PR gold/14566
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
249 {
250 for(Layout::Section_list::const_iterator p = sections.begin();
251 p != sections.end();
252 ++p)
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
257 ++p)
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
266 {
267 for(Layout::Section_list::const_iterator p = sections.begin();
268 p != sections.end();
269 ++p)
270 {
271 Output_section* os = *p;
272 Section_info info;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
278 }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
286 {
287 size_t i = 0;
288 for(Layout::Section_list::const_iterator p = sections.begin();
289 p != sections.end();
290 ++p, ++i)
291 {
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297 if (i >= this->section_infos_.size())
298 {
299 gold_fatal("Section_info of %s missing.\n", os->name());
300 }
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
309 }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections. This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320 Layout* layout = this->layout_;
321 off_t file_size = layout->finalize(this->input_objects_,
322 this->symtab_,
323 this->target_,
324 task);
325
326 // Now we know the final size of the output file and we know where
327 // each piece of information goes.
328
329 if (this->mapfile_ != NULL)
330 {
331 this->mapfile_->print_discarded_sections(this->input_objects_);
332 layout->print_to_mapfile(this->mapfile_);
333 }
334
335 Output_file* of;
336 if (layout->incremental_base() == NULL)
337 {
338 of = new Output_file(parameters->options().output_file_name());
339 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340 of->set_is_temporary();
341 of->open(file_size);
342 }
343 else
344 {
345 of = layout->incremental_base()->output_file();
346
347 // Apply the incremental relocations for symbols whose values
348 // have changed. We do this before we resize the file and start
349 // writing anything else to it, so that we can read the old
350 // incremental information from the file before (possibly)
351 // overwriting it.
352 if (parameters->incremental_update())
353 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354 this->layout_,
355 of);
356
357 of->resize(file_size);
358 }
359
360 // Queue up the final set of tasks.
361 gold::queue_final_tasks(this->options_, this->input_objects_,
362 this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368 : number_of_input_files_(number_of_input_files),
369 script_options_(script_options),
370 namepool_(),
371 sympool_(),
372 dynpool_(),
373 signatures_(),
374 section_name_map_(),
375 segment_list_(),
376 section_list_(),
377 unattached_section_list_(),
378 special_output_list_(),
379 section_headers_(NULL),
380 tls_segment_(NULL),
381 relro_segment_(NULL),
382 interp_segment_(NULL),
383 increase_relro_(0),
384 symtab_section_(NULL),
385 symtab_xindex_(NULL),
386 dynsym_section_(NULL),
387 dynsym_xindex_(NULL),
388 dynamic_section_(NULL),
389 dynamic_symbol_(NULL),
390 dynamic_data_(NULL),
391 eh_frame_section_(NULL),
392 eh_frame_data_(NULL),
393 added_eh_frame_data_(false),
394 eh_frame_hdr_section_(NULL),
395 gdb_index_data_(NULL),
396 build_id_note_(NULL),
397 debug_abbrev_(NULL),
398 debug_info_(NULL),
399 group_signatures_(),
400 output_file_size_(-1),
401 have_added_input_section_(false),
402 sections_are_attached_(false),
403 input_requires_executable_stack_(false),
404 input_with_gnu_stack_note_(false),
405 input_without_gnu_stack_note_(false),
406 has_static_tls_(false),
407 any_postprocessing_sections_(false),
408 resized_signatures_(false),
409 have_stabstr_section_(false),
410 section_ordering_specified_(false),
411 unique_segment_for_sections_specified_(false),
412 incremental_inputs_(NULL),
413 record_output_section_data_from_script_(false),
414 script_output_section_data_list_(),
415 segment_states_(NULL),
416 relaxation_debug_check_(NULL),
417 section_order_map_(),
418 section_segment_map_(),
419 input_section_position_(),
420 input_section_glob_(),
421 incremental_base_(NULL),
422 free_list_()
423 {
424 // Make space for more than enough segments for a typical file.
425 // This is just for efficiency--it's OK if we wind up needing more.
426 this->segment_list_.reserve(12);
427
428 // We expect two unattached Output_data objects: the file header and
429 // the segment headers.
430 this->special_output_list_.reserve(2);
431
432 // Initialize structure needed for an incremental build.
433 if (parameters->incremental())
434 this->incremental_inputs_ = new Incremental_inputs;
435
436 // The section name pool is worth optimizing in all cases, because
437 // it is small, but there are often overlaps due to .rel sections.
438 this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446 this->incremental_base_ = base;
447 this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455 return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465 "abbrev",
466 "addr", // Fission extension
467 // "aranges", // not used by gdb as of 7.4
468 "frame",
469 "info",
470 "types",
471 "line",
472 "loc",
473 "macinfo",
474 "macro",
475 // "pubnames", // not used by gdb as of 7.4
476 // "pubtypes", // not used by gdb as of 7.4
477 "ranges",
478 "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485 "abbrev",
486 // "addr", // Fission extension
487 // "aranges", // not used by gdb as of 7.4
488 // "frame",
489 "info",
490 // "types",
491 "line",
492 // "loc",
493 // "macinfo",
494 // "macro",
495 // "pubnames", // not used by gdb as of 7.4
496 // "pubtypes", // not used by gdb as of 7.4
497 // "ranges",
498 "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506 "aranges",
507 "pubnames",
508 "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518 // We can do this faster: binary search or a hashtable. But why bother?
519 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520 if (strcmp(suffix, gdb_sections[i]) == 0)
521 return true;
522 return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530 // We can do this faster: binary search or a hashtable. But why bother?
531 for (size_t i = 0;
532 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533 ++i)
534 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535 return true;
536 return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545 // We can do this faster: binary search or a hashtable. But why bother?
546 for (size_t i = 0;
547 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548 ++i)
549 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550 return true;
551 return false;
552 }
553
554 // Sometimes we compress sections. This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections. This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566 return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files. Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575 return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583 const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
586 return false;
587
588 switch (shdr.get_sh_type())
589 {
590 case elfcpp::SHT_NULL:
591 case elfcpp::SHT_SYMTAB:
592 case elfcpp::SHT_DYNSYM:
593 case elfcpp::SHT_HASH:
594 case elfcpp::SHT_DYNAMIC:
595 case elfcpp::SHT_SYMTAB_SHNDX:
596 return false;
597
598 case elfcpp::SHT_STRTAB:
599 // Discard the sections which have special meanings in the ELF
600 // ABI. Keep others (e.g., .stabstr). We could also do this by
601 // checking the sh_link fields of the appropriate sections.
602 return (strcmp(name, ".dynstr") != 0
603 && strcmp(name, ".strtab") != 0
604 && strcmp(name, ".shstrtab") != 0);
605
606 case elfcpp::SHT_RELA:
607 case elfcpp::SHT_REL:
608 case elfcpp::SHT_GROUP:
609 // If we are emitting relocations these should be handled
610 // elsewhere.
611 gold_assert(!parameters->options().relocatable());
612 return false;
613
614 case elfcpp::SHT_PROGBITS:
615 if (parameters->options().strip_debug()
616 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
617 {
618 if (is_debug_info_section(name))
619 return false;
620 }
621 if (parameters->options().strip_debug_non_line()
622 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
623 {
624 // Debugging sections can only be recognized by name.
625 if (is_prefix_of(".debug_", name)
626 && !is_lines_only_debug_section(name + 7))
627 return false;
628 if (is_prefix_of(".zdebug_", name)
629 && !is_lines_only_debug_section(name + 8))
630 return false;
631 }
632 if (parameters->options().strip_debug_gdb()
633 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
634 {
635 // Debugging sections can only be recognized by name.
636 if (is_prefix_of(".debug_", name)
637 && !is_gdb_debug_section(name + 7))
638 return false;
639 if (is_prefix_of(".zdebug_", name)
640 && !is_gdb_debug_section(name + 8))
641 return false;
642 }
643 if (parameters->options().gdb_index()
644 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
645 {
646 // When building .gdb_index, we can strip .debug_pubnames,
647 // .debug_pubtypes, and .debug_aranges sections.
648 if (is_prefix_of(".debug_", name)
649 && is_gdb_fast_lookup_section(name + 7))
650 return false;
651 if (is_prefix_of(".zdebug_", name)
652 && is_gdb_fast_lookup_section(name + 8))
653 return false;
654 }
655 if (parameters->options().strip_lto_sections()
656 && !parameters->options().relocatable()
657 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
658 {
659 // Ignore LTO sections containing intermediate code.
660 if (is_prefix_of(".gnu.lto_", name))
661 return false;
662 }
663 // The GNU linker strips .gnu_debuglink sections, so we do too.
664 // This is a feature used to keep debugging information in
665 // separate files.
666 if (strcmp(name, ".gnu_debuglink") == 0)
667 return false;
668 return true;
669
670 default:
671 return true;
672 }
673 }
674
675 // Return an output section named NAME, or NULL if there is none.
676
677 Output_section*
678 Layout::find_output_section(const char* name) const
679 {
680 for (Section_list::const_iterator p = this->section_list_.begin();
681 p != this->section_list_.end();
682 ++p)
683 if (strcmp((*p)->name(), name) == 0)
684 return *p;
685 return NULL;
686 }
687
688 // Return an output segment of type TYPE, with segment flags SET set
689 // and segment flags CLEAR clear. Return NULL if there is none.
690
691 Output_segment*
692 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
693 elfcpp::Elf_Word clear) const
694 {
695 for (Segment_list::const_iterator p = this->segment_list_.begin();
696 p != this->segment_list_.end();
697 ++p)
698 if (static_cast<elfcpp::PT>((*p)->type()) == type
699 && ((*p)->flags() & set) == set
700 && ((*p)->flags() & clear) == 0)
701 return *p;
702 return NULL;
703 }
704
705 // When we put a .ctors or .dtors section with more than one word into
706 // a .init_array or .fini_array section, we need to reverse the words
707 // in the .ctors/.dtors section. This is because .init_array executes
708 // constructors front to back, where .ctors executes them back to
709 // front, and vice-versa for .fini_array/.dtors. Although we do want
710 // to remap .ctors/.dtors into .init_array/.fini_array because it can
711 // be more efficient, we don't want to change the order in which
712 // constructors/destructors are run. This set just keeps track of
713 // these sections which need to be reversed. It is only changed by
714 // Layout::layout. It should be a private member of Layout, but that
715 // would require layout.h to #include object.h to get the definition
716 // of Section_id.
717 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
718
719 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
720 // .init_array/.fini_array section.
721
722 bool
723 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
724 {
725 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
726 != ctors_sections_in_init_array.end());
727 }
728
729 // Return the output section to use for section NAME with type TYPE
730 // and section flags FLAGS. NAME must be canonicalized in the string
731 // pool, and NAME_KEY is the key. ORDER is where this should appear
732 // in the output sections. IS_RELRO is true for a relro section.
733
734 Output_section*
735 Layout::get_output_section(const char* name, Stringpool::Key name_key,
736 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
737 Output_section_order order, bool is_relro)
738 {
739 elfcpp::Elf_Word lookup_type = type;
740
741 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
742 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
743 // .init_array, .fini_array, and .preinit_array sections by name
744 // whatever their type in the input file. We do this because the
745 // types are not always right in the input files.
746 if (lookup_type == elfcpp::SHT_INIT_ARRAY
747 || lookup_type == elfcpp::SHT_FINI_ARRAY
748 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
749 lookup_type = elfcpp::SHT_PROGBITS;
750
751 elfcpp::Elf_Xword lookup_flags = flags;
752
753 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
754 // read-write with read-only sections. Some other ELF linkers do
755 // not do this. FIXME: Perhaps there should be an option
756 // controlling this.
757 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
758
759 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
760 const std::pair<Key, Output_section*> v(key, NULL);
761 std::pair<Section_name_map::iterator, bool> ins(
762 this->section_name_map_.insert(v));
763
764 if (!ins.second)
765 return ins.first->second;
766 else
767 {
768 // This is the first time we've seen this name/type/flags
769 // combination. For compatibility with the GNU linker, we
770 // combine sections with contents and zero flags with sections
771 // with non-zero flags. This is a workaround for cases where
772 // assembler code forgets to set section flags. FIXME: Perhaps
773 // there should be an option to control this.
774 Output_section* os = NULL;
775
776 if (lookup_type == elfcpp::SHT_PROGBITS)
777 {
778 if (flags == 0)
779 {
780 Output_section* same_name = this->find_output_section(name);
781 if (same_name != NULL
782 && (same_name->type() == elfcpp::SHT_PROGBITS
783 || same_name->type() == elfcpp::SHT_INIT_ARRAY
784 || same_name->type() == elfcpp::SHT_FINI_ARRAY
785 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
786 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
787 os = same_name;
788 }
789 else if ((flags & elfcpp::SHF_TLS) == 0)
790 {
791 elfcpp::Elf_Xword zero_flags = 0;
792 const Key zero_key(name_key, std::make_pair(lookup_type,
793 zero_flags));
794 Section_name_map::iterator p =
795 this->section_name_map_.find(zero_key);
796 if (p != this->section_name_map_.end())
797 os = p->second;
798 }
799 }
800
801 if (os == NULL)
802 os = this->make_output_section(name, type, flags, order, is_relro);
803
804 ins.first->second = os;
805 return os;
806 }
807 }
808
809 // Returns TRUE iff NAME (an input section from RELOBJ) will
810 // be mapped to an output section that should be KEPT.
811
812 bool
813 Layout::keep_input_section(const Relobj* relobj, const char* name)
814 {
815 if (! this->script_options_->saw_sections_clause())
816 return false;
817
818 Script_sections* ss = this->script_options_->script_sections();
819 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
820 Output_section** output_section_slot;
821 Script_sections::Section_type script_section_type;
822 bool keep;
823
824 name = ss->output_section_name(file_name, name, &output_section_slot,
825 &script_section_type, &keep);
826 return name != NULL && keep;
827 }
828
829 // Clear the input section flags that should not be copied to the
830 // output section.
831
832 elfcpp::Elf_Xword
833 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
834 {
835 // Some flags in the input section should not be automatically
836 // copied to the output section.
837 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
838 | elfcpp::SHF_GROUP
839 | elfcpp::SHF_MERGE
840 | elfcpp::SHF_STRINGS);
841
842 // We only clear the SHF_LINK_ORDER flag in for
843 // a non-relocatable link.
844 if (!parameters->options().relocatable())
845 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
846
847 return input_section_flags;
848 }
849
850 // Pick the output section to use for section NAME, in input file
851 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
852 // linker created section. IS_INPUT_SECTION is true if we are
853 // choosing an output section for an input section found in a input
854 // file. ORDER is where this section should appear in the output
855 // sections. IS_RELRO is true for a relro section. This will return
856 // NULL if the input section should be discarded.
857
858 Output_section*
859 Layout::choose_output_section(const Relobj* relobj, const char* name,
860 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
861 bool is_input_section, Output_section_order order,
862 bool is_relro)
863 {
864 // We should not see any input sections after we have attached
865 // sections to segments.
866 gold_assert(!is_input_section || !this->sections_are_attached_);
867
868 flags = this->get_output_section_flags(flags);
869
870 if (this->script_options_->saw_sections_clause())
871 {
872 // We are using a SECTIONS clause, so the output section is
873 // chosen based only on the name.
874
875 Script_sections* ss = this->script_options_->script_sections();
876 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
877 Output_section** output_section_slot;
878 Script_sections::Section_type script_section_type;
879 const char* orig_name = name;
880 bool keep;
881 name = ss->output_section_name(file_name, name, &output_section_slot,
882 &script_section_type, &keep);
883
884 if (name == NULL)
885 {
886 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
887 "because it is not allowed by the "
888 "SECTIONS clause of the linker script"),
889 orig_name);
890 // The SECTIONS clause says to discard this input section.
891 return NULL;
892 }
893
894 // We can only handle script section types ST_NONE and ST_NOLOAD.
895 switch (script_section_type)
896 {
897 case Script_sections::ST_NONE:
898 break;
899 case Script_sections::ST_NOLOAD:
900 flags &= elfcpp::SHF_ALLOC;
901 break;
902 default:
903 gold_unreachable();
904 }
905
906 // If this is an orphan section--one not mentioned in the linker
907 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
908 // default processing below.
909
910 if (output_section_slot != NULL)
911 {
912 if (*output_section_slot != NULL)
913 {
914 (*output_section_slot)->update_flags_for_input_section(flags);
915 return *output_section_slot;
916 }
917
918 // We don't put sections found in the linker script into
919 // SECTION_NAME_MAP_. That keeps us from getting confused
920 // if an orphan section is mapped to a section with the same
921 // name as one in the linker script.
922
923 name = this->namepool_.add(name, false, NULL);
924
925 Output_section* os = this->make_output_section(name, type, flags,
926 order, is_relro);
927
928 os->set_found_in_sections_clause();
929
930 // Special handling for NOLOAD sections.
931 if (script_section_type == Script_sections::ST_NOLOAD)
932 {
933 os->set_is_noload();
934
935 // The constructor of Output_section sets addresses of non-ALLOC
936 // sections to 0 by default. We don't want that for NOLOAD
937 // sections even if they have no SHF_ALLOC flag.
938 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
939 && os->is_address_valid())
940 {
941 gold_assert(os->address() == 0
942 && !os->is_offset_valid()
943 && !os->is_data_size_valid());
944 os->reset_address_and_file_offset();
945 }
946 }
947
948 *output_section_slot = os;
949 return os;
950 }
951 }
952
953 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
954
955 size_t len = strlen(name);
956 char* uncompressed_name = NULL;
957
958 // Compressed debug sections should be mapped to the corresponding
959 // uncompressed section.
960 if (is_compressed_debug_section(name))
961 {
962 uncompressed_name = new char[len];
963 uncompressed_name[0] = '.';
964 gold_assert(name[0] == '.' && name[1] == 'z');
965 strncpy(&uncompressed_name[1], &name[2], len - 2);
966 uncompressed_name[len - 1] = '\0';
967 len -= 1;
968 name = uncompressed_name;
969 }
970
971 // Turn NAME from the name of the input section into the name of the
972 // output section.
973 if (is_input_section
974 && !this->script_options_->saw_sections_clause()
975 && !parameters->options().relocatable())
976 {
977 const char *orig_name = name;
978 name = parameters->target().output_section_name(relobj, name, &len);
979 if (name == NULL)
980 name = Layout::output_section_name(relobj, orig_name, &len);
981 }
982
983 Stringpool::Key name_key;
984 name = this->namepool_.add_with_length(name, len, true, &name_key);
985
986 if (uncompressed_name != NULL)
987 delete[] uncompressed_name;
988
989 // Find or make the output section. The output section is selected
990 // based on the section name, type, and flags.
991 return this->get_output_section(name, name_key, type, flags, order, is_relro);
992 }
993
994 // For incremental links, record the initial fixed layout of a section
995 // from the base file, and return a pointer to the Output_section.
996
997 template<int size, bool big_endian>
998 Output_section*
999 Layout::init_fixed_output_section(const char* name,
1000 elfcpp::Shdr<size, big_endian>& shdr)
1001 {
1002 unsigned int sh_type = shdr.get_sh_type();
1003
1004 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1005 // PRE_INIT_ARRAY, and NOTE sections.
1006 // All others will be created from scratch and reallocated.
1007 if (!can_incremental_update(sh_type))
1008 return NULL;
1009
1010 // If we're generating a .gdb_index section, we need to regenerate
1011 // it from scratch.
1012 if (parameters->options().gdb_index()
1013 && sh_type == elfcpp::SHT_PROGBITS
1014 && strcmp(name, ".gdb_index") == 0)
1015 return NULL;
1016
1017 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1018 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1019 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1020 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1021 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1022 shdr.get_sh_addralign();
1023
1024 // Make the output section.
1025 Stringpool::Key name_key;
1026 name = this->namepool_.add(name, true, &name_key);
1027 Output_section* os = this->get_output_section(name, name_key, sh_type,
1028 sh_flags, ORDER_INVALID, false);
1029 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1030 if (sh_type != elfcpp::SHT_NOBITS)
1031 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1032 return os;
1033 }
1034
1035 // Return the output section to use for input section SHNDX, with name
1036 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1037 // index of a relocation section which applies to this section, or 0
1038 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1039 // relocation section if there is one. Set *OFF to the offset of this
1040 // input section without the output section. Return NULL if the
1041 // section should be discarded. Set *OFF to -1 if the section
1042 // contents should not be written directly to the output file, but
1043 // will instead receive special handling.
1044
1045 template<int size, bool big_endian>
1046 Output_section*
1047 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1048 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1049 unsigned int reloc_shndx, unsigned int, off_t* off)
1050 {
1051 *off = 0;
1052
1053 if (!this->include_section(object, name, shdr))
1054 return NULL;
1055
1056 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1057
1058 // In a relocatable link a grouped section must not be combined with
1059 // any other sections.
