Add support for .note.gnu.property sections.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107 if (start == end)
108 return;
109 gold_assert(start < end);
110
111 ++Free_list::num_removes;
112
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
116
117 for (; p != this->list_.end(); ++p)
118 {
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
122 {
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
136 {
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
141 }
142 this->last_remove_ = p;
143 return;
144 }
145 }
146
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
167
168 ++Free_list::num_allocates;
169
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176 {
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 {
183 this->length_ = end;
184 p->end_ = end;
185 }
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 {
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
195 {
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
200 }
201 return start;
202 }
203 }
204 if (this->extend_)
205 {
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
209 }
210 return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
254 { }
255
256 void
257 run(Workqueue*)
258 {
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
263 }
264
265 Task_token*
266 is_runnable()
267 { return NULL; }
268
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
273
274 std::string
275 get_name() const
276 { return "Hash_task"; }
277
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_(),
478 gnu_properties_()
479 {
480 // Make space for more than enough segments for a typical file.
481 // This is just for efficiency--it's OK if we wind up needing more.
482 this->segment_list_.reserve(12);
483
484 // We expect two unattached Output_data objects: the file header and
485 // the segment headers.
486 this->special_output_list_.reserve(2);
487
488 // Initialize structure needed for an incremental build.
489 if (parameters->incremental())
490 this->incremental_inputs_ = new Incremental_inputs;
491
492 // The section name pool is worth optimizing in all cases, because
493 // it is small, but there are often overlaps due to .rel sections.
494 this->namepool_.set_optimize();
495 }
496
497 // For incremental links, record the base file to be modified.
498
499 void
500 Layout::set_incremental_base(Incremental_binary* base)
501 {
502 this->incremental_base_ = base;
503 this->free_list_.init(base->output_file()->filesize(), true);
504 }
505
506 // Hash a key we use to look up an output section mapping.
507
508 size_t
509 Layout::Hash_key::operator()(const Layout::Key& k) const
510 {
511 return k.first + k.second.first + k.second.second;
512 }
513
514 // These are the debug sections that are actually used by gdb.
515 // Currently, we've checked versions of gdb up to and including 7.4.
516 // We only check the part of the name that follows ".debug_" or
517 // ".zdebug_".
518
519 static const char* gdb_sections[] =
520 {
521 "abbrev",
522 "addr", // Fission extension
523 // "aranges", // not used by gdb as of 7.4
524 "frame",
525 "gdb_scripts",
526 "info",
527 "types",
528 "line",
529 "loc",
530 "macinfo",
531 "macro",
532 // "pubnames", // not used by gdb as of 7.4
533 // "pubtypes", // not used by gdb as of 7.4
534 // "gnu_pubnames", // Fission extension
535 // "gnu_pubtypes", // Fission extension
536 "ranges",
537 "str",
538 "str_offsets",
539 };
540
541 // This is the minimum set of sections needed for line numbers.
542
543 static const char* lines_only_debug_sections[] =
544 {
545 "abbrev",
546 // "addr", // Fission extension
547 // "aranges", // not used by gdb as of 7.4
548 // "frame",
549 // "gdb_scripts",
550 "info",
551 // "types",
552 "line",
553 // "loc",
554 // "macinfo",
555 // "macro",
556 // "pubnames", // not used by gdb as of 7.4
557 // "pubtypes", // not used by gdb as of 7.4
558 // "gnu_pubnames", // Fission extension
559 // "gnu_pubtypes", // Fission extension
560 // "ranges",
561 "str",
562 "str_offsets", // Fission extension
563 };
564
565 // These sections are the DWARF fast-lookup tables, and are not needed
566 // when building a .gdb_index section.
567
568 static const char* gdb_fast_lookup_sections[] =
569 {
570 "aranges",
571 "pubnames",
572 "gnu_pubnames",
573 "pubtypes",
574 "gnu_pubtypes",
575 };
576
577 // Returns whether the given debug section is in the list of
578 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
579 // portion of the name following ".debug_" or ".zdebug_".
580
581 static inline bool
582 is_gdb_debug_section(const char* suffix)
583 {
584 // We can do this faster: binary search or a hashtable. But why bother?
585 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
586 if (strcmp(suffix, gdb_sections[i]) == 0)
587 return true;
588 return false;
589 }
590
591 // Returns whether the given section is needed for lines-only debugging.
592
593 static inline bool
594 is_lines_only_debug_section(const char* suffix)
595 {
596 // We can do this faster: binary search or a hashtable. But why bother?
597 for (size_t i = 0;
598 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
599 ++i)
600 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
601 return true;
602 return false;
603 }
604
605 // Returns whether the given section is a fast-lookup section that
606 // will not be needed when building a .gdb_index section.
607
608 static inline bool
609 is_gdb_fast_lookup_section(const char* suffix)
610 {
611 // We can do this faster: binary search or a hashtable. But why bother?
612 for (size_t i = 0;
613 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
614 ++i)
615 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
616 return true;
617 return false;
618 }
619
620 // Sometimes we compress sections. This is typically done for
621 // sections that are not part of normal program execution (such as
622 // .debug_* sections), and where the readers of these sections know
623 // how to deal with compressed sections. This routine doesn't say for
624 // certain whether we'll compress -- it depends on commandline options
625 // as well -- just whether this section is a candidate for compression.
626 // (The Output_compressed_section class decides whether to compress
627 // a given section, and picks the name of the compressed section.)
628
629 static bool
630 is_compressible_debug_section(const char* secname)
631 {
632 return (is_prefix_of(".debug", secname));
633 }
634
635 // We may see compressed debug sections in input files. Return TRUE
636 // if this is the name of a compressed debug section.
637
638 bool
639 is_compressed_debug_section(const char* secname)
640 {
641 return (is_prefix_of(".zdebug", secname));
642 }
643
644 std::string
645 corresponding_uncompressed_section_name(std::string secname)
646 {
647 gold_assert(secname[0] == '.' && secname[1] == 'z');
648 std::string ret(".");
649 ret.append(secname, 2, std::string::npos);
650 return ret;
651 }
652
653 // Whether to include this section in the link.
654
655 template<int size, bool big_endian>
656 bool
657 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
658 const elfcpp::Shdr<size, big_endian>& shdr)
659 {
660 if (!parameters->options().relocatable()
661 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
662 return false;
663
664 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
665
666 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
667 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
668 return parameters->target().should_include_section(sh_type);
669
670 switch (sh_type)
671 {
672 case elfcpp::SHT_NULL:
673 case elfcpp::SHT_SYMTAB:
674 case elfcpp::SHT_DYNSYM:
675 case elfcpp::SHT_HASH:
676 case elfcpp::SHT_DYNAMIC:
677 case elfcpp::SHT_SYMTAB_SHNDX:
678 return false;
679
680 case elfcpp::SHT_STRTAB:
681 // Discard the sections which have special meanings in the ELF
682 // ABI. Keep others (e.g., .stabstr). We could also do this by
683 // checking the sh_link fields of the appropriate sections.
684 return (strcmp(name, ".dynstr") != 0
685 && strcmp(name, ".strtab") != 0
686 && strcmp(name, ".shstrtab") != 0);
687
688 case elfcpp::SHT_RELA:
689 case elfcpp::SHT_REL:
690 case elfcpp::SHT_GROUP:
691 // If we are emitting relocations these should be handled
692 // elsewhere.
693 gold_assert(!parameters->options().relocatable());
694 return false;
695
696 case elfcpp::SHT_PROGBITS:
697 if (parameters->options().strip_debug()
698 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
699 {
700 if (is_debug_info_section(name))
701 return false;
702 }
703 if (parameters->options().strip_debug_non_line()
704 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
705 {
706 // Debugging sections can only be recognized by name.
707 if (is_prefix_of(".debug_", name)
708 && !is_lines_only_debug_section(name + 7))
709 return false;
710 if (is_prefix_of(".zdebug_", name)
711 && !is_lines_only_debug_section(name + 8))
712 return false;
713 }
714 if (parameters->options().strip_debug_gdb()
715 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
716 {
717 // Debugging sections can only be recognized by name.
718 if (is_prefix_of(".debug_", name)
719 && !is_gdb_debug_section(name + 7))
720 return false;
721 if (is_prefix_of(".zdebug_", name)
722 && !is_gdb_debug_section(name + 8))
723 return false;
724 }
725 if (parameters->options().gdb_index()
726 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
727 {
728 // When building .gdb_index, we can strip .debug_pubnames,
729 // .debug_pubtypes, and .debug_aranges sections.
730 if (is_prefix_of(".debug_", name)
731 && is_gdb_fast_lookup_section(name + 7))
732 return false;
733 if (is_prefix_of(".zdebug_", name)
734 && is_gdb_fast_lookup_section(name + 8))
735 return false;
736 }
737 if (parameters->options().strip_lto_sections()
738 && !parameters->options().relocatable()
739 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
740 {
741 // Ignore LTO sections containing intermediate code.
742 if (is_prefix_of(".gnu.lto_", name))
743 return false;
744 }
745 // The GNU linker strips .gnu_debuglink sections, so we do too.
746 // This is a feature used to keep debugging information in
747 // separate files.
748 if (strcmp(name, ".gnu_debuglink") == 0)
749 return false;
750 return true;
751
752 default:
753 return true;
754 }
755 }
756
757 // Return an output section named NAME, or NULL if there is none.
758
759 Output_section*
760 Layout::find_output_section(const char* name) const
761 {
762 for (Section_list::const_iterator p = this->section_list_.begin();
763 p != this->section_list_.end();
764 ++p)
765 if (strcmp((*p)->name(), name) == 0)
766 return *p;
767 return NULL;
768 }
769
770 // Return an output segment of type TYPE, with segment flags SET set
771 // and segment flags CLEAR clear. Return NULL if there is none.
772
773 Output_segment*
774 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
775 elfcpp::Elf_Word clear) const
776 {
777 for (Segment_list::const_iterator p = this->segment_list_.begin();
778 p != this->segment_list_.end();
779 ++p)
780 if (static_cast<elfcpp::PT>((*p)->type()) == type
781 && ((*p)->flags() & set) == set
782 && ((*p)->flags() & clear) == 0)
783 return *p;
784 return NULL;
785 }
786
787 // When we put a .ctors or .dtors section with more than one word into
788 // a .init_array or .fini_array section, we need to reverse the words
789 // in the .ctors/.dtors section. This is because .init_array executes
790 // constructors front to back, where .ctors executes them back to
791 // front, and vice-versa for .fini_array/.dtors. Although we do want
792 // to remap .ctors/.dtors into .init_array/.fini_array because it can
793 // be more efficient, we don't want to change the order in which
794 // constructors/destructors are run. This set just keeps track of
795 // these sections which need to be reversed. It is only changed by
796 // Layout::layout. It should be a private member of Layout, but that
797 // would require layout.h to #include object.h to get the definition
798 // of Section_id.
799 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
800
801 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
802 // .init_array/.fini_array section.
803
804 bool
805 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
806 {
807 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
808 != ctors_sections_in_init_array.end());
809 }
810
811 // Return the output section to use for section NAME with type TYPE
812 // and section flags FLAGS. NAME must be canonicalized in the string
813 // pool, and NAME_KEY is the key. ORDER is where this should appear
814 // in the output sections. IS_RELRO is true for a relro section.
815
816 Output_section*
817 Layout::get_output_section(const char* name, Stringpool::Key name_key,
818 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
819 Output_section_order order, bool is_relro)
820 {
821 elfcpp::Elf_Word lookup_type = type;
822
823 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
824 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
825 // .init_array, .fini_array, and .preinit_array sections by name
826 // whatever their type in the input file. We do this because the
827 // types are not always right in the input files.
828 if (lookup_type == elfcpp::SHT_INIT_ARRAY
829 || lookup_type == elfcpp::SHT_FINI_ARRAY
830 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
831 lookup_type = elfcpp::SHT_PROGBITS;
832
833 elfcpp::Elf_Xword lookup_flags = flags;
834
835 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
836 // read-write with read-only sections. Some other ELF linkers do
837 // not do this. FIXME: Perhaps there should be an option
838 // controlling this.
839 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
840
841 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
842 const std::pair<Key, Output_section*> v(key, NULL);
843 std::pair<Section_name_map::iterator, bool> ins(
844 this->section_name_map_.insert(v));
845
846 if (!ins.second)
847 return ins.first->second;
848 else
849 {
850 // This is the first time we've seen this name/type/flags
851 // combination. For compatibility with the GNU linker, we
852 // combine sections with contents and zero flags with sections
853 // with non-zero flags. This is a workaround for cases where
854 // assembler code forgets to set section flags. FIXME: Perhaps
855 // there should be an option to control this.
856 Output_section* os = NULL;
857
858 if (lookup_type == elfcpp::SHT_PROGBITS)
859 {
860 if (flags == 0)
861 {
862 Output_section* same_name = this->find_output_section(name);
863 if (same_name != NULL
864 && (same_name->type() == elfcpp::SHT_PROGBITS
865 || same_name->type() == elfcpp::SHT_INIT_ARRAY
866 || same_name->type() == elfcpp::SHT_FINI_ARRAY
867 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
868 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
869 os = same_name;
870 }
871 else if ((flags & elfcpp::SHF_TLS) == 0)
872 {
873 elfcpp::Elf_Xword zero_flags = 0;
874 const Key zero_key(name_key, std::make_pair(lookup_type,
875 zero_flags));
876 Section_name_map::iterator p =
877 this->section_name_map_.find(zero_key);
878 if (p != this->section_name_map_.end())
879 os = p->second;
880 }
881 }
882
883 if (os == NULL)
884 os = this->make_output_section(name, type, flags, order, is_relro);
885
886 ins.first->second = os;
887 return os;
888 }
889 }
890
891 // Returns TRUE iff NAME (an input section from RELOBJ) will
892 // be mapped to an output section that should be KEPT.
893
894 bool
895 Layout::keep_input_section(const Relobj* relobj, const char* name)
896 {
897 if (! this->script_options_->saw_sections_clause())
898 return false;
899
900 Script_sections* ss = this->script_options_->script_sections();
901 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
902 Output_section** output_section_slot;
903 Script_sections::Section_type script_section_type;
904 bool keep;
905
906 name = ss->output_section_name(file_name, name, &output_section_slot,
907 &script_section_type, &keep, true);
908 return name != NULL && keep;
909 }
910
911 // Clear the input section flags that should not be copied to the
912 // output section.
913
914 elfcpp::Elf_Xword
915 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
916 {
917 // Some flags in the input section should not be automatically
918 // copied to the output section.
919 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
920 | elfcpp::SHF_GROUP
921 | elfcpp::SHF_COMPRESSED
922 | elfcpp::SHF_MERGE
923 | elfcpp::SHF_STRINGS);
924
925 // We only clear the SHF_LINK_ORDER flag in for
926 // a non-relocatable link.
927 if (!parameters->options().relocatable())
928 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
929
930 return input_section_flags;
931 }
932
933 // Pick the output section to use for section NAME, in input file
934 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
935 // linker created section. IS_INPUT_SECTION is true if we are
936 // choosing an output section for an input section found in a input
937 // file. ORDER is where this section should appear in the output
938 // sections. IS_RELRO is true for a relro section. This will return
939 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
940 // is true if the section name should be matched against input specs
941 // in a linker script.
942
943 Output_section*
944 Layout::choose_output_section(const Relobj* relobj, const char* name,
945 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
946 bool is_input_section, Output_section_order order,
947 bool is_relro, bool is_reloc,
948 bool match_input_spec)
949 {
950 // We should not see any input sections after we have attached
951 // sections to segments.
952 gold_assert(!is_input_section || !this->sections_are_attached_);
953
954 flags = this->get_output_section_flags(flags);
955
956 if (this->script_options_->saw_sections_clause() && !is_reloc)
957 {
958 // We are using a SECTIONS clause, so the output section is
959 // chosen based only on the name.
960
961 Script_sections* ss = this->script_options_->script_sections();
962 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
963 Output_section** output_section_slot;
964 Script_sections::Section_type script_section_type;
965 const char* orig_name = name;
966 bool keep;
967 name = ss->output_section_name(file_name, name, &output_section_slot,
968 &script_section_type, &keep,
969 match_input_spec);
970
971 if (name == NULL)
972 {
973 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
974 "because it is not allowed by the "
975 "SECTIONS clause of the linker script"),
976 orig_name);
977 // The SECTIONS clause says to discard this input section.
978 return NULL;
979 }
980
981 // We can only handle script section types ST_NONE and ST_NOLOAD.
982 switch (script_section_type)
983 {
984 case Script_sections::ST_NONE:
985 break;
986 case Script_sections::ST_NOLOAD:
987 flags &= elfcpp::SHF_ALLOC;
988 break;
989 default:
990 gold_unreachable();
991 }
992
993 // If this is an orphan section--one not mentioned in the linker
994 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
995 // default processing below.
996
997 if (output_section_slot != NULL)
998 {
999 if (*output_section_slot != NULL)
1000 {
1001 (*output_section_slot)->update_flags_for_input_section(flags);
1002 return *output_section_slot;
1003 }
1004
1005 // We don't put sections found in the linker script into
1006 // SECTION_NAME_MAP_. That keeps us from getting confused
1007 // if an orphan section is mapped to a section with the same
1008 // name as one in the linker script.
1009
1010 name = this->namepool_.add(name, false, NULL);
1011
1012 Output_section* os = this->make_output_section(name, type, flags,
1013 order, is_relro);
1014
1015 os->set_found_in_sections_clause();
1016
1017 // Special handling for NOLOAD sections.
1018 if (script_section_type == Script_sections::ST_NOLOAD)
1019 {
1020 os->set_is_noload();
1021
1022 // The constructor of Output_section sets addresses of non-ALLOC
1023 // sections to 0 by default. We don't want that for NOLOAD
1024 // sections even if they have no SHF_ALLOC flag.
1025 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1026 && os->is_address_valid())
1027 {
1028 gold_assert(os->address() == 0
1029 && !os->is_offset_valid()
1030 && !os->is_data_size_valid());
1031 os->reset_address_and_file_offset();
1032 }
1033 }
1034
1035 *output_section_slot = os;
1036 return os;
1037 }
1038 }
1039
1040 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1041
1042 size_t len = strlen(name);
1043 std::string uncompressed_name;
1044
1045 // Compressed debug sections should be mapped to the corresponding
1046 // uncompressed section.
1047 if (is_compressed_debug_section(name))
1048 {
1049 uncompressed_name =
1050 corresponding_uncompressed_section_name(std::string(name, len));
1051 name = uncompressed_name.c_str();
1052 len = uncompressed_name.length();
1053 }
1054
1055 // Turn NAME from the name of the input section into the name of the
1056 // output section.
1057 if (is_input_section
1058 && !this->script_options_->saw_sections_clause()
1059 && !parameters->options().relocatable())
1060 {
1061 const char *orig_name = name;
1062 name = parameters->target().output_section_name(relobj, name, &len);
1063 if (name == NULL)
1064 name = Layout::output_section_name(relobj, orig_name, &len);
1065 }
1066
1067 Stringpool::Key name_key;
1068 name = this->namepool_.add_with_length(name, len, true, &name_key);
1069
1070 // Find or make the output section. The output section is selected
1071 // based on the section name, type, and flags.
1072 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1073 }
1074
1075 // For incremental links, record the initial fixed layout of a section
1076 // from the base file, and return a pointer to the Output_section.
1077
1078 template<int size, bool big_endian>
1079 Output_section*
1080 Layout::init_fixed_output_section(const char* name,
1081 elfcpp::Shdr<size, big_endian>& shdr)
1082 {
1083 unsigned int sh_type = shdr.get_sh_type();
1084
1085 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1086 // PRE_INIT_ARRAY, and NOTE sections.
1087 // All others will be created from scratch and reallocated.
1088 if (!can_incremental_update(sh_type))
1089 return NULL;
1090
1091 // If we're generating a .gdb_index section, we need to regenerate
1092 // it from scratch.
1093 if (parameters->options().gdb_index()
1094 && sh_type == elfcpp::SHT_PROGBITS
1095 && strcmp(name, ".gdb_index") == 0)
1096 return NULL;
1097
1098 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1099 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1100 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1101 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1102 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1103 shdr.get_sh_addralign();
1104
1105 // Make the output section.
1106 Stringpool::Key name_key;
1107 name = this->namepool_.add(name, true, &name_key);
1108 Output_section* os = this->get_output_section(name, name_key, sh_type,
1109 sh_flags, ORDER_INVALID, false);
1110 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1111 if (sh_type != elfcpp::SHT_NOBITS)
1112 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1113 return os;
1114 }
1115
1116 // Return the index by which an input section should be ordered. This
1117 // is used to sort some .text sections, for compatibility with GNU ld.
1118
1119 int
1120 Layout::special_ordering_of_input_section(const char* name)
1121 {
1122 // The GNU linker has some special handling for some sections that
1123 // wind up in the .text section. Sections that start with these
1124 // prefixes must appear first, and must appear in the order listed
1125 // here.
1126 static const char* const text_section_sort[] =
1127 {
1128 ".text.unlikely",
1129 ".text.exit",
1130 ".text.startup",
1131 ".text.hot"
1132 };
1133
1134 for (size_t i = 0;
1135 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1136 i++)
1137 if (is_prefix_of(text_section_sort[i], name))
1138 return i;
1139
1140 return -1;
1141 }
1142
1143 // Return the output section to use for input section SHNDX, with name
1144 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1145 // index of a relocation section which applies to this section, or 0
1146 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1147 // relocation section if there is one. Set *OFF to the offset of this
1148 // input section without the output section. Return NULL if the
1149 // section should be discarded. Set *OFF to -1 if the section
1150 // contents should not be written directly to the output file, but
1151 // will instead receive special handling.
1152
1153 template<int size, bool big_endian>
1154 Output_section*
1155 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1156 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1157 unsigned int sh_type, unsigned int reloc_shndx,
1158 unsigned int, off_t* off)
1159 {
1160 *off = 0;
1161
1162 if (!this->include_section(object, name, shdr))
1163 return NULL;
1164
1165 // In a relocatable link a grouped section must not be combined with
1166 // any other sections.
1167 Output_section* os;
1168 if (parameters->options().relocatable()
1169 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170 {
1171 // Some flags in the input section should not be automatically
1172 // copied to the output section.
1173 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174 & ~ elfcpp::SHF_COMPRESSED);
1175 name = this->namepool_.add(name, true, NULL);
1176 os = this->make_output_section(name, sh_type, flags,
1177 ORDER_INVALID, false);
1178 }
1179 else
1180 {
1181 // All ".text.unlikely.*" sections can be moved to a unique
1182 // segment with --text-unlikely-segment option.
1183 bool text_unlikely_segment
1184 = (parameters->options().text_unlikely_segment()
1185 && is_prefix_of(".text.unlikely",
1186 object->section_name(shndx).c_str()));
1187 if (text_unlikely_segment)
1188 {
1189 elfcpp::Elf_Xword flags
1190 = this->get_output_section_flags(shdr.get_sh_flags());
1191
1192 Stringpool::Key name_key;
1193 const char* os_name = this->namepool_.add(".text.unlikely", true,
1194 &name_key);
1195 os = this->get_output_section(os_name, name_key, sh_type, flags,
1196 ORDER_INVALID, false);
1197 // Map this output section to a unique segment. This is done to
1198 // separate "text" that is not likely to be executed from "text"
1199 // that is likely executed.
