* incremental.cc (Incremental_inputs::report_command_line): Ignore
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list. Creates a single free list node that
75 // describes the entire region of length LEN. If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82 this->list_.push_front(Free_list_node(0, len));
83 this->last_remove_ = this->list_.begin();
84 this->extend_ = extend;
85 this->length_ = len;
86 ++Free_list::num_lists;
87 ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list. Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node. We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102 if (start == end)
103 return;
104 gold_assert(start < end);
105
106 ++Free_list::num_removes;
107
108 Iterator p = this->last_remove_;
109 if (p->start_ > start)
110 p = this->list_.begin();
111
112 for (; p != this->list_.end(); ++p)
113 {
114 ++Free_list::num_remove_visits;
115 // Find a node that wholly contains the indicated region.
116 if (p->start_ <= start && p->end_ >= end)
117 {
118 // Case 1: the indicated region spans the whole node.
119 // Add some fuzz to avoid creating tiny free chunks.
120 if (p->start_ + 3 >= start && p->end_ <= end + 3)
121 p = this->list_.erase(p);
122 // Case 2: remove a chunk from the start of the node.
123 else if (p->start_ + 3 >= start)
124 p->start_ = end;
125 // Case 3: remove a chunk from the end of the node.
126 else if (p->end_ <= end + 3)
127 p->end_ = start;
128 // Case 4: remove a chunk from the middle, and split
129 // the node into two.
130 else
131 {
132 Free_list_node newnode(p->start_, start);
133 p->start_ = end;
134 this->list_.insert(p, newnode);
135 ++Free_list::num_nodes;
136 }
137 this->last_remove_ = p;
138 return;
139 }
140 }
141
142 // Did not find a node containing the given chunk. This could happen
143 // because a small chunk was already removed due to the fuzz.
144 gold_debug(DEBUG_INCREMENTAL,
145 "Free_list::remove(%d,%d) not found",
146 static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list. Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156 gold_debug(DEBUG_INCREMENTAL,
157 "Free_list::allocate(%08lx, %d, %08lx)",
158 static_cast<long>(len), static_cast<int>(align),
159 static_cast<long>(minoff));
160 if (len == 0)
161 return align_address(minoff, align);
162
163 ++Free_list::num_allocates;
164
165 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166 {
167 ++Free_list::num_allocate_visits;
168 off_t start = p->start_ > minoff ? p->start_ : minoff;
169 start = align_address(start, align);
170 off_t end = start + len;
171 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
172 {
173 this->length_ = end;
174 p->end_ = end;
175 }
176 if (end <= p->end_)
177 {
178 if (p->start_ + 3 >= start && p->end_ <= end + 3)
179 this->list_.erase(p);
180 else if (p->start_ + 3 >= start)
181 p->start_ = end;
182 else if (p->end_ <= end + 3)
183 p->end_ = start;
184 else
185 {
186 Free_list_node newnode(p->start_, start);
187 p->start_ = end;
188 this->list_.insert(p, newnode);
189 ++Free_list::num_nodes;
190 }
191 return start;
192 }
193 }
194 if (this->extend_)
195 {
196 off_t start = align_address(this->length_, align);
197 this->length_ = start + len;
198 return start;
199 }
200 return -1;
201 }
202
203 // Dump the free list (for debugging).
204 void
205 Free_list::dump()
206 {
207 gold_info("Free list:\n start end length\n");
208 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
209 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
210 static_cast<long>(p->end_),
211 static_cast<long>(p->end_ - p->start_));
212 }
213
214 // Print the statistics for the free lists.
215 void
216 Free_list::print_stats()
217 {
218 fprintf(stderr, _("%s: total free lists: %u\n"),
219 program_name, Free_list::num_lists);
220 fprintf(stderr, _("%s: total free list nodes: %u\n"),
221 program_name, Free_list::num_nodes);
222 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
223 program_name, Free_list::num_removes);
224 fprintf(stderr, _("%s: nodes visited: %u\n"),
225 program_name, Free_list::num_remove_visits);
226 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
227 program_name, Free_list::num_allocates);
228 fprintf(stderr, _("%s: nodes visited: %u\n"),
229 program_name, Free_list::num_allocate_visits);
230 }
231
232 // Layout::Relaxation_debug_check methods.
233
234 // Check that sections and special data are in reset states.
235 // We do not save states for Output_sections and special Output_data.
236 // So we check that they have not assigned any addresses or offsets.
237 // clean_up_after_relaxation simply resets their addresses and offsets.
238 void
239 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
240 const Layout::Section_list& sections,
241 const Layout::Data_list& special_outputs)
242 {
243 for(Layout::Section_list::const_iterator p = sections.begin();
244 p != sections.end();
245 ++p)
246 gold_assert((*p)->address_and_file_offset_have_reset_values());
247
248 for(Layout::Data_list::const_iterator p = special_outputs.begin();
249 p != special_outputs.end();
250 ++p)
251 gold_assert((*p)->address_and_file_offset_have_reset_values());
252 }
253
254 // Save information of SECTIONS for checking later.
255
256 void
257 Layout::Relaxation_debug_check::read_sections(
258 const Layout::Section_list& sections)
259 {
260 for(Layout::Section_list::const_iterator p = sections.begin();
261 p != sections.end();
262 ++p)
263 {
264 Output_section* os = *p;
265 Section_info info;
266 info.output_section = os;
267 info.address = os->is_address_valid() ? os->address() : 0;
268 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
269 info.offset = os->is_offset_valid()? os->offset() : -1 ;
270 this->section_infos_.push_back(info);
271 }
272 }
273
274 // Verify SECTIONS using previously recorded information.