1060 Output_section* os;
1061 if (parameters->options().relocatable()
1062 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1063 {
1064 name = this->namepool_.add(name, true, NULL);
1065 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1066 ORDER_INVALID, false);
1067 }
1068 else
1069 {
1070 // Plugins can choose to place one or more subsets of sections in
1071 // unique segments and this is done by mapping these section subsets
1072 // to unique output sections. Check if this section needs to be
1073 // remapped to a unique output section.
1074 Section_segment_map::iterator it
1075 = this->section_segment_map_.find(Const_section_id(object, shndx));
1076 if (it == this->section_segment_map_.end())
1077 {
1078 os = this->choose_output_section(object, name, sh_type,
1079 shdr.get_sh_flags(), true,
1080 ORDER_INVALID, false);
1081 }
1082 else
1083 {
1084 // We know the name of the output section, directly call
1085 // get_output_section here by-passing choose_output_section.
1086 elfcpp::Elf_Xword flags
1087 = this->get_output_section_flags(shdr.get_sh_flags());
1088
1089 const char* os_name = it->second->name;
1090 Stringpool::Key name_key;
1091 os_name = this->namepool_.add(os_name, true, &name_key);
1092 os = this->get_output_section(os_name, name_key, sh_type, flags,
1093 ORDER_INVALID, false);
1094 if (!os->is_unique_segment())
1095 {
1096 os->set_is_unique_segment();
1097 os->set_extra_segment_flags(it->second->flags);
1098 os->set_segment_alignment(it->second->align);
1099 }
1100 }
1101 if (os == NULL)
1102 return NULL;
1103 }
1104
1105 // By default the GNU linker sorts input sections whose names match
1106 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1107 // sections are sorted by name. This is used to implement
1108 // constructor priority ordering. We are compatible. When we put
1109 // .ctor sections in .init_array and .dtor sections in .fini_array,
1110 // we must also sort plain .ctor and .dtor sections.
1111 if (!this->script_options_->saw_sections_clause()
1112 && !parameters->options().relocatable()
1113 && (is_prefix_of(".ctors.", name)
1114 || is_prefix_of(".dtors.", name)
1115 || is_prefix_of(".init_array.", name)
1116 || is_prefix_of(".fini_array.", name)
1117 || (parameters->options().ctors_in_init_array()
1118 && (strcmp(name, ".ctors") == 0
1119 || strcmp(name, ".dtors") == 0))))
1120 os->set_must_sort_attached_input_sections();
1121
1122 // If this is a .ctors or .ctors.* section being mapped to a
1123 // .init_array section, or a .dtors or .dtors.* section being mapped
1124 // to a .fini_array section, we will need to reverse the words if
1125 // there is more than one. Record this section for later. See
1126 // ctors_sections_in_init_array above.
1127 if (!this->script_options_->saw_sections_clause()
1128 && !parameters->options().relocatable()
1129 && shdr.get_sh_size() > size / 8
1130 && (((strcmp(name, ".ctors") == 0
1131 || is_prefix_of(".ctors.", name))
1132 && strcmp(os->name(), ".init_array") == 0)
1133 || ((strcmp(name, ".dtors") == 0
1134 || is_prefix_of(".dtors.", name))
1135 && strcmp(os->name(), ".fini_array") == 0)))
1136 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1137
1138 // FIXME: Handle SHF_LINK_ORDER somewhere.
1139
1140 elfcpp::Elf_Xword orig_flags = os->flags();
1141
1142 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1143 this->script_options_->saw_sections_clause());
1144
1145 // If the flags changed, we may have to change the order.
1146 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1147 {
1148 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1149 elfcpp::Elf_Xword new_flags =
1150 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1151 if (orig_flags != new_flags)
1152 os->set_order(this->default_section_order(os, false));
1153 }
1154
1155 this->have_added_input_section_ = true;
1156
1157 return os;
1158 }
1159
1160 // Maps section SECN to SEGMENT s.
1161 void
1162 Layout::insert_section_segment_map(Const_section_id secn,
1163 Unique_segment_info *s)
1164 {
1165 gold_assert(this->unique_segment_for_sections_specified_);
1166 this->section_segment_map_[secn] = s;
1167 }
1168
1169 // Handle a relocation section when doing a relocatable link.
1170
1171 template<int size, bool big_endian>
1172 Output_section*
1173 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1174 unsigned int,
1175 const elfcpp::Shdr<size, big_endian>& shdr,
1176 Output_section* data_section,
1177 Relocatable_relocs* rr)
1178 {
1179 gold_assert(parameters->options().relocatable()
1180 || parameters->options().emit_relocs());
1181
1182 int sh_type = shdr.get_sh_type();
1183
1184 std::string name;
1185 if (sh_type == elfcpp::SHT_REL)
1186 name = ".rel";
1187 else if (sh_type == elfcpp::SHT_RELA)
1188 name = ".rela";
1189 else
1190 gold_unreachable();
1191 name += data_section->name();
1192
1193 // In a relocatable link relocs for a grouped section must not be
1194 // combined with other reloc sections.
1195 Output_section* os;
1196 if (!parameters->options().relocatable()
1197 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1198 os = this->choose_output_section(object, name.c_str(), sh_type,
1199 shdr.get_sh_flags(), false,
1200 ORDER_INVALID, false);
1201 else
1202 {
1203 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1204 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1205 ORDER_INVALID, false);
1206 }
1207
1208 os->set_should_link_to_symtab();
1209 os->set_info_section(data_section);
1210
1211 Output_section_data* posd;
1212 if (sh_type == elfcpp::SHT_REL)
1213 {
1214 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1215 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1216 size,
1217 big_endian>(rr);
1218 }
1219 else if (sh_type == elfcpp::SHT_RELA)
1220 {
1221 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1222 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1223 size,
1224 big_endian>(rr);
1225 }
1226 else
1227 gold_unreachable();
1228
1229 os->add_output_section_data(posd);
1230 rr->set_output_data(posd);
1231
1232 return os;
1233 }
1234
1235 // Handle a group section when doing a relocatable link.
1236
1237 template<int size, bool big_endian>
1238 void
1239 Layout::layout_group(Symbol_table* symtab,
1240 Sized_relobj_file<size, big_endian>* object,
1241 unsigned int,
1242 const char* group_section_name,
1243 const char* signature,
1244 const elfcpp::Shdr<size, big_endian>& shdr,
1245 elfcpp::Elf_Word flags,
1246 std::vector<unsigned int>* shndxes)
1247 {
1248 gold_assert(parameters->options().relocatable());
1249 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1250 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1251 Output_section* os = this->make_output_section(group_section_name,
1252 elfcpp::SHT_GROUP,
1253 shdr.get_sh_flags(),
1254 ORDER_INVALID, false);
1255
1256 // We need to find a symbol with the signature in the symbol table.
1257 // If we don't find one now, we need to look again later.
1258 Symbol* sym = symtab->lookup(signature, NULL);
1259 if (sym != NULL)
1260 os->set_info_symndx(sym);
1261 else
1262 {
1263 // Reserve some space to minimize reallocations.
1264 if (this->group_signatures_.empty())
1265 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1266
1267 // We will wind up using a symbol whose name is the signature.
1268 // So just put the signature in the symbol name pool to save it.
1269 signature = symtab->canonicalize_name(signature);
1270 this->group_signatures_.push_back(Group_signature(os, signature));
1271 }
1272
1273 os->set_should_link_to_symtab();
1274 os->set_entsize(4);
1275
1276 section_size_type entry_count =
1277 convert_to_section_size_type(shdr.get_sh_size() / 4);
1278 Output_section_data* posd =
1279 new Output_data_group<size, big_endian>(object, entry_count, flags,
1280 shndxes);
1281 os->add_output_section_data(posd);
1282 }
1283
1284 // Special GNU handling of sections name .eh_frame. They will
1285 // normally hold exception frame data as defined by the C++ ABI
1286 // (http://codesourcery.com/cxx-abi/).
1287
1288 template<int size, bool big_endian>
1289 Output_section*
1290 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1291 const unsigned char* symbols,
1292 off_t symbols_size,
1293 const unsigned char* symbol_names,
1294 off_t symbol_names_size,
1295 unsigned int shndx,
1296 const elfcpp::Shdr<size, big_endian>& shdr,
1297 unsigned int reloc_shndx, unsigned int reloc_type,
1298 off_t* off)
1299 {
1300 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1301 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1302 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1303
1304 Output_section* os = this->make_eh_frame_section(object);
1305 if (os == NULL)
1306 return NULL;
1307
1308 gold_assert(this->eh_frame_section_ == os);
1309
1310 elfcpp::Elf_Xword orig_flags = os->flags();
1311
1312 if (!parameters->incremental()
1313 && this->eh_frame_data_->add_ehframe_input_section(object,
1314 symbols,
1315 symbols_size,
1316 symbol_names,
1317 symbol_names_size,
1318 shndx,
1319 reloc_shndx,
1320 reloc_type))
1321 {
1322 os->update_flags_for_input_section(shdr.get_sh_flags());
1323
1324 // A writable .eh_frame section is a RELRO section.
1325 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1326 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1327 {
1328 os->set_is_relro();
1329 os->set_order(ORDER_RELRO);
1330 }
1331
1332 // We found a .eh_frame section we are going to optimize, so now
1333 // we can add the set of optimized sections to the output
1334 // section. We need to postpone adding this until we've found a
1335 // section we can optimize so that the .eh_frame section in
1336 // crtbegin.o winds up at the start of the output section.
1337 if (!this->added_eh_frame_data_)
1338 {
1339 os->add_output_section_data(this->eh_frame_data_);
1340 this->added_eh_frame_data_ = true;
1341 }
1342 *off = -1;
1343 }
1344 else
1345 {
1346 // We couldn't handle this .eh_frame section for some reason.
1347 // Add it as a normal section.
1348 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1349 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1350 reloc_shndx, saw_sections_clause);
1351 this->have_added_input_section_ = true;
1352
1353 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1354 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1355 os->set_order(this->default_section_order(os, false));
1356 }
1357
1358 return os;
1359 }
1360
1361 // Create and return the magic .eh_frame section. Create
1362 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1363 // input .eh_frame section; it may be NULL.
1364
1365 Output_section*
1366 Layout::make_eh_frame_section(const Relobj* object)
1367 {
1368 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1369 // SHT_PROGBITS.
1370 Output_section* os = this->choose_output_section(object, ".eh_frame",
1371 elfcpp::SHT_PROGBITS,
1372 elfcpp::SHF_ALLOC, false,
1373 ORDER_EHFRAME, false);
1374 if (os == NULL)
1375 return NULL;
1376
1377 if (this->eh_frame_section_ == NULL)
1378 {
1379 this->eh_frame_section_ = os;
1380 this->eh_frame_data_ = new Eh_frame();
1381
1382 // For incremental linking, we do not optimize .eh_frame sections
1383 // or create a .eh_frame_hdr section.
1384 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1385 {
1386 Output_section* hdr_os =
1387 this->choose_output_section(NULL, ".eh_frame_hdr",
1388 elfcpp::SHT_PROGBITS,
1389 elfcpp::SHF_ALLOC, false,
1390 ORDER_EHFRAME, false);
1391
1392 if (hdr_os != NULL)
1393 {
1394 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1395 this->eh_frame_data_);
1396 hdr_os->add_output_section_data(hdr_posd);
1397
1398 hdr_os->set_after_input_sections();
1399
1400 if (!this->script_options_->saw_phdrs_clause())
1401 {
1402 Output_segment* hdr_oseg;
1403 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1404 elfcpp::PF_R);
1405 hdr_oseg->add_output_section_to_nonload(hdr_os,
1406 elfcpp::PF_R);
1407 }
1408
1409 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1410 }
1411 }
1412 }
1413
1414 return os;
1415 }
1416
1417 // Add an exception frame for a PLT. This is called from target code.
1418
1419 void
1420 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1421 size_t cie_length, const unsigned char* fde_data,
1422 size_t fde_length)
1423 {
1424 if (parameters->incremental())
1425 {
1426 // FIXME: Maybe this could work some day....
1427 return;
1428 }
1429 Output_section* os = this->make_eh_frame_section(NULL);
1430 if (os == NULL)
1431 return;
1432 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1433 fde_data, fde_length);
1434 if (!this->added_eh_frame_data_)
1435 {
1436 os->add_output_section_data(this->eh_frame_data_);
1437 this->added_eh_frame_data_ = true;
1438 }
1439 }
1440
1441 // Scan a .debug_info or .debug_types section, and add summary
1442 // information to the .gdb_index section.
1443
1444 template<int size, bool big_endian>
1445 void
1446 Layout::add_to_gdb_index(bool is_type_unit,
1447 Sized_relobj<size, big_endian>* object,
1448 const unsigned char* symbols,
1449 off_t symbols_size,
1450 unsigned int shndx,
1451 unsigned int reloc_shndx,
1452 unsigned int reloc_type)
1453 {
1454 if (this->gdb_index_data_ == NULL)
1455 {
1456 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1457 elfcpp::SHT_PROGBITS, 0,
1458 false, ORDER_INVALID,
1459 false);
1460 if (os == NULL)
1461 return;
1462
1463 this->gdb_index_data_ = new Gdb_index(os);
1464 os->add_output_section_data(this->gdb_index_data_);
1465 os->set_after_input_sections();
1466 }
1467
1468 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1469 symbols_size, shndx, reloc_shndx,
1470 reloc_type);
1471 }
1472
1473 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1474 // the output section.
1475
1476 Output_section*
1477 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1478 elfcpp::Elf_Xword flags,
1479 Output_section_data* posd,
1480 Output_section_order order, bool is_relro)
1481 {
1482 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1483 false, order, is_relro);
1484 if (os != NULL)
1485 os->add_output_section_data(posd);
1486 return os;
1487 }
1488
1489 // Map section flags to segment flags.
1490
1491 elfcpp::Elf_Word
1492 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1493 {
1494 elfcpp::Elf_Word ret = elfcpp::PF_R;
1495 if ((flags & elfcpp::SHF_WRITE) != 0)
1496 ret |= elfcpp::PF_W;
1497 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1498 ret |= elfcpp::PF_X;
1499 return ret;
1500 }
1501
1502 // Make a new Output_section, and attach it to segments as
1503 // appropriate. ORDER is the order in which this section should
1504 // appear in the output segment. IS_RELRO is true if this is a relro
1505 // (read-only after relocations) section.
1506
1507 Output_section*
1508 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1509 elfcpp::Elf_Xword flags,
1510 Output_section_order order, bool is_relro)
1511 {
1512 Output_section* os;
1513 if ((flags & elfcpp::SHF_ALLOC) == 0
1514 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1515 && is_compressible_debug_section(name))
1516 os = new Output_compressed_section(&parameters->options(), name, type,
1517 flags);
1518 else if ((flags & elfcpp::SHF_ALLOC) == 0
1519 && parameters->options().strip_debug_non_line()
1520 && strcmp(".debug_abbrev", name) == 0)
1521 {
1522 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1523 name, type, flags);
1524 if (this->debug_info_)
1525 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1526 }
1527 else if ((flags & elfcpp::SHF_ALLOC) == 0
1528 && parameters->options().strip_debug_non_line()
1529 && strcmp(".debug_info", name) == 0)
1530 {
1531 os = this->debug_info_ = new Output_reduced_debug_info_section(
1532 name, type, flags);
1533 if (this->debug_abbrev_)
1534 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1535 }
1536 else
1537 {
1538 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1539 // not have correct section types. Force them here.
1540 if (type == elfcpp::SHT_PROGBITS)
1541 {
1542 if (is_prefix_of(".init_array", name))
1543 type = elfcpp::SHT_INIT_ARRAY;
1544 else if (is_prefix_of(".preinit_array", name))
1545 type = elfcpp::SHT_PREINIT_ARRAY;
1546 else if (is_prefix_of(".fini_array", name))
1547 type = elfcpp::SHT_FINI_ARRAY;
1548 }
1549
1550 // FIXME: const_cast is ugly.
1551 Target* target = const_cast<Target*>(&parameters->target());
1552 os = target->make_output_section(name, type, flags);
1553 }
1554
1555 // With -z relro, we have to recognize the special sections by name.
1556 // There is no other way.
1557 bool is_relro_local = false;
1558 if (!this->script_options_->saw_sections_clause()
1559 && parameters->options().relro()
1560 && (flags & elfcpp::SHF_ALLOC) != 0
1561 && (flags & elfcpp::SHF_WRITE) != 0)
1562 {
1563 if (type == elfcpp::SHT_PROGBITS)
1564 {
1565 if ((flags & elfcpp::SHF_TLS) != 0)
1566 is_relro = true;
1567 else if (strcmp(name, ".data.rel.ro") == 0)
1568 is_relro = true;
1569 else if (strcmp(name, ".data.rel.ro.local") == 0)
1570 {
1571 is_relro = true;
1572 is_relro_local = true;
1573 }
1574 else if (strcmp(name, ".ctors") == 0
1575 || strcmp(name, ".dtors") == 0
1576 || strcmp(name, ".jcr") == 0)
1577 is_relro = true;
1578 }
1579 else if (type == elfcpp::SHT_INIT_ARRAY
1580 || type == elfcpp::SHT_FINI_ARRAY
1581 || type == elfcpp::SHT_PREINIT_ARRAY)
1582 is_relro = true;
1583 }
1584
1585 if (is_relro)
1586 os->set_is_relro();
1587
1588 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1589 order = this->default_section_order(os, is_relro_local);
1590
1591 os->set_order(order);
1592
1593 parameters->target().new_output_section(os);
1594
1595 this->section_list_.push_back(os);
1596
1597 // The GNU linker by default sorts some sections by priority, so we
1598 // do the same. We need to know that this might happen before we
1599 // attach any input sections.
1600 if (!this->script_options_->saw_sections_clause()
1601 && !parameters->options().relocatable()
1602 && (strcmp(name, ".init_array") == 0
1603 || strcmp(name, ".fini_array") == 0
1604 || (!parameters->options().ctors_in_init_array()
1605 && (strcmp(name, ".ctors") == 0
1606 || strcmp(name, ".dtors") == 0))))
1607 os->set_may_sort_attached_input_sections();
1608
1609 // Check for .stab*str sections, as .stab* sections need to link to
1610 // them.
1611 if (type == elfcpp::SHT_STRTAB
1612 && !this->have_stabstr_section_
1613 && strncmp(name, ".stab", 5) == 0
1614 && strcmp(name + strlen(name) - 3, "str") == 0)
1615 this->have_stabstr_section_ = true;
1616
1617 // During a full incremental link, we add patch space to most
1618 // PROGBITS and NOBITS sections. Flag those that may be
1619 // arbitrarily padded.
1620 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1621 && order != ORDER_INTERP
1622 && order != ORDER_INIT
1623 && order != ORDER_PLT
1624 && order != ORDER_FINI
1625 && order != ORDER_RELRO_LAST
1626 && order != ORDER_NON_RELRO_FIRST
1627 && strcmp(name, ".eh_frame") != 0
1628 && strcmp(name, ".ctors") != 0
1629 && strcmp(name, ".dtors") != 0
1630 && strcmp(name, ".jcr") != 0)
1631 {
1632 os->set_is_patch_space_allowed();
1633
1634 // Certain sections require "holes" to be filled with
1635 // specific fill patterns. These fill patterns may have
1636 // a minimum size, so we must prevent allocations from the
1637 // free list that leave a hole smaller than the minimum.
1638 if (strcmp(name, ".debug_info") == 0)
1639 os->set_free_space_fill(new Output_fill_debug_info(false));
1640 else if (strcmp(name, ".debug_types") == 0)
1641 os->set_free_space_fill(new Output_fill_debug_info(true));
1642 else if (strcmp(name, ".debug_line") == 0)
1643 os->set_free_space_fill(new Output_fill_debug_line());
1644 }
1645
1646 // If we have already attached the sections to segments, then we
1647 // need to attach this one now. This happens for sections created
1648 // directly by the linker.
1649 if (this->sections_are_attached_)
1650 this->attach_section_to_segment(&parameters->target(), os);
1651
1652 return os;
1653 }
1654
1655 // Return the default order in which a section should be placed in an
1656 // output segment. This function captures a lot of the ideas in
1657 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1658 // linker created section is normally set when the section is created;
1659 // this function is used for input sections.
