2013-06-05 Alexander Ivchenko <alexander.ivchenko@intel.com>
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // A Hash_task computes the MD5 checksum of an array of char.
240 // It has a blocker on either side (i.e., the task cannot run until
241 // the first is unblocked, and it unblocks the second after running).
242
243 class Hash_task : public Task
244 {
245 public:
246 Hash_task(const unsigned char* src,
247 size_t size,
248 unsigned char* dst,
249 Task_token* build_id_blocker,
250 Task_token* final_blocker)
251 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
252 final_blocker_(final_blocker)
253 { }
254
255 void
256 run(Workqueue*)
257 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
258
259 Task_token*
260 is_runnable();
261
262 // Unblock FINAL_BLOCKER_ when done.
263 void
264 locks(Task_locker* tl)
265 { tl->add(this, this->final_blocker_); }
266
267 std::string
268 get_name() const
269 { return "Hash_task"; }
270
271 private:
272 const unsigned char* const src_;
273 const size_t size_;
274 unsigned char* const dst_;
275 Task_token* const build_id_blocker_;
276 Task_token* const final_blocker_;
277 };
278
279 Task_token*
280 Hash_task::is_runnable()
281 {
282 if (this->build_id_blocker_->is_blocked())
283 return this->build_id_blocker_;
284 return NULL;
285 }
286
287 // Layout::Relaxation_debug_check methods.
288
289 // Check that sections and special data are in reset states.
290 // We do not save states for Output_sections and special Output_data.
291 // So we check that they have not assigned any addresses or offsets.
292 // clean_up_after_relaxation simply resets their addresses and offsets.
293 void
294 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
295 const Layout::Section_list& sections,
296 const Layout::Data_list& special_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307 }
308
309 // Save information of SECTIONS for checking later.
310
311 void
312 Layout::Relaxation_debug_check::read_sections(
313 const Layout::Section_list& sections)
314 {
315 for(Layout::Section_list::const_iterator p = sections.begin();
316 p != sections.end();
317 ++p)
318 {
319 Output_section* os = *p;
320 Section_info info;
321 info.output_section = os;
322 info.address = os->is_address_valid() ? os->address() : 0;
323 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
324 info.offset = os->is_offset_valid()? os->offset() : -1 ;
325 this->section_infos_.push_back(info);
326 }
327 }
328
329 // Verify SECTIONS using previously recorded information.
330
331 void
332 Layout::Relaxation_debug_check::verify_sections(
333 const Layout::Section_list& sections)
334 {
335 size_t i = 0;
336 for(Layout::Section_list::const_iterator p = sections.begin();
337 p != sections.end();
338 ++p, ++i)
339 {
340 Output_section* os = *p;
341 uint64_t address = os->is_address_valid() ? os->address() : 0;
342 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
343 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
344
345 if (i >= this->section_infos_.size())
346 {
347 gold_fatal("Section_info of %s missing.\n", os->name());
348 }
349 const Section_info& info = this->section_infos_[i];
350 if (os != info.output_section)
351 gold_fatal("Section order changed. Expecting %s but see %s\n",
352 info.output_section->name(), os->name());
353 if (address != info.address
354 || data_size != info.data_size
355 || offset != info.offset)
356 gold_fatal("Section %s changed.\n", os->name());
357 }
358 }
359
360 // Layout_task_runner methods.
361
362 // Lay out the sections. This is called after all the input objects
363 // have been read.
364
365 void
366 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
367 {
368 // See if any of the input definitions violate the One Definition Rule.
369 // TODO: if this is too slow, do this as a task, rather than inline.
370 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
371
372 Layout* layout = this->layout_;
373 off_t file_size = layout->finalize(this->input_objects_,
374 this->symtab_,
375 this->target_,
376 task);
377
378 // Now we know the final size of the output file and we know where
379 // each piece of information goes.
380
381 if (this->mapfile_ != NULL)
382 {
383 this->mapfile_->print_discarded_sections(this->input_objects_);
384 layout->print_to_mapfile(this->mapfile_);
385 }
386
387 Output_file* of;
388 if (layout->incremental_base() == NULL)
389 {
390 of = new Output_file(parameters->options().output_file_name());
391 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
392 of->set_is_temporary();
393 of->open(file_size);
394 }
395 else
396 {
397 of = layout->incremental_base()->output_file();
398
399 // Apply the incremental relocations for symbols whose values
400 // have changed. We do this before we resize the file and start
401 // writing anything else to it, so that we can read the old
402 // incremental information from the file before (possibly)
403 // overwriting it.
404 if (parameters->incremental_update())
405 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
406 this->layout_,
407 of);
408
409 of->resize(file_size);
410 }
411
412 // Queue up the final set of tasks.
413 gold::queue_final_tasks(this->options_, this->input_objects_,
414 this->symtab_, layout, workqueue, of);
415 }
416
417 // Layout methods.
418
419 Layout::Layout(int number_of_input_files, Script_options* script_options)
420 : number_of_input_files_(number_of_input_files),
421 script_options_(script_options),
422 namepool_(),
423 sympool_(),
424 dynpool_(),
425 signatures_(),
426 section_name_map_(),
427 segment_list_(),
428 section_list_(),
429 unattached_section_list_(),
430 special_output_list_(),
431 section_headers_(NULL),
432 tls_segment_(NULL),
433 relro_segment_(NULL),
434 interp_segment_(NULL),
435 increase_relro_(0),
436 symtab_section_(NULL),
437 symtab_xindex_(NULL),
438 dynsym_section_(NULL),
439 dynsym_xindex_(NULL),
440 dynamic_section_(NULL),
441 dynamic_symbol_(NULL),
442 dynamic_data_(NULL),
443 eh_frame_section_(NULL),
444 eh_frame_data_(NULL),
445 added_eh_frame_data_(false),
446 eh_frame_hdr_section_(NULL),
447 gdb_index_data_(NULL),
448 build_id_note_(NULL),
449 array_of_hashes_(NULL),
450 size_of_array_of_hashes_(0),
451 input_view_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_()
478 {
479 // Make space for more than enough segments for a typical file.
480 // This is just for efficiency--it's OK if we wind up needing more.
481 this->segment_list_.reserve(12);
482
483 // We expect two unattached Output_data objects: the file header and
484 // the segment headers.
485 this->special_output_list_.reserve(2);
486
487 // Initialize structure needed for an incremental build.
488 if (parameters->incremental())
489 this->incremental_inputs_ = new Incremental_inputs;
490
491 // The section name pool is worth optimizing in all cases, because
492 // it is small, but there are often overlaps due to .rel sections.
493 this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501 this->incremental_base_ = base;
502 this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510 return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520 "abbrev",
521 "addr", // Fission extension
522 // "aranges", // not used by gdb as of 7.4
523 "frame",
524 "info",
525 "types",
526 "line",
527 "loc",
528 "macinfo",
529 "macro",
530 // "pubnames", // not used by gdb as of 7.4
531 // "pubtypes", // not used by gdb as of 7.4
532 "ranges",
533 "str",
534 };
535
536 // This is the minimum set of sections needed for line numbers.
537
538 static const char* lines_only_debug_sections[] =
539 {
540 "abbrev",
541 // "addr", // Fission extension
542 // "aranges", // not used by gdb as of 7.4
543 // "frame",
544 "info",
545 // "types",
546 "line",
547 // "loc",
548 // "macinfo",
549 // "macro",
550 // "pubnames", // not used by gdb as of 7.4
551 // "pubtypes", // not used by gdb as of 7.4
552 // "ranges",
553 "str",
554 };
555
556 // These sections are the DWARF fast-lookup tables, and are not needed
557 // when building a .gdb_index section.
558
559 static const char* gdb_fast_lookup_sections[] =
560 {
561 "aranges",
562 "pubnames",
563 "pubtypes",
564 };
565
566 // Returns whether the given debug section is in the list of
567 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
568 // portion of the name following ".debug_" or ".zdebug_".
569
570 static inline bool
571 is_gdb_debug_section(const char* suffix)
572 {
573 // We can do this faster: binary search or a hashtable. But why bother?
574 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
575 if (strcmp(suffix, gdb_sections[i]) == 0)
576 return true;
577 return false;
578 }
579
580 // Returns whether the given section is needed for lines-only debugging.
581
582 static inline bool
583 is_lines_only_debug_section(const char* suffix)
584 {
585 // We can do this faster: binary search or a hashtable. But why bother?
586 for (size_t i = 0;
587 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
588 ++i)
589 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
590 return true;
591 return false;
592 }
593
594 // Returns whether the given section is a fast-lookup section that
595 // will not be needed when building a .gdb_index section.
596
597 static inline bool
598 is_gdb_fast_lookup_section(const char* suffix)
599 {
600 // We can do this faster: binary search or a hashtable. But why bother?
601 for (size_t i = 0;
602 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
603 ++i)
604 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
605 return true;
606 return false;
607 }
608
609 // Sometimes we compress sections. This is typically done for
610 // sections that are not part of normal program execution (such as
611 // .debug_* sections), and where the readers of these sections know
612 // how to deal with compressed sections. This routine doesn't say for
613 // certain whether we'll compress -- it depends on commandline options
614 // as well -- just whether this section is a candidate for compression.
615 // (The Output_compressed_section class decides whether to compress
616 // a given section, and picks the name of the compressed section.)
617
618 static bool
619 is_compressible_debug_section(const char* secname)
620 {
621 return (is_prefix_of(".debug", secname));
622 }
623
624 // We may see compressed debug sections in input files. Return TRUE
625 // if this is the name of a compressed debug section.
626
627 bool
628 is_compressed_debug_section(const char* secname)
629 {
630 return (is_prefix_of(".zdebug", secname));
631 }
632
633 // Whether to include this section in the link.
634
635 template<int size, bool big_endian>
636 bool
637 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
638 const elfcpp::Shdr<size, big_endian>& shdr)
639 {
640 if (!parameters->options().relocatable()
641 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
642 return false;
643
644 switch (shdr.get_sh_type())
645 {
646 case elfcpp::SHT_NULL:
647 case elfcpp::SHT_SYMTAB:
648 case elfcpp::SHT_DYNSYM:
649 case elfcpp::SHT_HASH:
650 case elfcpp::SHT_DYNAMIC:
651 case elfcpp::SHT_SYMTAB_SHNDX:
652 return false;
653
654 case elfcpp::SHT_STRTAB:
655 // Discard the sections which have special meanings in the ELF
656 // ABI. Keep others (e.g., .stabstr). We could also do this by
657 // checking the sh_link fields of the appropriate sections.
658 return (strcmp(name, ".dynstr") != 0
659 && strcmp(name, ".strtab") != 0
660 && strcmp(name, ".shstrtab") != 0);
661
662 case elfcpp::SHT_RELA:
663 case elfcpp::SHT_REL:
664 case elfcpp::SHT_GROUP:
665 // If we are emitting relocations these should be handled
666 // elsewhere.
667 gold_assert(!parameters->options().relocatable());
668 return false;
669
670 case elfcpp::SHT_PROGBITS:
671 if (parameters->options().strip_debug()
672 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
673 {
674 if (is_debug_info_section(name))
675 return false;
676 }
677 if (parameters->options().strip_debug_non_line()
678 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
679 {
680 // Debugging sections can only be recognized by name.
681 if (is_prefix_of(".debug_", name)
682 && !is_lines_only_debug_section(name + 7))
683 return false;
684 if (is_prefix_of(".zdebug_", name)
685 && !is_lines_only_debug_section(name + 8))
686 return false;
687 }
688 if (parameters->options().strip_debug_gdb()
689 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
690 {
691 // Debugging sections can only be recognized by name.
692 if (is_prefix_of(".debug_", name)
693 && !is_gdb_debug_section(name + 7))
694 return false;
695 if (is_prefix_of(".zdebug_", name)
696 && !is_gdb_debug_section(name + 8))
697 return false;
698 }
699 if (parameters->options().gdb_index()
700 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
701 {
702 // When building .gdb_index, we can strip .debug_pubnames,
703 // .debug_pubtypes, and .debug_aranges sections.
704 if (is_prefix_of(".debug_", name)
705 && is_gdb_fast_lookup_section(name + 7))
706 return false;
707 if (is_prefix_of(".zdebug_", name)
708 && is_gdb_fast_lookup_section(name + 8))
709 return false;
710 }
711 if (parameters->options().strip_lto_sections()
712 && !parameters->options().relocatable()
713 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
714 {
715 // Ignore LTO sections containing intermediate code.
716 if (is_prefix_of(".gnu.lto_", name))
717 return false;
718 }
719 // The GNU linker strips .gnu_debuglink sections, so we do too.
720 // This is a feature used to keep debugging information in
721 // separate files.
722 if (strcmp(name, ".gnu_debuglink") == 0)
723 return false;
724 return true;
725
726 default:
727 return true;
728 }
729 }
730
731 // Return an output section named NAME, or NULL if there is none.
732
733 Output_section*
734 Layout::find_output_section(const char* name) const
735 {
736 for (Section_list::const_iterator p = this->section_list_.begin();
737 p != this->section_list_.end();
738 ++p)
739 if (strcmp((*p)->name(), name) == 0)
740 return *p;
741 return NULL;
742 }
743
744 // Return an output segment of type TYPE, with segment flags SET set
745 // and segment flags CLEAR clear. Return NULL if there is none.
746
747 Output_segment*
748 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
749 elfcpp::Elf_Word clear) const
750 {
751 for (Segment_list::const_iterator p = this->segment_list_.begin();
752 p != this->segment_list_.end();
753 ++p)
754 if (static_cast<elfcpp::PT>((*p)->type()) == type
755 && ((*p)->flags() & set) == set
756 && ((*p)->flags() & clear) == 0)
757 return *p;
758 return NULL;
759 }
760
761 // When we put a .ctors or .dtors section with more than one word into
762 // a .init_array or .fini_array section, we need to reverse the words
763 // in the .ctors/.dtors section. This is because .init_array executes
764 // constructors front to back, where .ctors executes them back to
765 // front, and vice-versa for .fini_array/.dtors. Although we do want
766 // to remap .ctors/.dtors into .init_array/.fini_array because it can
767 // be more efficient, we don't want to change the order in which
768 // constructors/destructors are run. This set just keeps track of
769 // these sections which need to be reversed. It is only changed by
770 // Layout::layout. It should be a private member of Layout, but that
771 // would require layout.h to #include object.h to get the definition
772 // of Section_id.
773 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
774
775 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
776 // .init_array/.fini_array section.
777
778 bool
779 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
780 {
781 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
782 != ctors_sections_in_init_array.end());
783 }
784
785 // Return the output section to use for section NAME with type TYPE
786 // and section flags FLAGS. NAME must be canonicalized in the string
787 // pool, and NAME_KEY is the key. ORDER is where this should appear
788 // in the output sections. IS_RELRO is true for a relro section.
789
790 Output_section*
791 Layout::get_output_section(const char* name, Stringpool::Key name_key,
792 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
793 Output_section_order order, bool is_relro)
794 {
795 elfcpp::Elf_Word lookup_type = type;
796
797 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
798 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
799 // .init_array, .fini_array, and .preinit_array sections by name
800 // whatever their type in the input file. We do this because the
801 // types are not always right in the input files.
802 if (lookup_type == elfcpp::SHT_INIT_ARRAY
803 || lookup_type == elfcpp::SHT_FINI_ARRAY
804 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
805 lookup_type = elfcpp::SHT_PROGBITS;
806
807 elfcpp::Elf_Xword lookup_flags = flags;
808
809 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
810 // read-write with read-only sections. Some other ELF linkers do
811 // not do this. FIXME: Perhaps there should be an option
812 // controlling this.
813 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
814
815 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
816 const std::pair<Key, Output_section*> v(key, NULL);
817 std::pair<Section_name_map::iterator, bool> ins(
818 this->section_name_map_.insert(v));
819
820 if (!ins.second)
821 return ins.first->second;
822 else
823 {
824 // This is the first time we've seen this name/type/flags
825 // combination. For compatibility with the GNU linker, we
826 // combine sections with contents and zero flags with sections
827 // with non-zero flags. This is a workaround for cases where
828 // assembler code forgets to set section flags. FIXME: Perhaps
829 // there should be an option to control this.
830 Output_section* os = NULL;
831
832 if (lookup_type == elfcpp::SHT_PROGBITS)
833 {
834 if (flags == 0)
835 {
836 Output_section* same_name = this->find_output_section(name);
837 if (same_name != NULL
838 && (same_name->type() == elfcpp::SHT_PROGBITS
839 || same_name->type() == elfcpp::SHT_INIT_ARRAY
840 || same_name->type() == elfcpp::SHT_FINI_ARRAY
841 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
842 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
843 os = same_name;
844 }
845 else if ((flags & elfcpp::SHF_TLS) == 0)
846 {
847 elfcpp::Elf_Xword zero_flags = 0;
848 const Key zero_key(name_key, std::make_pair(lookup_type,
849 zero_flags));
850 Section_name_map::iterator p =
851 this->section_name_map_.find(zero_key);
852 if (p != this->section_name_map_.end())
853 os = p->second;
854 }
855 }
856
857 if (os == NULL)
858 os = this->make_output_section(name, type, flags, order, is_relro);
859
860 ins.first->second = os;
861 return os;
862 }
863 }
864
865 // Returns TRUE iff NAME (an input section from RELOBJ) will
866 // be mapped to an output section that should be KEPT.
867
868 bool
869 Layout::keep_input_section(const Relobj* relobj, const char* name)
870 {
871 if (! this->script_options_->saw_sections_clause())
872 return false;
873
874 Script_sections* ss = this->script_options_->script_sections();
875 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
876 Output_section** output_section_slot;
877 Script_sections::Section_type script_section_type;
878 bool keep;
879
880 name = ss->output_section_name(file_name, name, &output_section_slot,
881 &script_section_type, &keep);
882 return name != NULL && keep;
883 }
884
885 // Clear the input section flags that should not be copied to the
886 // output section.
887
888 elfcpp::Elf_Xword
889 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
890 {
891 // Some flags in the input section should not be automatically
892 // copied to the output section.
893 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
894 | elfcpp::SHF_GROUP
895 | elfcpp::SHF_MERGE
896 | elfcpp::SHF_STRINGS);
897
898 // We only clear the SHF_LINK_ORDER flag in for
899 // a non-relocatable link.
900 if (!parameters->options().relocatable())
901 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
902
903 return input_section_flags;
904 }
905
906 // Pick the output section to use for section NAME, in input file
907 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
908 // linker created section. IS_INPUT_SECTION is true if we are
909 // choosing an output section for an input section found in a input
910 // file. ORDER is where this section should appear in the output
911 // sections. IS_RELRO is true for a relro section. This will return
912 // NULL if the input section should be discarded.
913
914 Output_section*
915 Layout::choose_output_section(const Relobj* relobj, const char* name,
916 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
917 bool is_input_section, Output_section_order order,
918 bool is_relro)
919 {
920 // We should not see any input sections after we have attached
921 // sections to segments.
922 gold_assert(!is_input_section || !this->sections_are_attached_);
923
924 flags = this->get_output_section_flags(flags);
925
926 if (this->script_options_->saw_sections_clause())
927 {
928 // We are using a SECTIONS clause, so the output section is
929 // chosen based only on the name.
930
931 Script_sections* ss = this->script_options_->script_sections();
932 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
933 Output_section** output_section_slot;
934 Script_sections::Section_type script_section_type;
935 const char* orig_name = name;
936 bool keep;
937 name = ss->output_section_name(file_name, name, &output_section_slot,
938 &script_section_type, &keep);
939
940 if (name == NULL)
941 {
942 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
943 "because it is not allowed by the "
944 "SECTIONS clause of the linker script"),
945 orig_name);
946 // The SECTIONS clause says to discard this input section.
947 return NULL;
948 }
949
950 // We can only handle script section types ST_NONE and ST_NOLOAD.
951 switch (script_section_type)
952 {
953 case Script_sections::ST_NONE:
954 break;
955 case Script_sections::ST_NOLOAD:
956 flags &= elfcpp::SHF_ALLOC;
957 break;
958 default:
959 gold_unreachable();
960 }
961
962 // If this is an orphan section--one not mentioned in the linker
963 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
964 // default processing below.
965
966 if (output_section_slot != NULL)
967 {
968 if (*output_section_slot != NULL)
969 {
970 (*output_section_slot)->update_flags_for_input_section(flags);
971 return *output_section_slot;
972 }
973
974 // We don't put sections found in the linker script into
975 // SECTION_NAME_MAP_. That keeps us from getting confused
976 // if an orphan section is mapped to a section with the same
977 // name as one in the linker script.
978
979 name = this->namepool_.add(name, false, NULL);
980
981 Output_section* os = this->make_output_section(name, type, flags,
982 order, is_relro);
983
984 os->set_found_in_sections_clause();
985
986 // Special handling for NOLOAD sections.
987 if (script_section_type == Script_sections::ST_NOLOAD)
988 {
989 os->set_is_noload();
990
991 // The constructor of Output_section sets addresses of non-ALLOC
992 // sections to 0 by default. We don't want that for NOLOAD
993 // sections even if they have no SHF_ALLOC flag.
994 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
995 && os->is_address_valid())
996 {
997 gold_assert(os->address() == 0
998 && !os->is_offset_valid()
999 && !os->is_data_size_valid());
1000 os->reset_address_and_file_offset();
1001 }
1002 }
1003
1004 *output_section_slot = os;
1005 return os;
1006 }
1007 }
1008
1009 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1010
1011 size_t len = strlen(name);
1012 char* uncompressed_name = NULL;
1013
1014 // Compressed debug sections should be mapped to the corresponding
1015 // uncompressed section.
1016 if (is_compressed_debug_section(name))
1017 {
1018 uncompressed_name = new char[len];
1019 uncompressed_name[0] = '.';
1020 gold_assert(name[0] == '.' && name[1] == 'z');
1021 strncpy(&uncompressed_name[1], &name[2], len - 2);
1022 uncompressed_name[len - 1] = '\0';
1023 len -= 1;
1024 name = uncompressed_name;
1025 }
1026
1027 // Turn NAME from the name of the input section into the name of the
1028 // output section.