275
276 void
277 Layout::Relaxation_debug_check::verify_sections(
278 const Layout::Section_list& sections)
279 {
280 size_t i = 0;
281 for(Layout::Section_list::const_iterator p = sections.begin();
282 p != sections.end();
283 ++p, ++i)
284 {
285 Output_section* os = *p;
286 uint64_t address = os->is_address_valid() ? os->address() : 0;
287 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
288 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
289
290 if (i >= this->section_infos_.size())
291 {
292 gold_fatal("Section_info of %s missing.\n", os->name());
293 }
294 const Section_info& info = this->section_infos_[i];
295 if (os != info.output_section)
296 gold_fatal("Section order changed. Expecting %s but see %s\n",
297 info.output_section->name(), os->name());
298 if (address != info.address
299 || data_size != info.data_size
300 || offset != info.offset)
301 gold_fatal("Section %s changed.\n", os->name());
302 }
303 }
304
305 // Layout_task_runner methods.
306
307 // Lay out the sections. This is called after all the input objects
308 // have been read.
309
310 void
311 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
312 {
313 Layout* layout = this->layout_;
314 off_t file_size = layout->finalize(this->input_objects_,
315 this->symtab_,
316 this->target_,
317 task);
318
319 // Now we know the final size of the output file and we know where
320 // each piece of information goes.
321
322 if (this->mapfile_ != NULL)
323 {
324 this->mapfile_->print_discarded_sections(this->input_objects_);
325 layout->print_to_mapfile(this->mapfile_);
326 }
327
328 Output_file* of;
329 if (layout->incremental_base() == NULL)
330 {
331 of = new Output_file(parameters->options().output_file_name());
332 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
333 of->set_is_temporary();
334 of->open(file_size);
335 }
336 else
337 {
338 of = layout->incremental_base()->output_file();
339
340 // Apply the incremental relocations for symbols whose values
341 // have changed. We do this before we resize the file and start
342 // writing anything else to it, so that we can read the old
343 // incremental information from the file before (possibly)
344 // overwriting it.
345 if (parameters->incremental_update())
346 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
347 this->layout_,
348 of);
349
350 of->resize(file_size);
351 }
352
353 // Queue up the final set of tasks.
354 gold::queue_final_tasks(this->options_, this->input_objects_,
355 this->symtab_, layout, workqueue, of);
356 }
357
358 // Layout methods.
359
360 Layout::Layout(int number_of_input_files, Script_options* script_options)
361 : number_of_input_files_(number_of_input_files),
362 script_options_(script_options),
363 namepool_(),
364 sympool_(),
365 dynpool_(),
366 signatures_(),
367 section_name_map_(),
368 segment_list_(),
369 section_list_(),
370 unattached_section_list_(),
371 special_output_list_(),
372 section_headers_(NULL),
373 tls_segment_(NULL),
374 relro_segment_(NULL),
375 interp_segment_(NULL),
376 increase_relro_(0),
377 symtab_section_(NULL),
378 symtab_xindex_(NULL),
379 dynsym_section_(NULL),
380 dynsym_xindex_(NULL),
381 dynamic_section_(NULL),
382 dynamic_symbol_(NULL),
383 dynamic_data_(NULL),
384 eh_frame_section_(NULL),
385 eh_frame_data_(NULL),
386 added_eh_frame_data_(false),
387 eh_frame_hdr_section_(NULL),
388 build_id_note_(NULL),
389 debug_abbrev_(NULL),
390 debug_info_(NULL),
391 group_signatures_(),
392 output_file_size_(-1),
393 have_added_input_section_(false),
394 sections_are_attached_(false),
395 input_requires_executable_stack_(false),
396 input_with_gnu_stack_note_(false),
397 input_without_gnu_stack_note_(false),
398 has_static_tls_(false),
399 any_postprocessing_sections_(false),
400 resized_signatures_(false),
401 have_stabstr_section_(false),
402 incremental_inputs_(NULL),
403 record_output_section_data_from_script_(false),
404 script_output_section_data_list_(),
405 segment_states_(NULL),
406 relaxation_debug_check_(NULL),
407 incremental_base_(NULL),
408 free_list_()
409 {
410 // Make space for more than enough segments for a typical file.
411 // This is just for efficiency--it's OK if we wind up needing more.
412 this->segment_list_.reserve(12);
413
414 // We expect two unattached Output_data objects: the file header and
415 // the segment headers.
416 this->special_output_list_.reserve(2);
417
418 // Initialize structure needed for an incremental build.
419 if (parameters->incremental())
420 this->incremental_inputs_ = new Incremental_inputs;
421
422 // The section name pool is worth optimizing in all cases, because
423 // it is small, but there are often overlaps due to .rel sections.
424 this->namepool_.set_optimize();
425 }
426
427 // For incremental links, record the base file to be modified.
428
429 void
430 Layout::set_incremental_base(Incremental_binary* base)
431 {
432 this->incremental_base_ = base;
433 this->free_list_.init(base->output_file()->filesize(), true);
434 }
435
436 // Hash a key we use to look up an output section mapping.
