
1726
1727 // During a full incremental link, we add patch space to most
1728 // PROGBITS and NOBITS sections. Flag those that may be
1729 // arbitrarily padded.
1730 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1731 && order != ORDER_INTERP
1732 && order != ORDER_INIT
1733 && order != ORDER_PLT
1734 && order != ORDER_FINI
1735 && order != ORDER_RELRO_LAST
1736 && order != ORDER_NON_RELRO_FIRST
1737 && strcmp(name, ".eh_frame") != 0
1738 && strcmp(name, ".ctors") != 0
1739 && strcmp(name, ".dtors") != 0
1740 && strcmp(name, ".jcr") != 0)
1741 {
1742 os->set_is_patch_space_allowed();
1743
1744 // Certain sections require "holes" to be filled with
1745 // specific fill patterns. These fill patterns may have
1746 // a minimum size, so we must prevent allocations from the
1747 // free list that leave a hole smaller than the minimum.
1748 if (strcmp(name, ".debug_info") == 0)
1749 os->set_free_space_fill(new Output_fill_debug_info(false));
1750 else if (strcmp(name, ".debug_types") == 0)
1751 os->set_free_space_fill(new Output_fill_debug_info(true));
1752 else if (strcmp(name, ".debug_line") == 0)
1753 os->set_free_space_fill(new Output_fill_debug_line());
1754 }
1755
1756 // If we have already attached the sections to segments, then we
1757 // need to attach this one now. This happens for sections created
1758 // directly by the linker.
1759 if (this->sections_are_attached_)
1760 this->attach_section_to_segment(&parameters->target(), os);
1761
1762 return os;
1763 }
1764
1765 // Return the default order in which a section should be placed in an
1766 // output segment. This function captures a lot of the ideas in
1767 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1768 // linker created section is normally set when the section is created;
1769 // this function is used for input sections.
1770
1771 Output_section_order
1772 Layout::default_section_order(Output_section* os, bool is_relro_local)
1773 {
1774 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1775 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1776 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1777 bool is_bss = false;
1778
1779 switch (os->type())
1780 {
1781 default:
1782 case elfcpp::SHT_PROGBITS:
1783 break;
1784 case elfcpp::SHT_NOBITS:
1785 is_bss = true;
1786 break;
1787 case elfcpp::SHT_RELA:
1788 case elfcpp::SHT_REL:
1789 if (!is_write)
1790 return ORDER_DYNAMIC_RELOCS;
1791 break;
1792 case elfcpp::SHT_HASH:
1793 case elfcpp::SHT_DYNAMIC:
1794 case elfcpp::SHT_SHLIB:
1795 case elfcpp::SHT_DYNSYM:
1796 case elfcpp::SHT_GNU_HASH:
1797 case elfcpp::SHT_GNU_verdef:
1798 case elfcpp::SHT_GNU_verneed:
1799 case elfcpp::SHT_GNU_versym:
1800 if (!is_write)
1801 return ORDER_DYNAMIC_LINKER;
1802 break;
1803 case elfcpp::SHT_NOTE:
1804 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1805 }
1806
1807 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1808 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1809
1810 if (!is_bss && !is_write)
1811 {
1812 if (is_execinstr)
1813 {
1814 if (strcmp(os->name(), ".init") == 0)
1815 return ORDER_INIT;
1816 else if (strcmp(os->name(), ".fini") == 0)
1817 return ORDER_FINI;
1818 }
1819 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1820 }
1821
1822 if (os->is_relro())
1823 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1824
1825 if (os->is_small_section())
1826 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1827 if (os->is_large_section())
1828 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1829
1830 return is_bss ? ORDER_BSS : ORDER_DATA;
1831 }
1832
1833 // Attach output sections to segments. This is called after we have
1834 // seen all the input sections.
1835
1836 void
1837 Layout::attach_sections_to_segments(const Target* target)
1838 {
1839 for (Section_list::iterator p = this->section_list_.begin();
1840 p != this->section_list_.end();
1841 ++p)
1842 this->attach_section_to_segment(target, *p);
1843
1844 this->sections_are_attached_ = true;
1845 }
1846
1847 // Attach an output section to a segment.
1848
1849 void
1850 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1851 {
1852 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1853 this->unattached_section_list_.push_back(os);
1854 else
1855 this->attach_allocated_section_to_segment(target, os);
1856 }
1857
1858 // Attach an allocated output section to a segment.
1859
1860 void
1861 Layout::attach_allocated_section_to_segment(const Target* target,
1862 Output_section* os)
1863 {
1864 elfcpp::Elf_Xword flags = os->flags();
1865 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1866
1867 if (parameters->options().relocatable())
1868 return;
1869
1870 // If we have a SECTIONS clause, we can't handle the attachment to
1871 // segments until after we've seen all the sections.
1872 if (this->script_options_->saw_sections_clause())
1873 return;
1874
1875 gold_assert(!this->script_options_->saw_phdrs_clause());
1876
1877 // This output section goes into a PT_LOAD segment.
1878
1879 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1880
1881 // If this output section's segment has extra flags that need to be set,
1882 // coming from a linker plugin, do that.
1883 seg_flags |= os->extra_segment_flags();
1884
1885 // Check for --section-start.
1886 uint64_t addr;
1887 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1888
1889 // In general the only thing we really care about for PT_LOAD
1890 // segments is whether or not they are writable or executable,
1891 // so that is how we search for them.
1892 // Large data sections also go into their own PT_LOAD segment.
1893 // People who need segments sorted on some other basis will
1894 // have to use a linker script.
1895
1896 Segment_list::const_iterator p;
1897 if (!os->is_unique_segment())
1898 {
1899 for (p = this->segment_list_.begin();
1900 p != this->segment_list_.end();
1901 ++p)
1902 {
1903 if ((*p)->type() != elfcpp::PT_LOAD)
1904 continue;
1905 if ((*p)->is_unique_segment())
1906 continue;
1907 if (!parameters->options().omagic()
1908 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1909 continue;
1910 if ((target->isolate_execinstr() || parameters->options().rosegment())
1911 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1912 continue;
1913 // If -Tbss was specified, we need to separate the data and BSS
1914 // segments.
1915 if (parameters->options().user_set_Tbss())
1916 {
1917 if ((os->type() == elfcpp::SHT_NOBITS)
1918 == (*p)->has_any_data_sections())
1919 continue;
1920 }
1921 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1922 continue;
1923
1924 if (is_address_set)
1925 {
1926 if ((*p)->are_addresses_set())
1927 continue;
1928
1929 (*p)->add_initial_output_data(os);
1930 (*p)->update_flags_for_output_section(seg_flags);
1931 (*p)->set_addresses(addr, addr);
1932 break;
1933 }
1934
1935 (*p)->add_output_section_to_load(this, os, seg_flags);
1936 break;
1937 }
1938 }
1939
1940 if (p == this->segment_list_.end()
1941 || os->is_unique_segment())
1942 {
1943 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1944 seg_flags);
1945 if (os->is_large_data_section())
1946 oseg->set_is_large_data_segment();
1947 oseg->add_output_section_to_load(this, os, seg_flags);
1948 if (is_address_set)
1949 oseg->set_addresses(addr, addr);
1950 // Check if segment should be marked unique. For segments marked
1951 // unique by linker plugins, set the new alignment if specified.
1952 if (os->is_unique_segment())
1953 {
1954 oseg->set_is_unique_segment();
1955 if (os->segment_alignment() != 0)
1956 oseg->set_minimum_p_align(os->segment_alignment());
1957 }
1958 }
1959
1960 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1961 // segment.
1962 if (os->type() == elfcpp::SHT_NOTE)
1963 {
1964 // See if we already have an equivalent PT_NOTE segment.
1965 for (p = this->segment_list_.begin();
1966 p != segment_list_.end();
1967 ++p)
1968 {
1969 if ((*p)->type() == elfcpp::PT_NOTE
1970 && (((*p)->flags() & elfcpp::PF_W)
1971 == (seg_flags & elfcpp::PF_W)))
1972 {
1973 (*p)->add_output_section_to_nonload(os, seg_flags);
1974 break;
1975 }
1976 }
1977
1978 if (p == this->segment_list_.end())
1979 {
1980 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1981 seg_flags);
1982 oseg->add_output_section_to_nonload(os, seg_flags);
1983 }
1984 }
1985
1986 // If we see a loadable SHF_TLS section, we create a PT_TLS
1987 // segment. There can only be one such segment.
1988 if ((flags & elfcpp::SHF_TLS) != 0)
1989 {
1990 if (this->tls_segment_ == NULL)
1991 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1992 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1993 }
1994
1995 // If -z relro is in effect, and we see a relro section, we create a
1996 // PT_GNU_RELRO segment. There can only be one such segment.
1997 if (os->is_relro() && parameters->options().relro())
1998 {
1999 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2000 if (this->relro_segment_ == NULL)
2001 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2002 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2003 }
2004
2005 // If we see a section named .interp, put it into a PT_INTERP
2006 // segment. This seems broken to me, but this is what GNU ld does,
2007 // and glibc expects it.
2008 if (strcmp(os->name(), ".interp") == 0
2009 && !this->script_options_->saw_phdrs_clause())
2010 {
2011 if (this->interp_segment_ == NULL)
2012 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2013 else
2014 gold_warning(_("multiple '.interp' sections in input files "
2015 "may cause confusing PT_INTERP segment"));
2016 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2017 }
2018 }
2019
2020 // Make an output section for a script.
2021
2022 Output_section*
2023 Layout::make_output_section_for_script(
2024 const char* name,
2025 Script_sections::Section_type section_type)
2026 {
2027 name = this->namepool_.add(name, false, NULL);
2028 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2029 if (section_type == Script_sections::ST_NOLOAD)
2030 sh_flags = 0;
2031 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2032 sh_flags, ORDER_INVALID,
2033 false);
2034 os->set_found_in_sections_clause();
2035 if (section_type == Script_sections::ST_NOLOAD)
2036 os->set_is_noload();
2037 return os;
2038 }
2039
2040 // Return the number of segments we expect to see.
2041
2042 size_t
2043 Layout::expected_segment_count() const
2044 {
2045 size_t ret = this->segment_list_.size();
2046
2047 // If we didn't see a SECTIONS clause in a linker script, we should
2048 // already have the complete list of segments. Otherwise we ask the
2049 // SECTIONS clause how many segments it expects, and add in the ones
2050 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2051
2052 if (!this->script_options_->saw_sections_clause())
2053 return ret;
2054 else
2055 {
2056 const Script_sections* ss = this->script_options_->script_sections();
2057 return ret + ss->expected_segment_count(this);
2058 }
2059 }
2060
2061 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2062 // is whether we saw a .note.GNU-stack section in the object file.
2063 // GNU_STACK_FLAGS is the section flags. The flags give the
2064 // protection required for stack memory. We record this in an
2065 // executable as a PT_GNU_STACK segment. If an object file does not
2066 // have a .note.GNU-stack segment, we must assume that it is an old
2067 // object. On some targets that will force an executable stack.
2068
2069 void
2070 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2071 const Object* obj)
2072 {
2073 if (!seen_gnu_stack)
2074 {
2075 this->input_without_gnu_stack_note_ = true;
2076 if (parameters->options().warn_execstack()
2077 && parameters->target().is_default_stack_executable())
2078 gold_warning(_("%s: missing .note.GNU-stack section"
2079 " implies executable stack"),
2080 obj->name().c_str());
2081 }
2082 else
2083 {
2084 this->input_with_gnu_stack_note_ = true;
2085 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2086 {
2087 this->input_requires_executable_stack_ = true;
2088 if (parameters->options().warn_execstack()
2089 || parameters->options().is_stack_executable())
2090 gold_warning(_("%s: requires executable stack"),
2091 obj->name().c_str());
2092 }
2093 }
2094 }
2095
2096 // Create automatic note sections.
2097
2098 void
2099 Layout::create_notes()
2100 {
2101 this->create_gold_note();
2102 this->create_executable_stack_info();
2103 this->create_build_id();
2104 }
2105
2106 // Create the dynamic sections which are needed before we read the
2107 // relocs.
2108
2109 void
2110 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2111 {
2112 if (parameters->doing_static_link())
2113 return;
2114
2115 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2116 elfcpp::SHT_DYNAMIC,
2117 (elfcpp::SHF_ALLOC
2118 | elfcpp::SHF_WRITE),
2119 false, ORDER_RELRO,
2120 true);
2121
2122 // A linker script may discard .dynamic, so check for NULL.
2123 if (this->dynamic_section_ != NULL)
2124 {
2125 this->dynamic_symbol_ =
2126 symtab->define_in_output_data("_DYNAMIC", NULL,
2127 Symbol_table::PREDEFINED,
2128 this->dynamic_section_, 0, 0,
2129 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2130 elfcpp::STV_HIDDEN, 0, false, false);
2131
2132 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2133
2134 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2135 }
2136 }
2137
2138 // For each output section whose name can be represented as C symbol,
2139 // define __start and __stop symbols for the section. This is a GNU
2140 // extension.
2141
2142 void
2143 Layout::define_section_symbols(Symbol_table* symtab)
2144 {
2145 for (Section_list::const_iterator p = this->section_list_.begin();
2146 p != this->section_list_.end();
2147 ++p)
2148 {
2149 const char* const name = (*p)->name();
2150 if (is_cident(name))
2151 {
2152 const std::string name_string(name);
2153 const std::string start_name(cident_section_start_prefix
2154 + name_string);
2155 const std::string stop_name(cident_section_stop_prefix
2156 + name_string);
2157
2158 symtab->define_in_output_data(start_name.c_str(),
2159 NULL, // version
2160 Symbol_table::PREDEFINED,
2161 *p,
2162 0, // value
2163 0, // symsize
2164 elfcpp::STT_NOTYPE,
2165 elfcpp::STB_GLOBAL,
2166 elfcpp::STV_DEFAULT,
2167 0, // nonvis
2168 false, // offset_is_from_end
2169 true); // only_if_ref
2170
2171 symtab->define_in_output_data(stop_name.c_str(),
2172 NULL, // version
2173 Symbol_table::PREDEFINED,
2174 *p,
2175 0, // value
2176 0, // symsize
2177 elfcpp::STT_NOTYPE,
2178 elfcpp::STB_GLOBAL,
2179 elfcpp::STV_DEFAULT,
2180 0, // nonvis
2181 true, // offset_is_from_end
2182 true); // only_if_ref
2183 }
2184 }
2185 }
2186
2187 // Define symbols for group signatures.
2188
2189 void
2190 Layout::define_group_signatures(Symbol_table* symtab)
2191 {
2192 for (Group_signatures::iterator p = this->group_signatures_.begin();
2193 p != this->group_signatures_.end();
2194 ++p)
2195 {
2196 Symbol* sym = symtab->lookup(p->signature, NULL);
2197 if (sym != NULL)
2198 p->section->set_info_symndx(sym);
2199 else
2200 {
2201 // Force the name of the group section to the group
2202 // signature, and use the group's section symbol as the
2203 // signature symbol.
2204 if (strcmp(p->section->name(), p->signature) != 0)
2205 {
2206 const char* name = this->namepool_.add(p->signature,
2207 true, NULL);
2208 p->section->set_name(name);
2209 }
2210 p->section->set_needs_symtab_index();
2211 p->section->set_info_section_symndx(p->section);
2212 }
2213 }
2214
2215 this->group_signatures_.clear();
2216 }
2217
2218 // Find the first read-only PT_LOAD segment, creating one if
2219 // necessary.
2220
2221 Output_segment*
2222 Layout::find_first_load_seg(const Target* target)
2223 {
2224 Output_segment* best = NULL;
2225 for (Segment_list::const_iterator p = this->segment_list_.begin();
2226 p != this->segment_list_.end();
2227 ++p)
2228 {
2229 if ((*p)->type() == elfcpp::PT_LOAD
2230 && ((*p)->flags() & elfcpp::PF_R) != 0
2231 && (parameters->options().omagic()
2232 || ((*p)->flags() & elfcpp::PF_W) == 0)
2233 && (!target->isolate_execinstr()
2234 || ((*p)->flags() & elfcpp::PF_X) == 0))
2235 {
2236 if (best == NULL || this->segment_precedes(*p, best))
2237 best = *p;
2238 }
2239 }
2240 if (best != NULL)
2241 return best;
2242
2243 gold_assert(!this->script_options_->saw_phdrs_clause());
2244
2245 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2246 elfcpp::PF_R);
2247 return load_seg;
2248 }
2249
2250 // Save states of all current output segments. Store saved states
2251 // in SEGMENT_STATES.