1029 if (is_input_section
1030 && !this->script_options_->saw_sections_clause()
1031 && !parameters->options().relocatable())
1032 {
1033 const char *orig_name = name;
1034 name = parameters->target().output_section_name(relobj, name, &len);
1035 if (name == NULL)
1036 name = Layout::output_section_name(relobj, orig_name, &len);
1037 }
1038
1039 Stringpool::Key name_key;
1040 name = this->namepool_.add_with_length(name, len, true, &name_key);
1041
1042 if (uncompressed_name != NULL)
1043 delete[] uncompressed_name;
1044
1045 // Find or make the output section. The output section is selected
1046 // based on the section name, type, and flags.
1047 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1048 }
1049
1050 // For incremental links, record the initial fixed layout of a section
1051 // from the base file, and return a pointer to the Output_section.
1052
1053 template<int size, bool big_endian>
1054 Output_section*
1055 Layout::init_fixed_output_section(const char* name,
1056 elfcpp::Shdr<size, big_endian>& shdr)
1057 {
1058 unsigned int sh_type = shdr.get_sh_type();
1059
1060 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1061 // PRE_INIT_ARRAY, and NOTE sections.
1062 // All others will be created from scratch and reallocated.
1063 if (!can_incremental_update(sh_type))
1064 return NULL;
1065
1066 // If we're generating a .gdb_index section, we need to regenerate
1067 // it from scratch.
1068 if (parameters->options().gdb_index()
1069 && sh_type == elfcpp::SHT_PROGBITS
1070 && strcmp(name, ".gdb_index") == 0)
1071 return NULL;
1072
1073 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1074 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1075 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1076 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1077 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1078 shdr.get_sh_addralign();
1079
1080 // Make the output section.
1081 Stringpool::Key name_key;
1082 name = this->namepool_.add(name, true, &name_key);
1083 Output_section* os = this->get_output_section(name, name_key, sh_type,
1084 sh_flags, ORDER_INVALID, false);
1085 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1086 if (sh_type != elfcpp::SHT_NOBITS)
1087 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1088 return os;
1089 }
1090
1091 // Return the index by which an input section should be ordered. This
1092 // is used to sort some .text sections, for compatibility with GNU ld.
1093
1094 int
1095 Layout::special_ordering_of_input_section(const char* name)
1096 {
1097 // The GNU linker has some special handling for some sections that
1098 // wind up in the .text section. Sections that start with these
1099 // prefixes must appear first, and must appear in the order listed
1100 // here.
1101 static const char* const text_section_sort[] =
1102 {
1103 ".text.unlikely",
1104 ".text.exit",
1105 ".text.startup",
1106 ".text.hot"
1107 };
1108
1109 for (size_t i = 0;
1110 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1111 i++)
1112 if (is_prefix_of(text_section_sort[i], name))
1113 return i;
1114
1115 return -1;
1116 }
1117
1118 // Return the output section to use for input section SHNDX, with name
1119 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1120 // index of a relocation section which applies to this section, or 0
1121 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1122 // relocation section if there is one. Set *OFF to the offset of this
1123 // input section without the output section. Return NULL if the
1124 // section should be discarded. Set *OFF to -1 if the section
1125 // contents should not be written directly to the output file, but
1126 // will instead receive special handling.
1127
1128 template<int size, bool big_endian>
1129 Output_section*
1130 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1131 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1132 unsigned int reloc_shndx, unsigned int, off_t* off)
1133 {
1134 *off = 0;
1135
1136 if (!this->include_section(object, name, shdr))
1137 return NULL;
1138
1139 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1140
1141 // In a relocatable link a grouped section must not be combined with
1142 // any other sections.
1143 Output_section* os;
1144 if (parameters->options().relocatable()
1145 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1146 {
1147 name = this->namepool_.add(name, true, NULL);
1148 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1149 ORDER_INVALID, false);
1150 }
1151 else
1152 {
1153 // Plugins can choose to place one or more subsets of sections in
1154 // unique segments and this is done by mapping these section subsets
1155 // to unique output sections. Check if this section needs to be
1156 // remapped to a unique output section.
1157 Section_segment_map::iterator it
1158 = this->section_segment_map_.find(Const_section_id(object, shndx));
1159 if (it == this->section_segment_map_.end())
1160 {
1161 os = this->choose_output_section(object, name, sh_type,
1162 shdr.get_sh_flags(), true,
1163 ORDER_INVALID, false);
1164 }
1165 else
1166 {
1167 // We know the name of the output section, directly call
1168 // get_output_section here by-passing choose_output_section.
1169 elfcpp::Elf_Xword flags
1170 = this->get_output_section_flags(shdr.get_sh_flags());
1171
1172 const char* os_name = it->second->name;
1173 Stringpool::Key name_key;
1174 os_name = this->namepool_.add(os_name, true, &name_key);
1175 os = this->get_output_section(os_name, name_key, sh_type, flags,
1176 ORDER_INVALID, false);
1177 if (!os->is_unique_segment())
1178 {
1179 os->set_is_unique_segment();
1180 os->set_extra_segment_flags(it->second->flags);
1181 os->set_segment_alignment(it->second->align);
1182 }
1183 }
1184 if (os == NULL)
1185 return NULL;
1186 }
1187
1188 // By default the GNU linker sorts input sections whose names match
1189 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1190 // sections are sorted by name. This is used to implement
1191 // constructor priority ordering. We are compatible. When we put
1192 // .ctor sections in .init_array and .dtor sections in .fini_array,
1193 // we must also sort plain .ctor and .dtor sections.
1194 if (!this->script_options_->saw_sections_clause()
1195 && !parameters->options().relocatable()
1196 && (is_prefix_of(".ctors.", name)
1197 || is_prefix_of(".dtors.", name)
1198 || is_prefix_of(".init_array.", name)
1199 || is_prefix_of(".fini_array.", name)
1200 || (parameters->options().ctors_in_init_array()
1201 && (strcmp(name, ".ctors") == 0
1202 || strcmp(name, ".dtors") == 0))))
1203 os->set_must_sort_attached_input_sections();
1204
1205 // By default the GNU linker sorts some special text sections ahead
1206 // of others. We are compatible.
1207 if (parameters->options().text_reorder()
1208 && !this->script_options_->saw_sections_clause()
1209 && !this->is_section_ordering_specified()
1210 && !parameters->options().relocatable()
1211 && Layout::special_ordering_of_input_section(name) >= 0)
1212 os->set_must_sort_attached_input_sections();
1213
1214 // If this is a .ctors or .ctors.* section being mapped to a
1215 // .init_array section, or a .dtors or .dtors.* section being mapped
1216 // to a .fini_array section, we will need to reverse the words if
1217 // there is more than one. Record this section for later. See
1218 // ctors_sections_in_init_array above.
1219 if (!this->script_options_->saw_sections_clause()
1220 && !parameters->options().relocatable()
1221 && shdr.get_sh_size() > size / 8
1222 && (((strcmp(name, ".ctors") == 0
1223 || is_prefix_of(".ctors.", name))
1224 && strcmp(os->name(), ".init_array") == 0)
1225 || ((strcmp(name, ".dtors") == 0
1226 || is_prefix_of(".dtors.", name))
1227 && strcmp(os->name(), ".fini_array") == 0)))
1228 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1229
1230 // FIXME: Handle SHF_LINK_ORDER somewhere.
1231
1232 elfcpp::Elf_Xword orig_flags = os->flags();
1233
1234 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1235 this->script_options_->saw_sections_clause());
1236
1237 // If the flags changed, we may have to change the order.
1238 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1239 {
1240 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1241 elfcpp::Elf_Xword new_flags =
1242 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1243 if (orig_flags != new_flags)
1244 os->set_order(this->default_section_order(os, false));
1245 }
1246
1247 this->have_added_input_section_ = true;
1248
1249 return os;
1250 }
1251
1252 // Maps section SECN to SEGMENT s.
1253 void
1254 Layout::insert_section_segment_map(Const_section_id secn,
1255 Unique_segment_info *s)
1256 {
1257 gold_assert(this->unique_segment_for_sections_specified_);
1258 this->section_segment_map_[secn] = s;
1259 }
1260
1261 // Handle a relocation section when doing a relocatable link.
1262
1263 template<int size, bool big_endian>
1264 Output_section*
1265 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1266 unsigned int,
1267 const elfcpp::Shdr<size, big_endian>& shdr,
1268 Output_section* data_section,
1269 Relocatable_relocs* rr)
1270 {
1271 gold_assert(parameters->options().relocatable()
1272 || parameters->options().emit_relocs());
1273
1274 int sh_type = shdr.get_sh_type();
1275
1276 std::string name;
1277 if (sh_type == elfcpp::SHT_REL)
1278 name = ".rel";
1279 else if (sh_type == elfcpp::SHT_RELA)
1280 name = ".rela";
1281 else
1282 gold_unreachable();
1283 name += data_section->name();
1284
1285 // In a relocatable link relocs for a grouped section must not be
1286 // combined with other reloc sections.
1287 Output_section* os;
1288 if (!parameters->options().relocatable()
1289 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1290 os = this->choose_output_section(object, name.c_str(), sh_type,
1291 shdr.get_sh_flags(), false,
1292 ORDER_INVALID, false);
1293 else
1294 {
1295 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1296 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1297 ORDER_INVALID, false);
1298 }
1299
1300 os->set_should_link_to_symtab();
1301 os->set_info_section(data_section);
1302
1303 Output_section_data* posd;
1304 if (sh_type == elfcpp::SHT_REL)
1305 {
1306 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1307 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1308 size,
1309 big_endian>(rr);
1310 }
1311 else if (sh_type == elfcpp::SHT_RELA)
1312 {
1313 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1314 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1315 size,
1316 big_endian>(rr);
1317 }
1318 else
1319 gold_unreachable();
1320
1321 os->add_output_section_data(posd);
1322 rr->set_output_data(posd);
1323
1324 return os;
1325 }
1326
1327 // Handle a group section when doing a relocatable link.
1328
1329 template<int size, bool big_endian>
1330 void
1331 Layout::layout_group(Symbol_table* symtab,
1332 Sized_relobj_file<size, big_endian>* object,
1333 unsigned int,
1334 const char* group_section_name,
1335 const char* signature,
1336 const elfcpp::Shdr<size, big_endian>& shdr,
1337 elfcpp::Elf_Word flags,
1338 std::vector<unsigned int>* shndxes)
1339 {
1340 gold_assert(parameters->options().relocatable());
1341 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1342 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1343 Output_section* os = this->make_output_section(group_section_name,
1344 elfcpp::SHT_GROUP,
1345 shdr.get_sh_flags(),
1346 ORDER_INVALID, false);
1347
1348 // We need to find a symbol with the signature in the symbol table.
1349 // If we don't find one now, we need to look again later.
1350 Symbol* sym = symtab->lookup(signature, NULL);
1351 if (sym != NULL)
1352 os->set_info_symndx(sym);
1353 else
1354 {
1355 // Reserve some space to minimize reallocations.
1356 if (this->group_signatures_.empty())
1357 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1358
1359 // We will wind up using a symbol whose name is the signature.
1360 // So just put the signature in the symbol name pool to save it.
1361 signature = symtab->canonicalize_name(signature);
1362 this->group_signatures_.push_back(Group_signature(os, signature));
1363 }
1364
1365 os->set_should_link_to_symtab();
1366 os->set_entsize(4);
1367
1368 section_size_type entry_count =
1369 convert_to_section_size_type(shdr.get_sh_size() / 4);
1370 Output_section_data* posd =
1371 new Output_data_group<size, big_endian>(object, entry_count, flags,
1372 shndxes);
1373 os->add_output_section_data(posd);
1374 }
1375
1376 // Special GNU handling of sections name .eh_frame. They will
1377 // normally hold exception frame data as defined by the C++ ABI
1378 // (http://codesourcery.com/cxx-abi/).
1379
1380 template<int size, bool big_endian>
1381 Output_section*
1382 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1383 const unsigned char* symbols,
1384 off_t symbols_size,
1385 const unsigned char* symbol_names,
1386 off_t symbol_names_size,
1387 unsigned int shndx,
1388 const elfcpp::Shdr<size, big_endian>& shdr,
1389 unsigned int reloc_shndx, unsigned int reloc_type,
1390 off_t* off)
1391 {
1392 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1393 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1394 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1395
1396 Output_section* os = this->make_eh_frame_section(object);
1397 if (os == NULL)
1398 return NULL;
1399
1400 gold_assert(this->eh_frame_section_ == os);
1401
1402 elfcpp::Elf_Xword orig_flags = os->flags();
1403
1404 if (!parameters->incremental()
1405 && this->eh_frame_data_->add_ehframe_input_section(object,
1406 symbols,
1407 symbols_size,
1408 symbol_names,
1409 symbol_names_size,
1410 shndx,
1411 reloc_shndx,
1412 reloc_type))
1413 {
1414 os->update_flags_for_input_section(shdr.get_sh_flags());
1415
1416 // A writable .eh_frame section is a RELRO section.
1417 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1418 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1419 {
1420 os->set_is_relro();
1421 os->set_order(ORDER_RELRO);
1422 }
1423
1424 // We found a .eh_frame section we are going to optimize, so now
1425 // we can add the set of optimized sections to the output
1426 // section. We need to postpone adding this until we've found a
1427 // section we can optimize so that the .eh_frame section in
1428 // crtbegin.o winds up at the start of the output section.
1429 if (!this->added_eh_frame_data_)
1430 {
1431 os->add_output_section_data(this->eh_frame_data_);
1432 this->added_eh_frame_data_ = true;
1433 }
1434 *off = -1;
1435 }
1436 else
1437 {
1438 // We couldn't handle this .eh_frame section for some reason.
1439 // Add it as a normal section.
1440 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1441 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1442 reloc_shndx, saw_sections_clause);
1443 this->have_added_input_section_ = true;
1444
1445 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1446 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1447 os->set_order(this->default_section_order(os, false));
1448 }
1449
1450 return os;
1451 }
1452
1453 // Create and return the magic .eh_frame section. Create
1454 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1455 // input .eh_frame section; it may be NULL.
1456
1457 Output_section*
1458 Layout::make_eh_frame_section(const Relobj* object)
1459 {
1460 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1461 // SHT_PROGBITS.
1462 Output_section* os = this->choose_output_section(object, ".eh_frame",
1463 elfcpp::SHT_PROGBITS,
1464 elfcpp::SHF_ALLOC, false,
1465 ORDER_EHFRAME, false);
1466 if (os == NULL)
1467 return NULL;
1468
1469 if (this->eh_frame_section_ == NULL)
1470 {
1471 this->eh_frame_section_ = os;
1472 this->eh_frame_data_ = new Eh_frame();
1473
1474 // For incremental linking, we do not optimize .eh_frame sections
1475 // or create a .eh_frame_hdr section.
1476 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1477 {
1478 Output_section* hdr_os =
1479 this->choose_output_section(NULL, ".eh_frame_hdr",
1480 elfcpp::SHT_PROGBITS,
1481 elfcpp::SHF_ALLOC, false,
1482 ORDER_EHFRAME, false);
1483
1484 if (hdr_os != NULL)
1485 {
1486 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1487 this->eh_frame_data_);
1488 hdr_os->add_output_section_data(hdr_posd);
1489
1490 hdr_os->set_after_input_sections();
1491
1492 if (!this->script_options_->saw_phdrs_clause())
1493 {
1494 Output_segment* hdr_oseg;
1495 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1496 elfcpp::PF_R);
1497 hdr_oseg->add_output_section_to_nonload(hdr_os,
1498 elfcpp::PF_R);
1499 }
1500
1501 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1502 }
1503 }
1504 }
1505
1506 return os;
1507 }
1508
1509 // Add an exception frame for a PLT. This is called from target code.
1510
1511 void
1512 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1513 size_t cie_length, const unsigned char* fde_data,
1514 size_t fde_length)
1515 {
1516 if (parameters->incremental())
1517 {
1518 // FIXME: Maybe this could work some day....
1519 return;
1520 }
1521 Output_section* os = this->make_eh_frame_section(NULL);
1522 if (os == NULL)
1523 return;
1524 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1525 fde_data, fde_length);
1526 if (!this->added_eh_frame_data_)
1527 {
1528 os->add_output_section_data(this->eh_frame_data_);
1529 this->added_eh_frame_data_ = true;
1530 }
1531 }
1532
1533 // Scan a .debug_info or .debug_types section, and add summary
1534 // information to the .gdb_index section.
1535
1536 template<int size, bool big_endian>
1537 void
1538 Layout::add_to_gdb_index(bool is_type_unit,
1539 Sized_relobj<size, big_endian>* object,
1540 const unsigned char* symbols,
1541 off_t symbols_size,
1542 unsigned int shndx,
1543 unsigned int reloc_shndx,
1544 unsigned int reloc_type)
1545 {
1546 if (this->gdb_index_data_ == NULL)
1547 {
1548 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1549 elfcpp::SHT_PROGBITS, 0,
1550 false, ORDER_INVALID,
1551 false);
1552 if (os == NULL)
1553 return;
1554
1555 this->gdb_index_data_ = new Gdb_index(os);
1556 os->add_output_section_data(this->gdb_index_data_);
1557 os->set_after_input_sections();
1558 }
1559
1560 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1561 symbols_size, shndx, reloc_shndx,
1562 reloc_type);
1563 }
1564
1565 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1566 // the output section.
1567
1568 Output_section*
1569 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1570 elfcpp::Elf_Xword flags,
1571 Output_section_data* posd,
1572 Output_section_order order, bool is_relro)
1573 {
1574 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1575 false, order, is_relro);
1576 if (os != NULL)
1577 os->add_output_section_data(posd);
1578 return os;
1579 }
1580
1581 // Map section flags to segment flags.
1582
1583 elfcpp::Elf_Word
1584 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1585 {
1586 elfcpp::Elf_Word ret = elfcpp::PF_R;
1587 if ((flags & elfcpp::SHF_WRITE) != 0)
1588 ret |= elfcpp::PF_W;
1589 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1590 ret |= elfcpp::PF_X;
1591 return ret;
1592 }
1593
1594 // Make a new Output_section, and attach it to segments as
1595 // appropriate. ORDER is the order in which this section should
1596 // appear in the output segment. IS_RELRO is true if this is a relro
1597 // (read-only after relocations) section.
1598
1599 Output_section*
1600 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1601 elfcpp::Elf_Xword flags,
1602 Output_section_order order, bool is_relro)
1603 {
1604 Output_section* os;
1605 if ((flags & elfcpp::SHF_ALLOC) == 0
1606 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1607 && is_compressible_debug_section(name))
1608 os = new Output_compressed_section(&parameters->options(), name, type,
1609 flags);
1610 else if ((flags & elfcpp::SHF_ALLOC) == 0
1611 && parameters->options().strip_debug_non_line()
1612 && strcmp(".debug_abbrev", name) == 0)
1613 {
1614 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1615 name, type, flags);
1616 if (this->debug_info_)
1617 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1618 }
1619 else if ((flags & elfcpp::SHF_ALLOC) == 0
1620 && parameters->options().strip_debug_non_line()
1621 && strcmp(".debug_info", name) == 0)
1622 {
1623 os = this->debug_info_ = new Output_reduced_debug_info_section(
1624 name, type, flags);
1625 if (this->debug_abbrev_)
1626 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1627 }
1628 else
1629 {
1630 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1631 // not have correct section types. Force them here.
1632 if (type == elfcpp::SHT_PROGBITS)
1633 {
1634 if (is_prefix_of(".init_array", name))
1635 type = elfcpp::SHT_INIT_ARRAY;
1636 else if (is_prefix_of(".preinit_array", name))
1637 type = elfcpp::SHT_PREINIT_ARRAY;
1638 else if (is_prefix_of(".fini_array", name))
1639 type = elfcpp::SHT_FINI_ARRAY;
1640 }
1641
1642 // FIXME: const_cast is ugly.
1643 Target* target = const_cast<Target*>(&parameters->target());
1644 os = target->make_output_section(name, type, flags);
1645 }
1646
1647 // With -z relro, we have to recognize the special sections by name.
1648 // There is no other way.
1649 bool is_relro_local = false;
1650 if (!this->script_options_->saw_sections_clause()
1651 && parameters->options().relro()
1652 && (flags & elfcpp::SHF_ALLOC) != 0
1653 && (flags & elfcpp::SHF_WRITE) != 0)
1654 {
1655 if (type == elfcpp::SHT_PROGBITS)
1656 {
1657 if ((flags & elfcpp::SHF_TLS) != 0)
1658 is_relro = true;
1659 else if (strcmp(name, ".data.rel.ro") == 0)
1660 is_relro = true;
1661 else if (strcmp(name, ".data.rel.ro.local") == 0)
1662 {
1663 is_relro = true;
1664 is_relro_local = true;
1665 }
1666 else if (strcmp(name, ".ctors") == 0
1667 || strcmp(name, ".dtors") == 0
1668 || strcmp(name, ".jcr") == 0)
1669 is_relro = true;
1670 }
1671 else if (type == elfcpp::SHT_INIT_ARRAY
1672 || type == elfcpp::SHT_FINI_ARRAY
1673 || type == elfcpp::SHT_PREINIT_ARRAY)
1674 is_relro = true;
1675 }
1676
1677 if (is_relro)
1678 os->set_is_relro();
1679
1680 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1681 order = this->default_section_order(os, is_relro_local);
1682
1683 os->set_order(order);
1684
1685 parameters->target().new_output_section(os);
1686
1687 this->section_list_.push_back(os);
1688
1689 // The GNU linker by default sorts some sections by priority, so we
1690 // do the same. We need to know that this might happen before we
1691 // attach any input sections.