437
438 size_t
439 Layout::Hash_key::operator()(const Layout::Key& k) const
440 {
441 return k.first + k.second.first + k.second.second;
442 }
443
444 // Returns whether the given section is in the list of
445 // debug-sections-used-by-some-version-of-gdb. Currently,
446 // we've checked versions of gdb up to and including 6.7.1.
447
448 static const char* gdb_sections[] =
449 { ".debug_abbrev",
450 // ".debug_aranges", // not used by gdb as of 6.7.1
451 ".debug_frame",
452 ".debug_info",
453 ".debug_types",
454 ".debug_line",
455 ".debug_loc",
456 ".debug_macinfo",
457 // ".debug_pubnames", // not used by gdb as of 6.7.1
458 ".debug_ranges",
459 ".debug_str",
460 };
461
462 static const char* lines_only_debug_sections[] =
463 { ".debug_abbrev",
464 // ".debug_aranges", // not used by gdb as of 6.7.1
465 // ".debug_frame",
466 ".debug_info",
467 // ".debug_types",
468 ".debug_line",
469 // ".debug_loc",
470 // ".debug_macinfo",
471 // ".debug_pubnames", // not used by gdb as of 6.7.1
472 // ".debug_ranges",
473 ".debug_str",
474 };
475
476 static inline bool
477 is_gdb_debug_section(const char* str)
478 {
479 // We can do this faster: binary search or a hashtable. But why bother?
480 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
481 if (strcmp(str, gdb_sections[i]) == 0)
482 return true;
483 return false;
484 }
485
486 static inline bool
487 is_lines_only_debug_section(const char* str)
488 {
489 // We can do this faster: binary search or a hashtable. But why bother?
490 for (size_t i = 0;
491 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
492 ++i)
493 if (strcmp(str, lines_only_debug_sections[i]) == 0)
494 return true;
495 return false;
496 }
497
498 // Sometimes we compress sections. This is typically done for
499 // sections that are not part of normal program execution (such as
500 // .debug_* sections), and where the readers of these sections know
501 // how to deal with compressed sections. This routine doesn't say for
502 // certain whether we'll compress -- it depends on commandline options
503 // as well -- just whether this section is a candidate for compression.
504 // (The Output_compressed_section class decides whether to compress
505 // a given section, and picks the name of the compressed section.)
506
507 static bool
508 is_compressible_debug_section(const char* secname)
509 {
510 return (is_prefix_of(".debug", secname));
511 }
512
513 // We may see compressed debug sections in input files. Return TRUE
514 // if this is the name of a compressed debug section.
515
516 bool
517 is_compressed_debug_section(const char* secname)
518 {
519 return (is_prefix_of(".zdebug", secname));
520 }
521
522 // Whether to include this section in the link.
523
524 template<int size, bool big_endian>
525 bool
526 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
527 const elfcpp::Shdr<size, big_endian>& shdr)
528 {
529 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
530 return false;
531
532 switch (shdr.get_sh_type())
533 {
534 case elfcpp::SHT_NULL:
535 case elfcpp::SHT_SYMTAB:
536 case elfcpp::SHT_DYNSYM:
537 case elfcpp::SHT_HASH:
538 case elfcpp::SHT_DYNAMIC:
539 case elfcpp::SHT_SYMTAB_SHNDX:
540 return false;
541
542 case elfcpp::SHT_STRTAB:
543 // Discard the sections which have special meanings in the ELF
544 // ABI. Keep others (e.g., .stabstr). We could also do this by
545 // checking the sh_link fields of the appropriate sections.
546 return (strcmp(name, ".dynstr") != 0
547 && strcmp(name, ".strtab") != 0
548 && strcmp(name, ".shstrtab") != 0);
549
550 case elfcpp::SHT_RELA:
551 case elfcpp::SHT_REL:
552 case elfcpp::SHT_GROUP:
553 // If we are emitting relocations these should be handled
554 // elsewhere.
555 gold_assert(!parameters->options().relocatable()
556 && !parameters->options().emit_relocs());
557 return false;
558
559 case elfcpp::SHT_PROGBITS:
560 if (parameters->options().strip_debug()
561 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
562 {
563 if (is_debug_info_section(name))
564 return false;
565 }
566 if (parameters->options().strip_debug_non_line()
567 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
568 {
569 // Debugging sections can only be recognized by name.
570 if (is_prefix_of(".debug", name)
571 && !is_lines_only_debug_section(name))
572 return false;
573 }
574 if (parameters->options().strip_debug_gdb()
575 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
576 {
577 // Debugging sections can only be recognized by name.
578 if (is_prefix_of(".debug", name)
579 && !is_gdb_debug_section(name))
580 return false;
581 }
582 if (parameters->options().strip_lto_sections()
583 && !parameters->options().relocatable()
584 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
585 {
586 // Ignore LTO sections containing intermediate code.
587 if (is_prefix_of(".gnu.lto_", name))
588 return false;
589 }
590 // The GNU linker strips .gnu_debuglink sections, so we do too.
591 // This is a feature used to keep debugging information in
592 // separate files.
593 if (strcmp(name, ".gnu_debuglink") == 0)
594 return false;
595 return true;
596
597 default:
598 return true;
599 }
600 }
601
602 // Return an output section named NAME, or NULL if there is none.