2252
2253 void
2254 Layout::save_segments(Segment_states* segment_states)
2255 {
2256 for (Segment_list::const_iterator p = this->segment_list_.begin();
2257 p != this->segment_list_.end();
2258 ++p)
2259 {
2260 Output_segment* segment = *p;
2261 // Shallow copy.
2262 Output_segment* copy = new Output_segment(*segment);
2263 (*segment_states)[segment] = copy;
2264 }
2265 }
2266
2267 // Restore states of output segments and delete any segment not found in
2268 // SEGMENT_STATES.
2269
2270 void
2271 Layout::restore_segments(const Segment_states* segment_states)
2272 {
2273 // Go through the segment list and remove any segment added in the
2274 // relaxation loop.
2275 this->tls_segment_ = NULL;
2276 this->relro_segment_ = NULL;
2277 Segment_list::iterator list_iter = this->segment_list_.begin();
2278 while (list_iter != this->segment_list_.end())
2279 {
2280 Output_segment* segment = *list_iter;
2281 Segment_states::const_iterator states_iter =
2282 segment_states->find(segment);
2283 if (states_iter != segment_states->end())
2284 {
2285 const Output_segment* copy = states_iter->second;
2286 // Shallow copy to restore states.
2287 *segment = *copy;
2288
2289 // Also fix up TLS and RELRO segment pointers as appropriate.
2290 if (segment->type() == elfcpp::PT_TLS)
2291 this->tls_segment_ = segment;
2292 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2293 this->relro_segment_ = segment;
2294
2295 ++list_iter;
2296 }
2297 else
2298 {
2299 list_iter = this->segment_list_.erase(list_iter);
2300 // This is a segment created during section layout. It should be
2301 // safe to remove it since we should have removed all pointers to it.
2302 delete segment;
2303 }
2304 }
2305 }
2306
2307 // Clean up after relaxation so that sections can be laid out again.
2308
2309 void
2310 Layout::clean_up_after_relaxation()
2311 {
2312 // Restore the segments to point state just prior to the relaxation loop.
2313 Script_sections* script_section = this->script_options_->script_sections();
2314 script_section->release_segments();
2315 this->restore_segments(this->segment_states_);
2316
2317 // Reset section addresses and file offsets
2318 for (Section_list::iterator p = this->section_list_.begin();
2319 p != this->section_list_.end();
2320 ++p)
2321 {
2322 (*p)->restore_states();
2323
2324 // If an input section changes size because of relaxation,
2325 // we need to adjust the section offsets of all input sections.
2326 // after such a section.
2327 if ((*p)->section_offsets_need_adjustment())
2328 (*p)->adjust_section_offsets();
2329
2330 (*p)->reset_address_and_file_offset();
2331 }
2332
2333 // Reset special output object address and file offsets.
2334 for (Data_list::iterator p = this->special_output_list_.begin();
2335 p != this->special_output_list_.end();
2336 ++p)
2337 (*p)->reset_address_and_file_offset();
2338
2339 // A linker script may have created some output section data objects.
2340 // They are useless now.
2341 for (Output_section_data_list::const_iterator p =
2342 this->script_output_section_data_list_.begin();
2343 p != this->script_output_section_data_list_.end();
2344 ++p)
2345 delete *p;
2346 this->script_output_section_data_list_.clear();
2347
2348 // Special-case fill output objects are recreated each time through
2349 // the relaxation loop.
2350 this->reset_relax_output();
2351 }
2352
2353 void
2354 Layout::reset_relax_output()
2355 {
2356 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2357 p != this->relax_output_list_.end();
2358 ++p)
2359 delete *p;
2360 this->relax_output_list_.clear();
2361 }
2362
2363 // Prepare for relaxation.
2364
2365 void
2366 Layout::prepare_for_relaxation()
2367 {
2368 // Create an relaxation debug check if in debugging mode.
2369 if (is_debugging_enabled(DEBUG_RELAXATION))
2370 this->relaxation_debug_check_ = new Relaxation_debug_check();
2371
2372 // Save segment states.
2373 this->segment_states_ = new Segment_states();
2374 this->save_segments(this->segment_states_);
2375
2376 for(Section_list::const_iterator p = this->section_list_.begin();
2377 p != this->section_list_.end();
2378 ++p)
2379 (*p)->save_states();
2380
2381 if (is_debugging_enabled(DEBUG_RELAXATION))
2382 this->relaxation_debug_check_->check_output_data_for_reset_values(
2383 this->section_list_, this->special_output_list_,
2384 this->relax_output_list_);
2385
2386 // Also enable recording of output section data from scripts.
2387 this->record_output_section_data_from_script_ = true;
2388 }
2389
2390 // If the user set the address of the text segment, that may not be
2391 // compatible with putting the segment headers and file headers into
2392 // that segment. For isolate_execinstr() targets, it's the rodata
2393 // segment rather than text where we might put the headers.
2394 static inline bool
2395 load_seg_unusable_for_headers(const Target* target)
2396 {
2397 const General_options& options = parameters->options();
2398 if (target->isolate_execinstr())
2399 return (options.user_set_Trodata_segment()
2400 && options.Trodata_segment() % target->abi_pagesize() != 0);
2401 else
2402 return (options.user_set_Ttext()
2403 && options.Ttext() % target->abi_pagesize() != 0);
2404 }
2405
2406 // Relaxation loop body: If target has no relaxation, this runs only once
2407 // Otherwise, the target relaxation hook is called at the end of
2408 // each iteration. If the hook returns true, it means re-layout of
2409 // section is required.
2410 //
2411 // The number of segments created by a linking script without a PHDRS
2412 // clause may be affected by section sizes and alignments. There is
2413 // a remote chance that relaxation causes different number of PT_LOAD
2414 // segments are created and sections are attached to different segments.
2415 // Therefore, we always throw away all segments created during section
2416 // layout. In order to be able to restart the section layout, we keep
2417 // a copy of the segment list right before the relaxation loop and use
2418 // that to restore the segments.
2419 //
2420 // PASS is the current relaxation pass number.
2421 // SYMTAB is a symbol table.
2422 // PLOAD_SEG is the address of a pointer for the load segment.
2423 // PHDR_SEG is a pointer to the PHDR segment.
2424 // SEGMENT_HEADERS points to the output segment header.
2425 // FILE_HEADER points to the output file header.
2426 // PSHNDX is the address to store the output section index.
2427
2428 off_t inline
2429 Layout::relaxation_loop_body(
2430 int pass,
2431 Target* target,
2432 Symbol_table* symtab,
2433 Output_segment** pload_seg,
2434 Output_segment* phdr_seg,
2435 Output_segment_headers* segment_headers,
2436 Output_file_header* file_header,
2437 unsigned int* pshndx)
2438 {
2439 // If this is not the first iteration, we need to clean up after
2440 // relaxation so that we can lay out the sections again.
2441 if (pass != 0)
2442 this->clean_up_after_relaxation();
2443
2444 // If there is a SECTIONS clause, put all the input sections into
2445 // the required order.
2446 Output_segment* load_seg;
2447 if (this->script_options_->saw_sections_clause())
2448 load_seg = this->set_section_addresses_from_script(symtab);
2449 else if (parameters->options().relocatable())
2450 load_seg = NULL;
2451 else
2452 load_seg = this->find_first_load_seg(target);
2453
2454 if (parameters->options().oformat_enum()
2455 != General_options::OBJECT_FORMAT_ELF)
2456 load_seg = NULL;
2457
2458 if (load_seg_unusable_for_headers(target))
2459 {
2460 load_seg = NULL;
2461 phdr_seg = NULL;
2462 }
2463
2464 gold_assert(phdr_seg == NULL
2465 || load_seg != NULL
2466 || this->script_options_->saw_sections_clause());
2467
2468 // If the address of the load segment we found has been set by
2469 // --section-start rather than by a script, then adjust the VMA and
2470 // LMA downward if possible to include the file and section headers.
2471 uint64_t header_gap = 0;
2472 if (load_seg != NULL
2473 && load_seg->are_addresses_set()
2474 && !this->script_options_->saw_sections_clause()
2475 && !parameters->options().relocatable())
2476 {
2477 file_header->finalize_data_size();
2478 segment_headers->finalize_data_size();
2479 size_t sizeof_headers = (file_header->data_size()
2480 + segment_headers->data_size());
2481 const uint64_t abi_pagesize = target->abi_pagesize();
2482 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2483 hdr_paddr &= ~(abi_pagesize - 1);
2484 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2485 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2486 load_seg = NULL;
2487 else
2488 {
2489 load_seg->set_addresses(load_seg->vaddr() - subtract,
2490 load_seg->paddr() - subtract);
2491 header_gap = subtract - sizeof_headers;
2492 }
2493 }
2494
2495 // Lay out the segment headers.
2496 if (!parameters->options().relocatable())
2497 {
2498 gold_assert(segment_headers != NULL);
2499 if (header_gap != 0 && load_seg != NULL)
2500 {
2501 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2502 load_seg->add_initial_output_data(z);
2503 }
2504 if (load_seg != NULL)
2505 load_seg->add_initial_output_data(segment_headers);
2506 if (phdr_seg != NULL)
2507 phdr_seg->add_initial_output_data(segment_headers);
2508 }
2509
2510 // Lay out the file header.
2511 if (load_seg != NULL)
2512 load_seg->add_initial_output_data(file_header);
2513
2514 if (this->script_options_->saw_phdrs_clause()
2515 && !parameters->options().relocatable())
2516 {
2517 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2518 // clause in a linker script.
2519 Script_sections* ss = this->script_options_->script_sections();
2520 ss->put_headers_in_phdrs(file_header, segment_headers);
2521 }
2522
2523 // We set the output section indexes in set_segment_offsets and
2524 // set_section_indexes.
2525 *pshndx = 1;
2526
2527 // Set the file offsets of all the segments, and all the sections
2528 // they contain.
2529 off_t off;
2530 if (!parameters->options().relocatable())
2531 off = this->set_segment_offsets(target, load_seg, pshndx);
2532 else
2533 off = this->set_relocatable_section_offsets(file_header, pshndx);
2534
2535 // Verify that the dummy relaxation does not change anything.
2536 if (is_debugging_enabled(DEBUG_RELAXATION))
2537 {
2538 if (pass == 0)
2539 this->relaxation_debug_check_->read_sections(this->section_list_);
2540 else
2541 this->relaxation_debug_check_->verify_sections(this->section_list_);
2542 }
2543
2544 *pload_seg = load_seg;
2545 return off;
2546 }
2547
2548 // Search the list of patterns and find the postion of the given section
2549 // name in the output section. If the section name matches a glob
2550 // pattern and a non-glob name, then the non-glob position takes
2551 // precedence. Return 0 if no match is found.
2552
2553 unsigned int
2554 Layout::find_section_order_index(const std::string& section_name)
2555 {
2556 Unordered_map<std::string, unsigned int>::iterator map_it;
2557 map_it = this->input_section_position_.find(section_name);
2558 if (map_it != this->input_section_position_.end())
2559 return map_it->second;
2560
2561 // Absolute match failed. Linear search the glob patterns.
2562 std::vector<std::string>::iterator it;
2563 for (it = this->input_section_glob_.begin();
2564 it != this->input_section_glob_.end();
2565 ++it)
2566 {
2567 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2568 {
2569 map_it = this->input_section_position_.find(*it);
2570 gold_assert(map_it != this->input_section_position_.end());
2571 return map_it->second;
2572 }
2573 }
2574 return 0;
2575 }
2576
2577 // Read the sequence of input sections from the file specified with
2578 // option --section-ordering-file.
2579
2580 void
2581 Layout::read_layout_from_file()
2582 {
2583 const char* filename = parameters->options().section_ordering_file();
2584 std::ifstream in;
2585 std::string line;
2586
2587 in.open(filename);
2588 if (!in)
2589 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2590 filename, strerror(errno));
2591
2592 std::getline(in, line); // this chops off the trailing \n, if any
2593 unsigned int position = 1;
2594 this->set_section_ordering_specified();
2595
2596 while (in)
2597 {
2598 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2599 line.resize(line.length() - 1);
2600 // Ignore comments, beginning with '#'
2601 if (line[0] == '#')
2602 {
2603 std::getline(in, line);
2604 continue;
2605 }
2606 this->input_section_position_[line] = position;
2607 // Store all glob patterns in a vector.
2608 if (is_wildcard_string(line.c_str()))
2609 this->input_section_glob_.push_back(line);
2610 position++;
2611 std::getline(in, line);
2612 }
2613 }
2614
2615 // Finalize the layout. When this is called, we have created all the
2616 // output sections and all the output segments which are based on
2617 // input sections. We have several things to do, and we have to do
2618 // them in the right order, so that we get the right results correctly
2619 // and efficiently.
2620
2621 // 1) Finalize the list of output segments and create the segment
2622 // table header.
2623
2624 // 2) Finalize the dynamic symbol table and associated sections.
2625
2626 // 3) Determine the final file offset of all the output segments.
2627
2628 // 4) Determine the final file offset of all the SHF_ALLOC output
2629 // sections.
2630
2631 // 5) Create the symbol table sections and the section name table
2632 // section.
2633
2634 // 6) Finalize the symbol table: set symbol values to their final
2635 // value and make a final determination of which symbols are going
2636 // into the output symbol table.
2637
2638 // 7) Create the section table header.
2639
2640 // 8) Determine the final file offset of all the output sections which
2641 // are not SHF_ALLOC, including the section table header.
2642
2643 // 9) Finalize the ELF file header.
2644
2645 // This function returns the size of the output file.
2646
2647 off_t
2648 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2649 Target* target, const Task* task)
2650 {
2651 target->finalize_sections(this, input_objects, symtab);
2652
2653 this->count_local_symbols(task, input_objects);
2654
2655 this->link_stabs_sections();
2656
2657 Output_segment* phdr_seg = NULL;
2658 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2659 {
2660 // There was a dynamic object in the link. We need to create
2661 // some information for the dynamic linker.
2662
2663 // Create the PT_PHDR segment which will hold the program
2664 // headers.
2665 if (!this->script_options_->saw_phdrs_clause())
2666 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2667
2668 // Create the dynamic symbol table, including the hash table.
2669 Output_section* dynstr;
2670 std::vector<Symbol*> dynamic_symbols;
2671 unsigned int local_dynamic_count;
2672 Versions versions(*this->script_options()->version_script_info(),
2673 &this->dynpool_);
2674 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2675 &local_dynamic_count, &dynamic_symbols,
2676 &versions);
2677
2678 // Create the .interp section to hold the name of the
2679 // interpreter, and put it in a PT_INTERP segment. Don't do it
2680 // if we saw a .interp section in an input file.
2681 if ((!parameters->options().shared()
2682 || parameters->options().dynamic_linker() != NULL)
2683 && this->interp_segment_ == NULL)
2684 this->create_interp(target);
2685
2686 // Finish the .dynamic section to hold the dynamic data, and put
2687 // it in a PT_DYNAMIC segment.
2688 this->finish_dynamic_section(input_objects, symtab);
2689
2690 // We should have added everything we need to the dynamic string
2691 // table.
2692 this->dynpool_.set_string_offsets();
2693
2694 // Create the version sections. We can't do this until the
2695 // dynamic string table is complete.
2696 this->create_version_sections(&versions, symtab, local_dynamic_count,
2697 dynamic_symbols, dynstr);
2698
2699 // Set the size of the _DYNAMIC symbol. We can't do this until
2700 // after we call create_version_sections.
2701 this->set_dynamic_symbol_size(symtab);
2702 }
2703
2704 // Create segment headers.
2705 Output_segment_headers* segment_headers =
2706 (parameters->options().relocatable()
2707 ? NULL
2708 : new Output_segment_headers(this->segment_list_));
2709
2710 // Lay out the file header.
2711 Output_file_header* file_header = new Output_file_header(target, symtab,
2712 segment_headers);
2713
2714 this->special_output_list_.push_back(file_header);
2715 if (segment_headers != NULL)
2716 this->special_output_list_.push_back(segment_headers);
2717
2718 // Find approriate places for orphan output sections if we are using
2719 // a linker script.
2720 if (this->script_options_->saw_sections_clause())
2721 this->place_orphan_sections_in_script();
2722
2723 Output_segment* load_seg;
2724 off_t off;
2725 unsigned int shndx;
2726 int pass = 0;
2727
2728 // Take a snapshot of the section layout as needed.
2729 if (target->may_relax())
2730 this->prepare_for_relaxation();
2731
2732 // Run the relaxation loop to lay out sections.
2733 do
2734 {
2735 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2736 phdr_seg, segment_headers, file_header,
2737 &shndx);
2738 pass++;
2739 }
2740 while (target->may_relax()
2741 && target->relax(pass, input_objects, symtab, this, task));
2742
2743 // If there is a load segment that contains the file and program headers,
2744 // provide a symbol __ehdr_start pointing there.