1692 if (!this->script_options_->saw_sections_clause()
1693 && !parameters->options().relocatable()
1694 && (strcmp(name, ".init_array") == 0
1695 || strcmp(name, ".fini_array") == 0
1696 || (!parameters->options().ctors_in_init_array()
1697 && (strcmp(name, ".ctors") == 0
1698 || strcmp(name, ".dtors") == 0))))
1699 os->set_may_sort_attached_input_sections();
1700
1701 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1702 // sections before other .text sections. We are compatible. We
1703 // need to know that this might happen before we attach any input
1704 // sections.
1705 if (parameters->options().text_reorder()
1706 && !this->script_options_->saw_sections_clause()
1707 && !this->is_section_ordering_specified()
1708 && !parameters->options().relocatable()
1709 && strcmp(name, ".text") == 0)
1710 os->set_may_sort_attached_input_sections();
1711
1712 // GNU linker sorts section by name with --sort-section=name.
1713 if (strcmp(parameters->options().sort_section(), "name") == 0)
1714 os->set_must_sort_attached_input_sections();
1715
1716 // Check for .stab*str sections, as .stab* sections need to link to
1717 // them.
1718 if (type == elfcpp::SHT_STRTAB
1719 && !this->have_stabstr_section_
1720 && strncmp(name, ".stab", 5) == 0
1721 && strcmp(name + strlen(name) - 3, "str") == 0)
1722 this->have_stabstr_section_ = true;
1723
1724 // During a full incremental link, we add patch space to most
1725 // PROGBITS and NOBITS sections. Flag those that may be
1726 // arbitrarily padded.
1727 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1728 && order != ORDER_INTERP
1729 && order != ORDER_INIT
1730 && order != ORDER_PLT
1731 && order != ORDER_FINI
1732 && order != ORDER_RELRO_LAST
1733 && order != ORDER_NON_RELRO_FIRST
1734 && strcmp(name, ".eh_frame") != 0
1735 && strcmp(name, ".ctors") != 0
1736 && strcmp(name, ".dtors") != 0
1737 && strcmp(name, ".jcr") != 0)
1738 {
1739 os->set_is_patch_space_allowed();
1740
1741 // Certain sections require "holes" to be filled with
1742 // specific fill patterns. These fill patterns may have
1743 // a minimum size, so we must prevent allocations from the
1744 // free list that leave a hole smaller than the minimum.
1745 if (strcmp(name, ".debug_info") == 0)
1746 os->set_free_space_fill(new Output_fill_debug_info(false));
1747 else if (strcmp(name, ".debug_types") == 0)
1748 os->set_free_space_fill(new Output_fill_debug_info(true));
1749 else if (strcmp(name, ".debug_line") == 0)
1750 os->set_free_space_fill(new Output_fill_debug_line());
1751 }
1752
1753 // If we have already attached the sections to segments, then we
1754 // need to attach this one now. This happens for sections created
1755 // directly by the linker.
1756 if (this->sections_are_attached_)
1757 this->attach_section_to_segment(&parameters->target(), os);
1758
1759 return os;
1760 }
1761
1762 // Return the default order in which a section should be placed in an
1763 // output segment. This function captures a lot of the ideas in
1764 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1765 // linker created section is normally set when the section is created;
1766 // this function is used for input sections.
1767
1768 Output_section_order
1769 Layout::default_section_order(Output_section* os, bool is_relro_local)
1770 {
1771 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1772 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1773 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1774 bool is_bss = false;
1775
1776 switch (os->type())
1777 {
1778 default:
1779 case elfcpp::SHT_PROGBITS:
1780 break;
1781 case elfcpp::SHT_NOBITS:
1782 is_bss = true;
1783 break;
1784 case elfcpp::SHT_RELA:
1785 case elfcpp::SHT_REL:
1786 if (!is_write)
1787 return ORDER_DYNAMIC_RELOCS;
1788 break;
1789 case elfcpp::SHT_HASH:
1790 case elfcpp::SHT_DYNAMIC:
1791 case elfcpp::SHT_SHLIB:
1792 case elfcpp::SHT_DYNSYM:
1793 case elfcpp::SHT_GNU_HASH:
1794 case elfcpp::SHT_GNU_verdef:
1795 case elfcpp::SHT_GNU_verneed:
1796 case elfcpp::SHT_GNU_versym:
1797 if (!is_write)
1798 return ORDER_DYNAMIC_LINKER;
1799 break;
1800 case elfcpp::SHT_NOTE:
1801 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1802 }
1803
1804 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1805 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1806
1807 if (!is_bss && !is_write)
1808 {
1809 if (is_execinstr)
1810 {
1811 if (strcmp(os->name(), ".init") == 0)
1812 return ORDER_INIT;
1813 else if (strcmp(os->name(), ".fini") == 0)
1814 return ORDER_FINI;
1815 }
1816 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1817 }
1818
1819 if (os->is_relro())
1820 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1821
1822 if (os->is_small_section())
1823 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1824 if (os->is_large_section())
1825 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1826
1827 return is_bss ? ORDER_BSS : ORDER_DATA;
1828 }
1829
1830 // Attach output sections to segments. This is called after we have
1831 // seen all the input sections.
1832
1833 void
1834 Layout::attach_sections_to_segments(const Target* target)
1835 {
1836 for (Section_list::iterator p = this->section_list_.begin();
1837 p != this->section_list_.end();
1838 ++p)
1839 this->attach_section_to_segment(target, *p);
1840
1841 this->sections_are_attached_ = true;
1842 }
1843
1844 // Attach an output section to a segment.
1845
1846 void
1847 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1848 {
1849 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1850 this->unattached_section_list_.push_back(os);
1851 else
1852 this->attach_allocated_section_to_segment(target, os);
1853 }
1854
1855 // Attach an allocated output section to a segment.
1856
1857 void
1858 Layout::attach_allocated_section_to_segment(const Target* target,
1859 Output_section* os)
1860 {
1861 elfcpp::Elf_Xword flags = os->flags();
1862 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1863
1864 if (parameters->options().relocatable())
1865 return;
1866
1867 // If we have a SECTIONS clause, we can't handle the attachment to
1868 // segments until after we've seen all the sections.
1869 if (this->script_options_->saw_sections_clause())
1870 return;
1871
1872 gold_assert(!this->script_options_->saw_phdrs_clause());
1873
1874 // This output section goes into a PT_LOAD segment.
1875
1876 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1877
1878 // If this output section's segment has extra flags that need to be set,
1879 // coming from a linker plugin, do that.
1880 seg_flags |= os->extra_segment_flags();
1881
1882 // Check for --section-start.
1883 uint64_t addr;
1884 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1885
1886 // In general the only thing we really care about for PT_LOAD
1887 // segments is whether or not they are writable or executable,
1888 // so that is how we search for them.
1889 // Large data sections also go into their own PT_LOAD segment.
1890 // People who need segments sorted on some other basis will
1891 // have to use a linker script.
1892
1893 Segment_list::const_iterator p;
1894 if (!os->is_unique_segment())
1895 {
1896 for (p = this->segment_list_.begin();
1897 p != this->segment_list_.end();
1898 ++p)
1899 {
1900 if ((*p)->type() != elfcpp::PT_LOAD)
1901 continue;
1902 if ((*p)->is_unique_segment())
1903 continue;
1904 if (!parameters->options().omagic()
1905 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1906 continue;
1907 if ((target->isolate_execinstr() || parameters->options().rosegment())
1908 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1909 continue;
1910 // If -Tbss was specified, we need to separate the data and BSS
1911 // segments.
1912 if (parameters->options().user_set_Tbss())
1913 {
1914 if ((os->type() == elfcpp::SHT_NOBITS)
1915 == (*p)->has_any_data_sections())
1916 continue;
1917 }
1918 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1919 continue;
1920
1921 if (is_address_set)
1922 {
1923 if ((*p)->are_addresses_set())
1924 continue;
1925
1926 (*p)->add_initial_output_data(os);
1927 (*p)->update_flags_for_output_section(seg_flags);
1928 (*p)->set_addresses(addr, addr);
1929 break;
1930 }
1931
1932 (*p)->add_output_section_to_load(this, os, seg_flags);
1933 break;
1934 }
1935 }
1936
1937 if (p == this->segment_list_.end()
1938 || os->is_unique_segment())
1939 {
1940 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1941 seg_flags);
1942 if (os->is_large_data_section())
1943 oseg->set_is_large_data_segment();
1944 oseg->add_output_section_to_load(this, os, seg_flags);
1945 if (is_address_set)
1946 oseg->set_addresses(addr, addr);
1947 // Check if segment should be marked unique. For segments marked
1948 // unique by linker plugins, set the new alignment if specified.
1949 if (os->is_unique_segment())
1950 {
1951 oseg->set_is_unique_segment();
1952 if (os->segment_alignment() != 0)
1953 oseg->set_minimum_p_align(os->segment_alignment());
1954 }
1955 }
1956
1957 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1958 // segment.
1959 if (os->type() == elfcpp::SHT_NOTE)
1960 {
1961 // See if we already have an equivalent PT_NOTE segment.
1962 for (p = this->segment_list_.begin();
1963 p != segment_list_.end();
1964 ++p)
1965 {
1966 if ((*p)->type() == elfcpp::PT_NOTE
1967 && (((*p)->flags() & elfcpp::PF_W)
1968 == (seg_flags & elfcpp::PF_W)))
1969 {
1970 (*p)->add_output_section_to_nonload(os, seg_flags);
1971 break;
1972 }
1973 }
1974
1975 if (p == this->segment_list_.end())
1976 {
1977 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1978 seg_flags);
1979 oseg->add_output_section_to_nonload(os, seg_flags);
1980 }
1981 }
1982
1983 // If we see a loadable SHF_TLS section, we create a PT_TLS
1984 // segment. There can only be one such segment.
1985 if ((flags & elfcpp::SHF_TLS) != 0)
1986 {
1987 if (this->tls_segment_ == NULL)
1988 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1989 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1990 }
1991
1992 // If -z relro is in effect, and we see a relro section, we create a
1993 // PT_GNU_RELRO segment. There can only be one such segment.
1994 if (os->is_relro() && parameters->options().relro())
1995 {
1996 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1997 if (this->relro_segment_ == NULL)
1998 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1999 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2000 }
2001
2002 // If we see a section named .interp, put it into a PT_INTERP
2003 // segment. This seems broken to me, but this is what GNU ld does,
2004 // and glibc expects it.
2005 if (strcmp(os->name(), ".interp") == 0
2006 && !this->script_options_->saw_phdrs_clause())
2007 {
2008 if (this->interp_segment_ == NULL)
2009 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2010 else
2011 gold_warning(_("multiple '.interp' sections in input files "
2012 "may cause confusing PT_INTERP segment"));
2013 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2014 }
2015 }
2016
2017 // Make an output section for a script.
2018
2019 Output_section*
2020 Layout::make_output_section_for_script(
2021 const char* name,
2022 Script_sections::Section_type section_type)
2023 {
2024 name = this->namepool_.add(name, false, NULL);
2025 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2026 if (section_type == Script_sections::ST_NOLOAD)
2027 sh_flags = 0;
2028 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2029 sh_flags, ORDER_INVALID,
2030 false);
2031 os->set_found_in_sections_clause();
2032 if (section_type == Script_sections::ST_NOLOAD)
2033 os->set_is_noload();
2034 return os;
2035 }
2036
2037 // Return the number of segments we expect to see.
2038
2039 size_t
2040 Layout::expected_segment_count() const
2041 {
2042 size_t ret = this->segment_list_.size();
2043
2044 // If we didn't see a SECTIONS clause in a linker script, we should
2045 // already have the complete list of segments. Otherwise we ask the
2046 // SECTIONS clause how many segments it expects, and add in the ones
2047 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2048
2049 if (!this->script_options_->saw_sections_clause())
2050 return ret;
2051 else
2052 {
2053 const Script_sections* ss = this->script_options_->script_sections();
2054 return ret + ss->expected_segment_count(this);
2055 }
2056 }
2057
2058 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2059 // is whether we saw a .note.GNU-stack section in the object file.
2060 // GNU_STACK_FLAGS is the section flags. The flags give the
2061 // protection required for stack memory. We record this in an
2062 // executable as a PT_GNU_STACK segment. If an object file does not
2063 // have a .note.GNU-stack segment, we must assume that it is an old
2064 // object. On some targets that will force an executable stack.
2065
2066 void
2067 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2068 const Object* obj)
2069 {
2070 if (!seen_gnu_stack)
2071 {
2072 this->input_without_gnu_stack_note_ = true;
2073 if (parameters->options().warn_execstack()
2074 && parameters->target().is_default_stack_executable())
2075 gold_warning(_("%s: missing .note.GNU-stack section"
2076 " implies executable stack"),
2077 obj->name().c_str());
2078 }
2079 else
2080 {
2081 this->input_with_gnu_stack_note_ = true;
2082 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2083 {
2084 this->input_requires_executable_stack_ = true;
2085 if (parameters->options().warn_execstack()
2086 || parameters->options().is_stack_executable())
2087 gold_warning(_("%s: requires executable stack"),
2088 obj->name().c_str());
2089 }
2090 }
2091 }
2092
2093 // Create automatic note sections.
2094
2095 void
2096 Layout::create_notes()
2097 {
2098 this->create_gold_note();
2099 this->create_executable_stack_info();
2100 this->create_build_id();
2101 }
2102
2103 // Create the dynamic sections which are needed before we read the
2104 // relocs.
2105
2106 void
2107 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2108 {
2109 if (parameters->doing_static_link())
2110 return;
2111
2112 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2113 elfcpp::SHT_DYNAMIC,
2114 (elfcpp::SHF_ALLOC
2115 | elfcpp::SHF_WRITE),
2116 false, ORDER_RELRO,
2117 true);
2118
2119 // A linker script may discard .dynamic, so check for NULL.
2120 if (this->dynamic_section_ != NULL)
2121 {
2122 this->dynamic_symbol_ =
2123 symtab->define_in_output_data("_DYNAMIC", NULL,
2124 Symbol_table::PREDEFINED,
2125 this->dynamic_section_, 0, 0,
2126 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2127 elfcpp::STV_HIDDEN, 0, false, false);
2128
2129 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2130
2131 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2132 }
2133 }
2134
2135 // For each output section whose name can be represented as C symbol,
2136 // define __start and __stop symbols for the section. This is a GNU
2137 // extension.
2138
2139 void
2140 Layout::define_section_symbols(Symbol_table* symtab)
2141 {
2142 for (Section_list::const_iterator p = this->section_list_.begin();
2143 p != this->section_list_.end();
2144 ++p)
2145 {
2146 const char* const name = (*p)->name();
2147 if (is_cident(name))
2148 {
2149 const std::string name_string(name);
2150 const std::string start_name(cident_section_start_prefix
2151 + name_string);
2152 const std::string stop_name(cident_section_stop_prefix
2153 + name_string);
2154
2155 symtab->define_in_output_data(start_name.c_str(),
2156 NULL, // version
2157 Symbol_table::PREDEFINED,
2158 *p,
2159 0, // value
2160 0, // symsize
2161 elfcpp::STT_NOTYPE,
2162 elfcpp::STB_GLOBAL,
2163 elfcpp::STV_DEFAULT,
2164 0, // nonvis
2165 false, // offset_is_from_end
2166 true); // only_if_ref
2167
2168 symtab->define_in_output_data(stop_name.c_str(),
2169 NULL, // version
2170 Symbol_table::PREDEFINED,
2171 *p,
2172 0, // value
2173 0, // symsize
2174 elfcpp::STT_NOTYPE,
2175 elfcpp::STB_GLOBAL,
2176 elfcpp::STV_DEFAULT,
2177 0, // nonvis
2178 true, // offset_is_from_end
2179 true); // only_if_ref
2180 }
2181 }
2182 }
2183
2184 // Define symbols for group signatures.
2185
2186 void
2187 Layout::define_group_signatures(Symbol_table* symtab)
2188 {
2189 for (Group_signatures::iterator p = this->group_signatures_.begin();
2190 p != this->group_signatures_.end();
2191 ++p)
2192 {
2193 Symbol* sym = symtab->lookup(p->signature, NULL);
2194 if (sym != NULL)
2195 p->section->set_info_symndx(sym);
2196 else
2197 {
2198 // Force the name of the group section to the group
2199 // signature, and use the group's section symbol as the
2200 // signature symbol.
2201 if (strcmp(p->section->name(), p->signature) != 0)
2202 {
2203 const char* name = this->namepool_.add(p->signature,
2204 true, NULL);
2205 p->section->set_name(name);
2206 }
2207 p->section->set_needs_symtab_index();
2208 p->section->set_info_section_symndx(p->section);
2209 }
2210 }
2211
2212 this->group_signatures_.clear();
2213 }
2214
2215 // Find the first read-only PT_LOAD segment, creating one if
2216 // necessary.
2217
2218 Output_segment*
2219 Layout::find_first_load_seg(const Target* target)
2220 {
2221 Output_segment* best = NULL;
2222 for (Segment_list::const_iterator p = this->segment_list_.begin();
2223 p != this->segment_list_.end();
2224 ++p)
2225 {
2226 if ((*p)->type() == elfcpp::PT_LOAD
2227 && ((*p)->flags() & elfcpp::PF_R) != 0
2228 && (parameters->options().omagic()
2229 || ((*p)->flags() & elfcpp::PF_W) == 0)
2230 && (!target->isolate_execinstr()
2231 || ((*p)->flags() & elfcpp::PF_X) == 0))
2232 {
2233 if (best == NULL || this->segment_precedes(*p, best))
2234 best = *p;
2235 }
2236 }
2237 if (best != NULL)
2238 return best;
2239
2240 gold_assert(!this->script_options_->saw_phdrs_clause());
2241
2242 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2243 elfcpp::PF_R);
2244 return load_seg;
2245 }
2246
2247 // Save states of all current output segments. Store saved states
2248 // in SEGMENT_STATES.
2249
2250 void
2251 Layout::save_segments(Segment_states* segment_states)
2252 {
2253 for (Segment_list::const_iterator p = this->segment_list_.begin();
2254 p != this->segment_list_.end();
2255 ++p)
2256 {
2257 Output_segment* segment = *p;
2258 // Shallow copy.
2259 Output_segment* copy = new Output_segment(*segment);
2260 (*segment_states)[segment] = copy;
2261 }
2262 }
2263
2264 // Restore states of output segments and delete any segment not found in
2265 // SEGMENT_STATES.
2266
2267 void
2268 Layout::restore_segments(const Segment_states* segment_states)
2269 {
2270 // Go through the segment list and remove any segment added in the
2271 // relaxation loop.
2272 this->tls_segment_ = NULL;
2273 this->relro_segment_ = NULL;
2274 Segment_list::iterator list_iter = this->segment_list_.begin();
2275 while (list_iter != this->segment_list_.end())
2276 {
2277 Output_segment* segment = *list_iter;
2278 Segment_states::const_iterator states_iter =
2279 segment_states->find(segment);
2280 if (states_iter != segment_states->end())
2281 {
2282 const Output_segment* copy = states_iter->second;
2283 // Shallow copy to restore states.
2284 *segment = *copy;
2285
2286 // Also fix up TLS and RELRO segment pointers as appropriate.
2287 if (segment->type() == elfcpp::PT_TLS)
2288 this->tls_segment_ = segment;
2289 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2290 this->relro_segment_ = segment;
2291
2292 ++list_iter;
2293 }
2294 else
2295 {
2296 list_iter = this->segment_list_.erase(list_iter);
2297 // This is a segment created during section layout. It should be
2298 // safe to remove it since we should have removed all pointers to it.
2299 delete segment;
2300 }
2301 }
2302 }
2303
2304 // Clean up after relaxation so that sections can be laid out again.
2305
2306 void
2307 Layout::clean_up_after_relaxation()
2308 {
2309 // Restore the segments to point state just prior to the relaxation loop.
2310 Script_sections* script_section = this->script_options_->script_sections();
2311 script_section->release_segments();
2312 this->restore_segments(this->segment_states_);
2313
2314 // Reset section addresses and file offsets
2315 for (Section_list::iterator p = this->section_list_.begin();
2316 p != this->section_list_.end();
2317 ++p)
2318 {
2319 (*p)->restore_states();
2320
2321 // If an input section changes size because of relaxation,
2322 // we need to adjust the section offsets of all input sections.
2323 // after such a section.
2324 if ((*p)->section_offsets_need_adjustment())
2325 (*p)->adjust_section_offsets();
2326
2327 (*p)->reset_address_and_file_offset();
2328 }
2329
2330 // Reset special output object address and file offsets.
2331 for (Data_list::iterator p = this->special_output_list_.begin();
2332 p != this->special_output_list_.end();
2333 ++p)
2334 (*p)->reset_address_and_file_offset();
2335
2336 // A linker script may have created some output section data objects.
2337 // They are useless now.
2338 for (Output_section_data_list::const_iterator p =
2339 this->script_output_section_data_list_.begin();
2340 p != this->script_output_section_data_list_.end();
2341 ++p)
2342 delete *p;
2343 this->script_output_section_data_list_.clear();
2344 }
2345
2346 // Prepare for relaxation.
2347
2348 void
2349 Layout::prepare_for_relaxation()
2350 {
2351 // Create an relaxation debug check if in debugging mode.
2352 if (is_debugging_enabled(DEBUG_RELAXATION))
2353 this->relaxation_debug_check_ = new Relaxation_debug_check();
2354
2355 // Save segment states.
2356 this->segment_states_ = new Segment_states();
2357 this->save_segments(this->segment_states_);
2358
2359 for(Section_list::const_iterator p = this->section_list_.begin();
2360 p != this->section_list_.end();
2361 ++p)
2362 (*p)->save_states();
2363
2364 if (is_debugging_enabled(DEBUG_RELAXATION))
2365 this->relaxation_debug_check_->check_output_data_for_reset_values(
2366 this->section_list_, this->special_output_list_);
2367
2368 // Also enable recording of output section data from scripts.
2369 this->record_output_section_data_from_script_ = true;
2370 }
2371
2372 // Relaxation loop body: If target has no relaxation, this runs only once
2373 // Otherwise, the target relaxation hook is called at the end of
2374 // each iteration. If the hook returns true, it means re-layout of
2375 // section is required.