1660
1661 Output_section_order
1662 Layout::default_section_order(Output_section* os, bool is_relro_local)
1663 {
1664 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1665 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1666 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1667 bool is_bss = false;
1668
1669 switch (os->type())
1670 {
1671 default:
1672 case elfcpp::SHT_PROGBITS:
1673 break;
1674 case elfcpp::SHT_NOBITS:
1675 is_bss = true;
1676 break;
1677 case elfcpp::SHT_RELA:
1678 case elfcpp::SHT_REL:
1679 if (!is_write)
1680 return ORDER_DYNAMIC_RELOCS;
1681 break;
1682 case elfcpp::SHT_HASH:
1683 case elfcpp::SHT_DYNAMIC:
1684 case elfcpp::SHT_SHLIB:
1685 case elfcpp::SHT_DYNSYM:
1686 case elfcpp::SHT_GNU_HASH:
1687 case elfcpp::SHT_GNU_verdef:
1688 case elfcpp::SHT_GNU_verneed:
1689 case elfcpp::SHT_GNU_versym:
1690 if (!is_write)
1691 return ORDER_DYNAMIC_LINKER;
1692 break;
1693 case elfcpp::SHT_NOTE:
1694 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1695 }
1696
1697 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1698 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1699
1700 if (!is_bss && !is_write)
1701 {
1702 if (is_execinstr)
1703 {
1704 if (strcmp(os->name(), ".init") == 0)
1705 return ORDER_INIT;
1706 else if (strcmp(os->name(), ".fini") == 0)
1707 return ORDER_FINI;
1708 }
1709 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1710 }
1711
1712 if (os->is_relro())
1713 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1714
1715 if (os->is_small_section())
1716 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1717 if (os->is_large_section())
1718 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1719
1720 return is_bss ? ORDER_BSS : ORDER_DATA;
1721 }
1722
1723 // Attach output sections to segments. This is called after we have
1724 // seen all the input sections.
1725
1726 void
1727 Layout::attach_sections_to_segments(const Target* target)
1728 {
1729 for (Section_list::iterator p = this->section_list_.begin();
1730 p != this->section_list_.end();
1731 ++p)
1732 this->attach_section_to_segment(target, *p);
1733
1734 this->sections_are_attached_ = true;
1735 }
1736
1737 // Attach an output section to a segment.
1738
1739 void
1740 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1741 {
1742 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1743 this->unattached_section_list_.push_back(os);
1744 else
1745 this->attach_allocated_section_to_segment(target, os);
1746 }
1747
1748 // Attach an allocated output section to a segment.
1749
1750 void
1751 Layout::attach_allocated_section_to_segment(const Target* target,
1752 Output_section* os)
1753 {
1754 elfcpp::Elf_Xword flags = os->flags();
1755 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1756
1757 if (parameters->options().relocatable())
1758 return;
1759
1760 // If we have a SECTIONS clause, we can't handle the attachment to
1761 // segments until after we've seen all the sections.
1762 if (this->script_options_->saw_sections_clause())
1763 return;
1764
1765 gold_assert(!this->script_options_->saw_phdrs_clause());
1766
1767 // This output section goes into a PT_LOAD segment.
1768
1769 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1770
1771 // If this output section's segment has extra flags that need to be set,
1772 // coming from a linker plugin, do that.
1773 seg_flags |= os->extra_segment_flags();
1774
1775 // Check for --section-start.
1776 uint64_t addr;
1777 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1778
1779 // In general the only thing we really care about for PT_LOAD
1780 // segments is whether or not they are writable or executable,
1781 // so that is how we search for them.
1782 // Large data sections also go into their own PT_LOAD segment.
1783 // People who need segments sorted on some other basis will
1784 // have to use a linker script.
1785
1786 Segment_list::const_iterator p;
1787 if (!os->is_unique_segment())
1788 {
1789 for (p = this->segment_list_.begin();
1790 p != this->segment_list_.end();
1791 ++p)
1792 {
1793 if ((*p)->type() != elfcpp::PT_LOAD)
1794 continue;
1795 if ((*p)->is_unique_segment())
1796 continue;
1797 if (!parameters->options().omagic()
1798 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1799 continue;
1800 if ((target->isolate_execinstr() || parameters->options().rosegment())
1801 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1802 continue;
1803 // If -Tbss was specified, we need to separate the data and BSS
1804 // segments.
1805 if (parameters->options().user_set_Tbss())
1806 {
1807 if ((os->type() == elfcpp::SHT_NOBITS)
1808 == (*p)->has_any_data_sections())
1809 continue;
1810 }
1811 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1812 continue;
1813
1814 if (is_address_set)
1815 {
1816 if ((*p)->are_addresses_set())
1817 continue;
1818
1819 (*p)->add_initial_output_data(os);
1820 (*p)->update_flags_for_output_section(seg_flags);
1821 (*p)->set_addresses(addr, addr);
1822 break;
1823 }
1824
1825 (*p)->add_output_section_to_load(this, os, seg_flags);
1826 break;
1827 }
1828 }
1829
1830 if (p == this->segment_list_.end()
1831 || os->is_unique_segment())
1832 {
1833 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1834 seg_flags);
1835 if (os->is_large_data_section())
1836 oseg->set_is_large_data_segment();
1837 oseg->add_output_section_to_load(this, os, seg_flags);
1838 if (is_address_set)
1839 oseg->set_addresses(addr, addr);
1840 // Check if segment should be marked unique. For segments marked
1841 // unique by linker plugins, set the new alignment if specified.
1842 if (os->is_unique_segment())
1843 {
1844 oseg->set_is_unique_segment();
1845 if (os->segment_alignment() != 0)
1846 oseg->set_minimum_p_align(os->segment_alignment());
1847 }
1848 }
1849
1850 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1851 // segment.
1852 if (os->type() == elfcpp::SHT_NOTE)
1853 {
1854 // See if we already have an equivalent PT_NOTE segment.
1855 for (p = this->segment_list_.begin();
1856 p != segment_list_.end();
1857 ++p)
1858 {
1859 if ((*p)->type() == elfcpp::PT_NOTE
1860 && (((*p)->flags() & elfcpp::PF_W)
1861 == (seg_flags & elfcpp::PF_W)))
1862 {
1863 (*p)->add_output_section_to_nonload(os, seg_flags);
1864 break;
1865 }
1866 }
1867
1868 if (p == this->segment_list_.end())
1869 {
1870 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1871 seg_flags);
1872 oseg->add_output_section_to_nonload(os, seg_flags);
1873 }
1874 }
1875
1876 // If we see a loadable SHF_TLS section, we create a PT_TLS
1877 // segment. There can only be one such segment.
1878 if ((flags & elfcpp::SHF_TLS) != 0)
1879 {
1880 if (this->tls_segment_ == NULL)
1881 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1882 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1883 }
1884
1885 // If -z relro is in effect, and we see a relro section, we create a
1886 // PT_GNU_RELRO segment. There can only be one such segment.
1887 if (os->is_relro() && parameters->options().relro())
1888 {
1889 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1890 if (this->relro_segment_ == NULL)
1891 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1892 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1893 }
1894
1895 // If we see a section named .interp, put it into a PT_INTERP
1896 // segment. This seems broken to me, but this is what GNU ld does,
1897 // and glibc expects it.
1898 if (strcmp(os->name(), ".interp") == 0
1899 && !this->script_options_->saw_phdrs_clause())
1900 {
1901 if (this->interp_segment_ == NULL)
1902 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1903 else
1904 gold_warning(_("multiple '.interp' sections in input files "
1905 "may cause confusing PT_INTERP segment"));
1906 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1907 }
1908 }
1909
1910 // Make an output section for a script.
1911
1912 Output_section*
1913 Layout::make_output_section_for_script(
1914 const char* name,
1915 Script_sections::Section_type section_type)
1916 {
1917 name = this->namepool_.add(name, false, NULL);
1918 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1919 if (section_type == Script_sections::ST_NOLOAD)
1920 sh_flags = 0;
1921 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1922 sh_flags, ORDER_INVALID,
1923 false);
1924 os->set_found_in_sections_clause();
1925 if (section_type == Script_sections::ST_NOLOAD)
1926 os->set_is_noload();
1927 return os;
1928 }
1929
1930 // Return the number of segments we expect to see.
1931
1932 size_t
1933 Layout::expected_segment_count() const
1934 {
1935 size_t ret = this->segment_list_.size();
1936
1937 // If we didn't see a SECTIONS clause in a linker script, we should
1938 // already have the complete list of segments. Otherwise we ask the
1939 // SECTIONS clause how many segments it expects, and add in the ones
1940 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1941
1942 if (!this->script_options_->saw_sections_clause())
1943 return ret;
1944 else
1945 {
1946 const Script_sections* ss = this->script_options_->script_sections();
1947 return ret + ss->expected_segment_count(this);
1948 }
1949 }
1950
1951 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1952 // is whether we saw a .note.GNU-stack section in the object file.
1953 // GNU_STACK_FLAGS is the section flags. The flags give the
1954 // protection required for stack memory. We record this in an
1955 // executable as a PT_GNU_STACK segment. If an object file does not
1956 // have a .note.GNU-stack segment, we must assume that it is an old
1957 // object. On some targets that will force an executable stack.
1958
1959 void
1960 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1961 const Object* obj)
1962 {
1963 if (!seen_gnu_stack)
1964 {
1965 this->input_without_gnu_stack_note_ = true;
1966 if (parameters->options().warn_execstack()
1967 && parameters->target().is_default_stack_executable())
1968 gold_warning(_("%s: missing .note.GNU-stack section"
1969 " implies executable stack"),
1970 obj->name().c_str());
1971 }
1972 else
1973 {
1974 this->input_with_gnu_stack_note_ = true;
1975 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1976 {
1977 this->input_requires_executable_stack_ = true;
1978 if (parameters->options().warn_execstack()
1979 || parameters->options().is_stack_executable())
1980 gold_warning(_("%s: requires executable stack"),
1981 obj->name().c_str());
1982 }
1983 }
1984 }
1985
1986 // Create automatic note sections.
1987
1988 void
1989 Layout::create_notes()
1990 {
1991 this->create_gold_note();
1992 this->create_executable_stack_info();
1993 this->create_build_id();
1994 }
1995
1996 // Create the dynamic sections which are needed before we read the
1997 // relocs.
1998
1999 void
2000 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2001 {
2002 if (parameters->doing_static_link())
2003 return;
2004
2005 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2006 elfcpp::SHT_DYNAMIC,
2007 (elfcpp::SHF_ALLOC
2008 | elfcpp::SHF_WRITE),
2009 false, ORDER_RELRO,
2010 true);
2011
2012 // A linker script may discard .dynamic, so check for NULL.
2013 if (this->dynamic_section_ != NULL)
2014 {
2015 this->dynamic_symbol_ =
2016 symtab->define_in_output_data("_DYNAMIC", NULL,
2017 Symbol_table::PREDEFINED,
2018 this->dynamic_section_, 0, 0,
2019 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2020 elfcpp::STV_HIDDEN, 0, false, false);
2021
2022 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2023
2024 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2025 }
2026 }
2027
2028 // For each output section whose name can be represented as C symbol,
2029 // define __start and __stop symbols for the section. This is a GNU
2030 // extension.
2031
2032 void
2033 Layout::define_section_symbols(Symbol_table* symtab)
2034 {
2035 for (Section_list::const_iterator p = this->section_list_.begin();
2036 p != this->section_list_.end();
2037 ++p)
2038 {
2039 const char* const name = (*p)->name();
2040 if (is_cident(name))
2041 {
2042 const std::string name_string(name);
2043 const std::string start_name(cident_section_start_prefix
2044 + name_string);
2045 const std::string stop_name(cident_section_stop_prefix
2046 + name_string);
2047
2048 symtab->define_in_output_data(start_name.c_str(),
2049 NULL, // version
2050 Symbol_table::PREDEFINED,
2051 *p,
2052 0, // value
2053 0, // symsize
2054 elfcpp::STT_NOTYPE,
2055 elfcpp::STB_GLOBAL,
2056 elfcpp::STV_DEFAULT,
2057 0, // nonvis
2058 false, // offset_is_from_end
2059 true); // only_if_ref
2060
2061 symtab->define_in_output_data(stop_name.c_str(),
2062 NULL, // version
2063 Symbol_table::PREDEFINED,
2064 *p,
2065 0, // value
2066 0, // symsize
2067 elfcpp::STT_NOTYPE,
2068 elfcpp::STB_GLOBAL,
2069 elfcpp::STV_DEFAULT,
2070 0, // nonvis
2071 true, // offset_is_from_end
2072 true); // only_if_ref
2073 }
2074 }
2075 }
2076
2077 // Define symbols for group signatures.
2078
2079 void
2080 Layout::define_group_signatures(Symbol_table* symtab)
2081 {
2082 for (Group_signatures::iterator p = this->group_signatures_.begin();
2083 p != this->group_signatures_.end();
2084 ++p)
2085 {
2086 Symbol* sym = symtab->lookup(p->signature, NULL);
2087 if (sym != NULL)
2088 p->section->set_info_symndx(sym);
2089 else
2090 {
2091 // Force the name of the group section to the group
2092 // signature, and use the group's section symbol as the
2093 // signature symbol.
2094 if (strcmp(p->section->name(), p->signature) != 0)
2095 {
2096 const char* name = this->namepool_.add(p->signature,
2097 true, NULL);
2098 p->section->set_name(name);
2099 }
2100 p->section->set_needs_symtab_index();
2101 p->section->set_info_section_symndx(p->section);
2102 }
2103 }
2104
2105 this->group_signatures_.clear();
2106 }
2107
2108 // Find the first read-only PT_LOAD segment, creating one if
2109 // necessary.
2110
2111 Output_segment*
2112 Layout::find_first_load_seg(const Target* target)
2113 {
2114 Output_segment* best = NULL;
2115 for (Segment_list::const_iterator p = this->segment_list_.begin();
2116 p != this->segment_list_.end();
2117 ++p)
2118 {
2119 if ((*p)->type() == elfcpp::PT_LOAD
2120 && ((*p)->flags() & elfcpp::PF_R) != 0
2121 && (parameters->options().omagic()
2122 || ((*p)->flags() & elfcpp::PF_W) == 0)
2123 && (!target->isolate_execinstr()
2124 || ((*p)->flags() & elfcpp::PF_X) == 0))
2125 {
2126 if (best == NULL || this->segment_precedes(*p, best))
2127 best = *p;
2128 }
2129 }
2130 if (best != NULL)
2131 return best;
2132
2133 gold_assert(!this->script_options_->saw_phdrs_clause());
2134
2135 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2136 elfcpp::PF_R);
2137 return load_seg;
2138 }
2139
2140 // Save states of all current output segments. Store saved states
2141 // in SEGMENT_STATES.
2142
2143 void
2144 Layout::save_segments(Segment_states* segment_states)
2145 {
2146 for (Segment_list::const_iterator p = this->segment_list_.begin();
2147 p != this->segment_list_.end();
2148 ++p)
2149 {
2150 Output_segment* segment = *p;
2151 // Shallow copy.
2152 Output_segment* copy = new Output_segment(*segment);
2153 (*segment_states)[segment] = copy;
2154 }
2155 }
2156
2157 // Restore states of output segments and delete any segment not found in
2158 // SEGMENT_STATES.
2159
2160 void
2161 Layout::restore_segments(const Segment_states* segment_states)
2162 {
2163 // Go through the segment list and remove any segment added in the
2164 // relaxation loop.
2165 this->tls_segment_ = NULL;
2166 this->relro_segment_ = NULL;
2167 Segment_list::iterator list_iter = this->segment_list_.begin();
2168 while (list_iter != this->segment_list_.end())
2169 {
2170 Output_segment* segment = *list_iter;
2171 Segment_states::const_iterator states_iter =
2172 segment_states->find(segment);
2173 if (states_iter != segment_states->end())
2174 {
2175 const Output_segment* copy = states_iter->second;
2176 // Shallow copy to restore states.
2177 *segment = *copy;
2178
2179 // Also fix up TLS and RELRO segment pointers as appropriate.
2180 if (segment->type() == elfcpp::PT_TLS)
2181 this->tls_segment_ = segment;
2182 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2183 this->relro_segment_ = segment;
2184
2185 ++list_iter;
2186 }
2187 else
2188 {
2189 list_iter = this->segment_list_.erase(list_iter);
2190 // This is a segment created during section layout. It should be
2191 // safe to remove it since we should have removed all pointers to it.
2192 delete segment;
2193 }
2194 }
2195 }
2196
2197 // Clean up after relaxation so that sections can be laid out again.
2198
2199 void
2200 Layout::clean_up_after_relaxation()
2201 {
2202 // Restore the segments to point state just prior to the relaxation loop.
2203 Script_sections* script_section = this->script_options_->script_sections();
2204 script_section->release_segments();
2205 this->restore_segments(this->segment_states_);
2206
2207 // Reset section addresses and file offsets
2208 for (Section_list::iterator p = this->section_list_.begin();
2209 p != this->section_list_.end();
2210 ++p)
2211 {
2212 (*p)->restore_states();
2213
2214 // If an input section changes size because of relaxation,
2215 // we need to adjust the section offsets of all input sections.
2216 // after such a section.
2217 if ((*p)->section_offsets_need_adjustment())
2218 (*p)->adjust_section_offsets();
2219
2220 (*p)->reset_address_and_file_offset();
2221 }
2222
2223 // Reset special output object address and file offsets.
2224 for (Data_list::iterator p = this->special_output_list_.begin();
2225 p != this->special_output_list_.end();
2226 ++p)
2227 (*p)->reset_address_and_file_offset();
2228
2229 // A linker script may have created some output section data objects.
2230 // They are useless now.
2231 for (Output_section_data_list::const_iterator p =
2232 this->script_output_section_data_list_.begin();
2233 p != this->script_output_section_data_list_.end();
2234 ++p)
2235 delete *p;
2236 this->script_output_section_data_list_.clear();
2237 }
2238
2239 // Prepare for relaxation.
2240
2241 void
2242 Layout::prepare_for_relaxation()
2243 {
2244 // Create an relaxation debug check if in debugging mode.
2245 if (is_debugging_enabled(DEBUG_RELAXATION))
2246 this->relaxation_debug_check_ = new Relaxation_debug_check();
2247
2248 // Save segment states.
2249 this->segment_states_ = new Segment_states();
2250 this->save_segments(this->segment_states_);
2251
2252 for(Section_list::const_iterator p = this->section_list_.begin();
2253 p != this->section_list_.end();
2254 ++p)
2255 (*p)->save_states();
2256
2257 if (is_debugging_enabled(DEBUG_RELAXATION))
2258 this->relaxation_debug_check_->check_output_data_for_reset_values(
2259 this->section_list_, this->special_output_list_);
2260
2261 // Also enable recording of output section data from scripts.
2262 this->record_output_section_data_from_script_ = true;
2263 }
2264
2265 // Relaxation loop body: If target has no relaxation, this runs only once
2266 // Otherwise, the target relaxation hook is called at the end of
2267 // each iteration. If the hook returns true, it means re-layout of
2268 // section is required.
2269 //
2270 // The number of segments created by a linking script without a PHDRS
2271 // clause may be affected by section sizes and alignments. There is
2272 // a remote chance that relaxation causes different number of PT_LOAD
2273 // segments are created and sections are attached to different segments.
2274 // Therefore, we always throw away all segments created during section
2275 // layout. In order to be able to restart the section layout, we keep
2276 // a copy of the segment list right before the relaxation loop and use
2277 // that to restore the segments.
2278 //
2279 // PASS is the current relaxation pass number.
2280 // SYMTAB is a symbol table.
2281 // PLOAD_SEG is the address of a pointer for the load segment.
2282 // PHDR_SEG is a pointer to the PHDR segment.
2283 // SEGMENT_HEADERS points to the output segment header.
2284 // FILE_HEADER points to the output file header.
2285 // PSHNDX is the address to store the output section index.
2286
2287 off_t inline
2288 Layout::relaxation_loop_body(
2289 int pass,
2290 Target* target,
2291 Symbol_table* symtab,
2292 Output_segment** pload_seg,
2293 Output_segment* phdr_seg,
2294 Output_segment_headers* segment_headers,
2295 Output_file_header* file_header,
2296 unsigned int* pshndx)
2297 {
2298 // If this is not the first iteration, we need to clean up after
2299 // relaxation so that we can lay out the sections again.
2300 if (pass != 0)
2301 this->clean_up_after_relaxation();
2302
2303 // If there is a SECTIONS clause, put all the input sections into
2304 // the required order.
2305 Output_segment* load_seg;
2306 if (this->script_options_->saw_sections_clause())
2307 load_seg = this->set_section_addresses_from_script(symtab);
2308 else if (parameters->options().relocatable())
2309 load_seg = NULL;
2310 else
2311 load_seg = this->find_first_load_seg(target);
2312
2313 if (parameters->options().oformat_enum()
2314 != General_options::OBJECT_FORMAT_ELF)
2315 load_seg = NULL;
2316
2317 // If the user set the address of the text segment, that may not be
2318 // compatible with putting the segment headers and file headers into
2319 // that segment.
2320 if (parameters->options().user_set_Ttext()
2321 && parameters->options().Ttext() % target->abi_pagesize() != 0)
2322 {
2323 load_seg = NULL;
2324 phdr_seg = NULL;
2325 }
2326
2327 gold_assert(phdr_seg == NULL
2328 || load_seg != NULL
2329 || this->script_options_->saw_sections_clause());
2330
2331 // If the address of the load segment we found has been set by
2332 // --section-start rather than by a script, then adjust the VMA and
2333 // LMA downward if possible to include the file and section headers.