2745 // A program can use this to examine itself robustly.
2746 if (load_seg != NULL)
2747 symtab->define_in_output_segment("__ehdr_start", NULL,
2748 Symbol_table::PREDEFINED, load_seg, 0, 0,
2749 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2750 elfcpp::STV_HIDDEN, 0,
2751 Symbol::SEGMENT_START, true);
2752
2753 // Set the file offsets of all the non-data sections we've seen so
2754 // far which don't have to wait for the input sections. We need
2755 // this in order to finalize local symbols in non-allocated
2756 // sections.
2757 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2758
2759 // Set the section indexes of all unallocated sections seen so far,
2760 // in case any of them are somehow referenced by a symbol.
2761 shndx = this->set_section_indexes(shndx);
2762
2763 // Create the symbol table sections.
2764 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2765 if (!parameters->doing_static_link())
2766 this->assign_local_dynsym_offsets(input_objects);
2767
2768 // Process any symbol assignments from a linker script. This must
2769 // be called after the symbol table has been finalized.
2770 this->script_options_->finalize_symbols(symtab, this);
2771
2772 // Create the incremental inputs sections.
2773 if (this->incremental_inputs_)
2774 {
2775 this->incremental_inputs_->finalize();
2776 this->create_incremental_info_sections(symtab);
2777 }
2778
2779 // Create the .shstrtab section.
2780 Output_section* shstrtab_section = this->create_shstrtab();
2781
2782 // Set the file offsets of the rest of the non-data sections which
2783 // don't have to wait for the input sections.
2784 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2785
2786 // Now that all sections have been created, set the section indexes
2787 // for any sections which haven't been done yet.
2788 shndx = this->set_section_indexes(shndx);
2789
2790 // Create the section table header.
2791 this->create_shdrs(shstrtab_section, &off);
2792
2793 // If there are no sections which require postprocessing, we can
2794 // handle the section names now, and avoid a resize later.
2795 if (!this->any_postprocessing_sections_)
2796 {
2797 off = this->set_section_offsets(off,
2798 POSTPROCESSING_SECTIONS_PASS);
2799 off =
2800 this->set_section_offsets(off,
2801 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2802 }
2803
2804 file_header->set_section_info(this->section_headers_, shstrtab_section);
2805
2806 // Now we know exactly where everything goes in the output file
2807 // (except for non-allocated sections which require postprocessing).
2808 Output_data::layout_complete();
2809
2810 this->output_file_size_ = off;
2811
2812 return off;
2813 }
2814
2815 // Create a note header following the format defined in the ELF ABI.
2816 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2817 // of the section to create, DESCSZ is the size of the descriptor.
2818 // ALLOCATE is true if the section should be allocated in memory.
2819 // This returns the new note section. It sets *TRAILING_PADDING to
2820 // the number of trailing zero bytes required.
2821
2822 Output_section*
2823 Layout::create_note(const char* name, int note_type,
2824 const char* section_name, size_t descsz,
2825 bool allocate, size_t* trailing_padding)
2826 {
2827 // Authorities all agree that the values in a .note field should
2828 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2829 // they differ on what the alignment is for 64-bit binaries.
2830 // The GABI says unambiguously they take 8-byte alignment:
2831 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2832 // Other documentation says alignment should always be 4 bytes:
2833 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2834 // GNU ld and GNU readelf both support the latter (at least as of
2835 // version 2.16.91), and glibc always generates the latter for
2836 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2837 // here.
2838 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2839 const int size = parameters->target().get_size();
2840 #else
2841 const int size = 32;
2842 #endif
2843
2844 // The contents of the .note section.
2845 size_t namesz = strlen(name) + 1;
2846 size_t aligned_namesz = align_address(namesz, size / 8);
2847 size_t aligned_descsz = align_address(descsz, size / 8);
2848
2849 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2850
2851 unsigned char* buffer = new unsigned char[notehdrsz];
2852 memset(buffer, 0, notehdrsz);
2853
2854 bool is_big_endian = parameters->target().is_big_endian();
2855
2856 if (size == 32)
2857 {
2858 if (!is_big_endian)
2859 {
2860 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2861 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2862 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2863 }
2864 else
2865 {
2866 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2867 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2868 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2869 }
2870 }
2871 else if (size == 64)
2872 {
2873 if (!is_big_endian)
2874 {
2875 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2876 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2877 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2878 }
2879 else
2880 {
2881 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2882 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2883 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2884 }
2885 }
2886 else
2887 gold_unreachable();
2888
2889 memcpy(buffer + 3 * (size / 8), name, namesz);
2890
2891 elfcpp::Elf_Xword flags = 0;
2892 Output_section_order order = ORDER_INVALID;
2893 if (allocate)
2894 {
2895 flags = elfcpp::SHF_ALLOC;
2896 order = ORDER_RO_NOTE;
2897 }
2898 Output_section* os = this->choose_output_section(NULL, section_name,
2899 elfcpp::SHT_NOTE,
2900 flags, false, order, false);
2901 if (os == NULL)
2902 return NULL;
2903
2904 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2905 size / 8,
2906 "** note header");
2907 os->add_output_section_data(posd);
2908
2909 *trailing_padding = aligned_descsz - descsz;
2910
2911 return os;
2912 }
2913
2914 // For an executable or shared library, create a note to record the
2915 // version of gold used to create the binary.
2916
2917 void
2918 Layout::create_gold_note()
2919 {
2920 if (parameters->options().relocatable()
2921 || parameters->incremental_update())
2922 return;
2923
2924 std::string desc = std::string("gold ") + gold::get_version_string();
2925
2926 size_t trailing_padding;
2927 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2928 ".note.gnu.gold-version", desc.size(),
2929 false, &trailing_padding);
2930 if (os == NULL)
2931 return;
2932
2933 Output_section_data* posd = new Output_data_const(desc, 4);
2934 os->add_output_section_data(posd);
2935
2936 if (trailing_padding > 0)
2937 {
2938 posd = new Output_data_zero_fill(trailing_padding, 0);
2939 os->add_output_section_data(posd);
2940 }
2941 }
2942
2943 // Record whether the stack should be executable. This can be set
2944 // from the command line using the -z execstack or -z noexecstack
2945 // options. Otherwise, if any input file has a .note.GNU-stack
2946 // section with the SHF_EXECINSTR flag set, the stack should be
2947 // executable. Otherwise, if at least one input file a
2948 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2949 // section, we use the target default for whether the stack should be
2950 // executable. Otherwise, we don't generate a stack note. When
2951 // generating a object file, we create a .note.GNU-stack section with
2952 // the appropriate marking. When generating an executable or shared
2953 // library, we create a PT_GNU_STACK segment.
2954
2955 void
2956 Layout::create_executable_stack_info()
2957 {
2958 bool is_stack_executable;
2959 if (parameters->options().is_execstack_set())
2960 is_stack_executable = parameters->options().is_stack_executable();
2961 else if (!this->input_with_gnu_stack_note_)
2962 return;
2963 else
2964 {
2965 if (this->input_requires_executable_stack_)
2966 is_stack_executable = true;
2967 else if (this->input_without_gnu_stack_note_)
2968 is_stack_executable =
2969 parameters->target().is_default_stack_executable();
2970 else
2971 is_stack_executable = false;
2972 }
2973
2974 if (parameters->options().relocatable())
2975 {
2976 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2977 elfcpp::Elf_Xword flags = 0;
2978 if (is_stack_executable)
2979 flags |= elfcpp::SHF_EXECINSTR;
2980 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2981 ORDER_INVALID, false);
2982 }
2983 else
2984 {
2985 if (this->script_options_->saw_phdrs_clause())
2986 return;
2987 int flags = elfcpp::PF_R | elfcpp::PF_W;
2988 if (is_stack_executable)
2989 flags |= elfcpp::PF_X;
2990 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2991 }
2992 }
2993
2994 // If --build-id was used, set up the build ID note.
2995
2996 void
2997 Layout::create_build_id()
2998 {
2999 if (!parameters->options().user_set_build_id())
3000 return;
3001
3002 const char* style = parameters->options().build_id();
3003 if (strcmp(style, "none") == 0)
3004 return;
3005
3006 // Set DESCSZ to the size of the note descriptor. When possible,
3007 // set DESC to the note descriptor contents.
3008 size_t descsz;
3009 std::string desc;
3010 if (strcmp(style, "md5") == 0)
3011 descsz = 128 / 8;
3012 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3013 descsz = 160 / 8;
3014 else if (strcmp(style, "uuid") == 0)
3015 {
3016 const size_t uuidsz = 128 / 8;
3017
3018 char buffer[uuidsz];
3019 memset(buffer, 0, uuidsz);
3020
3021 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3022 if (descriptor < 0)
3023 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3024 strerror(errno));
3025 else
3026 {
3027 ssize_t got = ::read(descriptor, buffer, uuidsz);
3028 release_descriptor(descriptor, true);
3029 if (got < 0)
3030 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3031 else if (static_cast<size_t>(got) != uuidsz)
3032 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3033 uuidsz, got);
3034 }
3035
3036 desc.assign(buffer, uuidsz);
3037 descsz = uuidsz;
3038 }
3039 else if (strncmp(style, "0x", 2) == 0)
3040 {
3041 hex_init();
3042 const char* p = style + 2;
3043 while (*p != '\0')
3044 {
3045 if (hex_p(p[0]) && hex_p(p[1]))
3046 {
3047 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3048 desc += c;
3049 p += 2;
3050 }
3051 else if (*p == '-' || *p == ':')
3052 ++p;
3053 else
3054 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3055 style);
3056 }
3057 descsz = desc.size();
3058 }
3059 else
3060 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3061
3062 // Create the note.
3063 size_t trailing_padding;
3064 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3065 ".note.gnu.build-id", descsz, true,
3066 &trailing_padding);
3067 if (os == NULL)
3068 return;
3069
3070 if (!desc.empty())
3071 {
3072 // We know the value already, so we fill it in now.
3073 gold_assert(desc.size() == descsz);
3074
3075 Output_section_data* posd = new Output_data_const(desc, 4);
3076 os->add_output_section_data(posd);
3077
3078 if (trailing_padding != 0)
3079 {
3080 posd = new Output_data_zero_fill(trailing_padding, 0);
3081 os->add_output_section_data(posd);
3082 }
3083 }
3084 else
3085 {
3086 // We need to compute a checksum after we have completed the
3087 // link.
3088 gold_assert(trailing_padding == 0);
3089 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3090 os->add_output_section_data(this->build_id_note_);
3091 }
3092 }
3093
3094 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3095 // field of the former should point to the latter. I'm not sure who
3096 // started this, but the GNU linker does it, and some tools depend
3097 // upon it.
3098
3099 void
3100 Layout::link_stabs_sections()
3101 {
3102 if (!this->have_stabstr_section_)
3103 return;
3104
3105 for (Section_list::iterator p = this->section_list_.begin();
3106 p != this->section_list_.end();
3107 ++p)
3108 {
3109 if ((*p)->type() != elfcpp::SHT_STRTAB)
3110 continue;
3111
3112 const char* name = (*p)->name();
3113 if (strncmp(name, ".stab", 5) != 0)
3114 continue;
3115
3116 size_t len = strlen(name);
3117 if (strcmp(name + len - 3, "str") != 0)
3118 continue;
3119
3120 std::string stab_name(name, len - 3);
3121 Output_section* stab_sec;
3122 stab_sec = this->find_output_section(stab_name.c_str());
3123 if (stab_sec != NULL)
3124 stab_sec->set_link_section(*p);
3125 }
3126 }
3127
3128 // Create .gnu_incremental_inputs and related sections needed
3129 // for the next run of incremental linking to check what has changed.
3130
3131 void
3132 Layout::create_incremental_info_sections(Symbol_table* symtab)
3133 {
3134 Incremental_inputs* incr = this->incremental_inputs_;
3135
3136 gold_assert(incr != NULL);
3137
3138 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3139 incr->create_data_sections(symtab);
3140
3141 // Add the .gnu_incremental_inputs section.
3142 const char* incremental_inputs_name =
3143 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3144 Output_section* incremental_inputs_os =
3145 this->make_output_section(incremental_inputs_name,
3146 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3147 ORDER_INVALID, false);
3148 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3149
3150 // Add the .gnu_incremental_symtab section.
3151 const char* incremental_symtab_name =
3152 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3153 Output_section* incremental_symtab_os =
3154 this->make_output_section(incremental_symtab_name,
3155 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3156 ORDER_INVALID, false);
3157 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3158 incremental_symtab_os->set_entsize(4);
3159
3160 // Add the .gnu_incremental_relocs section.
3161 const char* incremental_relocs_name =
3162 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3163 Output_section* incremental_relocs_os =
3164 this->make_output_section(incremental_relocs_name,
3165 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3166 ORDER_INVALID, false);
3167 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3168 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3169
3170 // Add the .gnu_incremental_got_plt section.
3171 const char* incremental_got_plt_name =
3172 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3173 Output_section* incremental_got_plt_os =
3174 this->make_output_section(incremental_got_plt_name,
3175 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3176 ORDER_INVALID, false);
3177 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3178
3179 // Add the .gnu_incremental_strtab section.
3180 const char* incremental_strtab_name =
3181 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3182 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3183 elfcpp::SHT_STRTAB, 0,
3184 ORDER_INVALID, false);
3185 Output_data_strtab* strtab_data =
3186 new Output_data_strtab(incr->get_stringpool());
3187 incremental_strtab_os->add_output_section_data(strtab_data);
3188
3189 incremental_inputs_os->set_after_input_sections();
3190 incremental_symtab_os->set_after_input_sections();
3191 incremental_relocs_os->set_after_input_sections();
3192 incremental_got_plt_os->set_after_input_sections();
3193
3194 incremental_inputs_os->set_link_section(incremental_strtab_os);
3195 incremental_symtab_os->set_link_section(incremental_inputs_os);
3196 incremental_relocs_os->set_link_section(incremental_inputs_os);
3197 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3198 }
3199
3200 // Return whether SEG1 should be before SEG2 in the output file. This
3201 // is based entirely on the segment type and flags. When this is
3202 // called the segment addresses have normally not yet been set.
3203
3204 bool
3205 Layout::segment_precedes(const Output_segment* seg1,
3206 const Output_segment* seg2)
3207 {
3208 elfcpp::Elf_Word type1 = seg1->type();
3209 elfcpp::Elf_Word type2 = seg2->type();
3210
3211 // The single PT_PHDR segment is required to precede any loadable
3212 // segment. We simply make it always first.
3213 if (type1 == elfcpp::PT_PHDR)
3214 {
3215 gold_assert(type2 != elfcpp::PT_PHDR);
3216 return true;
3217 }
3218 if (type2 == elfcpp::PT_PHDR)
3219 return false;
3220
3221 // The single PT_INTERP segment is required to precede any loadable
3222 // segment. We simply make it always second.
3223 if (type1 == elfcpp::PT_INTERP)
3224 {
3225 gold_assert(type2 != elfcpp::PT_INTERP);
3226 return true;
3227 }
3228 if (type2 == elfcpp::PT_INTERP)
3229 return false;
3230
3231 // We then put PT_LOAD segments before any other segments.
3232 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3233 return true;
3234 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3235 return false;
3236
3237 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3238 // segment, because that is where the dynamic linker expects to find
3239 // it (this is just for efficiency; other positions would also work
3240 // correctly).
3241 if (type1 == elfcpp::PT_TLS
3242 && type2 != elfcpp::PT_TLS
3243 && type2 != elfcpp::PT_GNU_RELRO)
3244 return false;
3245 if (type2 == elfcpp::PT_TLS
3246 && type1 != elfcpp::PT_TLS
3247 && type1 != elfcpp::PT_GNU_RELRO)
3248 return true;
3249
3250 // We put the PT_GNU_RELRO segment last, because that is where the
3251 // dynamic linker expects to find it (as with PT_TLS, this is just
3252 // for efficiency).
3253 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3254 return false;
3255 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3256 return true;
3257
3258 const elfcpp::Elf_Word flags1 = seg1->flags();
3259 const elfcpp::Elf_Word flags2 = seg2->flags();
3260
3261 // The order of non-PT_LOAD segments is unimportant. We simply sort
3262 // by the numeric segment type and flags values. There should not
3263 // be more than one segment with the same type and flags, except
3264 // when a linker script specifies such.
3265 if (type1 != elfcpp::PT_LOAD)
3266 {
3267 if (type1 != type2)
3268 return type1 < type2;
3269 gold_assert(flags1 != flags2
3270 || this->script_options_->saw_phdrs_clause());
3271 return flags1 < flags2;
3272 }
3273
3274 // If the addresses are set already, sort by load address.