1200 os->set_is_unique_segment();
1201 }
1202 else
1203 {
1204 // Plugins can choose to place one or more subsets of sections in
1205 // unique segments and this is done by mapping these section subsets
1206 // to unique output sections. Check if this section needs to be
1207 // remapped to a unique output section.
1208 Section_segment_map::iterator it
1209 = this->section_segment_map_.find(Const_section_id(object, shndx));
1210 if (it == this->section_segment_map_.end())
1211 {
1212 os = this->choose_output_section(object, name, sh_type,
1213 shdr.get_sh_flags(), true,
1214 ORDER_INVALID, false, false,
1215 true);
1216 }
1217 else
1218 {
1219 // We know the name of the output section, directly call
1220 // get_output_section here by-passing choose_output_section.
1221 elfcpp::Elf_Xword flags
1222 = this->get_output_section_flags(shdr.get_sh_flags());
1223
1224 const char* os_name = it->second->name;
1225 Stringpool::Key name_key;
1226 os_name = this->namepool_.add(os_name, true, &name_key);
1227 os = this->get_output_section(os_name, name_key, sh_type, flags,
1228 ORDER_INVALID, false);
1229 if (!os->is_unique_segment())
1230 {
1231 os->set_is_unique_segment();
1232 os->set_extra_segment_flags(it->second->flags);
1233 os->set_segment_alignment(it->second->align);
1234 }
1235 }
1236 }
1237 if (os == NULL)
1238 return NULL;
1239 }
1240
1241 // By default the GNU linker sorts input sections whose names match
1242 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1243 // sections are sorted by name. This is used to implement
1244 // constructor priority ordering. We are compatible. When we put
1245 // .ctor sections in .init_array and .dtor sections in .fini_array,
1246 // we must also sort plain .ctor and .dtor sections.
1247 if (!this->script_options_->saw_sections_clause()
1248 && !parameters->options().relocatable()
1249 && (is_prefix_of(".ctors.", name)
1250 || is_prefix_of(".dtors.", name)
1251 || is_prefix_of(".init_array.", name)
1252 || is_prefix_of(".fini_array.", name)
1253 || (parameters->options().ctors_in_init_array()
1254 && (strcmp(name, ".ctors") == 0
1255 || strcmp(name, ".dtors") == 0))))
1256 os->set_must_sort_attached_input_sections();
1257
1258 // By default the GNU linker sorts some special text sections ahead
1259 // of others. We are compatible.
1260 if (parameters->options().text_reorder()
1261 && !this->script_options_->saw_sections_clause()
1262 && !this->is_section_ordering_specified()
1263 && !parameters->options().relocatable()
1264 && Layout::special_ordering_of_input_section(name) >= 0)
1265 os->set_must_sort_attached_input_sections();
1266
1267 // If this is a .ctors or .ctors.* section being mapped to a
1268 // .init_array section, or a .dtors or .dtors.* section being mapped
1269 // to a .fini_array section, we will need to reverse the words if
1270 // there is more than one. Record this section for later. See
1271 // ctors_sections_in_init_array above.
1272 if (!this->script_options_->saw_sections_clause()
1273 && !parameters->options().relocatable()
1274 && shdr.get_sh_size() > size / 8
1275 && (((strcmp(name, ".ctors") == 0
1276 || is_prefix_of(".ctors.", name))
1277 && strcmp(os->name(), ".init_array") == 0)
1278 || ((strcmp(name, ".dtors") == 0
1279 || is_prefix_of(".dtors.", name))
1280 && strcmp(os->name(), ".fini_array") == 0)))
1281 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1282
1283 // FIXME: Handle SHF_LINK_ORDER somewhere.
1284
1285 elfcpp::Elf_Xword orig_flags = os->flags();
1286
1287 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1288 this->script_options_->saw_sections_clause());
1289
1290 // If the flags changed, we may have to change the order.
1291 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1292 {
1293 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1294 elfcpp::Elf_Xword new_flags =
1295 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296 if (orig_flags != new_flags)
1297 os->set_order(this->default_section_order(os, false));
1298 }
1299
1300 this->have_added_input_section_ = true;
1301
1302 return os;
1303 }
1304
1305 // Maps section SECN to SEGMENT s.
1306 void
1307 Layout::insert_section_segment_map(Const_section_id secn,
1308 Unique_segment_info *s)
1309 {
1310 gold_assert(this->unique_segment_for_sections_specified_);
1311 this->section_segment_map_[secn] = s;
1312 }
1313
1314 // Handle a relocation section when doing a relocatable link.
1315
1316 template<int size, bool big_endian>
1317 Output_section*
1318 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1319 unsigned int,
1320 const elfcpp::Shdr<size, big_endian>& shdr,
1321 Output_section* data_section,
1322 Relocatable_relocs* rr)
1323 {
1324 gold_assert(parameters->options().relocatable()
1325 || parameters->options().emit_relocs());
1326
1327 int sh_type = shdr.get_sh_type();
1328
1329 std::string name;
1330 if (sh_type == elfcpp::SHT_REL)
1331 name = ".rel";
1332 else if (sh_type == elfcpp::SHT_RELA)
1333 name = ".rela";
1334 else
1335 gold_unreachable();
1336 name += data_section->name();
1337
1338 // If the output data section already has a reloc section, use that;
1339 // otherwise, make a new one.
1340 Output_section* os = data_section->reloc_section();
1341 if (os == NULL)
1342 {
1343 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1344 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1345 ORDER_INVALID, false);
1346 os->set_should_link_to_symtab();
1347 os->set_info_section(data_section);
1348 data_section->set_reloc_section(os);
1349 }
1350
1351 Output_section_data* posd;
1352 if (sh_type == elfcpp::SHT_REL)
1353 {
1354 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1355 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1356 size,
1357 big_endian>(rr);
1358 }
1359 else if (sh_type == elfcpp::SHT_RELA)
1360 {
1361 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1362 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1363 size,
1364 big_endian>(rr);
1365 }
1366 else
1367 gold_unreachable();
1368
1369 os->add_output_section_data(posd);
1370 rr->set_output_data(posd);
1371
1372 return os;
1373 }
1374
1375 // Handle a group section when doing a relocatable link.
1376
1377 template<int size, bool big_endian>
1378 void
1379 Layout::layout_group(Symbol_table* symtab,
1380 Sized_relobj_file<size, big_endian>* object,
1381 unsigned int,
1382 const char* group_section_name,
1383 const char* signature,
1384 const elfcpp::Shdr<size, big_endian>& shdr,
1385 elfcpp::Elf_Word flags,
1386 std::vector<unsigned int>* shndxes)
1387 {
1388 gold_assert(parameters->options().relocatable());
1389 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1390 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1391 Output_section* os = this->make_output_section(group_section_name,
1392 elfcpp::SHT_GROUP,
1393 shdr.get_sh_flags(),
1394 ORDER_INVALID, false);
1395
1396 // We need to find a symbol with the signature in the symbol table.
1397 // If we don't find one now, we need to look again later.
1398 Symbol* sym = symtab->lookup(signature, NULL);
1399 if (sym != NULL)
1400 os->set_info_symndx(sym);
1401 else
1402 {
1403 // Reserve some space to minimize reallocations.
1404 if (this->group_signatures_.empty())
1405 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1406
1407 // We will wind up using a symbol whose name is the signature.
1408 // So just put the signature in the symbol name pool to save it.
1409 signature = symtab->canonicalize_name(signature);
1410 this->group_signatures_.push_back(Group_signature(os, signature));
1411 }
1412
1413 os->set_should_link_to_symtab();
1414 os->set_entsize(4);
1415
1416 section_size_type entry_count =
1417 convert_to_section_size_type(shdr.get_sh_size() / 4);
1418 Output_section_data* posd =
1419 new Output_data_group<size, big_endian>(object, entry_count, flags,
1420 shndxes);
1421 os->add_output_section_data(posd);
1422 }
1423
1424 // Special GNU handling of sections name .eh_frame. They will
1425 // normally hold exception frame data as defined by the C++ ABI
1426 // (http://codesourcery.com/cxx-abi/).
1427
1428 template<int size, bool big_endian>
1429 Output_section*
1430 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1431 const unsigned char* symbols,
1432 off_t symbols_size,
1433 const unsigned char* symbol_names,
1434 off_t symbol_names_size,
1435 unsigned int shndx,
1436 const elfcpp::Shdr<size, big_endian>& shdr,
1437 unsigned int reloc_shndx, unsigned int reloc_type,
1438 off_t* off)
1439 {
1440 const unsigned int unwind_section_type =
1441 parameters->target().unwind_section_type();
1442
1443 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1444 || shdr.get_sh_type() == unwind_section_type);
1445 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1446
1447 Output_section* os = this->make_eh_frame_section(object);
1448 if (os == NULL)
1449 return NULL;
1450
1451 gold_assert(this->eh_frame_section_ == os);
1452
1453 elfcpp::Elf_Xword orig_flags = os->flags();
1454
1455 Eh_frame::Eh_frame_section_disposition disp =
1456 Eh_frame::EH_UNRECOGNIZED_SECTION;
1457 if (!parameters->incremental())
1458 {
1459 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1460 symbols,
1461 symbols_size,
1462 symbol_names,
1463 symbol_names_size,
1464 shndx,
1465 reloc_shndx,
1466 reloc_type);
1467 }
1468
1469 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1470 {
1471 os->update_flags_for_input_section(shdr.get_sh_flags());
1472
1473 // A writable .eh_frame section is a RELRO section.
1474 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1475 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1476 {
1477 os->set_is_relro();
1478 os->set_order(ORDER_RELRO);
1479 }
1480
1481 *off = -1;
1482 return os;
1483 }
1484
1485 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1486 {
1487 // We found the end marker section, so now we can add the set of
1488 // optimized sections to the output section. We need to postpone
1489 // adding this until we've found a section we can optimize so that
1490 // the .eh_frame section in crtbeginT.o winds up at the start of
1491 // the output section.
1492 os->add_output_section_data(this->eh_frame_data_);
1493 this->added_eh_frame_data_ = true;
1494 }
1495
1496 // We couldn't handle this .eh_frame section for some reason.
1497 // Add it as a normal section.
1498 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1499 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1500 reloc_shndx, saw_sections_clause);
1501 this->have_added_input_section_ = true;
1502
1503 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1504 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1505 os->set_order(this->default_section_order(os, false));
1506
1507 return os;
1508 }
1509
1510 void
1511 Layout::finalize_eh_frame_section()
1512 {
1513 // If we never found an end marker section, we need to add the
1514 // optimized eh sections to the output section now.
1515 if (!parameters->incremental()
1516 && this->eh_frame_section_ != NULL
1517 && !this->added_eh_frame_data_)
1518 {
1519 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1520 this->added_eh_frame_data_ = true;
1521 }
1522 }
1523
1524 // Create and return the magic .eh_frame section. Create
1525 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1526 // input .eh_frame section; it may be NULL.
1527
1528 Output_section*
1529 Layout::make_eh_frame_section(const Relobj* object)
1530 {
1531 const unsigned int unwind_section_type =
1532 parameters->target().unwind_section_type();
1533
1534 Output_section* os = this->choose_output_section(object, ".eh_frame",
1535 unwind_section_type,
1536 elfcpp::SHF_ALLOC, false,
1537 ORDER_EHFRAME, false, false,
1538 false);
1539 if (os == NULL)
1540 return NULL;
1541
1542 if (this->eh_frame_section_ == NULL)
1543 {
1544 this->eh_frame_section_ = os;
1545 this->eh_frame_data_ = new Eh_frame();
1546
1547 // For incremental linking, we do not optimize .eh_frame sections
1548 // or create a .eh_frame_hdr section.
1549 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1550 {
1551 Output_section* hdr_os =
1552 this->choose_output_section(NULL, ".eh_frame_hdr",
1553 unwind_section_type,
1554 elfcpp::SHF_ALLOC, false,
1555 ORDER_EHFRAME, false, false,
1556 false);
1557
1558 if (hdr_os != NULL)
1559 {
1560 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1561 this->eh_frame_data_);
1562 hdr_os->add_output_section_data(hdr_posd);
1563
1564 hdr_os->set_after_input_sections();
1565
1566 if (!this->script_options_->saw_phdrs_clause())
1567 {
1568 Output_segment* hdr_oseg;
1569 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1570 elfcpp::PF_R);
1571 hdr_oseg->add_output_section_to_nonload(hdr_os,
1572 elfcpp::PF_R);
1573 }
1574
1575 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1576 }
1577 }
1578 }
1579
1580 return os;
1581 }
1582
1583 // Add an exception frame for a PLT. This is called from target code.
1584
1585 void
1586 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1587 size_t cie_length, const unsigned char* fde_data,
1588 size_t fde_length)
1589 {
1590 if (parameters->incremental())
1591 {
1592 // FIXME: Maybe this could work some day....
1593 return;
1594 }
1595 Output_section* os = this->make_eh_frame_section(NULL);
1596 if (os == NULL)
1597 return;
1598 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1599 fde_data, fde_length);
1600 if (!this->added_eh_frame_data_)
1601 {
1602 os->add_output_section_data(this->eh_frame_data_);
1603 this->added_eh_frame_data_ = true;
1604 }
1605 }
1606
1607 // Remove .eh_frame information for a PLT. FDEs using the CIE must
1608 // be removed in reverse order to the order they were added.
1609
1610 void
1611 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1612 size_t cie_length, const unsigned char* fde_data,
1613 size_t fde_length)
1614 {
1615 if (parameters->incremental())
1616 {
1617 // FIXME: Maybe this could work some day....
1618 return;
1619 }
1620 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1621 fde_data, fde_length);
1622 }
1623
1624 // Scan a .debug_info or .debug_types section, and add summary
1625 // information to the .gdb_index section.
1626
1627 template<int size, bool big_endian>
1628 void
1629 Layout::add_to_gdb_index(bool is_type_unit,
1630 Sized_relobj<size, big_endian>* object,
1631 const unsigned char* symbols,
1632 off_t symbols_size,
1633 unsigned int shndx,
1634 unsigned int reloc_shndx,
1635 unsigned int reloc_type)
1636 {
1637 if (this->gdb_index_data_ == NULL)
1638 {
1639 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1640 elfcpp::SHT_PROGBITS, 0,
1641 false, ORDER_INVALID,
1642 false, false, false);
1643 if (os == NULL)
1644 return;
1645
1646 this->gdb_index_data_ = new Gdb_index(os);
1647 os->add_output_section_data(this->gdb_index_data_);
1648 os->set_after_input_sections();
1649 }
1650
1651 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1652 symbols_size, shndx, reloc_shndx,
1653 reloc_type);
1654 }
1655
1656 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1657 // the output section.
1658
1659 Output_section*
1660 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1661 elfcpp::Elf_Xword flags,
1662 Output_section_data* posd,
1663 Output_section_order order, bool is_relro)
1664 {
1665 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1666 false, order, is_relro,
1667 false, false);
1668 if (os != NULL)
1669 os->add_output_section_data(posd);
1670 return os;
1671 }
1672
1673 // Map section flags to segment flags.
1674
1675 elfcpp::Elf_Word
1676 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1677 {
1678 elfcpp::Elf_Word ret = elfcpp::PF_R;
1679 if ((flags & elfcpp::SHF_WRITE) != 0)
1680 ret |= elfcpp::PF_W;
1681 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1682 ret |= elfcpp::PF_X;
1683 return ret;
1684 }
1685
1686 // Make a new Output_section, and attach it to segments as
1687 // appropriate. ORDER is the order in which this section should
1688 // appear in the output segment. IS_RELRO is true if this is a relro
1689 // (read-only after relocations) section.
1690
1691 Output_section*
1692 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1693 elfcpp::Elf_Xword flags,
1694 Output_section_order order, bool is_relro)
1695 {
1696 Output_section* os;
1697 if ((flags & elfcpp::SHF_ALLOC) == 0
1698 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1699 && is_compressible_debug_section(name))
1700 os = new Output_compressed_section(&parameters->options(), name, type,
1701 flags);
1702 else if ((flags & elfcpp::SHF_ALLOC) == 0
1703 && parameters->options().strip_debug_non_line()
1704 && strcmp(".debug_abbrev", name) == 0)
1705 {
1706 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1707 name, type, flags);
1708 if (this->debug_info_)
1709 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1710 }
1711 else if ((flags & elfcpp::SHF_ALLOC) == 0
1712 && parameters->options().strip_debug_non_line()
1713 && strcmp(".debug_info", name) == 0)
1714 {
1715 os = this->debug_info_ = new Output_reduced_debug_info_section(
1716 name, type, flags);
1717 if (this->debug_abbrev_)
1718 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1719 }
1720 else
1721 {
1722 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1723 // not have correct section types. Force them here.
1724 if (type == elfcpp::SHT_PROGBITS)
1725 {
1726 if (is_prefix_of(".init_array", name))
1727 type = elfcpp::SHT_INIT_ARRAY;
1728 else if (is_prefix_of(".preinit_array", name))
1729 type = elfcpp::SHT_PREINIT_ARRAY;
1730 else if (is_prefix_of(".fini_array", name))
1731 type = elfcpp::SHT_FINI_ARRAY;
1732 }
1733
1734 // FIXME: const_cast is ugly.
1735 Target* target = const_cast<Target*>(&parameters->target());
1736 os = target->make_output_section(name, type, flags);
1737 }
1738
1739 // With -z relro, we have to recognize the special sections by name.
1740 // There is no other way.
1741 bool is_relro_local = false;
1742 if (!this->script_options_->saw_sections_clause()
1743 && parameters->options().relro()
1744 && (flags & elfcpp::SHF_ALLOC) != 0
1745 && (flags & elfcpp::SHF_WRITE) != 0)
1746 {
1747 if (type == elfcpp::SHT_PROGBITS)
1748 {
1749 if ((flags & elfcpp::SHF_TLS) != 0)
1750 is_relro = true;
1751 else if (strcmp(name, ".data.rel.ro") == 0)
1752 is_relro = true;
1753 else if (strcmp(name, ".data.rel.ro.local") == 0)
1754 {
1755 is_relro = true;
1756 is_relro_local = true;
1757 }
1758 else if (strcmp(name, ".ctors") == 0
1759 || strcmp(name, ".dtors") == 0
1760 || strcmp(name, ".jcr") == 0)
1761 is_relro = true;
1762 }
1763 else if (type == elfcpp::SHT_INIT_ARRAY
1764 || type == elfcpp::SHT_FINI_ARRAY
1765 || type == elfcpp::SHT_PREINIT_ARRAY)
1766 is_relro = true;
1767 }
1768
1769 if (is_relro)
1770 os->set_is_relro();
1771
1772 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1773 order = this->default_section_order(os, is_relro_local);
1774
1775 os->set_order(order);
1776
1777 parameters->target().new_output_section(os);
1778
1779 this->section_list_.push_back(os);
1780
1781 // The GNU linker by default sorts some sections by priority, so we
1782 // do the same. We need to know that this might happen before we
1783 // attach any input sections.
1784 if (!this->script_options_->saw_sections_clause()
1785 && !parameters->options().relocatable()
1786 && (strcmp(name, ".init_array") == 0
1787 || strcmp(name, ".fini_array") == 0
1788 || (!parameters->options().ctors_in_init_array()
1789 && (strcmp(name, ".ctors") == 0
1790 || strcmp(name, ".dtors") == 0))))
1791 os->set_may_sort_attached_input_sections();
1792
1793 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1794 // sections before other .text sections. We are compatible. We
1795 // need to know that this might happen before we attach any input
1796 // sections.
1797 if (parameters->options().text_reorder()
1798 && !this->script_options_->saw_sections_clause()
1799 && !this->is_section_ordering_specified()
1800 && !parameters->options().relocatable()
1801 && strcmp(name, ".text") == 0)
1802 os->set_may_sort_attached_input_sections();
1803
1804 // GNU linker sorts section by name with --sort-section=name.
1805 if (strcmp(parameters->options().sort_section(), "name") == 0)
1806 os->set_must_sort_attached_input_sections();
1807
1808 // Check for .stab*str sections, as .stab* sections need to link to
1809 // them.
1810 if (type == elfcpp::SHT_STRTAB
1811 && !this->have_stabstr_section_
1812 && strncmp(name, ".stab", 5) == 0
1813 && strcmp(name + strlen(name) - 3, "str") == 0)
1814 this->have_stabstr_section_ = true;
1815
1816 // During a full incremental link, we add patch space to most
1817 // PROGBITS and NOBITS sections. Flag those that may be
1818 // arbitrarily padded.
1819 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1820 && order != ORDER_INTERP
1821 && order != ORDER_INIT
1822 && order != ORDER_PLT
1823 && order != ORDER_FINI
1824 && order != ORDER_RELRO_LAST
1825 && order != ORDER_NON_RELRO_FIRST
1826 && strcmp(name, ".eh_frame") != 0
1827 && strcmp(name, ".ctors") != 0
1828 && strcmp(name, ".dtors") != 0
1829 && strcmp(name, ".jcr") != 0)
1830 {
1831 os->set_is_patch_space_allowed();
1832
1833 // Certain sections require "holes" to be filled with
1834 // specific fill patterns. These fill patterns may have
1835 // a minimum size, so we must prevent allocations from the
1836 // free list that leave a hole smaller than the minimum.
1837 if (strcmp(name, ".debug_info") == 0)
1838 os->set_free_space_fill(new Output_fill_debug_info(false));
1839 else if (strcmp(name, ".debug_types") == 0)
1840 os->set_free_space_fill(new Output_fill_debug_info(true));
1841 else if (strcmp(name, ".debug_line") == 0)
1842 os->set_free_space_fill(new Output_fill_debug_line());
1843 }
1844
1845 // If we have already attached the sections to segments, then we
1846 // need to attach this one now. This happens for sections created
1847 // directly by the linker.
1848 if (this->sections_are_attached_)
1849 this->attach_section_to_segment(&parameters->target(), os);
1850
1851 return os;
1852 }
1853
1854 // Return the default order in which a section should be placed in an
1855 // output segment. This function captures a lot of the ideas in
1856 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1857 // linker created section is normally set when the section is created;
1858 // this function is used for input sections.
1859
1860 Output_section_order
1861 Layout::default_section_order(Output_section* os, bool is_relro_local)
1862 {
1863 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1864 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1865 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1866 bool is_bss = false;
1867
1868 switch (os->type())
1869 {
1870 default:
1871 case elfcpp::SHT_PROGBITS:
1872 break;
1873 case elfcpp::SHT_NOBITS:
1874 is_bss = true;
1875 break;
1876 case elfcpp::SHT_RELA:
1877 case elfcpp::SHT_REL:
1878 if (!is_write)
1879 return ORDER_DYNAMIC_RELOCS;
1880 break;
1881 case elfcpp::SHT_HASH:
1882 case elfcpp::SHT_DYNAMIC:
1883 case elfcpp::SHT_SHLIB:
1884 case elfcpp::SHT_DYNSYM:
1885 case elfcpp::SHT_GNU_HASH:
1886 case elfcpp::SHT_GNU_verdef:
1887 case elfcpp::SHT_GNU_verneed:
1888 case elfcpp::SHT_GNU_versym:
1889 if (!is_write)
1890 return ORDER_DYNAMIC_LINKER;
1891 break;
1892 case elfcpp::SHT_NOTE:
1893 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1894 }
1895
1896 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1897 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1898
1899 if (!is_bss && !is_write)
1900 {
1901 if (is_execinstr)
1902 {
1903 if (strcmp(os->name(), ".init") == 0)
1904 return ORDER_INIT;
1905 else if (strcmp(os->name(), ".fini") == 0)
1906 return ORDER_FINI;
1907 else if (parameters->options().keep_text_section_prefix())
1908 {
1909 // -z,keep-text-section-prefix introduces additional
1910 // output sections.