2376 //
2377 // The number of segments created by a linking script without a PHDRS
2378 // clause may be affected by section sizes and alignments. There is
2379 // a remote chance that relaxation causes different number of PT_LOAD
2380 // segments are created and sections are attached to different segments.
2381 // Therefore, we always throw away all segments created during section
2382 // layout. In order to be able to restart the section layout, we keep
2383 // a copy of the segment list right before the relaxation loop and use
2384 // that to restore the segments.
2385 //
2386 // PASS is the current relaxation pass number.
2387 // SYMTAB is a symbol table.
2388 // PLOAD_SEG is the address of a pointer for the load segment.
2389 // PHDR_SEG is a pointer to the PHDR segment.
2390 // SEGMENT_HEADERS points to the output segment header.
2391 // FILE_HEADER points to the output file header.
2392 // PSHNDX is the address to store the output section index.
2393
2394 off_t inline
2395 Layout::relaxation_loop_body(
2396 int pass,
2397 Target* target,
2398 Symbol_table* symtab,
2399 Output_segment** pload_seg,
2400 Output_segment* phdr_seg,
2401 Output_segment_headers* segment_headers,
2402 Output_file_header* file_header,
2403 unsigned int* pshndx)
2404 {
2405 // If this is not the first iteration, we need to clean up after
2406 // relaxation so that we can lay out the sections again.
2407 if (pass != 0)
2408 this->clean_up_after_relaxation();
2409
2410 // If there is a SECTIONS clause, put all the input sections into
2411 // the required order.
2412 Output_segment* load_seg;
2413 if (this->script_options_->saw_sections_clause())
2414 load_seg = this->set_section_addresses_from_script(symtab);
2415 else if (parameters->options().relocatable())
2416 load_seg = NULL;
2417 else
2418 load_seg = this->find_first_load_seg(target);
2419
2420 if (parameters->options().oformat_enum()
2421 != General_options::OBJECT_FORMAT_ELF)
2422 load_seg = NULL;
2423
2424 // If the user set the address of the text segment, that may not be
2425 // compatible with putting the segment headers and file headers into
2426 // that segment.
2427 if (parameters->options().user_set_Ttext()
2428 && parameters->options().Ttext() % target->abi_pagesize() != 0)
2429 {
2430 load_seg = NULL;
2431 phdr_seg = NULL;
2432 }
2433
2434 gold_assert(phdr_seg == NULL
2435 || load_seg != NULL
2436 || this->script_options_->saw_sections_clause());
2437
2438 // If the address of the load segment we found has been set by
2439 // --section-start rather than by a script, then adjust the VMA and
2440 // LMA downward if possible to include the file and section headers.
2441 uint64_t header_gap = 0;
2442 if (load_seg != NULL
2443 && load_seg->are_addresses_set()
2444 && !this->script_options_->saw_sections_clause()
2445 && !parameters->options().relocatable())
2446 {
2447 file_header->finalize_data_size();
2448 segment_headers->finalize_data_size();
2449 size_t sizeof_headers = (file_header->data_size()
2450 + segment_headers->data_size());
2451 const uint64_t abi_pagesize = target->abi_pagesize();
2452 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2453 hdr_paddr &= ~(abi_pagesize - 1);
2454 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2455 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2456 load_seg = NULL;
2457 else
2458 {
2459 load_seg->set_addresses(load_seg->vaddr() - subtract,
2460 load_seg->paddr() - subtract);
2461 header_gap = subtract - sizeof_headers;
2462 }
2463 }
2464
2465 // Lay out the segment headers.
2466 if (!parameters->options().relocatable())
2467 {
2468 gold_assert(segment_headers != NULL);
2469 if (header_gap != 0 && load_seg != NULL)
2470 {
2471 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2472 load_seg->add_initial_output_data(z);
2473 }
2474 if (load_seg != NULL)
2475 load_seg->add_initial_output_data(segment_headers);
2476 if (phdr_seg != NULL)
2477 phdr_seg->add_initial_output_data(segment_headers);
2478 }
2479
2480 // Lay out the file header.
2481 if (load_seg != NULL)
2482 load_seg->add_initial_output_data(file_header);
2483
2484 if (this->script_options_->saw_phdrs_clause()
2485 && !parameters->options().relocatable())
2486 {
2487 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2488 // clause in a linker script.
2489 Script_sections* ss = this->script_options_->script_sections();
2490 ss->put_headers_in_phdrs(file_header, segment_headers);
2491 }
2492
2493 // We set the output section indexes in set_segment_offsets and
2494 // set_section_indexes.
2495 *pshndx = 1;
2496
2497 // Set the file offsets of all the segments, and all the sections
2498 // they contain.
2499 off_t off;
2500 if (!parameters->options().relocatable())
2501 off = this->set_segment_offsets(target, load_seg, pshndx);
2502 else
2503 off = this->set_relocatable_section_offsets(file_header, pshndx);
2504
2505 // Verify that the dummy relaxation does not change anything.
2506 if (is_debugging_enabled(DEBUG_RELAXATION))
2507 {
2508 if (pass == 0)
2509 this->relaxation_debug_check_->read_sections(this->section_list_);
2510 else
2511 this->relaxation_debug_check_->verify_sections(this->section_list_);
2512 }
2513
2514 *pload_seg = load_seg;
2515 return off;
2516 }
2517
2518 // Search the list of patterns and find the postion of the given section
2519 // name in the output section. If the section name matches a glob
2520 // pattern and a non-glob name, then the non-glob position takes
2521 // precedence. Return 0 if no match is found.
2522
2523 unsigned int
2524 Layout::find_section_order_index(const std::string& section_name)
2525 {
2526 Unordered_map<std::string, unsigned int>::iterator map_it;
2527 map_it = this->input_section_position_.find(section_name);
2528 if (map_it != this->input_section_position_.end())
2529 return map_it->second;
2530
2531 // Absolute match failed. Linear search the glob patterns.
2532 std::vector<std::string>::iterator it;
2533 for (it = this->input_section_glob_.begin();
2534 it != this->input_section_glob_.end();
2535 ++it)
2536 {
2537 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2538 {
2539 map_it = this->input_section_position_.find(*it);
2540 gold_assert(map_it != this->input_section_position_.end());
2541 return map_it->second;
2542 }
2543 }
2544 return 0;
2545 }
2546
2547 // Read the sequence of input sections from the file specified with
2548 // option --section-ordering-file.
2549
2550 void
2551 Layout::read_layout_from_file()
2552 {
2553 const char* filename = parameters->options().section_ordering_file();
2554 std::ifstream in;
2555 std::string line;
2556
2557 in.open(filename);
2558 if (!in)
2559 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2560 filename, strerror(errno));
2561
2562 std::getline(in, line); // this chops off the trailing \n, if any
2563 unsigned int position = 1;
2564 this->set_section_ordering_specified();
2565
2566 while (in)
2567 {
2568 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2569 line.resize(line.length() - 1);
2570 // Ignore comments, beginning with '#'
2571 if (line[0] == '#')
2572 {
2573 std::getline(in, line);
2574 continue;
2575 }
2576 this->input_section_position_[line] = position;
2577 // Store all glob patterns in a vector.
2578 if (is_wildcard_string(line.c_str()))
2579 this->input_section_glob_.push_back(line);
2580 position++;
2581 std::getline(in, line);
2582 }
2583 }
2584
2585 // Finalize the layout. When this is called, we have created all the
2586 // output sections and all the output segments which are based on
2587 // input sections. We have several things to do, and we have to do
2588 // them in the right order, so that we get the right results correctly
2589 // and efficiently.
2590
2591 // 1) Finalize the list of output segments and create the segment
2592 // table header.
2593
2594 // 2) Finalize the dynamic symbol table and associated sections.
2595
2596 // 3) Determine the final file offset of all the output segments.
2597
2598 // 4) Determine the final file offset of all the SHF_ALLOC output
2599 // sections.
2600
2601 // 5) Create the symbol table sections and the section name table
2602 // section.
2603
2604 // 6) Finalize the symbol table: set symbol values to their final
2605 // value and make a final determination of which symbols are going
2606 // into the output symbol table.
2607
2608 // 7) Create the section table header.
2609
2610 // 8) Determine the final file offset of all the output sections which
2611 // are not SHF_ALLOC, including the section table header.
2612
2613 // 9) Finalize the ELF file header.
2614
2615 // This function returns the size of the output file.
2616
2617 off_t
2618 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2619 Target* target, const Task* task)
2620 {
2621 target->finalize_sections(this, input_objects, symtab);
2622
2623 this->count_local_symbols(task, input_objects);
2624
2625 this->link_stabs_sections();
2626
2627 Output_segment* phdr_seg = NULL;
2628 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2629 {
2630 // There was a dynamic object in the link. We need to create
2631 // some information for the dynamic linker.
2632
2633 // Create the PT_PHDR segment which will hold the program
2634 // headers.
2635 if (!this->script_options_->saw_phdrs_clause())
2636 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2637
2638 // Create the dynamic symbol table, including the hash table.
2639 Output_section* dynstr;
2640 std::vector<Symbol*> dynamic_symbols;
2641 unsigned int local_dynamic_count;
2642 Versions versions(*this->script_options()->version_script_info(),
2643 &this->dynpool_);
2644 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2645 &local_dynamic_count, &dynamic_symbols,
2646 &versions);
2647
2648 // Create the .interp section to hold the name of the
2649 // interpreter, and put it in a PT_INTERP segment. Don't do it
2650 // if we saw a .interp section in an input file.
2651 if ((!parameters->options().shared()
2652 || parameters->options().dynamic_linker() != NULL)
2653 && this->interp_segment_ == NULL)
2654 this->create_interp(target);
2655
2656 // Finish the .dynamic section to hold the dynamic data, and put
2657 // it in a PT_DYNAMIC segment.
2658 this->finish_dynamic_section(input_objects, symtab);
2659
2660 // We should have added everything we need to the dynamic string
2661 // table.
2662 this->dynpool_.set_string_offsets();
2663
2664 // Create the version sections. We can't do this until the
2665 // dynamic string table is complete.
2666 this->create_version_sections(&versions, symtab, local_dynamic_count,
2667 dynamic_symbols, dynstr);
2668
2669 // Set the size of the _DYNAMIC symbol. We can't do this until
2670 // after we call create_version_sections.
2671 this->set_dynamic_symbol_size(symtab);
2672 }
2673
2674 // Create segment headers.
2675 Output_segment_headers* segment_headers =
2676 (parameters->options().relocatable()
2677 ? NULL
2678 : new Output_segment_headers(this->segment_list_));
2679
2680 // Lay out the file header.
2681 Output_file_header* file_header = new Output_file_header(target, symtab,
2682 segment_headers);
2683
2684 this->special_output_list_.push_back(file_header);
2685 if (segment_headers != NULL)
2686 this->special_output_list_.push_back(segment_headers);
2687
2688 // Find approriate places for orphan output sections if we are using
2689 // a linker script.
2690 if (this->script_options_->saw_sections_clause())
2691 this->place_orphan_sections_in_script();
2692
2693 Output_segment* load_seg;
2694 off_t off;
2695 unsigned int shndx;
2696 int pass = 0;
2697
2698 // Take a snapshot of the section layout as needed.
2699 if (target->may_relax())
2700 this->prepare_for_relaxation();
2701
2702 // Run the relaxation loop to lay out sections.
2703 do
2704 {
2705 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2706 phdr_seg, segment_headers, file_header,
2707 &shndx);
2708 pass++;
2709 }
2710 while (target->may_relax()
2711 && target->relax(pass, input_objects, symtab, this, task));
2712
2713 // If there is a load segment that contains the file and program headers,
2714 // provide a symbol __ehdr_start pointing there.
2715 // A program can use this to examine itself robustly.
2716 if (load_seg != NULL)
2717 symtab->define_in_output_segment("__ehdr_start", NULL,
2718 Symbol_table::PREDEFINED, load_seg, 0, 0,
2719 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2720 elfcpp::STV_HIDDEN, 0,
2721 Symbol::SEGMENT_START, true);
2722
2723 // Set the file offsets of all the non-data sections we've seen so
2724 // far which don't have to wait for the input sections. We need
2725 // this in order to finalize local symbols in non-allocated
2726 // sections.
2727 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2728
2729 // Set the section indexes of all unallocated sections seen so far,
2730 // in case any of them are somehow referenced by a symbol.
2731 shndx = this->set_section_indexes(shndx);
2732
2733 // Create the symbol table sections.
2734 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2735 if (!parameters->doing_static_link())
2736 this->assign_local_dynsym_offsets(input_objects);
2737
2738 // Process any symbol assignments from a linker script. This must
2739 // be called after the symbol table has been finalized.
2740 this->script_options_->finalize_symbols(symtab, this);
2741
2742 // Create the incremental inputs sections.
2743 if (this->incremental_inputs_)
2744 {
2745 this->incremental_inputs_->finalize();
2746 this->create_incremental_info_sections(symtab);
2747 }
2748
2749 // Create the .shstrtab section.
2750 Output_section* shstrtab_section = this->create_shstrtab();
2751
2752 // Set the file offsets of the rest of the non-data sections which
2753 // don't have to wait for the input sections.
2754 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2755
2756 // Now that all sections have been created, set the section indexes
2757 // for any sections which haven't been done yet.
2758 shndx = this->set_section_indexes(shndx);
2759
2760 // Create the section table header.
2761 this->create_shdrs(shstrtab_section, &off);
2762
2763 // If there are no sections which require postprocessing, we can
2764 // handle the section names now, and avoid a resize later.
2765 if (!this->any_postprocessing_sections_)
2766 {
2767 off = this->set_section_offsets(off,
2768 POSTPROCESSING_SECTIONS_PASS);
2769 off =
2770 this->set_section_offsets(off,
2771 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2772 }
2773
2774 file_header->set_section_info(this->section_headers_, shstrtab_section);
2775
2776 // Now we know exactly where everything goes in the output file
2777 // (except for non-allocated sections which require postprocessing).
2778 Output_data::layout_complete();
2779
2780 this->output_file_size_ = off;
2781
2782 return off;
2783 }
2784
2785 // Create a note header following the format defined in the ELF ABI.
2786 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2787 // of the section to create, DESCSZ is the size of the descriptor.
2788 // ALLOCATE is true if the section should be allocated in memory.
2789 // This returns the new note section. It sets *TRAILING_PADDING to
2790 // the number of trailing zero bytes required.
2791
2792 Output_section*
2793 Layout::create_note(const char* name, int note_type,
2794 const char* section_name, size_t descsz,
2795 bool allocate, size_t* trailing_padding)
2796 {
2797 // Authorities all agree that the values in a .note field should
2798 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2799 // they differ on what the alignment is for 64-bit binaries.
2800 // The GABI says unambiguously they take 8-byte alignment:
2801 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2802 // Other documentation says alignment should always be 4 bytes:
2803 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2804 // GNU ld and GNU readelf both support the latter (at least as of
2805 // version 2.16.91), and glibc always generates the latter for
2806 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2807 // here.
2808 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2809 const int size = parameters->target().get_size();
2810 #else
2811 const int size = 32;
2812 #endif
2813
2814 // The contents of the .note section.
2815 size_t namesz = strlen(name) + 1;
2816 size_t aligned_namesz = align_address(namesz, size / 8);
2817 size_t aligned_descsz = align_address(descsz, size / 8);
2818
2819 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2820
2821 unsigned char* buffer = new unsigned char[notehdrsz];
2822 memset(buffer, 0, notehdrsz);
2823
2824 bool is_big_endian = parameters->target().is_big_endian();
2825
2826 if (size == 32)
2827 {
2828 if (!is_big_endian)
2829 {
2830 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2831 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2832 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2833 }
2834 else
2835 {
2836 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2837 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2838 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2839 }
2840 }
2841 else if (size == 64)
2842 {
2843 if (!is_big_endian)
2844 {
2845 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2846 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2847 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2848 }
2849 else
2850 {
2851 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2852 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2853 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2854 }
2855 }
2856 else
2857 gold_unreachable();
2858
2859 memcpy(buffer + 3 * (size / 8), name, namesz);
2860
2861 elfcpp::Elf_Xword flags = 0;
2862 Output_section_order order = ORDER_INVALID;
2863 if (allocate)
2864 {
2865 flags = elfcpp::SHF_ALLOC;
2866 order = ORDER_RO_NOTE;
2867 }
2868 Output_section* os = this->choose_output_section(NULL, section_name,
2869 elfcpp::SHT_NOTE,
2870 flags, false, order, false);
2871 if (os == NULL)
2872 return NULL;
2873
2874 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2875 size / 8,
2876 "** note header");
2877 os->add_output_section_data(posd);
2878
2879 *trailing_padding = aligned_descsz - descsz;
2880
2881 return os;
2882 }
2883
2884 // For an executable or shared library, create a note to record the
2885 // version of gold used to create the binary.
2886
2887 void
2888 Layout::create_gold_note()
2889 {
2890 if (parameters->options().relocatable()
2891 || parameters->incremental_update())
2892 return;
2893
2894 std::string desc = std::string("gold ") + gold::get_version_string();
2895
2896 size_t trailing_padding;
2897 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2898 ".note.gnu.gold-version", desc.size(),
2899 false, &trailing_padding);
2900 if (os == NULL)
2901 return;
2902
2903 Output_section_data* posd = new Output_data_const(desc, 4);
2904 os->add_output_section_data(posd);
2905
2906 if (trailing_padding > 0)
2907 {
2908 posd = new Output_data_zero_fill(trailing_padding, 0);
2909 os->add_output_section_data(posd);
2910 }
2911 }
2912
2913 // Record whether the stack should be executable. This can be set
2914 // from the command line using the -z execstack or -z noexecstack
2915 // options. Otherwise, if any input file has a .note.GNU-stack
2916 // section with the SHF_EXECINSTR flag set, the stack should be
2917 // executable. Otherwise, if at least one input file a
2918 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2919 // section, we use the target default for whether the stack should be
2920 // executable. Otherwise, we don't generate a stack note. When
2921 // generating a object file, we create a .note.GNU-stack section with
2922 // the appropriate marking. When generating an executable or shared
2923 // library, we create a PT_GNU_STACK segment.
2924
2925 void
2926 Layout::create_executable_stack_info()
2927 {
2928 bool is_stack_executable;
2929 if (parameters->options().is_execstack_set())
2930 is_stack_executable = parameters->options().is_stack_executable();
2931 else if (!this->input_with_gnu_stack_note_)
2932 return;
2933 else
2934 {
2935 if (this->input_requires_executable_stack_)
2936 is_stack_executable = true;
2937 else if (this->input_without_gnu_stack_note_)
2938 is_stack_executable =
2939 parameters->target().is_default_stack_executable();
2940 else
2941 is_stack_executable = false;
2942 }
2943
2944 if (parameters->options().relocatable())
2945 {
2946 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2947 elfcpp::Elf_Xword flags = 0;
2948 if (is_stack_executable)
2949 flags |= elfcpp::SHF_EXECINSTR;
2950 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2951 ORDER_INVALID, false);
2952 }
2953 else
2954 {
2955 if (this->script_options_->saw_phdrs_clause())
2956 return;
2957 int flags = elfcpp::PF_R | elfcpp::PF_W;
2958 if (is_stack_executable)
2959 flags |= elfcpp::PF_X;
2960 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2961 }
2962 }
2963
2964 // If --build-id was used, set up the build ID note.
2965
2966 void
2967 Layout::create_build_id()
2968 {
2969 if (!parameters->options().user_set_build_id())
2970 return;
2971
2972 const char* style = parameters->options().build_id();
2973 if (strcmp(style, "none") == 0)
2974 return;
2975
2976 // Set DESCSZ to the size of the note descriptor. When possible,
2977 // set DESC to the note descriptor contents.
2978 size_t descsz;
2979 std::string desc;
2980 if (strcmp(style, "md5") == 0)
2981 descsz = 128 / 8;
2982 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
2983 descsz = 160 / 8;
2984 else if (strcmp(style, "uuid") == 0)
2985 {
2986 const size_t uuidsz = 128 / 8;
2987
2988 char buffer[uuidsz];
2989 memset(buffer, 0, uuidsz);
2990
2991 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2992 if (descriptor < 0)
2993 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2994 strerror(errno));
2995 else
2996 {
2997 ssize_t got = ::read(descriptor, buffer, uuidsz);
2998 release_descriptor(descriptor, true);
2999 if (got < 0)
3000 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3001 else if (static_cast<size_t>(got) != uuidsz)
3002 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3003 uuidsz, got);
3004 }
3005
3006 desc.assign(buffer, uuidsz);
3007 descsz = uuidsz;
3008 }
3009 else if (strncmp(style, "0x", 2) == 0)
3010 {
3011 hex_init();
3012 const char* p = style + 2;
3013 while (*p != '\0')
3014 {
3015 if (hex_p(p[0]) && hex_p(p[1]))
3016 {
3017 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3018 desc += c;
3019 p += 2;
3020 }
3021 else if (*p == '-' || *p == ':')
3022 ++p;
3023 else
3024 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3025 style);
3026 }
3027 descsz = desc.size();
3028 }
3029 else
3030 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3031
3032 // Create the note.
3033 size_t trailing_padding;
3034 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3035 ".note.gnu.build-id", descsz, true,
3036 &trailing_padding);
3037 if (os == NULL)
3038 return;
3039
3040 if (!desc.empty())
3041 {
3042 // We know the value already, so we fill it in now.
3043 gold_assert(desc.size() == descsz);
3044
3045 Output_section_data* posd = new Output_data_const(desc, 4);
3046 os->add_output_section_data(posd);
3047
3048 if (trailing_padding != 0)
3049 {
3050 posd = new Output_data_zero_fill(trailing_padding, 0);
3051 os->add_output_section_data(posd);
3052 }
3053 }
3054 else
3055 {
3056 // We need to compute a checksum after we have completed the
3057 // link.
3058 gold_assert(trailing_padding == 0);
3059 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3060 os->add_output_section_data(this->build_id_note_);
3061 }
3062 }
3063
3064 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3065 // field of the former should point to the latter. I'm not sure who
3066 // started this, but the GNU linker does it, and some tools depend
3067 // upon it.