3275 if (seg1->are_addresses_set())
3276 {
3277 if (!seg2->are_addresses_set())
3278 return true;
3279
3280 unsigned int section_count1 = seg1->output_section_count();
3281 unsigned int section_count2 = seg2->output_section_count();
3282 if (section_count1 == 0 && section_count2 > 0)
3283 return true;
3284 if (section_count1 > 0 && section_count2 == 0)
3285 return false;
3286
3287 uint64_t paddr1 = (seg1->are_addresses_set()
3288 ? seg1->paddr()
3289 : seg1->first_section_load_address());
3290 uint64_t paddr2 = (seg2->are_addresses_set()
3291 ? seg2->paddr()
3292 : seg2->first_section_load_address());
3293
3294 if (paddr1 != paddr2)
3295 return paddr1 < paddr2;
3296 }
3297 else if (seg2->are_addresses_set())
3298 return false;
3299
3300 // A segment which holds large data comes after a segment which does
3301 // not hold large data.
3302 if (seg1->is_large_data_segment())
3303 {
3304 if (!seg2->is_large_data_segment())
3305 return false;
3306 }
3307 else if (seg2->is_large_data_segment())
3308 return true;
3309
3310 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3311 // segments come before writable segments. Then writable segments
3312 // with data come before writable segments without data. Then
3313 // executable segments come before non-executable segments. Then
3314 // the unlikely case of a non-readable segment comes before the
3315 // normal case of a readable segment. If there are multiple
3316 // segments with the same type and flags, we require that the
3317 // address be set, and we sort by virtual address and then physical
3318 // address.
3319 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3320 return (flags1 & elfcpp::PF_W) == 0;
3321 if ((flags1 & elfcpp::PF_W) != 0
3322 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3323 return seg1->has_any_data_sections();
3324 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3325 return (flags1 & elfcpp::PF_X) != 0;
3326 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3327 return (flags1 & elfcpp::PF_R) == 0;
3328
3329 // We shouldn't get here--we shouldn't create segments which we
3330 // can't distinguish. Unless of course we are using a weird linker
3331 // script or overlapping --section-start options. We could also get
3332 // here if plugins want unique segments for subsets of sections.
3333 gold_assert(this->script_options_->saw_phdrs_clause()
3334 || parameters->options().any_section_start()
3335 || this->is_unique_segment_for_sections_specified());
3336 return false;
3337 }
3338
3339 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3340
3341 static off_t
3342 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3343 {
3344 uint64_t unsigned_off = off;
3345 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3346 | (addr & (abi_pagesize - 1)));
3347 if (aligned_off < unsigned_off)
3348 aligned_off += abi_pagesize;
3349 return aligned_off;
3350 }
3351
3352 // On targets where the text segment contains only executable code,
3353 // a non-executable segment is never the text segment.
3354
3355 static inline bool
3356 is_text_segment(const Target* target, const Output_segment* seg)
3357 {
3358 elfcpp::Elf_Xword flags = seg->flags();
3359 if ((flags & elfcpp::PF_W) != 0)
3360 return false;
3361 if ((flags & elfcpp::PF_X) == 0)
3362 return !target->isolate_execinstr();
3363 return true;
3364 }
3365
3366 // Set the file offsets of all the segments, and all the sections they
3367 // contain. They have all been created. LOAD_SEG must be be laid out
3368 // first. Return the offset of the data to follow.
3369
3370 off_t
3371 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3372 unsigned int* pshndx)
3373 {
3374 // Sort them into the final order. We use a stable sort so that we
3375 // don't randomize the order of indistinguishable segments created
3376 // by linker scripts.
3377 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3378 Layout::Compare_segments(this));
3379
3380 // Find the PT_LOAD segments, and set their addresses and offsets
3381 // and their section's addresses and offsets.
3382 uint64_t start_addr;
3383 if (parameters->options().user_set_Ttext())
3384 start_addr = parameters->options().Ttext();
3385 else if (parameters->options().output_is_position_independent())
3386 start_addr = 0;
3387 else
3388 start_addr = target->default_text_segment_address();
3389
3390 uint64_t addr = start_addr;
3391 off_t off = 0;
3392
3393 // If LOAD_SEG is NULL, then the file header and segment headers
3394 // will not be loadable. But they still need to be at offset 0 in
3395 // the file. Set their offsets now.
3396 if (load_seg == NULL)
3397 {
3398 for (Data_list::iterator p = this->special_output_list_.begin();
3399 p != this->special_output_list_.end();
3400 ++p)
3401 {
3402 off = align_address(off, (*p)->addralign());
3403 (*p)->set_address_and_file_offset(0, off);
3404 off += (*p)->data_size();
3405 }
3406 }
3407
3408 unsigned int increase_relro = this->increase_relro_;
3409 if (this->script_options_->saw_sections_clause())
3410 increase_relro = 0;
3411
3412 const bool check_sections = parameters->options().check_sections();
3413 Output_segment* last_load_segment = NULL;
3414
3415 unsigned int shndx_begin = *pshndx;
3416 unsigned int shndx_load_seg = *pshndx;
3417
3418 for (Segment_list::iterator p = this->segment_list_.begin();
3419 p != this->segment_list_.end();
3420 ++p)
3421 {
3422 if ((*p)->type() == elfcpp::PT_LOAD)
3423 {
3424 if (target->isolate_execinstr())
3425 {
3426 // When we hit the segment that should contain the
3427 // file headers, reset the file offset so we place
3428 // it and subsequent segments appropriately.
3429 // We'll fix up the preceding segments below.
3430 if (load_seg == *p)
3431 {
3432 if (off == 0)
3433 load_seg = NULL;
3434 else
3435 {
3436 off = 0;
3437 shndx_load_seg = *pshndx;
3438 }
3439 }
3440 }
3441 else
3442 {
3443 // Verify that the file headers fall into the first segment.
3444 if (load_seg != NULL && load_seg != *p)
3445 gold_unreachable();
3446 load_seg = NULL;
3447 }
3448
3449 bool are_addresses_set = (*p)->are_addresses_set();
3450 if (are_addresses_set)
3451 {
3452 // When it comes to setting file offsets, we care about
3453 // the physical address.
3454 addr = (*p)->paddr();
3455 }
3456 else if (parameters->options().user_set_Ttext()
3457 && (parameters->options().omagic()
3458 || is_text_segment(target, *p)))
3459 {
3460 are_addresses_set = true;
3461 }
3462 else if (parameters->options().user_set_Trodata_segment()
3463 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3464 {
3465 addr = parameters->options().Trodata_segment();
3466 are_addresses_set = true;
3467 }
3468 else if (parameters->options().user_set_Tdata()
3469 && ((*p)->flags() & elfcpp::PF_W) != 0
3470 && (!parameters->options().user_set_Tbss()
3471 || (*p)->has_any_data_sections()))
3472 {
3473 addr = parameters->options().Tdata();
3474 are_addresses_set = true;
3475 }
3476 else if (parameters->options().user_set_Tbss()
3477 && ((*p)->flags() & elfcpp::PF_W) != 0
3478 && !(*p)->has_any_data_sections())
3479 {
3480 addr = parameters->options().Tbss();
3481 are_addresses_set = true;
3482 }
3483
3484 uint64_t orig_addr = addr;
3485 uint64_t orig_off = off;
3486
3487 uint64_t aligned_addr = 0;
3488 uint64_t abi_pagesize = target->abi_pagesize();
3489 uint64_t common_pagesize = target->common_pagesize();
3490
3491 if (!parameters->options().nmagic()
3492 && !parameters->options().omagic())
3493 (*p)->set_minimum_p_align(abi_pagesize);
3494
3495 if (!are_addresses_set)
3496 {
3497 // Skip the address forward one page, maintaining the same
3498 // position within the page. This lets us store both segments
3499 // overlapping on a single page in the file, but the loader will
3500 // put them on different pages in memory. We will revisit this
3501 // decision once we know the size of the segment.
3502
3503 addr = align_address(addr, (*p)->maximum_alignment());
3504 aligned_addr = addr;
3505
3506 if (load_seg == *p)
3507 {
3508 // This is the segment that will contain the file
3509 // headers, so its offset will have to be exactly zero.
3510 gold_assert(orig_off == 0);
3511
3512 // If the target wants a fixed minimum distance from the
3513 // text segment to the read-only segment, move up now.
3514 uint64_t min_addr =
3515 start_addr + (parameters->options().user_set_rosegment_gap()
3516 ? parameters->options().rosegment_gap()
3517 : target->rosegment_gap());
3518 if (addr < min_addr)
3519 addr = min_addr;
3520
3521 // But this is not the first segment! To make its
3522 // address congruent with its offset, that address better
3523 // be aligned to the ABI-mandated page size.
3524 addr = align_address(addr, abi_pagesize);
3525 aligned_addr = addr;
3526 }
3527 else
3528 {
3529 if ((addr & (abi_pagesize - 1)) != 0)
3530 addr = addr + abi_pagesize;
3531
3532 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3533 }
3534 }
3535
3536 if (!parameters->options().nmagic()
3537 && !parameters->options().omagic())
3538 {
3539 // Here we are also taking care of the case when
3540 // the maximum segment alignment is larger than the page size.
3541 off = align_file_offset(off, addr,
3542 std::max(abi_pagesize,
3543 (*p)->maximum_alignment()));
3544 }
3545 else
3546 {
3547 // This is -N or -n with a section script which prevents
3548 // us from using a load segment. We need to ensure that
3549 // the file offset is aligned to the alignment of the
3550 // segment. This is because the linker script
3551 // implicitly assumed a zero offset. If we don't align
3552 // here, then the alignment of the sections in the
3553 // linker script may not match the alignment of the
3554 // sections in the set_section_addresses call below,
3555 // causing an error about dot moving backward.
3556 off = align_address(off, (*p)->maximum_alignment());
3557 }
3558
3559 unsigned int shndx_hold = *pshndx;
3560 bool has_relro = false;
3561 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3562 false, addr,
3563 &increase_relro,
3564 &has_relro,
3565 &off, pshndx);
3566
3567 // Now that we know the size of this segment, we may be able
3568 // to save a page in memory, at the cost of wasting some
3569 // file space, by instead aligning to the start of a new
3570 // page. Here we use the real machine page size rather than
3571 // the ABI mandated page size. If the segment has been
3572 // aligned so that the relro data ends at a page boundary,
3573 // we do not try to realign it.
3574
3575 if (!are_addresses_set
3576 && !has_relro
3577 && aligned_addr != addr
3578 && !parameters->incremental())
3579 {
3580 uint64_t first_off = (common_pagesize
3581 - (aligned_addr
3582 & (common_pagesize - 1)));
3583 uint64_t last_off = new_addr & (common_pagesize - 1);
3584 if (first_off > 0
3585 && last_off > 0
3586 && ((aligned_addr & ~ (common_pagesize - 1))
3587 != (new_addr & ~ (common_pagesize - 1)))
3588 && first_off + last_off <= common_pagesize)
3589 {
3590 *pshndx = shndx_hold;
3591 addr = align_address(aligned_addr, common_pagesize);
3592 addr = align_address(addr, (*p)->maximum_alignment());
3593 if ((addr & (abi_pagesize - 1)) != 0)
3594 addr = addr + abi_pagesize;
3595 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3596 off = align_file_offset(off, addr, abi_pagesize);
3597
3598 increase_relro = this->increase_relro_;
3599 if (this->script_options_->saw_sections_clause())
3600 increase_relro = 0;
3601 has_relro = false;
3602
3603 new_addr = (*p)->set_section_addresses(target, this,
3604 true, addr,
3605 &increase_relro,
3606 &has_relro,
3607 &off, pshndx);
3608 }
3609 }
3610
3611 addr = new_addr;
3612
3613 // Implement --check-sections. We know that the segments
3614 // are sorted by LMA.
3615 if (check_sections && last_load_segment != NULL)
3616 {
3617 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3618 if (last_load_segment->paddr() + last_load_segment->memsz()
3619 > (*p)->paddr())
3620 {
3621 unsigned long long lb1 = last_load_segment->paddr();
3622 unsigned long long le1 = lb1 + last_load_segment->memsz();
3623 unsigned long long lb2 = (*p)->paddr();
3624 unsigned long long le2 = lb2 + (*p)->memsz();
3625 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3626 "[0x%llx -> 0x%llx]"),
3627 lb1, le1, lb2, le2);
3628 }
3629 }
3630 last_load_segment = *p;
3631 }
3632 }
3633
3634 if (load_seg != NULL && target->isolate_execinstr())
3635 {
3636 // Process the early segments again, setting their file offsets
3637 // so they land after the segments starting at LOAD_SEG.
3638 off = align_file_offset(off, 0, target->abi_pagesize());
3639
3640 this->reset_relax_output();
3641
3642 for (Segment_list::iterator p = this->segment_list_.begin();
3643 *p != load_seg;
3644 ++p)
3645 {
3646 if ((*p)->type() == elfcpp::PT_LOAD)
3647 {
3648 // We repeat the whole job of assigning addresses and
3649 // offsets, but we really only want to change the offsets and
3650 // must ensure that the addresses all come out the same as
3651 // they did the first time through.
3652 bool has_relro = false;
3653 const uint64_t old_addr = (*p)->vaddr();
3654 const uint64_t old_end = old_addr + (*p)->memsz();
3655 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3656 true, old_addr,
3657 &increase_relro,
3658 &has_relro,
3659 &off,
3660 &shndx_begin);
3661 gold_assert(new_addr == old_end);
3662 }
3663 }
3664
3665 gold_assert(shndx_begin == shndx_load_seg);
3666 }
3667
3668 // Handle the non-PT_LOAD segments, setting their offsets from their
3669 // section's offsets.
3670 for (Segment_list::iterator p = this->segment_list_.begin();
3671 p != this->segment_list_.end();
3672 ++p)
3673 {
3674 if ((*p)->type() != elfcpp::PT_LOAD)
3675 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3676 ? increase_relro
3677 : 0);
3678 }
3679
3680 // Set the TLS offsets for each section in the PT_TLS segment.
3681 if (this->tls_segment_ != NULL)
3682 this->tls_segment_->set_tls_offsets();
3683
3684 return off;
3685 }
3686
3687 // Set the offsets of all the allocated sections when doing a
3688 // relocatable link. This does the same jobs as set_segment_offsets,
3689 // only for a relocatable link.
3690
3691 off_t
3692 Layout::set_relocatable_section_offsets(Output_data* file_header,
3693 unsigned int* pshndx)
3694 {
3695 off_t off = 0;
3696
3697 file_header->set_address_and_file_offset(0, 0);
3698 off += file_header->data_size();
3699
3700 for (Section_list::iterator p = this->section_list_.begin();
3701 p != this->section_list_.end();
3702 ++p)
3703 {
3704 // We skip unallocated sections here, except that group sections
3705 // have to come first.
3706 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3707 && (*p)->type() != elfcpp::SHT_GROUP)
3708 continue;
3709
3710 off = align_address(off, (*p)->addralign());
3711
3712 // The linker script might have set the address.
3713 if (!(*p)->is_address_valid())
3714 (*p)->set_address(0);
3715 (*p)->set_file_offset(off);
3716 (*p)->finalize_data_size();
3717 if ((*p)->type() != elfcpp::SHT_NOBITS)
3718 off += (*p)->data_size();
3719
3720 (*p)->set_out_shndx(*pshndx);
3721 ++*pshndx;
3722 }
3723
3724 return off;
3725 }
3726
3727 // Set the file offset of all the sections not associated with a
3728 // segment.
3729
3730 off_t
3731 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3732 {
3733 off_t startoff = off;
3734 off_t maxoff = off;
3735
3736 for (Section_list::iterator p = this->unattached_section_list_.begin();
3737 p != this->unattached_section_list_.end();
3738 ++p)
3739 {
3740 // The symtab section is handled in create_symtab_sections.
3741 if (*p == this->symtab_section_)
3742 continue;
3743
3744 // If we've already set the data size, don't set it again.
3745 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3746 continue;
3747
3748 if (pass == BEFORE_INPUT_SECTIONS_PASS
3749 && (*p)->requires_postprocessing())
3750 {
3751 (*p)->create_postprocessing_buffer();
3752 this->any_postprocessing_sections_ = true;
3753 }
3754
3755 if (pass == BEFORE_INPUT_SECTIONS_PASS
3756 && (*p)->after_input_sections())
3757 continue;
3758 else if (pass == POSTPROCESSING_SECTIONS_PASS
3759 && (!(*p)->after_input_sections()
3760 || (*p)->type() == elfcpp::SHT_STRTAB))
3761 continue;
3762 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3763 && (!(*p)->after_input_sections()
3764 || (*p)->type() != elfcpp::SHT_STRTAB))
3765 continue;
3766
3767 if (!parameters->incremental_update())
3768 {
3769 off = align_address(off, (*p)->addralign());
3770 (*p)->set_file_offset(off);
3771 (*p)->finalize_data_size();
3772 }
3773 else
3774 {
3775 // Incremental update: allocate file space from free list.