2334 uint64_t header_gap = 0;
2335 if (load_seg != NULL
2336 && load_seg->are_addresses_set()
2337 && !this->script_options_->saw_sections_clause()
2338 && !parameters->options().relocatable())
2339 {
2340 file_header->finalize_data_size();
2341 segment_headers->finalize_data_size();
2342 size_t sizeof_headers = (file_header->data_size()
2343 + segment_headers->data_size());
2344 const uint64_t abi_pagesize = target->abi_pagesize();
2345 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2346 hdr_paddr &= ~(abi_pagesize - 1);
2347 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2348 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2349 load_seg = NULL;
2350 else
2351 {
2352 load_seg->set_addresses(load_seg->vaddr() - subtract,
2353 load_seg->paddr() - subtract);
2354 header_gap = subtract - sizeof_headers;
2355 }
2356 }
2357
2358 // Lay out the segment headers.
2359 if (!parameters->options().relocatable())
2360 {
2361 gold_assert(segment_headers != NULL);
2362 if (header_gap != 0 && load_seg != NULL)
2363 {
2364 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2365 load_seg->add_initial_output_data(z);
2366 }
2367 if (load_seg != NULL)
2368 load_seg->add_initial_output_data(segment_headers);
2369 if (phdr_seg != NULL)
2370 phdr_seg->add_initial_output_data(segment_headers);
2371 }
2372
2373 // Lay out the file header.
2374 if (load_seg != NULL)
2375 load_seg->add_initial_output_data(file_header);
2376
2377 if (this->script_options_->saw_phdrs_clause()
2378 && !parameters->options().relocatable())
2379 {
2380 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2381 // clause in a linker script.
2382 Script_sections* ss = this->script_options_->script_sections();
2383 ss->put_headers_in_phdrs(file_header, segment_headers);
2384 }
2385
2386 // We set the output section indexes in set_segment_offsets and
2387 // set_section_indexes.
2388 *pshndx = 1;
2389
2390 // Set the file offsets of all the segments, and all the sections
2391 // they contain.
2392 off_t off;
2393 if (!parameters->options().relocatable())
2394 off = this->set_segment_offsets(target, load_seg, pshndx);
2395 else
2396 off = this->set_relocatable_section_offsets(file_header, pshndx);
2397
2398 // Verify that the dummy relaxation does not change anything.
2399 if (is_debugging_enabled(DEBUG_RELAXATION))
2400 {
2401 if (pass == 0)
2402 this->relaxation_debug_check_->read_sections(this->section_list_);
2403 else
2404 this->relaxation_debug_check_->verify_sections(this->section_list_);
2405 }
2406
2407 *pload_seg = load_seg;
2408 return off;
2409 }
2410
2411 // Search the list of patterns and find the postion of the given section
2412 // name in the output section. If the section name matches a glob
2413 // pattern and a non-glob name, then the non-glob position takes
2414 // precedence. Return 0 if no match is found.
2415
2416 unsigned int
2417 Layout::find_section_order_index(const std::string& section_name)
2418 {
2419 Unordered_map<std::string, unsigned int>::iterator map_it;
2420 map_it = this->input_section_position_.find(section_name);
2421 if (map_it != this->input_section_position_.end())
2422 return map_it->second;
2423
2424 // Absolute match failed. Linear search the glob patterns.
2425 std::vector<std::string>::iterator it;
2426 for (it = this->input_section_glob_.begin();
2427 it != this->input_section_glob_.end();
2428 ++it)
2429 {
2430 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2431 {
2432 map_it = this->input_section_position_.find(*it);
2433 gold_assert(map_it != this->input_section_position_.end());
2434 return map_it->second;
2435 }
2436 }
2437 return 0;
2438 }
2439
2440 // Read the sequence of input sections from the file specified with
2441 // option --section-ordering-file.
2442
2443 void
2444 Layout::read_layout_from_file()
2445 {
2446 const char* filename = parameters->options().section_ordering_file();
2447 std::ifstream in;
2448 std::string line;
2449
2450 in.open(filename);
2451 if (!in)
2452 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2453 filename, strerror(errno));
2454
2455 std::getline(in, line); // this chops off the trailing \n, if any
2456 unsigned int position = 1;
2457 this->set_section_ordering_specified();
2458
2459 while (in)
2460 {
2461 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2462 line.resize(line.length() - 1);
2463 // Ignore comments, beginning with '#'
2464 if (line[0] == '#')
2465 {
2466 std::getline(in, line);
2467 continue;
2468 }
2469 this->input_section_position_[line] = position;
2470 // Store all glob patterns in a vector.
2471 if (is_wildcard_string(line.c_str()))
2472 this->input_section_glob_.push_back(line);
2473 position++;
2474 std::getline(in, line);
2475 }
2476 }
2477
2478 // Finalize the layout. When this is called, we have created all the
2479 // output sections and all the output segments which are based on
2480 // input sections. We have several things to do, and we have to do
2481 // them in the right order, so that we get the right results correctly
2482 // and efficiently.
2483
2484 // 1) Finalize the list of output segments and create the segment
2485 // table header.
2486
2487 // 2) Finalize the dynamic symbol table and associated sections.
2488
2489 // 3) Determine the final file offset of all the output segments.
2490
2491 // 4) Determine the final file offset of all the SHF_ALLOC output
2492 // sections.
2493
2494 // 5) Create the symbol table sections and the section name table
2495 // section.
2496
2497 // 6) Finalize the symbol table: set symbol values to their final
2498 // value and make a final determination of which symbols are going
2499 // into the output symbol table.
2500
2501 // 7) Create the section table header.
2502
2503 // 8) Determine the final file offset of all the output sections which
2504 // are not SHF_ALLOC, including the section table header.
2505
2506 // 9) Finalize the ELF file header.
2507
2508 // This function returns the size of the output file.
2509
2510 off_t
2511 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2512 Target* target, const Task* task)
2513 {
2514 target->finalize_sections(this, input_objects, symtab);
2515
2516 this->count_local_symbols(task, input_objects);
2517
2518 this->link_stabs_sections();
2519
2520 Output_segment* phdr_seg = NULL;
2521 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2522 {
2523 // There was a dynamic object in the link. We need to create
2524 // some information for the dynamic linker.
2525
2526 // Create the PT_PHDR segment which will hold the program
2527 // headers.
2528 if (!this->script_options_->saw_phdrs_clause())
2529 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2530
2531 // Create the dynamic symbol table, including the hash table.
2532 Output_section* dynstr;
2533 std::vector<Symbol*> dynamic_symbols;
2534 unsigned int local_dynamic_count;
2535 Versions versions(*this->script_options()->version_script_info(),
2536 &this->dynpool_);
2537 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2538 &local_dynamic_count, &dynamic_symbols,
2539 &versions);
2540
2541 // Create the .interp section to hold the name of the
2542 // interpreter, and put it in a PT_INTERP segment. Don't do it
2543 // if we saw a .interp section in an input file.
2544 if ((!parameters->options().shared()
2545 || parameters->options().dynamic_linker() != NULL)
2546 && this->interp_segment_ == NULL)
2547 this->create_interp(target);
2548
2549 // Finish the .dynamic section to hold the dynamic data, and put
2550 // it in a PT_DYNAMIC segment.
2551 this->finish_dynamic_section(input_objects, symtab);
2552
2553 // We should have added everything we need to the dynamic string
2554 // table.
2555 this->dynpool_.set_string_offsets();
2556
2557 // Create the version sections. We can't do this until the
2558 // dynamic string table is complete.
2559 this->create_version_sections(&versions, symtab, local_dynamic_count,
2560 dynamic_symbols, dynstr);
2561
2562 // Set the size of the _DYNAMIC symbol. We can't do this until
2563 // after we call create_version_sections.
2564 this->set_dynamic_symbol_size(symtab);
2565 }
2566
2567 // Create segment headers.
2568 Output_segment_headers* segment_headers =
2569 (parameters->options().relocatable()
2570 ? NULL
2571 : new Output_segment_headers(this->segment_list_));
2572
2573 // Lay out the file header.
2574 Output_file_header* file_header = new Output_file_header(target, symtab,
2575 segment_headers);
2576
2577 this->special_output_list_.push_back(file_header);
2578 if (segment_headers != NULL)
2579 this->special_output_list_.push_back(segment_headers);
2580
2581 // Find approriate places for orphan output sections if we are using
2582 // a linker script.
2583 if (this->script_options_->saw_sections_clause())
2584 this->place_orphan_sections_in_script();
2585
2586 Output_segment* load_seg;
2587 off_t off;
2588 unsigned int shndx;
2589 int pass = 0;
2590
2591 // Take a snapshot of the section layout as needed.
2592 if (target->may_relax())
2593 this->prepare_for_relaxation();
2594
2595 // Run the relaxation loop to lay out sections.
2596 do
2597 {
2598 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2599 phdr_seg, segment_headers, file_header,
2600 &shndx);
2601 pass++;
2602 }
2603 while (target->may_relax()
2604 && target->relax(pass, input_objects, symtab, this, task));
2605
2606 // If there is a load segment that contains the file and program headers,
2607 // provide a symbol __ehdr_start pointing there.
2608 // A program can use this to examine itself robustly.
2609 if (load_seg != NULL)
2610 symtab->define_in_output_segment("__ehdr_start", NULL,
2611 Symbol_table::PREDEFINED, load_seg, 0, 0,
2612 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2613 elfcpp::STV_DEFAULT, 0,
2614 Symbol::SEGMENT_START, true);
2615
2616 // Set the file offsets of all the non-data sections we've seen so
2617 // far which don't have to wait for the input sections. We need
2618 // this in order to finalize local symbols in non-allocated
2619 // sections.
2620 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2621
2622 // Set the section indexes of all unallocated sections seen so far,
2623 // in case any of them are somehow referenced by a symbol.
2624 shndx = this->set_section_indexes(shndx);
2625
2626 // Create the symbol table sections.
2627 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2628 if (!parameters->doing_static_link())
2629 this->assign_local_dynsym_offsets(input_objects);
2630
2631 // Process any symbol assignments from a linker script. This must
2632 // be called after the symbol table has been finalized.
2633 this->script_options_->finalize_symbols(symtab, this);
2634
2635 // Create the incremental inputs sections.
2636 if (this->incremental_inputs_)
2637 {
2638 this->incremental_inputs_->finalize();
2639 this->create_incremental_info_sections(symtab);
2640 }
2641
2642 // Create the .shstrtab section.
2643 Output_section* shstrtab_section = this->create_shstrtab();
2644
2645 // Set the file offsets of the rest of the non-data sections which
2646 // don't have to wait for the input sections.
2647 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2648
2649 // Now that all sections have been created, set the section indexes
2650 // for any sections which haven't been done yet.
2651 shndx = this->set_section_indexes(shndx);
2652
2653 // Create the section table header.
2654 this->create_shdrs(shstrtab_section, &off);
2655
2656 // If there are no sections which require postprocessing, we can
2657 // handle the section names now, and avoid a resize later.
2658 if (!this->any_postprocessing_sections_)
2659 {
2660 off = this->set_section_offsets(off,
2661 POSTPROCESSING_SECTIONS_PASS);
2662 off =
2663 this->set_section_offsets(off,
2664 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2665 }
2666
2667 file_header->set_section_info(this->section_headers_, shstrtab_section);
2668
2669 // Now we know exactly where everything goes in the output file
2670 // (except for non-allocated sections which require postprocessing).
2671 Output_data::layout_complete();
2672
2673 this->output_file_size_ = off;
2674
2675 return off;
2676 }
2677
2678 // Create a note header following the format defined in the ELF ABI.
2679 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2680 // of the section to create, DESCSZ is the size of the descriptor.
2681 // ALLOCATE is true if the section should be allocated in memory.
2682 // This returns the new note section. It sets *TRAILING_PADDING to
2683 // the number of trailing zero bytes required.
2684
2685 Output_section*
2686 Layout::create_note(const char* name, int note_type,
2687 const char* section_name, size_t descsz,
2688 bool allocate, size_t* trailing_padding)
2689 {
2690 // Authorities all agree that the values in a .note field should
2691 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2692 // they differ on what the alignment is for 64-bit binaries.
2693 // The GABI says unambiguously they take 8-byte alignment:
2694 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2695 // Other documentation says alignment should always be 4 bytes:
2696 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2697 // GNU ld and GNU readelf both support the latter (at least as of
2698 // version 2.16.91), and glibc always generates the latter for
2699 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2700 // here.
2701 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2702 const int size = parameters->target().get_size();
2703 #else
2704 const int size = 32;
2705 #endif
2706
2707 // The contents of the .note section.
2708 size_t namesz = strlen(name) + 1;
2709 size_t aligned_namesz = align_address(namesz, size / 8);
2710 size_t aligned_descsz = align_address(descsz, size / 8);
2711
2712 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2713
2714 unsigned char* buffer = new unsigned char[notehdrsz];
2715 memset(buffer, 0, notehdrsz);
2716
2717 bool is_big_endian = parameters->target().is_big_endian();
2718
2719 if (size == 32)
2720 {
2721 if (!is_big_endian)
2722 {
2723 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2724 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2725 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2726 }
2727 else
2728 {
2729 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2730 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2731 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2732 }
2733 }
2734 else if (size == 64)
2735 {
2736 if (!is_big_endian)
2737 {
2738 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2739 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2740 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2741 }
2742 else
2743 {
2744 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2745 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2746 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2747 }
2748 }
2749 else
2750 gold_unreachable();
2751
2752 memcpy(buffer + 3 * (size / 8), name, namesz);
2753
2754 elfcpp::Elf_Xword flags = 0;
2755 Output_section_order order = ORDER_INVALID;
2756 if (allocate)
2757 {
2758 flags = elfcpp::SHF_ALLOC;
2759 order = ORDER_RO_NOTE;
2760 }
2761 Output_section* os = this->choose_output_section(NULL, section_name,
2762 elfcpp::SHT_NOTE,
2763 flags, false, order, false);
2764 if (os == NULL)
2765 return NULL;
2766
2767 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2768 size / 8,
2769 "** note header");
2770 os->add_output_section_data(posd);
2771
2772 *trailing_padding = aligned_descsz - descsz;
2773
2774 return os;
2775 }
2776
2777 // For an executable or shared library, create a note to record the
2778 // version of gold used to create the binary.
2779
2780 void
2781 Layout::create_gold_note()
2782 {
2783 if (parameters->options().relocatable()
2784 || parameters->incremental_update())
2785 return;
2786
2787 std::string desc = std::string("gold ") + gold::get_version_string();
2788
2789 size_t trailing_padding;
2790 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2791 ".note.gnu.gold-version", desc.size(),
2792 false, &trailing_padding);
2793 if (os == NULL)
2794 return;
2795
2796 Output_section_data* posd = new Output_data_const(desc, 4);
2797 os->add_output_section_data(posd);
2798
2799 if (trailing_padding > 0)
2800 {
2801 posd = new Output_data_zero_fill(trailing_padding, 0);
2802 os->add_output_section_data(posd);
2803 }
2804 }
2805
2806 // Record whether the stack should be executable. This can be set
2807 // from the command line using the -z execstack or -z noexecstack
2808 // options. Otherwise, if any input file has a .note.GNU-stack
2809 // section with the SHF_EXECINSTR flag set, the stack should be
2810 // executable. Otherwise, if at least one input file a
2811 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2812 // section, we use the target default for whether the stack should be
2813 // executable. Otherwise, we don't generate a stack note. When
2814 // generating a object file, we create a .note.GNU-stack section with
2815 // the appropriate marking. When generating an executable or shared
2816 // library, we create a PT_GNU_STACK segment.
2817
2818 void
2819 Layout::create_executable_stack_info()
2820 {
2821 bool is_stack_executable;
2822 if (parameters->options().is_execstack_set())
2823 is_stack_executable = parameters->options().is_stack_executable();
2824 else if (!this->input_with_gnu_stack_note_)
2825 return;
2826 else
2827 {
2828 if (this->input_requires_executable_stack_)
2829 is_stack_executable = true;
2830 else if (this->input_without_gnu_stack_note_)
2831 is_stack_executable =
2832 parameters->target().is_default_stack_executable();
2833 else
2834 is_stack_executable = false;
2835 }
2836
2837 if (parameters->options().relocatable())
2838 {
2839 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2840 elfcpp::Elf_Xword flags = 0;
2841 if (is_stack_executable)
2842 flags |= elfcpp::SHF_EXECINSTR;
2843 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2844 ORDER_INVALID, false);
2845 }
2846 else
2847 {
2848 if (this->script_options_->saw_phdrs_clause())
2849 return;
2850 int flags = elfcpp::PF_R | elfcpp::PF_W;
2851 if (is_stack_executable)
2852 flags |= elfcpp::PF_X;
2853 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2854 }
2855 }
2856
2857 // If --build-id was used, set up the build ID note.
2858
2859 void
2860 Layout::create_build_id()
2861 {
2862 if (!parameters->options().user_set_build_id())
2863 return;
2864
2865 const char* style = parameters->options().build_id();
2866 if (strcmp(style, "none") == 0)
2867 return;
2868
2869 // Set DESCSZ to the size of the note descriptor. When possible,
2870 // set DESC to the note descriptor contents.
2871 size_t descsz;
2872 std::string desc;
2873 if (strcmp(style, "md5") == 0)
2874 descsz = 128 / 8;
2875 else if (strcmp(style, "sha1") == 0)
2876 descsz = 160 / 8;
2877 else if (strcmp(style, "uuid") == 0)
2878 {
2879 const size_t uuidsz = 128 / 8;
2880
2881 char buffer[uuidsz];
2882 memset(buffer, 0, uuidsz);
2883
2884 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2885 if (descriptor < 0)
2886 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2887 strerror(errno));
2888 else
2889 {
2890 ssize_t got = ::read(descriptor, buffer, uuidsz);
2891 release_descriptor(descriptor, true);
2892 if (got < 0)
2893 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2894 else if (static_cast<size_t>(got) != uuidsz)
2895 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2896 uuidsz, got);
2897 }
2898
2899 desc.assign(buffer, uuidsz);
2900 descsz = uuidsz;
2901 }
2902 else if (strncmp(style, "0x", 2) == 0)
2903 {
2904 hex_init();
2905 const char* p = style + 2;
2906 while (*p != '\0')
2907 {
2908 if (hex_p(p[0]) && hex_p(p[1]))
2909 {
2910 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2911 desc += c;
2912 p += 2;
2913 }
2914 else if (*p == '-' || *p == ':')
2915 ++p;
2916 else
2917 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2918 style);
2919 }
2920 descsz = desc.size();
2921 }
2922 else
2923 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2924
2925 // Create the note.
2926 size_t trailing_padding;
2927 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2928 ".note.gnu.build-id", descsz, true,
2929 &trailing_padding);
2930 if (os == NULL)
2931 return;
2932
2933 if (!desc.empty())
2934 {
2935 // We know the value already, so we fill it in now.
2936 gold_assert(desc.size() == descsz);
2937
2938 Output_section_data* posd = new Output_data_const(desc, 4);
2939 os->add_output_section_data(posd);
2940
2941 if (trailing_padding != 0)
2942 {
2943 posd = new Output_data_zero_fill(trailing_padding, 0);
2944 os->add_output_section_data(posd);
2945 }
2946 }
2947 else
2948 {
2949 // We need to compute a checksum after we have completed the
2950 // link.
2951 gold_assert(trailing_padding == 0);
2952 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2953 os->add_output_section_data(this->build_id_note_);
2954 }
2955 }
2956
2957 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2958 // field of the former should point to the latter. I'm not sure who
2959 // started this, but the GNU linker does it, and some tools depend
2960 // upon it.
2961
2962 void
2963 Layout::link_stabs_sections()
2964 {
2965 if (!this->have_stabstr_section_)
2966 return;
2967
2968 for (Section_list::iterator p = this->section_list_.begin();
2969 p != this->section_list_.end();
2970 ++p)
2971 {
2972 if ((*p)->type() != elfcpp::SHT_STRTAB)
2973 continue;
2974
2975 const char* name = (*p)->name();
2976 if (strncmp(name, ".stab", 5) != 0)
2977 continue;
2978
2979 size_t len = strlen(name);
2980 if (strcmp(name + len - 3, "str") != 0)
2981 continue;
2982
2983 std::string stab_name(name, len - 3);
2984 Output_section* stab_sec;
2985 stab_sec = this->find_output_section(stab_name.c_str());
2986 if (stab_sec != NULL)
2987 stab_sec->set_link_section(*p);
2988 }
2989 }
2990
2991 // Create .gnu_incremental_inputs and related sections needed
2992 // for the next run of incremental linking to check what has changed.
2993
2994 void
2995 Layout::create_incremental_info_sections(Symbol_table* symtab)
2996 {
2997 Incremental_inputs* incr = this->incremental_inputs_;
2998
2999 gold_assert(incr != NULL);
3000
3001 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3002 incr->create_data_sections(symtab);
3003
3004 // Add the .gnu_incremental_inputs section.