603
604 Output_section*
605 Layout::find_output_section(const char* name) const
606 {
607 for (Section_list::const_iterator p = this->section_list_.begin();
608 p != this->section_list_.end();
609 ++p)
610 if (strcmp((*p)->name(), name) == 0)
611 return *p;
612 return NULL;
613 }
614
615 // Return an output segment of type TYPE, with segment flags SET set
616 // and segment flags CLEAR clear. Return NULL if there is none.
617
618 Output_segment*
619 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
620 elfcpp::Elf_Word clear) const
621 {
622 for (Segment_list::const_iterator p = this->segment_list_.begin();
623 p != this->segment_list_.end();
624 ++p)
625 if (static_cast<elfcpp::PT>((*p)->type()) == type
626 && ((*p)->flags() & set) == set
627 && ((*p)->flags() & clear) == 0)
628 return *p;
629 return NULL;
630 }
631
632 // When we put a .ctors or .dtors section with more than one word into
633 // a .init_array or .fini_array section, we need to reverse the words
634 // in the .ctors/.dtors section. This is because .init_array executes
635 // constructors front to back, where .ctors executes them back to
636 // front, and vice-versa for .fini_array/.dtors. Although we do want
637 // to remap .ctors/.dtors into .init_array/.fini_array because it can
638 // be more efficient, we don't want to change the order in which
639 // constructors/destructors are run. This set just keeps track of
640 // these sections which need to be reversed. It is only changed by
641 // Layout::layout. It should be a private member of Layout, but that
642 // would require layout.h to #include object.h to get the definition
643 // of Section_id.
644 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
645
646 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
647 // .init_array/.fini_array section.
648
649 bool
650 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
651 {
652 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
653 != ctors_sections_in_init_array.end());
654 }
655
656 // Return the output section to use for section NAME with type TYPE
657 // and section flags FLAGS. NAME must be canonicalized in the string
658 // pool, and NAME_KEY is the key. ORDER is where this should appear
659 // in the output sections. IS_RELRO is true for a relro section.
660
661 Output_section*
662 Layout::get_output_section(const char* name, Stringpool::Key name_key,
663 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
664 Output_section_order order, bool is_relro)
665 {
666 elfcpp::Elf_Word lookup_type = type;
667
668 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
669 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
670 // .init_array, .fini_array, and .preinit_array sections by name
671 // whatever their type in the input file. We do this because the
672 // types are not always right in the input files.
673 if (lookup_type == elfcpp::SHT_INIT_ARRAY
674 || lookup_type == elfcpp::SHT_FINI_ARRAY
675 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
676 lookup_type = elfcpp::SHT_PROGBITS;
677
678 elfcpp::Elf_Xword lookup_flags = flags;
679
680 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
681 // read-write with read-only sections. Some other ELF linkers do
682 // not do this. FIXME: Perhaps there should be an option
683 // controlling this.
684 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
685
686 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
687 const std::pair<Key, Output_section*> v(key, NULL);
688 std::pair<Section_name_map::iterator, bool> ins(
689 this->section_name_map_.insert(v));
690
691 if (!ins.second)
692 return ins.first->second;
693 else
694 {
695 // This is the first time we've seen this name/type/flags
696 // combination. For compatibility with the GNU linker, we
697 // combine sections with contents and zero flags with sections
698 // with non-zero flags. This is a workaround for cases where
699 // assembler code forgets to set section flags. FIXME: Perhaps
700 // there should be an option to control this.
701 Output_section* os = NULL;
702
703 if (lookup_type == elfcpp::SHT_PROGBITS)
704 {
705 if (flags == 0)
706 {
707 Output_section* same_name = this->find_output_section(name);
708 if (same_name != NULL
709 && (same_name->type() == elfcpp::SHT_PROGBITS
710 || same_name->type() == elfcpp::SHT_INIT_ARRAY
711 || same_name->type() == elfcpp::SHT_FINI_ARRAY
712 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
713 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
714 os = same_name;
715 }
716 else if ((flags & elfcpp::SHF_TLS) == 0)
717 {
718 elfcpp::Elf_Xword zero_flags = 0;
719 const Key zero_key(name_key, std::make_pair(lookup_type,
720 zero_flags));
721 Section_name_map::iterator p =
722 this->section_name_map_.find(zero_key);
723 if (p != this->section_name_map_.end())
724 os = p->second;
725 }
726 }
727
728 if (os == NULL)
729 os = this->make_output_section(name, type, flags, order, is_relro);
730
731 ins.first->second = os;
732 return os;
733 }
734 }
735
736 // Pick the output section to use for section NAME, in input file
737 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
738 // linker created section. IS_INPUT_SECTION is true if we are
739 // choosing an output section for an input section found in a input
740 // file. ORDER is where this section should appear in the output
741 // sections. IS_RELRO is true for a relro section. This will return
742 // NULL if the input section should be discarded.
743
744 Output_section*
745 Layout::choose_output_section(const Relobj* relobj, const char* name,
746 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
747 bool is_input_section, Output_section_order order,
748 bool is_relro)
749 {
750 // We should not see any input sections after we have attached
751 // sections to segments.
752 gold_assert(!is_input_section || !this->sections_are_attached_);
753
754 // Some flags in the input section should not be automatically
755 // copied to the output section.
756 flags &= ~ (elfcpp::SHF_INFO_LINK
757 | elfcpp::SHF_GROUP
758 | elfcpp::SHF_MERGE
759 | elfcpp::SHF_STRINGS);
760
761 // We only clear the SHF_LINK_ORDER flag in for
762 // a non-relocatable link.