3776 (*p)->pre_finalize_data_size();
3777 off_t current_size = (*p)->current_data_size();
3778 off = this->allocate(current_size, (*p)->addralign(), startoff);
3779 if (off == -1)
3780 {
3781 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3782 this->free_list_.dump();
3783 gold_assert((*p)->output_section() != NULL);
3784 gold_fallback(_("out of patch space for section %s; "
3785 "relink with --incremental-full"),
3786 (*p)->output_section()->name());
3787 }
3788 (*p)->set_file_offset(off);
3789 (*p)->finalize_data_size();
3790 if ((*p)->data_size() > current_size)
3791 {
3792 gold_assert((*p)->output_section() != NULL);
3793 gold_fallback(_("%s: section changed size; "
3794 "relink with --incremental-full"),
3795 (*p)->output_section()->name());
3796 }
3797 gold_debug(DEBUG_INCREMENTAL,
3798 "set_section_offsets: %08lx %08lx %s",
3799 static_cast<long>(off),
3800 static_cast<long>((*p)->data_size()),
3801 ((*p)->output_section() != NULL
3802 ? (*p)->output_section()->name() : "(special)"));
3803 }
3804
3805 off += (*p)->data_size();
3806 if (off > maxoff)
3807 maxoff = off;
3808
3809 // At this point the name must be set.
3810 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3811 this->namepool_.add((*p)->name(), false, NULL);
3812 }
3813 return maxoff;
3814 }
3815
3816 // Set the section indexes of all the sections not associated with a
3817 // segment.
3818
3819 unsigned int
3820 Layout::set_section_indexes(unsigned int shndx)
3821 {
3822 for (Section_list::iterator p = this->unattached_section_list_.begin();
3823 p != this->unattached_section_list_.end();
3824 ++p)
3825 {
3826 if (!(*p)->has_out_shndx())
3827 {
3828 (*p)->set_out_shndx(shndx);
3829 ++shndx;
3830 }
3831 }
3832 return shndx;
3833 }
3834
3835 // Set the section addresses according to the linker script. This is
3836 // only called when we see a SECTIONS clause. This returns the
3837 // program segment which should hold the file header and segment
3838 // headers, if any. It will return NULL if they should not be in a
3839 // segment.
3840
3841 Output_segment*
3842 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3843 {
3844 Script_sections* ss = this->script_options_->script_sections();
3845 gold_assert(ss->saw_sections_clause());
3846 return this->script_options_->set_section_addresses(symtab, this);
3847 }
3848
3849 // Place the orphan sections in the linker script.
3850
3851 void
3852 Layout::place_orphan_sections_in_script()
3853 {
3854 Script_sections* ss = this->script_options_->script_sections();
3855 gold_assert(ss->saw_sections_clause());
3856
3857 // Place each orphaned output section in the script.
3858 for (Section_list::iterator p = this->section_list_.begin();
3859 p != this->section_list_.end();
3860 ++p)
3861 {
3862 if (!(*p)->found_in_sections_clause())
3863 ss->place_orphan(*p);
3864 }
3865 }
3866
3867 // Count the local symbols in the regular symbol table and the dynamic
3868 // symbol table, and build the respective string pools.
3869
3870 void
3871 Layout::count_local_symbols(const Task* task,
3872 const Input_objects* input_objects)
3873 {
3874 // First, figure out an upper bound on the number of symbols we'll
3875 // be inserting into each pool. This helps us create the pools with
3876 // the right size, to avoid unnecessary hashtable resizing.
3877 unsigned int symbol_count = 0;
3878 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3879 p != input_objects->relobj_end();
3880 ++p)
3881 symbol_count += (*p)->local_symbol_count();
3882
3883 // Go from "upper bound" to "estimate." We overcount for two
3884 // reasons: we double-count symbols that occur in more than one
3885 // object file, and we count symbols that are dropped from the
3886 // output. Add it all together and assume we overcount by 100%.
3887 symbol_count /= 2;
3888
3889 // We assume all symbols will go into both the sympool and dynpool.
3890 this->sympool_.reserve(symbol_count);
3891 this->dynpool_.reserve(symbol_count);
3892
3893 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3894 p != input_objects->relobj_end();
3895 ++p)
3896 {
3897 Task_lock_obj<Object> tlo(task, *p);
3898 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3899 }
3900 }
3901
3902 // Create the symbol table sections. Here we also set the final
3903 // values of the symbols. At this point all the loadable sections are
3904 // fully laid out. SHNUM is the number of sections so far.
3905
3906 void
3907 Layout::create_symtab_sections(const Input_objects* input_objects,
3908 Symbol_table* symtab,
3909 unsigned int shnum,
3910 off_t* poff)
3911 {
3912 int symsize;
3913 unsigned int align;
3914 if (parameters->target().get_size() == 32)
3915 {
3916 symsize = elfcpp::Elf_sizes<32>::sym_size;
3917 align = 4;
3918 }
3919 else if (parameters->target().get_size() == 64)
3920 {
3921 symsize = elfcpp::Elf_sizes<64>::sym_size;
3922 align = 8;
3923 }
3924 else
3925 gold_unreachable();
3926
3927 // Compute file offsets relative to the start of the symtab section.
3928 off_t off = 0;
3929
3930 // Save space for the dummy symbol at the start of the section. We
3931 // never bother to write this out--it will just be left as zero.
3932 off += symsize;
3933 unsigned int local_symbol_index = 1;
3934
3935 // Add STT_SECTION symbols for each Output section which needs one.
3936 for (Section_list::iterator p = this->section_list_.begin();
3937 p != this->section_list_.end();
3938 ++p)
3939 {
3940 if (!(*p)->needs_symtab_index())
3941 (*p)->set_symtab_index(-1U);
3942 else
3943 {
3944 (*p)->set_symtab_index(local_symbol_index);
3945 ++local_symbol_index;
3946 off += symsize;
3947 }
3948 }
3949
3950 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3951 p != input_objects->relobj_end();
3952 ++p)
3953 {
3954 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3955 off, symtab);
3956 off += (index - local_symbol_index) * symsize;
3957 local_symbol_index = index;
3958 }
3959
3960 unsigned int local_symcount = local_symbol_index;
3961 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3962
3963 off_t dynoff;
3964 size_t dyn_global_index;
3965 size_t dyncount;
3966 if (this->dynsym_section_ == NULL)
3967 {
3968 dynoff = 0;
3969 dyn_global_index = 0;
3970 dyncount = 0;
3971 }
3972 else
3973 {
3974 dyn_global_index = this->dynsym_section_->info();
3975 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3976 dynoff = this->dynsym_section_->offset() + locsize;
3977 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3978 gold_assert(static_cast<off_t>(dyncount * symsize)
3979 == this->dynsym_section_->data_size() - locsize);
3980 }
3981
3982 off_t global_off = off;
3983 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3984 &this->sympool_, &local_symcount);
3985
3986 if (!parameters->options().strip_all())
3987 {
3988 this->sympool_.set_string_offsets();
3989
3990 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3991 Output_section* osymtab = this->make_output_section(symtab_name,
3992 elfcpp::SHT_SYMTAB,
3993 0, ORDER_INVALID,
3994 false);
3995 this->symtab_section_ = osymtab;
3996
3997 Output_section_data* pos = new Output_data_fixed_space(off, align,
3998 "** symtab");
3999 osymtab->add_output_section_data(pos);
4000
4001 // We generate a .symtab_shndx section if we have more than
4002 // SHN_LORESERVE sections. Technically it is possible that we
4003 // don't need one, because it is possible that there are no
4004 // symbols in any of sections with indexes larger than
4005 // SHN_LORESERVE. That is probably unusual, though, and it is
4006 // easier to always create one than to compute section indexes
4007 // twice (once here, once when writing out the symbols).
4008 if (shnum >= elfcpp::SHN_LORESERVE)
4009 {
4010 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4011 false, NULL);
4012 Output_section* osymtab_xindex =
4013 this->make_output_section(symtab_xindex_name,
4014 elfcpp::SHT_SYMTAB_SHNDX, 0,
4015 ORDER_INVALID, false);
4016
4017 size_t symcount = off / symsize;
4018 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4019
4020 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4021
4022 osymtab_xindex->set_link_section(osymtab);
4023 osymtab_xindex->set_addralign(4);
4024 osymtab_xindex->set_entsize(4);
4025
4026 osymtab_xindex->set_after_input_sections();
4027
4028 // This tells the driver code to wait until the symbol table
4029 // has written out before writing out the postprocessing
4030 // sections, including the .symtab_shndx section.
4031 this->any_postprocessing_sections_ = true;
4032 }
4033
4034 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4035 Output_section* ostrtab = this->make_output_section(strtab_name,
4036 elfcpp::SHT_STRTAB,
4037 0, ORDER_INVALID,
4038 false);
4039
4040 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4041 ostrtab->add_output_section_data(pstr);
4042
4043 off_t symtab_off;
4044 if (!parameters->incremental_update())
4045 symtab_off = align_address(*poff, align);
4046 else
4047 {
4048 symtab_off = this->allocate(off, align, *poff);
4049 if (off == -1)
4050 gold_fallback(_("out of patch space for symbol table; "
4051 "relink with --incremental-full"));
4052 gold_debug(DEBUG_INCREMENTAL,
4053 "create_symtab_sections: %08lx %08lx .symtab",
4054 static_cast<long>(symtab_off),
4055 static_cast<long>(off));
4056 }
4057
4058 symtab->set_file_offset(symtab_off + global_off);
4059 osymtab->set_file_offset(symtab_off);
4060 osymtab->finalize_data_size();
4061 osymtab->set_link_section(ostrtab);
4062 osymtab->set_info(local_symcount);
4063 osymtab->set_entsize(symsize);
4064
4065 if (symtab_off + off > *poff)
4066 *poff = symtab_off + off;
4067 }
4068 }
4069
4070 // Create the .shstrtab section, which holds the names of the
4071 // sections. At the time this is called, we have created all the
4072 // output sections except .shstrtab itself.
4073
4074 Output_section*
4075 Layout::create_shstrtab()
4076 {
4077 // FIXME: We don't need to create a .shstrtab section if we are
4078 // stripping everything.
4079
4080 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4081
4082 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4083 ORDER_INVALID, false);
4084
4085 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4086 {
4087 // We can't write out this section until we've set all the
4088 // section names, and we don't set the names of compressed
4089 // output sections until relocations are complete. FIXME: With
4090 // the current names we use, this is unnecessary.
4091 os->set_after_input_sections();
4092 }
4093
4094 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4095 os->add_output_section_data(posd);
4096
4097 return os;
4098 }
4099
4100 // Create the section headers. SIZE is 32 or 64. OFF is the file
4101 // offset.
4102
4103 void
4104 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4105 {
4106 Output_section_headers* oshdrs;
4107 oshdrs = new Output_section_headers(this,
4108 &this->segment_list_,
4109 &this->section_list_,
4110 &this->unattached_section_list_,
4111 &this->namepool_,
4112 shstrtab_section);
4113 off_t off;
4114 if (!parameters->incremental_update())
4115 off = align_address(*poff, oshdrs->addralign());
4116 else
4117 {
4118 oshdrs->pre_finalize_data_size();
4119 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4120 if (off == -1)
4121 gold_fallback(_("out of patch space for section header table; "
4122 "relink with --incremental-full"));
4123 gold_debug(DEBUG_INCREMENTAL,
4124 "create_shdrs: %08lx %08lx (section header table)",
4125 static_cast<long>(off),
4126 static_cast<long>(off + oshdrs->data_size()));
4127 }
4128 oshdrs->set_address_and_file_offset(0, off);
4129 off += oshdrs->data_size();
4130 if (off > *poff)
4131 *poff = off;
4132 this->section_headers_ = oshdrs;
4133 }
4134
4135 // Count the allocated sections.
4136
4137 size_t
4138 Layout::allocated_output_section_count() const
4139 {
4140 size_t section_count = 0;
4141 for (Segment_list::const_iterator p = this->segment_list_.begin();
4142 p != this->segment_list_.end();
4143 ++p)
4144 section_count += (*p)->output_section_count();
4145 return section_count;
4146 }
4147
4148 // Create the dynamic symbol table.
4149
4150 void
4151 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4152 Symbol_table* symtab,
4153 Output_section** pdynstr,
4154 unsigned int* plocal_dynamic_count,
4155 std::vector<Symbol*>* pdynamic_symbols,
4156 Versions* pversions)
4157 {
4158 // Count all the symbols in the dynamic symbol table, and set the
4159 // dynamic symbol indexes.
4160
4161 // Skip symbol 0, which is always all zeroes.
4162 unsigned int index = 1;
4163
4164 // Add STT_SECTION symbols for each Output section which needs one.
4165 for (Section_list::iterator p = this->section_list_.begin();
4166 p != this->section_list_.end();
4167 ++p)
4168 {
4169 if (!(*p)->needs_dynsym_index())
4170 (*p)->set_dynsym_index(-1U);
4171 else
4172 {
4173 (*p)->set_dynsym_index(index);
4174 ++index;
4175 }
4176 }
4177
4178 // Count the local symbols that need to go in the dynamic symbol table,
4179 // and set the dynamic symbol indexes.
4180 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4181 p != input_objects->relobj_end();
4182 ++p)
4183 {
4184 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4185 index = new_index;
4186 }
4187
4188 unsigned int local_symcount = index;
4189 *plocal_dynamic_count = local_symcount;
4190
4191 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4192 &this->dynpool_, pversions);
4193
4194 int symsize;
4195 unsigned int align;
4196 const int size = parameters->target().get_size();
4197 if (size == 32)
4198 {
4199 symsize = elfcpp::Elf_sizes<32>::sym_size;
4200 align = 4;
4201 }
4202 else if (size == 64)
4203 {
4204 symsize = elfcpp::Elf_sizes<64>::sym_size;
4205 align = 8;
4206 }
4207 else
4208 gold_unreachable();
4209
4210 // Create the dynamic symbol table section.
4211
4212 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4213 elfcpp::SHT_DYNSYM,
4214 elfcpp::SHF_ALLOC,
4215 false,
4216 ORDER_DYNAMIC_LINKER,
4217 false);
4218
4219 // Check for NULL as a linker script may discard .dynsym.
4220 if (dynsym != NULL)
4221 {
4222 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4223 align,
4224 "** dynsym");
4225 dynsym->add_output_section_data(odata);
4226
4227 dynsym->set_info(local_symcount);
4228 dynsym->set_entsize(symsize);
4229 dynsym->set_addralign(align);
4230
4231 this->dynsym_section_ = dynsym;
4232 }
4233
4234 Output_data_dynamic* const odyn = this->dynamic_data_;
4235 if (odyn != NULL)
4236 {
4237 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4238 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4239 }
4240
4241 // If there are more than SHN_LORESERVE allocated sections, we
4242 // create a .dynsym_shndx section. It is possible that we don't
4243 // need one, because it is possible that there are no dynamic
4244 // symbols in any of the sections with indexes larger than
4245 // SHN_LORESERVE. This is probably unusual, though, and at this
4246 // time we don't know the actual section indexes so it is
4247 // inconvenient to check.
4248 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4249 {
4250 Output_section* dynsym_xindex =
4251 this->choose_output_section(NULL, ".dynsym_shndx",
4252 elfcpp::SHT_SYMTAB_SHNDX,
4253 elfcpp::SHF_ALLOC,
4254 false, ORDER_DYNAMIC_LINKER, false);
4255
4256 if (dynsym_xindex != NULL)
4257 {
4258 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4259
4260 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4261
4262 dynsym_xindex->set_link_section(dynsym);
4263 dynsym_xindex->set_addralign(4);
4264 dynsym_xindex->set_entsize(4);
4265
4266 dynsym_xindex->set_after_input_sections();
4267
4268 // This tells the driver code to wait until the symbol table
4269 // has written out before writing out the postprocessing
4270 // sections, including the .dynsym_shndx section.
4271 this->any_postprocessing_sections_ = true;
4272 }
4273 }
4274
4275 // Create the dynamic string table section.