3005 const char* incremental_inputs_name =
3006 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3007 Output_section* incremental_inputs_os =
3008 this->make_output_section(incremental_inputs_name,
3009 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3010 ORDER_INVALID, false);
3011 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3012
3013 // Add the .gnu_incremental_symtab section.
3014 const char* incremental_symtab_name =
3015 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3016 Output_section* incremental_symtab_os =
3017 this->make_output_section(incremental_symtab_name,
3018 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3019 ORDER_INVALID, false);
3020 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3021 incremental_symtab_os->set_entsize(4);
3022
3023 // Add the .gnu_incremental_relocs section.
3024 const char* incremental_relocs_name =
3025 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3026 Output_section* incremental_relocs_os =
3027 this->make_output_section(incremental_relocs_name,
3028 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3029 ORDER_INVALID, false);
3030 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3031 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3032
3033 // Add the .gnu_incremental_got_plt section.
3034 const char* incremental_got_plt_name =
3035 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3036 Output_section* incremental_got_plt_os =
3037 this->make_output_section(incremental_got_plt_name,
3038 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3039 ORDER_INVALID, false);
3040 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3041
3042 // Add the .gnu_incremental_strtab section.
3043 const char* incremental_strtab_name =
3044 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3045 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3046 elfcpp::SHT_STRTAB, 0,
3047 ORDER_INVALID, false);
3048 Output_data_strtab* strtab_data =
3049 new Output_data_strtab(incr->get_stringpool());
3050 incremental_strtab_os->add_output_section_data(strtab_data);
3051
3052 incremental_inputs_os->set_after_input_sections();
3053 incremental_symtab_os->set_after_input_sections();
3054 incremental_relocs_os->set_after_input_sections();
3055 incremental_got_plt_os->set_after_input_sections();
3056
3057 incremental_inputs_os->set_link_section(incremental_strtab_os);
3058 incremental_symtab_os->set_link_section(incremental_inputs_os);
3059 incremental_relocs_os->set_link_section(incremental_inputs_os);
3060 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3061 }
3062
3063 // Return whether SEG1 should be before SEG2 in the output file. This
3064 // is based entirely on the segment type and flags. When this is
3065 // called the segment addresses have normally not yet been set.
3066
3067 bool
3068 Layout::segment_precedes(const Output_segment* seg1,
3069 const Output_segment* seg2)
3070 {
3071 elfcpp::Elf_Word type1 = seg1->type();
3072 elfcpp::Elf_Word type2 = seg2->type();
3073
3074 // The single PT_PHDR segment is required to precede any loadable
3075 // segment. We simply make it always first.
3076 if (type1 == elfcpp::PT_PHDR)
3077 {
3078 gold_assert(type2 != elfcpp::PT_PHDR);
3079 return true;
3080 }
3081 if (type2 == elfcpp::PT_PHDR)
3082 return false;
3083
3084 // The single PT_INTERP segment is required to precede any loadable
3085 // segment. We simply make it always second.
3086 if (type1 == elfcpp::PT_INTERP)
3087 {
3088 gold_assert(type2 != elfcpp::PT_INTERP);
3089 return true;
3090 }
3091 if (type2 == elfcpp::PT_INTERP)
3092 return false;
3093
3094 // We then put PT_LOAD segments before any other segments.
3095 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3096 return true;
3097 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3098 return false;
3099
3100 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3101 // segment, because that is where the dynamic linker expects to find
3102 // it (this is just for efficiency; other positions would also work
3103 // correctly).
3104 if (type1 == elfcpp::PT_TLS
3105 && type2 != elfcpp::PT_TLS
3106 && type2 != elfcpp::PT_GNU_RELRO)
3107 return false;
3108 if (type2 == elfcpp::PT_TLS
3109 && type1 != elfcpp::PT_TLS
3110 && type1 != elfcpp::PT_GNU_RELRO)
3111 return true;
3112
3113 // We put the PT_GNU_RELRO segment last, because that is where the
3114 // dynamic linker expects to find it (as with PT_TLS, this is just
3115 // for efficiency).
3116 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3117 return false;
3118 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3119 return true;
3120
3121 const elfcpp::Elf_Word flags1 = seg1->flags();
3122 const elfcpp::Elf_Word flags2 = seg2->flags();
3123
3124 // The order of non-PT_LOAD segments is unimportant. We simply sort
3125 // by the numeric segment type and flags values. There should not
3126 // be more than one segment with the same type and flags.
3127 if (type1 != elfcpp::PT_LOAD)
3128 {
3129 if (type1 != type2)
3130 return type1 < type2;
3131 gold_assert(flags1 != flags2);
3132 return flags1 < flags2;
3133 }
3134
3135 // If the addresses are set already, sort by load address.
3136 if (seg1->are_addresses_set())
3137 {
3138 if (!seg2->are_addresses_set())
3139 return true;
3140
3141 unsigned int section_count1 = seg1->output_section_count();
3142 unsigned int section_count2 = seg2->output_section_count();
3143 if (section_count1 == 0 && section_count2 > 0)
3144 return true;
3145 if (section_count1 > 0 && section_count2 == 0)
3146 return false;
3147
3148 uint64_t paddr1 = (seg1->are_addresses_set()
3149 ? seg1->paddr()
3150 : seg1->first_section_load_address());
3151 uint64_t paddr2 = (seg2->are_addresses_set()
3152 ? seg2->paddr()
3153 : seg2->first_section_load_address());
3154
3155 if (paddr1 != paddr2)
3156 return paddr1 < paddr2;
3157 }
3158 else if (seg2->are_addresses_set())
3159 return false;
3160
3161 // A segment which holds large data comes after a segment which does
3162 // not hold large data.
3163 if (seg1->is_large_data_segment())
3164 {
3165 if (!seg2->is_large_data_segment())
3166 return false;
3167 }
3168 else if (seg2->is_large_data_segment())
3169 return true;
3170
3171 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3172 // segments come before writable segments. Then writable segments
3173 // with data come before writable segments without data. Then
3174 // executable segments come before non-executable segments. Then
3175 // the unlikely case of a non-readable segment comes before the
3176 // normal case of a readable segment. If there are multiple
3177 // segments with the same type and flags, we require that the
3178 // address be set, and we sort by virtual address and then physical
3179 // address.
3180 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3181 return (flags1 & elfcpp::PF_W) == 0;
3182 if ((flags1 & elfcpp::PF_W) != 0
3183 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3184 return seg1->has_any_data_sections();
3185 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3186 return (flags1 & elfcpp::PF_X) != 0;
3187 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3188 return (flags1 & elfcpp::PF_R) == 0;
3189
3190 // We shouldn't get here--we shouldn't create segments which we
3191 // can't distinguish. Unless of course we are using a weird linker
3192 // script or overlapping --section-start options. We could also get
3193 // here if plugins want unique segments for subsets of sections.
3194 gold_assert(this->script_options_->saw_phdrs_clause()
3195 || parameters->options().any_section_start()
3196 || this->is_unique_segment_for_sections_specified());
3197 return false;
3198 }
3199
3200 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3201
3202 static off_t
3203 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3204 {
3205 uint64_t unsigned_off = off;
3206 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3207 | (addr & (abi_pagesize - 1)));
3208 if (aligned_off < unsigned_off)
3209 aligned_off += abi_pagesize;
3210 return aligned_off;
3211 }
3212
3213 // Set the file offsets of all the segments, and all the sections they
3214 // contain. They have all been created. LOAD_SEG must be be laid out
3215 // first. Return the offset of the data to follow.
3216
3217 off_t
3218 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3219 unsigned int* pshndx)
3220 {
3221 // Sort them into the final order. We use a stable sort so that we
3222 // don't randomize the order of indistinguishable segments created
3223 // by linker scripts.
3224 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3225 Layout::Compare_segments(this));
3226
3227 // Find the PT_LOAD segments, and set their addresses and offsets
3228 // and their section's addresses and offsets.
3229 uint64_t start_addr;
3230 if (parameters->options().user_set_Ttext())
3231 start_addr = parameters->options().Ttext();
3232 else if (parameters->options().output_is_position_independent())
3233 start_addr = 0;
3234 else
3235 start_addr = target->default_text_segment_address();
3236
3237 uint64_t addr = start_addr;
3238 off_t off = 0;
3239
3240 // If LOAD_SEG is NULL, then the file header and segment headers
3241 // will not be loadable. But they still need to be at offset 0 in
3242 // the file. Set their offsets now.
3243 if (load_seg == NULL)
3244 {
3245 for (Data_list::iterator p = this->special_output_list_.begin();
3246 p != this->special_output_list_.end();
3247 ++p)
3248 {
3249 off = align_address(off, (*p)->addralign());
3250 (*p)->set_address_and_file_offset(0, off);
3251 off += (*p)->data_size();
3252 }
3253 }
3254
3255 unsigned int increase_relro = this->increase_relro_;
3256 if (this->script_options_->saw_sections_clause())
3257 increase_relro = 0;
3258
3259 const bool check_sections = parameters->options().check_sections();
3260 Output_segment* last_load_segment = NULL;
3261
3262 unsigned int shndx_begin = *pshndx;
3263 unsigned int shndx_load_seg = *pshndx;
3264
3265 for (Segment_list::iterator p = this->segment_list_.begin();
3266 p != this->segment_list_.end();
3267 ++p)
3268 {
3269 if ((*p)->type() == elfcpp::PT_LOAD)
3270 {
3271 if (target->isolate_execinstr())
3272 {
3273 // When we hit the segment that should contain the
3274 // file headers, reset the file offset so we place
3275 // it and subsequent segments appropriately.
3276 // We'll fix up the preceding segments below.
3277 if (load_seg == *p)
3278 {
3279 if (off == 0)
3280 load_seg = NULL;
3281 else
3282 {
3283 off = 0;
3284 shndx_load_seg = *pshndx;
3285 }
3286 }
3287 }
3288 else
3289 {
3290 // Verify that the file headers fall into the first segment.
3291 if (load_seg != NULL && load_seg != *p)
3292 gold_unreachable();
3293 load_seg = NULL;
3294 }
3295
3296 bool are_addresses_set = (*p)->are_addresses_set();
3297 if (are_addresses_set)
3298 {
3299 // When it comes to setting file offsets, we care about
3300 // the physical address.
3301 addr = (*p)->paddr();
3302 }
3303 else if (parameters->options().user_set_Ttext()
3304 && ((*p)->flags() & elfcpp::PF_W) == 0)
3305 {
3306 are_addresses_set = true;
3307 }
3308 else if (parameters->options().user_set_Tdata()
3309 && ((*p)->flags() & elfcpp::PF_W) != 0
3310 && (!parameters->options().user_set_Tbss()
3311 || (*p)->has_any_data_sections()))
3312 {
3313 addr = parameters->options().Tdata();
3314 are_addresses_set = true;
3315 }
3316 else if (parameters->options().user_set_Tbss()
3317 && ((*p)->flags() & elfcpp::PF_W) != 0
3318 && !(*p)->has_any_data_sections())
3319 {
3320 addr = parameters->options().Tbss();
3321 are_addresses_set = true;
3322 }
3323
3324 uint64_t orig_addr = addr;
3325 uint64_t orig_off = off;
3326
3327 uint64_t aligned_addr = 0;
3328 uint64_t abi_pagesize = target->abi_pagesize();
3329 uint64_t common_pagesize = target->common_pagesize();
3330
3331 if (!parameters->options().nmagic()
3332 && !parameters->options().omagic())
3333 (*p)->set_minimum_p_align(abi_pagesize);
3334
3335 if (!are_addresses_set)
3336 {
3337 // Skip the address forward one page, maintaining the same
3338 // position within the page. This lets us store both segments
3339 // overlapping on a single page in the file, but the loader will
3340 // put them on different pages in memory. We will revisit this
3341 // decision once we know the size of the segment.
3342
3343 addr = align_address(addr, (*p)->maximum_alignment());
3344 aligned_addr = addr;
3345
3346 if (load_seg == *p)
3347 {
3348 // This is the segment that will contain the file
3349 // headers, so its offset will have to be exactly zero.
3350 gold_assert(orig_off == 0);
3351
3352 // If the target wants a fixed minimum distance from the
3353 // text segment to the read-only segment, move up now.
3354 uint64_t min_addr = start_addr + target->rosegment_gap();
3355 if (addr < min_addr)
3356 addr = min_addr;
3357
3358 // But this is not the first segment! To make its
3359 // address congruent with its offset, that address better
3360 // be aligned to the ABI-mandated page size.
3361 addr = align_address(addr, abi_pagesize);
3362 aligned_addr = addr;
3363 }
3364 else
3365 {
3366 if ((addr & (abi_pagesize - 1)) != 0)
3367 addr = addr + abi_pagesize;
3368
3369 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3370 }
3371 }
3372
3373 if (!parameters->options().nmagic()
3374 && !parameters->options().omagic())
3375 off = align_file_offset(off, addr, abi_pagesize);
3376 else
3377 {
3378 // This is -N or -n with a section script which prevents
3379 // us from using a load segment. We need to ensure that
3380 // the file offset is aligned to the alignment of the
3381 // segment. This is because the linker script
3382 // implicitly assumed a zero offset. If we don't align
3383 // here, then the alignment of the sections in the
3384 // linker script may not match the alignment of the
3385 // sections in the set_section_addresses call below,
3386 // causing an error about dot moving backward.
3387 off = align_address(off, (*p)->maximum_alignment());
3388 }
3389
3390 unsigned int shndx_hold = *pshndx;
3391 bool has_relro = false;
3392 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3393 &increase_relro,
3394 &has_relro,
3395 &off, pshndx);
3396
3397 // Now that we know the size of this segment, we may be able
3398 // to save a page in memory, at the cost of wasting some
3399 // file space, by instead aligning to the start of a new
3400 // page. Here we use the real machine page size rather than
3401 // the ABI mandated page size. If the segment has been
3402 // aligned so that the relro data ends at a page boundary,
3403 // we do not try to realign it.
3404
3405 if (!are_addresses_set
3406 && !has_relro
3407 && aligned_addr != addr
3408 && !parameters->incremental())
3409 {
3410 uint64_t first_off = (common_pagesize
3411 - (aligned_addr
3412 & (common_pagesize - 1)));
3413 uint64_t last_off = new_addr & (common_pagesize - 1);
3414 if (first_off > 0
3415 && last_off > 0
3416 && ((aligned_addr & ~ (common_pagesize - 1))
3417 != (new_addr & ~ (common_pagesize - 1)))
3418 && first_off + last_off <= common_pagesize)
3419 {
3420 *pshndx = shndx_hold;
3421 addr = align_address(aligned_addr, common_pagesize);
3422 addr = align_address(addr, (*p)->maximum_alignment());
3423 if ((addr & (abi_pagesize - 1)) != 0)
3424 addr = addr + abi_pagesize;
3425 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3426 off = align_file_offset(off, addr, abi_pagesize);
3427
3428 increase_relro = this->increase_relro_;
3429 if (this->script_options_->saw_sections_clause())
3430 increase_relro = 0;
3431 has_relro = false;
3432
3433 new_addr = (*p)->set_section_addresses(this, true, addr,
3434 &increase_relro,
3435 &has_relro,
3436 &off, pshndx);
3437 }
3438 }
3439
3440 addr = new_addr;
3441
3442 // Implement --check-sections. We know that the segments
3443 // are sorted by LMA.
3444 if (check_sections && last_load_segment != NULL)
3445 {
3446 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3447 if (last_load_segment->paddr() + last_load_segment->memsz()
3448 > (*p)->paddr())
3449 {
3450 unsigned long long lb1 = last_load_segment->paddr();
3451 unsigned long long le1 = lb1 + last_load_segment->memsz();
3452 unsigned long long lb2 = (*p)->paddr();
3453 unsigned long long le2 = lb2 + (*p)->memsz();
3454 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3455 "[0x%llx -> 0x%llx]"),
3456 lb1, le1, lb2, le2);
3457 }
3458 }
3459 last_load_segment = *p;
3460 }
3461 }
3462
3463 if (load_seg != NULL && target->isolate_execinstr())
3464 {
3465 // Process the early segments again, setting their file offsets
3466 // so they land after the segments starting at LOAD_SEG.
3467 off = align_file_offset(off, 0, target->abi_pagesize());
3468
3469 for (Segment_list::iterator p = this->segment_list_.begin();
3470 *p != load_seg;
3471 ++p)
3472 {
3473 if ((*p)->type() == elfcpp::PT_LOAD)
3474 {
3475 // We repeat the whole job of assigning addresses and
3476 // offsets, but we really only want to change the offsets and
3477 // must ensure that the addresses all come out the same as
3478 // they did the first time through.
3479 bool has_relro = false;
3480 const uint64_t old_addr = (*p)->vaddr();
3481 const uint64_t old_end = old_addr + (*p)->memsz();
3482 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3483 old_addr,
3484 &increase_relro,
3485 &has_relro,
3486 &off,
3487 &shndx_begin);
3488 gold_assert(new_addr == old_end);
3489 }
3490 }
3491
3492 gold_assert(shndx_begin == shndx_load_seg);
3493 }
3494
3495 // Handle the non-PT_LOAD segments, setting their offsets from their
3496 // section's offsets.
3497 for (Segment_list::iterator p = this->segment_list_.begin();
3498 p != this->segment_list_.end();
3499 ++p)
3500 {
3501 if ((*p)->type() != elfcpp::PT_LOAD)
3502 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3503 ? increase_relro
3504 : 0);
3505 }
3506
3507 // Set the TLS offsets for each section in the PT_TLS segment.
3508 if (this->tls_segment_ != NULL)
3509 this->tls_segment_->set_tls_offsets();
3510
3511 return off;
3512 }
3513
3514 // Set the offsets of all the allocated sections when doing a
3515 // relocatable link. This does the same jobs as set_segment_offsets,
3516 // only for a relocatable link.
3517
3518 off_t
3519 Layout::set_relocatable_section_offsets(Output_data* file_header,
3520 unsigned int* pshndx)
3521 {
3522 off_t off = 0;
3523
3524 file_header->set_address_and_file_offset(0, 0);
3525 off += file_header->data_size();
3526
3527 for (Section_list::iterator p = this->section_list_.begin();
3528 p != this->section_list_.end();
3529 ++p)
3530 {
3531 // We skip unallocated sections here, except that group sections
3532 // have to come first.
3533 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3534 && (*p)->type() != elfcpp::SHT_GROUP)
3535 continue;
3536
3537 off = align_address(off, (*p)->addralign());
3538
3539 // The linker script might have set the address.
3540 if (!(*p)->is_address_valid())
3541 (*p)->set_address(0);
3542 (*p)->set_file_offset(off);
3543 (*p)->finalize_data_size();
3544 off += (*p)->data_size();
3545
3546 (*p)->set_out_shndx(*pshndx);
3547 ++*pshndx;
3548 }
3549
3550 return off;
3551 }
3552
3553 // Set the file offset of all the sections not associated with a
3554 // segment.
3555
3556 off_t
3557 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3558 {
3559 off_t startoff = off;
3560 off_t maxoff = off;
3561
3562 for (Section_list::iterator p = this->unattached_section_list_.begin();
3563 p != this->unattached_section_list_.end();
3564 ++p)
3565 {
3566 // The symtab section is handled in create_symtab_sections.
3567 if (*p == this->symtab_section_)
3568 continue;
3569
3570 // If we've already set the data size, don't set it again.
3571 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3572 continue;
3573
3574 if (pass == BEFORE_INPUT_SECTIONS_PASS
3575 && (*p)->requires_postprocessing())
3576 {
3577 (*p)->create_postprocessing_buffer();
3578 this->any_postprocessing_sections_ = true;
3579 }
3580
3581 if (pass == BEFORE_INPUT_SECTIONS_PASS
3582 && (*p)->after_input_sections())
3583 continue;
3584 else if (pass == POSTPROCESSING_SECTIONS_PASS
3585 && (!(*p)->after_input_sections()
3586 || (*p)->type() == elfcpp::SHT_STRTAB))
3587 continue;
3588 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3589 && (!(*p)->after_input_sections()
3590 || (*p)->type() != elfcpp::SHT_STRTAB))
3591 continue;
3592
3593 if (!parameters->incremental_update())
3594 {
3595 off = align_address(off, (*p)->addralign());
3596 (*p)->set_file_offset(off);
3597 (*p)->finalize_data_size();
3598 }
3599 else
3600 {
3601 // Incremental update: allocate file space from free list.
3602 (*p)->pre_finalize_data_size();
3603 off_t current_size = (*p)->current_data_size();
3604 off = this->allocate(current_size, (*p)->addralign(), startoff);
3605 if (off == -1)
3606 {
3607 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3608 this->free_list_.dump();
3609 gold_assert((*p)->output_section() != NULL);
3610 gold_fallback(_("out of patch space for section %s; "
3611 "relink with --incremental-full"),
3612 (*p)->output_section()->name());
3613 }
3614 (*p)->set_file_offset(off);
3615 (*p)->finalize_data_size();
3616 if ((*p)->data_size() > current_size)
3617 {
3618 gold_assert((*p)->output_section() != NULL);
3619 gold_fallback(_("%s: section changed size; "
3620 "relink with --incremental-full"),
3621 (*p)->output_section()->name());
3622 }
3623 gold_debug(DEBUG_INCREMENTAL,
3624 "set_section_offsets: %08lx %08lx %s",
3625 static_cast<long>(off),
3626 static_cast<long>((*p)->data_size()),
3627 ((*p)->output_section() != NULL
3628 ? (*p)->output_section()->name() : "(special)"));
3629 }
3630
3631 off += (*p)->data_size();
3632 if (off > maxoff)
3633 maxoff = off;
3634
3635 // At this point the name must be set.