763 if (!parameters->options().relocatable())
764 flags &= ~elfcpp::SHF_LINK_ORDER;
765
766 if (this->script_options_->saw_sections_clause())
767 {
768 // We are using a SECTIONS clause, so the output section is
769 // chosen based only on the name.
770
771 Script_sections* ss = this->script_options_->script_sections();
772 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
773 Output_section** output_section_slot;
774 Script_sections::Section_type script_section_type;
775 const char* orig_name = name;
776 name = ss->output_section_name(file_name, name, &output_section_slot,
777 &script_section_type);
778 if (name == NULL)
779 {
780 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
781 "because it is not allowed by the "
782 "SECTIONS clause of the linker script"),
783 orig_name);
784 // The SECTIONS clause says to discard this input section.
785 return NULL;
786 }
787
788 // We can only handle script section types ST_NONE and ST_NOLOAD.
789 switch (script_section_type)
790 {
791 case Script_sections::ST_NONE:
792 break;
793 case Script_sections::ST_NOLOAD:
794 flags &= elfcpp::SHF_ALLOC;
795 break;
796 default:
797 gold_unreachable();
798 }
799
800 // If this is an orphan section--one not mentioned in the linker
801 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
802 // default processing below.
803
804 if (output_section_slot != NULL)
805 {
806 if (*output_section_slot != NULL)
807 {
808 (*output_section_slot)->update_flags_for_input_section(flags);
809 return *output_section_slot;
810 }
811
812 // We don't put sections found in the linker script into
813 // SECTION_NAME_MAP_. That keeps us from getting confused
814 // if an orphan section is mapped to a section with the same
815 // name as one in the linker script.
816
817 name = this->namepool_.add(name, false, NULL);
818
819 Output_section* os = this->make_output_section(name, type, flags,
820 order, is_relro);
821
822 os->set_found_in_sections_clause();
823
824 // Special handling for NOLOAD sections.
825 if (script_section_type == Script_sections::ST_NOLOAD)
826 {
827 os->set_is_noload();
828
829 // The constructor of Output_section sets addresses of non-ALLOC
830 // sections to 0 by default. We don't want that for NOLOAD
831 // sections even if they have no SHF_ALLOC flag.
832 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
833 && os->is_address_valid())
834 {
835 gold_assert(os->address() == 0
836 && !os->is_offset_valid()
837 && !os->is_data_size_valid());
838 os->reset_address_and_file_offset();
839 }
840 }
841
842 *output_section_slot = os;
843 return os;
844 }
845 }
846
847 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
848
849 size_t len = strlen(name);
850 char* uncompressed_name = NULL;
851
852 // Compressed debug sections should be mapped to the corresponding
853 // uncompressed section.
854 if (is_compressed_debug_section(name))
855 {
856 uncompressed_name = new char[len];
857 uncompressed_name[0] = '.';
858 gold_assert(name[0] == '.' && name[1] == 'z');
859 strncpy(&uncompressed_name[1], &name[2], len - 2);
860 uncompressed_name[len - 1] = '\0';
861 len -= 1;
862 name = uncompressed_name;
863 }
864
865 // Turn NAME from the name of the input section into the name of the
866 // output section.
867 if (is_input_section
868 && !this->script_options_->saw_sections_clause()
869 && !parameters->options().relocatable())
870 name = Layout::output_section_name(relobj, name, &len);
871
872 Stringpool::Key name_key;
873 name = this->namepool_.add_with_length(name, len, true, &name_key);
874
875 if (uncompressed_name != NULL)
876 delete[] uncompressed_name;
877
878 // Find or make the output section. The output section is selected
879 // based on the section name, type, and flags.
880 return this->get_output_section(name, name_key, type, flags, order, is_relro);
881 }
882
883 // For incremental links, record the initial fixed layout of a section
884 // from the base file, and return a pointer to the Output_section.
885
886 template<int size, bool big_endian>
887 Output_section*
888 Layout::init_fixed_output_section(const char* name,
889 elfcpp::Shdr<size, big_endian>& shdr)
890 {
891 unsigned int sh_type = shdr.get_sh_type();
892
893 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
894 // All others will be created from scratch and reallocated.
895 if (sh_type != elfcpp::SHT_PROGBITS
896 && sh_type != elfcpp::SHT_NOBITS
897 && sh_type != elfcpp::SHT_NOTE)
898 return NULL;
899
900 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
901 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
902 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
903 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
904 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
905 shdr.get_sh_addralign();
906
907 // Make the output section.
908 Stringpool::Key name_key;
909 name = this->namepool_.add(name, true, &name_key);
910 Output_section* os = this->get_output_section(name, name_key, sh_type,
911 sh_flags, ORDER_INVALID, false);
912 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
913 if (sh_type != elfcpp::SHT_NOBITS)
914 this->free_list_.remove(sh_offset, sh_offset + sh_size);
915 return os;
916 }
917
918 // Return the output section to use for input section SHNDX, with name
919 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
920 // index of a relocation section which applies to this section, or 0
921 // if none, or -1U if more than one. RELOC_TYPE is the type of the
922 // relocation section if there is one. Set *OFF to the offset of this
923 // input section without the output section. Return NULL if the
924 // section should be discarded. Set *OFF to -1 if the section
925 // contents should not be written directly to the output file, but
926 // will instead receive special handling.