3068
3069 void
3070 Layout::link_stabs_sections()
3071 {
3072 if (!this->have_stabstr_section_)
3073 return;
3074
3075 for (Section_list::iterator p = this->section_list_.begin();
3076 p != this->section_list_.end();
3077 ++p)
3078 {
3079 if ((*p)->type() != elfcpp::SHT_STRTAB)
3080 continue;
3081
3082 const char* name = (*p)->name();
3083 if (strncmp(name, ".stab", 5) != 0)
3084 continue;
3085
3086 size_t len = strlen(name);
3087 if (strcmp(name + len - 3, "str") != 0)
3088 continue;
3089
3090 std::string stab_name(name, len - 3);
3091 Output_section* stab_sec;
3092 stab_sec = this->find_output_section(stab_name.c_str());
3093 if (stab_sec != NULL)
3094 stab_sec->set_link_section(*p);
3095 }
3096 }
3097
3098 // Create .gnu_incremental_inputs and related sections needed
3099 // for the next run of incremental linking to check what has changed.
3100
3101 void
3102 Layout::create_incremental_info_sections(Symbol_table* symtab)
3103 {
3104 Incremental_inputs* incr = this->incremental_inputs_;
3105
3106 gold_assert(incr != NULL);
3107
3108 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3109 incr->create_data_sections(symtab);
3110
3111 // Add the .gnu_incremental_inputs section.
3112 const char* incremental_inputs_name =
3113 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3114 Output_section* incremental_inputs_os =
3115 this->make_output_section(incremental_inputs_name,
3116 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3117 ORDER_INVALID, false);
3118 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3119
3120 // Add the .gnu_incremental_symtab section.
3121 const char* incremental_symtab_name =
3122 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3123 Output_section* incremental_symtab_os =
3124 this->make_output_section(incremental_symtab_name,
3125 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3126 ORDER_INVALID, false);
3127 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3128 incremental_symtab_os->set_entsize(4);
3129
3130 // Add the .gnu_incremental_relocs section.
3131 const char* incremental_relocs_name =
3132 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3133 Output_section* incremental_relocs_os =
3134 this->make_output_section(incremental_relocs_name,
3135 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3136 ORDER_INVALID, false);
3137 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3138 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3139
3140 // Add the .gnu_incremental_got_plt section.
3141 const char* incremental_got_plt_name =
3142 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3143 Output_section* incremental_got_plt_os =
3144 this->make_output_section(incremental_got_plt_name,
3145 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3146 ORDER_INVALID, false);
3147 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3148
3149 // Add the .gnu_incremental_strtab section.
3150 const char* incremental_strtab_name =
3151 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3152 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3153 elfcpp::SHT_STRTAB, 0,
3154 ORDER_INVALID, false);
3155 Output_data_strtab* strtab_data =
3156 new Output_data_strtab(incr->get_stringpool());
3157 incremental_strtab_os->add_output_section_data(strtab_data);
3158
3159 incremental_inputs_os->set_after_input_sections();
3160 incremental_symtab_os->set_after_input_sections();
3161 incremental_relocs_os->set_after_input_sections();
3162 incremental_got_plt_os->set_after_input_sections();
3163
3164 incremental_inputs_os->set_link_section(incremental_strtab_os);
3165 incremental_symtab_os->set_link_section(incremental_inputs_os);
3166 incremental_relocs_os->set_link_section(incremental_inputs_os);
3167 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3168 }
3169
3170 // Return whether SEG1 should be before SEG2 in the output file. This
3171 // is based entirely on the segment type and flags. When this is
3172 // called the segment addresses have normally not yet been set.
3173
3174 bool
3175 Layout::segment_precedes(const Output_segment* seg1,
3176 const Output_segment* seg2)
3177 {
3178 elfcpp::Elf_Word type1 = seg1->type();
3179 elfcpp::Elf_Word type2 = seg2->type();
3180
3181 // The single PT_PHDR segment is required to precede any loadable
3182 // segment. We simply make it always first.
3183 if (type1 == elfcpp::PT_PHDR)
3184 {
3185 gold_assert(type2 != elfcpp::PT_PHDR);
3186 return true;
3187 }
3188 if (type2 == elfcpp::PT_PHDR)
3189 return false;
3190
3191 // The single PT_INTERP segment is required to precede any loadable
3192 // segment. We simply make it always second.
3193 if (type1 == elfcpp::PT_INTERP)
3194 {
3195 gold_assert(type2 != elfcpp::PT_INTERP);
3196 return true;
3197 }
3198 if (type2 == elfcpp::PT_INTERP)
3199 return false;
3200
3201 // We then put PT_LOAD segments before any other segments.
3202 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3203 return true;
3204 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3205 return false;
3206
3207 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3208 // segment, because that is where the dynamic linker expects to find
3209 // it (this is just for efficiency; other positions would also work
3210 // correctly).
3211 if (type1 == elfcpp::PT_TLS
3212 && type2 != elfcpp::PT_TLS
3213 && type2 != elfcpp::PT_GNU_RELRO)
3214 return false;
3215 if (type2 == elfcpp::PT_TLS
3216 && type1 != elfcpp::PT_TLS
3217 && type1 != elfcpp::PT_GNU_RELRO)
3218 return true;
3219
3220 // We put the PT_GNU_RELRO segment last, because that is where the
3221 // dynamic linker expects to find it (as with PT_TLS, this is just
3222 // for efficiency).
3223 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3224 return false;
3225 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3226 return true;
3227
3228 const elfcpp::Elf_Word flags1 = seg1->flags();
3229 const elfcpp::Elf_Word flags2 = seg2->flags();
3230
3231 // The order of non-PT_LOAD segments is unimportant. We simply sort
3232 // by the numeric segment type and flags values. There should not
3233 // be more than one segment with the same type and flags, except
3234 // when a linker script specifies such.
3235 if (type1 != elfcpp::PT_LOAD)
3236 {
3237 if (type1 != type2)
3238 return type1 < type2;
3239 gold_assert(flags1 != flags2
3240 || this->script_options_->saw_phdrs_clause());
3241 return flags1 < flags2;
3242 }
3243
3244 // If the addresses are set already, sort by load address.
3245 if (seg1->are_addresses_set())
3246 {
3247 if (!seg2->are_addresses_set())
3248 return true;
3249
3250 unsigned int section_count1 = seg1->output_section_count();
3251 unsigned int section_count2 = seg2->output_section_count();
3252 if (section_count1 == 0 && section_count2 > 0)
3253 return true;
3254 if (section_count1 > 0 && section_count2 == 0)
3255 return false;
3256
3257 uint64_t paddr1 = (seg1->are_addresses_set()
3258 ? seg1->paddr()
3259 : seg1->first_section_load_address());
3260 uint64_t paddr2 = (seg2->are_addresses_set()
3261 ? seg2->paddr()
3262 : seg2->first_section_load_address());
3263
3264 if (paddr1 != paddr2)
3265 return paddr1 < paddr2;
3266 }
3267 else if (seg2->are_addresses_set())
3268 return false;
3269
3270 // A segment which holds large data comes after a segment which does
3271 // not hold large data.
3272 if (seg1->is_large_data_segment())
3273 {
3274 if (!seg2->is_large_data_segment())
3275 return false;
3276 }
3277 else if (seg2->is_large_data_segment())
3278 return true;
3279
3280 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3281 // segments come before writable segments. Then writable segments
3282 // with data come before writable segments without data. Then
3283 // executable segments come before non-executable segments. Then
3284 // the unlikely case of a non-readable segment comes before the
3285 // normal case of a readable segment. If there are multiple
3286 // segments with the same type and flags, we require that the
3287 // address be set, and we sort by virtual address and then physical
3288 // address.
3289 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3290 return (flags1 & elfcpp::PF_W) == 0;
3291 if ((flags1 & elfcpp::PF_W) != 0
3292 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3293 return seg1->has_any_data_sections();
3294 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3295 return (flags1 & elfcpp::PF_X) != 0;
3296 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3297 return (flags1 & elfcpp::PF_R) == 0;
3298
3299 // We shouldn't get here--we shouldn't create segments which we
3300 // can't distinguish. Unless of course we are using a weird linker
3301 // script or overlapping --section-start options. We could also get
3302 // here if plugins want unique segments for subsets of sections.
3303 gold_assert(this->script_options_->saw_phdrs_clause()
3304 || parameters->options().any_section_start()
3305 || this->is_unique_segment_for_sections_specified());
3306 return false;
3307 }
3308
3309 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3310
3311 static off_t
3312 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3313 {
3314 uint64_t unsigned_off = off;
3315 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3316 | (addr & (abi_pagesize - 1)));
3317 if (aligned_off < unsigned_off)
3318 aligned_off += abi_pagesize;
3319 return aligned_off;
3320 }
3321
3322 // Set the file offsets of all the segments, and all the sections they
3323 // contain. They have all been created. LOAD_SEG must be be laid out
3324 // first. Return the offset of the data to follow.
3325
3326 off_t
3327 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3328 unsigned int* pshndx)
3329 {
3330 // Sort them into the final order. We use a stable sort so that we
3331 // don't randomize the order of indistinguishable segments created
3332 // by linker scripts.
3333 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3334 Layout::Compare_segments(this));
3335
3336 // Find the PT_LOAD segments, and set their addresses and offsets
3337 // and their section's addresses and offsets.
3338 uint64_t start_addr;
3339 if (parameters->options().user_set_Ttext())
3340 start_addr = parameters->options().Ttext();
3341 else if (parameters->options().output_is_position_independent())
3342 start_addr = 0;
3343 else
3344 start_addr = target->default_text_segment_address();
3345
3346 uint64_t addr = start_addr;
3347 off_t off = 0;
3348
3349 // If LOAD_SEG is NULL, then the file header and segment headers
3350 // will not be loadable. But they still need to be at offset 0 in
3351 // the file. Set their offsets now.
3352 if (load_seg == NULL)
3353 {
3354 for (Data_list::iterator p = this->special_output_list_.begin();
3355 p != this->special_output_list_.end();
3356 ++p)
3357 {
3358 off = align_address(off, (*p)->addralign());
3359 (*p)->set_address_and_file_offset(0, off);
3360 off += (*p)->data_size();
3361 }
3362 }
3363
3364 unsigned int increase_relro = this->increase_relro_;
3365 if (this->script_options_->saw_sections_clause())
3366 increase_relro = 0;
3367
3368 const bool check_sections = parameters->options().check_sections();
3369 Output_segment* last_load_segment = NULL;
3370
3371 unsigned int shndx_begin = *pshndx;
3372 unsigned int shndx_load_seg = *pshndx;
3373
3374 for (Segment_list::iterator p = this->segment_list_.begin();
3375 p != this->segment_list_.end();
3376 ++p)
3377 {
3378 if ((*p)->type() == elfcpp::PT_LOAD)
3379 {
3380 if (target->isolate_execinstr())
3381 {
3382 // When we hit the segment that should contain the
3383 // file headers, reset the file offset so we place
3384 // it and subsequent segments appropriately.
3385 // We'll fix up the preceding segments below.
3386 if (load_seg == *p)
3387 {
3388 if (off == 0)
3389 load_seg = NULL;
3390 else
3391 {
3392 off = 0;
3393 shndx_load_seg = *pshndx;
3394 }
3395 }
3396 }
3397 else
3398 {
3399 // Verify that the file headers fall into the first segment.
3400 if (load_seg != NULL && load_seg != *p)
3401 gold_unreachable();
3402 load_seg = NULL;
3403 }
3404
3405 bool are_addresses_set = (*p)->are_addresses_set();
3406 if (are_addresses_set)
3407 {
3408 // When it comes to setting file offsets, we care about
3409 // the physical address.
3410 addr = (*p)->paddr();
3411 }
3412 else if (parameters->options().user_set_Ttext()
3413 && (parameters->options().omagic()
3414 || ((*p)->flags() & elfcpp::PF_W) == 0))
3415 {
3416 are_addresses_set = true;
3417 }
3418 else if (parameters->options().user_set_Tdata()
3419 && ((*p)->flags() & elfcpp::PF_W) != 0
3420 && (!parameters->options().user_set_Tbss()
3421 || (*p)->has_any_data_sections()))
3422 {
3423 addr = parameters->options().Tdata();
3424 are_addresses_set = true;
3425 }
3426 else if (parameters->options().user_set_Tbss()
3427 && ((*p)->flags() & elfcpp::PF_W) != 0
3428 && !(*p)->has_any_data_sections())
3429 {
3430 addr = parameters->options().Tbss();
3431 are_addresses_set = true;
3432 }
3433
3434 uint64_t orig_addr = addr;
3435 uint64_t orig_off = off;
3436
3437 uint64_t aligned_addr = 0;
3438 uint64_t abi_pagesize = target->abi_pagesize();
3439 uint64_t common_pagesize = target->common_pagesize();
3440
3441 if (!parameters->options().nmagic()
3442 && !parameters->options().omagic())
3443 (*p)->set_minimum_p_align(abi_pagesize);
3444
3445 if (!are_addresses_set)
3446 {
3447 // Skip the address forward one page, maintaining the same
3448 // position within the page. This lets us store both segments
3449 // overlapping on a single page in the file, but the loader will
3450 // put them on different pages in memory. We will revisit this
3451 // decision once we know the size of the segment.
3452
3453 addr = align_address(addr, (*p)->maximum_alignment());
3454 aligned_addr = addr;
3455
3456 if (load_seg == *p)
3457 {
3458 // This is the segment that will contain the file
3459 // headers, so its offset will have to be exactly zero.
3460 gold_assert(orig_off == 0);
3461
3462 // If the target wants a fixed minimum distance from the
3463 // text segment to the read-only segment, move up now.
3464 uint64_t min_addr =
3465 start_addr + (parameters->options().user_set_rosegment_gap()
3466 ? parameters->options().rosegment_gap()
3467 : target->rosegment_gap());
3468 if (addr < min_addr)
3469 addr = min_addr;
3470
3471 // But this is not the first segment! To make its
3472 // address congruent with its offset, that address better
3473 // be aligned to the ABI-mandated page size.
3474 addr = align_address(addr, abi_pagesize);
3475 aligned_addr = addr;
3476 }
3477 else
3478 {
3479 if ((addr & (abi_pagesize - 1)) != 0)
3480 addr = addr + abi_pagesize;
3481
3482 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3483 }
3484 }
3485
3486 if (!parameters->options().nmagic()
3487 && !parameters->options().omagic())
3488 {
3489 // Here we are also taking care of the case when
3490 // the maximum segment alignment is larger than the page size.
3491 off = align_file_offset(off, addr,
3492 std::max(abi_pagesize,
3493 (*p)->maximum_alignment()));
3494 }
3495 else
3496 {
3497 // This is -N or -n with a section script which prevents
3498 // us from using a load segment. We need to ensure that
3499 // the file offset is aligned to the alignment of the
3500 // segment. This is because the linker script
3501 // implicitly assumed a zero offset. If we don't align
3502 // here, then the alignment of the sections in the
3503 // linker script may not match the alignment of the
3504 // sections in the set_section_addresses call below,
3505 // causing an error about dot moving backward.
3506 off = align_address(off, (*p)->maximum_alignment());
3507 }
3508
3509 unsigned int shndx_hold = *pshndx;
3510 bool has_relro = false;
3511 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3512 &increase_relro,
3513 &has_relro,
3514 &off, pshndx);
3515
3516 // Now that we know the size of this segment, we may be able
3517 // to save a page in memory, at the cost of wasting some
3518 // file space, by instead aligning to the start of a new
3519 // page. Here we use the real machine page size rather than
3520 // the ABI mandated page size. If the segment has been
3521 // aligned so that the relro data ends at a page boundary,
3522 // we do not try to realign it.
3523
3524 if (!are_addresses_set
3525 && !has_relro
3526 && aligned_addr != addr
3527 && !parameters->incremental())
3528 {
3529 uint64_t first_off = (common_pagesize
3530 - (aligned_addr
3531 & (common_pagesize - 1)));
3532 uint64_t last_off = new_addr & (common_pagesize - 1);
3533 if (first_off > 0
3534 && last_off > 0
3535 && ((aligned_addr & ~ (common_pagesize - 1))
3536 != (new_addr & ~ (common_pagesize - 1)))
3537 && first_off + last_off <= common_pagesize)
3538 {
3539 *pshndx = shndx_hold;
3540 addr = align_address(aligned_addr, common_pagesize);
3541 addr = align_address(addr, (*p)->maximum_alignment());
3542 if ((addr & (abi_pagesize - 1)) != 0)
3543 addr = addr + abi_pagesize;
3544 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3545 off = align_file_offset(off, addr, abi_pagesize);
3546
3547 increase_relro = this->increase_relro_;
3548 if (this->script_options_->saw_sections_clause())
3549 increase_relro = 0;
3550 has_relro = false;
3551
3552 new_addr = (*p)->set_section_addresses(this, true, addr,
3553 &increase_relro,
3554 &has_relro,
3555 &off, pshndx);
3556 }
3557 }
3558
3559 addr = new_addr;
3560
3561 // Implement --check-sections. We know that the segments
3562 // are sorted by LMA.
3563 if (check_sections && last_load_segment != NULL)
3564 {
3565 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3566 if (last_load_segment->paddr() + last_load_segment->memsz()
3567 > (*p)->paddr())
3568 {
3569 unsigned long long lb1 = last_load_segment->paddr();
3570 unsigned long long le1 = lb1 + last_load_segment->memsz();
3571 unsigned long long lb2 = (*p)->paddr();
3572 unsigned long long le2 = lb2 + (*p)->memsz();
3573 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3574 "[0x%llx -> 0x%llx]"),
3575 lb1, le1, lb2, le2);
3576 }
3577 }
3578 last_load_segment = *p;
3579 }
3580 }
3581
3582 if (load_seg != NULL && target->isolate_execinstr())
3583 {
3584 // Process the early segments again, setting their file offsets
3585 // so they land after the segments starting at LOAD_SEG.
3586 off = align_file_offset(off, 0, target->abi_pagesize());
3587
3588 for (Segment_list::iterator p = this->segment_list_.begin();
3589 *p != load_seg;
3590 ++p)
3591 {
3592 if ((*p)->type() == elfcpp::PT_LOAD)
3593 {
3594 // We repeat the whole job of assigning addresses and
3595 // offsets, but we really only want to change the offsets and
3596 // must ensure that the addresses all come out the same as
3597 // they did the first time through.
3598 bool has_relro = false;
3599 const uint64_t old_addr = (*p)->vaddr();
3600 const uint64_t old_end = old_addr + (*p)->memsz();
3601 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3602 old_addr,
3603 &increase_relro,
3604 &has_relro,
3605 &off,
3606 &shndx_begin);
3607 gold_assert(new_addr == old_end);
3608 }
3609 }
3610
3611 gold_assert(shndx_begin == shndx_load_seg);
3612 }
3613
3614 // Handle the non-PT_LOAD segments, setting their offsets from their
3615 // section's offsets.
3616 for (Segment_list::iterator p = this->segment_list_.begin();
3617 p != this->segment_list_.end();
3618 ++p)
3619 {
3620 if ((*p)->type() != elfcpp::PT_LOAD)
3621 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3622 ? increase_relro
3623 : 0);
3624 }
3625
3626 // Set the TLS offsets for each section in the PT_TLS segment.
3627 if (this->tls_segment_ != NULL)
3628 this->tls_segment_->set_tls_offsets();
3629
3630 return off;
3631 }
3632
3633 // Set the offsets of all the allocated sections when doing a
3634 // relocatable link. This does the same jobs as set_segment_offsets,
3635 // only for a relocatable link.
3636
3637 off_t
3638 Layout::set_relocatable_section_offsets(Output_data* file_header,
3639 unsigned int* pshndx)
3640 {
3641 off_t off = 0;
3642
3643 file_header->set_address_and_file_offset(0, 0);
3644 off += file_header->data_size();
3645
3646 for (Section_list::iterator p = this->section_list_.begin();
3647 p != this->section_list_.end();
3648 ++p)
3649 {
3650 // We skip unallocated sections here, except that group sections
3651 // have to come first.
3652 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3653 && (*p)->type() != elfcpp::SHT_GROUP)
3654 continue;
3655
3656 off = align_address(off, (*p)->addralign());
3657
3658 // The linker script might have set the address.
3659 if (!(*p)->is_address_valid())
3660 (*p)->set_address(0);
3661 (*p)->set_file_offset(off);
3662 (*p)->finalize_data_size();
3663 if ((*p)->type() != elfcpp::SHT_NOBITS)
3664 off += (*p)->data_size();
3665
3666 (*p)->set_out_shndx(*pshndx);
3667 ++*pshndx;
3668 }
3669
3670 return off;
3671 }
3672
3673 // Set the file offset of all the sections not associated with a
3674 // segment.
3675
3676 off_t
3677 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3678 {
3679 off_t startoff = off;
3680 off_t maxoff = off;
3681
3682 for (Section_list::iterator p = this->unattached_section_list_.begin();
3683 p != this->unattached_section_list_.end();
3684 ++p)
3685 {
3686 // The symtab section is handled in create_symtab_sections.
3687 if (*p == this->symtab_section_)
3688 continue;
3689
3690 // If we've already set the data size, don't set it again.
3691 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3692 continue;
3693
3694 if (pass == BEFORE_INPUT_SECTIONS_PASS
3695 && (*p)->requires_postprocessing())
3696 {
3697 (*p)->create_postprocessing_buffer();
3698 this->any_postprocessing_sections_ = true;
3699 }
3700
3701 if (pass == BEFORE_INPUT_SECTIONS_PASS
3702 && (*p)->after_input_sections())
3703 continue;
3704 else if (pass == POSTPROCESSING_SECTIONS_PASS
3705 && (!(*p)->after_input_sections()
3706 || (*p)->type() == elfcpp::SHT_STRTAB))
3707 continue;
3708 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3709 && (!(*p)->after_input_sections()
3710 || (*p)->type() != elfcpp::SHT_STRTAB))
3711 continue;
3712
3713 if (!parameters->incremental_update())
3714 {
3715 off = align_address(off, (*p)->addralign());
3716 (*p)->set_file_offset(off);
3717 (*p)->finalize_data_size();
3718 }
3719 else
3720 {
3721 // Incremental update: allocate file space from free list.