3636 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3637 this->namepool_.add((*p)->name(), false, NULL);
3638 }
3639 return maxoff;
3640 }
3641
3642 // Set the section indexes of all the sections not associated with a
3643 // segment.
3644
3645 unsigned int
3646 Layout::set_section_indexes(unsigned int shndx)
3647 {
3648 for (Section_list::iterator p = this->unattached_section_list_.begin();
3649 p != this->unattached_section_list_.end();
3650 ++p)
3651 {
3652 if (!(*p)->has_out_shndx())
3653 {
3654 (*p)->set_out_shndx(shndx);
3655 ++shndx;
3656 }
3657 }
3658 return shndx;
3659 }
3660
3661 // Set the section addresses according to the linker script. This is
3662 // only called when we see a SECTIONS clause. This returns the
3663 // program segment which should hold the file header and segment
3664 // headers, if any. It will return NULL if they should not be in a
3665 // segment.
3666
3667 Output_segment*
3668 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3669 {
3670 Script_sections* ss = this->script_options_->script_sections();
3671 gold_assert(ss->saw_sections_clause());
3672 return this->script_options_->set_section_addresses(symtab, this);
3673 }
3674
3675 // Place the orphan sections in the linker script.
3676
3677 void
3678 Layout::place_orphan_sections_in_script()
3679 {
3680 Script_sections* ss = this->script_options_->script_sections();
3681 gold_assert(ss->saw_sections_clause());
3682
3683 // Place each orphaned output section in the script.
3684 for (Section_list::iterator p = this->section_list_.begin();
3685 p != this->section_list_.end();
3686 ++p)
3687 {
3688 if (!(*p)->found_in_sections_clause())
3689 ss->place_orphan(*p);
3690 }
3691 }
3692
3693 // Count the local symbols in the regular symbol table and the dynamic
3694 // symbol table, and build the respective string pools.
3695
3696 void
3697 Layout::count_local_symbols(const Task* task,
3698 const Input_objects* input_objects)
3699 {
3700 // First, figure out an upper bound on the number of symbols we'll
3701 // be inserting into each pool. This helps us create the pools with
3702 // the right size, to avoid unnecessary hashtable resizing.
3703 unsigned int symbol_count = 0;
3704 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3705 p != input_objects->relobj_end();
3706 ++p)
3707 symbol_count += (*p)->local_symbol_count();
3708
3709 // Go from "upper bound" to "estimate." We overcount for two
3710 // reasons: we double-count symbols that occur in more than one
3711 // object file, and we count symbols that are dropped from the
3712 // output. Add it all together and assume we overcount by 100%.
3713 symbol_count /= 2;
3714
3715 // We assume all symbols will go into both the sympool and dynpool.
3716 this->sympool_.reserve(symbol_count);
3717 this->dynpool_.reserve(symbol_count);
3718
3719 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3720 p != input_objects->relobj_end();
3721 ++p)
3722 {
3723 Task_lock_obj<Object> tlo(task, *p);
3724 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3725 }
3726 }
3727
3728 // Create the symbol table sections. Here we also set the final
3729 // values of the symbols. At this point all the loadable sections are
3730 // fully laid out. SHNUM is the number of sections so far.
3731
3732 void
3733 Layout::create_symtab_sections(const Input_objects* input_objects,
3734 Symbol_table* symtab,
3735 unsigned int shnum,
3736 off_t* poff)
3737 {
3738 int symsize;
3739 unsigned int align;
3740 if (parameters->target().get_size() == 32)
3741 {
3742 symsize = elfcpp::Elf_sizes<32>::sym_size;
3743 align = 4;
3744 }
3745 else if (parameters->target().get_size() == 64)
3746 {
3747 symsize = elfcpp::Elf_sizes<64>::sym_size;
3748 align = 8;
3749 }
3750 else
3751 gold_unreachable();
3752
3753 // Compute file offsets relative to the start of the symtab section.
3754 off_t off = 0;
3755
3756 // Save space for the dummy symbol at the start of the section. We
3757 // never bother to write this out--it will just be left as zero.
3758 off += symsize;
3759 unsigned int local_symbol_index = 1;
3760
3761 // Add STT_SECTION symbols for each Output section which needs one.
3762 for (Section_list::iterator p = this->section_list_.begin();
3763 p != this->section_list_.end();
3764 ++p)
3765 {
3766 if (!(*p)->needs_symtab_index())
3767 (*p)->set_symtab_index(-1U);
3768 else
3769 {
3770 (*p)->set_symtab_index(local_symbol_index);
3771 ++local_symbol_index;
3772 off += symsize;
3773 }
3774 }
3775
3776 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3777 p != input_objects->relobj_end();
3778 ++p)
3779 {
3780 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3781 off, symtab);
3782 off += (index - local_symbol_index) * symsize;
3783 local_symbol_index = index;
3784 }
3785
3786 unsigned int local_symcount = local_symbol_index;
3787 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3788
3789 off_t dynoff;
3790 size_t dyn_global_index;
3791 size_t dyncount;
3792 if (this->dynsym_section_ == NULL)
3793 {
3794 dynoff = 0;
3795 dyn_global_index = 0;
3796 dyncount = 0;
3797 }
3798 else
3799 {
3800 dyn_global_index = this->dynsym_section_->info();
3801 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3802 dynoff = this->dynsym_section_->offset() + locsize;
3803 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3804 gold_assert(static_cast<off_t>(dyncount * symsize)
3805 == this->dynsym_section_->data_size() - locsize);
3806 }
3807
3808 off_t global_off = off;
3809 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3810 &this->sympool_, &local_symcount);
3811
3812 if (!parameters->options().strip_all())
3813 {
3814 this->sympool_.set_string_offsets();
3815
3816 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3817 Output_section* osymtab = this->make_output_section(symtab_name,
3818 elfcpp::SHT_SYMTAB,
3819 0, ORDER_INVALID,
3820 false);
3821 this->symtab_section_ = osymtab;
3822
3823 Output_section_data* pos = new Output_data_fixed_space(off, align,
3824 "** symtab");
3825 osymtab->add_output_section_data(pos);
3826
3827 // We generate a .symtab_shndx section if we have more than
3828 // SHN_LORESERVE sections. Technically it is possible that we
3829 // don't need one, because it is possible that there are no
3830 // symbols in any of sections with indexes larger than
3831 // SHN_LORESERVE. That is probably unusual, though, and it is
3832 // easier to always create one than to compute section indexes
3833 // twice (once here, once when writing out the symbols).
3834 if (shnum >= elfcpp::SHN_LORESERVE)
3835 {
3836 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3837 false, NULL);
3838 Output_section* osymtab_xindex =
3839 this->make_output_section(symtab_xindex_name,
3840 elfcpp::SHT_SYMTAB_SHNDX, 0,
3841 ORDER_INVALID, false);
3842
3843 size_t symcount = off / symsize;
3844 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3845
3846 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3847
3848 osymtab_xindex->set_link_section(osymtab);
3849 osymtab_xindex->set_addralign(4);
3850 osymtab_xindex->set_entsize(4);
3851
3852 osymtab_xindex->set_after_input_sections();
3853
3854 // This tells the driver code to wait until the symbol table
3855 // has written out before writing out the postprocessing
3856 // sections, including the .symtab_shndx section.
3857 this->any_postprocessing_sections_ = true;
3858 }
3859
3860 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3861 Output_section* ostrtab = this->make_output_section(strtab_name,
3862 elfcpp::SHT_STRTAB,
3863 0, ORDER_INVALID,
3864 false);
3865
3866 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3867 ostrtab->add_output_section_data(pstr);
3868
3869 off_t symtab_off;
3870 if (!parameters->incremental_update())
3871 symtab_off = align_address(*poff, align);
3872 else
3873 {
3874 symtab_off = this->allocate(off, align, *poff);
3875 if (off == -1)
3876 gold_fallback(_("out of patch space for symbol table; "
3877 "relink with --incremental-full"));
3878 gold_debug(DEBUG_INCREMENTAL,
3879 "create_symtab_sections: %08lx %08lx .symtab",
3880 static_cast<long>(symtab_off),
3881 static_cast<long>(off));
3882 }
3883
3884 symtab->set_file_offset(symtab_off + global_off);
3885 osymtab->set_file_offset(symtab_off);
3886 osymtab->finalize_data_size();
3887 osymtab->set_link_section(ostrtab);
3888 osymtab->set_info(local_symcount);
3889 osymtab->set_entsize(symsize);
3890
3891 if (symtab_off + off > *poff)
3892 *poff = symtab_off + off;
3893 }
3894 }
3895
3896 // Create the .shstrtab section, which holds the names of the
3897 // sections. At the time this is called, we have created all the
3898 // output sections except .shstrtab itself.
3899
3900 Output_section*
3901 Layout::create_shstrtab()
3902 {
3903 // FIXME: We don't need to create a .shstrtab section if we are
3904 // stripping everything.
3905
3906 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3907
3908 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3909 ORDER_INVALID, false);
3910
3911 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3912 {
3913 // We can't write out this section until we've set all the
3914 // section names, and we don't set the names of compressed
3915 // output sections until relocations are complete. FIXME: With
3916 // the current names we use, this is unnecessary.
3917 os->set_after_input_sections();
3918 }
3919
3920 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3921 os->add_output_section_data(posd);
3922
3923 return os;
3924 }
3925
3926 // Create the section headers. SIZE is 32 or 64. OFF is the file
3927 // offset.
3928
3929 void
3930 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3931 {
3932 Output_section_headers* oshdrs;
3933 oshdrs = new Output_section_headers(this,
3934 &this->segment_list_,
3935 &this->section_list_,
3936 &this->unattached_section_list_,
3937 &this->namepool_,
3938 shstrtab_section);
3939 off_t off;
3940 if (!parameters->incremental_update())
3941 off = align_address(*poff, oshdrs->addralign());
3942 else
3943 {
3944 oshdrs->pre_finalize_data_size();
3945 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3946 if (off == -1)
3947 gold_fallback(_("out of patch space for section header table; "
3948 "relink with --incremental-full"));
3949 gold_debug(DEBUG_INCREMENTAL,
3950 "create_shdrs: %08lx %08lx (section header table)",
3951 static_cast<long>(off),
3952 static_cast<long>(off + oshdrs->data_size()));
3953 }
3954 oshdrs->set_address_and_file_offset(0, off);
3955 off += oshdrs->data_size();
3956 if (off > *poff)
3957 *poff = off;
3958 this->section_headers_ = oshdrs;
3959 }
3960
3961 // Count the allocated sections.
3962
3963 size_t
3964 Layout::allocated_output_section_count() const
3965 {
3966 size_t section_count = 0;
3967 for (Segment_list::const_iterator p = this->segment_list_.begin();
3968 p != this->segment_list_.end();
3969 ++p)
3970 section_count += (*p)->output_section_count();
3971 return section_count;
3972 }
3973
3974 // Create the dynamic symbol table.
3975
3976 void
3977 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3978 Symbol_table* symtab,
3979 Output_section** pdynstr,
3980 unsigned int* plocal_dynamic_count,
3981 std::vector<Symbol*>* pdynamic_symbols,
3982 Versions* pversions)
3983 {
3984 // Count all the symbols in the dynamic symbol table, and set the
3985 // dynamic symbol indexes.
3986
3987 // Skip symbol 0, which is always all zeroes.
3988 unsigned int index = 1;
3989
3990 // Add STT_SECTION symbols for each Output section which needs one.
3991 for (Section_list::iterator p = this->section_list_.begin();
3992 p != this->section_list_.end();
3993 ++p)
3994 {
3995 if (!(*p)->needs_dynsym_index())
3996 (*p)->set_dynsym_index(-1U);
3997 else
3998 {
3999 (*p)->set_dynsym_index(index);
4000 ++index;
4001 }
4002 }
4003
4004 // Count the local symbols that need to go in the dynamic symbol table,
4005 // and set the dynamic symbol indexes.
4006 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4007 p != input_objects->relobj_end();
4008 ++p)
4009 {
4010 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4011 index = new_index;
4012 }
4013
4014 unsigned int local_symcount = index;
4015 *plocal_dynamic_count = local_symcount;
4016
4017 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4018 &this->dynpool_, pversions);
4019
4020 int symsize;
4021 unsigned int align;
4022 const int size = parameters->target().get_size();
4023 if (size == 32)
4024 {
4025 symsize = elfcpp::Elf_sizes<32>::sym_size;
4026 align = 4;
4027 }
4028 else if (size == 64)
4029 {
4030 symsize = elfcpp::Elf_sizes<64>::sym_size;
4031 align = 8;
4032 }
4033 else
4034 gold_unreachable();
4035
4036 // Create the dynamic symbol table section.
4037
4038 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4039 elfcpp::SHT_DYNSYM,
4040 elfcpp::SHF_ALLOC,
4041 false,
4042 ORDER_DYNAMIC_LINKER,
4043 false);
4044
4045 // Check for NULL as a linker script may discard .dynsym.
4046 if (dynsym != NULL)
4047 {
4048 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4049 align,
4050 "** dynsym");
4051 dynsym->add_output_section_data(odata);
4052
4053 dynsym->set_info(local_symcount);
4054 dynsym->set_entsize(symsize);
4055 dynsym->set_addralign(align);
4056
4057 this->dynsym_section_ = dynsym;
4058 }
4059
4060 Output_data_dynamic* const odyn = this->dynamic_data_;
4061 if (odyn != NULL)
4062 {
4063 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4064 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4065 }
4066
4067 // If there are more than SHN_LORESERVE allocated sections, we
4068 // create a .dynsym_shndx section. It is possible that we don't
4069 // need one, because it is possible that there are no dynamic
4070 // symbols in any of the sections with indexes larger than
4071 // SHN_LORESERVE. This is probably unusual, though, and at this
4072 // time we don't know the actual section indexes so it is
4073 // inconvenient to check.
4074 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4075 {
4076 Output_section* dynsym_xindex =
4077 this->choose_output_section(NULL, ".dynsym_shndx",
4078 elfcpp::SHT_SYMTAB_SHNDX,
4079 elfcpp::SHF_ALLOC,
4080 false, ORDER_DYNAMIC_LINKER, false);
4081
4082 if (dynsym_xindex != NULL)
4083 {
4084 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4085
4086 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4087
4088 dynsym_xindex->set_link_section(dynsym);
4089 dynsym_xindex->set_addralign(4);
4090 dynsym_xindex->set_entsize(4);
4091
4092 dynsym_xindex->set_after_input_sections();
4093
4094 // This tells the driver code to wait until the symbol table
4095 // has written out before writing out the postprocessing
4096 // sections, including the .dynsym_shndx section.
4097 this->any_postprocessing_sections_ = true;
4098 }
4099 }
4100
4101 // Create the dynamic string table section.
4102
4103 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4104 elfcpp::SHT_STRTAB,
4105 elfcpp::SHF_ALLOC,
4106 false,
4107 ORDER_DYNAMIC_LINKER,
4108 false);
4109
4110 if (dynstr != NULL)
4111 {
4112 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4113 dynstr->add_output_section_data(strdata);
4114
4115 if (dynsym != NULL)
4116 dynsym->set_link_section(dynstr);
4117 if (this->dynamic_section_ != NULL)
4118 this->dynamic_section_->set_link_section(dynstr);
4119
4120 if (odyn != NULL)
4121 {
4122 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4123 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4124 }
4125
4126 *pdynstr = dynstr;
4127 }
4128
4129 // Create the hash tables.
4130
4131 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4132 || strcmp(parameters->options().hash_style(), "both") == 0)
4133 {
4134 unsigned char* phash;
4135 unsigned int hashlen;
4136 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4137 &phash, &hashlen);
4138
4139 Output_section* hashsec =
4140 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4141 elfcpp::SHF_ALLOC, false,
4142 ORDER_DYNAMIC_LINKER, false);
4143
4144 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4145 hashlen,
4146 align,
4147 "** hash");
4148 if (hashsec != NULL && hashdata != NULL)
4149 hashsec->add_output_section_data(hashdata);
4150
4151 if (hashsec != NULL)
4152 {
4153 if (dynsym != NULL)
4154 hashsec->set_link_section(dynsym);
4155 hashsec->set_entsize(4);
4156 }
4157
4158 if (odyn != NULL)
4159 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4160 }
4161
4162 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4163 || strcmp(parameters->options().hash_style(), "both") == 0)
4164 {
4165 unsigned char* phash;
4166 unsigned int hashlen;
4167 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4168 &phash, &hashlen);
4169
4170 Output_section* hashsec =
4171 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4172 elfcpp::SHF_ALLOC, false,
4173 ORDER_DYNAMIC_LINKER, false);
4174
4175 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4176 hashlen,
4177 align,
4178 "** hash");
4179 if (hashsec != NULL && hashdata != NULL)
4180 hashsec->add_output_section_data(hashdata);
4181
4182 if (hashsec != NULL)
4183 {
4184 if (dynsym != NULL)
4185 hashsec->set_link_section(dynsym);
4186
4187 // For a 64-bit target, the entries in .gnu.hash do not have
4188 // a uniform size, so we only set the entry size for a
4189 // 32-bit target.
4190 if (parameters->target().get_size() == 32)
4191 hashsec->set_entsize(4);
4192
4193 if (odyn != NULL)
4194 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4195 }
4196 }
4197 }
4198
4199 // Assign offsets to each local portion of the dynamic symbol table.
4200
4201 void
4202 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4203 {
4204 Output_section* dynsym = this->dynsym_section_;
4205 if (dynsym == NULL)
4206 return;
4207
4208 off_t off = dynsym->offset();
4209
4210 // Skip the dummy symbol at the start of the section.
4211 off += dynsym->entsize();
4212
4213 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4214 p != input_objects->relobj_end();
4215 ++p)
4216 {
4217 unsigned int count = (*p)->set_local_dynsym_offset(off);
4218 off += count * dynsym->entsize();
4219 }
4220 }
4221
4222 // Create the version sections.
4223
4224 void
4225 Layout::create_version_sections(const Versions* versions,
4226 const Symbol_table* symtab,
4227 unsigned int local_symcount,
4228 const std::vector<Symbol*>& dynamic_symbols,
4229 const Output_section* dynstr)
4230 {
4231 if (!versions->any_defs() && !versions->any_needs())
4232 return;
4233
4234 switch (parameters->size_and_endianness())
4235 {
4236 #ifdef HAVE_TARGET_32_LITTLE
4237 case Parameters::TARGET_32_LITTLE:
4238 this->sized_create_version_sections<32, false>(versions, symtab,
4239 local_symcount,
4240 dynamic_symbols, dynstr);
4241 break;
4242 #endif
4243 #ifdef HAVE_TARGET_32_BIG
4244 case Parameters::TARGET_32_BIG:
4245 this->sized_create_version_sections<32, true>(versions, symtab,
4246 local_symcount,
4247 dynamic_symbols, dynstr);
4248 break;
4249 #endif
4250 #ifdef HAVE_TARGET_64_LITTLE
4251 case Parameters::TARGET_64_LITTLE:
4252 this->sized_create_version_sections<64, false>(versions, symtab,
4253 local_symcount,
4254 dynamic_symbols, dynstr);
4255 break;
4256 #endif
4257 #ifdef HAVE_TARGET_64_BIG
4258 case Parameters::TARGET_64_BIG:
4259 this->sized_create_version_sections<64, true>(versions, symtab,
4260 local_symcount,
4261 dynamic_symbols, dynstr);
4262 break;
4263 #endif
4264 default:
4265 gold_unreachable();
4266 }
4267 }
4268
4269 // Create the version sections, sized version.
4270
4271 template<int size, bool big_endian>
4272 void
4273 Layout::sized_create_version_sections(
4274 const Versions* versions,
4275 const Symbol_table* symtab,
4276 unsigned int local_symcount,
4277 const std::vector<Symbol*>& dynamic_symbols,
4278 const Output_section* dynstr)
4279 {
4280 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4281 elfcpp::SHT_GNU_versym,
4282 elfcpp::SHF_ALLOC,
4283 false,
4284 ORDER_DYNAMIC_LINKER,
4285 false);
4286
4287 // Check for NULL since a linker script may discard this section.