1911 if (strcmp(os->name(), ".text.hot") == 0)
1912 return ORDER_TEXT_HOT;
1913 else if (strcmp(os->name(), ".text.startup") == 0)
1914 return ORDER_TEXT_STARTUP;
1915 else if (strcmp(os->name(), ".text.exit") == 0)
1916 return ORDER_TEXT_EXIT;
1917 else if (strcmp(os->name(), ".text.unlikely") == 0)
1918 return ORDER_TEXT_UNLIKELY;
1919 }
1920 }
1921 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1922 }
1923
1924 if (os->is_relro())
1925 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1926
1927 if (os->is_small_section())
1928 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1929 if (os->is_large_section())
1930 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1931
1932 return is_bss ? ORDER_BSS : ORDER_DATA;
1933 }
1934
1935 // Attach output sections to segments. This is called after we have
1936 // seen all the input sections.
1937
1938 void
1939 Layout::attach_sections_to_segments(const Target* target)
1940 {
1941 for (Section_list::iterator p = this->section_list_.begin();
1942 p != this->section_list_.end();
1943 ++p)
1944 this->attach_section_to_segment(target, *p);
1945
1946 this->sections_are_attached_ = true;
1947 }
1948
1949 // Attach an output section to a segment.
1950
1951 void
1952 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1953 {
1954 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1955 this->unattached_section_list_.push_back(os);
1956 else
1957 this->attach_allocated_section_to_segment(target, os);
1958 }
1959
1960 // Attach an allocated output section to a segment.
1961
1962 void
1963 Layout::attach_allocated_section_to_segment(const Target* target,
1964 Output_section* os)
1965 {
1966 elfcpp::Elf_Xword flags = os->flags();
1967 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1968
1969 if (parameters->options().relocatable())
1970 return;
1971
1972 // If we have a SECTIONS clause, we can't handle the attachment to
1973 // segments until after we've seen all the sections.
1974 if (this->script_options_->saw_sections_clause())
1975 return;
1976
1977 gold_assert(!this->script_options_->saw_phdrs_clause());
1978
1979 // This output section goes into a PT_LOAD segment.
1980
1981 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1982
1983 // If this output section's segment has extra flags that need to be set,
1984 // coming from a linker plugin, do that.
1985 seg_flags |= os->extra_segment_flags();
1986
1987 // Check for --section-start.
1988 uint64_t addr;
1989 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1990
1991 // In general the only thing we really care about for PT_LOAD
1992 // segments is whether or not they are writable or executable,
1993 // so that is how we search for them.
1994 // Large data sections also go into their own PT_LOAD segment.
1995 // People who need segments sorted on some other basis will
1996 // have to use a linker script.
1997
1998 Segment_list::const_iterator p;
1999 if (!os->is_unique_segment())
2000 {
2001 for (p = this->segment_list_.begin();
2002 p != this->segment_list_.end();
2003 ++p)
2004 {
2005 if ((*p)->type() != elfcpp::PT_LOAD)
2006 continue;
2007 if ((*p)->is_unique_segment())
2008 continue;
2009 if (!parameters->options().omagic()
2010 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2011 continue;
2012 if ((target->isolate_execinstr() || parameters->options().rosegment())
2013 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2014 continue;
2015 // If -Tbss was specified, we need to separate the data and BSS
2016 // segments.
2017 if (parameters->options().user_set_Tbss())
2018 {
2019 if ((os->type() == elfcpp::SHT_NOBITS)
2020 == (*p)->has_any_data_sections())
2021 continue;
2022 }
2023 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2024 continue;
2025
2026 if (is_address_set)
2027 {
2028 if ((*p)->are_addresses_set())
2029 continue;
2030
2031 (*p)->add_initial_output_data(os);
2032 (*p)->update_flags_for_output_section(seg_flags);
2033 (*p)->set_addresses(addr, addr);
2034 break;
2035 }
2036
2037 (*p)->add_output_section_to_load(this, os, seg_flags);
2038 break;
2039 }
2040 }
2041
2042 if (p == this->segment_list_.end()
2043 || os->is_unique_segment())
2044 {
2045 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2046 seg_flags);
2047 if (os->is_large_data_section())
2048 oseg->set_is_large_data_segment();
2049 oseg->add_output_section_to_load(this, os, seg_flags);
2050 if (is_address_set)
2051 oseg->set_addresses(addr, addr);
2052 // Check if segment should be marked unique. For segments marked
2053 // unique by linker plugins, set the new alignment if specified.
2054 if (os->is_unique_segment())
2055 {
2056 oseg->set_is_unique_segment();
2057 if (os->segment_alignment() != 0)
2058 oseg->set_minimum_p_align(os->segment_alignment());
2059 }
2060 }
2061
2062 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2063 // segment.
2064 if (os->type() == elfcpp::SHT_NOTE)
2065 {
2066 // See if we already have an equivalent PT_NOTE segment.
2067 for (p = this->segment_list_.begin();
2068 p != segment_list_.end();
2069 ++p)
2070 {
2071 if ((*p)->type() == elfcpp::PT_NOTE
2072 && (((*p)->flags() & elfcpp::PF_W)
2073 == (seg_flags & elfcpp::PF_W)))
2074 {
2075 (*p)->add_output_section_to_nonload(os, seg_flags);
2076 break;
2077 }
2078 }
2079
2080 if (p == this->segment_list_.end())
2081 {
2082 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2083 seg_flags);
2084 oseg->add_output_section_to_nonload(os, seg_flags);
2085 }
2086 }
2087
2088 // If we see a loadable SHF_TLS section, we create a PT_TLS
2089 // segment. There can only be one such segment.
2090 if ((flags & elfcpp::SHF_TLS) != 0)
2091 {
2092 if (this->tls_segment_ == NULL)
2093 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2094 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2095 }
2096
2097 // If -z relro is in effect, and we see a relro section, we create a
2098 // PT_GNU_RELRO segment. There can only be one such segment.
2099 if (os->is_relro() && parameters->options().relro())
2100 {
2101 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2102 if (this->relro_segment_ == NULL)
2103 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2104 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2105 }
2106
2107 // If we see a section named .interp, put it into a PT_INTERP
2108 // segment. This seems broken to me, but this is what GNU ld does,
2109 // and glibc expects it.
2110 if (strcmp(os->name(), ".interp") == 0
2111 && !this->script_options_->saw_phdrs_clause())
2112 {
2113 if (this->interp_segment_ == NULL)
2114 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2115 else
2116 gold_warning(_("multiple '.interp' sections in input files "
2117 "may cause confusing PT_INTERP segment"));
2118 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2119 }
2120 }
2121
2122 // Make an output section for a script.
2123
2124 Output_section*
2125 Layout::make_output_section_for_script(
2126 const char* name,
2127 Script_sections::Section_type section_type)
2128 {
2129 name = this->namepool_.add(name, false, NULL);
2130 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2131 if (section_type == Script_sections::ST_NOLOAD)
2132 sh_flags = 0;
2133 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2134 sh_flags, ORDER_INVALID,
2135 false);
2136 os->set_found_in_sections_clause();
2137 if (section_type == Script_sections::ST_NOLOAD)
2138 os->set_is_noload();
2139 return os;
2140 }
2141
2142 // Return the number of segments we expect to see.
2143
2144 size_t
2145 Layout::expected_segment_count() const
2146 {
2147 size_t ret = this->segment_list_.size();
2148
2149 // If we didn't see a SECTIONS clause in a linker script, we should
2150 // already have the complete list of segments. Otherwise we ask the
2151 // SECTIONS clause how many segments it expects, and add in the ones
2152 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2153
2154 if (!this->script_options_->saw_sections_clause())
2155 return ret;
2156 else
2157 {
2158 const Script_sections* ss = this->script_options_->script_sections();
2159 return ret + ss->expected_segment_count(this);
2160 }
2161 }
2162
2163 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2164 // is whether we saw a .note.GNU-stack section in the object file.
2165 // GNU_STACK_FLAGS is the section flags. The flags give the
2166 // protection required for stack memory. We record this in an
2167 // executable as a PT_GNU_STACK segment. If an object file does not
2168 // have a .note.GNU-stack segment, we must assume that it is an old
2169 // object. On some targets that will force an executable stack.
2170
2171 void
2172 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2173 const Object* obj)
2174 {
2175 if (!seen_gnu_stack)
2176 {
2177 this->input_without_gnu_stack_note_ = true;
2178 if (parameters->options().warn_execstack()
2179 && parameters->target().is_default_stack_executable())
2180 gold_warning(_("%s: missing .note.GNU-stack section"
2181 " implies executable stack"),
2182 obj->name().c_str());
2183 }
2184 else
2185 {
2186 this->input_with_gnu_stack_note_ = true;
2187 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2188 {
2189 this->input_requires_executable_stack_ = true;
2190 if (parameters->options().warn_execstack())
2191 gold_warning(_("%s: requires executable stack"),
2192 obj->name().c_str());
2193 }
2194 }
2195 }
2196
2197 // Read a value with given size and endianness.
2198
2199 static inline uint64_t
2200 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2201 const Object* object)
2202 {
2203 uint64_t val = 0;
2204 if (size == 4)
2205 {
2206 if (is_big_endian)
2207 val = elfcpp::Swap<32, true>::readval(buf);
2208 else
2209 val = elfcpp::Swap<32, false>::readval(buf);
2210 }
2211 else if (size == 8)
2212 {
2213 if (is_big_endian)
2214 val = elfcpp::Swap<64, true>::readval(buf);
2215 else
2216 val = elfcpp::Swap<64, false>::readval(buf);
2217 }
2218 else
2219 {
2220 gold_warning(_("%s: in .note.gnu.properties section, "
2221 "pr_datasz must be 4 or 8"),
2222 object->name().c_str());
2223 }
2224 return val;
2225 }
2226
2227 // Write a value with given size and endianness.
2228
2229 static inline void
2230 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2231 bool is_big_endian)
2232 {
2233 if (size == 4)
2234 {
2235 if (is_big_endian)
2236 elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2237 else
2238 elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2239 }
2240 else if (size == 8)
2241 {
2242 if (is_big_endian)
2243 elfcpp::Swap<64, true>::writeval(buf, value);
2244 else
2245 elfcpp::Swap<64, false>::writeval(buf, value);
2246 }
2247 else
2248 {
2249 // We will have already complained about this.
2250 }
2251 }
2252
2253 // Handle the .note.gnu.property section at layout time.
2254
2255 void
2256 Layout::layout_gnu_property(unsigned int note_type,
2257 unsigned int pr_type,
2258 size_t pr_datasz,
2259 const unsigned char* pr_data,
2260 const Object* object)
2261 {
2262 // We currently support only the one note type.
2263 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2264
2265 Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2266 if (pprop == this->gnu_properties_.end())
2267 {
2268 Gnu_property prop;
2269 prop.pr_datasz = pr_datasz;
2270 prop.pr_data = new unsigned char[pr_datasz];
2271 memcpy(prop.pr_data, pr_data, pr_datasz);
2272 this->gnu_properties_[pr_type] = prop;
2273 }
2274 else
2275 {
2276 if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2277 && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2278 {
2279 // Target-dependent property value; call the target to merge.
2280 parameters->target().merge_gnu_property(note_type,
2281 pr_type,
2282 pr_datasz,
2283 pr_data,
2284 pprop->second.pr_datasz,
2285 pprop->second.pr_data,
2286 object);
2287 }
2288 else
2289 {
2290 const bool is_big_endian = parameters->target().is_big_endian();
2291 switch (pr_type)
2292 {
2293 case elfcpp::GNU_PROPERTY_STACK_SIZE:
2294 // Record the maximum value seen.
2295 {
2296 uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2297 pprop->second.pr_data,
2298 is_big_endian, object);
2299 uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2300 is_big_endian, object);
2301 if (val2 > val1)
2302 write_sized_value(val2, pprop->second.pr_datasz,
2303 pprop->second.pr_data, is_big_endian);
2304 }
2305 break;
2306 case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2307 // No data to merge.
2308 break;
2309 default:
2310 gold_warning(_("%s: unknown program property type %d "
2311 "in .note.gnu.properties section"),
2312 object->name().c_str(), pr_type);
2313 }
2314 }
2315 }
2316 }
2317
2318 // Create automatic note sections.
2319
2320 void
2321 Layout::create_notes()
2322 {
2323 this->create_gnu_properties_note();
2324 this->create_gold_note();
2325 this->create_stack_segment();
2326 this->create_build_id();
2327 }
2328
2329 // Create the dynamic sections which are needed before we read the
2330 // relocs.
2331
2332 void
2333 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2334 {
2335 if (parameters->doing_static_link())
2336 return;
2337
2338 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2339 elfcpp::SHT_DYNAMIC,
2340 (elfcpp::SHF_ALLOC
2341 | elfcpp::SHF_WRITE),
2342 false, ORDER_RELRO,
2343 true, false, false);
2344
2345 // A linker script may discard .dynamic, so check for NULL.
2346 if (this->dynamic_section_ != NULL)
2347 {
2348 this->dynamic_symbol_ =
2349 symtab->define_in_output_data("_DYNAMIC", NULL,
2350 Symbol_table::PREDEFINED,
2351 this->dynamic_section_, 0, 0,
2352 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2353 elfcpp::STV_HIDDEN, 0, false, false);
2354
2355 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2356
2357 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2358 }
2359 }
2360
2361 // For each output section whose name can be represented as C symbol,
2362 // define __start and __stop symbols for the section. This is a GNU
2363 // extension.
2364
2365 void
2366 Layout::define_section_symbols(Symbol_table* symtab)
2367 {
2368 for (Section_list::const_iterator p = this->section_list_.begin();
2369 p != this->section_list_.end();
2370 ++p)
2371 {
2372 const char* const name = (*p)->name();
2373 if (is_cident(name))
2374 {
2375 const std::string name_string(name);
2376 const std::string start_name(cident_section_start_prefix
2377 + name_string);
2378 const std::string stop_name(cident_section_stop_prefix
2379 + name_string);
2380
2381 symtab->define_in_output_data(start_name.c_str(),
2382 NULL, // version
2383 Symbol_table::PREDEFINED,
2384 *p,
2385 0, // value
2386 0, // symsize
2387 elfcpp::STT_NOTYPE,
2388 elfcpp::STB_GLOBAL,
2389 elfcpp::STV_PROTECTED,
2390 0, // nonvis
2391 false, // offset_is_from_end
2392 true); // only_if_ref
2393
2394 symtab->define_in_output_data(stop_name.c_str(),
2395 NULL, // version
2396 Symbol_table::PREDEFINED,
2397 *p,
2398 0, // value
2399 0, // symsize
2400 elfcpp::STT_NOTYPE,
2401 elfcpp::STB_GLOBAL,
2402 elfcpp::STV_PROTECTED,
2403 0, // nonvis
2404 true, // offset_is_from_end
2405 true); // only_if_ref
2406 }
2407 }
2408 }
2409
2410 // Define symbols for group signatures.
2411
2412 void
2413 Layout::define_group_signatures(Symbol_table* symtab)
2414 {
2415 for (Group_signatures::iterator p = this->group_signatures_.begin();
2416 p != this->group_signatures_.end();
2417 ++p)
2418 {
2419 Symbol* sym = symtab->lookup(p->signature, NULL);
2420 if (sym != NULL)
2421 p->section->set_info_symndx(sym);
2422 else
2423 {
2424 // Force the name of the group section to the group
2425 // signature, and use the group's section symbol as the
2426 // signature symbol.
2427 if (strcmp(p->section->name(), p->signature) != 0)
2428 {
2429 const char* name = this->namepool_.add(p->signature,
2430 true, NULL);
2431 p->section->set_name(name);
2432 }
2433 p->section->set_needs_symtab_index();
2434 p->section->set_info_section_symndx(p->section);
2435 }
2436 }
2437
2438 this->group_signatures_.clear();
2439 }
2440
2441 // Find the first read-only PT_LOAD segment, creating one if
2442 // necessary.
2443
2444 Output_segment*
2445 Layout::find_first_load_seg(const Target* target)
2446 {
2447 Output_segment* best = NULL;
2448 for (Segment_list::const_iterator p = this->segment_list_.begin();
2449 p != this->segment_list_.end();
2450 ++p)
2451 {
2452 if ((*p)->type() == elfcpp::PT_LOAD
2453 && ((*p)->flags() & elfcpp::PF_R) != 0
2454 && (parameters->options().omagic()
2455 || ((*p)->flags() & elfcpp::PF_W) == 0)
2456 && (!target->isolate_execinstr()
2457 || ((*p)->flags() & elfcpp::PF_X) == 0))
2458 {
2459 if (best == NULL || this->segment_precedes(*p, best))
2460 best = *p;
2461 }
2462 }
2463 if (best != NULL)
2464 return best;
2465
2466 gold_assert(!this->script_options_->saw_phdrs_clause());
2467
2468 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2469 elfcpp::PF_R);
2470 return load_seg;
2471 }
2472
2473 // Save states of all current output segments. Store saved states
2474 // in SEGMENT_STATES.
2475
2476 void
2477 Layout::save_segments(Segment_states* segment_states)
2478 {
2479 for (Segment_list::const_iterator p = this->segment_list_.begin();
2480 p != this->segment_list_.end();
2481 ++p)
2482 {
2483 Output_segment* segment = *p;
2484 // Shallow copy.
2485 Output_segment* copy = new Output_segment(*segment);
2486 (*segment_states)[segment] = copy;
2487 }
2488 }
2489
2490 // Restore states of output segments and delete any segment not found in
2491 // SEGMENT_STATES.
2492
2493 void
2494 Layout::restore_segments(const Segment_states* segment_states)
2495 {
2496 // Go through the segment list and remove any segment added in the
2497 // relaxation loop.
2498 this->tls_segment_ = NULL;
2499 this->relro_segment_ = NULL;
2500 Segment_list::iterator list_iter = this->segment_list_.begin();
2501 while (list_iter != this->segment_list_.end())
2502 {
2503 Output_segment* segment = *list_iter;
2504 Segment_states::const_iterator states_iter =
2505 segment_states->find(segment);
2506 if (states_iter != segment_states->end())
2507 {
2508 const Output_segment* copy = states_iter->second;
2509 // Shallow copy to restore states.
2510 *segment = *copy;
2511
2512 // Also fix up TLS and RELRO segment pointers as appropriate.
2513 if (segment->type() == elfcpp::PT_TLS)
2514 this->tls_segment_ = segment;
2515 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2516 this->relro_segment_ = segment;
2517
2518 ++list_iter;
2519 }
2520 else
2521 {
2522 list_iter = this->segment_list_.erase(list_iter);
2523 // This is a segment created during section layout. It should be
2524 // safe to remove it since we should have removed all pointers to it.
2525 delete segment;
2526 }
2527 }
2528 }
2529
2530 // Clean up after relaxation so that sections can be laid out again.
2531
2532 void
2533 Layout::clean_up_after_relaxation()
2534 {
2535 // Restore the segments to point state just prior to the relaxation loop.
2536 Script_sections* script_section = this->script_options_->script_sections();
2537 script_section->release_segments();
2538 this->restore_segments(this->segment_states_);
2539
2540 // Reset section addresses and file offsets
2541 for (Section_list::iterator p = this->section_list_.begin();
2542 p != this->section_list_.end();
2543 ++p)
2544 {
2545 (*p)->restore_states();
2546
2547 // If an input section changes size because of relaxation,
2548 // we need to adjust the section offsets of all input sections.
2549 // after such a section.
2550 if ((*p)->section_offsets_need_adjustment())
2551 (*p)->adjust_section_offsets();
2552
2553 (*p)->reset_address_and_file_offset();
2554 }
2555
2556 // Reset special output object address and file offsets.
2557 for (Data_list::iterator p = this->special_output_list_.begin();
2558 p != this->special_output_list_.end();
2559 ++p)
2560 (*p)->reset_address_and_file_offset();
2561
2562 // A linker script may have created some output section data objects.
2563 // They are useless now.
2564 for (Output_section_data_list::const_iterator p =
2565 this->script_output_section_data_list_.begin();
2566 p != this->script_output_section_data_list_.end();
2567 ++p)
2568 delete *p;
2569 this->script_output_section_data_list_.clear();
2570
2571 // Special-case fill output objects are recreated each time through
2572 // the relaxation loop.
2573 this->reset_relax_output();
2574 }
2575
2576 void
2577 Layout::reset_relax_output()
2578 {
2579 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2580 p != this->relax_output_list_.end();
2581 ++p)
2582 delete *p;
2583 this->relax_output_list_.clear();
2584 }
2585
2586 // Prepare for relaxation.
2587
2588 void
2589 Layout::prepare_for_relaxation()
2590 {
2591 // Create an relaxation debug check if in debugging mode.
2592 if (is_debugging_enabled(DEBUG_RELAXATION))
2593 this->relaxation_debug_check_ = new Relaxation_debug_check();
2594
2595 // Save segment states.
2596 this->segment_states_ = new Segment_states();
2597 this->save_segments(this->segment_states_);
2598
2599 for(Section_list::const_iterator p = this->section_list_.begin();
2600 p != this->section_list_.end();
2601 ++p)
2602 (*p)->save_states();
2603
2604 if (is_debugging_enabled(DEBUG_RELAXATION))
2605 this->relaxation_debug_check_->check_output_data_for_reset_values(
2606 this->section_list_, this->special_output_list_,
2607 this->relax_output_list_);
2608
2609 // Also enable recording of output section data from scripts.
2610 this->record_output_section_data_from_script_ = true;
2611 }
2612
2613 // If the user set the address of the text segment, that may not be
2614 // compatible with putting the segment headers and file headers into
2615 // that segment. For isolate_execinstr() targets, it's the rodata
2616 // segment rather than text where we might put the headers.
2617 static inline bool
2618 load_seg_unusable_for_headers(const Target* target)
2619 {
2620 const General_options& options = parameters->options();
2621 if (target->isolate_execinstr())
2622 return (options.user_set_Trodata_segment()
2623 && options.Trodata_segment() % target->abi_pagesize() != 0);
2624 else
2625 return (options.user_set_Ttext()
2626 && options.Ttext() % target->abi_pagesize() != 0);
2627 }
2628
2629 // Relaxation loop body: If target has no relaxation, this runs only once
2630 // Otherwise, the target relaxation hook is called at the end of
2631 // each iteration. If the hook returns true, it means re-layout of
2632 // section is required.
2633 //
2634 // The number of segments created by a linking script without a PHDRS
2635 // clause may be affected by section sizes and alignments. There is
2636 // a remote chance that relaxation causes different number of PT_LOAD
2637 // segments are created and sections are attached to different segments.
2638 // Therefore, we always throw away all segments created during section
2639 // layout. In order to be able to restart the section layout, we keep
2640 // a copy of the segment list right before the relaxation loop and use
2641 // that to restore the segments.
2642 //
2643 // PASS is the current relaxation pass number.