4276
4277 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4278 elfcpp::SHT_STRTAB,
4279 elfcpp::SHF_ALLOC,
4280 false,
4281 ORDER_DYNAMIC_LINKER,
4282 false);
4283 *pdynstr = dynstr;
4284 if (dynstr != NULL)
4285 {
4286 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4287 dynstr->add_output_section_data(strdata);
4288
4289 if (dynsym != NULL)
4290 dynsym->set_link_section(dynstr);
4291 if (this->dynamic_section_ != NULL)
4292 this->dynamic_section_->set_link_section(dynstr);
4293
4294 if (odyn != NULL)
4295 {
4296 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4297 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4298 }
4299 }
4300
4301 // Create the hash tables.
4302
4303 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4304 || strcmp(parameters->options().hash_style(), "both") == 0)
4305 {
4306 unsigned char* phash;
4307 unsigned int hashlen;
4308 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4309 &phash, &hashlen);
4310
4311 Output_section* hashsec =
4312 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4313 elfcpp::SHF_ALLOC, false,
4314 ORDER_DYNAMIC_LINKER, false);
4315
4316 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4317 hashlen,
4318 align,
4319 "** hash");
4320 if (hashsec != NULL && hashdata != NULL)
4321 hashsec->add_output_section_data(hashdata);
4322
4323 if (hashsec != NULL)
4324 {
4325 if (dynsym != NULL)
4326 hashsec->set_link_section(dynsym);
4327 hashsec->set_entsize(4);
4328 }
4329
4330 if (odyn != NULL)
4331 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4332 }
4333
4334 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4335 || strcmp(parameters->options().hash_style(), "both") == 0)
4336 {
4337 unsigned char* phash;
4338 unsigned int hashlen;
4339 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4340 &phash, &hashlen);
4341
4342 Output_section* hashsec =
4343 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4344 elfcpp::SHF_ALLOC, false,
4345 ORDER_DYNAMIC_LINKER, false);
4346
4347 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4348 hashlen,
4349 align,
4350 "** hash");
4351 if (hashsec != NULL && hashdata != NULL)
4352 hashsec->add_output_section_data(hashdata);
4353
4354 if (hashsec != NULL)
4355 {
4356 if (dynsym != NULL)
4357 hashsec->set_link_section(dynsym);
4358
4359 // For a 64-bit target, the entries in .gnu.hash do not have
4360 // a uniform size, so we only set the entry size for a
4361 // 32-bit target.
4362 if (parameters->target().get_size() == 32)
4363 hashsec->set_entsize(4);
4364
4365 if (odyn != NULL)
4366 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4367 }
4368 }
4369 }
4370
4371 // Assign offsets to each local portion of the dynamic symbol table.
4372
4373 void
4374 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4375 {
4376 Output_section* dynsym = this->dynsym_section_;
4377 if (dynsym == NULL)
4378 return;
4379
4380 off_t off = dynsym->offset();
4381
4382 // Skip the dummy symbol at the start of the section.
4383 off += dynsym->entsize();
4384
4385 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4386 p != input_objects->relobj_end();
4387 ++p)
4388 {
4389 unsigned int count = (*p)->set_local_dynsym_offset(off);
4390 off += count * dynsym->entsize();
4391 }
4392 }
4393
4394 // Create the version sections.
4395
4396 void
4397 Layout::create_version_sections(const Versions* versions,
4398 const Symbol_table* symtab,
4399 unsigned int local_symcount,
4400 const std::vector<Symbol*>& dynamic_symbols,
4401 const Output_section* dynstr)
4402 {
4403 if (!versions->any_defs() && !versions->any_needs())
4404 return;
4405
4406 switch (parameters->size_and_endianness())
4407 {
4408 #ifdef HAVE_TARGET_32_LITTLE
4409 case Parameters::TARGET_32_LITTLE:
4410 this->sized_create_version_sections<32, false>(versions, symtab,
4411 local_symcount,
4412 dynamic_symbols, dynstr);
4413 break;
4414 #endif
4415 #ifdef HAVE_TARGET_32_BIG
4416 case Parameters::TARGET_32_BIG:
4417 this->sized_create_version_sections<32, true>(versions, symtab,
4418 local_symcount,
4419 dynamic_symbols, dynstr);
4420 break;
4421 #endif
4422 #ifdef HAVE_TARGET_64_LITTLE
4423 case Parameters::TARGET_64_LITTLE:
4424 this->sized_create_version_sections<64, false>(versions, symtab,
4425 local_symcount,
4426 dynamic_symbols, dynstr);
4427 break;
4428 #endif
4429 #ifdef HAVE_TARGET_64_BIG
4430 case Parameters::TARGET_64_BIG:
4431 this->sized_create_version_sections<64, true>(versions, symtab,
4432 local_symcount,
4433 dynamic_symbols, dynstr);
4434 break;
4435 #endif
4436 default:
4437 gold_unreachable();
4438 }
4439 }
4440
4441 // Create the version sections, sized version.
4442
4443 template<int size, bool big_endian>
4444 void
4445 Layout::sized_create_version_sections(
4446 const Versions* versions,
4447 const Symbol_table* symtab,
4448 unsigned int local_symcount,
4449 const std::vector<Symbol*>& dynamic_symbols,
4450 const Output_section* dynstr)
4451 {
4452 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4453 elfcpp::SHT_GNU_versym,
4454 elfcpp::SHF_ALLOC,
4455 false,
4456 ORDER_DYNAMIC_LINKER,
4457 false);
4458
4459 // Check for NULL since a linker script may discard this section.
4460 if (vsec != NULL)
4461 {
4462 unsigned char* vbuf;
4463 unsigned int vsize;
4464 versions->symbol_section_contents<size, big_endian>(symtab,
4465 &this->dynpool_,
4466 local_symcount,
4467 dynamic_symbols,
4468 &vbuf, &vsize);
4469
4470 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4471 "** versions");
4472
4473 vsec->add_output_section_data(vdata);
4474 vsec->set_entsize(2);
4475 vsec->set_link_section(this->dynsym_section_);
4476 }
4477
4478 Output_data_dynamic* const odyn = this->dynamic_data_;
4479 if (odyn != NULL && vsec != NULL)
4480 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4481
4482 if (versions->any_defs())
4483 {
4484 Output_section* vdsec;
4485 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4486 elfcpp::SHT_GNU_verdef,
4487 elfcpp::SHF_ALLOC,
4488 false, ORDER_DYNAMIC_LINKER, false);
4489
4490 if (vdsec != NULL)
4491 {
4492 unsigned char* vdbuf;
4493 unsigned int vdsize;
4494 unsigned int vdentries;
4495 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4496 &vdbuf, &vdsize,
4497 &vdentries);
4498
4499 Output_section_data* vddata =
4500 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4501
4502 vdsec->add_output_section_data(vddata);
4503 vdsec->set_link_section(dynstr);
4504 vdsec->set_info(vdentries);
4505
4506 if (odyn != NULL)
4507 {
4508 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4509 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4510 }
4511 }
4512 }
4513
4514 if (versions->any_needs())
4515 {
4516 Output_section* vnsec;
4517 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4518 elfcpp::SHT_GNU_verneed,
4519 elfcpp::SHF_ALLOC,
4520 false, ORDER_DYNAMIC_LINKER, false);
4521
4522 if (vnsec != NULL)
4523 {
4524 unsigned char* vnbuf;
4525 unsigned int vnsize;
4526 unsigned int vnentries;
4527 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4528 &vnbuf, &vnsize,
4529 &vnentries);
4530
4531 Output_section_data* vndata =
4532 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4533
4534 vnsec->add_output_section_data(vndata);
4535 vnsec->set_link_section(dynstr);
4536 vnsec->set_info(vnentries);
4537
4538 if (odyn != NULL)
4539 {
4540 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4541 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4542 }
4543 }
4544 }
4545 }
4546
4547 // Create the .interp section and PT_INTERP segment.
4548
4549 void
4550 Layout::create_interp(const Target* target)
4551 {
4552 gold_assert(this->interp_segment_ == NULL);
4553
4554 const char* interp = parameters->options().dynamic_linker();
4555 if (interp == NULL)
4556 {
4557 interp = target->dynamic_linker();
4558 gold_assert(interp != NULL);
4559 }
4560
4561 size_t len = strlen(interp) + 1;
4562
4563 Output_section_data* odata = new Output_data_const(interp, len, 1);
4564
4565 Output_section* osec = this->choose_output_section(NULL, ".interp",
4566 elfcpp::SHT_PROGBITS,
4567 elfcpp::SHF_ALLOC,
4568 false, ORDER_INTERP,
4569 false);
4570 if (osec != NULL)
4571 osec->add_output_section_data(odata);
4572 }
4573
4574 // Add dynamic tags for the PLT and the dynamic relocs. This is
4575 // called by the target-specific code. This does nothing if not doing
4576 // a dynamic link.
4577
4578 // USE_REL is true for REL relocs rather than RELA relocs.
4579
4580 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4581
4582 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4583 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4584 // some targets have multiple reloc sections in PLT_REL.
4585
4586 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4587 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4588 // section.
4589
4590 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4591 // executable.
4592
4593 void
4594 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4595 const Output_data* plt_rel,
4596 const Output_data_reloc_generic* dyn_rel,
4597 bool add_debug, bool dynrel_includes_plt)
4598 {
4599 Output_data_dynamic* odyn = this->dynamic_data_;
4600 if (odyn == NULL)
4601 return;
4602
4603 if (plt_got != NULL && plt_got->output_section() != NULL)
4604 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4605
4606 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4607 {
4608 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4609 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4610 odyn->add_constant(elfcpp::DT_PLTREL,
4611 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4612 }
4613
4614 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4615 || (dynrel_includes_plt
4616 && plt_rel != NULL
4617 && plt_rel->output_section() != NULL))
4618 {
4619 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4620 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4621 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4622 (have_dyn_rel
4623 ? dyn_rel->output_section()
4624 : plt_rel->output_section()));
4625 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4626 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4627 odyn->add_section_size(size_tag,
4628 dyn_rel->output_section(),
4629 plt_rel->output_section());
4630 else if (have_dyn_rel)
4631 odyn->add_section_size(size_tag, dyn_rel->output_section());
4632 else
4633 odyn->add_section_size(size_tag, plt_rel->output_section());
4634 const int size = parameters->target().get_size();
4635 elfcpp::DT rel_tag;
4636 int rel_size;
4637 if (use_rel)
4638 {
4639 rel_tag = elfcpp::DT_RELENT;
4640 if (size == 32)
4641 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4642 else if (size == 64)
4643 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4644 else
4645 gold_unreachable();
4646 }
4647 else
4648 {
4649 rel_tag = elfcpp::DT_RELAENT;
4650 if (size == 32)
4651 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4652 else if (size == 64)
4653 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4654 else
4655 gold_unreachable();
4656 }
4657 odyn->add_constant(rel_tag, rel_size);
4658
4659 if (parameters->options().combreloc() && have_dyn_rel)
4660 {
4661 size_t c = dyn_rel->relative_reloc_count();
4662 if (c > 0)
4663 odyn->add_constant((use_rel
4664 ? elfcpp::DT_RELCOUNT
4665 : elfcpp::DT_RELACOUNT),
4666 c);
4667 }
4668 }
4669
4670 if (add_debug && !parameters->options().shared())
4671 {
4672 // The value of the DT_DEBUG tag is filled in by the dynamic
4673 // linker at run time, and used by the debugger.
4674 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4675 }
4676 }
4677
4678 // Finish the .dynamic section and PT_DYNAMIC segment.
4679
4680 void
4681 Layout::finish_dynamic_section(const Input_objects* input_objects,
4682 const Symbol_table* symtab)
4683 {
4684 if (!this->script_options_->saw_phdrs_clause()
4685 && this->dynamic_section_ != NULL)
4686 {
4687 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4688 (elfcpp::PF_R
4689 | elfcpp::PF_W));
4690 oseg->add_output_section_to_nonload(this->dynamic_section_,
4691 elfcpp::PF_R | elfcpp::PF_W);
4692 }
4693
4694 Output_data_dynamic* const odyn = this->dynamic_data_;
4695 if (odyn == NULL)
4696 return;
4697
4698 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4699 p != input_objects->dynobj_end();
4700 ++p)
4701 {
4702 if (!(*p)->is_needed() && (*p)->as_needed())
4703 {
4704 // This dynamic object was linked with --as-needed, but it
4705 // is not needed.
4706 continue;
4707 }
4708
4709 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4710 }
4711
4712 if (parameters->options().shared())
4713 {
4714 const char* soname = parameters->options().soname();
4715 if (soname != NULL)
4716 odyn->add_string(elfcpp::DT_SONAME, soname);
4717 }
4718
4719 Symbol* sym = symtab->lookup(parameters->options().init());
4720 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4721 odyn->add_symbol(elfcpp::DT_INIT, sym);
4722
4723 sym = symtab->lookup(parameters->options().fini());
4724 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4725 odyn->add_symbol(elfcpp::DT_FINI, sym);
4726
4727 // Look for .init_array, .preinit_array and .fini_array by checking
4728 // section types.
4729 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4730 p != this->section_list_.end();
4731 ++p)
4732 switch((*p)->type())
4733 {
4734 case elfcpp::SHT_FINI_ARRAY:
4735 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4736 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4737 break;
4738 case elfcpp::SHT_INIT_ARRAY:
4739 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4740 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4741 break;
4742 case elfcpp::SHT_PREINIT_ARRAY:
4743 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4744 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4745 break;
4746 default:
4747 break;
4748 }
4749
4750 // Add a DT_RPATH entry if needed.
4751 const General_options::Dir_list& rpath(parameters->options().rpath());
4752 if (!rpath.empty())
4753 {
4754 std::string rpath_val;
4755 for (General_options::Dir_list::const_iterator p = rpath.begin();
4756 p != rpath.end();
4757 ++p)
4758 {
4759 if (rpath_val.empty())
4760 rpath_val = p->name();
4761 else
4762 {
4763 // Eliminate duplicates.
4764 General_options::Dir_list::const_iterator q;
4765 for (q = rpath.begin(); q != p; ++q)
4766 if (q->name() == p->name())
4767 break;
4768 if (q == p)
4769 {
4770 rpath_val += ':';
4771 rpath_val += p->name();
4772 }
4773 }
4774 }
4775
4776 if (!parameters->options().enable_new_dtags())
4777 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4778 else
4779 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4780 }
4781
4782 // Look for text segments that have dynamic relocations.
4783 bool have_textrel = false;
4784 if (!this->script_options_->saw_sections_clause())
4785 {
4786 for (Segment_list::const_iterator p = this->segment_list_.begin();
4787 p != this->segment_list_.end();
4788 ++p)
4789 {
4790 if ((*p)->type() == elfcpp::PT_LOAD
4791 && ((*p)->flags() & elfcpp::PF_W) == 0
4792 && (*p)->has_dynamic_reloc())
4793 {
4794 have_textrel = true;
4795 break;
4796 }
4797 }
4798 }
4799 else
4800 {
4801 // We don't know the section -> segment mapping, so we are
4802 // conservative and just look for readonly sections with
4803 // relocations. If those sections wind up in writable segments,
4804 // then we have created an unnecessary DT_TEXTREL entry.
4805 for (Section_list::const_iterator p = this->section_list_.begin();
4806 p != this->section_list_.end();
4807 ++p)
4808 {
4809 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4810 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4811 && (*p)->has_dynamic_reloc())
4812 {
4813 have_textrel = true;
4814 break;
4815 }
4816 }
4817 }
4818
4819 if (parameters->options().filter() != NULL)
4820 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4821 if (parameters->options().any_auxiliary())
4822 {
4823 for (options::String_set::const_iterator p =
4824 parameters->options().auxiliary_begin();
4825 p != parameters->options().auxiliary_end();
4826 ++p)
4827 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4828 }
4829
4830 // Add a DT_FLAGS entry if necessary.
4831 unsigned int flags = 0;
4832 if (have_textrel)
4833 {
4834 // Add a DT_TEXTREL for compatibility with older loaders.
4835 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4836 flags |= elfcpp::DF_TEXTREL;
4837
4838 if (parameters->options().text())
4839 gold_error(_("read-only segment has dynamic relocations"));
4840 else if (parameters->options().warn_shared_textrel()
4841 && parameters->options().shared())
4842 gold_warning(_("shared library text segment is not shareable"));
4843 }
4844 if (parameters->options().shared() && this->has_static_tls())
4845 flags |= elfcpp::DF_STATIC_TLS;
4846 if (parameters->options().origin())
4847 flags |= elfcpp::DF_ORIGIN;
4848 if (parameters->options().Bsymbolic())
4849 {
4850 flags |= elfcpp::DF_SYMBOLIC;
4851 // Add DT_SYMBOLIC for compatibility with older loaders.