3722 (*p)->pre_finalize_data_size();
3723 off_t current_size = (*p)->current_data_size();
3724 off = this->allocate(current_size, (*p)->addralign(), startoff);
3725 if (off == -1)
3726 {
3727 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3728 this->free_list_.dump();
3729 gold_assert((*p)->output_section() != NULL);
3730 gold_fallback(_("out of patch space for section %s; "
3731 "relink with --incremental-full"),
3732 (*p)->output_section()->name());
3733 }
3734 (*p)->set_file_offset(off);
3735 (*p)->finalize_data_size();
3736 if ((*p)->data_size() > current_size)
3737 {
3738 gold_assert((*p)->output_section() != NULL);
3739 gold_fallback(_("%s: section changed size; "
3740 "relink with --incremental-full"),
3741 (*p)->output_section()->name());
3742 }
3743 gold_debug(DEBUG_INCREMENTAL,
3744 "set_section_offsets: %08lx %08lx %s",
3745 static_cast<long>(off),
3746 static_cast<long>((*p)->data_size()),
3747 ((*p)->output_section() != NULL
3748 ? (*p)->output_section()->name() : "(special)"));
3749 }
3750
3751 off += (*p)->data_size();
3752 if (off > maxoff)
3753 maxoff = off;
3754
3755 // At this point the name must be set.
3756 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3757 this->namepool_.add((*p)->name(), false, NULL);
3758 }
3759 return maxoff;
3760 }
3761
3762 // Set the section indexes of all the sections not associated with a
3763 // segment.
3764
3765 unsigned int
3766 Layout::set_section_indexes(unsigned int shndx)
3767 {
3768 for (Section_list::iterator p = this->unattached_section_list_.begin();
3769 p != this->unattached_section_list_.end();
3770 ++p)
3771 {
3772 if (!(*p)->has_out_shndx())
3773 {
3774 (*p)->set_out_shndx(shndx);
3775 ++shndx;
3776 }
3777 }
3778 return shndx;
3779 }
3780
3781 // Set the section addresses according to the linker script. This is
3782 // only called when we see a SECTIONS clause. This returns the
3783 // program segment which should hold the file header and segment
3784 // headers, if any. It will return NULL if they should not be in a
3785 // segment.
3786
3787 Output_segment*
3788 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3789 {
3790 Script_sections* ss = this->script_options_->script_sections();
3791 gold_assert(ss->saw_sections_clause());
3792 return this->script_options_->set_section_addresses(symtab, this);
3793 }
3794
3795 // Place the orphan sections in the linker script.
3796
3797 void
3798 Layout::place_orphan_sections_in_script()
3799 {
3800 Script_sections* ss = this->script_options_->script_sections();
3801 gold_assert(ss->saw_sections_clause());
3802
3803 // Place each orphaned output section in the script.
3804 for (Section_list::iterator p = this->section_list_.begin();
3805 p != this->section_list_.end();
3806 ++p)
3807 {
3808 if (!(*p)->found_in_sections_clause())
3809 ss->place_orphan(*p);
3810 }
3811 }
3812
3813 // Count the local symbols in the regular symbol table and the dynamic
3814 // symbol table, and build the respective string pools.
3815
3816 void
3817 Layout::count_local_symbols(const Task* task,
3818 const Input_objects* input_objects)
3819 {
3820 // First, figure out an upper bound on the number of symbols we'll
3821 // be inserting into each pool. This helps us create the pools with
3822 // the right size, to avoid unnecessary hashtable resizing.
3823 unsigned int symbol_count = 0;
3824 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3825 p != input_objects->relobj_end();
3826 ++p)
3827 symbol_count += (*p)->local_symbol_count();
3828
3829 // Go from "upper bound" to "estimate." We overcount for two
3830 // reasons: we double-count symbols that occur in more than one
3831 // object file, and we count symbols that are dropped from the
3832 // output. Add it all together and assume we overcount by 100%.
3833 symbol_count /= 2;
3834
3835 // We assume all symbols will go into both the sympool and dynpool.
3836 this->sympool_.reserve(symbol_count);
3837 this->dynpool_.reserve(symbol_count);
3838
3839 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3840 p != input_objects->relobj_end();
3841 ++p)
3842 {
3843 Task_lock_obj<Object> tlo(task, *p);
3844 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3845 }
3846 }
3847
3848 // Create the symbol table sections. Here we also set the final
3849 // values of the symbols. At this point all the loadable sections are
3850 // fully laid out. SHNUM is the number of sections so far.
3851
3852 void
3853 Layout::create_symtab_sections(const Input_objects* input_objects,
3854 Symbol_table* symtab,
3855 unsigned int shnum,
3856 off_t* poff)
3857 {
3858 int symsize;
3859 unsigned int align;
3860 if (parameters->target().get_size() == 32)
3861 {
3862 symsize = elfcpp::Elf_sizes<32>::sym_size;
3863 align = 4;
3864 }
3865 else if (parameters->target().get_size() == 64)
3866 {
3867 symsize = elfcpp::Elf_sizes<64>::sym_size;
3868 align = 8;
3869 }
3870 else
3871 gold_unreachable();
3872
3873 // Compute file offsets relative to the start of the symtab section.
3874 off_t off = 0;
3875
3876 // Save space for the dummy symbol at the start of the section. We
3877 // never bother to write this out--it will just be left as zero.
3878 off += symsize;
3879 unsigned int local_symbol_index = 1;
3880
3881 // Add STT_SECTION symbols for each Output section which needs one.
3882 for (Section_list::iterator p = this->section_list_.begin();
3883 p != this->section_list_.end();
3884 ++p)
3885 {
3886 if (!(*p)->needs_symtab_index())
3887 (*p)->set_symtab_index(-1U);
3888 else
3889 {
3890 (*p)->set_symtab_index(local_symbol_index);
3891 ++local_symbol_index;
3892 off += symsize;
3893 }
3894 }
3895
3896 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3897 p != input_objects->relobj_end();
3898 ++p)
3899 {
3900 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3901 off, symtab);
3902 off += (index - local_symbol_index) * symsize;
3903 local_symbol_index = index;
3904 }
3905
3906 unsigned int local_symcount = local_symbol_index;
3907 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3908
3909 off_t dynoff;
3910 size_t dyn_global_index;
3911 size_t dyncount;
3912 if (this->dynsym_section_ == NULL)
3913 {
3914 dynoff = 0;
3915 dyn_global_index = 0;
3916 dyncount = 0;
3917 }
3918 else
3919 {
3920 dyn_global_index = this->dynsym_section_->info();
3921 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3922 dynoff = this->dynsym_section_->offset() + locsize;
3923 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3924 gold_assert(static_cast<off_t>(dyncount * symsize)
3925 == this->dynsym_section_->data_size() - locsize);
3926 }
3927
3928 off_t global_off = off;
3929 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3930 &this->sympool_, &local_symcount);
3931
3932 if (!parameters->options().strip_all())
3933 {
3934 this->sympool_.set_string_offsets();
3935
3936 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3937 Output_section* osymtab = this->make_output_section(symtab_name,
3938 elfcpp::SHT_SYMTAB,
3939 0, ORDER_INVALID,
3940 false);
3941 this->symtab_section_ = osymtab;
3942
3943 Output_section_data* pos = new Output_data_fixed_space(off, align,
3944 "** symtab");
3945 osymtab->add_output_section_data(pos);
3946
3947 // We generate a .symtab_shndx section if we have more than
3948 // SHN_LORESERVE sections. Technically it is possible that we
3949 // don't need one, because it is possible that there are no
3950 // symbols in any of sections with indexes larger than
3951 // SHN_LORESERVE. That is probably unusual, though, and it is
3952 // easier to always create one than to compute section indexes
3953 // twice (once here, once when writing out the symbols).
3954 if (shnum >= elfcpp::SHN_LORESERVE)
3955 {
3956 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3957 false, NULL);
3958 Output_section* osymtab_xindex =
3959 this->make_output_section(symtab_xindex_name,
3960 elfcpp::SHT_SYMTAB_SHNDX, 0,
3961 ORDER_INVALID, false);
3962
3963 size_t symcount = off / symsize;
3964 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3965
3966 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3967
3968 osymtab_xindex->set_link_section(osymtab);
3969 osymtab_xindex->set_addralign(4);
3970 osymtab_xindex->set_entsize(4);
3971
3972 osymtab_xindex->set_after_input_sections();
3973
3974 // This tells the driver code to wait until the symbol table
3975 // has written out before writing out the postprocessing
3976 // sections, including the .symtab_shndx section.
3977 this->any_postprocessing_sections_ = true;
3978 }
3979
3980 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3981 Output_section* ostrtab = this->make_output_section(strtab_name,
3982 elfcpp::SHT_STRTAB,
3983 0, ORDER_INVALID,
3984 false);
3985
3986 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3987 ostrtab->add_output_section_data(pstr);
3988
3989 off_t symtab_off;
3990 if (!parameters->incremental_update())
3991 symtab_off = align_address(*poff, align);
3992 else
3993 {
3994 symtab_off = this->allocate(off, align, *poff);
3995 if (off == -1)
3996 gold_fallback(_("out of patch space for symbol table; "
3997 "relink with --incremental-full"));
3998 gold_debug(DEBUG_INCREMENTAL,
3999 "create_symtab_sections: %08lx %08lx .symtab",
4000 static_cast<long>(symtab_off),
4001 static_cast<long>(off));
4002 }
4003
4004 symtab->set_file_offset(symtab_off + global_off);
4005 osymtab->set_file_offset(symtab_off);
4006 osymtab->finalize_data_size();
4007 osymtab->set_link_section(ostrtab);
4008 osymtab->set_info(local_symcount);
4009 osymtab->set_entsize(symsize);
4010
4011 if (symtab_off + off > *poff)
4012 *poff = symtab_off + off;
4013 }
4014 }
4015
4016 // Create the .shstrtab section, which holds the names of the
4017 // sections. At the time this is called, we have created all the
4018 // output sections except .shstrtab itself.
4019
4020 Output_section*
4021 Layout::create_shstrtab()
4022 {
4023 // FIXME: We don't need to create a .shstrtab section if we are
4024 // stripping everything.
4025
4026 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4027
4028 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4029 ORDER_INVALID, false);
4030
4031 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4032 {
4033 // We can't write out this section until we've set all the
4034 // section names, and we don't set the names of compressed
4035 // output sections until relocations are complete. FIXME: With
4036 // the current names we use, this is unnecessary.
4037 os->set_after_input_sections();
4038 }
4039
4040 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4041 os->add_output_section_data(posd);
4042
4043 return os;
4044 }
4045
4046 // Create the section headers. SIZE is 32 or 64. OFF is the file
4047 // offset.
4048
4049 void
4050 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4051 {
4052 Output_section_headers* oshdrs;
4053 oshdrs = new Output_section_headers(this,
4054 &this->segment_list_,
4055 &this->section_list_,
4056 &this->unattached_section_list_,
4057 &this->namepool_,
4058 shstrtab_section);
4059 off_t off;
4060 if (!parameters->incremental_update())
4061 off = align_address(*poff, oshdrs->addralign());
4062 else
4063 {
4064 oshdrs->pre_finalize_data_size();
4065 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4066 if (off == -1)
4067 gold_fallback(_("out of patch space for section header table; "
4068 "relink with --incremental-full"));
4069 gold_debug(DEBUG_INCREMENTAL,
4070 "create_shdrs: %08lx %08lx (section header table)",
4071 static_cast<long>(off),
4072 static_cast<long>(off + oshdrs->data_size()));
4073 }
4074 oshdrs->set_address_and_file_offset(0, off);
4075 off += oshdrs->data_size();
4076 if (off > *poff)
4077 *poff = off;
4078 this->section_headers_ = oshdrs;
4079 }
4080
4081 // Count the allocated sections.
4082
4083 size_t
4084 Layout::allocated_output_section_count() const
4085 {
4086 size_t section_count = 0;
4087 for (Segment_list::const_iterator p = this->segment_list_.begin();
4088 p != this->segment_list_.end();
4089 ++p)
4090 section_count += (*p)->output_section_count();
4091 return section_count;
4092 }
4093
4094 // Create the dynamic symbol table.
4095
4096 void
4097 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4098 Symbol_table* symtab,
4099 Output_section** pdynstr,
4100 unsigned int* plocal_dynamic_count,
4101 std::vector<Symbol*>* pdynamic_symbols,
4102 Versions* pversions)
4103 {
4104 // Count all the symbols in the dynamic symbol table, and set the
4105 // dynamic symbol indexes.
4106
4107 // Skip symbol 0, which is always all zeroes.
4108 unsigned int index = 1;
4109
4110 // Add STT_SECTION symbols for each Output section which needs one.
4111 for (Section_list::iterator p = this->section_list_.begin();
4112 p != this->section_list_.end();
4113 ++p)
4114 {
4115 if (!(*p)->needs_dynsym_index())
4116 (*p)->set_dynsym_index(-1U);
4117 else
4118 {
4119 (*p)->set_dynsym_index(index);
4120 ++index;
4121 }
4122 }
4123
4124 // Count the local symbols that need to go in the dynamic symbol table,
4125 // and set the dynamic symbol indexes.
4126 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4127 p != input_objects->relobj_end();
4128 ++p)
4129 {
4130 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4131 index = new_index;
4132 }
4133
4134 unsigned int local_symcount = index;
4135 *plocal_dynamic_count = local_symcount;
4136
4137 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4138 &this->dynpool_, pversions);
4139
4140 int symsize;
4141 unsigned int align;
4142 const int size = parameters->target().get_size();
4143 if (size == 32)
4144 {
4145 symsize = elfcpp::Elf_sizes<32>::sym_size;
4146 align = 4;
4147 }
4148 else if (size == 64)
4149 {
4150 symsize = elfcpp::Elf_sizes<64>::sym_size;
4151 align = 8;
4152 }
4153 else
4154 gold_unreachable();
4155
4156 // Create the dynamic symbol table section.
4157
4158 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4159 elfcpp::SHT_DYNSYM,
4160 elfcpp::SHF_ALLOC,
4161 false,
4162 ORDER_DYNAMIC_LINKER,
4163 false);
4164
4165 // Check for NULL as a linker script may discard .dynsym.
4166 if (dynsym != NULL)
4167 {
4168 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4169 align,
4170 "** dynsym");
4171 dynsym->add_output_section_data(odata);
4172
4173 dynsym->set_info(local_symcount);
4174 dynsym->set_entsize(symsize);
4175 dynsym->set_addralign(align);
4176
4177 this->dynsym_section_ = dynsym;
4178 }
4179
4180 Output_data_dynamic* const odyn = this->dynamic_data_;
4181 if (odyn != NULL)
4182 {
4183 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4184 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4185 }
4186
4187 // If there are more than SHN_LORESERVE allocated sections, we
4188 // create a .dynsym_shndx section. It is possible that we don't
4189 // need one, because it is possible that there are no dynamic
4190 // symbols in any of the sections with indexes larger than
4191 // SHN_LORESERVE. This is probably unusual, though, and at this
4192 // time we don't know the actual section indexes so it is
4193 // inconvenient to check.
4194 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4195 {
4196 Output_section* dynsym_xindex =
4197 this->choose_output_section(NULL, ".dynsym_shndx",
4198 elfcpp::SHT_SYMTAB_SHNDX,
4199 elfcpp::SHF_ALLOC,
4200 false, ORDER_DYNAMIC_LINKER, false);
4201
4202 if (dynsym_xindex != NULL)
4203 {
4204 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4205
4206 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4207
4208 dynsym_xindex->set_link_section(dynsym);
4209 dynsym_xindex->set_addralign(4);
4210 dynsym_xindex->set_entsize(4);
4211
4212 dynsym_xindex->set_after_input_sections();
4213
4214 // This tells the driver code to wait until the symbol table
4215 // has written out before writing out the postprocessing
4216 // sections, including the .dynsym_shndx section.
4217 this->any_postprocessing_sections_ = true;
4218 }
4219 }
4220
4221 // Create the dynamic string table section.
4222
4223 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4224 elfcpp::SHT_STRTAB,
4225 elfcpp::SHF_ALLOC,
4226 false,
4227 ORDER_DYNAMIC_LINKER,
4228 false);
4229 *pdynstr = dynstr;
4230 if (dynstr != NULL)
4231 {
4232 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4233 dynstr->add_output_section_data(strdata);
4234
4235 if (dynsym != NULL)
4236 dynsym->set_link_section(dynstr);
4237 if (this->dynamic_section_ != NULL)
4238 this->dynamic_section_->set_link_section(dynstr);
4239
4240 if (odyn != NULL)
4241 {
4242 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4243 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4244 }
4245 }
4246
4247 // Create the hash tables.
4248
4249 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4250 || strcmp(parameters->options().hash_style(), "both") == 0)
4251 {
4252 unsigned char* phash;
4253 unsigned int hashlen;
4254 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4255 &phash, &hashlen);
4256
4257 Output_section* hashsec =
4258 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4259 elfcpp::SHF_ALLOC, false,
4260 ORDER_DYNAMIC_LINKER, false);
4261
4262 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4263 hashlen,
4264 align,
4265 "** hash");
4266 if (hashsec != NULL && hashdata != NULL)
4267 hashsec->add_output_section_data(hashdata);
4268
4269 if (hashsec != NULL)
4270 {
4271 if (dynsym != NULL)
4272 hashsec->set_link_section(dynsym);
4273 hashsec->set_entsize(4);
4274 }
4275
4276 if (odyn != NULL)
4277 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4278 }
4279
4280 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4281 || strcmp(parameters->options().hash_style(), "both") == 0)
4282 {
4283 unsigned char* phash;
4284 unsigned int hashlen;
4285 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4286 &phash, &hashlen);
4287
4288 Output_section* hashsec =
4289 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4290 elfcpp::SHF_ALLOC, false,
4291 ORDER_DYNAMIC_LINKER, false);
4292
4293 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4294 hashlen,
4295 align,
4296 "** hash");
4297 if (hashsec != NULL && hashdata != NULL)
4298 hashsec->add_output_section_data(hashdata);
4299
4300 if (hashsec != NULL)
4301 {
4302 if (dynsym != NULL)
4303 hashsec->set_link_section(dynsym);
4304
4305 // For a 64-bit target, the entries in .gnu.hash do not have
4306 // a uniform size, so we only set the entry size for a
4307 // 32-bit target.
4308 if (parameters->target().get_size() == 32)
4309 hashsec->set_entsize(4);
4310
4311 if (odyn != NULL)
4312 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4313 }
4314 }
4315 }
4316
4317 // Assign offsets to each local portion of the dynamic symbol table.
4318
4319 void
4320 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4321 {
4322 Output_section* dynsym = this->dynsym_section_;
4323 if (dynsym == NULL)
4324 return;
4325
4326 off_t off = dynsym->offset();
4327
4328 // Skip the dummy symbol at the start of the section.
4329 off += dynsym->entsize();
4330
4331 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4332 p != input_objects->relobj_end();
4333 ++p)
4334 {
4335 unsigned int count = (*p)->set_local_dynsym_offset(off);
4336 off += count * dynsym->entsize();
4337 }
4338 }
4339
4340 // Create the version sections.
4341
4342 void
4343 Layout::create_version_sections(const Versions* versions,
4344 const Symbol_table* symtab,
4345 unsigned int local_symcount,
4346 const std::vector<Symbol*>& dynamic_symbols,
4347 const Output_section* dynstr)
4348 {
4349 if (!versions->any_defs() && !versions->any_needs())
4350 return;
4351
4352 switch (parameters->size_and_endianness())
4353 {
4354 #ifdef HAVE_TARGET_32_LITTLE
4355 case Parameters::TARGET_32_LITTLE:
4356 this->sized_create_version_sections<32, false>(versions, symtab,
4357 local_symcount,
4358 dynamic_symbols, dynstr);
4359 break;
4360 #endif
4361 #ifdef HAVE_TARGET_32_BIG
4362 case Parameters::TARGET_32_BIG:
4363 this->sized_create_version_sections<32, true>(versions, symtab,
4364 local_symcount,
4365 dynamic_symbols, dynstr);
4366 break;
4367 #endif
4368 #ifdef HAVE_TARGET_64_LITTLE
4369 case Parameters::TARGET_64_LITTLE:
4370 this->sized_create_version_sections<64, false>(versions, symtab,
4371 local_symcount,
4372 dynamic_symbols, dynstr);
4373 break;
4374 #endif
4375 #ifdef HAVE_TARGET_64_BIG
4376 case Parameters::TARGET_64_BIG:
4377 this->sized_create_version_sections<64, true>(versions, symtab,
4378 local_symcount,
4379 dynamic_symbols, dynstr);
4380 break;
4381 #endif
4382 default:
4383 gold_unreachable();
4384 }
4385 }
4386
4387 // Create the version sections, sized version.
4388
4389 template<int size, bool big_endian>
4390 void
4391 Layout::sized_create_version_sections(
4392 const Versions* versions,
4393 const Symbol_table* symtab,
4394 unsigned int local_symcount,
4395 const std::vector<Symbol*>& dynamic_symbols,
4396 const Output_section* dynstr)
4397 {
4398 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4399 elfcpp::SHT_GNU_versym,
4400 elfcpp::SHF_ALLOC,
4401 false,
4402 ORDER_DYNAMIC_LINKER,
4403 false);
4404
4405 // Check for NULL since a linker script may discard this section.