2644 // SYMTAB is a symbol table.
2645 // PLOAD_SEG is the address of a pointer for the load segment.
2646 // PHDR_SEG is a pointer to the PHDR segment.
2647 // SEGMENT_HEADERS points to the output segment header.
2648 // FILE_HEADER points to the output file header.
2649 // PSHNDX is the address to store the output section index.
2650
2651 off_t inline
2652 Layout::relaxation_loop_body(
2653 int pass,
2654 Target* target,
2655 Symbol_table* symtab,
2656 Output_segment** pload_seg,
2657 Output_segment* phdr_seg,
2658 Output_segment_headers* segment_headers,
2659 Output_file_header* file_header,
2660 unsigned int* pshndx)
2661 {
2662 // If this is not the first iteration, we need to clean up after
2663 // relaxation so that we can lay out the sections again.
2664 if (pass != 0)
2665 this->clean_up_after_relaxation();
2666
2667 // If there is a SECTIONS clause, put all the input sections into
2668 // the required order.
2669 Output_segment* load_seg;
2670 if (this->script_options_->saw_sections_clause())
2671 load_seg = this->set_section_addresses_from_script(symtab);
2672 else if (parameters->options().relocatable())
2673 load_seg = NULL;
2674 else
2675 load_seg = this->find_first_load_seg(target);
2676
2677 if (parameters->options().oformat_enum()
2678 != General_options::OBJECT_FORMAT_ELF)
2679 load_seg = NULL;
2680
2681 if (load_seg_unusable_for_headers(target))
2682 {
2683 load_seg = NULL;
2684 phdr_seg = NULL;
2685 }
2686
2687 gold_assert(phdr_seg == NULL
2688 || load_seg != NULL
2689 || this->script_options_->saw_sections_clause());
2690
2691 // If the address of the load segment we found has been set by
2692 // --section-start rather than by a script, then adjust the VMA and
2693 // LMA downward if possible to include the file and section headers.
2694 uint64_t header_gap = 0;
2695 if (load_seg != NULL
2696 && load_seg->are_addresses_set()
2697 && !this->script_options_->saw_sections_clause()
2698 && !parameters->options().relocatable())
2699 {
2700 file_header->finalize_data_size();
2701 segment_headers->finalize_data_size();
2702 size_t sizeof_headers = (file_header->data_size()
2703 + segment_headers->data_size());
2704 const uint64_t abi_pagesize = target->abi_pagesize();
2705 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2706 hdr_paddr &= ~(abi_pagesize - 1);
2707 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2708 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2709 load_seg = NULL;
2710 else
2711 {
2712 load_seg->set_addresses(load_seg->vaddr() - subtract,
2713 load_seg->paddr() - subtract);
2714 header_gap = subtract - sizeof_headers;
2715 }
2716 }
2717
2718 // Lay out the segment headers.
2719 if (!parameters->options().relocatable())
2720 {
2721 gold_assert(segment_headers != NULL);
2722 if (header_gap != 0 && load_seg != NULL)
2723 {
2724 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2725 load_seg->add_initial_output_data(z);
2726 }
2727 if (load_seg != NULL)
2728 load_seg->add_initial_output_data(segment_headers);
2729 if (phdr_seg != NULL)
2730 phdr_seg->add_initial_output_data(segment_headers);
2731 }
2732
2733 // Lay out the file header.
2734 if (load_seg != NULL)
2735 load_seg->add_initial_output_data(file_header);
2736
2737 if (this->script_options_->saw_phdrs_clause()
2738 && !parameters->options().relocatable())
2739 {
2740 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2741 // clause in a linker script.
2742 Script_sections* ss = this->script_options_->script_sections();
2743 ss->put_headers_in_phdrs(file_header, segment_headers);
2744 }
2745
2746 // We set the output section indexes in set_segment_offsets and
2747 // set_section_indexes.
2748 *pshndx = 1;
2749
2750 // Set the file offsets of all the segments, and all the sections
2751 // they contain.
2752 off_t off;
2753 if (!parameters->options().relocatable())
2754 off = this->set_segment_offsets(target, load_seg, pshndx);
2755 else
2756 off = this->set_relocatable_section_offsets(file_header, pshndx);
2757
2758 // Verify that the dummy relaxation does not change anything.
2759 if (is_debugging_enabled(DEBUG_RELAXATION))
2760 {
2761 if (pass == 0)
2762 this->relaxation_debug_check_->read_sections(this->section_list_);
2763 else
2764 this->relaxation_debug_check_->verify_sections(this->section_list_);
2765 }
2766
2767 *pload_seg = load_seg;
2768 return off;
2769 }
2770
2771 // Search the list of patterns and find the position of the given section
2772 // name in the output section. If the section name matches a glob
2773 // pattern and a non-glob name, then the non-glob position takes
2774 // precedence. Return 0 if no match is found.
2775
2776 unsigned int
2777 Layout::find_section_order_index(const std::string& section_name)
2778 {
2779 Unordered_map<std::string, unsigned int>::iterator map_it;
2780 map_it = this->input_section_position_.find(section_name);
2781 if (map_it != this->input_section_position_.end())
2782 return map_it->second;
2783
2784 // Absolute match failed. Linear search the glob patterns.
2785 std::vector<std::string>::iterator it;
2786 for (it = this->input_section_glob_.begin();
2787 it != this->input_section_glob_.end();
2788 ++it)
2789 {
2790 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2791 {
2792 map_it = this->input_section_position_.find(*it);
2793 gold_assert(map_it != this->input_section_position_.end());
2794 return map_it->second;
2795 }
2796 }
2797 return 0;
2798 }
2799
2800 // Read the sequence of input sections from the file specified with
2801 // option --section-ordering-file.
2802
2803 void
2804 Layout::read_layout_from_file()
2805 {
2806 const char* filename = parameters->options().section_ordering_file();
2807 std::ifstream in;
2808 std::string line;
2809
2810 in.open(filename);
2811 if (!in)
2812 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2813 filename, strerror(errno));
2814
2815 std::getline(in, line); // this chops off the trailing \n, if any
2816 unsigned int position = 1;
2817 this->set_section_ordering_specified();
2818
2819 while (in)
2820 {
2821 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2822 line.resize(line.length() - 1);
2823 // Ignore comments, beginning with '#'
2824 if (line[0] == '#')
2825 {
2826 std::getline(in, line);
2827 continue;
2828 }
2829 this->input_section_position_[line] = position;
2830 // Store all glob patterns in a vector.
2831 if (is_wildcard_string(line.c_str()))
2832 this->input_section_glob_.push_back(line);
2833 position++;
2834 std::getline(in, line);
2835 }
2836 }
2837
2838 // Finalize the layout. When this is called, we have created all the
2839 // output sections and all the output segments which are based on
2840 // input sections. We have several things to do, and we have to do
2841 // them in the right order, so that we get the right results correctly
2842 // and efficiently.
2843
2844 // 1) Finalize the list of output segments and create the segment
2845 // table header.
2846
2847 // 2) Finalize the dynamic symbol table and associated sections.
2848
2849 // 3) Determine the final file offset of all the output segments.
2850
2851 // 4) Determine the final file offset of all the SHF_ALLOC output
2852 // sections.
2853
2854 // 5) Create the symbol table sections and the section name table
2855 // section.
2856
2857 // 6) Finalize the symbol table: set symbol values to their final
2858 // value and make a final determination of which symbols are going
2859 // into the output symbol table.
2860
2861 // 7) Create the section table header.
2862
2863 // 8) Determine the final file offset of all the output sections which
2864 // are not SHF_ALLOC, including the section table header.
2865
2866 // 9) Finalize the ELF file header.
2867
2868 // This function returns the size of the output file.
2869
2870 off_t
2871 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2872 Target* target, const Task* task)
2873 {
2874 unsigned int local_dynamic_count = 0;
2875 unsigned int forced_local_dynamic_count = 0;
2876
2877 target->finalize_sections(this, input_objects, symtab);
2878
2879 this->count_local_symbols(task, input_objects);
2880
2881 this->link_stabs_sections();
2882
2883 Output_segment* phdr_seg = NULL;
2884 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2885 {
2886 // There was a dynamic object in the link. We need to create
2887 // some information for the dynamic linker.
2888
2889 // Create the PT_PHDR segment which will hold the program
2890 // headers.
2891 if (!this->script_options_->saw_phdrs_clause())
2892 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2893
2894 // Create the dynamic symbol table, including the hash table.
2895 Output_section* dynstr;
2896 std::vector<Symbol*> dynamic_symbols;
2897 Versions versions(*this->script_options()->version_script_info(),
2898 &this->dynpool_);
2899 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2900 &local_dynamic_count,
2901 &forced_local_dynamic_count,
2902 &dynamic_symbols,
2903 &versions);
2904
2905 // Create the .interp section to hold the name of the
2906 // interpreter, and put it in a PT_INTERP segment. Don't do it
2907 // if we saw a .interp section in an input file.
2908 if ((!parameters->options().shared()
2909 || parameters->options().dynamic_linker() != NULL)
2910 && this->interp_segment_ == NULL)
2911 this->create_interp(target);
2912
2913 // Finish the .dynamic section to hold the dynamic data, and put
2914 // it in a PT_DYNAMIC segment.
2915 this->finish_dynamic_section(input_objects, symtab);
2916
2917 // We should have added everything we need to the dynamic string
2918 // table.
2919 this->dynpool_.set_string_offsets();
2920
2921 // Create the version sections. We can't do this until the
2922 // dynamic string table is complete.
2923 this->create_version_sections(&versions, symtab,
2924 (local_dynamic_count
2925 + forced_local_dynamic_count),
2926 dynamic_symbols, dynstr);
2927
2928 // Set the size of the _DYNAMIC symbol. We can't do this until
2929 // after we call create_version_sections.
2930 this->set_dynamic_symbol_size(symtab);
2931 }
2932
2933 // Create segment headers.
2934 Output_segment_headers* segment_headers =
2935 (parameters->options().relocatable()
2936 ? NULL
2937 : new Output_segment_headers(this->segment_list_));
2938
2939 // Lay out the file header.
2940 Output_file_header* file_header = new Output_file_header(target, symtab,
2941 segment_headers);
2942
2943 this->special_output_list_.push_back(file_header);
2944 if (segment_headers != NULL)
2945 this->special_output_list_.push_back(segment_headers);
2946
2947 // Find approriate places for orphan output sections if we are using
2948 // a linker script.
2949 if (this->script_options_->saw_sections_clause())
2950 this->place_orphan_sections_in_script();
2951
2952 Output_segment* load_seg;
2953 off_t off;
2954 unsigned int shndx;
2955 int pass = 0;
2956
2957 // Take a snapshot of the section layout as needed.
2958 if (target->may_relax())
2959 this->prepare_for_relaxation();
2960
2961 // Run the relaxation loop to lay out sections.
2962 do
2963 {
2964 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2965 phdr_seg, segment_headers, file_header,
2966 &shndx);
2967 pass++;
2968 }
2969 while (target->may_relax()
2970 && target->relax(pass, input_objects, symtab, this, task));
2971
2972 // If there is a load segment that contains the file and program headers,
2973 // provide a symbol __ehdr_start pointing there.
2974 // A program can use this to examine itself robustly.
2975 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2976 if (ehdr_start != NULL && ehdr_start->is_predefined())
2977 {
2978 if (load_seg != NULL)
2979 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2980 else
2981 ehdr_start->set_undefined();
2982 }
2983
2984 // Set the file offsets of all the non-data sections we've seen so
2985 // far which don't have to wait for the input sections. We need
2986 // this in order to finalize local symbols in non-allocated
2987 // sections.
2988 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2989
2990 // Set the section indexes of all unallocated sections seen so far,
2991 // in case any of them are somehow referenced by a symbol.
2992 shndx = this->set_section_indexes(shndx);
2993
2994 // Create the symbol table sections.
2995 this->create_symtab_sections(input_objects, symtab, shndx, &off,
2996 local_dynamic_count);
2997 if (!parameters->doing_static_link())
2998 this->assign_local_dynsym_offsets(input_objects);
2999
3000 // Process any symbol assignments from a linker script. This must
3001 // be called after the symbol table has been finalized.
3002 this->script_options_->finalize_symbols(symtab, this);
3003
3004 // Create the incremental inputs sections.
3005 if (this->incremental_inputs_)
3006 {
3007 this->incremental_inputs_->finalize();
3008 this->create_incremental_info_sections(symtab);
3009 }
3010
3011 // Create the .shstrtab section.
3012 Output_section* shstrtab_section = this->create_shstrtab();
3013
3014 // Set the file offsets of the rest of the non-data sections which
3015 // don't have to wait for the input sections.
3016 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3017
3018 // Now that all sections have been created, set the section indexes
3019 // for any sections which haven't been done yet.
3020 shndx = this->set_section_indexes(shndx);
3021
3022 // Create the section table header.
3023 this->create_shdrs(shstrtab_section, &off);
3024
3025 // If there are no sections which require postprocessing, we can
3026 // handle the section names now, and avoid a resize later.
3027 if (!this->any_postprocessing_sections_)
3028 {
3029 off = this->set_section_offsets(off,
3030 POSTPROCESSING_SECTIONS_PASS);
3031 off =
3032 this->set_section_offsets(off,
3033 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3034 }
3035
3036 file_header->set_section_info(this->section_headers_, shstrtab_section);
3037
3038 // Now we know exactly where everything goes in the output file
3039 // (except for non-allocated sections which require postprocessing).
3040 Output_data::layout_complete();
3041
3042 this->output_file_size_ = off;
3043
3044 return off;
3045 }
3046
3047 // Create a note header following the format defined in the ELF ABI.
3048 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3049 // of the section to create, DESCSZ is the size of the descriptor.
3050 // ALLOCATE is true if the section should be allocated in memory.
3051 // This returns the new note section. It sets *TRAILING_PADDING to
3052 // the number of trailing zero bytes required.
3053
3054 Output_section*
3055 Layout::create_note(const char* name, int note_type,
3056 const char* section_name, size_t descsz,
3057 bool allocate, size_t* trailing_padding)
3058 {
3059 // Authorities all agree that the values in a .note field should
3060 // be aligned on 4-byte boundaries for 32-bit binaries. However,
3061 // they differ on what the alignment is for 64-bit binaries.
3062 // The GABI says unambiguously they take 8-byte alignment:
3063 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3064 // Other documentation says alignment should always be 4 bytes:
3065 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3066 // GNU ld and GNU readelf both support the latter (at least as of
3067 // version 2.16.91), and glibc always generates the latter for
3068 // .note.ABI-tag (as of version 1.6), so that's the one we go with
3069 // here.
3070 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
3071 const int size = parameters->target().get_size();
3072 #else
3073 const int size = 32;
3074 #endif
3075
3076 // The contents of the .note section.
3077 size_t namesz = strlen(name) + 1;
3078 size_t aligned_namesz = align_address(namesz, size / 8);
3079 size_t aligned_descsz = align_address(descsz, size / 8);
3080
3081 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3082
3083 unsigned char* buffer = new unsigned char[notehdrsz];
3084 memset(buffer, 0, notehdrsz);
3085
3086 bool is_big_endian = parameters->target().is_big_endian();
3087
3088 if (size == 32)
3089 {
3090 if (!is_big_endian)
3091 {
3092 elfcpp::Swap<32, false>::writeval(buffer, namesz);
3093 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3094 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3095 }
3096 else
3097 {
3098 elfcpp::Swap<32, true>::writeval(buffer, namesz);
3099 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3100 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3101 }
3102 }
3103 else if (size == 64)
3104 {
3105 if (!is_big_endian)
3106 {
3107 elfcpp::Swap<64, false>::writeval(buffer, namesz);
3108 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3109 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3110 }
3111 else
3112 {
3113 elfcpp::Swap<64, true>::writeval(buffer, namesz);
3114 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3115 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3116 }
3117 }
3118 else
3119 gold_unreachable();
3120
3121 memcpy(buffer + 3 * (size / 8), name, namesz);
3122
3123 elfcpp::Elf_Xword flags = 0;
3124 Output_section_order order = ORDER_INVALID;
3125 if (allocate)
3126 {
3127 flags = elfcpp::SHF_ALLOC;
3128 order = ORDER_RO_NOTE;
3129 }
3130 Output_section* os = this->choose_output_section(NULL, section_name,
3131 elfcpp::SHT_NOTE,
3132 flags, false, order, false,
3133 false, true);
3134 if (os == NULL)
3135 return NULL;
3136
3137 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3138 size / 8,
3139 "** note header");
3140 os->add_output_section_data(posd);
3141
3142 *trailing_padding = aligned_descsz - descsz;
3143
3144 return os;
3145 }
3146
3147 // Create a .note.gnu.properties section to record program properties
3148 // accumulated from the input files.
3149
3150 void
3151 Layout::create_gnu_properties_note()
3152 {
3153 if (this->gnu_properties_.empty())
3154 return;
3155
3156 const unsigned int size = parameters->target().get_size();
3157 const bool is_big_endian = parameters->target().is_big_endian();
3158
3159 // Compute the total size of the properties array.
3160 size_t descsz = 0;
3161 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3162 prop != this->gnu_properties_.end();
3163 ++prop)
3164 {
3165 descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3166 }
3167
3168 // Create the note section.
3169 size_t trailing_padding;
3170 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3171 ".note.gnu.properties", descsz,
3172 true, &trailing_padding);
3173 if (os == NULL)
3174 return;
3175 gold_assert(trailing_padding == 0);
3176
3177 // Allocate and fill the properties array.
3178 unsigned char* desc = new unsigned char[descsz];
3179 unsigned char* p = desc;
3180 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3181 prop != this->gnu_properties_.end();
3182 ++prop)
3183 {
3184 size_t datasz = prop->second.pr_datasz;
3185 size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3186 write_sized_value(prop->first, 4, p, is_big_endian);
3187 write_sized_value(datasz, 4, p + 4, is_big_endian);
3188 memcpy(p + 8, prop->second.pr_data, datasz);
3189 if (aligned_datasz > datasz)
3190 memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3191 p += 8 + aligned_datasz;
3192 }
3193 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3194 os->add_output_section_data(posd);
3195 }
3196
3197 // For an executable or shared library, create a note to record the
3198 // version of gold used to create the binary.
3199
3200 void
3201 Layout::create_gold_note()
3202 {
3203 if (parameters->options().relocatable()
3204 || parameters->incremental_update())
3205 return;
3206
3207 std::string desc = std::string("gold ") + gold::get_version_string();
3208
3209 size_t trailing_padding;
3210 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3211 ".note.gnu.gold-version", desc.size(),
3212 false, &trailing_padding);
3213 if (os == NULL)
3214 return;
3215
3216 Output_section_data* posd = new Output_data_const(desc, 4);
3217 os->add_output_section_data(posd);
3218
3219 if (trailing_padding > 0)
3220 {
3221 posd = new Output_data_zero_fill(trailing_padding, 0);
3222 os->add_output_section_data(posd);
3223 }
3224 }
3225
3226 // Record whether the stack should be executable. This can be set
3227 // from the command line using the -z execstack or -z noexecstack
3228 // options. Otherwise, if any input file has a .note.GNU-stack
3229 // section with the SHF_EXECINSTR flag set, the stack should be
3230 // executable. Otherwise, if at least one input file a
3231 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3232 // section, we use the target default for whether the stack should be
3233 // executable. If -z stack-size was used to set a p_memsz value for
3234 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3235 // don't generate a stack note. When generating a object file, we
3236 // create a .note.GNU-stack section with the appropriate marking.
3237 // When generating an executable or shared library, we create a
3238 // PT_GNU_STACK segment.
3239
3240 void
3241 Layout::create_stack_segment()
3242 {
3243 bool is_stack_executable;
3244 if (parameters->options().is_execstack_set())
3245 {
3246 is_stack_executable = parameters->options().is_stack_executable();
3247 if (!is_stack_executable
3248 && this->input_requires_executable_stack_
3249 && parameters->options().warn_execstack())
3250 gold_warning(_("one or more inputs require executable stack, "
3251 "but -z noexecstack was given"));
3252 }
3253 else if (!this->input_with_gnu_stack_note_
3254 && (!parameters->options().user_set_stack_size()
3255 || parameters->options().relocatable()))
3256 return;
3257 else
3258 {
3259 if (this->input_requires_executable_stack_)
3260 is_stack_executable = true;
3261 else if (this->input_without_gnu_stack_note_)
3262 is_stack_executable =
3263 parameters->target().is_default_stack_executable();
3264 else
3265 is_stack_executable = false;
3266 }
3267
3268 if (parameters->options().relocatable())
3269 {
3270 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3271 elfcpp::Elf_Xword flags = 0;
3272 if (is_stack_executable)
3273 flags |= elfcpp::SHF_EXECINSTR;
3274 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3275 ORDER_INVALID, false);
3276 }
3277 else
3278 {
3279 if (this->script_options_->saw_phdrs_clause())
3280 return;
3281 int flags = elfcpp::PF_R | elfcpp::PF_W;
3282 if (is_stack_executable)
3283 flags |= elfcpp::PF_X;
3284 Output_segment* seg =
3285 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3286 seg->set_size(parameters->options().stack_size());
3287 // BFD lets targets override this default alignment, but the only
3288 // targets that do so are ones that Gold does not support so far.
3289 seg->set_minimum_p_align(16);
3290 }
3291 }
3292
3293 // If --build-id was used, set up the build ID note.
3294
3295 void
3296 Layout::create_build_id()
3297 {
3298 if (!parameters->options().user_set_build_id())
3299 return;
3300
3301 const char* style = parameters->options().build_id();
3302 if (strcmp(style, "none") == 0)
3303 return;
3304
3305 // Set DESCSZ to the size of the note descriptor. When possible,
3306 // set DESC to the note descriptor contents.
3307 size_t descsz;
3308 std::string desc;
3309 if (strcmp(style, "md5") == 0)
3310 descsz = 128 / 8;
3311 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3312 descsz = 160 / 8;
3313 else if (strcmp(style, "uuid") == 0)
3314 {
3315 #ifndef __MINGW32__
3316 const size_t uuidsz = 128 / 8;
3317
3318 char buffer[uuidsz];
3319 memset(buffer, 0, uuidsz);
3320
3321 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3322 if (descriptor < 0)
3323 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3324 strerror(errno));
3325 else
3326 {
3327 ssize_t got = ::read(descriptor, buffer, uuidsz);
3328 release_descriptor(descriptor, true);
3329 if (got < 0)
3330 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3331 else if (static_cast<size_t>(got) != uuidsz)
3332 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3333 uuidsz, got);
3334 }
3335
3336 desc.assign(buffer, uuidsz);
3337 descsz = uuidsz;
3338 #else // __MINGW32__
3339 UUID uuid;
3340 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3341
3342 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3343 if (!rpc_library)
3344 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3345 else
3346 {
3347 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3348 GetProcAddress(rpc_library, "UuidCreate"));
3349 if (!uuid_create)
3350 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3351 else if (uuid_create(&uuid) != RPC_S_OK)
3352 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3353 FreeLibrary(rpc_library);
3354 }
3355 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3356 descsz = sizeof(UUID);
3357 #endif // __MINGW32__
3358 }
3359 else if (strncmp(style, "0x", 2) == 0)
3360 {
3361 hex_init();
3362 const char* p = style + 2;
3363 while (*p != '\0')
3364 {
3365 if (hex_p(p[0]) && hex_p(p[1]))
3366 {
3367 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3368 desc += c;
3369 p += 2;
3370 }
3371 else if (*p == '-' || *p == ':')
3372 ++p;
3373 else
3374 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3375 style);
3376 }
3377 descsz = desc.size();
3378 }
3379 else
3380 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3381
3382 // Create the note.