4288 if (vsec != NULL)
4289 {
4290 unsigned char* vbuf;
4291 unsigned int vsize;
4292 versions->symbol_section_contents<size, big_endian>(symtab,
4293 &this->dynpool_,
4294 local_symcount,
4295 dynamic_symbols,
4296 &vbuf, &vsize);
4297
4298 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4299 "** versions");
4300
4301 vsec->add_output_section_data(vdata);
4302 vsec->set_entsize(2);
4303 vsec->set_link_section(this->dynsym_section_);
4304 }
4305
4306 Output_data_dynamic* const odyn = this->dynamic_data_;
4307 if (odyn != NULL && vsec != NULL)
4308 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4309
4310 if (versions->any_defs())
4311 {
4312 Output_section* vdsec;
4313 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4314 elfcpp::SHT_GNU_verdef,
4315 elfcpp::SHF_ALLOC,
4316 false, ORDER_DYNAMIC_LINKER, false);
4317
4318 if (vdsec != NULL)
4319 {
4320 unsigned char* vdbuf;
4321 unsigned int vdsize;
4322 unsigned int vdentries;
4323 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4324 &vdbuf, &vdsize,
4325 &vdentries);
4326
4327 Output_section_data* vddata =
4328 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4329
4330 vdsec->add_output_section_data(vddata);
4331 vdsec->set_link_section(dynstr);
4332 vdsec->set_info(vdentries);
4333
4334 if (odyn != NULL)
4335 {
4336 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4337 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4338 }
4339 }
4340 }
4341
4342 if (versions->any_needs())
4343 {
4344 Output_section* vnsec;
4345 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4346 elfcpp::SHT_GNU_verneed,
4347 elfcpp::SHF_ALLOC,
4348 false, ORDER_DYNAMIC_LINKER, false);
4349
4350 if (vnsec != NULL)
4351 {
4352 unsigned char* vnbuf;
4353 unsigned int vnsize;
4354 unsigned int vnentries;
4355 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4356 &vnbuf, &vnsize,
4357 &vnentries);
4358
4359 Output_section_data* vndata =
4360 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4361
4362 vnsec->add_output_section_data(vndata);
4363 vnsec->set_link_section(dynstr);
4364 vnsec->set_info(vnentries);
4365
4366 if (odyn != NULL)
4367 {
4368 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4369 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4370 }
4371 }
4372 }
4373 }
4374
4375 // Create the .interp section and PT_INTERP segment.
4376
4377 void
4378 Layout::create_interp(const Target* target)
4379 {
4380 gold_assert(this->interp_segment_ == NULL);
4381
4382 const char* interp = parameters->options().dynamic_linker();
4383 if (interp == NULL)
4384 {
4385 interp = target->dynamic_linker();
4386 gold_assert(interp != NULL);
4387 }
4388
4389 size_t len = strlen(interp) + 1;
4390
4391 Output_section_data* odata = new Output_data_const(interp, len, 1);
4392
4393 Output_section* osec = this->choose_output_section(NULL, ".interp",
4394 elfcpp::SHT_PROGBITS,
4395 elfcpp::SHF_ALLOC,
4396 false, ORDER_INTERP,
4397 false);
4398 if (osec != NULL)
4399 osec->add_output_section_data(odata);
4400 }
4401
4402 // Add dynamic tags for the PLT and the dynamic relocs. This is
4403 // called by the target-specific code. This does nothing if not doing
4404 // a dynamic link.
4405
4406 // USE_REL is true for REL relocs rather than RELA relocs.
4407
4408 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4409
4410 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4411 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4412 // some targets have multiple reloc sections in PLT_REL.
4413
4414 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4415 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4416 // section.
4417
4418 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4419 // executable.
4420
4421 void
4422 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4423 const Output_data* plt_rel,
4424 const Output_data_reloc_generic* dyn_rel,
4425 bool add_debug, bool dynrel_includes_plt)
4426 {
4427 Output_data_dynamic* odyn = this->dynamic_data_;
4428 if (odyn == NULL)
4429 return;
4430
4431 if (plt_got != NULL && plt_got->output_section() != NULL)
4432 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4433
4434 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4435 {
4436 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4437 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4438 odyn->add_constant(elfcpp::DT_PLTREL,
4439 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4440 }
4441
4442 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4443 || (dynrel_includes_plt
4444 && plt_rel != NULL
4445 && plt_rel->output_section() != NULL))
4446 {
4447 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4448 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4449 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4450 (have_dyn_rel
4451 ? dyn_rel->output_section()
4452 : plt_rel->output_section()));
4453 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4454 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4455 odyn->add_section_size(size_tag,
4456 dyn_rel->output_section(),
4457 plt_rel->output_section());
4458 else if (have_dyn_rel)
4459 odyn->add_section_size(size_tag, dyn_rel->output_section());
4460 else
4461 odyn->add_section_size(size_tag, plt_rel->output_section());
4462 const int size = parameters->target().get_size();
4463 elfcpp::DT rel_tag;
4464 int rel_size;
4465 if (use_rel)
4466 {
4467 rel_tag = elfcpp::DT_RELENT;
4468 if (size == 32)
4469 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4470 else if (size == 64)
4471 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4472 else
4473 gold_unreachable();
4474 }
4475 else
4476 {
4477 rel_tag = elfcpp::DT_RELAENT;
4478 if (size == 32)
4479 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4480 else if (size == 64)
4481 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4482 else
4483 gold_unreachable();
4484 }
4485 odyn->add_constant(rel_tag, rel_size);
4486
4487 if (parameters->options().combreloc() && have_dyn_rel)
4488 {
4489 size_t c = dyn_rel->relative_reloc_count();
4490 if (c > 0)
4491 odyn->add_constant((use_rel
4492 ? elfcpp::DT_RELCOUNT
4493 : elfcpp::DT_RELACOUNT),
4494 c);
4495 }
4496 }
4497
4498 if (add_debug && !parameters->options().shared())
4499 {
4500 // The value of the DT_DEBUG tag is filled in by the dynamic
4501 // linker at run time, and used by the debugger.
4502 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4503 }
4504 }
4505
4506 // Finish the .dynamic section and PT_DYNAMIC segment.
4507
4508 void
4509 Layout::finish_dynamic_section(const Input_objects* input_objects,
4510 const Symbol_table* symtab)
4511 {
4512 if (!this->script_options_->saw_phdrs_clause()
4513 && this->dynamic_section_ != NULL)
4514 {
4515 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4516 (elfcpp::PF_R
4517 | elfcpp::PF_W));
4518 oseg->add_output_section_to_nonload(this->dynamic_section_,
4519 elfcpp::PF_R | elfcpp::PF_W);
4520 }
4521
4522 Output_data_dynamic* const odyn = this->dynamic_data_;
4523 if (odyn == NULL)
4524 return;
4525
4526 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4527 p != input_objects->dynobj_end();
4528 ++p)
4529 {
4530 if (!(*p)->is_needed() && (*p)->as_needed())
4531 {
4532 // This dynamic object was linked with --as-needed, but it
4533 // is not needed.
4534 continue;
4535 }
4536
4537 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4538 }
4539
4540 if (parameters->options().shared())
4541 {
4542 const char* soname = parameters->options().soname();
4543 if (soname != NULL)
4544 odyn->add_string(elfcpp::DT_SONAME, soname);
4545 }
4546
4547 Symbol* sym = symtab->lookup(parameters->options().init());
4548 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4549 odyn->add_symbol(elfcpp::DT_INIT, sym);
4550
4551 sym = symtab->lookup(parameters->options().fini());
4552 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4553 odyn->add_symbol(elfcpp::DT_FINI, sym);
4554
4555 // Look for .init_array, .preinit_array and .fini_array by checking
4556 // section types.
4557 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4558 p != this->section_list_.end();
4559 ++p)
4560 switch((*p)->type())
4561 {
4562 case elfcpp::SHT_FINI_ARRAY:
4563 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4564 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4565 break;
4566 case elfcpp::SHT_INIT_ARRAY:
4567 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4568 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4569 break;
4570 case elfcpp::SHT_PREINIT_ARRAY:
4571 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4572 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4573 break;
4574 default:
4575 break;
4576 }
4577
4578 // Add a DT_RPATH entry if needed.
4579 const General_options::Dir_list& rpath(parameters->options().rpath());
4580 if (!rpath.empty())
4581 {
4582 std::string rpath_val;
4583 for (General_options::Dir_list::const_iterator p = rpath.begin();
4584 p != rpath.end();
4585 ++p)
4586 {
4587 if (rpath_val.empty())
4588 rpath_val = p->name();
4589 else
4590 {
4591 // Eliminate duplicates.
4592 General_options::Dir_list::const_iterator q;
4593 for (q = rpath.begin(); q != p; ++q)
4594 if (q->name() == p->name())
4595 break;
4596 if (q == p)
4597 {
4598 rpath_val += ':';
4599 rpath_val += p->name();
4600 }
4601 }
4602 }
4603
4604 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4605 if (parameters->options().enable_new_dtags())
4606 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4607 }
4608
4609 // Look for text segments that have dynamic relocations.
4610 bool have_textrel = false;
4611 if (!this->script_options_->saw_sections_clause())
4612 {
4613 for (Segment_list::const_iterator p = this->segment_list_.begin();
4614 p != this->segment_list_.end();
4615 ++p)
4616 {
4617 if ((*p)->type() == elfcpp::PT_LOAD
4618 && ((*p)->flags() & elfcpp::PF_W) == 0
4619 && (*p)->has_dynamic_reloc())
4620 {
4621 have_textrel = true;
4622 break;
4623 }
4624 }
4625 }
4626 else
4627 {
4628 // We don't know the section -> segment mapping, so we are
4629 // conservative and just look for readonly sections with
4630 // relocations. If those sections wind up in writable segments,
4631 // then we have created an unnecessary DT_TEXTREL entry.
4632 for (Section_list::const_iterator p = this->section_list_.begin();
4633 p != this->section_list_.end();
4634 ++p)
4635 {
4636 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4637 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4638 && (*p)->has_dynamic_reloc())
4639 {
4640 have_textrel = true;
4641 break;
4642 }
4643 }
4644 }
4645
4646 if (parameters->options().filter() != NULL)
4647 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4648 if (parameters->options().any_auxiliary())
4649 {
4650 for (options::String_set::const_iterator p =
4651 parameters->options().auxiliary_begin();
4652 p != parameters->options().auxiliary_end();
4653 ++p)
4654 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4655 }
4656
4657 // Add a DT_FLAGS entry if necessary.
4658 unsigned int flags = 0;
4659 if (have_textrel)
4660 {
4661 // Add a DT_TEXTREL for compatibility with older loaders.
4662 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4663 flags |= elfcpp::DF_TEXTREL;
4664
4665 if (parameters->options().text())
4666 gold_error(_("read-only segment has dynamic relocations"));
4667 else if (parameters->options().warn_shared_textrel()
4668 && parameters->options().shared())
4669 gold_warning(_("shared library text segment is not shareable"));
4670 }
4671 if (parameters->options().shared() && this->has_static_tls())
4672 flags |= elfcpp::DF_STATIC_TLS;
4673 if (parameters->options().origin())
4674 flags |= elfcpp::DF_ORIGIN;
4675 if (parameters->options().Bsymbolic())
4676 {
4677 flags |= elfcpp::DF_SYMBOLIC;
4678 // Add DT_SYMBOLIC for compatibility with older loaders.
4679 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4680 }
4681 if (parameters->options().now())
4682 flags |= elfcpp::DF_BIND_NOW;
4683 if (flags != 0)
4684 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4685
4686 flags = 0;
4687 if (parameters->options().initfirst())
4688 flags |= elfcpp::DF_1_INITFIRST;
4689 if (parameters->options().interpose())
4690 flags |= elfcpp::DF_1_INTERPOSE;
4691 if (parameters->options().loadfltr())
4692 flags |= elfcpp::DF_1_LOADFLTR;
4693 if (parameters->options().nodefaultlib())
4694 flags |= elfcpp::DF_1_NODEFLIB;
4695 if (parameters->options().nodelete())
4696 flags |= elfcpp::DF_1_NODELETE;
4697 if (parameters->options().nodlopen())
4698 flags |= elfcpp::DF_1_NOOPEN;
4699 if (parameters->options().nodump())
4700 flags |= elfcpp::DF_1_NODUMP;
4701 if (!parameters->options().shared())
4702 flags &= ~(elfcpp::DF_1_INITFIRST
4703 | elfcpp::DF_1_NODELETE
4704 | elfcpp::DF_1_NOOPEN);
4705 if (parameters->options().origin())
4706 flags |= elfcpp::DF_1_ORIGIN;
4707 if (parameters->options().now())
4708 flags |= elfcpp::DF_1_NOW;
4709 if (parameters->options().Bgroup())
4710 flags |= elfcpp::DF_1_GROUP;
4711 if (flags != 0)
4712 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4713 }
4714
4715 // Set the size of the _DYNAMIC symbol table to be the size of the
4716 // dynamic data.
4717
4718 void
4719 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4720 {
4721 Output_data_dynamic* const odyn = this->dynamic_data_;
4722 if (odyn == NULL)
4723 return;
4724 odyn->finalize_data_size();
4725 if (this->dynamic_symbol_ == NULL)
4726 return;
4727 off_t data_size = odyn->data_size();
4728 const int size = parameters->target().get_size();
4729 if (size == 32)
4730 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4731 else if (size == 64)
4732 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4733 else
4734 gold_unreachable();
4735 }
4736
4737 // The mapping of input section name prefixes to output section names.
4738 // In some cases one prefix is itself a prefix of another prefix; in
4739 // such a case the longer prefix must come first. These prefixes are
4740 // based on the GNU linker default ELF linker script.
4741
4742 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4743 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4744 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4745 {
4746 MAPPING_INIT(".text.", ".text"),
4747 MAPPING_INIT(".rodata.", ".rodata"),
4748 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4749 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4750 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4751 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4752 MAPPING_INIT(".data.", ".data"),
4753 MAPPING_INIT(".bss.", ".bss"),
4754 MAPPING_INIT(".tdata.", ".tdata"),
4755 MAPPING_INIT(".tbss.", ".tbss"),
4756 MAPPING_INIT(".init_array.", ".init_array"),
4757 MAPPING_INIT(".fini_array.", ".fini_array"),
4758 MAPPING_INIT(".sdata.", ".sdata"),
4759 MAPPING_INIT(".sbss.", ".sbss"),
4760 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4761 // differently depending on whether it is creating a shared library.
4762 MAPPING_INIT(".sdata2.", ".sdata"),
4763 MAPPING_INIT(".sbss2.", ".sbss"),
4764 MAPPING_INIT(".lrodata.", ".lrodata"),
4765 MAPPING_INIT(".ldata.", ".ldata"),
4766 MAPPING_INIT(".lbss.", ".lbss"),
4767 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4768 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4769 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4770 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4771 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4772 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4773 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4774 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4775 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4776 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4777 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4778 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4779 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4780 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4781 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4782 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4783 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4784 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4785 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4786 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4787 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4788 };
4789 #undef MAPPING_INIT
4790 #undef MAPPING_INIT_EXACT
4791
4792 const int Layout::section_name_mapping_count =
4793 (sizeof(Layout::section_name_mapping)
4794 / sizeof(Layout::section_name_mapping[0]));
4795
4796 // Choose the output section name to use given an input section name.
4797 // Set *PLEN to the length of the name. *PLEN is initialized to the
4798 // length of NAME.
4799
4800 const char*
4801 Layout::output_section_name(const Relobj* relobj, const char* name,
4802 size_t* plen)
4803 {
4804 // gcc 4.3 generates the following sorts of section names when it
4805 // needs a section name specific to a function:
4806 // .text.FN
4807 // .rodata.FN
4808 // .sdata2.FN
4809 // .data.FN
4810 // .data.rel.FN
4811 // .data.rel.local.FN
4812 // .data.rel.ro.FN
4813 // .data.rel.ro.local.FN
4814 // .sdata.FN
4815 // .bss.FN
4816 // .sbss.FN
4817 // .tdata.FN
4818 // .tbss.FN
4819
4820 // The GNU linker maps all of those to the part before the .FN,
4821 // except that .data.rel.local.FN is mapped to .data, and
4822 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4823 // beginning with .data.rel.ro.local are grouped together.
4824
4825 // For an anonymous namespace, the string FN can contain a '.'.
4826
4827 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4828 // GNU linker maps to .rodata.
4829
4830 // The .data.rel.ro sections are used with -z relro. The sections
4831 // are recognized by name. We use the same names that the GNU
4832 // linker does for these sections.
4833
4834 // It is hard to handle this in a principled way, so we don't even
4835 // try. We use a table of mappings. If the input section name is
4836 // not found in the table, we simply use it as the output section
4837 // name.
4838
4839 const Section_name_mapping* psnm = section_name_mapping;
4840 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4841 {
4842 if (psnm->fromlen > 0)
4843 {
4844 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4845 {
4846 *plen = psnm->tolen;
4847 return psnm->to;
4848 }
4849 }
4850 else
4851 {
4852 if (strcmp(name, psnm->from) == 0)
4853 {
4854 *plen = psnm->tolen;
4855 return psnm->to;
4856 }
4857 }
4858 }
4859
4860 // As an additional complication, .ctors sections are output in
4861 // either .ctors or .init_array sections, and .dtors sections are
4862 // output in either .dtors or .fini_array sections.
4863 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4864 {
4865 if (parameters->options().ctors_in_init_array())
4866 {
4867 *plen = 11;
4868 return name[1] == 'c' ? ".init_array" : ".fini_array";
4869 }
4870 else
4871 {
4872 *plen = 6;
4873 return name[1] == 'c' ? ".ctors" : ".dtors";
4874 }
4875 }
4876 if (parameters->options().ctors_in_init_array()
4877 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4878 {
4879 // To make .init_array/.fini_array work with gcc we must exclude
4880 // .ctors and .dtors sections from the crtbegin and crtend
4881 // files.
4882 if (relobj == NULL
4883 || (!Layout::match_file_name(relobj, "crtbegin")
4884 && !Layout::match_file_name(relobj, "crtend")))
4885 {
4886 *plen = 11;
4887 return name[1] == 'c' ? ".init_array" : ".fini_array";
4888 }
4889 }
4890
4891 return name;
4892 }
4893
4894 // Return true if RELOBJ is an input file whose base name matches
4895 // FILE_NAME. The base name must have an extension of ".o", and must
4896 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4897 // to match crtbegin.o as well as crtbeginS.o without getting confused
4898 // by other possibilities. Overall matching the file name this way is
4899 // a dreadful hack, but the GNU linker does it in order to better
4900 // support gcc, and we need to be compatible.
4901
4902 bool
4903 Layout::match_file_name(const Relobj* relobj, const char* match)
4904 {
4905 const std::string& file_name(relobj->name());
4906 const char* base_name = lbasename(file_name.c_str());
4907 size_t match_len = strlen(match);
4908 if (strncmp(base_name, match, match_len) != 0)
4909 return false;
4910 size_t base_len = strlen(base_name);
4911 if (base_len != match_len + 2 && base_len != match_len + 3)
4912 return false;
4913 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4914 }
4915
4916 // Check if a comdat group or .gnu.linkonce section with the given
4917 // NAME is selected for the link. If there is already a section,
4918 // *KEPT_SECTION is set to point to the existing section and the
4919 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4920 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4921 // *KEPT_SECTION is set to the internal copy and the function returns
4922 // true.
4923
4924 bool
4925 Layout::find_or_add_kept_section(const std::string& name,
4926 Relobj* object,
4927 unsigned int shndx,
4928 bool is_comdat,
4929 bool is_group_name,
4930 Kept_section** kept_section)
4931 {
4932 // It's normal to see a couple of entries here, for the x86 thunk
4933 // sections. If we see more than a few, we're linking a C++
4934 // program, and we resize to get more space to minimize rehashing.
4935 if (this->signatures_.size() > 4
4936 && !this->resized_signatures_)
4937 {
4938 reserve_unordered_map(&this->signatures_,
4939 this->number_of_input_files_ * 64);
4940 this->resized_signatures_ = true;
4941 }
4942
4943 Kept_section candidate;
4944 std::pair<Signatures::iterator, bool> ins =
4945 this->signatures_.insert(std::make_pair(name, candidate));
4946
4947 if (kept_section != NULL)
4948 *kept_section = &ins.first->second;
4949 if (ins.second)
4950 {
4951 // This is the first time we've seen this signature.
4952 ins.first->second.set_object(object);
4953 ins.first->second.set_shndx(shndx);
4954 if (is_comdat)
4955 ins.first->second.set_is_comdat();
4956 if (is_group_name)
4957 ins.first->second.set_is_group_name();
4958 return true;
4959 }
4960
4961 // We have already seen this signature.
4962
4963 if (ins.first->second.is_group_name())
4964 {
4965 // We've already seen a real section group with this signature.
4966 // If the kept group is from a plugin object, and we're in the
4967 // replacement phase, accept the new one as a replacement.