4406 if (vsec != NULL)
4407 {
4408 unsigned char* vbuf;
4409 unsigned int vsize;
4410 versions->symbol_section_contents<size, big_endian>(symtab,
4411 &this->dynpool_,
4412 local_symcount,
4413 dynamic_symbols,
4414 &vbuf, &vsize);
4415
4416 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4417 "** versions");
4418
4419 vsec->add_output_section_data(vdata);
4420 vsec->set_entsize(2);
4421 vsec->set_link_section(this->dynsym_section_);
4422 }
4423
4424 Output_data_dynamic* const odyn = this->dynamic_data_;
4425 if (odyn != NULL && vsec != NULL)
4426 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4427
4428 if (versions->any_defs())
4429 {
4430 Output_section* vdsec;
4431 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4432 elfcpp::SHT_GNU_verdef,
4433 elfcpp::SHF_ALLOC,
4434 false, ORDER_DYNAMIC_LINKER, false);
4435
4436 if (vdsec != NULL)
4437 {
4438 unsigned char* vdbuf;
4439 unsigned int vdsize;
4440 unsigned int vdentries;
4441 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4442 &vdbuf, &vdsize,
4443 &vdentries);
4444
4445 Output_section_data* vddata =
4446 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4447
4448 vdsec->add_output_section_data(vddata);
4449 vdsec->set_link_section(dynstr);
4450 vdsec->set_info(vdentries);
4451
4452 if (odyn != NULL)
4453 {
4454 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4455 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4456 }
4457 }
4458 }
4459
4460 if (versions->any_needs())
4461 {
4462 Output_section* vnsec;
4463 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4464 elfcpp::SHT_GNU_verneed,
4465 elfcpp::SHF_ALLOC,
4466 false, ORDER_DYNAMIC_LINKER, false);
4467
4468 if (vnsec != NULL)
4469 {
4470 unsigned char* vnbuf;
4471 unsigned int vnsize;
4472 unsigned int vnentries;
4473 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4474 &vnbuf, &vnsize,
4475 &vnentries);
4476
4477 Output_section_data* vndata =
4478 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4479
4480 vnsec->add_output_section_data(vndata);
4481 vnsec->set_link_section(dynstr);
4482 vnsec->set_info(vnentries);
4483
4484 if (odyn != NULL)
4485 {
4486 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4487 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4488 }
4489 }
4490 }
4491 }
4492
4493 // Create the .interp section and PT_INTERP segment.
4494
4495 void
4496 Layout::create_interp(const Target* target)
4497 {
4498 gold_assert(this->interp_segment_ == NULL);
4499
4500 const char* interp = parameters->options().dynamic_linker();
4501 if (interp == NULL)
4502 {
4503 interp = target->dynamic_linker();
4504 gold_assert(interp != NULL);
4505 }
4506
4507 size_t len = strlen(interp) + 1;
4508
4509 Output_section_data* odata = new Output_data_const(interp, len, 1);
4510
4511 Output_section* osec = this->choose_output_section(NULL, ".interp",
4512 elfcpp::SHT_PROGBITS,
4513 elfcpp::SHF_ALLOC,
4514 false, ORDER_INTERP,
4515 false);
4516 if (osec != NULL)
4517 osec->add_output_section_data(odata);
4518 }
4519
4520 // Add dynamic tags for the PLT and the dynamic relocs. This is
4521 // called by the target-specific code. This does nothing if not doing
4522 // a dynamic link.
4523
4524 // USE_REL is true for REL relocs rather than RELA relocs.
4525
4526 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4527
4528 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4529 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4530 // some targets have multiple reloc sections in PLT_REL.
4531
4532 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4533 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4534 // section.
4535
4536 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4537 // executable.
4538
4539 void
4540 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4541 const Output_data* plt_rel,
4542 const Output_data_reloc_generic* dyn_rel,
4543 bool add_debug, bool dynrel_includes_plt)
4544 {
4545 Output_data_dynamic* odyn = this->dynamic_data_;
4546 if (odyn == NULL)
4547 return;
4548
4549 if (plt_got != NULL && plt_got->output_section() != NULL)
4550 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4551
4552 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4553 {
4554 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4555 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4556 odyn->add_constant(elfcpp::DT_PLTREL,
4557 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4558 }
4559
4560 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4561 || (dynrel_includes_plt
4562 && plt_rel != NULL
4563 && plt_rel->output_section() != NULL))
4564 {
4565 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4566 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4567 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4568 (have_dyn_rel
4569 ? dyn_rel->output_section()
4570 : plt_rel->output_section()));
4571 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4572 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4573 odyn->add_section_size(size_tag,
4574 dyn_rel->output_section(),
4575 plt_rel->output_section());
4576 else if (have_dyn_rel)
4577 odyn->add_section_size(size_tag, dyn_rel->output_section());
4578 else
4579 odyn->add_section_size(size_tag, plt_rel->output_section());
4580 const int size = parameters->target().get_size();
4581 elfcpp::DT rel_tag;
4582 int rel_size;
4583 if (use_rel)
4584 {
4585 rel_tag = elfcpp::DT_RELENT;
4586 if (size == 32)
4587 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4588 else if (size == 64)
4589 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4590 else
4591 gold_unreachable();
4592 }
4593 else
4594 {
4595 rel_tag = elfcpp::DT_RELAENT;
4596 if (size == 32)
4597 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4598 else if (size == 64)
4599 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4600 else
4601 gold_unreachable();
4602 }
4603 odyn->add_constant(rel_tag, rel_size);
4604
4605 if (parameters->options().combreloc() && have_dyn_rel)
4606 {
4607 size_t c = dyn_rel->relative_reloc_count();
4608 if (c > 0)
4609 odyn->add_constant((use_rel
4610 ? elfcpp::DT_RELCOUNT
4611 : elfcpp::DT_RELACOUNT),
4612 c);
4613 }
4614 }
4615
4616 if (add_debug && !parameters->options().shared())
4617 {
4618 // The value of the DT_DEBUG tag is filled in by the dynamic
4619 // linker at run time, and used by the debugger.
4620 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4621 }
4622 }
4623
4624 // Finish the .dynamic section and PT_DYNAMIC segment.
4625
4626 void
4627 Layout::finish_dynamic_section(const Input_objects* input_objects,
4628 const Symbol_table* symtab)
4629 {
4630 if (!this->script_options_->saw_phdrs_clause()
4631 && this->dynamic_section_ != NULL)
4632 {
4633 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4634 (elfcpp::PF_R
4635 | elfcpp::PF_W));
4636 oseg->add_output_section_to_nonload(this->dynamic_section_,
4637 elfcpp::PF_R | elfcpp::PF_W);
4638 }
4639
4640 Output_data_dynamic* const odyn = this->dynamic_data_;
4641 if (odyn == NULL)
4642 return;
4643
4644 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4645 p != input_objects->dynobj_end();
4646 ++p)
4647 {
4648 if (!(*p)->is_needed() && (*p)->as_needed())
4649 {
4650 // This dynamic object was linked with --as-needed, but it
4651 // is not needed.
4652 continue;
4653 }
4654
4655 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4656 }
4657
4658 if (parameters->options().shared())
4659 {
4660 const char* soname = parameters->options().soname();
4661 if (soname != NULL)
4662 odyn->add_string(elfcpp::DT_SONAME, soname);
4663 }
4664
4665 Symbol* sym = symtab->lookup(parameters->options().init());
4666 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4667 odyn->add_symbol(elfcpp::DT_INIT, sym);
4668
4669 sym = symtab->lookup(parameters->options().fini());
4670 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4671 odyn->add_symbol(elfcpp::DT_FINI, sym);
4672
4673 // Look for .init_array, .preinit_array and .fini_array by checking
4674 // section types.
4675 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4676 p != this->section_list_.end();
4677 ++p)
4678 switch((*p)->type())
4679 {
4680 case elfcpp::SHT_FINI_ARRAY:
4681 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4682 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4683 break;
4684 case elfcpp::SHT_INIT_ARRAY:
4685 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4686 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4687 break;
4688 case elfcpp::SHT_PREINIT_ARRAY:
4689 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4690 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4691 break;
4692 default:
4693 break;
4694 }
4695
4696 // Add a DT_RPATH entry if needed.
4697 const General_options::Dir_list& rpath(parameters->options().rpath());
4698 if (!rpath.empty())
4699 {
4700 std::string rpath_val;
4701 for (General_options::Dir_list::const_iterator p = rpath.begin();
4702 p != rpath.end();
4703 ++p)
4704 {
4705 if (rpath_val.empty())
4706 rpath_val = p->name();
4707 else
4708 {
4709 // Eliminate duplicates.
4710 General_options::Dir_list::const_iterator q;
4711 for (q = rpath.begin(); q != p; ++q)
4712 if (q->name() == p->name())
4713 break;
4714 if (q == p)
4715 {
4716 rpath_val += ':';
4717 rpath_val += p->name();
4718 }
4719 }
4720 }
4721
4722 if (!parameters->options().enable_new_dtags())
4723 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4724 else
4725 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4726 }
4727
4728 // Look for text segments that have dynamic relocations.
4729 bool have_textrel = false;
4730 if (!this->script_options_->saw_sections_clause())
4731 {
4732 for (Segment_list::const_iterator p = this->segment_list_.begin();
4733 p != this->segment_list_.end();
4734 ++p)
4735 {
4736 if ((*p)->type() == elfcpp::PT_LOAD
4737 && ((*p)->flags() & elfcpp::PF_W) == 0
4738 && (*p)->has_dynamic_reloc())
4739 {
4740 have_textrel = true;
4741 break;
4742 }
4743 }
4744 }
4745 else
4746 {
4747 // We don't know the section -> segment mapping, so we are
4748 // conservative and just look for readonly sections with
4749 // relocations. If those sections wind up in writable segments,
4750 // then we have created an unnecessary DT_TEXTREL entry.
4751 for (Section_list::const_iterator p = this->section_list_.begin();
4752 p != this->section_list_.end();
4753 ++p)
4754 {
4755 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4756 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4757 && (*p)->has_dynamic_reloc())
4758 {
4759 have_textrel = true;
4760 break;
4761 }
4762 }
4763 }
4764
4765 if (parameters->options().filter() != NULL)
4766 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4767 if (parameters->options().any_auxiliary())
4768 {
4769 for (options::String_set::const_iterator p =
4770 parameters->options().auxiliary_begin();
4771 p != parameters->options().auxiliary_end();
4772 ++p)
4773 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4774 }
4775
4776 // Add a DT_FLAGS entry if necessary.
4777 unsigned int flags = 0;
4778 if (have_textrel)
4779 {
4780 // Add a DT_TEXTREL for compatibility with older loaders.
4781 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4782 flags |= elfcpp::DF_TEXTREL;
4783
4784 if (parameters->options().text())
4785 gold_error(_("read-only segment has dynamic relocations"));
4786 else if (parameters->options().warn_shared_textrel()
4787 && parameters->options().shared())
4788 gold_warning(_("shared library text segment is not shareable"));
4789 }
4790 if (parameters->options().shared() && this->has_static_tls())
4791 flags |= elfcpp::DF_STATIC_TLS;
4792 if (parameters->options().origin())
4793 flags |= elfcpp::DF_ORIGIN;
4794 if (parameters->options().Bsymbolic())
4795 {
4796 flags |= elfcpp::DF_SYMBOLIC;
4797 // Add DT_SYMBOLIC for compatibility with older loaders.
4798 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4799 }
4800 if (parameters->options().now())
4801 flags |= elfcpp::DF_BIND_NOW;
4802 if (flags != 0)
4803 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4804
4805 flags = 0;
4806 if (parameters->options().initfirst())
4807 flags |= elfcpp::DF_1_INITFIRST;
4808 if (parameters->options().interpose())
4809 flags |= elfcpp::DF_1_INTERPOSE;
4810 if (parameters->options().loadfltr())
4811 flags |= elfcpp::DF_1_LOADFLTR;
4812 if (parameters->options().nodefaultlib())
4813 flags |= elfcpp::DF_1_NODEFLIB;
4814 if (parameters->options().nodelete())
4815 flags |= elfcpp::DF_1_NODELETE;
4816 if (parameters->options().nodlopen())
4817 flags |= elfcpp::DF_1_NOOPEN;
4818 if (parameters->options().nodump())
4819 flags |= elfcpp::DF_1_NODUMP;
4820 if (!parameters->options().shared())
4821 flags &= ~(elfcpp::DF_1_INITFIRST
4822 | elfcpp::DF_1_NODELETE
4823 | elfcpp::DF_1_NOOPEN);
4824 if (parameters->options().origin())
4825 flags |= elfcpp::DF_1_ORIGIN;
4826 if (parameters->options().now())
4827 flags |= elfcpp::DF_1_NOW;
4828 if (parameters->options().Bgroup())
4829 flags |= elfcpp::DF_1_GROUP;
4830 if (flags != 0)
4831 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4832 }
4833
4834 // Set the size of the _DYNAMIC symbol table to be the size of the
4835 // dynamic data.
4836
4837 void
4838 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4839 {
4840 Output_data_dynamic* const odyn = this->dynamic_data_;
4841 if (odyn == NULL)
4842 return;
4843 odyn->finalize_data_size();
4844 if (this->dynamic_symbol_ == NULL)
4845 return;
4846 off_t data_size = odyn->data_size();
4847 const int size = parameters->target().get_size();
4848 if (size == 32)
4849 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4850 else if (size == 64)
4851 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4852 else
4853 gold_unreachable();
4854 }
4855
4856 // The mapping of input section name prefixes to output section names.
4857 // In some cases one prefix is itself a prefix of another prefix; in
4858 // such a case the longer prefix must come first. These prefixes are
4859 // based on the GNU linker default ELF linker script.
4860
4861 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4862 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4863 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4864 {
4865 MAPPING_INIT(".text.", ".text"),
4866 MAPPING_INIT(".rodata.", ".rodata"),
4867 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4868 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4869 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4870 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4871 MAPPING_INIT(".data.", ".data"),
4872 MAPPING_INIT(".bss.", ".bss"),
4873 MAPPING_INIT(".tdata.", ".tdata"),
4874 MAPPING_INIT(".tbss.", ".tbss"),
4875 MAPPING_INIT(".init_array.", ".init_array"),
4876 MAPPING_INIT(".fini_array.", ".fini_array"),
4877 MAPPING_INIT(".sdata.", ".sdata"),
4878 MAPPING_INIT(".sbss.", ".sbss"),
4879 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4880 // differently depending on whether it is creating a shared library.
4881 MAPPING_INIT(".sdata2.", ".sdata"),
4882 MAPPING_INIT(".sbss2.", ".sbss"),
4883 MAPPING_INIT(".lrodata.", ".lrodata"),
4884 MAPPING_INIT(".ldata.", ".ldata"),
4885 MAPPING_INIT(".lbss.", ".lbss"),
4886 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4887 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4888 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4889 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4890 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4891 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4892 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4893 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4894 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4895 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4896 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4897 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4898 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4899 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4900 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4901 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4902 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4903 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4904 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4905 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4906 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4907 };
4908 #undef MAPPING_INIT
4909 #undef MAPPING_INIT_EXACT
4910
4911 const int Layout::section_name_mapping_count =
4912 (sizeof(Layout::section_name_mapping)
4913 / sizeof(Layout::section_name_mapping[0]));
4914
4915 // Choose the output section name to use given an input section name.
4916 // Set *PLEN to the length of the name. *PLEN is initialized to the
4917 // length of NAME.
4918
4919 const char*
4920 Layout::output_section_name(const Relobj* relobj, const char* name,
4921 size_t* plen)
4922 {
4923 // gcc 4.3 generates the following sorts of section names when it
4924 // needs a section name specific to a function:
4925 // .text.FN
4926 // .rodata.FN
4927 // .sdata2.FN
4928 // .data.FN
4929 // .data.rel.FN
4930 // .data.rel.local.FN
4931 // .data.rel.ro.FN
4932 // .data.rel.ro.local.FN
4933 // .sdata.FN
4934 // .bss.FN
4935 // .sbss.FN
4936 // .tdata.FN
4937 // .tbss.FN
4938
4939 // The GNU linker maps all of those to the part before the .FN,
4940 // except that .data.rel.local.FN is mapped to .data, and
4941 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4942 // beginning with .data.rel.ro.local are grouped together.
4943
4944 // For an anonymous namespace, the string FN can contain a '.'.
4945
4946 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4947 // GNU linker maps to .rodata.
4948
4949 // The .data.rel.ro sections are used with -z relro. The sections
4950 // are recognized by name. We use the same names that the GNU
4951 // linker does for these sections.
4952
4953 // It is hard to handle this in a principled way, so we don't even
4954 // try. We use a table of mappings. If the input section name is
4955 // not found in the table, we simply use it as the output section
4956 // name.
4957
4958 const Section_name_mapping* psnm = section_name_mapping;
4959 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4960 {
4961 if (psnm->fromlen > 0)
4962 {
4963 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4964 {
4965 *plen = psnm->tolen;
4966 return psnm->to;
4967 }
4968 }
4969 else
4970 {
4971 if (strcmp(name, psnm->from) == 0)
4972 {
4973 *plen = psnm->tolen;
4974 return psnm->to;
4975 }
4976 }
4977 }
4978
4979 // As an additional complication, .ctors sections are output in
4980 // either .ctors or .init_array sections, and .dtors sections are
4981 // output in either .dtors or .fini_array sections.
4982 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4983 {
4984 if (parameters->options().ctors_in_init_array())
4985 {
4986 *plen = 11;
4987 return name[1] == 'c' ? ".init_array" : ".fini_array";
4988 }
4989 else
4990 {
4991 *plen = 6;
4992 return name[1] == 'c' ? ".ctors" : ".dtors";
4993 }
4994 }
4995 if (parameters->options().ctors_in_init_array()
4996 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4997 {
4998 // To make .init_array/.fini_array work with gcc we must exclude
4999 // .ctors and .dtors sections from the crtbegin and crtend
5000 // files.
5001 if (relobj == NULL
5002 || (!Layout::match_file_name(relobj, "crtbegin")
5003 && !Layout::match_file_name(relobj, "crtend")))
5004 {
5005 *plen = 11;
5006 return name[1] == 'c' ? ".init_array" : ".fini_array";
5007 }
5008 }
5009
5010 return name;
5011 }
5012
5013 // Return true if RELOBJ is an input file whose base name matches
5014 // FILE_NAME. The base name must have an extension of ".o", and must
5015 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5016 // to match crtbegin.o as well as crtbeginS.o without getting confused
5017 // by other possibilities. Overall matching the file name this way is
5018 // a dreadful hack, but the GNU linker does it in order to better
5019 // support gcc, and we need to be compatible.
5020
5021 bool
5022 Layout::match_file_name(const Relobj* relobj, const char* match)
5023 {
5024 const std::string& file_name(relobj->name());
5025 const char* base_name = lbasename(file_name.c_str());
5026 size_t match_len = strlen(match);
5027 if (strncmp(base_name, match, match_len) != 0)
5028 return false;
5029 size_t base_len = strlen(base_name);
5030 if (base_len != match_len + 2 && base_len != match_len + 3)
5031 return false;
5032 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5033 }
5034
5035 // Check if a comdat group or .gnu.linkonce section with the given
5036 // NAME is selected for the link. If there is already a section,
5037 // *KEPT_SECTION is set to point to the existing section and the
5038 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5039 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5040 // *KEPT_SECTION is set to the internal copy and the function returns
5041 // true.
5042
5043 bool
5044 Layout::find_or_add_kept_section(const std::string& name,
5045 Relobj* object,
5046 unsigned int shndx,
5047 bool is_comdat,
5048 bool is_group_name,
5049 Kept_section** kept_section)
5050 {
5051 // It's normal to see a couple of entries here, for the x86 thunk
5052 // sections. If we see more than a few, we're linking a C++
5053 // program, and we resize to get more space to minimize rehashing.
5054 if (this->signatures_.size() > 4
5055 && !this->resized_signatures_)
5056 {
5057 reserve_unordered_map(&this->signatures_,
5058 this->number_of_input_files_ * 64);
5059 this->resized_signatures_ = true;
5060 }
5061
5062 Kept_section candidate;
5063 std::pair<Signatures::iterator, bool> ins =
5064 this->signatures_.insert(std::make_pair(name, candidate));
5065
5066 if (kept_section != NULL)
5067 *kept_section = &ins.first->second;
5068 if (ins.second)
5069 {
5070 // This is the first time we've seen this signature.
5071 ins.first->second.set_object(object);
5072 ins.first->second.set_shndx(shndx);
5073 if (is_comdat)
5074 ins.first->second.set_is_comdat();
5075 if (is_group_name)
5076 ins.first->second.set_is_group_name();
5077 return true;
5078 }
5079
5080 // We have already seen this signature.
5081
5082 if (ins.first->second.is_group_name())
5083 {
5084 // We've already seen a real section group with this signature.
5085 // If the kept group is from a plugin object, and we're in the
5086 // replacement phase, accept the new one as a replacement.
5087 if (ins.first->second.object() == NULL
5088 && parameters->options().plugins()->in_replacement_phase())
5089 {
5090 ins.first->second.set_object(object);
5091 ins.first->second.set_shndx(shndx);
5092 return true;
5093 }
5094 return false;
5095 }
5096 else if (is_group_name)
5097 {
5098 // This is a real section group, and we've already seen a
5099 // linkonce section with this signature. Record that we've seen
5100 // a section group, and don't include this section group.
5101 ins.first->second.set_is_group_name();
5102 return false;
5103 }
5104 else
5105 {
5106 // We've already seen a linkonce section and this is a linkonce
5107 // section. These don't block each other--this may be the same
5108 // symbol name with different section types.
5109 return true;
5110 }
5111 }
5112
5113 // Store the allocated sections into the section list.
5114
5115 void
5116 Layout::get_allocated_sections(Section_list* section_list) const
5117 {
5118 for (Section_list::const_iterator p = this->section_list_.begin();
5119 p != this->section_list_.end();
5120 ++p)
5121 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5122 section_list->push_back(*p);
5123 }
5124
5125 // Store the executable sections into the section list.
5126
5127 void
5128 Layout::get_executable_sections(Section_list* section_list) const
5129 {
5130 for (Section_list::const_iterator p = this->section_list_.begin();
5131 p != this->section_list_.end();
5132 ++p)
5133 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5134 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5135 section_list->push_back(*p);
5136 }
5137
5138 // Create an output segment.