3383 size_t trailing_padding;
3384 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3385 ".note.gnu.build-id", descsz, true,
3386 &trailing_padding);
3387 if (os == NULL)
3388 return;
3389
3390 if (!desc.empty())
3391 {
3392 // We know the value already, so we fill it in now.
3393 gold_assert(desc.size() == descsz);
3394
3395 Output_section_data* posd = new Output_data_const(desc, 4);
3396 os->add_output_section_data(posd);
3397
3398 if (trailing_padding != 0)
3399 {
3400 posd = new Output_data_zero_fill(trailing_padding, 0);
3401 os->add_output_section_data(posd);
3402 }
3403 }
3404 else
3405 {
3406 // We need to compute a checksum after we have completed the
3407 // link.
3408 gold_assert(trailing_padding == 0);
3409 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3410 os->add_output_section_data(this->build_id_note_);
3411 }
3412 }
3413
3414 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3415 // field of the former should point to the latter. I'm not sure who
3416 // started this, but the GNU linker does it, and some tools depend
3417 // upon it.
3418
3419 void
3420 Layout::link_stabs_sections()
3421 {
3422 if (!this->have_stabstr_section_)
3423 return;
3424
3425 for (Section_list::iterator p = this->section_list_.begin();
3426 p != this->section_list_.end();
3427 ++p)
3428 {
3429 if ((*p)->type() != elfcpp::SHT_STRTAB)
3430 continue;
3431
3432 const char* name = (*p)->name();
3433 if (strncmp(name, ".stab", 5) != 0)
3434 continue;
3435
3436 size_t len = strlen(name);
3437 if (strcmp(name + len - 3, "str") != 0)
3438 continue;
3439
3440 std::string stab_name(name, len - 3);
3441 Output_section* stab_sec;
3442 stab_sec = this->find_output_section(stab_name.c_str());
3443 if (stab_sec != NULL)
3444 stab_sec->set_link_section(*p);
3445 }
3446 }
3447
3448 // Create .gnu_incremental_inputs and related sections needed
3449 // for the next run of incremental linking to check what has changed.
3450
3451 void
3452 Layout::create_incremental_info_sections(Symbol_table* symtab)
3453 {
3454 Incremental_inputs* incr = this->incremental_inputs_;
3455
3456 gold_assert(incr != NULL);
3457
3458 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3459 incr->create_data_sections(symtab);
3460
3461 // Add the .gnu_incremental_inputs section.
3462 const char* incremental_inputs_name =
3463 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3464 Output_section* incremental_inputs_os =
3465 this->make_output_section(incremental_inputs_name,
3466 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3467 ORDER_INVALID, false);
3468 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3469
3470 // Add the .gnu_incremental_symtab section.
3471 const char* incremental_symtab_name =
3472 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3473 Output_section* incremental_symtab_os =
3474 this->make_output_section(incremental_symtab_name,
3475 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3476 ORDER_INVALID, false);
3477 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3478 incremental_symtab_os->set_entsize(4);
3479
3480 // Add the .gnu_incremental_relocs section.
3481 const char* incremental_relocs_name =
3482 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3483 Output_section* incremental_relocs_os =
3484 this->make_output_section(incremental_relocs_name,
3485 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3486 ORDER_INVALID, false);
3487 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3488 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3489
3490 // Add the .gnu_incremental_got_plt section.
3491 const char* incremental_got_plt_name =
3492 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3493 Output_section* incremental_got_plt_os =
3494 this->make_output_section(incremental_got_plt_name,
3495 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3496 ORDER_INVALID, false);
3497 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3498
3499 // Add the .gnu_incremental_strtab section.
3500 const char* incremental_strtab_name =
3501 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3502 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3503 elfcpp::SHT_STRTAB, 0,
3504 ORDER_INVALID, false);
3505 Output_data_strtab* strtab_data =
3506 new Output_data_strtab(incr->get_stringpool());
3507 incremental_strtab_os->add_output_section_data(strtab_data);
3508
3509 incremental_inputs_os->set_after_input_sections();
3510 incremental_symtab_os->set_after_input_sections();
3511 incremental_relocs_os->set_after_input_sections();
3512 incremental_got_plt_os->set_after_input_sections();
3513
3514 incremental_inputs_os->set_link_section(incremental_strtab_os);
3515 incremental_symtab_os->set_link_section(incremental_inputs_os);
3516 incremental_relocs_os->set_link_section(incremental_inputs_os);
3517 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3518 }
3519
3520 // Return whether SEG1 should be before SEG2 in the output file. This
3521 // is based entirely on the segment type and flags. When this is
3522 // called the segment addresses have normally not yet been set.
3523
3524 bool
3525 Layout::segment_precedes(const Output_segment* seg1,
3526 const Output_segment* seg2)
3527 {
3528 // In order to produce a stable ordering if we're called with the same pointer
3529 // return false.
3530 if (seg1 == seg2)
3531 return false;
3532
3533 elfcpp::Elf_Word type1 = seg1->type();
3534 elfcpp::Elf_Word type2 = seg2->type();
3535
3536 // The single PT_PHDR segment is required to precede any loadable
3537 // segment. We simply make it always first.
3538 if (type1 == elfcpp::PT_PHDR)
3539 {
3540 gold_assert(type2 != elfcpp::PT_PHDR);
3541 return true;
3542 }
3543 if (type2 == elfcpp::PT_PHDR)
3544 return false;
3545
3546 // The single PT_INTERP segment is required to precede any loadable
3547 // segment. We simply make it always second.
3548 if (type1 == elfcpp::PT_INTERP)
3549 {
3550 gold_assert(type2 != elfcpp::PT_INTERP);
3551 return true;
3552 }
3553 if (type2 == elfcpp::PT_INTERP)
3554 return false;
3555
3556 // We then put PT_LOAD segments before any other segments.
3557 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3558 return true;
3559 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3560 return false;
3561
3562 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3563 // segment, because that is where the dynamic linker expects to find
3564 // it (this is just for efficiency; other positions would also work
3565 // correctly).
3566 if (type1 == elfcpp::PT_TLS
3567 && type2 != elfcpp::PT_TLS
3568 && type2 != elfcpp::PT_GNU_RELRO)
3569 return false;
3570 if (type2 == elfcpp::PT_TLS
3571 && type1 != elfcpp::PT_TLS
3572 && type1 != elfcpp::PT_GNU_RELRO)
3573 return true;
3574
3575 // We put the PT_GNU_RELRO segment last, because that is where the
3576 // dynamic linker expects to find it (as with PT_TLS, this is just
3577 // for efficiency).
3578 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3579 return false;
3580 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3581 return true;
3582
3583 const elfcpp::Elf_Word flags1 = seg1->flags();
3584 const elfcpp::Elf_Word flags2 = seg2->flags();
3585
3586 // The order of non-PT_LOAD segments is unimportant. We simply sort
3587 // by the numeric segment type and flags values. There should not
3588 // be more than one segment with the same type and flags, except
3589 // when a linker script specifies such.
3590 if (type1 != elfcpp::PT_LOAD)
3591 {
3592 if (type1 != type2)
3593 return type1 < type2;
3594 gold_assert(flags1 != flags2
3595 || this->script_options_->saw_phdrs_clause());
3596 return flags1 < flags2;
3597 }
3598
3599 // If the addresses are set already, sort by load address.
3600 if (seg1->are_addresses_set())
3601 {
3602 if (!seg2->are_addresses_set())
3603 return true;
3604
3605 unsigned int section_count1 = seg1->output_section_count();
3606 unsigned int section_count2 = seg2->output_section_count();
3607 if (section_count1 == 0 && section_count2 > 0)
3608 return true;
3609 if (section_count1 > 0 && section_count2 == 0)
3610 return false;
3611
3612 uint64_t paddr1 = (seg1->are_addresses_set()
3613 ? seg1->paddr()
3614 : seg1->first_section_load_address());
3615 uint64_t paddr2 = (seg2->are_addresses_set()
3616 ? seg2->paddr()
3617 : seg2->first_section_load_address());
3618
3619 if (paddr1 != paddr2)
3620 return paddr1 < paddr2;
3621 }
3622 else if (seg2->are_addresses_set())
3623 return false;
3624
3625 // A segment which holds large data comes after a segment which does
3626 // not hold large data.
3627 if (seg1->is_large_data_segment())
3628 {
3629 if (!seg2->is_large_data_segment())
3630 return false;
3631 }
3632 else if (seg2->is_large_data_segment())
3633 return true;
3634
3635 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3636 // segments come before writable segments. Then writable segments
3637 // with data come before writable segments without data. Then
3638 // executable segments come before non-executable segments. Then
3639 // the unlikely case of a non-readable segment comes before the
3640 // normal case of a readable segment. If there are multiple
3641 // segments with the same type and flags, we require that the
3642 // address be set, and we sort by virtual address and then physical
3643 // address.
3644 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3645 return (flags1 & elfcpp::PF_W) == 0;
3646 if ((flags1 & elfcpp::PF_W) != 0
3647 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3648 return seg1->has_any_data_sections();
3649 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3650 return (flags1 & elfcpp::PF_X) != 0;
3651 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3652 return (flags1 & elfcpp::PF_R) == 0;
3653
3654 // We shouldn't get here--we shouldn't create segments which we
3655 // can't distinguish. Unless of course we are using a weird linker
3656 // script or overlapping --section-start options. We could also get
3657 // here if plugins want unique segments for subsets of sections.
3658 gold_assert(this->script_options_->saw_phdrs_clause()
3659 || parameters->options().any_section_start()
3660 || this->is_unique_segment_for_sections_specified()
3661 || parameters->options().text_unlikely_segment());
3662 return false;
3663 }
3664
3665 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3666
3667 static off_t
3668 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3669 {
3670 uint64_t unsigned_off = off;
3671 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3672 | (addr & (abi_pagesize - 1)));
3673 if (aligned_off < unsigned_off)
3674 aligned_off += abi_pagesize;
3675 return aligned_off;
3676 }
3677
3678 // On targets where the text segment contains only executable code,
3679 // a non-executable segment is never the text segment.
3680
3681 static inline bool
3682 is_text_segment(const Target* target, const Output_segment* seg)
3683 {
3684 elfcpp::Elf_Xword flags = seg->flags();
3685 if ((flags & elfcpp::PF_W) != 0)
3686 return false;
3687 if ((flags & elfcpp::PF_X) == 0)
3688 return !target->isolate_execinstr();
3689 return true;
3690 }
3691
3692 // Set the file offsets of all the segments, and all the sections they
3693 // contain. They have all been created. LOAD_SEG must be laid out
3694 // first. Return the offset of the data to follow.
3695
3696 off_t
3697 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3698 unsigned int* pshndx)
3699 {
3700 // Sort them into the final order. We use a stable sort so that we
3701 // don't randomize the order of indistinguishable segments created
3702 // by linker scripts.
3703 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3704 Layout::Compare_segments(this));
3705
3706 // Find the PT_LOAD segments, and set their addresses and offsets
3707 // and their section's addresses and offsets.
3708 uint64_t start_addr;
3709 if (parameters->options().user_set_Ttext())
3710 start_addr = parameters->options().Ttext();
3711 else if (parameters->options().output_is_position_independent())
3712 start_addr = 0;
3713 else
3714 start_addr = target->default_text_segment_address();
3715
3716 uint64_t addr = start_addr;
3717 off_t off = 0;
3718
3719 // If LOAD_SEG is NULL, then the file header and segment headers
3720 // will not be loadable. But they still need to be at offset 0 in
3721 // the file. Set their offsets now.
3722 if (load_seg == NULL)
3723 {
3724 for (Data_list::iterator p = this->special_output_list_.begin();
3725 p != this->special_output_list_.end();
3726 ++p)
3727 {
3728 off = align_address(off, (*p)->addralign());
3729 (*p)->set_address_and_file_offset(0, off);
3730 off += (*p)->data_size();
3731 }
3732 }
3733
3734 unsigned int increase_relro = this->increase_relro_;
3735 if (this->script_options_->saw_sections_clause())
3736 increase_relro = 0;
3737
3738 const bool check_sections = parameters->options().check_sections();
3739 Output_segment* last_load_segment = NULL;
3740
3741 unsigned int shndx_begin = *pshndx;
3742 unsigned int shndx_load_seg = *pshndx;
3743
3744 for (Segment_list::iterator p = this->segment_list_.begin();
3745 p != this->segment_list_.end();
3746 ++p)
3747 {
3748 if ((*p)->type() == elfcpp::PT_LOAD)
3749 {
3750 if (target->isolate_execinstr())
3751 {
3752 // When we hit the segment that should contain the
3753 // file headers, reset the file offset so we place
3754 // it and subsequent segments appropriately.
3755 // We'll fix up the preceding segments below.
3756 if (load_seg == *p)
3757 {
3758 if (off == 0)
3759 load_seg = NULL;
3760 else
3761 {
3762 off = 0;
3763 shndx_load_seg = *pshndx;
3764 }
3765 }
3766 }
3767 else
3768 {
3769 // Verify that the file headers fall into the first segment.
3770 if (load_seg != NULL && load_seg != *p)
3771 gold_unreachable();
3772 load_seg = NULL;
3773 }
3774
3775 bool are_addresses_set = (*p)->are_addresses_set();
3776 if (are_addresses_set)
3777 {
3778 // When it comes to setting file offsets, we care about
3779 // the physical address.
3780 addr = (*p)->paddr();
3781 }
3782 else if (parameters->options().user_set_Ttext()
3783 && (parameters->options().omagic()
3784 || is_text_segment(target, *p)))
3785 {
3786 are_addresses_set = true;
3787 }
3788 else if (parameters->options().user_set_Trodata_segment()
3789 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3790 {
3791 addr = parameters->options().Trodata_segment();
3792 are_addresses_set = true;
3793 }
3794 else if (parameters->options().user_set_Tdata()
3795 && ((*p)->flags() & elfcpp::PF_W) != 0
3796 && (!parameters->options().user_set_Tbss()
3797 || (*p)->has_any_data_sections()))
3798 {
3799 addr = parameters->options().Tdata();
3800 are_addresses_set = true;
3801 }
3802 else if (parameters->options().user_set_Tbss()
3803 && ((*p)->flags() & elfcpp::PF_W) != 0
3804 && !(*p)->has_any_data_sections())
3805 {
3806 addr = parameters->options().Tbss();
3807 are_addresses_set = true;
3808 }
3809
3810 uint64_t orig_addr = addr;
3811 uint64_t orig_off = off;
3812
3813 uint64_t aligned_addr = 0;
3814 uint64_t abi_pagesize = target->abi_pagesize();
3815 uint64_t common_pagesize = target->common_pagesize();
3816
3817 if (!parameters->options().nmagic()
3818 && !parameters->options().omagic())
3819 (*p)->set_minimum_p_align(abi_pagesize);
3820
3821 if (!are_addresses_set)
3822 {
3823 // Skip the address forward one page, maintaining the same
3824 // position within the page. This lets us store both segments
3825 // overlapping on a single page in the file, but the loader will
3826 // put them on different pages in memory. We will revisit this
3827 // decision once we know the size of the segment.
3828
3829 uint64_t max_align = (*p)->maximum_alignment();
3830 if (max_align > abi_pagesize)
3831 addr = align_address(addr, max_align);
3832 aligned_addr = addr;
3833
3834 if (load_seg == *p)
3835 {
3836 // This is the segment that will contain the file
3837 // headers, so its offset will have to be exactly zero.
3838 gold_assert(orig_off == 0);
3839
3840 // If the target wants a fixed minimum distance from the
3841 // text segment to the read-only segment, move up now.
3842 uint64_t min_addr =
3843 start_addr + (parameters->options().user_set_rosegment_gap()
3844 ? parameters->options().rosegment_gap()
3845 : target->rosegment_gap());
3846 if (addr < min_addr)
3847 addr = min_addr;
3848
3849 // But this is not the first segment! To make its
3850 // address congruent with its offset, that address better
3851 // be aligned to the ABI-mandated page size.
3852 addr = align_address(addr, abi_pagesize);
3853 aligned_addr = addr;
3854 }
3855 else
3856 {
3857 if ((addr & (abi_pagesize - 1)) != 0)
3858 addr = addr + abi_pagesize;
3859
3860 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3861 }
3862 }
3863
3864 if (!parameters->options().nmagic()
3865 && !parameters->options().omagic())
3866 {
3867 // Here we are also taking care of the case when
3868 // the maximum segment alignment is larger than the page size.
3869 off = align_file_offset(off, addr,
3870 std::max(abi_pagesize,
3871 (*p)->maximum_alignment()));
3872 }
3873 else
3874 {
3875 // This is -N or -n with a section script which prevents
3876 // us from using a load segment. We need to ensure that
3877 // the file offset is aligned to the alignment of the
3878 // segment. This is because the linker script
3879 // implicitly assumed a zero offset. If we don't align
3880 // here, then the alignment of the sections in the
3881 // linker script may not match the alignment of the
3882 // sections in the set_section_addresses call below,
3883 // causing an error about dot moving backward.
3884 off = align_address(off, (*p)->maximum_alignment());
3885 }
3886
3887 unsigned int shndx_hold = *pshndx;
3888 bool has_relro = false;
3889 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3890 false, addr,
3891 &increase_relro,
3892 &has_relro,
3893 &off, pshndx);
3894
3895 // Now that we know the size of this segment, we may be able
3896 // to save a page in memory, at the cost of wasting some
3897 // file space, by instead aligning to the start of a new
3898 // page. Here we use the real machine page size rather than
3899 // the ABI mandated page size. If the segment has been
3900 // aligned so that the relro data ends at a page boundary,
3901 // we do not try to realign it.
3902
3903 if (!are_addresses_set
3904 && !has_relro
3905 && aligned_addr != addr
3906 && !parameters->incremental())
3907 {
3908 uint64_t first_off = (common_pagesize
3909 - (aligned_addr
3910 & (common_pagesize - 1)));
3911 uint64_t last_off = new_addr & (common_pagesize - 1);
3912 if (first_off > 0
3913 && last_off > 0
3914 && ((aligned_addr & ~ (common_pagesize - 1))
3915 != (new_addr & ~ (common_pagesize - 1)))
3916 && first_off + last_off <= common_pagesize)
3917 {
3918 *pshndx = shndx_hold;
3919 addr = align_address(aligned_addr, common_pagesize);
3920 addr = align_address(addr, (*p)->maximum_alignment());
3921 if ((addr & (abi_pagesize - 1)) != 0)
3922 addr = addr + abi_pagesize;
3923 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3924 off = align_file_offset(off, addr, abi_pagesize);
3925
3926 increase_relro = this->increase_relro_;
3927 if (this->script_options_->saw_sections_clause())
3928 increase_relro = 0;
3929 has_relro = false;
3930
3931 new_addr = (*p)->set_section_addresses(target, this,
3932 true, addr,
3933 &increase_relro,
3934 &has_relro,
3935 &off, pshndx);
3936 }
3937 }
3938
3939 addr = new_addr;
3940
3941 // Implement --check-sections. We know that the segments
3942 // are sorted by LMA.
3943 if (check_sections && last_load_segment != NULL)
3944 {
3945 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3946 if (last_load_segment->paddr() + last_load_segment->memsz()
3947 > (*p)->paddr())
3948 {
3949 unsigned long long lb1 = last_load_segment->paddr();
3950 unsigned long long le1 = lb1 + last_load_segment->memsz();
3951 unsigned long long lb2 = (*p)->paddr();
3952 unsigned long long le2 = lb2 + (*p)->memsz();
3953 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3954 "[0x%llx -> 0x%llx]"),
3955 lb1, le1, lb2, le2);
3956 }
3957 }
3958 last_load_segment = *p;
3959 }
3960 }
3961
3962 if (load_seg != NULL && target->isolate_execinstr())
3963 {
3964 // Process the early segments again, setting their file offsets
3965 // so they land after the segments starting at LOAD_SEG.
3966 off = align_file_offset(off, 0, target->abi_pagesize());
3967
3968 this->reset_relax_output();
3969
3970 for (Segment_list::iterator p = this->segment_list_.begin();
3971 *p != load_seg;
3972 ++p)
3973 {
3974 if ((*p)->type() == elfcpp::PT_LOAD)
3975 {
3976 // We repeat the whole job of assigning addresses and
3977 // offsets, but we really only want to change the offsets and
3978 // must ensure that the addresses all come out the same as
3979 // they did the first time through.
3980 bool has_relro = false;
3981 const uint64_t old_addr = (*p)->vaddr();
3982 const uint64_t old_end = old_addr + (*p)->memsz();
3983 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3984 true, old_addr,
3985 &increase_relro,
3986 &has_relro,
3987 &off,
3988 &shndx_begin);
3989 gold_assert(new_addr == old_end);
3990 }
3991 }
3992
3993 gold_assert(shndx_begin == shndx_load_seg);
3994 }
3995
3996 // Handle the non-PT_LOAD segments, setting their offsets from their
3997 // section's offsets.
3998 for (Segment_list::iterator p = this->segment_list_.begin();
3999 p != this->segment_list_.end();
4000 ++p)
4001 {
4002 // PT_GNU_STACK was set up correctly when it was created.
4003 if ((*p)->type() != elfcpp::PT_LOAD
4004 && (*p)->type() != elfcpp::PT_GNU_STACK)
4005 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4006 ? increase_relro
4007 : 0);
4008 }
4009
4010 // Set the TLS offsets for each section in the PT_TLS segment.
4011 if (this->tls_segment_ != NULL)
4012 this->tls_segment_->set_tls_offsets();
4013
4014 return off;
4015 }
4016
4017 // Set the offsets of all the allocated sections when doing a
4018 // relocatable link. This does the same jobs as set_segment_offsets,
4019 // only for a relocatable link.
4020
4021 off_t
4022 Layout::set_relocatable_section_offsets(Output_data* file_header,
4023 unsigned int* pshndx)
4024 {
4025 off_t off = 0;
4026
4027 file_header->set_address_and_file_offset(0, 0);
4028 off += file_header->data_size();
4029
4030 for (Section_list::iterator p = this->section_list_.begin();
4031 p != this->section_list_.end();
4032 ++p)
4033 {
4034 // We skip unallocated sections here, except that group sections
4035 // have to come first.
4036 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4037 && (*p)->type() != elfcpp::SHT_GROUP)
4038 continue;
4039
4040 off = align_address(off, (*p)->addralign());
4041
4042 // The linker script might have set the address.
4043 if (!(*p)->is_address_valid())
4044 (*p)->set_address(0);
4045 (*p)->set_file_offset(off);
4046 (*p)->finalize_data_size();
4047 if ((*p)->type() != elfcpp::SHT_NOBITS)
4048 off += (*p)->data_size();
4049
4050 (*p)->set_out_shndx(*pshndx);
4051 ++*pshndx;
4052 }
4053
4054 return off;
4055 }
4056
4057 // Set the file offset of all the sections not associated with a
4058 // segment.