4968 if (ins.first->second.object() == NULL
4969 && parameters->options().plugins()->in_replacement_phase())
4970 {
4971 ins.first->second.set_object(object);
4972 ins.first->second.set_shndx(shndx);
4973 return true;
4974 }
4975 return false;
4976 }
4977 else if (is_group_name)
4978 {
4979 // This is a real section group, and we've already seen a
4980 // linkonce section with this signature. Record that we've seen
4981 // a section group, and don't include this section group.
4982 ins.first->second.set_is_group_name();
4983 return false;
4984 }
4985 else
4986 {
4987 // We've already seen a linkonce section and this is a linkonce
4988 // section. These don't block each other--this may be the same
4989 // symbol name with different section types.
4990 return true;
4991 }
4992 }
4993
4994 // Store the allocated sections into the section list.
4995
4996 void
4997 Layout::get_allocated_sections(Section_list* section_list) const
4998 {
4999 for (Section_list::const_iterator p = this->section_list_.begin();
5000 p != this->section_list_.end();
5001 ++p)
5002 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5003 section_list->push_back(*p);
5004 }
5005
5006 // Create an output segment.
5007
5008 Output_segment*
5009 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5010 {
5011 gold_assert(!parameters->options().relocatable());
5012 Output_segment* oseg = new Output_segment(type, flags);
5013 this->segment_list_.push_back(oseg);
5014
5015 if (type == elfcpp::PT_TLS)
5016 this->tls_segment_ = oseg;
5017 else if (type == elfcpp::PT_GNU_RELRO)
5018 this->relro_segment_ = oseg;
5019 else if (type == elfcpp::PT_INTERP)
5020 this->interp_segment_ = oseg;
5021
5022 return oseg;
5023 }
5024
5025 // Return the file offset of the normal symbol table.
5026
5027 off_t
5028 Layout::symtab_section_offset() const
5029 {
5030 if (this->symtab_section_ != NULL)
5031 return this->symtab_section_->offset();
5032 return 0;
5033 }
5034
5035 // Return the section index of the normal symbol table. It may have
5036 // been stripped by the -s/--strip-all option.
5037
5038 unsigned int
5039 Layout::symtab_section_shndx() const
5040 {
5041 if (this->symtab_section_ != NULL)
5042 return this->symtab_section_->out_shndx();
5043 return 0;
5044 }
5045
5046 // Write out the Output_sections. Most won't have anything to write,
5047 // since most of the data will come from input sections which are
5048 // handled elsewhere. But some Output_sections do have Output_data.
5049
5050 void
5051 Layout::write_output_sections(Output_file* of) const
5052 {
5053 for (Section_list::const_iterator p = this->section_list_.begin();
5054 p != this->section_list_.end();
5055 ++p)
5056 {
5057 if (!(*p)->after_input_sections())
5058 (*p)->write(of);
5059 }
5060 }
5061
5062 // Write out data not associated with a section or the symbol table.
5063
5064 void
5065 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5066 {
5067 if (!parameters->options().strip_all())
5068 {
5069 const Output_section* symtab_section = this->symtab_section_;
5070 for (Section_list::const_iterator p = this->section_list_.begin();
5071 p != this->section_list_.end();
5072 ++p)
5073 {
5074 if ((*p)->needs_symtab_index())
5075 {
5076 gold_assert(symtab_section != NULL);
5077 unsigned int index = (*p)->symtab_index();
5078 gold_assert(index > 0 && index != -1U);
5079 off_t off = (symtab_section->offset()
5080 + index * symtab_section->entsize());
5081 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5082 }
5083 }
5084 }
5085
5086 const Output_section* dynsym_section = this->dynsym_section_;
5087 for (Section_list::const_iterator p = this->section_list_.begin();
5088 p != this->section_list_.end();
5089 ++p)
5090 {
5091 if ((*p)->needs_dynsym_index())
5092 {
5093 gold_assert(dynsym_section != NULL);
5094 unsigned int index = (*p)->dynsym_index();
5095 gold_assert(index > 0 && index != -1U);
5096 off_t off = (dynsym_section->offset()
5097 + index * dynsym_section->entsize());
5098 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5099 }
5100 }
5101
5102 // Write out the Output_data which are not in an Output_section.
5103 for (Data_list::const_iterator p = this->special_output_list_.begin();
5104 p != this->special_output_list_.end();
5105 ++p)
5106 (*p)->write(of);
5107 }
5108
5109 // Write out the Output_sections which can only be written after the
5110 // input sections are complete.
5111
5112 void
5113 Layout::write_sections_after_input_sections(Output_file* of)
5114 {
5115 // Determine the final section offsets, and thus the final output
5116 // file size. Note we finalize the .shstrab last, to allow the
5117 // after_input_section sections to modify their section-names before
5118 // writing.
5119 if (this->any_postprocessing_sections_)
5120 {
5121 off_t off = this->output_file_size_;
5122 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5123
5124 // Now that we've finalized the names, we can finalize the shstrab.
5125 off =
5126 this->set_section_offsets(off,
5127 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5128
5129 if (off > this->output_file_size_)
5130 {
5131 of->resize(off);
5132 this->output_file_size_ = off;
5133 }
5134 }
5135
5136 for (Section_list::const_iterator p = this->section_list_.begin();
5137 p != this->section_list_.end();
5138 ++p)
5139 {
5140 if ((*p)->after_input_sections())
5141 (*p)->write(of);
5142 }
5143
5144 this->section_headers_->write(of);
5145 }
5146
5147 // If the build ID requires computing a checksum, do so here, and
5148 // write it out. We compute a checksum over the entire file because
5149 // that is simplest.
5150
5151 void
5152 Layout::write_build_id(Output_file* of) const
5153 {
5154 if (this->build_id_note_ == NULL)
5155 return;
5156
5157 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5158
5159 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5160 this->build_id_note_->data_size());
5161
5162 const char* style = parameters->options().build_id();
5163 if (strcmp(style, "sha1") == 0)
5164 {
5165 sha1_ctx ctx;
5166 sha1_init_ctx(&ctx);
5167 sha1_process_bytes(iv, this->output_file_size_, &ctx);
5168 sha1_finish_ctx(&ctx, ov);
5169 }
5170 else if (strcmp(style, "md5") == 0)
5171 {
5172 md5_ctx ctx;
5173 md5_init_ctx(&ctx);
5174 md5_process_bytes(iv, this->output_file_size_, &ctx);
5175 md5_finish_ctx(&ctx, ov);
5176 }
5177 else
5178 gold_unreachable();
5179
5180 of->write_output_view(this->build_id_note_->offset(),
5181 this->build_id_note_->data_size(),
5182 ov);
5183
5184 of->free_input_view(0, this->output_file_size_, iv);
5185 }
5186
5187 // Write out a binary file. This is called after the link is
5188 // complete. IN is the temporary output file we used to generate the
5189 // ELF code. We simply walk through the segments, read them from
5190 // their file offset in IN, and write them to their load address in
5191 // the output file. FIXME: with a bit more work, we could support
5192 // S-records and/or Intel hex format here.
5193
5194 void
5195 Layout::write_binary(Output_file* in) const
5196 {
5197 gold_assert(parameters->options().oformat_enum()
5198 == General_options::OBJECT_FORMAT_BINARY);
5199
5200 // Get the size of the binary file.
5201 uint64_t max_load_address = 0;
5202 for (Segment_list::const_iterator p = this->segment_list_.begin();
5203 p != this->segment_list_.end();
5204 ++p)
5205 {
5206 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5207 {
5208 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5209 if (max_paddr > max_load_address)
5210 max_load_address = max_paddr;
5211 }
5212 }
5213
5214 Output_file out(parameters->options().output_file_name());
5215 out.open(max_load_address);
5216
5217 for (Segment_list::const_iterator p = this->segment_list_.begin();
5218 p != this->segment_list_.end();
5219 ++p)
5220 {
5221 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5222 {
5223 const unsigned char* vin = in->get_input_view((*p)->offset(),
5224 (*p)->filesz());
5225 unsigned char* vout = out.get_output_view((*p)->paddr(),
5226 (*p)->filesz());
5227 memcpy(vout, vin, (*p)->filesz());
5228 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5229 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5230 }
5231 }
5232
5233 out.close();
5234 }
5235
5236 // Print the output sections to the map file.
5237
5238 void
5239 Layout::print_to_mapfile(Mapfile* mapfile) const
5240 {
5241 for (Segment_list::const_iterator p = this->segment_list_.begin();
5242 p != this->segment_list_.end();
5243 ++p)
5244 (*p)->print_sections_to_mapfile(mapfile);
5245 }
5246
5247 // Print statistical information to stderr. This is used for --stats.
5248
5249 void
5250 Layout::print_stats() const
5251 {
5252 this->namepool_.print_stats("section name pool");
5253 this->sympool_.print_stats("output symbol name pool");
5254 this->dynpool_.print_stats("dynamic name pool");
5255
5256 for (Section_list::const_iterator p = this->section_list_.begin();
5257 p != this->section_list_.end();
5258 ++p)
5259 (*p)->print_merge_stats();
5260 }
5261
5262 // Write_sections_task methods.
5263
5264 // We can always run this task.
5265
5266 Task_token*
5267 Write_sections_task::is_runnable()
5268 {
5269 return NULL;
5270 }
5271
5272 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5273 // when finished.
5274
5275 void
5276 Write_sections_task::locks(Task_locker* tl)
5277 {
5278 tl->add(this, this->output_sections_blocker_);
5279 tl->add(this, this->final_blocker_);
5280 }
5281
5282 // Run the task--write out the data.
5283
5284 void
5285 Write_sections_task::run(Workqueue*)
5286 {
5287 this->layout_->write_output_sections(this->of_);
5288 }
5289
5290 // Write_data_task methods.
5291
5292 // We can always run this task.
5293
5294 Task_token*
5295 Write_data_task::is_runnable()
5296 {
5297 return NULL;
5298 }
5299
5300 // We need to unlock FINAL_BLOCKER when finished.
5301
5302 void
5303 Write_data_task::locks(Task_locker* tl)
5304 {
5305 tl->add(this, this->final_blocker_);
5306 }
5307
5308 // Run the task--write out the data.
5309
5310 void
5311 Write_data_task::run(Workqueue*)
5312 {
5313 this->layout_->write_data(this->symtab_, this->of_);
5314 }
5315
5316 // Write_symbols_task methods.
5317
5318 // We can always run this task.
5319
5320 Task_token*
5321 Write_symbols_task::is_runnable()
5322 {
5323 return NULL;
5324 }
5325
5326 // We need to unlock FINAL_BLOCKER when finished.
5327
5328 void
5329 Write_symbols_task::locks(Task_locker* tl)
5330 {
5331 tl->add(this, this->final_blocker_);
5332 }
5333
5334 // Run the task--write out the symbols.
5335
5336 void
5337 Write_symbols_task::run(Workqueue*)
5338 {
5339 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5340 this->layout_->symtab_xindex(),
5341 this->layout_->dynsym_xindex(), this->of_);
5342 }
5343
5344 // Write_after_input_sections_task methods.
5345
5346 // We can only run this task after the input sections have completed.
5347
5348 Task_token*
5349 Write_after_input_sections_task::is_runnable()
5350 {
5351 if (this->input_sections_blocker_->is_blocked())
5352 return this->input_sections_blocker_;
5353 return NULL;
5354 }
5355
5356 // We need to unlock FINAL_BLOCKER when finished.
5357
5358 void
5359 Write_after_input_sections_task::locks(Task_locker* tl)
5360 {
5361 tl->add(this, this->final_blocker_);
5362 }
5363
5364 // Run the task.
5365
5366 void
5367 Write_after_input_sections_task::run(Workqueue*)
5368 {
5369 this->layout_->write_sections_after_input_sections(this->of_);
5370 }
5371
5372 // Close_task_runner methods.
5373
5374 // Run the task--close the file.
5375
5376 void
5377 Close_task_runner::run(Workqueue*, const Task*)
5378 {
5379 // If we need to compute a checksum for the BUILD if, we do so here.
5380 this->layout_->write_build_id(this->of_);
5381
5382 // If we've been asked to create a binary file, we do so here.
5383 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5384 this->layout_->write_binary(this->of_);
5385
5386 this->of_->close();
5387 }
5388
5389 // Instantiate the templates we need. We could use the configure
5390 // script to restrict this to only the ones for implemented targets.
5391
5392 #ifdef HAVE_TARGET_32_LITTLE
5393 template
5394 Output_section*
5395 Layout::init_fixed_output_section<32, false>(
5396 const char* name,
5397 elfcpp::Shdr<32, false>& shdr);
5398 #endif
5399
5400 #ifdef HAVE_TARGET_32_BIG
5401 template
5402 Output_section*
5403 Layout::init_fixed_output_section<32, true>(
5404 const char* name,
5405 elfcpp::Shdr<32, true>& shdr);
5406 #endif
5407
5408 #ifdef HAVE_TARGET_64_LITTLE
5409 template
5410 Output_section*
5411 Layout::init_fixed_output_section<64, false>(
5412 const char* name,
5413 elfcpp::Shdr<64, false>& shdr);
5414 #endif
5415
5416 #ifdef HAVE_TARGET_64_BIG
5417 template
5418 Output_section*
5419 Layout::init_fixed_output_section<64, true>(
5420 const char* name,
5421 elfcpp::Shdr<64, true>& shdr);
5422 #endif
5423
5424 #ifdef HAVE_TARGET_32_LITTLE
5425 template
5426 Output_section*
5427 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5428 unsigned int shndx,
5429 const char* name,
5430 const elfcpp::Shdr<32, false>& shdr,
5431 unsigned int, unsigned int, off_t*);
5432 #endif
5433
5434 #ifdef HAVE_TARGET_32_BIG
5435 template
5436 Output_section*
5437 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5438 unsigned int shndx,
5439 const char* name,
5440 const elfcpp::Shdr<32, true>& shdr,
5441 unsigned int, unsigned int, off_t*);
5442 #endif
5443
5444 #ifdef HAVE_TARGET_64_LITTLE
5445 template
5446 Output_section*
5447 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5448 unsigned int shndx,
5449 const char* name,
5450 const elfcpp::Shdr<64, false>& shdr,
5451 unsigned int, unsigned int, off_t*);
5452 #endif
5453
5454 #ifdef HAVE_TARGET_64_BIG
5455 template
5456 Output_section*
5457 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5458 unsigned int shndx,
5459 const char* name,
5460 const elfcpp::Shdr<64, true>& shdr,
5461 unsigned int, unsigned int, off_t*);
5462 #endif
5463
5464 #ifdef HAVE_TARGET_32_LITTLE
5465 template
5466 Output_section*
5467 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5468 unsigned int reloc_shndx,
5469 const elfcpp::Shdr<32, false>& shdr,
5470 Output_section* data_section,
5471 Relocatable_relocs* rr);
5472 #endif
5473
5474 #ifdef HAVE_TARGET_32_BIG
5475 template
5476 Output_section*
5477 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5478 unsigned int reloc_shndx,
5479 const elfcpp::Shdr<32, true>& shdr,
5480 Output_section* data_section,
5481 Relocatable_relocs* rr);
5482 #endif
5483
5484 #ifdef HAVE_TARGET_64_LITTLE
5485 template
5486 Output_section*
5487 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5488 unsigned int reloc_shndx,
5489 const elfcpp::Shdr<64, false>& shdr,
5490 Output_section* data_section,
5491 Relocatable_relocs* rr);
5492 #endif
5493
5494 #ifdef HAVE_TARGET_64_BIG
5495 template
5496 Output_section*
5497 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5498 unsigned int reloc_shndx,
5499 const elfcpp::Shdr<64, true>& shdr,
5500 Output_section* data_section,
5501 Relocatable_relocs* rr);
5502 #endif
5503
5504 #ifdef HAVE_TARGET_32_LITTLE
5505 template
5506 void
5507 Layout::layout_group<32, false>(Symbol_table* symtab,
5508 Sized_relobj_file<32, false>* object,
5509 unsigned int,
5510 const char* group_section_name,
5511 const char* signature,
5512 const elfcpp::Shdr<32, false>& shdr,
5513 elfcpp::Elf_Word flags,
5514 std::vector<unsigned int>* shndxes);
5515 #endif
5516
5517 #ifdef HAVE_TARGET_32_BIG
5518 template
5519 void
5520 Layout::layout_group<32, true>(Symbol_table* symtab,
5521 Sized_relobj_file<32, true>* object,
5522 unsigned int,
5523 const char* group_section_name,
5524 const char* signature,
5525 const elfcpp::Shdr<32, true>& shdr,
5526 elfcpp::Elf_Word flags,
5527 std::vector<unsigned int>* shndxes);
5528 #endif
5529
5530 #ifdef HAVE_TARGET_64_LITTLE
5531 template
5532 void
5533 Layout::layout_group<64, false>(Symbol_table* symtab,
5534 Sized_relobj_file<64, false>* object,
5535 unsigned int,
5536 const char* group_section_name,
5537 const char* signature,
5538 const elfcpp::Shdr<64, false>& shdr,
5539 elfcpp::Elf_Word flags,
5540 std::vector<unsigned int>* shndxes);
5541 #endif
5542
5543 #ifdef HAVE_TARGET_64_BIG
5544 template
5545 void
5546 Layout::layout_group<64, true>(Symbol_table* symtab,
5547 Sized_relobj_file<64, true>* object,
5548 unsigned int,
5549 const char* group_section_name,
5550 const char* signature,
5551 const elfcpp::Shdr<64, true>& shdr,
5552 elfcpp::Elf_Word flags,
5553 std::vector<unsigned int>* shndxes);
5554 #endif
5555
5556 #ifdef HAVE_TARGET_32_LITTLE
5557 template
5558 Output_section*
5559 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5560 const unsigned char* symbols,
5561 off_t symbols_size,
5562 const unsigned char* symbol_names,
5563 off_t symbol_names_size,
5564 unsigned int shndx,
5565 const elfcpp::Shdr<32, false>& shdr,
5566 unsigned int reloc_shndx,
5567 unsigned int reloc_type,
5568 off_t* off);
5569 #endif
5570
5571 #ifdef HAVE_TARGET_32_BIG
5572 template
5573 Output_section*
5574 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5575 const unsigned char* symbols,
5576 off_t symbols_size,
5577 const unsigned char* symbol_names,
5578 off_t symbol_names_size,
5579 unsigned int shndx,
5580 const elfcpp::Shdr<32, true>& shdr,
5581 unsigned int reloc_shndx,
5582 unsigned int reloc_type,
5583 off_t* off);
5584 #endif
5585
5586 #ifdef HAVE_TARGET_64_LITTLE
5587 template
5588 Output_section*
5589 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5590 const unsigned char* symbols,
5591 off_t symbols_size,
5592 const unsigned char* symbol_names,
5593 off_t symbol_names_size,
5594 unsigned int shndx,
5595 const elfcpp::Shdr<64, false>& shdr,
5596 unsigned int reloc_shndx,
5597 unsigned int reloc_type,
5598 off_t* off);
5599 #endif
5600
5601 #ifdef HAVE_TARGET_64_BIG
5602 template
5603 Output_section*
5604 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5605 const unsigned char* symbols,
5606 off_t symbols_size,
5607 const unsigned char* symbol_names,
5608 off_t symbol_names_size,
5609 unsigned int shndx,
5610 const elfcpp::Shdr<64, true>& shdr,
5611 unsigned int reloc_shndx,
5612 unsigned int reloc_type,
5613 off_t* off);
5614 #endif
5615
5616 #ifdef HAVE_TARGET_32_LITTLE
5617 template
5618 void
5619 Layout::add_to_gdb_index(bool is_type_unit,
5620 Sized_relobj<32, false>* object,
5621 const unsigned char* symbols,
5622 off_t symbols_size,
5623 unsigned int shndx,
5624 unsigned int reloc_shndx,
5625 unsigned int reloc_type);
5626 #endif
5627
5628 #ifdef HAVE_TARGET_32_BIG
5629 template
5630 void
5631 Layout::add_to_gdb_index(bool is_type_unit,
5632 Sized_relobj<32, true>* object,
5633 const unsigned char* symbols,
5634 off_t symbols_size,
5635 unsigned int shndx,
5636 unsigned int reloc_shndx,
5637 unsigned int reloc_type);
5638 #endif
5639
5640 #ifdef HAVE_TARGET_64_LITTLE
5641 template
5642 void
5643 Layout::add_to_gdb_index(bool is_type_unit,
5644 Sized_relobj<64, false>* object,
5645 const unsigned char* symbols,
5646 off_t symbols_size,
5647 unsigned int shndx,
5648 unsigned int reloc_shndx,
5649 unsigned int reloc_type);
5650 #endif
5651
5652 #ifdef HAVE_TARGET_64_BIG
5653 template
5654 void
5655 Layout::add_to_gdb_index(bool is_type_unit,
5656 Sized_relobj<64, true>* object,
5657 const unsigned char* symbols,
5658 off_t symbols_size,
5659 unsigned int shndx,
5660 unsigned int reloc_shndx,
5661 unsigned int reloc_type);
5662 #endif
5663
5664 } // End namespace gold.
This page took 0.175021 seconds and 5 git commands to generate.