927
928 template<int size, bool big_endian>
929 Output_section*
930 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
931 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
932 unsigned int reloc_shndx, unsigned int, off_t* off)
933 {
934 *off = 0;
935
936 if (!this->include_section(object, name, shdr))
937 return NULL;
938
939 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
940
941 // In a relocatable link a grouped section must not be combined with
942 // any other sections.
943 Output_section* os;
944 if (parameters->options().relocatable()
945 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
946 {
947 name = this->namepool_.add(name, true, NULL);
948 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
949 ORDER_INVALID, false);
950 }
951 else
952 {
953 os = this->choose_output_section(object, name, sh_type,
954 shdr.get_sh_flags(), true,
955 ORDER_INVALID, false);
956 if (os == NULL)
957 return NULL;
958 }
959
960 // By default the GNU linker sorts input sections whose names match
961 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
962 // sections are sorted by name. This is used to implement
963 // constructor priority ordering. We are compatible. When we put
964 // .ctor sections in .init_array and .dtor sections in .fini_array,
965 // we must also sort plain .ctor and .dtor sections.
966 if (!this->script_options_->saw_sections_clause()
967 && !parameters->options().relocatable()
968 && (is_prefix_of(".ctors.", name)
969 || is_prefix_of(".dtors.", name)
970 || is_prefix_of(".init_array.", name)
971 || is_prefix_of(".fini_array.", name)
972 || (parameters->options().ctors_in_init_array()
973 && (strcmp(name, ".ctors") == 0
974 || strcmp(name, ".dtors") == 0))))
975 os->set_must_sort_attached_input_sections();
976
977 // If this is a .ctors or .ctors.* section being mapped to a
978 // .init_array section, or a .dtors or .dtors.* section being mapped
979 // to a .fini_array section, we will need to reverse the words if
980 // there is more than one. Record this section for later. See
981 // ctors_sections_in_init_array above.
982 if (!this->script_options_->saw_sections_clause()
983 && !parameters->options().relocatable()
984 && shdr.get_sh_size() > size / 8
985 && (((strcmp(name, ".ctors") == 0
986 || is_prefix_of(".ctors.", name))
987 && strcmp(os->name(), ".init_array") == 0)
988 || ((strcmp(name, ".dtors") == 0
989 || is_prefix_of(".dtors.", name))
990 && strcmp(os->name(), ".fini_array") == 0)))
991 ctors_sections_in_init_array.insert(Section_id(object, shndx));
992
993 // FIXME: Handle SHF_LINK_ORDER somewhere.
994
995 elfcpp::Elf_Xword orig_flags = os->flags();
996
997 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
998 this->script_options_->saw_sections_clause());
999
1000 // If the flags changed, we may have to change the order.
1001 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1002 {
1003 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1004 elfcpp::Elf_Xword new_flags =
1005 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1006 if (orig_flags != new_flags)
1007 os->set_order(this->default_section_order(os, false));
1008 }
1009
1010 this->have_added_input_section_ = true;
1011
1012 return os;
1013 }
1014
1015 // Handle a relocation section when doing a relocatable link.
1016
1017 template<int size, bool big_endian>
1018 Output_section*
1019 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1020 unsigned int,
1021 const elfcpp::Shdr<size, big_endian>& shdr,
1022 Output_section* data_section,
1023 Relocatable_relocs* rr)
1024 {
1025 gold_assert(parameters->options().relocatable()
1026 || parameters->options().emit_relocs());
1027
1028 int sh_type = shdr.get_sh_type();
1029
1030 std::string name;
1031 if (sh_type == elfcpp::SHT_REL)
1032 name = ".rel";
1033 else if (sh_type == elfcpp::SHT_RELA)
1034 name = ".rela";
1035 else
1036 gold_unreachable();
1037 name += data_section->name();
1038
1039 // In a relocatable link relocs for a grouped section must not be
1040 // combined with other reloc sections.
1041 Output_section* os;
1042 if (!parameters->options().relocatable()
1043 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1044 os = this->choose_output_section(object, name.c_str(), sh_type,
1045 shdr.get_sh_flags(), false,
1046 ORDER_INVALID, false);
1047 else
1048 {
1049 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1050 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1051 ORDER_INVALID, false);
1052 }
1053
1054 os->set_should_link_to_symtab();
1055 os->set_info_section(data_section);
1056
1057 Output_section_data* posd;
1058 if (sh_type == elfcpp::SHT_REL)
1059 {
1060 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1061 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1062 size,
1063 big_endian>(rr);
1064 }
1065 else if (sh_type == elfcpp::SHT_RELA)
1066 {
1067 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1068 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1069 size,
1070 big_endian>(rr);
1071 }
1072 else
1073 gold_unreachable();
1074
1075 os->add_output_section_data(posd);
1076 rr->set_output_data(posd);
1077
1078 return os;
1079 }
1080
1081 // Handle a group section when doing a relocatable link.
1082
1083 template<int size, bool big_endian>
1084 void
1085 Layout::layout_group(Symbol_table* symtab,
1086 Sized_relobj_file<size, big_endian>* object,
1087 unsigned int,
1088 const char* group_section_name,
1089 const char* signature,
1090 const elfcpp::Shdr<size, big_endian>& shdr,
1091 elfcpp::Elf_Word flags,
1092 std::vector<unsigned int>* shndxes)
1093 {
1094 gold_assert(parameters->options().relocatable());
1095 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1096 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1097 Output_section* os = this->make_output_section(group_section_name,
1098 elfcpp::SHT_GROUP,
1099 shdr.get_sh_flags(),
1100 ORDER_INVALID, false);
1101
1102 // We need to find a symbol with the signature in the symbol table.