4059
4060 off_t
4061 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4062 {
4063 off_t startoff = off;
4064 off_t maxoff = off;
4065
4066 for (Section_list::iterator p = this->unattached_section_list_.begin();
4067 p != this->unattached_section_list_.end();
4068 ++p)
4069 {
4070 // The symtab section is handled in create_symtab_sections.
4071 if (*p == this->symtab_section_)
4072 continue;
4073
4074 // If we've already set the data size, don't set it again.
4075 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4076 continue;
4077
4078 if (pass == BEFORE_INPUT_SECTIONS_PASS
4079 && (*p)->requires_postprocessing())
4080 {
4081 (*p)->create_postprocessing_buffer();
4082 this->any_postprocessing_sections_ = true;
4083 }
4084
4085 if (pass == BEFORE_INPUT_SECTIONS_PASS
4086 && (*p)->after_input_sections())
4087 continue;
4088 else if (pass == POSTPROCESSING_SECTIONS_PASS
4089 && (!(*p)->after_input_sections()
4090 || (*p)->type() == elfcpp::SHT_STRTAB))
4091 continue;
4092 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4093 && (!(*p)->after_input_sections()
4094 || (*p)->type() != elfcpp::SHT_STRTAB))
4095 continue;
4096
4097 if (!parameters->incremental_update())
4098 {
4099 off = align_address(off, (*p)->addralign());
4100 (*p)->set_file_offset(off);
4101 (*p)->finalize_data_size();
4102 }
4103 else
4104 {
4105 // Incremental update: allocate file space from free list.
4106 (*p)->pre_finalize_data_size();
4107 off_t current_size = (*p)->current_data_size();
4108 off = this->allocate(current_size, (*p)->addralign(), startoff);
4109 if (off == -1)
4110 {
4111 if (is_debugging_enabled(DEBUG_INCREMENTAL))
4112 this->free_list_.dump();
4113 gold_assert((*p)->output_section() != NULL);
4114 gold_fallback(_("out of patch space for section %s; "
4115 "relink with --incremental-full"),
4116 (*p)->output_section()->name());
4117 }
4118 (*p)->set_file_offset(off);
4119 (*p)->finalize_data_size();
4120 if ((*p)->data_size() > current_size)
4121 {
4122 gold_assert((*p)->output_section() != NULL);
4123 gold_fallback(_("%s: section changed size; "
4124 "relink with --incremental-full"),
4125 (*p)->output_section()->name());
4126 }
4127 gold_debug(DEBUG_INCREMENTAL,
4128 "set_section_offsets: %08lx %08lx %s",
4129 static_cast<long>(off),
4130 static_cast<long>((*p)->data_size()),
4131 ((*p)->output_section() != NULL
4132 ? (*p)->output_section()->name() : "(special)"));
4133 }
4134
4135 off += (*p)->data_size();
4136 if (off > maxoff)
4137 maxoff = off;
4138
4139 // At this point the name must be set.
4140 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4141 this->namepool_.add((*p)->name(), false, NULL);
4142 }
4143 return maxoff;
4144 }
4145
4146 // Set the section indexes of all the sections not associated with a
4147 // segment.
4148
4149 unsigned int
4150 Layout::set_section_indexes(unsigned int shndx)
4151 {
4152 for (Section_list::iterator p = this->unattached_section_list_.begin();
4153 p != this->unattached_section_list_.end();
4154 ++p)
4155 {
4156 if (!(*p)->has_out_shndx())
4157 {
4158 (*p)->set_out_shndx(shndx);
4159 ++shndx;
4160 }
4161 }
4162 return shndx;
4163 }
4164
4165 // Set the section addresses according to the linker script. This is
4166 // only called when we see a SECTIONS clause. This returns the
4167 // program segment which should hold the file header and segment
4168 // headers, if any. It will return NULL if they should not be in a
4169 // segment.
4170
4171 Output_segment*
4172 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4173 {
4174 Script_sections* ss = this->script_options_->script_sections();
4175 gold_assert(ss->saw_sections_clause());
4176 return this->script_options_->set_section_addresses(symtab, this);
4177 }
4178
4179 // Place the orphan sections in the linker script.
4180
4181 void
4182 Layout::place_orphan_sections_in_script()
4183 {
4184 Script_sections* ss = this->script_options_->script_sections();
4185 gold_assert(ss->saw_sections_clause());
4186
4187 // Place each orphaned output section in the script.
4188 for (Section_list::iterator p = this->section_list_.begin();
4189 p != this->section_list_.end();
4190 ++p)
4191 {
4192 if (!(*p)->found_in_sections_clause())
4193 ss->place_orphan(*p);
4194 }
4195 }
4196
4197 // Count the local symbols in the regular symbol table and the dynamic
4198 // symbol table, and build the respective string pools.
4199
4200 void
4201 Layout::count_local_symbols(const Task* task,
4202 const Input_objects* input_objects)
4203 {
4204 // First, figure out an upper bound on the number of symbols we'll
4205 // be inserting into each pool. This helps us create the pools with
4206 // the right size, to avoid unnecessary hashtable resizing.
4207 unsigned int symbol_count = 0;
4208 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4209 p != input_objects->relobj_end();
4210 ++p)
4211 symbol_count += (*p)->local_symbol_count();
4212
4213 // Go from "upper bound" to "estimate." We overcount for two
4214 // reasons: we double-count symbols that occur in more than one
4215 // object file, and we count symbols that are dropped from the
4216 // output. Add it all together and assume we overcount by 100%.
4217 symbol_count /= 2;
4218
4219 // We assume all symbols will go into both the sympool and dynpool.
4220 this->sympool_.reserve(symbol_count);
4221 this->dynpool_.reserve(symbol_count);
4222
4223 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4224 p != input_objects->relobj_end();
4225 ++p)
4226 {
4227 Task_lock_obj<Object> tlo(task, *p);
4228 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4229 }
4230 }
4231
4232 // Create the symbol table sections. Here we also set the final
4233 // values of the symbols. At this point all the loadable sections are
4234 // fully laid out. SHNUM is the number of sections so far.
4235
4236 void
4237 Layout::create_symtab_sections(const Input_objects* input_objects,
4238 Symbol_table* symtab,
4239 unsigned int shnum,
4240 off_t* poff,
4241 unsigned int local_dynamic_count)
4242 {
4243 int symsize;
4244 unsigned int align;
4245 if (parameters->target().get_size() == 32)
4246 {
4247 symsize = elfcpp::Elf_sizes<32>::sym_size;
4248 align = 4;
4249 }
4250 else if (parameters->target().get_size() == 64)
4251 {
4252 symsize = elfcpp::Elf_sizes<64>::sym_size;
4253 align = 8;
4254 }
4255 else
4256 gold_unreachable();
4257
4258 // Compute file offsets relative to the start of the symtab section.
4259 off_t off = 0;
4260
4261 // Save space for the dummy symbol at the start of the section. We
4262 // never bother to write this out--it will just be left as zero.
4263 off += symsize;
4264 unsigned int local_symbol_index = 1;
4265
4266 // Add STT_SECTION symbols for each Output section which needs one.
4267 for (Section_list::iterator p = this->section_list_.begin();
4268 p != this->section_list_.end();
4269 ++p)
4270 {
4271 if (!(*p)->needs_symtab_index())
4272 (*p)->set_symtab_index(-1U);
4273 else
4274 {
4275 (*p)->set_symtab_index(local_symbol_index);
4276 ++local_symbol_index;
4277 off += symsize;
4278 }
4279 }
4280
4281 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4282 p != input_objects->relobj_end();
4283 ++p)
4284 {
4285 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4286 off, symtab);
4287 off += (index - local_symbol_index) * symsize;
4288 local_symbol_index = index;
4289 }
4290
4291 unsigned int local_symcount = local_symbol_index;
4292 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4293
4294 off_t dynoff;
4295 size_t dyncount;
4296 if (this->dynsym_section_ == NULL)
4297 {
4298 dynoff = 0;
4299 dyncount = 0;
4300 }
4301 else
4302 {
4303 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4304 dynoff = this->dynsym_section_->offset() + locsize;
4305 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4306 gold_assert(static_cast<off_t>(dyncount * symsize)
4307 == this->dynsym_section_->data_size() - locsize);
4308 }
4309
4310 off_t global_off = off;
4311 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4312 &this->sympool_, &local_symcount);
4313
4314 if (!parameters->options().strip_all())
4315 {
4316 this->sympool_.set_string_offsets();
4317
4318 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4319 Output_section* osymtab = this->make_output_section(symtab_name,
4320 elfcpp::SHT_SYMTAB,
4321 0, ORDER_INVALID,
4322 false);
4323 this->symtab_section_ = osymtab;
4324
4325 Output_section_data* pos = new Output_data_fixed_space(off, align,
4326 "** symtab");
4327 osymtab->add_output_section_data(pos);
4328
4329 // We generate a .symtab_shndx section if we have more than
4330 // SHN_LORESERVE sections. Technically it is possible that we
4331 // don't need one, because it is possible that there are no
4332 // symbols in any of sections with indexes larger than
4333 // SHN_LORESERVE. That is probably unusual, though, and it is
4334 // easier to always create one than to compute section indexes
4335 // twice (once here, once when writing out the symbols).
4336 if (shnum >= elfcpp::SHN_LORESERVE)
4337 {
4338 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4339 false, NULL);
4340 Output_section* osymtab_xindex =
4341 this->make_output_section(symtab_xindex_name,
4342 elfcpp::SHT_SYMTAB_SHNDX, 0,
4343 ORDER_INVALID, false);
4344
4345 size_t symcount = off / symsize;
4346 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4347
4348 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4349
4350 osymtab_xindex->set_link_section(osymtab);
4351 osymtab_xindex->set_addralign(4);
4352 osymtab_xindex->set_entsize(4);
4353
4354 osymtab_xindex->set_after_input_sections();
4355
4356 // This tells the driver code to wait until the symbol table
4357 // has written out before writing out the postprocessing
4358 // sections, including the .symtab_shndx section.
4359 this->any_postprocessing_sections_ = true;
4360 }
4361
4362 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4363 Output_section* ostrtab = this->make_output_section(strtab_name,
4364 elfcpp::SHT_STRTAB,
4365 0, ORDER_INVALID,
4366 false);
4367
4368 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4369 ostrtab->add_output_section_data(pstr);
4370
4371 off_t symtab_off;
4372 if (!parameters->incremental_update())
4373 symtab_off = align_address(*poff, align);
4374 else
4375 {
4376 symtab_off = this->allocate(off, align, *poff);
4377 if (off == -1)
4378 gold_fallback(_("out of patch space for symbol table; "
4379 "relink with --incremental-full"));
4380 gold_debug(DEBUG_INCREMENTAL,
4381 "create_symtab_sections: %08lx %08lx .symtab",
4382 static_cast<long>(symtab_off),
4383 static_cast<long>(off));
4384 }
4385
4386 symtab->set_file_offset(symtab_off + global_off);
4387 osymtab->set_file_offset(symtab_off);
4388 osymtab->finalize_data_size();
4389 osymtab->set_link_section(ostrtab);
4390 osymtab->set_info(local_symcount);
4391 osymtab->set_entsize(symsize);
4392
4393 if (symtab_off + off > *poff)
4394 *poff = symtab_off + off;
4395 }
4396 }
4397
4398 // Create the .shstrtab section, which holds the names of the
4399 // sections. At the time this is called, we have created all the
4400 // output sections except .shstrtab itself.
4401
4402 Output_section*
4403 Layout::create_shstrtab()
4404 {
4405 // FIXME: We don't need to create a .shstrtab section if we are
4406 // stripping everything.
4407
4408 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4409
4410 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4411 ORDER_INVALID, false);
4412
4413 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4414 {
4415 // We can't write out this section until we've set all the
4416 // section names, and we don't set the names of compressed
4417 // output sections until relocations are complete. FIXME: With
4418 // the current names we use, this is unnecessary.
4419 os->set_after_input_sections();
4420 }
4421
4422 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4423 os->add_output_section_data(posd);
4424
4425 return os;
4426 }
4427
4428 // Create the section headers. SIZE is 32 or 64. OFF is the file
4429 // offset.
4430
4431 void
4432 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4433 {
4434 Output_section_headers* oshdrs;
4435 oshdrs = new Output_section_headers(this,
4436 &this->segment_list_,
4437 &this->section_list_,
4438 &this->unattached_section_list_,
4439 &this->namepool_,
4440 shstrtab_section);
4441 off_t off;
4442 if (!parameters->incremental_update())
4443 off = align_address(*poff, oshdrs->addralign());
4444 else
4445 {
4446 oshdrs->pre_finalize_data_size();
4447 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4448 if (off == -1)
4449 gold_fallback(_("out of patch space for section header table; "
4450 "relink with --incremental-full"));
4451 gold_debug(DEBUG_INCREMENTAL,
4452 "create_shdrs: %08lx %08lx (section header table)",
4453 static_cast<long>(off),
4454 static_cast<long>(off + oshdrs->data_size()));
4455 }
4456 oshdrs->set_address_and_file_offset(0, off);
4457 off += oshdrs->data_size();
4458 if (off > *poff)
4459 *poff = off;
4460 this->section_headers_ = oshdrs;
4461 }
4462
4463 // Count the allocated sections.
4464
4465 size_t
4466 Layout::allocated_output_section_count() const
4467 {
4468 size_t section_count = 0;
4469 for (Segment_list::const_iterator p = this->segment_list_.begin();
4470 p != this->segment_list_.end();
4471 ++p)
4472 section_count += (*p)->output_section_count();
4473 return section_count;
4474 }
4475
4476 // Create the dynamic symbol table.
4477 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4478 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4479 // to the number of global symbols that have been forced local.
4480 // We need to remember the former because the forced-local symbols are
4481 // written along with the global symbols in Symtab::write_globals().
4482
4483 void
4484 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4485 Symbol_table* symtab,
4486 Output_section** pdynstr,
4487 unsigned int* plocal_dynamic_count,
4488 unsigned int* pforced_local_dynamic_count,
4489 std::vector<Symbol*>* pdynamic_symbols,
4490 Versions* pversions)
4491 {
4492 // Count all the symbols in the dynamic symbol table, and set the
4493 // dynamic symbol indexes.
4494
4495 // Skip symbol 0, which is always all zeroes.
4496 unsigned int index = 1;
4497
4498 // Add STT_SECTION symbols for each Output section which needs one.
4499 for (Section_list::iterator p = this->section_list_.begin();
4500 p != this->section_list_.end();
4501 ++p)
4502 {
4503 if (!(*p)->needs_dynsym_index())
4504 (*p)->set_dynsym_index(-1U);
4505 else
4506 {
4507 (*p)->set_dynsym_index(index);
4508 ++index;
4509 }
4510 }
4511
4512 // Count the local symbols that need to go in the dynamic symbol table,
4513 // and set the dynamic symbol indexes.
4514 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4515 p != input_objects->relobj_end();
4516 ++p)
4517 {
4518 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4519 index = new_index;
4520 }
4521
4522 unsigned int local_symcount = index;
4523 unsigned int forced_local_count = 0;
4524
4525 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4526 pdynamic_symbols, &this->dynpool_,
4527 pversions);
4528
4529 *plocal_dynamic_count = local_symcount;
4530 *pforced_local_dynamic_count = forced_local_count;
4531
4532 int symsize;
4533 unsigned int align;
4534 const int size = parameters->target().get_size();
4535 if (size == 32)
4536 {
4537 symsize = elfcpp::Elf_sizes<32>::sym_size;
4538 align = 4;
4539 }
4540 else if (size == 64)
4541 {
4542 symsize = elfcpp::Elf_sizes<64>::sym_size;
4543 align = 8;
4544 }
4545 else
4546 gold_unreachable();
4547
4548 // Create the dynamic symbol table section.
4549
4550 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4551 elfcpp::SHT_DYNSYM,
4552 elfcpp::SHF_ALLOC,
4553 false,
4554 ORDER_DYNAMIC_LINKER,
4555 false, false, false);
4556
4557 // Check for NULL as a linker script may discard .dynsym.
4558 if (dynsym != NULL)
4559 {
4560 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4561 align,
4562 "** dynsym");
4563 dynsym->add_output_section_data(odata);
4564
4565 dynsym->set_info(local_symcount + forced_local_count);
4566 dynsym->set_entsize(symsize);
4567 dynsym->set_addralign(align);
4568
4569 this->dynsym_section_ = dynsym;
4570 }
4571
4572 Output_data_dynamic* const odyn = this->dynamic_data_;
4573 if (odyn != NULL)
4574 {
4575 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4576 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4577 }
4578
4579 // If there are more than SHN_LORESERVE allocated sections, we
4580 // create a .dynsym_shndx section. It is possible that we don't
4581 // need one, because it is possible that there are no dynamic
4582 // symbols in any of the sections with indexes larger than
4583 // SHN_LORESERVE. This is probably unusual, though, and at this
4584 // time we don't know the actual section indexes so it is
4585 // inconvenient to check.
4586 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4587 {
4588 Output_section* dynsym_xindex =
4589 this->choose_output_section(NULL, ".dynsym_shndx",
4590 elfcpp::SHT_SYMTAB_SHNDX,
4591 elfcpp::SHF_ALLOC,
4592 false, ORDER_DYNAMIC_LINKER, false, false,
4593 false);
4594
4595 if (dynsym_xindex != NULL)
4596 {
4597 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4598
4599 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4600
4601 dynsym_xindex->set_link_section(dynsym);
4602 dynsym_xindex->set_addralign(4);
4603 dynsym_xindex->set_entsize(4);
4604
4605 dynsym_xindex->set_after_input_sections();
4606
4607 // This tells the driver code to wait until the symbol table
4608 // has written out before writing out the postprocessing
4609 // sections, including the .dynsym_shndx section.
4610 this->any_postprocessing_sections_ = true;
4611 }
4612 }
4613
4614 // Create the dynamic string table section.
4615
4616 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4617 elfcpp::SHT_STRTAB,
4618 elfcpp::SHF_ALLOC,
4619 false,
4620 ORDER_DYNAMIC_LINKER,
4621 false, false, false);
4622 *pdynstr = dynstr;
4623 if (dynstr != NULL)
4624 {
4625 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4626 dynstr->add_output_section_data(strdata);
4627
4628 if (dynsym != NULL)
4629 dynsym->set_link_section(dynstr);
4630 if (this->dynamic_section_ != NULL)
4631 this->dynamic_section_->set_link_section(dynstr);
4632
4633 if (odyn != NULL)
4634 {
4635 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4636 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4637 }
4638 }
4639
4640 // Create the hash tables. The Gnu-style hash table must be
4641 // built first, because it changes the order of the symbols
4642 // in the dynamic symbol table.
4643
4644 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4645 || strcmp(parameters->options().hash_style(), "both") == 0)
4646 {
4647 unsigned char* phash;
4648 unsigned int hashlen;
4649 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4650 local_symcount + forced_local_count,
4651 &phash, &hashlen);
4652
4653 Output_section* hashsec =
4654 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4655 elfcpp::SHF_ALLOC, false,
4656 ORDER_DYNAMIC_LINKER, false, false,
4657 false);
4658
4659 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4660 hashlen,
4661 align,
4662 "** hash");
4663 if (hashsec != NULL && hashdata != NULL)
4664 hashsec->add_output_section_data(hashdata);
4665
4666 if (hashsec != NULL)
4667 {
4668 if (dynsym != NULL)
4669 hashsec->set_link_section(dynsym);
4670
4671 // For a 64-bit target, the entries in .gnu.hash do not have
4672 // a uniform size, so we only set the entry size for a
4673 // 32-bit target.
4674 if (parameters->target().get_size() == 32)
4675 hashsec->set_entsize(4);
4676
4677 if (odyn != NULL)
4678 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4679 }
4680 }
4681
4682 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4683 || strcmp(parameters->options().hash_style(), "both") == 0)
4684 {
4685 unsigned char* phash;
4686 unsigned int hashlen;
4687 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4688 local_symcount + forced_local_count,
4689 &phash, &hashlen);
4690
4691 Output_section* hashsec =
4692 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4693 elfcpp::SHF_ALLOC, false,
4694 ORDER_DYNAMIC_LINKER, false, false,
4695 false);
4696
4697 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4698 hashlen,
4699 align,
4700 "** hash");
4701 if (hashsec != NULL && hashdata != NULL)
4702 hashsec->add_output_section_data(hashdata);
4703
4704 if (hashsec != NULL)
4705 {
4706 if (dynsym != NULL)
4707 hashsec->set_link_section(dynsym);
4708 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4709 }
4710
4711 if (odyn != NULL)
4712 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4713 }
4714 }
4715
4716 // Assign offsets to each local portion of the dynamic symbol table.
4717
4718 void
4719 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4720 {
4721 Output_section* dynsym = this->dynsym_section_;
4722 if (dynsym == NULL)
4723 return;
4724
4725 off_t off = dynsym->offset();
4726
4727 // Skip the dummy symbol at the start of the section.
4728 off += dynsym->entsize();
4729
4730 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4731 p != input_objects->relobj_end();
4732 ++p)
4733 {
4734 unsigned int count = (*p)->set_local_dynsym_offset(off);
4735 off += count * dynsym->entsize();
4736 }
4737 }
4738
4739 // Create the version sections.
4740
4741 void
4742 Layout::create_version_sections(const Versions* versions,
4743 const Symbol_table* symtab,
4744 unsigned int local_symcount,
4745 const std::vector<Symbol*>& dynamic_symbols,
4746 const Output_section* dynstr)
4747 {
4748 if (!versions->any_defs() && !versions->any_needs())
4749 return;
4750
4751 switch (parameters->size_and_endianness())
4752 {
4753 #ifdef HAVE_TARGET_32_LITTLE
4754 case Parameters::TARGET_32_LITTLE:
4755 this->sized_create_version_sections<32, false>(versions, symtab,
4756 local_symcount,
4757 dynamic_symbols, dynstr);
4758 break;
4759 #endif
4760 #ifdef HAVE_TARGET_32_BIG
4761 case Parameters::TARGET_32_BIG:
4762 this->sized_create_version_sections<32, true>(versions, symtab,
4763 local_symcount,
4764 dynamic_symbols, dynstr);
4765 break;
4766 #endif
4767 #ifdef HAVE_TARGET_64_LITTLE
4768 case Parameters::TARGET_64_LITTLE:
4769 this->sized_create_version_sections<64, false>(versions, symtab,
4770 local_symcount,
4771 dynamic_symbols, dynstr);
4772 break;
4773 #endif
4774 #ifdef HAVE_TARGET_64_BIG
4775 case Parameters::TARGET_64_BIG:
4776 this->sized_create_version_sections<64, true>(versions, symtab,
4777 local_symcount,
4778 dynamic_symbols, dynstr);
4779 break;
4780 #endif
4781 default:
4782 gold_unreachable();
4783 }
4784 }
4785
4786 // Create the version sections, sized version.
4787
4788 template<int size, bool big_endian>
4789 void
4790 Layout::sized_create_version_sections(
4791 const Versions* versions,
4792 const Symbol_table* symtab,
4793 unsigned int local_symcount,
4794 const std::vector<Symbol*>& dynamic_symbols,
4795 const Output_section* dynstr)
4796 {
4797 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4798 elfcpp::SHT_GNU_versym,
4799 elfcpp::SHF_ALLOC,
4800 false,
4801 ORDER_DYNAMIC_LINKER,
4802 false, false, false);
4803
4804 // Check for NULL since a linker script may discard this section.