4852 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4853 }
4854 if (parameters->options().now())
4855 flags |= elfcpp::DF_BIND_NOW;
4856 if (flags != 0)
4857 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4858
4859 flags = 0;
4860 if (parameters->options().initfirst())
4861 flags |= elfcpp::DF_1_INITFIRST;
4862 if (parameters->options().interpose())
4863 flags |= elfcpp::DF_1_INTERPOSE;
4864 if (parameters->options().loadfltr())
4865 flags |= elfcpp::DF_1_LOADFLTR;
4866 if (parameters->options().nodefaultlib())
4867 flags |= elfcpp::DF_1_NODEFLIB;
4868 if (parameters->options().nodelete())
4869 flags |= elfcpp::DF_1_NODELETE;
4870 if (parameters->options().nodlopen())
4871 flags |= elfcpp::DF_1_NOOPEN;
4872 if (parameters->options().nodump())
4873 flags |= elfcpp::DF_1_NODUMP;
4874 if (!parameters->options().shared())
4875 flags &= ~(elfcpp::DF_1_INITFIRST
4876 | elfcpp::DF_1_NODELETE
4877 | elfcpp::DF_1_NOOPEN);
4878 if (parameters->options().origin())
4879 flags |= elfcpp::DF_1_ORIGIN;
4880 if (parameters->options().now())
4881 flags |= elfcpp::DF_1_NOW;
4882 if (parameters->options().Bgroup())
4883 flags |= elfcpp::DF_1_GROUP;
4884 if (flags != 0)
4885 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4886 }
4887
4888 // Set the size of the _DYNAMIC symbol table to be the size of the
4889 // dynamic data.
4890
4891 void
4892 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4893 {
4894 Output_data_dynamic* const odyn = this->dynamic_data_;
4895 if (odyn == NULL)
4896 return;
4897 odyn->finalize_data_size();
4898 if (this->dynamic_symbol_ == NULL)
4899 return;
4900 off_t data_size = odyn->data_size();
4901 const int size = parameters->target().get_size();
4902 if (size == 32)
4903 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4904 else if (size == 64)
4905 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4906 else
4907 gold_unreachable();
4908 }
4909
4910 // The mapping of input section name prefixes to output section names.
4911 // In some cases one prefix is itself a prefix of another prefix; in
4912 // such a case the longer prefix must come first. These prefixes are
4913 // based on the GNU linker default ELF linker script.
4914
4915 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4916 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4917 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4918 {
4919 MAPPING_INIT(".text.", ".text"),
4920 MAPPING_INIT(".rodata.", ".rodata"),
4921 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4922 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4923 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4924 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4925 MAPPING_INIT(".data.", ".data"),
4926 MAPPING_INIT(".bss.", ".bss"),
4927 MAPPING_INIT(".tdata.", ".tdata"),
4928 MAPPING_INIT(".tbss.", ".tbss"),
4929 MAPPING_INIT(".init_array.", ".init_array"),
4930 MAPPING_INIT(".fini_array.", ".fini_array"),
4931 MAPPING_INIT(".sdata.", ".sdata"),
4932 MAPPING_INIT(".sbss.", ".sbss"),
4933 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4934 // differently depending on whether it is creating a shared library.
4935 MAPPING_INIT(".sdata2.", ".sdata"),
4936 MAPPING_INIT(".sbss2.", ".sbss"),
4937 MAPPING_INIT(".lrodata.", ".lrodata"),
4938 MAPPING_INIT(".ldata.", ".ldata"),
4939 MAPPING_INIT(".lbss.", ".lbss"),
4940 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4941 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4942 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4943 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4944 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4945 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4946 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4947 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4948 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4949 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4950 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4951 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4952 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4953 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4954 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4955 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4956 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4957 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4958 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4959 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4960 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4961 };
4962 #undef MAPPING_INIT
4963 #undef MAPPING_INIT_EXACT
4964
4965 const int Layout::section_name_mapping_count =
4966 (sizeof(Layout::section_name_mapping)
4967 / sizeof(Layout::section_name_mapping[0]));
4968
4969 // Choose the output section name to use given an input section name.
4970 // Set *PLEN to the length of the name. *PLEN is initialized to the
4971 // length of NAME.
4972
4973 const char*
4974 Layout::output_section_name(const Relobj* relobj, const char* name,
4975 size_t* plen)
4976 {
4977 // gcc 4.3 generates the following sorts of section names when it
4978 // needs a section name specific to a function:
4979 // .text.FN
4980 // .rodata.FN
4981 // .sdata2.FN
4982 // .data.FN
4983 // .data.rel.FN
4984 // .data.rel.local.FN
4985 // .data.rel.ro.FN
4986 // .data.rel.ro.local.FN
4987 // .sdata.FN
4988 // .bss.FN
4989 // .sbss.FN
4990 // .tdata.FN
4991 // .tbss.FN
4992
4993 // The GNU linker maps all of those to the part before the .FN,
4994 // except that .data.rel.local.FN is mapped to .data, and
4995 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4996 // beginning with .data.rel.ro.local are grouped together.
4997
4998 // For an anonymous namespace, the string FN can contain a '.'.
4999
5000 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5001 // GNU linker maps to .rodata.
5002
5003 // The .data.rel.ro sections are used with -z relro. The sections
5004 // are recognized by name. We use the same names that the GNU
5005 // linker does for these sections.
5006
5007 // It is hard to handle this in a principled way, so we don't even
5008 // try. We use a table of mappings. If the input section name is
5009 // not found in the table, we simply use it as the output section
5010 // name.
5011
5012 const Section_name_mapping* psnm = section_name_mapping;
5013 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5014 {
5015 if (psnm->fromlen > 0)
5016 {
5017 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5018 {
5019 *plen = psnm->tolen;
5020 return psnm->to;
5021 }
5022 }
5023 else
5024 {
5025 if (strcmp(name, psnm->from) == 0)
5026 {
5027 *plen = psnm->tolen;
5028 return psnm->to;
5029 }
5030 }
5031 }
5032
5033 // As an additional complication, .ctors sections are output in
5034 // either .ctors or .init_array sections, and .dtors sections are
5035 // output in either .dtors or .fini_array sections.
5036 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5037 {
5038 if (parameters->options().ctors_in_init_array())
5039 {
5040 *plen = 11;
5041 return name[1] == 'c' ? ".init_array" : ".fini_array";
5042 }
5043 else
5044 {
5045 *plen = 6;
5046 return name[1] == 'c' ? ".ctors" : ".dtors";
5047 }
5048 }
5049 if (parameters->options().ctors_in_init_array()
5050 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5051 {
5052 // To make .init_array/.fini_array work with gcc we must exclude
5053 // .ctors and .dtors sections from the crtbegin and crtend
5054 // files.
5055 if (relobj == NULL
5056 || (!Layout::match_file_name(relobj, "crtbegin")
5057 && !Layout::match_file_name(relobj, "crtend")))
5058 {
5059 *plen = 11;
5060 return name[1] == 'c' ? ".init_array" : ".fini_array";
5061 }
5062 }
5063
5064 return name;
5065 }
5066
5067 // Return true if RELOBJ is an input file whose base name matches
5068 // FILE_NAME. The base name must have an extension of ".o", and must
5069 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5070 // to match crtbegin.o as well as crtbeginS.o without getting confused
5071 // by other possibilities. Overall matching the file name this way is
5072 // a dreadful hack, but the GNU linker does it in order to better
5073 // support gcc, and we need to be compatible.
5074
5075 bool
5076 Layout::match_file_name(const Relobj* relobj, const char* match)
5077 {
5078 const std::string& file_name(relobj->name());
5079 const char* base_name = lbasename(file_name.c_str());
5080 size_t match_len = strlen(match);
5081 if (strncmp(base_name, match, match_len) != 0)
5082 return false;
5083 size_t base_len = strlen(base_name);
5084 if (base_len != match_len + 2 && base_len != match_len + 3)
5085 return false;
5086 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5087 }
5088
5089 // Check if a comdat group or .gnu.linkonce section with the given
5090 // NAME is selected for the link. If there is already a section,
5091 // *KEPT_SECTION is set to point to the existing section and the
5092 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5093 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5094 // *KEPT_SECTION is set to the internal copy and the function returns
5095 // true.
5096
5097 bool
5098 Layout::find_or_add_kept_section(const std::string& name,
5099 Relobj* object,
5100 unsigned int shndx,
5101 bool is_comdat,
5102 bool is_group_name,
5103 Kept_section** kept_section)
5104 {
5105 // It's normal to see a couple of entries here, for the x86 thunk
5106 // sections. If we see more than a few, we're linking a C++
5107 // program, and we resize to get more space to minimize rehashing.
5108 if (this->signatures_.size() > 4
5109 && !this->resized_signatures_)
5110 {
5111 reserve_unordered_map(&this->signatures_,
5112 this->number_of_input_files_ * 64);
5113 this->resized_signatures_ = true;
5114 }
5115
5116 Kept_section candidate;
5117 std::pair<Signatures::iterator, bool> ins =
5118 this->signatures_.insert(std::make_pair(name, candidate));
5119
5120 if (kept_section != NULL)
5121 *kept_section = &ins.first->second;
5122 if (ins.second)
5123 {
5124 // This is the first time we've seen this signature.
5125 ins.first->second.set_object(object);
5126 ins.first->second.set_shndx(shndx);
5127 if (is_comdat)
5128 ins.first->second.set_is_comdat();
5129 if (is_group_name)
5130 ins.first->second.set_is_group_name();
5131 return true;
5132 }
5133
5134 // We have already seen this signature.
5135
5136 if (ins.first->second.is_group_name())
5137 {
5138 // We've already seen a real section group with this signature.
5139 // If the kept group is from a plugin object, and we're in the
5140 // replacement phase, accept the new one as a replacement.
5141 if (ins.first->second.object() == NULL
5142 && parameters->options().plugins()->in_replacement_phase())
5143 {
5144 ins.first->second.set_object(object);
5145 ins.first->second.set_shndx(shndx);
5146 return true;
5147 }
5148 return false;
5149 }
5150 else if (is_group_name)
5151 {
5152 // This is a real section group, and we've already seen a
5153 // linkonce section with this signature. Record that we've seen
5154 // a section group, and don't include this section group.
5155 ins.first->second.set_is_group_name();
5156 return false;
5157 }
5158 else
5159 {
5160 // We've already seen a linkonce section and this is a linkonce
5161 // section. These don't block each other--this may be the same
5162 // symbol name with different section types.
5163 return true;
5164 }
5165 }
5166
5167 // Store the allocated sections into the section list.
5168
5169 void
5170 Layout::get_allocated_sections(Section_list* section_list) const
5171 {
5172 for (Section_list::const_iterator p = this->section_list_.begin();
5173 p != this->section_list_.end();
5174 ++p)
5175 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5176 section_list->push_back(*p);
5177 }
5178
5179 // Store the executable sections into the section list.
5180
5181 void
5182 Layout::get_executable_sections(Section_list* section_list) const
5183 {
5184 for (Section_list::const_iterator p = this->section_list_.begin();
5185 p != this->section_list_.end();
5186 ++p)
5187 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5188 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5189 section_list->push_back(*p);
5190 }
5191
5192 // Create an output segment.
5193
5194 Output_segment*
5195 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5196 {
5197 gold_assert(!parameters->options().relocatable());
5198 Output_segment* oseg = new Output_segment(type, flags);
5199 this->segment_list_.push_back(oseg);
5200
5201 if (type == elfcpp::PT_TLS)
5202 this->tls_segment_ = oseg;
5203 else if (type == elfcpp::PT_GNU_RELRO)
5204 this->relro_segment_ = oseg;
5205 else if (type == elfcpp::PT_INTERP)
5206 this->interp_segment_ = oseg;
5207
5208 return oseg;
5209 }
5210
5211 // Return the file offset of the normal symbol table.
5212
5213 off_t
5214 Layout::symtab_section_offset() const
5215 {
5216 if (this->symtab_section_ != NULL)
5217 return this->symtab_section_->offset();
5218 return 0;
5219 }
5220
5221 // Return the section index of the normal symbol table. It may have
5222 // been stripped by the -s/--strip-all option.
5223
5224 unsigned int
5225 Layout::symtab_section_shndx() const
5226 {
5227 if (this->symtab_section_ != NULL)
5228 return this->symtab_section_->out_shndx();
5229 return 0;
5230 }
5231
5232 // Write out the Output_sections. Most won't have anything to write,
5233 // since most of the data will come from input sections which are
5234 // handled elsewhere. But some Output_sections do have Output_data.
5235
5236 void
5237 Layout::write_output_sections(Output_file* of) const
5238 {
5239 for (Section_list::const_iterator p = this->section_list_.begin();
5240 p != this->section_list_.end();
5241 ++p)
5242 {
5243 if (!(*p)->after_input_sections())
5244 (*p)->write(of);
5245 }
5246 }
5247
5248 // Write out data not associated with a section or the symbol table.
5249
5250 void
5251 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5252 {
5253 if (!parameters->options().strip_all())
5254 {
5255 const Output_section* symtab_section = this->symtab_section_;
5256 for (Section_list::const_iterator p = this->section_list_.begin();
5257 p != this->section_list_.end();
5258 ++p)
5259 {
5260 if ((*p)->needs_symtab_index())
5261 {
5262 gold_assert(symtab_section != NULL);
5263 unsigned int index = (*p)->symtab_index();
5264 gold_assert(index > 0 && index != -1U);
5265 off_t off = (symtab_section->offset()
5266 + index * symtab_section->entsize());
5267 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5268 }
5269 }
5270 }
5271
5272 const Output_section* dynsym_section = this->dynsym_section_;
5273 for (Section_list::const_iterator p = this->section_list_.begin();
5274 p != this->section_list_.end();
5275 ++p)
5276 {
5277 if ((*p)->needs_dynsym_index())
5278 {
5279 gold_assert(dynsym_section != NULL);
5280 unsigned int index = (*p)->dynsym_index();
5281 gold_assert(index > 0 && index != -1U);
5282 off_t off = (dynsym_section->offset()
5283 + index * dynsym_section->entsize());
5284 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5285 }
5286 }
5287
5288 // Write out the Output_data which are not in an Output_section.
5289 for (Data_list::const_iterator p = this->special_output_list_.begin();
5290 p != this->special_output_list_.end();
5291 ++p)
5292 (*p)->write(of);
5293
5294 // Write out the Output_data which are not in an Output_section
5295 // and are regenerated in each iteration of relaxation.
5296 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5297 p != this->relax_output_list_.end();
5298 ++p)
5299 (*p)->write(of);
5300 }
5301
5302 // Write out the Output_sections which can only be written after the
5303 // input sections are complete.
5304
5305 void
5306 Layout::write_sections_after_input_sections(Output_file* of)
5307 {
5308 // Determine the final section offsets, and thus the final output
5309 // file size. Note we finalize the .shstrab last, to allow the
5310 // after_input_section sections to modify their section-names before
5311 // writing.
5312 if (this->any_postprocessing_sections_)
5313 {
5314 off_t off = this->output_file_size_;
5315 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5316
5317 // Now that we've finalized the names, we can finalize the shstrab.
5318 off =
5319 this->set_section_offsets(off,
5320 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5321
5322 if (off > this->output_file_size_)
5323 {
5324 of->resize(off);
5325 this->output_file_size_ = off;
5326 }
5327 }
5328
5329 for (Section_list::const_iterator p = this->section_list_.begin();
5330 p != this->section_list_.end();
5331 ++p)
5332 {
5333 if ((*p)->after_input_sections())
5334 (*p)->write(of);
5335 }
5336
5337 this->section_headers_->write(of);
5338 }
5339
5340 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5341 // or as a "tree" where each chunk of the string is hashed and then those
5342 // hashes are put into a (much smaller) string which is hashed with sha1.
5343 // We compute a checksum over the entire file because that is simplest.
5344
5345 Task_token*
5346 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5347 Output_file* of)
5348 {
5349 const size_t filesize = (this->output_file_size() <= 0 ? 0
5350 : static_cast<size_t>(this->output_file_size()));
5351 if (this->build_id_note_ != NULL
5352 && strcmp(parameters->options().build_id(), "tree") == 0
5353 && parameters->options().build_id_chunk_size_for_treehash() > 0
5354 && filesize > 0
5355 && (filesize >=
5356 parameters->options().build_id_min_file_size_for_treehash()))
5357 {
5358 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5359 const size_t chunk_size =
5360 parameters->options().build_id_chunk_size_for_treehash();
5361 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5362 Task_token* post_hash_tasks_blocker = new Task_token(true);
5363 post_hash_tasks_blocker->add_blockers(num_hashes);
5364 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5365 const unsigned char* src = of->get_input_view(0, filesize);
5366 this->input_view_ = src;
5367 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5368 this->array_of_hashes_ = dst;
5369 for (size_t i = 0, src_offset = 0; i < num_hashes;
5370 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5371 {
5372 size_t size = std::min(chunk_size, filesize - src_offset);
5373 workqueue->queue(new Hash_task(src + src_offset,
5374 size,
5375 dst,
5376 build_id_blocker,
5377 post_hash_tasks_blocker));
5378 }
5379 return post_hash_tasks_blocker;
5380 }
5381 return build_id_blocker;
5382 }
5383
5384 // If a tree-style build ID was requested, the parallel part of that computation
5385 // is already done, and the final hash-of-hashes is computed here. For other
5386 // types of build IDs, all the work is done here.