1103 // If we don't find one now, we need to look again later.
1104 Symbol* sym = symtab->lookup(signature, NULL);
1105 if (sym != NULL)
1106 os->set_info_symndx(sym);
1107 else
1108 {
1109 // Reserve some space to minimize reallocations.
1110 if (this->group_signatures_.empty())
1111 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1112
1113 // We will wind up using a symbol whose name is the signature.
1114 // So just put the signature in the symbol name pool to save it.
1115 signature = symtab->canonicalize_name(signature);
1116 this->group_signatures_.push_back(Group_signature(os, signature));
1117 }
1118
1119 os->set_should_link_to_symtab();
1120 os->set_entsize(4);
1121
1122 section_size_type entry_count =
1123 convert_to_section_size_type(shdr.get_sh_size() / 4);
1124 Output_section_data* posd =
1125 new Output_data_group<size, big_endian>(object, entry_count, flags,
1126 shndxes);
1127 os->add_output_section_data(posd);
1128 }
1129
1130 // Special GNU handling of sections name .eh_frame. They will
1131 // normally hold exception frame data as defined by the C++ ABI
1132 // (http://codesourcery.com/cxx-abi/).
1133
1134 template<int size, bool big_endian>
1135 Output_section*
1136 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1137 const unsigned char* symbols,
1138 off_t symbols_size,
1139 const unsigned char* symbol_names,
1140 off_t symbol_names_size,
1141 unsigned int shndx,
1142 const elfcpp::Shdr<size, big_endian>& shdr,
1143 unsigned int reloc_shndx, unsigned int reloc_type,
1144 off_t* off)
1145 {
1146 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1147 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1148 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1149
1150 Output_section* os = this->make_eh_frame_section(object);
1151 if (os == NULL)
1152 return NULL;
1153
1154 gold_assert(this->eh_frame_section_ == os);
1155
1156 elfcpp::Elf_Xword orig_flags = os->flags();
1157
1158 if (!parameters->incremental()
1159 && this->eh_frame_data_->add_ehframe_input_section(object,
1160 symbols,
1161 symbols_size,
1162 symbol_names,
1163 symbol_names_size,
1164 shndx,
1165 reloc_shndx,
1166 reloc_type))
1167 {
1168 os->update_flags_for_input_section(shdr.get_sh_flags());
1169
1170 // A writable .eh_frame section is a RELRO section.
1171 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1172 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1173 {
1174 os->set_is_relro();
1175 os->set_order(ORDER_RELRO);
1176 }
1177
1178 // We found a .eh_frame section we are going to optimize, so now
1179 // we can add the set of optimized sections to the output
1180 // section. We need to postpone adding this until we've found a
1181 // section we can optimize so that the .eh_frame section in
1182 // crtbegin.o winds up at the start of the output section.
1183 if (!this->added_eh_frame_data_)
1184 {
1185 os->add_output_section_data(this->eh_frame_data_);
1186 this->added_eh_frame_data_ = true;
1187 }
1188 *off = -1;
1189 }
1190 else
1191 {
1192 // We couldn't handle this .eh_frame section for some reason.
1193 // Add it as a normal section.
1194 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1195 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1196 reloc_shndx, saw_sections_clause);
1197 this->have_added_input_section_ = true;
1198
1199 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1200 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1201 os->set_order(this->default_section_order(os, false));
1202 }
1203
1204 return os;
1205 }
1206
1207 // Create and return the magic .eh_frame section. Create
1208 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1209 // input .eh_frame section; it may be NULL.
1210
1211 Output_section*
1212 Layout::make_eh_frame_section(const Relobj* object)
1213 {
1214 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1215 // SHT_PROGBITS.
1216 Output_section* os = this->choose_output_section(object, ".eh_frame",
1217 elfcpp::SHT_PROGBITS,
1218 elfcpp::SHF_ALLOC, false,
1219 ORDER_EHFRAME, false);
1220 if (os == NULL)
1221 return NULL;
1222
1223 if (this->eh_frame_section_ == NULL)
1224 {
1225 this->eh_frame_section_ = os;
1226 this->eh_frame_data_ = new Eh_frame();
1227
1228 // For incremental linking, we do not optimize .eh_frame sections
1229 // or create a .eh_frame_hdr section.
1230 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1231 {
1232 Output_section* hdr_os =
1233 this->choose_output_section(NULL, ".eh_frame_hdr",
1234 elfcpp::SHT_PROGBITS,
1235 elfcpp::SHF_ALLOC, false,
1236 ORDER_EHFRAME, false);
1237
1238 if (hdr_os != NULL)
1239 {
1240 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1241 this->eh_frame_data_);
1242 hdr_os->add_output_section_data(hdr_posd);
1243
1244 hdr_os->set_after_input_sections();
1245
1246 if (!this->script_options_->saw_phdrs_clause())
1247 {
1248 Output_segment* hdr_oseg;
1249 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1250 elfcpp::PF_R);
1251 hdr_oseg->add_output_section_to_nonload(hdr_os,
1252 elfcpp::PF_R);
1253 }
1254
1255 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1256 }
1257 }
1258 }
1259
1260 return os;
1261 }
1262
1263 // Add an exception frame for a PLT. This is called from target code.