4805 if (vsec != NULL)
4806 {
4807 unsigned char* vbuf;
4808 unsigned int vsize;
4809 versions->symbol_section_contents<size, big_endian>(symtab,
4810 &this->dynpool_,
4811 local_symcount,
4812 dynamic_symbols,
4813 &vbuf, &vsize);
4814
4815 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4816 "** versions");
4817
4818 vsec->add_output_section_data(vdata);
4819 vsec->set_entsize(2);
4820 vsec->set_link_section(this->dynsym_section_);
4821 }
4822
4823 Output_data_dynamic* const odyn = this->dynamic_data_;
4824 if (odyn != NULL && vsec != NULL)
4825 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4826
4827 if (versions->any_defs())
4828 {
4829 Output_section* vdsec;
4830 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4831 elfcpp::SHT_GNU_verdef,
4832 elfcpp::SHF_ALLOC,
4833 false, ORDER_DYNAMIC_LINKER, false,
4834 false, false);
4835
4836 if (vdsec != NULL)
4837 {
4838 unsigned char* vdbuf;
4839 unsigned int vdsize;
4840 unsigned int vdentries;
4841 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4842 &vdbuf, &vdsize,
4843 &vdentries);
4844
4845 Output_section_data* vddata =
4846 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4847
4848 vdsec->add_output_section_data(vddata);
4849 vdsec->set_link_section(dynstr);
4850 vdsec->set_info(vdentries);
4851
4852 if (odyn != NULL)
4853 {
4854 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4855 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4856 }
4857 }
4858 }
4859
4860 if (versions->any_needs())
4861 {
4862 Output_section* vnsec;
4863 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4864 elfcpp::SHT_GNU_verneed,
4865 elfcpp::SHF_ALLOC,
4866 false, ORDER_DYNAMIC_LINKER, false,
4867 false, false);
4868
4869 if (vnsec != NULL)
4870 {
4871 unsigned char* vnbuf;
4872 unsigned int vnsize;
4873 unsigned int vnentries;
4874 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4875 &vnbuf, &vnsize,
4876 &vnentries);
4877
4878 Output_section_data* vndata =
4879 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4880
4881 vnsec->add_output_section_data(vndata);
4882 vnsec->set_link_section(dynstr);
4883 vnsec->set_info(vnentries);
4884
4885 if (odyn != NULL)
4886 {
4887 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4888 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4889 }
4890 }
4891 }
4892 }
4893
4894 // Create the .interp section and PT_INTERP segment.
4895
4896 void
4897 Layout::create_interp(const Target* target)
4898 {
4899 gold_assert(this->interp_segment_ == NULL);
4900
4901 const char* interp = parameters->options().dynamic_linker();
4902 if (interp == NULL)
4903 {
4904 interp = target->dynamic_linker();
4905 gold_assert(interp != NULL);
4906 }
4907
4908 size_t len = strlen(interp) + 1;
4909
4910 Output_section_data* odata = new Output_data_const(interp, len, 1);
4911
4912 Output_section* osec = this->choose_output_section(NULL, ".interp",
4913 elfcpp::SHT_PROGBITS,
4914 elfcpp::SHF_ALLOC,
4915 false, ORDER_INTERP,
4916 false, false, false);
4917 if (osec != NULL)
4918 osec->add_output_section_data(odata);
4919 }
4920
4921 // Add dynamic tags for the PLT and the dynamic relocs. This is
4922 // called by the target-specific code. This does nothing if not doing
4923 // a dynamic link.
4924
4925 // USE_REL is true for REL relocs rather than RELA relocs.
4926
4927 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4928
4929 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4930 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4931 // some targets have multiple reloc sections in PLT_REL.
4932
4933 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4934 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4935 // section.
4936
4937 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4938 // executable.
4939
4940 void
4941 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4942 const Output_data* plt_rel,
4943 const Output_data_reloc_generic* dyn_rel,
4944 bool add_debug, bool dynrel_includes_plt)
4945 {
4946 Output_data_dynamic* odyn = this->dynamic_data_;
4947 if (odyn == NULL)
4948 return;
4949
4950 if (plt_got != NULL && plt_got->output_section() != NULL)
4951 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4952
4953 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4954 {
4955 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4956 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4957 odyn->add_constant(elfcpp::DT_PLTREL,
4958 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4959 }
4960
4961 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4962 || (dynrel_includes_plt
4963 && plt_rel != NULL
4964 && plt_rel->output_section() != NULL))
4965 {
4966 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4967 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4968 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4969 (have_dyn_rel
4970 ? dyn_rel->output_section()
4971 : plt_rel->output_section()));
4972 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4973 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4974 odyn->add_section_size(size_tag,
4975 dyn_rel->output_section(),
4976 plt_rel->output_section());
4977 else if (have_dyn_rel)
4978 odyn->add_section_size(size_tag, dyn_rel->output_section());
4979 else
4980 odyn->add_section_size(size_tag, plt_rel->output_section());
4981 const int size = parameters->target().get_size();
4982 elfcpp::DT rel_tag;
4983 int rel_size;
4984 if (use_rel)
4985 {
4986 rel_tag = elfcpp::DT_RELENT;
4987 if (size == 32)
4988 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4989 else if (size == 64)
4990 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4991 else
4992 gold_unreachable();
4993 }
4994 else
4995 {
4996 rel_tag = elfcpp::DT_RELAENT;
4997 if (size == 32)
4998 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4999 else if (size == 64)
5000 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5001 else
5002 gold_unreachable();
5003 }
5004 odyn->add_constant(rel_tag, rel_size);
5005
5006 if (parameters->options().combreloc() && have_dyn_rel)
5007 {
5008 size_t c = dyn_rel->relative_reloc_count();
5009 if (c > 0)
5010 odyn->add_constant((use_rel
5011 ? elfcpp::DT_RELCOUNT
5012 : elfcpp::DT_RELACOUNT),
5013 c);
5014 }
5015 }
5016
5017 if (add_debug && !parameters->options().shared())
5018 {
5019 // The value of the DT_DEBUG tag is filled in by the dynamic
5020 // linker at run time, and used by the debugger.
5021 odyn->add_constant(elfcpp::DT_DEBUG, 0);
5022 }
5023 }
5024
5025 void
5026 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5027 {
5028 Output_data_dynamic* odyn = this->dynamic_data_;
5029 if (odyn == NULL)
5030 return;
5031 odyn->add_constant(tag, val);
5032 }
5033
5034 // Finish the .dynamic section and PT_DYNAMIC segment.
5035
5036 void
5037 Layout::finish_dynamic_section(const Input_objects* input_objects,
5038 const Symbol_table* symtab)
5039 {
5040 if (!this->script_options_->saw_phdrs_clause()
5041 && this->dynamic_section_ != NULL)
5042 {
5043 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5044 (elfcpp::PF_R
5045 | elfcpp::PF_W));
5046 oseg->add_output_section_to_nonload(this->dynamic_section_,
5047 elfcpp::PF_R | elfcpp::PF_W);
5048 }
5049
5050 Output_data_dynamic* const odyn = this->dynamic_data_;
5051 if (odyn == NULL)
5052 return;
5053
5054 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5055 p != input_objects->dynobj_end();
5056 ++p)
5057 {
5058 if (!(*p)->is_needed() && (*p)->as_needed())
5059 {
5060 // This dynamic object was linked with --as-needed, but it
5061 // is not needed.
5062 continue;
5063 }
5064
5065 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5066 }
5067
5068 if (parameters->options().shared())
5069 {
5070 const char* soname = parameters->options().soname();
5071 if (soname != NULL)
5072 odyn->add_string(elfcpp::DT_SONAME, soname);
5073 }
5074
5075 Symbol* sym = symtab->lookup(parameters->options().init());
5076 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5077 odyn->add_symbol(elfcpp::DT_INIT, sym);
5078
5079 sym = symtab->lookup(parameters->options().fini());
5080 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5081 odyn->add_symbol(elfcpp::DT_FINI, sym);
5082
5083 // Look for .init_array, .preinit_array and .fini_array by checking
5084 // section types.
5085 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5086 p != this->section_list_.end();
5087 ++p)
5088 switch((*p)->type())
5089 {
5090 case elfcpp::SHT_FINI_ARRAY:
5091 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5092 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5093 break;
5094 case elfcpp::SHT_INIT_ARRAY:
5095 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5096 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5097 break;
5098 case elfcpp::SHT_PREINIT_ARRAY:
5099 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5100 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5101 break;
5102 default:
5103 break;
5104 }
5105
5106 // Add a DT_RPATH entry if needed.
5107 const General_options::Dir_list& rpath(parameters->options().rpath());
5108 if (!rpath.empty())
5109 {
5110 std::string rpath_val;
5111 for (General_options::Dir_list::const_iterator p = rpath.begin();
5112 p != rpath.end();
5113 ++p)
5114 {
5115 if (rpath_val.empty())
5116 rpath_val = p->name();
5117 else
5118 {
5119 // Eliminate duplicates.
5120 General_options::Dir_list::const_iterator q;
5121 for (q = rpath.begin(); q != p; ++q)
5122 if (q->name() == p->name())
5123 break;
5124 if (q == p)
5125 {
5126 rpath_val += ':';
5127 rpath_val += p->name();
5128 }
5129 }
5130 }
5131
5132 if (!parameters->options().enable_new_dtags())
5133 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5134 else
5135 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5136 }
5137
5138 // Look for text segments that have dynamic relocations.
5139 bool have_textrel = false;
5140 if (!this->script_options_->saw_sections_clause())
5141 {
5142 for (Segment_list::const_iterator p = this->segment_list_.begin();
5143 p != this->segment_list_.end();
5144 ++p)
5145 {
5146 if ((*p)->type() == elfcpp::PT_LOAD
5147 && ((*p)->flags() & elfcpp::PF_W) == 0
5148 && (*p)->has_dynamic_reloc())
5149 {
5150 have_textrel = true;
5151 break;
5152 }
5153 }
5154 }
5155 else
5156 {
5157 // We don't know the section -> segment mapping, so we are
5158 // conservative and just look for readonly sections with
5159 // relocations. If those sections wind up in writable segments,
5160 // then we have created an unnecessary DT_TEXTREL entry.
5161 for (Section_list::const_iterator p = this->section_list_.begin();
5162 p != this->section_list_.end();
5163 ++p)
5164 {
5165 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5166 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5167 && (*p)->has_dynamic_reloc())
5168 {
5169 have_textrel = true;
5170 break;
5171 }
5172 }
5173 }
5174
5175 if (parameters->options().filter() != NULL)
5176 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5177 if (parameters->options().any_auxiliary())
5178 {
5179 for (options::String_set::const_iterator p =
5180 parameters->options().auxiliary_begin();
5181 p != parameters->options().auxiliary_end();
5182 ++p)
5183 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5184 }
5185
5186 // Add a DT_FLAGS entry if necessary.
5187 unsigned int flags = 0;
5188 if (have_textrel)
5189 {
5190 // Add a DT_TEXTREL for compatibility with older loaders.
5191 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5192 flags |= elfcpp::DF_TEXTREL;
5193
5194 if (parameters->options().text())
5195 gold_error(_("read-only segment has dynamic relocations"));
5196 else if (parameters->options().warn_shared_textrel()
5197 && parameters->options().shared())
5198 gold_warning(_("shared library text segment is not shareable"));
5199 }
5200 if (parameters->options().shared() && this->has_static_tls())
5201 flags |= elfcpp::DF_STATIC_TLS;
5202 if (parameters->options().origin())
5203 flags |= elfcpp::DF_ORIGIN;
5204 if (parameters->options().Bsymbolic()
5205 && !parameters->options().have_dynamic_list())
5206 {
5207 flags |= elfcpp::DF_SYMBOLIC;
5208 // Add DT_SYMBOLIC for compatibility with older loaders.
5209 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5210 }
5211 if (parameters->options().now())
5212 flags |= elfcpp::DF_BIND_NOW;
5213 if (flags != 0)
5214 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5215
5216 flags = 0;
5217 if (parameters->options().global())
5218 flags |= elfcpp::DF_1_GLOBAL;
5219 if (parameters->options().initfirst())
5220 flags |= elfcpp::DF_1_INITFIRST;
5221 if (parameters->options().interpose())
5222 flags |= elfcpp::DF_1_INTERPOSE;
5223 if (parameters->options().loadfltr())
5224 flags |= elfcpp::DF_1_LOADFLTR;
5225 if (parameters->options().nodefaultlib())
5226 flags |= elfcpp::DF_1_NODEFLIB;
5227 if (parameters->options().nodelete())
5228 flags |= elfcpp::DF_1_NODELETE;
5229 if (parameters->options().nodlopen())
5230 flags |= elfcpp::DF_1_NOOPEN;
5231 if (parameters->options().nodump())
5232 flags |= elfcpp::DF_1_NODUMP;
5233 if (!parameters->options().shared())
5234 flags &= ~(elfcpp::DF_1_INITFIRST
5235 | elfcpp::DF_1_NODELETE
5236 | elfcpp::DF_1_NOOPEN);
5237 if (parameters->options().origin())
5238 flags |= elfcpp::DF_1_ORIGIN;
5239 if (parameters->options().now())
5240 flags |= elfcpp::DF_1_NOW;
5241 if (parameters->options().Bgroup())
5242 flags |= elfcpp::DF_1_GROUP;
5243 if (flags != 0)
5244 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5245 }
5246
5247 // Set the size of the _DYNAMIC symbol table to be the size of the
5248 // dynamic data.
5249
5250 void
5251 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5252 {
5253 Output_data_dynamic* const odyn = this->dynamic_data_;
5254 if (odyn == NULL)
5255 return;
5256 odyn->finalize_data_size();
5257 if (this->dynamic_symbol_ == NULL)
5258 return;
5259 off_t data_size = odyn->data_size();
5260 const int size = parameters->target().get_size();
5261 if (size == 32)
5262 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5263 else if (size == 64)
5264 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5265 else
5266 gold_unreachable();
5267 }
5268
5269 // The mapping of input section name prefixes to output section names.
5270 // In some cases one prefix is itself a prefix of another prefix; in
5271 // such a case the longer prefix must come first. These prefixes are
5272 // based on the GNU linker default ELF linker script.
5273
5274 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5275 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5276 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5277 {
5278 MAPPING_INIT(".text.", ".text"),
5279 MAPPING_INIT(".rodata.", ".rodata"),
5280 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5281 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5282 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5283 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5284 MAPPING_INIT(".data.", ".data"),
5285 MAPPING_INIT(".bss.", ".bss"),
5286 MAPPING_INIT(".tdata.", ".tdata"),
5287 MAPPING_INIT(".tbss.", ".tbss"),
5288 MAPPING_INIT(".init_array.", ".init_array"),
5289 MAPPING_INIT(".fini_array.", ".fini_array"),
5290 MAPPING_INIT(".sdata.", ".sdata"),
5291 MAPPING_INIT(".sbss.", ".sbss"),
5292 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5293 // differently depending on whether it is creating a shared library.
5294 MAPPING_INIT(".sdata2.", ".sdata"),
5295 MAPPING_INIT(".sbss2.", ".sbss"),
5296 MAPPING_INIT(".lrodata.", ".lrodata"),
5297 MAPPING_INIT(".ldata.", ".ldata"),
5298 MAPPING_INIT(".lbss.", ".lbss"),
5299 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5300 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5301 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5302 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5303 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5304 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5305 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5306 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5307 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5308 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5309 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5310 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5311 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5312 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5313 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5314 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5315 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5316 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5317 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5318 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5319 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5320 };
5321
5322 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5323 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5324 {
5325 MAPPING_INIT(".text.hot.", ".text.hot"),
5326 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5327 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5328 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5329 MAPPING_INIT(".text.startup.", ".text.startup"),
5330 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5331 MAPPING_INIT(".text.exit.", ".text.exit"),
5332 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5333 MAPPING_INIT(".text.", ".text"),
5334 };
5335 #undef MAPPING_INIT
5336 #undef MAPPING_INIT_EXACT
5337
5338 const int Layout::section_name_mapping_count =
5339 (sizeof(Layout::section_name_mapping)
5340 / sizeof(Layout::section_name_mapping[0]));
5341
5342 const int Layout::text_section_name_mapping_count =
5343 (sizeof(Layout::text_section_name_mapping)
5344 / sizeof(Layout::text_section_name_mapping[0]));
5345
5346 // Find section name NAME in PSNM and return the mapped name if found
5347 // with the length set in PLEN.
5348 const char *
5349 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5350 const int count,
5351 const char* name, size_t* plen)
5352 {
5353 for (int i = 0; i < count; ++i, ++psnm)
5354 {
5355 if (psnm->fromlen > 0)
5356 {
5357 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5358 {
5359 *plen = psnm->tolen;
5360 return psnm->to;
5361 }
5362 }
5363 else
5364 {
5365 if (strcmp(name, psnm->from) == 0)
5366 {
5367 *plen = psnm->tolen;
5368 return psnm->to;
5369 }
5370 }
5371 }
5372 return NULL;
5373 }
5374
5375 // Choose the output section name to use given an input section name.
5376 // Set *PLEN to the length of the name. *PLEN is initialized to the
5377 // length of NAME.
5378
5379 const char*
5380 Layout::output_section_name(const Relobj* relobj, const char* name,
5381 size_t* plen)
5382 {
5383 // gcc 4.3 generates the following sorts of section names when it
5384 // needs a section name specific to a function:
5385 // .text.FN
5386 // .rodata.FN
5387 // .sdata2.FN
5388 // .data.FN
5389 // .data.rel.FN
5390 // .data.rel.local.FN
5391 // .data.rel.ro.FN
5392 // .data.rel.ro.local.FN
5393 // .sdata.FN
5394 // .bss.FN
5395 // .sbss.FN
5396 // .tdata.FN
5397 // .tbss.FN
5398
5399 // The GNU linker maps all of those to the part before the .FN,
5400 // except that .data.rel.local.FN is mapped to .data, and
5401 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5402 // beginning with .data.rel.ro.local are grouped together.
5403
5404 // For an anonymous namespace, the string FN can contain a '.'.
5405
5406 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5407 // GNU linker maps to .rodata.
5408
5409 // The .data.rel.ro sections are used with -z relro. The sections
5410 // are recognized by name. We use the same names that the GNU
5411 // linker does for these sections.
5412
5413 // It is hard to handle this in a principled way, so we don't even
5414 // try. We use a table of mappings. If the input section name is
5415 // not found in the table, we simply use it as the output section
5416 // name.
5417
5418 if (parameters->options().keep_text_section_prefix()
5419 && is_prefix_of(".text", name))
5420 {
5421 const char* match = match_section_name(text_section_name_mapping,
5422 text_section_name_mapping_count,
5423 name, plen);
5424 if (match != NULL)
5425 return match;
5426 }
5427
5428 const char* match = match_section_name(section_name_mapping,
5429 section_name_mapping_count, name, plen);
5430 if (match != NULL)
5431 return match;
5432
5433 // As an additional complication, .ctors sections are output in
5434 // either .ctors or .init_array sections, and .dtors sections are
5435 // output in either .dtors or .fini_array sections.
5436 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5437 {
5438 if (parameters->options().ctors_in_init_array())
5439 {
5440 *plen = 11;
5441 return name[1] == 'c' ? ".init_array" : ".fini_array";
5442 }
5443 else
5444 {
5445 *plen = 6;
5446 return name[1] == 'c' ? ".ctors" : ".dtors";
5447 }
5448 }
5449 if (parameters->options().ctors_in_init_array()
5450 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5451 {
5452 // To make .init_array/.fini_array work with gcc we must exclude
5453 // .ctors and .dtors sections from the crtbegin and crtend
5454 // files.
5455 if (relobj == NULL
5456 || (!Layout::match_file_name(relobj, "crtbegin")
5457 && !Layout::match_file_name(relobj, "crtend")))
5458 {
5459 *plen = 11;
5460 return name[1] == 'c' ? ".init_array" : ".fini_array";
5461 }
5462 }
5463
5464 return name;
5465 }
5466
5467 // Return true if RELOBJ is an input file whose base name matches
5468 // FILE_NAME. The base name must have an extension of ".o", and must
5469 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5470 // to match crtbegin.o as well as crtbeginS.o without getting confused
5471 // by other possibilities. Overall matching the file name this way is
5472 // a dreadful hack, but the GNU linker does it in order to better
5473 // support gcc, and we need to be compatible.
5474
5475 bool
5476 Layout::match_file_name(const Relobj* relobj, const char* match)
5477 {
5478 const std::string& file_name(relobj->name());
5479 const char* base_name = lbasename(file_name.c_str());
5480 size_t match_len = strlen(match);
5481 if (strncmp(base_name, match, match_len) != 0)
5482 return false;
5483 size_t base_len = strlen(base_name);
5484 if (base_len != match_len + 2 && base_len != match_len + 3)
5485 return false;
5486 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5487 }
5488
5489 // Check if a comdat group or .gnu.linkonce section with the given
5490 // NAME is selected for the link. If there is already a section,
5491 // *KEPT_SECTION is set to point to the existing section and the
5492 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5493 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5494 // *KEPT_SECTION is set to the internal copy and the function returns
5495 // true.
5496
5497 bool
5498 Layout::find_or_add_kept_section(const std::string& name,
5499 Relobj* object,
5500 unsigned int shndx,
5501 bool is_comdat,
5502 bool is_group_name,
5503 Kept_section** kept_section)
5504 {
5505 // It's normal to see a couple of entries here, for the x86 thunk
5506 // sections. If we see more than a few, we're linking a C++
5507 // program, and we resize to get more space to minimize rehashing.
5508 if (this->signatures_.size() > 4
5509 && !this->resized_signatures_)
5510 {
5511 reserve_unordered_map(&this->signatures_,
5512 this->number_of_input_files_ * 64);
5513 this->resized_signatures_ = true;
5514 }
5515
5516 Kept_section candidate;
5517 std::pair<Signatures::iterator, bool> ins =
5518 this->signatures_.insert(std::make_pair(name, candidate));
5519
5520 if (kept_section != NULL)
5521 *kept_section = &ins.first->second;
5522 if (ins.second)
5523 {
5524 // This is the first time we've seen this signature.
5525 ins.first->second.set_object(object);
5526 ins.first->second.set_shndx(shndx);
5527 if (is_comdat)
5528 ins.first->second.set_is_comdat();
5529 if (is_group_name)
5530 ins.first->second.set_is_group_name();
5531 return true;
5532 }
5533
5534 // We have already seen this signature.
5535
5536 if (ins.first->second.is_group_name())
5537 {
5538 // We've already seen a real section group with this signature.
5539 // If the kept group is from a plugin object, and we're in the
5540 // replacement phase, accept the new one as a replacement.
5541 if (ins.first->second.object() == NULL
5542 && parameters->options().plugins()->in_replacement_phase())
5543 {
5544 ins.first->second.set_object(object);
5545 ins.first->second.set_shndx(shndx);
5546 return true;
5547 }
5548 return false;
5549 }
5550 else if (is_group_name)
5551 {
5552 // This is a real section group, and we've already seen a
5553 // linkonce section with this signature. Record that we've seen
5554 // a section group, and don't include this section group.
5555 ins.first->second.set_is_group_name();
5556 return false;
5557 }
5558 else
5559 {
5560 // We've already seen a linkonce section and this is a linkonce
5561 // section. These don't block each other--this may be the same
5562 // symbol name with different section types.