5387
5388 void
5389 Layout::write_build_id(Output_file* of) const
5390 {
5391 if (this->build_id_note_ == NULL)
5392 return;
5393
5394 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5395 this->build_id_note_->data_size());
5396
5397 if (this->array_of_hashes_ == NULL)
5398 {
5399 const size_t output_file_size = this->output_file_size();
5400 const unsigned char* iv = of->get_input_view(0, output_file_size);
5401 const char* style = parameters->options().build_id();
5402
5403 // If we get here with style == "tree" then the output must be
5404 // too small for chunking, and we use SHA-1 in that case.
5405 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5406 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5407 else if (strcmp(style, "md5") == 0)
5408 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5409 else
5410 gold_unreachable();
5411
5412 of->free_input_view(0, output_file_size, iv);
5413 }
5414 else
5415 {
5416 // Non-overlapping substrings of the output file have been hashed.
5417 // Compute SHA-1 hash of the hashes.
5418 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5419 this->size_of_array_of_hashes_, ov);
5420 delete[] this->array_of_hashes_;
5421 of->free_input_view(0, this->output_file_size(), this->input_view_);
5422 }
5423
5424 of->write_output_view(this->build_id_note_->offset(),
5425 this->build_id_note_->data_size(),
5426 ov);
5427 }
5428
5429 // Write out a binary file. This is called after the link is
5430 // complete. IN is the temporary output file we used to generate the
5431 // ELF code. We simply walk through the segments, read them from
5432 // their file offset in IN, and write them to their load address in
5433 // the output file. FIXME: with a bit more work, we could support
5434 // S-records and/or Intel hex format here.
5435
5436 void
5437 Layout::write_binary(Output_file* in) const
5438 {
5439 gold_assert(parameters->options().oformat_enum()
5440 == General_options::OBJECT_FORMAT_BINARY);
5441
5442 // Get the size of the binary file.
5443 uint64_t max_load_address = 0;
5444 for (Segment_list::const_iterator p = this->segment_list_.begin();
5445 p != this->segment_list_.end();
5446 ++p)
5447 {
5448 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5449 {
5450 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5451 if (max_paddr > max_load_address)
5452 max_load_address = max_paddr;
5453 }
5454 }
5455
5456 Output_file out(parameters->options().output_file_name());
5457 out.open(max_load_address);
5458
5459 for (Segment_list::const_iterator p = this->segment_list_.begin();
5460 p != this->segment_list_.end();
5461 ++p)
5462 {
5463 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5464 {
5465 const unsigned char* vin = in->get_input_view((*p)->offset(),
5466 (*p)->filesz());
5467 unsigned char* vout = out.get_output_view((*p)->paddr(),
5468 (*p)->filesz());
5469 memcpy(vout, vin, (*p)->filesz());
5470 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5471 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5472 }
5473 }
5474
5475 out.close();
5476 }
5477
5478 // Print the output sections to the map file.
5479
5480 void
5481 Layout::print_to_mapfile(Mapfile* mapfile) const
5482 {
5483 for (Segment_list::const_iterator p = this->segment_list_.begin();
5484 p != this->segment_list_.end();
5485 ++p)
5486 (*p)->print_sections_to_mapfile(mapfile);
5487 }
5488
5489 // Print statistical information to stderr. This is used for --stats.
5490
5491 void
5492 Layout::print_stats() const
5493 {
5494 this->namepool_.print_stats("section name pool");
5495 this->sympool_.print_stats("output symbol name pool");
5496 this->dynpool_.print_stats("dynamic name pool");
5497
5498 for (Section_list::const_iterator p = this->section_list_.begin();
5499 p != this->section_list_.end();
5500 ++p)
5501 (*p)->print_merge_stats();
5502 }
5503
5504 // Write_sections_task methods.
5505
5506 // We can always run this task.
5507
5508 Task_token*
5509 Write_sections_task::is_runnable()
5510 {
5511 return NULL;
5512 }
5513
5514 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5515 // when finished.
5516
5517 void
5518 Write_sections_task::locks(Task_locker* tl)
5519 {
5520 tl->add(this, this->output_sections_blocker_);
5521 tl->add(this, this->final_blocker_);
5522 }
5523
5524 // Run the task--write out the data.
5525
5526 void
5527 Write_sections_task::run(Workqueue*)
5528 {
5529 this->layout_->write_output_sections(this->of_);
5530 }
5531
5532 // Write_data_task methods.
5533
5534 // We can always run this task.
5535
5536 Task_token*
5537 Write_data_task::is_runnable()
5538 {
5539 return NULL;
5540 }
5541
5542 // We need to unlock FINAL_BLOCKER when finished.
5543
5544 void
5545 Write_data_task::locks(Task_locker* tl)
5546 {
5547 tl->add(this, this->final_blocker_);
5548 }
5549
5550 // Run the task--write out the data.
5551
5552 void
5553 Write_data_task::run(Workqueue*)
5554 {
5555 this->layout_->write_data(this->symtab_, this->of_);
5556 }
5557
5558 // Write_symbols_task methods.
5559
5560 // We can always run this task.
5561
5562 Task_token*
5563 Write_symbols_task::is_runnable()
5564 {
5565 return NULL;
5566 }
5567
5568 // We need to unlock FINAL_BLOCKER when finished.
5569
5570 void
5571 Write_symbols_task::locks(Task_locker* tl)
5572 {
5573 tl->add(this, this->final_blocker_);
5574 }
5575
5576 // Run the task--write out the symbols.
5577
5578 void
5579 Write_symbols_task::run(Workqueue*)
5580 {
5581 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5582 this->layout_->symtab_xindex(),
5583 this->layout_->dynsym_xindex(), this->of_);
5584 }
5585
5586 // Write_after_input_sections_task methods.
5587
5588 // We can only run this task after the input sections have completed.
5589
5590 Task_token*
5591 Write_after_input_sections_task::is_runnable()
5592 {
5593 if (this->input_sections_blocker_->is_blocked())
5594 return this->input_sections_blocker_;
5595 return NULL;
5596 }
5597
5598 // We need to unlock FINAL_BLOCKER when finished.
5599
5600 void
5601 Write_after_input_sections_task::locks(Task_locker* tl)
5602 {
5603 tl->add(this, this->final_blocker_);
5604 }
5605
5606 // Run the task.
5607
5608 void
5609 Write_after_input_sections_task::run(Workqueue*)
5610 {
5611 this->layout_->write_sections_after_input_sections(this->of_);
5612 }
5613
5614 // Close_task_runner methods.
5615
5616 // Finish up the build ID computation, if necessary, and write a binary file,
5617 // if necessary. Then close the output file.
5618
5619 void
5620 Close_task_runner::run(Workqueue*, const Task*)
5621 {
5622 // At this point the multi-threaded part of the build ID computation,
5623 // if any, is done. See queue_build_id_tasks().
5624 this->layout_->write_build_id(this->of_);
5625
5626 // If we've been asked to create a binary file, we do so here.
5627 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5628 this->layout_->write_binary(this->of_);
5629
5630 this->of_->close();
5631 }
5632
5633 // Instantiate the templates we need. We could use the configure
5634 // script to restrict this to only the ones for implemented targets.
5635
5636 #ifdef HAVE_TARGET_32_LITTLE
5637 template
5638 Output_section*
5639 Layout::init_fixed_output_section<32, false>(
5640 const char* name,
5641 elfcpp::Shdr<32, false>& shdr);
5642 #endif
5643
5644 #ifdef HAVE_TARGET_32_BIG
5645 template
5646 Output_section*
5647 Layout::init_fixed_output_section<32, true>(
5648 const char* name,
5649 elfcpp::Shdr<32, true>& shdr);
5650 #endif
5651
5652 #ifdef HAVE_TARGET_64_LITTLE
5653 template
5654 Output_section*
5655 Layout::init_fixed_output_section<64, false>(
5656 const char* name,
5657 elfcpp::Shdr<64, false>& shdr);
5658 #endif
5659
5660 #ifdef HAVE_TARGET_64_BIG
5661 template
5662 Output_section*
5663 Layout::init_fixed_output_section<64, true>(
5664 const char* name,
5665 elfcpp::Shdr<64, true>& shdr);
5666 #endif
5667
5668 #ifdef HAVE_TARGET_32_LITTLE
5669 template
5670 Output_section*
5671 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5672 unsigned int shndx,
5673 const char* name,
5674 const elfcpp::Shdr<32, false>& shdr,
5675 unsigned int, unsigned int, off_t*);
5676 #endif
5677
5678 #ifdef HAVE_TARGET_32_BIG
5679 template
5680 Output_section*
5681 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5682 unsigned int shndx,
5683 const char* name,
5684 const elfcpp::Shdr<32, true>& shdr,
5685 unsigned int, unsigned int, off_t*);
5686 #endif
5687
5688 #ifdef HAVE_TARGET_64_LITTLE
5689 template
5690 Output_section*
5691 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5692 unsigned int shndx,
5693 const char* name,
5694 const elfcpp::Shdr<64, false>& shdr,
5695 unsigned int, unsigned int, off_t*);
5696 #endif
5697
5698 #ifdef HAVE_TARGET_64_BIG
5699 template
5700 Output_section*
5701 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5702 unsigned int shndx,
5703 const char* name,
5704 const elfcpp::Shdr<64, true>& shdr,
5705 unsigned int, unsigned int, off_t*);
5706 #endif
5707
5708 #ifdef HAVE_TARGET_32_LITTLE
5709 template
5710 Output_section*
5711 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5712 unsigned int reloc_shndx,
5713 const elfcpp::Shdr<32, false>& shdr,
5714 Output_section* data_section,
5715 Relocatable_relocs* rr);
5716 #endif
5717
5718 #ifdef HAVE_TARGET_32_BIG
5719 template
5720 Output_section*
5721 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5722 unsigned int reloc_shndx,
5723 const elfcpp::Shdr<32, true>& shdr,
5724 Output_section* data_section,
5725 Relocatable_relocs* rr);
5726 #endif
5727
5728 #ifdef HAVE_TARGET_64_LITTLE
5729 template
5730 Output_section*
5731 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5732 unsigned int reloc_shndx,
5733 const elfcpp::Shdr<64, false>& shdr,
5734 Output_section* data_section,
5735 Relocatable_relocs* rr);
5736 #endif
5737
5738 #ifdef HAVE_TARGET_64_BIG
5739 template
5740 Output_section*
5741 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5742 unsigned int reloc_shndx,
5743 const elfcpp::Shdr<64, true>& shdr,
5744 Output_section* data_section,
5745 Relocatable_relocs* rr);
5746 #endif
5747
5748 #ifdef HAVE_TARGET_32_LITTLE
5749 template
5750 void
5751 Layout::layout_group<32, false>(Symbol_table* symtab,
5752 Sized_relobj_file<32, false>* object,
5753 unsigned int,
5754 const char* group_section_name,
5755 const char* signature,
5756 const elfcpp::Shdr<32, false>& shdr,
5757 elfcpp::Elf_Word flags,
5758 std::vector<unsigned int>* shndxes);
5759 #endif
5760
5761 #ifdef HAVE_TARGET_32_BIG
5762 template
5763 void
5764 Layout::layout_group<32, true>(Symbol_table* symtab,
5765 Sized_relobj_file<32, true>* object,
5766 unsigned int,
5767 const char* group_section_name,
5768 const char* signature,
5769 const elfcpp::Shdr<32, true>& shdr,
5770 elfcpp::Elf_Word flags,
5771 std::vector<unsigned int>* shndxes);
5772 #endif
5773
5774 #ifdef HAVE_TARGET_64_LITTLE
5775 template
5776 void
5777 Layout::layout_group<64, false>(Symbol_table* symtab,
5778 Sized_relobj_file<64, false>* object,
5779 unsigned int,
5780 const char* group_section_name,
5781 const char* signature,
5782 const elfcpp::Shdr<64, false>& shdr,
5783 elfcpp::Elf_Word flags,
5784 std::vector<unsigned int>* shndxes);
5785 #endif
5786
5787 #ifdef HAVE_TARGET_64_BIG
5788 template
5789 void
5790 Layout::layout_group<64, true>(Symbol_table* symtab,
5791 Sized_relobj_file<64, true>* object,
5792 unsigned int,
5793 const char* group_section_name,
5794 const char* signature,
5795 const elfcpp::Shdr<64, true>& shdr,
5796 elfcpp::Elf_Word flags,
5797 std::vector<unsigned int>* shndxes);
5798 #endif
5799
5800 #ifdef HAVE_TARGET_32_LITTLE
5801 template
5802 Output_section*
5803 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5804 const unsigned char* symbols,
5805 off_t symbols_size,
5806 const unsigned char* symbol_names,
5807 off_t symbol_names_size,
5808 unsigned int shndx,
5809 const elfcpp::Shdr<32, false>& shdr,
5810 unsigned int reloc_shndx,
5811 unsigned int reloc_type,
5812 off_t* off);
5813 #endif
5814
5815 #ifdef HAVE_TARGET_32_BIG
5816 template
5817 Output_section*
5818 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5819 const unsigned char* symbols,
5820 off_t symbols_size,
5821 const unsigned char* symbol_names,
5822 off_t symbol_names_size,
5823 unsigned int shndx,
5824 const elfcpp::Shdr<32, true>& shdr,
5825 unsigned int reloc_shndx,
5826 unsigned int reloc_type,
5827 off_t* off);
5828 #endif
5829
5830 #ifdef HAVE_TARGET_64_LITTLE
5831 template
5832 Output_section*
5833 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5834 const unsigned char* symbols,
5835 off_t symbols_size,
5836 const unsigned char* symbol_names,
5837 off_t symbol_names_size,
5838 unsigned int shndx,
5839 const elfcpp::Shdr<64, false>& shdr,
5840 unsigned int reloc_shndx,
5841 unsigned int reloc_type,
5842 off_t* off);
5843 #endif
5844
5845 #ifdef HAVE_TARGET_64_BIG
5846 template
5847 Output_section*
5848 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5849 const unsigned char* symbols,
5850 off_t symbols_size,
5851 const unsigned char* symbol_names,
5852 off_t symbol_names_size,
5853 unsigned int shndx,
5854 const elfcpp::Shdr<64, true>& shdr,
5855 unsigned int reloc_shndx,
5856 unsigned int reloc_type,
5857 off_t* off);
5858 #endif
5859
5860 #ifdef HAVE_TARGET_32_LITTLE
5861 template
5862 void
5863 Layout::add_to_gdb_index(bool is_type_unit,
5864 Sized_relobj<32, false>* object,
5865 const unsigned char* symbols,
5866 off_t symbols_size,
5867 unsigned int shndx,
5868 unsigned int reloc_shndx,
5869 unsigned int reloc_type);
5870 #endif
5871
5872 #ifdef HAVE_TARGET_32_BIG
5873 template
5874 void
5875 Layout::add_to_gdb_index(bool is_type_unit,
5876 Sized_relobj<32, true>* object,
5877 const unsigned char* symbols,
5878 off_t symbols_size,
5879 unsigned int shndx,
5880 unsigned int reloc_shndx,
5881 unsigned int reloc_type);
5882 #endif
5883
5884 #ifdef HAVE_TARGET_64_LITTLE
5885 template
5886 void
5887 Layout::add_to_gdb_index(bool is_type_unit,
5888 Sized_relobj<64, false>* object,
5889 const unsigned char* symbols,
5890 off_t symbols_size,
5891 unsigned int shndx,
5892 unsigned int reloc_shndx,
5893 unsigned int reloc_type);
5894 #endif
5895
5896 #ifdef HAVE_TARGET_64_BIG
5897 template
5898 void
5899 Layout::add_to_gdb_index(bool is_type_unit,
5900 Sized_relobj<64, true>* object,
5901 const unsigned char* symbols,
5902 off_t symbols_size,
5903 unsigned int shndx,
5904 unsigned int reloc_shndx,
5905 unsigned int reloc_type);
5906 #endif
5907
5908 } // End namespace gold.
This page took 0.281549 seconds and 5 git commands to generate.