5139
5140 Output_segment*
5141 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5142 {
5143 gold_assert(!parameters->options().relocatable());
5144 Output_segment* oseg = new Output_segment(type, flags);
5145 this->segment_list_.push_back(oseg);
5146
5147 if (type == elfcpp::PT_TLS)
5148 this->tls_segment_ = oseg;
5149 else if (type == elfcpp::PT_GNU_RELRO)
5150 this->relro_segment_ = oseg;
5151 else if (type == elfcpp::PT_INTERP)
5152 this->interp_segment_ = oseg;
5153
5154 return oseg;
5155 }
5156
5157 // Return the file offset of the normal symbol table.
5158
5159 off_t
5160 Layout::symtab_section_offset() const
5161 {
5162 if (this->symtab_section_ != NULL)
5163 return this->symtab_section_->offset();
5164 return 0;
5165 }
5166
5167 // Return the section index of the normal symbol table. It may have
5168 // been stripped by the -s/--strip-all option.
5169
5170 unsigned int
5171 Layout::symtab_section_shndx() const
5172 {
5173 if (this->symtab_section_ != NULL)
5174 return this->symtab_section_->out_shndx();
5175 return 0;
5176 }
5177
5178 // Write out the Output_sections. Most won't have anything to write,
5179 // since most of the data will come from input sections which are
5180 // handled elsewhere. But some Output_sections do have Output_data.
5181
5182 void
5183 Layout::write_output_sections(Output_file* of) const
5184 {
5185 for (Section_list::const_iterator p = this->section_list_.begin();
5186 p != this->section_list_.end();
5187 ++p)
5188 {
5189 if (!(*p)->after_input_sections())
5190 (*p)->write(of);
5191 }
5192 }
5193
5194 // Write out data not associated with a section or the symbol table.
5195
5196 void
5197 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5198 {
5199 if (!parameters->options().strip_all())
5200 {
5201 const Output_section* symtab_section = this->symtab_section_;
5202 for (Section_list::const_iterator p = this->section_list_.begin();
5203 p != this->section_list_.end();
5204 ++p)
5205 {
5206 if ((*p)->needs_symtab_index())
5207 {
5208 gold_assert(symtab_section != NULL);
5209 unsigned int index = (*p)->symtab_index();
5210 gold_assert(index > 0 && index != -1U);
5211 off_t off = (symtab_section->offset()
5212 + index * symtab_section->entsize());
5213 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5214 }
5215 }
5216 }
5217
5218 const Output_section* dynsym_section = this->dynsym_section_;
5219 for (Section_list::const_iterator p = this->section_list_.begin();
5220 p != this->section_list_.end();
5221 ++p)
5222 {
5223 if ((*p)->needs_dynsym_index())
5224 {
5225 gold_assert(dynsym_section != NULL);
5226 unsigned int index = (*p)->dynsym_index();
5227 gold_assert(index > 0 && index != -1U);
5228 off_t off = (dynsym_section->offset()
5229 + index * dynsym_section->entsize());
5230 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5231 }
5232 }
5233
5234 // Write out the Output_data which are not in an Output_section.
5235 for (Data_list::const_iterator p = this->special_output_list_.begin();
5236 p != this->special_output_list_.end();
5237 ++p)
5238 (*p)->write(of);
5239 }
5240
5241 // Write out the Output_sections which can only be written after the
5242 // input sections are complete.
5243
5244 void
5245 Layout::write_sections_after_input_sections(Output_file* of)
5246 {
5247 // Determine the final section offsets, and thus the final output
5248 // file size. Note we finalize the .shstrab last, to allow the
5249 // after_input_section sections to modify their section-names before
5250 // writing.
5251 if (this->any_postprocessing_sections_)
5252 {
5253 off_t off = this->output_file_size_;
5254 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5255
5256 // Now that we've finalized the names, we can finalize the shstrab.
5257 off =
5258 this->set_section_offsets(off,
5259 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5260
5261 if (off > this->output_file_size_)
5262 {
5263 of->resize(off);
5264 this->output_file_size_ = off;
5265 }
5266 }
5267
5268 for (Section_list::const_iterator p = this->section_list_.begin();
5269 p != this->section_list_.end();
5270 ++p)
5271 {
5272 if ((*p)->after_input_sections())
5273 (*p)->write(of);
5274 }
5275
5276 this->section_headers_->write(of);
5277 }
5278
5279 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5280 // or as a "tree" where each chunk of the string is hashed and then those
5281 // hashes are put into a (much smaller) string which is hashed with sha1.
5282 // We compute a checksum over the entire file because that is simplest.
5283
5284 Task_token*
5285 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5286 Output_file* of)
5287 {
5288 const size_t filesize = (this->output_file_size() <= 0 ? 0
5289 : static_cast<size_t>(this->output_file_size()));
5290 if (this->build_id_note_ != NULL
5291 && strcmp(parameters->options().build_id(), "tree") == 0
5292 && parameters->options().build_id_chunk_size_for_treehash() > 0
5293 && filesize > 0
5294 && (filesize >=
5295 parameters->options().build_id_min_file_size_for_treehash()))
5296 {
5297 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5298 const size_t chunk_size =
5299 parameters->options().build_id_chunk_size_for_treehash();
5300 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5301 Task_token* post_hash_tasks_blocker = new Task_token(true);
5302 post_hash_tasks_blocker->add_blockers(num_hashes);
5303 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5304 const unsigned char* src = of->get_input_view(0, filesize);
5305 this->input_view_ = src;
5306 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5307 this->array_of_hashes_ = dst;
5308 for (size_t i = 0, src_offset = 0; i < num_hashes;
5309 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5310 {
5311 size_t size = std::min(chunk_size, filesize - src_offset);
5312 workqueue->queue(new Hash_task(src + src_offset,
5313 size,
5314 dst,
5315 build_id_blocker,
5316 post_hash_tasks_blocker));
5317 }
5318 return post_hash_tasks_blocker;
5319 }
5320 return build_id_blocker;
5321 }
5322
5323 // If a tree-style build ID was requested, the parallel part of that computation
5324 // is already done, and the final hash-of-hashes is computed here. For other
5325 // types of build IDs, all the work is done here.
5326
5327 void
5328 Layout::write_build_id(Output_file* of) const
5329 {
5330 if (this->build_id_note_ == NULL)
5331 return;
5332
5333 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5334 this->build_id_note_->data_size());
5335
5336 if (this->array_of_hashes_ == NULL)
5337 {
5338 const size_t output_file_size = this->output_file_size();
5339 const unsigned char* iv = of->get_input_view(0, output_file_size);
5340 const char* style = parameters->options().build_id();
5341
5342 // If we get here with style == "tree" then the output must be
5343 // too small for chunking, and we use SHA-1 in that case.
5344 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5345 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5346 else if (strcmp(style, "md5") == 0)
5347 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5348 else
5349 gold_unreachable();
5350
5351 of->free_input_view(0, output_file_size, iv);
5352 }
5353 else
5354 {
5355 // Non-overlapping substrings of the output file have been hashed.
5356 // Compute SHA-1 hash of the hashes.
5357 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5358 this->size_of_array_of_hashes_, ov);
5359 delete[] this->array_of_hashes_;
5360 of->free_input_view(0, this->output_file_size(), this->input_view_);
5361 }
5362
5363 of->write_output_view(this->build_id_note_->offset(),
5364 this->build_id_note_->data_size(),
5365 ov);
5366 }
5367
5368 // Write out a binary file. This is called after the link is
5369 // complete. IN is the temporary output file we used to generate the
5370 // ELF code. We simply walk through the segments, read them from
5371 // their file offset in IN, and write them to their load address in
5372 // the output file. FIXME: with a bit more work, we could support
5373 // S-records and/or Intel hex format here.
5374
5375 void
5376 Layout::write_binary(Output_file* in) const
5377 {
5378 gold_assert(parameters->options().oformat_enum()
5379 == General_options::OBJECT_FORMAT_BINARY);
5380
5381 // Get the size of the binary file.
5382 uint64_t max_load_address = 0;
5383 for (Segment_list::const_iterator p = this->segment_list_.begin();
5384 p != this->segment_list_.end();
5385 ++p)
5386 {
5387 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5388 {
5389 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5390 if (max_paddr > max_load_address)
5391 max_load_address = max_paddr;
5392 }
5393 }
5394
5395 Output_file out(parameters->options().output_file_name());
5396 out.open(max_load_address);
5397
5398 for (Segment_list::const_iterator p = this->segment_list_.begin();
5399 p != this->segment_list_.end();
5400 ++p)
5401 {
5402 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5403 {
5404 const unsigned char* vin = in->get_input_view((*p)->offset(),
5405 (*p)->filesz());
5406 unsigned char* vout = out.get_output_view((*p)->paddr(),
5407 (*p)->filesz());
5408 memcpy(vout, vin, (*p)->filesz());
5409 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5410 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5411 }
5412 }
5413
5414 out.close();
5415 }
5416
5417 // Print the output sections to the map file.
5418
5419 void
5420 Layout::print_to_mapfile(Mapfile* mapfile) const
5421 {
5422 for (Segment_list::const_iterator p = this->segment_list_.begin();
5423 p != this->segment_list_.end();
5424 ++p)
5425 (*p)->print_sections_to_mapfile(mapfile);
5426 }
5427
5428 // Print statistical information to stderr. This is used for --stats.
5429
5430 void
5431 Layout::print_stats() const
5432 {
5433 this->namepool_.print_stats("section name pool");
5434 this->sympool_.print_stats("output symbol name pool");
5435 this->dynpool_.print_stats("dynamic name pool");
5436
5437 for (Section_list::const_iterator p = this->section_list_.begin();
5438 p != this->section_list_.end();
5439 ++p)
5440 (*p)->print_merge_stats();
5441 }
5442
5443 // Write_sections_task methods.
5444
5445 // We can always run this task.
5446
5447 Task_token*
5448 Write_sections_task::is_runnable()
5449 {
5450 return NULL;
5451 }
5452
5453 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5454 // when finished.
5455
5456 void
5457 Write_sections_task::locks(Task_locker* tl)
5458 {
5459 tl->add(this, this->output_sections_blocker_);
5460 tl->add(this, this->final_blocker_);
5461 }
5462
5463 // Run the task--write out the data.
5464
5465 void
5466 Write_sections_task::run(Workqueue*)
5467 {
5468 this->layout_->write_output_sections(this->of_);
5469 }
5470
5471 // Write_data_task methods.
5472
5473 // We can always run this task.
5474
5475 Task_token*
5476 Write_data_task::is_runnable()
5477 {
5478 return NULL;
5479 }
5480
5481 // We need to unlock FINAL_BLOCKER when finished.
5482
5483 void
5484 Write_data_task::locks(Task_locker* tl)
5485 {
5486 tl->add(this, this->final_blocker_);
5487 }
5488
5489 // Run the task--write out the data.
5490
5491 void
5492 Write_data_task::run(Workqueue*)
5493 {
5494 this->layout_->write_data(this->symtab_, this->of_);
5495 }
5496
5497 // Write_symbols_task methods.
5498
5499 // We can always run this task.
5500
5501 Task_token*
5502 Write_symbols_task::is_runnable()
5503 {
5504 return NULL;
5505 }
5506
5507 // We need to unlock FINAL_BLOCKER when finished.
5508
5509 void
5510 Write_symbols_task::locks(Task_locker* tl)
5511 {
5512 tl->add(this, this->final_blocker_);
5513 }
5514
5515 // Run the task--write out the symbols.
5516
5517 void
5518 Write_symbols_task::run(Workqueue*)
5519 {
5520 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5521 this->layout_->symtab_xindex(),
5522 this->layout_->dynsym_xindex(), this->of_);
5523 }
5524
5525 // Write_after_input_sections_task methods.
5526
5527 // We can only run this task after the input sections have completed.
5528
5529 Task_token*
5530 Write_after_input_sections_task::is_runnable()
5531 {
5532 if (this->input_sections_blocker_->is_blocked())
5533 return this->input_sections_blocker_;
5534 return NULL;
5535 }
5536
5537 // We need to unlock FINAL_BLOCKER when finished.
5538
5539 void
5540 Write_after_input_sections_task::locks(Task_locker* tl)
5541 {
5542 tl->add(this, this->final_blocker_);
5543 }
5544
5545 // Run the task.
5546
5547 void
5548 Write_after_input_sections_task::run(Workqueue*)
5549 {
5550 this->layout_->write_sections_after_input_sections(this->of_);
5551 }
5552
5553 // Close_task_runner methods.
5554
5555 // Finish up the build ID computation, if necessary, and write a binary file,
5556 // if necessary. Then close the output file.
5557
5558 void
5559 Close_task_runner::run(Workqueue*, const Task*)
5560 {
5561 // At this point the multi-threaded part of the build ID computation,
5562 // if any, is done. See queue_build_id_tasks().
5563 this->layout_->write_build_id(this->of_);
5564
5565 // If we've been asked to create a binary file, we do so here.
5566 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5567 this->layout_->write_binary(this->of_);
5568
5569 this->of_->close();
5570 }
5571
5572 // Instantiate the templates we need. We could use the configure
5573 // script to restrict this to only the ones for implemented targets.
5574
5575 #ifdef HAVE_TARGET_32_LITTLE
5576 template
5577 Output_section*
5578 Layout::init_fixed_output_section<32, false>(
5579 const char* name,
5580 elfcpp::Shdr<32, false>& shdr);
5581 #endif
5582
5583 #ifdef HAVE_TARGET_32_BIG
5584 template
5585 Output_section*
5586 Layout::init_fixed_output_section<32, true>(
5587 const char* name,
5588 elfcpp::Shdr<32, true>& shdr);
5589 #endif
5590
5591 #ifdef HAVE_TARGET_64_LITTLE
5592 template
5593 Output_section*
5594 Layout::init_fixed_output_section<64, false>(
5595 const char* name,
5596 elfcpp::Shdr<64, false>& shdr);
5597 #endif
5598
5599 #ifdef HAVE_TARGET_64_BIG
5600 template
5601 Output_section*
5602 Layout::init_fixed_output_section<64, true>(
5603 const char* name,
5604 elfcpp::Shdr<64, true>& shdr);
5605 #endif
5606
5607 #ifdef HAVE_TARGET_32_LITTLE
5608 template
5609 Output_section*
5610 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5611 unsigned int shndx,
5612 const char* name,
5613 const elfcpp::Shdr<32, false>& shdr,
5614 unsigned int, unsigned int, off_t*);
5615 #endif
5616
5617 #ifdef HAVE_TARGET_32_BIG
5618 template
5619 Output_section*
5620 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5621 unsigned int shndx,
5622 const char* name,
5623 const elfcpp::Shdr<32, true>& shdr,
5624 unsigned int, unsigned int, off_t*);
5625 #endif
5626
5627 #ifdef HAVE_TARGET_64_LITTLE
5628 template
5629 Output_section*
5630 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5631 unsigned int shndx,
5632 const char* name,
5633 const elfcpp::Shdr<64, false>& shdr,
5634 unsigned int, unsigned int, off_t*);
5635 #endif
5636
5637 #ifdef HAVE_TARGET_64_BIG
5638 template
5639 Output_section*
5640 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5641 unsigned int shndx,
5642 const char* name,
5643 const elfcpp::Shdr<64, true>& shdr,
5644 unsigned int, unsigned int, off_t*);
5645 #endif
5646
5647 #ifdef HAVE_TARGET_32_LITTLE
5648 template
5649 Output_section*
5650 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5651 unsigned int reloc_shndx,
5652 const elfcpp::Shdr<32, false>& shdr,
5653 Output_section* data_section,
5654 Relocatable_relocs* rr);
5655 #endif
5656
5657 #ifdef HAVE_TARGET_32_BIG
5658 template
5659 Output_section*
5660 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5661 unsigned int reloc_shndx,
5662 const elfcpp::Shdr<32, true>& shdr,
5663 Output_section* data_section,
5664 Relocatable_relocs* rr);
5665 #endif
5666
5667 #ifdef HAVE_TARGET_64_LITTLE
5668 template
5669 Output_section*
5670 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5671 unsigned int reloc_shndx,
5672 const elfcpp::Shdr<64, false>& shdr,
5673 Output_section* data_section,
5674 Relocatable_relocs* rr);
5675 #endif
5676
5677 #ifdef HAVE_TARGET_64_BIG
5678 template
5679 Output_section*
5680 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5681 unsigned int reloc_shndx,
5682 const elfcpp::Shdr<64, true>& shdr,
5683 Output_section* data_section,
5684 Relocatable_relocs* rr);
5685 #endif
5686
5687 #ifdef HAVE_TARGET_32_LITTLE
5688 template
5689 void
5690 Layout::layout_group<32, false>(Symbol_table* symtab,
5691 Sized_relobj_file<32, false>* object,
5692 unsigned int,
5693 const char* group_section_name,
5694 const char* signature,
5695 const elfcpp::Shdr<32, false>& shdr,
5696 elfcpp::Elf_Word flags,
5697 std::vector<unsigned int>* shndxes);
5698 #endif
5699
5700 #ifdef HAVE_TARGET_32_BIG
5701 template
5702 void
5703 Layout::layout_group<32, true>(Symbol_table* symtab,
5704 Sized_relobj_file<32, true>* object,
5705 unsigned int,
5706 const char* group_section_name,
5707 const char* signature,
5708 const elfcpp::Shdr<32, true>& shdr,
5709 elfcpp::Elf_Word flags,
5710 std::vector<unsigned int>* shndxes);
5711 #endif
5712
5713 #ifdef HAVE_TARGET_64_LITTLE
5714 template
5715 void
5716 Layout::layout_group<64, false>(Symbol_table* symtab,
5717 Sized_relobj_file<64, false>* object,
5718 unsigned int,
5719 const char* group_section_name,
5720 const char* signature,
5721 const elfcpp::Shdr<64, false>& shdr,
5722 elfcpp::Elf_Word flags,
5723 std::vector<unsigned int>* shndxes);
5724 #endif
5725
5726 #ifdef HAVE_TARGET_64_BIG
5727 template
5728 void
5729 Layout::layout_group<64, true>(Symbol_table* symtab,
5730 Sized_relobj_file<64, true>* object,
5731 unsigned int,
5732 const char* group_section_name,
5733 const char* signature,
5734 const elfcpp::Shdr<64, true>& shdr,
5735 elfcpp::Elf_Word flags,
5736 std::vector<unsigned int>* shndxes);
5737 #endif
5738
5739 #ifdef HAVE_TARGET_32_LITTLE
5740 template
5741 Output_section*
5742 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5743 const unsigned char* symbols,
5744 off_t symbols_size,
5745 const unsigned char* symbol_names,
5746 off_t symbol_names_size,
5747 unsigned int shndx,
5748 const elfcpp::Shdr<32, false>& shdr,
5749 unsigned int reloc_shndx,
5750 unsigned int reloc_type,
5751 off_t* off);
5752 #endif
5753
5754 #ifdef HAVE_TARGET_32_BIG
5755 template
5756 Output_section*
5757 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5758 const unsigned char* symbols,
5759 off_t symbols_size,
5760 const unsigned char* symbol_names,
5761 off_t symbol_names_size,
5762 unsigned int shndx,
5763 const elfcpp::Shdr<32, true>& shdr,
5764 unsigned int reloc_shndx,
5765 unsigned int reloc_type,
5766 off_t* off);
5767 #endif
5768
5769 #ifdef HAVE_TARGET_64_LITTLE
5770 template
5771 Output_section*
5772 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5773 const unsigned char* symbols,
5774 off_t symbols_size,
5775 const unsigned char* symbol_names,
5776 off_t symbol_names_size,
5777 unsigned int shndx,
5778 const elfcpp::Shdr<64, false>& shdr,
5779 unsigned int reloc_shndx,
5780 unsigned int reloc_type,
5781 off_t* off);
5782 #endif
5783
5784 #ifdef HAVE_TARGET_64_BIG
5785 template
5786 Output_section*
5787 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5788 const unsigned char* symbols,
5789 off_t symbols_size,
5790 const unsigned char* symbol_names,
5791 off_t symbol_names_size,
5792 unsigned int shndx,
5793 const elfcpp::Shdr<64, true>& shdr,
5794 unsigned int reloc_shndx,
5795 unsigned int reloc_type,
5796 off_t* off);
5797 #endif
5798
5799 #ifdef HAVE_TARGET_32_LITTLE
5800 template
5801 void
5802 Layout::add_to_gdb_index(bool is_type_unit,
5803 Sized_relobj<32, false>* object,
5804 const unsigned char* symbols,
5805 off_t symbols_size,
5806 unsigned int shndx,
5807 unsigned int reloc_shndx,
5808 unsigned int reloc_type);
5809 #endif
5810
5811 #ifdef HAVE_TARGET_32_BIG
5812 template
5813 void
5814 Layout::add_to_gdb_index(bool is_type_unit,
5815 Sized_relobj<32, true>* object,
5816 const unsigned char* symbols,
5817 off_t symbols_size,
5818 unsigned int shndx,
5819 unsigned int reloc_shndx,
5820 unsigned int reloc_type);
5821 #endif
5822
5823 #ifdef HAVE_TARGET_64_LITTLE
5824 template
5825 void
5826 Layout::add_to_gdb_index(bool is_type_unit,
5827 Sized_relobj<64, false>* object,
5828 const unsigned char* symbols,
5829 off_t symbols_size,
5830 unsigned int shndx,
5831 unsigned int reloc_shndx,
5832 unsigned int reloc_type);
5833 #endif
5834
5835 #ifdef HAVE_TARGET_64_BIG
5836 template
5837 void
5838 Layout::add_to_gdb_index(bool is_type_unit,
5839 Sized_relobj<64, true>* object,
5840 const unsigned char* symbols,
5841 off_t symbols_size,
5842 unsigned int shndx,
5843 unsigned int reloc_shndx,
5844 unsigned int reloc_type);
5845 #endif
5846
5847 } // End namespace gold.
This page took 0.172564 seconds and 5 git commands to generate.