5563 return true;
5564 }
5565 }
5566
5567 // Store the allocated sections into the section list.
5568
5569 void
5570 Layout::get_allocated_sections(Section_list* section_list) const
5571 {
5572 for (Section_list::const_iterator p = this->section_list_.begin();
5573 p != this->section_list_.end();
5574 ++p)
5575 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5576 section_list->push_back(*p);
5577 }
5578
5579 // Store the executable sections into the section list.
5580
5581 void
5582 Layout::get_executable_sections(Section_list* section_list) const
5583 {
5584 for (Section_list::const_iterator p = this->section_list_.begin();
5585 p != this->section_list_.end();
5586 ++p)
5587 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5588 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5589 section_list->push_back(*p);
5590 }
5591
5592 // Create an output segment.
5593
5594 Output_segment*
5595 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5596 {
5597 gold_assert(!parameters->options().relocatable());
5598 Output_segment* oseg = new Output_segment(type, flags);
5599 this->segment_list_.push_back(oseg);
5600
5601 if (type == elfcpp::PT_TLS)
5602 this->tls_segment_ = oseg;
5603 else if (type == elfcpp::PT_GNU_RELRO)
5604 this->relro_segment_ = oseg;
5605 else if (type == elfcpp::PT_INTERP)
5606 this->interp_segment_ = oseg;
5607
5608 return oseg;
5609 }
5610
5611 // Return the file offset of the normal symbol table.
5612
5613 off_t
5614 Layout::symtab_section_offset() const
5615 {
5616 if (this->symtab_section_ != NULL)
5617 return this->symtab_section_->offset();
5618 return 0;
5619 }
5620
5621 // Return the section index of the normal symbol table. It may have
5622 // been stripped by the -s/--strip-all option.
5623
5624 unsigned int
5625 Layout::symtab_section_shndx() const
5626 {
5627 if (this->symtab_section_ != NULL)
5628 return this->symtab_section_->out_shndx();
5629 return 0;
5630 }
5631
5632 // Write out the Output_sections. Most won't have anything to write,
5633 // since most of the data will come from input sections which are
5634 // handled elsewhere. But some Output_sections do have Output_data.
5635
5636 void
5637 Layout::write_output_sections(Output_file* of) const
5638 {
5639 for (Section_list::const_iterator p = this->section_list_.begin();
5640 p != this->section_list_.end();
5641 ++p)
5642 {
5643 if (!(*p)->after_input_sections())
5644 (*p)->write(of);
5645 }
5646 }
5647
5648 // Write out data not associated with a section or the symbol table.
5649
5650 void
5651 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5652 {
5653 if (!parameters->options().strip_all())
5654 {
5655 const Output_section* symtab_section = this->symtab_section_;
5656 for (Section_list::const_iterator p = this->section_list_.begin();
5657 p != this->section_list_.end();
5658 ++p)
5659 {
5660 if ((*p)->needs_symtab_index())
5661 {
5662 gold_assert(symtab_section != NULL);
5663 unsigned int index = (*p)->symtab_index();
5664 gold_assert(index > 0 && index != -1U);
5665 off_t off = (symtab_section->offset()
5666 + index * symtab_section->entsize());
5667 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5668 }
5669 }
5670 }
5671
5672 const Output_section* dynsym_section = this->dynsym_section_;
5673 for (Section_list::const_iterator p = this->section_list_.begin();
5674 p != this->section_list_.end();
5675 ++p)
5676 {
5677 if ((*p)->needs_dynsym_index())
5678 {
5679 gold_assert(dynsym_section != NULL);
5680 unsigned int index = (*p)->dynsym_index();
5681 gold_assert(index > 0 && index != -1U);
5682 off_t off = (dynsym_section->offset()
5683 + index * dynsym_section->entsize());
5684 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5685 }
5686 }
5687
5688 // Write out the Output_data which are not in an Output_section.
5689 for (Data_list::const_iterator p = this->special_output_list_.begin();
5690 p != this->special_output_list_.end();
5691 ++p)
5692 (*p)->write(of);
5693
5694 // Write out the Output_data which are not in an Output_section
5695 // and are regenerated in each iteration of relaxation.
5696 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5697 p != this->relax_output_list_.end();
5698 ++p)
5699 (*p)->write(of);
5700 }
5701
5702 // Write out the Output_sections which can only be written after the
5703 // input sections are complete.
5704
5705 void
5706 Layout::write_sections_after_input_sections(Output_file* of)
5707 {
5708 // Determine the final section offsets, and thus the final output
5709 // file size. Note we finalize the .shstrab last, to allow the
5710 // after_input_section sections to modify their section-names before
5711 // writing.
5712 if (this->any_postprocessing_sections_)
5713 {
5714 off_t off = this->output_file_size_;
5715 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5716
5717 // Now that we've finalized the names, we can finalize the shstrab.
5718 off =
5719 this->set_section_offsets(off,
5720 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5721
5722 if (off > this->output_file_size_)
5723 {
5724 of->resize(off);
5725 this->output_file_size_ = off;
5726 }
5727 }
5728
5729 for (Section_list::const_iterator p = this->section_list_.begin();
5730 p != this->section_list_.end();
5731 ++p)
5732 {
5733 if ((*p)->after_input_sections())
5734 (*p)->write(of);
5735 }
5736
5737 this->section_headers_->write(of);
5738 }
5739
5740 // If a tree-style build ID was requested, the parallel part of that computation
5741 // is already done, and the final hash-of-hashes is computed here. For other
5742 // types of build IDs, all the work is done here.
5743
5744 void
5745 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5746 size_t size_of_hashes) const
5747 {
5748 if (this->build_id_note_ == NULL)
5749 return;
5750
5751 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5752 this->build_id_note_->data_size());
5753
5754 if (array_of_hashes == NULL)
5755 {
5756 const size_t output_file_size = this->output_file_size();
5757 const unsigned char* iv = of->get_input_view(0, output_file_size);
5758 const char* style = parameters->options().build_id();
5759
5760 // If we get here with style == "tree" then the output must be
5761 // too small for chunking, and we use SHA-1 in that case.
5762 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5763 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5764 else if (strcmp(style, "md5") == 0)
5765 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5766 else
5767 gold_unreachable();
5768
5769 of->free_input_view(0, output_file_size, iv);
5770 }
5771 else
5772 {
5773 // Non-overlapping substrings of the output file have been hashed.
5774 // Compute SHA-1 hash of the hashes.
5775 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5776 size_of_hashes, ov);
5777 delete[] array_of_hashes;
5778 }
5779
5780 of->write_output_view(this->build_id_note_->offset(),
5781 this->build_id_note_->data_size(),
5782 ov);
5783 }
5784
5785 // Write out a binary file. This is called after the link is
5786 // complete. IN is the temporary output file we used to generate the
5787 // ELF code. We simply walk through the segments, read them from
5788 // their file offset in IN, and write them to their load address in
5789 // the output file. FIXME: with a bit more work, we could support
5790 // S-records and/or Intel hex format here.
5791
5792 void
5793 Layout::write_binary(Output_file* in) const
5794 {
5795 gold_assert(parameters->options().oformat_enum()
5796 == General_options::OBJECT_FORMAT_BINARY);
5797
5798 // Get the size of the binary file.
5799 uint64_t max_load_address = 0;
5800 for (Segment_list::const_iterator p = this->segment_list_.begin();
5801 p != this->segment_list_.end();
5802 ++p)
5803 {
5804 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5805 {
5806 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5807 if (max_paddr > max_load_address)
5808 max_load_address = max_paddr;
5809 }
5810 }
5811
5812 Output_file out(parameters->options().output_file_name());
5813 out.open(max_load_address);
5814
5815 for (Segment_list::const_iterator p = this->segment_list_.begin();
5816 p != this->segment_list_.end();
5817 ++p)
5818 {
5819 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5820 {
5821 const unsigned char* vin = in->get_input_view((*p)->offset(),
5822 (*p)->filesz());
5823 unsigned char* vout = out.get_output_view((*p)->paddr(),
5824 (*p)->filesz());
5825 memcpy(vout, vin, (*p)->filesz());
5826 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5827 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5828 }
5829 }
5830
5831 out.close();
5832 }
5833
5834 // Print the output sections to the map file.
5835
5836 void
5837 Layout::print_to_mapfile(Mapfile* mapfile) const
5838 {
5839 for (Segment_list::const_iterator p = this->segment_list_.begin();
5840 p != this->segment_list_.end();
5841 ++p)
5842 (*p)->print_sections_to_mapfile(mapfile);
5843 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5844 p != this->unattached_section_list_.end();
5845 ++p)
5846 (*p)->print_to_mapfile(mapfile);
5847 }
5848
5849 // Print statistical information to stderr. This is used for --stats.
5850
5851 void
5852 Layout::print_stats() const
5853 {
5854 this->namepool_.print_stats("section name pool");
5855 this->sympool_.print_stats("output symbol name pool");
5856 this->dynpool_.print_stats("dynamic name pool");
5857
5858 for (Section_list::const_iterator p = this->section_list_.begin();
5859 p != this->section_list_.end();
5860 ++p)
5861 (*p)->print_merge_stats();
5862 }
5863
5864 // Write_sections_task methods.
5865
5866 // We can always run this task.
5867
5868 Task_token*
5869 Write_sections_task::is_runnable()
5870 {
5871 return NULL;
5872 }
5873
5874 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5875 // when finished.
5876
5877 void
5878 Write_sections_task::locks(Task_locker* tl)
5879 {
5880 tl->add(this, this->output_sections_blocker_);
5881 if (this->input_sections_blocker_ != NULL)
5882 tl->add(this, this->input_sections_blocker_);
5883 tl->add(this, this->final_blocker_);
5884 }
5885
5886 // Run the task--write out the data.
5887
5888 void
5889 Write_sections_task::run(Workqueue*)
5890 {
5891 this->layout_->write_output_sections(this->of_);
5892 }
5893
5894 // Write_data_task methods.
5895
5896 // We can always run this task.
5897
5898 Task_token*
5899 Write_data_task::is_runnable()
5900 {
5901 return NULL;
5902 }
5903
5904 // We need to unlock FINAL_BLOCKER when finished.
5905
5906 void
5907 Write_data_task::locks(Task_locker* tl)
5908 {
5909 tl->add(this, this->final_blocker_);
5910 }
5911
5912 // Run the task--write out the data.
5913
5914 void
5915 Write_data_task::run(Workqueue*)
5916 {
5917 this->layout_->write_data(this->symtab_, this->of_);
5918 }
5919
5920 // Write_symbols_task methods.
5921
5922 // We can always run this task.
5923
5924 Task_token*
5925 Write_symbols_task::is_runnable()
5926 {
5927 return NULL;
5928 }
5929
5930 // We need to unlock FINAL_BLOCKER when finished.
5931
5932 void
5933 Write_symbols_task::locks(Task_locker* tl)
5934 {
5935 tl->add(this, this->final_blocker_);
5936 }
5937
5938 // Run the task--write out the symbols.
5939
5940 void
5941 Write_symbols_task::run(Workqueue*)
5942 {
5943 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5944 this->layout_->symtab_xindex(),
5945 this->layout_->dynsym_xindex(), this->of_);
5946 }
5947
5948 // Write_after_input_sections_task methods.
5949
5950 // We can only run this task after the input sections have completed.
5951
5952 Task_token*
5953 Write_after_input_sections_task::is_runnable()
5954 {
5955 if (this->input_sections_blocker_->is_blocked())
5956 return this->input_sections_blocker_;
5957 return NULL;
5958 }
5959
5960 // We need to unlock FINAL_BLOCKER when finished.
5961
5962 void
5963 Write_after_input_sections_task::locks(Task_locker* tl)
5964 {
5965 tl->add(this, this->final_blocker_);
5966 }
5967
5968 // Run the task.
5969
5970 void
5971 Write_after_input_sections_task::run(Workqueue*)
5972 {
5973 this->layout_->write_sections_after_input_sections(this->of_);
5974 }
5975
5976 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5977 // or as a "tree" where each chunk of the string is hashed and then those
5978 // hashes are put into a (much smaller) string which is hashed with sha1.
5979 // We compute a checksum over the entire file because that is simplest.
5980
5981 void
5982 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5983 {
5984 Task_token* post_hash_tasks_blocker = new Task_token(true);
5985 const Layout* layout = this->layout_;
5986 Output_file* of = this->of_;
5987 const size_t filesize = (layout->output_file_size() <= 0 ? 0
5988 : static_cast<size_t>(layout->output_file_size()));
5989 unsigned char* array_of_hashes = NULL;
5990 size_t size_of_hashes = 0;
5991
5992 if (strcmp(this->options_->build_id(), "tree") == 0
5993 && this->options_->build_id_chunk_size_for_treehash() > 0
5994 && filesize > 0
5995 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5996 {
5997 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5998 const size_t chunk_size =
5999 this->options_->build_id_chunk_size_for_treehash();
6000 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6001 post_hash_tasks_blocker->add_blockers(num_hashes);
6002 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6003 array_of_hashes = new unsigned char[size_of_hashes];
6004 unsigned char *dst = array_of_hashes;
6005 for (size_t i = 0, src_offset = 0; i < num_hashes;
6006 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6007 {
6008 size_t size = std::min(chunk_size, filesize - src_offset);
6009 workqueue->queue(new Hash_task(of,
6010 src_offset,
6011 size,
6012 dst,
6013 post_hash_tasks_blocker));
6014 }
6015 }
6016
6017 // Queue the final task to write the build id and close the output file.
6018 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6019 layout,
6020 of,
6021 array_of_hashes,
6022 size_of_hashes),
6023 post_hash_tasks_blocker,
6024 "Task_function Close_task_runner"));
6025 }
6026
6027 // Close_task_runner methods.
6028
6029 // Finish up the build ID computation, if necessary, and write a binary file,
6030 // if necessary. Then close the output file.
6031
6032 void
6033 Close_task_runner::run(Workqueue*, const Task*)
6034 {
6035 // At this point the multi-threaded part of the build ID computation,
6036 // if any, is done. See Build_id_task_runner.
6037 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6038 this->size_of_hashes_);
6039
6040 // If we've been asked to create a binary file, we do so here.
6041 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6042 this->layout_->write_binary(this->of_);
6043
6044 this->of_->close();
6045 }
6046
6047 // Instantiate the templates we need. We could use the configure
6048 // script to restrict this to only the ones for implemented targets.
6049
6050 #ifdef HAVE_TARGET_32_LITTLE
6051 template
6052 Output_section*
6053 Layout::init_fixed_output_section<32, false>(
6054 const char* name,
6055 elfcpp::Shdr<32, false>& shdr);
6056 #endif
6057
6058 #ifdef HAVE_TARGET_32_BIG
6059 template
6060 Output_section*
6061 Layout::init_fixed_output_section<32, true>(
6062 const char* name,
6063 elfcpp::Shdr<32, true>& shdr);
6064 #endif
6065
6066 #ifdef HAVE_TARGET_64_LITTLE
6067 template
6068 Output_section*
6069 Layout::init_fixed_output_section<64, false>(
6070 const char* name,
6071 elfcpp::Shdr<64, false>& shdr);
6072 #endif
6073
6074 #ifdef HAVE_TARGET_64_BIG
6075 template
6076 Output_section*
6077 Layout::init_fixed_output_section<64, true>(
6078 const char* name,
6079 elfcpp::Shdr<64, true>& shdr);
6080 #endif
6081
6082 #ifdef HAVE_TARGET_32_LITTLE
6083 template
6084 Output_section*
6085 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6086 unsigned int shndx,
6087 const char* name,
6088 const elfcpp::Shdr<32, false>& shdr,
6089 unsigned int, unsigned int, unsigned int, off_t*);
6090 #endif
6091
6092 #ifdef HAVE_TARGET_32_BIG
6093 template
6094 Output_section*
6095 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6096 unsigned int shndx,
6097 const char* name,
6098 const elfcpp::Shdr<32, true>& shdr,
6099 unsigned int, unsigned int, unsigned int, off_t*);
6100 #endif
6101
6102 #ifdef HAVE_TARGET_64_LITTLE
6103 template
6104 Output_section*
6105 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6106 unsigned int shndx,
6107 const char* name,
6108 const elfcpp::Shdr<64, false>& shdr,
6109 unsigned int, unsigned int, unsigned int, off_t*);
6110 #endif
6111
6112 #ifdef HAVE_TARGET_64_BIG
6113 template
6114 Output_section*
6115 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6116 unsigned int shndx,
6117 const char* name,
6118 const elfcpp::Shdr<64, true>& shdr,
6119 unsigned int, unsigned int, unsigned int, off_t*);
6120 #endif
6121
6122 #ifdef HAVE_TARGET_32_LITTLE
6123 template
6124 Output_section*
6125 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6126 unsigned int reloc_shndx,
6127 const elfcpp::Shdr<32, false>& shdr,
6128 Output_section* data_section,
6129 Relocatable_relocs* rr);
6130 #endif
6131
6132 #ifdef HAVE_TARGET_32_BIG
6133 template
6134 Output_section*
6135 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6136 unsigned int reloc_shndx,
6137 const elfcpp::Shdr<32, true>& shdr,
6138 Output_section* data_section,
6139 Relocatable_relocs* rr);
6140 #endif
6141
6142 #ifdef HAVE_TARGET_64_LITTLE
6143 template
6144 Output_section*
6145 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6146 unsigned int reloc_shndx,
6147 const elfcpp::Shdr<64, false>& shdr,
6148 Output_section* data_section,
6149 Relocatable_relocs* rr);
6150 #endif
6151
6152 #ifdef HAVE_TARGET_64_BIG
6153 template
6154 Output_section*
6155 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6156 unsigned int reloc_shndx,
6157 const elfcpp::Shdr<64, true>& shdr,
6158 Output_section* data_section,
6159 Relocatable_relocs* rr);
6160 #endif
6161
6162 #ifdef HAVE_TARGET_32_LITTLE
6163 template
6164 void
6165 Layout::layout_group<32, false>(Symbol_table* symtab,
6166 Sized_relobj_file<32, false>* object,
6167 unsigned int,
6168 const char* group_section_name,
6169 const char* signature,
6170 const elfcpp::Shdr<32, false>& shdr,
6171 elfcpp::Elf_Word flags,
6172 std::vector<unsigned int>* shndxes);
6173 #endif
6174
6175 #ifdef HAVE_TARGET_32_BIG
6176 template
6177 void
6178 Layout::layout_group<32, true>(Symbol_table* symtab,
6179 Sized_relobj_file<32, true>* object,
6180 unsigned int,
6181 const char* group_section_name,
6182 const char* signature,
6183 const elfcpp::Shdr<32, true>& shdr,
6184 elfcpp::Elf_Word flags,
6185 std::vector<unsigned int>* shndxes);
6186 #endif
6187
6188 #ifdef HAVE_TARGET_64_LITTLE
6189 template
6190 void
6191 Layout::layout_group<64, false>(Symbol_table* symtab,
6192 Sized_relobj_file<64, false>* object,
6193 unsigned int,
6194 const char* group_section_name,
6195 const char* signature,
6196 const elfcpp::Shdr<64, false>& shdr,
6197 elfcpp::Elf_Word flags,
6198 std::vector<unsigned int>* shndxes);
6199 #endif
6200
6201 #ifdef HAVE_TARGET_64_BIG
6202 template
6203 void
6204 Layout::layout_group<64, true>(Symbol_table* symtab,
6205 Sized_relobj_file<64, true>* object,
6206 unsigned int,
6207 const char* group_section_name,
6208 const char* signature,
6209 const elfcpp::Shdr<64, true>& shdr,
6210 elfcpp::Elf_Word flags,
6211 std::vector<unsigned int>* shndxes);
6212 #endif
6213
6214 #ifdef HAVE_TARGET_32_LITTLE
6215 template
6216 Output_section*
6217 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6218 const unsigned char* symbols,
6219 off_t symbols_size,
6220 const unsigned char* symbol_names,
6221 off_t symbol_names_size,
6222 unsigned int shndx,
6223 const elfcpp::Shdr<32, false>& shdr,
6224 unsigned int reloc_shndx,
6225 unsigned int reloc_type,
6226 off_t* off);
6227 #endif
6228
6229 #ifdef HAVE_TARGET_32_BIG
6230 template
6231 Output_section*
6232 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6233 const unsigned char* symbols,
6234 off_t symbols_size,
6235 const unsigned char* symbol_names,
6236 off_t symbol_names_size,
6237 unsigned int shndx,
6238 const elfcpp::Shdr<32, true>& shdr,
6239 unsigned int reloc_shndx,
6240 unsigned int reloc_type,
6241 off_t* off);
6242 #endif
6243
6244 #ifdef HAVE_TARGET_64_LITTLE
6245 template
6246 Output_section*
6247 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6248 const unsigned char* symbols,
6249 off_t symbols_size,
6250 const unsigned char* symbol_names,
6251 off_t symbol_names_size,
6252 unsigned int shndx,
6253 const elfcpp::Shdr<64, false>& shdr,
6254 unsigned int reloc_shndx,
6255 unsigned int reloc_type,
6256 off_t* off);
6257 #endif
6258
6259 #ifdef HAVE_TARGET_64_BIG
6260 template
6261 Output_section*
6262 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6263 const unsigned char* symbols,
6264 off_t symbols_size,
6265 const unsigned char* symbol_names,
6266 off_t symbol_names_size,
6267 unsigned int shndx,
6268 const elfcpp::Shdr<64, true>& shdr,
6269 unsigned int reloc_shndx,
6270 unsigned int reloc_type,
6271 off_t* off);
6272 #endif
6273
6274 #ifdef HAVE_TARGET_32_LITTLE
6275 template
6276 void
6277 Layout::add_to_gdb_index(bool is_type_unit,
6278 Sized_relobj<32, false>* object,
6279 const unsigned char* symbols,
6280 off_t symbols_size,
6281 unsigned int shndx,
6282 unsigned int reloc_shndx,
6283 unsigned int reloc_type);
6284 #endif
6285
6286 #ifdef HAVE_TARGET_32_BIG
6287 template
6288 void
6289 Layout::add_to_gdb_index(bool is_type_unit,
6290 Sized_relobj<32, true>* object,
6291 const unsigned char* symbols,
6292 off_t symbols_size,
6293 unsigned int shndx,
6294 unsigned int reloc_shndx,
6295 unsigned int reloc_type);
6296 #endif
6297
6298 #ifdef HAVE_TARGET_64_LITTLE
6299 template
6300 void
6301 Layout::add_to_gdb_index(bool is_type_unit,
6302 Sized_relobj<64, false>* object,
6303 const unsigned char* symbols,
6304 off_t symbols_size,
6305 unsigned int shndx,
6306 unsigned int reloc_shndx,
6307 unsigned int reloc_type);
6308 #endif
6309
6310 #ifdef HAVE_TARGET_64_BIG
6311 template
6312 void
6313 Layout::add_to_gdb_index(bool is_type_unit,
6314 Sized_relobj<64, true>* object,
6315 const unsigned char* symbols,
6316 off_t symbols_size,
6317 unsigned int shndx,
6318 unsigned int reloc_shndx,
6319 unsigned int reloc_type);
6320 #endif
6321
6322 } // End namespace gold.
This page took 0.187519 seconds and 5 git commands to generate.