1264
1265 void
1266 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1267 size_t cie_length, const unsigned char* fde_data,
1268 size_t fde_length)
1269 {
1270 if (parameters->incremental())
1271 {
1272 // FIXME: Maybe this could work some day....
1273 return;
1274 }
1275 Output_section* os = this->make_eh_frame_section(NULL);
1276 if (os == NULL)
1277 return;
1278 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1279 fde_data, fde_length);
1280 if (!this->added_eh_frame_data_)
1281 {
1282 os->add_output_section_data(this->eh_frame_data_);
1283 this->added_eh_frame_data_ = true;
1284 }
1285 }
1286
1287 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1288 // the output section.
1289
1290 Output_section*
1291 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1292 elfcpp::Elf_Xword flags,
1293 Output_section_data* posd,
1294 Output_section_order order, bool is_relro)
1295 {
1296 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1297 false, order, is_relro);
1298 if (os != NULL)
1299 os->add_output_section_data(posd);
1300 return os;
1301 }
1302
1303 // Map section flags to segment flags.
1304
1305 elfcpp::Elf_Word
1306 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1307 {
1308 elfcpp::Elf_Word ret = elfcpp::PF_R;
1309 if ((flags & elfcpp::SHF_WRITE) != 0)
1310 ret |= elfcpp::PF_W;
1311 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1312 ret |= elfcpp::PF_X;
1313 return ret;
1314 }
1315
1316 // Make a new Output_section, and attach it to segments as
1317 // appropriate. ORDER is the order in which this section should
1318 // appear in the output segment. IS_RELRO is true if this is a relro
1319 // (read-only after relocations) section.
1320
1321 Output_section*
1322 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1323 elfcpp::Elf_Xword flags,
1324 Output_section_order order, bool is_relro)
1325 {
1326 Output_section* os;
1327 if ((flags & elfcpp::SHF_ALLOC) == 0
1328 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1329 && is_compressible_debug_section(name))
1330 os = new Output_compressed_section(&parameters->options(), name, type,
1331 flags);
1332 else if ((flags & elfcpp::SHF_ALLOC) == 0
1333 && parameters->options().strip_debug_non_line()
1334 && strcmp(".debug_abbrev", name) == 0)
1335 {
1336 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1337 name, type, flags);
1338 if (this->debug_info_)
1339 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1340 }
1341 else if ((flags & elfcpp::SHF_ALLOC) == 0
1342 && parameters->options().strip_debug_non_line()
1343 && strcmp(".debug_info", name) == 0)
1344 {
1345 os = this->debug_info_ = new Output_reduced_debug_info_section(
1346 name, type, flags);
1347 if (this->debug_abbrev_)
1348 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1349 }
1350 else
1351 {
1352 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1353 // not have correct section types. Force them here.
1354 if (type == elfcpp::SHT_PROGBITS)
1355 {
1356 if (is_prefix_of(".init_array", name))
1357 type = elfcpp::SHT_INIT_ARRAY;
1358 else if (is_prefix_of(".preinit_array", name))
1359 type = elfcpp::SHT_PREINIT_ARRAY;
1360 else if (is_prefix_of(".fini_array", name))
1361 type = elfcpp::SHT_FINI_ARRAY;
1362 }
1363
1364 // FIXME: const_cast is ugly.
1365 Target* target = const_cast<Target*>(&parameters->target());
1366 os = target->make_output_section(name, type, flags);
1367 }
1368
1369 // With -z relro, we have to recognize the special sections by name.
1370 // There is no other way.
1371 bool is_relro_local = false;
1372 if (!this->script_options_->saw_sections_clause()
1373 && parameters->options().relro()
1374 && type == elfcpp::SHT_PROGBITS
1375 && (flags & elfcpp::SHF_ALLOC) != 0
1376 && (flags & elfcpp::SHF_WRITE) != 0)
1377 {
1378 if (strcmp(name, ".data.rel.ro") == 0)
1379 is_relro = true;
1380 else if (strcmp(name, ".data.rel.ro.local") == 0)
1381 {
1382 is_relro = true;
1383 is_relro_local = true;
1384 }
1385 else if (type == elfcpp::SHT_INIT_ARRAY
1386 || type == elfcpp::SHT_FINI_ARRAY
1387 || type == elfcpp::SHT_PREINIT_ARRAY)
1388 is_relro = true;
1389 else if (strcmp(name, ".ctors") == 0
1390 || strcmp(name, ".dtors") == 0
1391 || strcmp(name, ".jcr") == 0)
1392 is_relro = true;
1393 }
1394
1395 if (is_relro)
1396 os->set_is_relro();
1397
1398 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1399 order = this->default_section_order(os, is_relro_local);
1400
1401 os->set_order(order);
1402
1403 parameters->target().new_output_section(os);
1404
1405 this->section_list_.push_back(os);
1406
1407 // The GNU linker by default sorts some sections by priority, so we
1408 // do the same. We need to know that this might happen before we
1409 // attach any input sections.
1410 if (!this->script_options_->saw_sections_clause()
1411 && !parameters->options().relocatable()
1412 && (strcmp(name, ".init_array") == 0
1413 || strcmp(name, ".fini_array") == 0
1414 || (!parameters->options().ctors_in_init_array()
1415 && (strcmp(name, ".ctors") == 0
1416 || strcmp(name, ".dtors") == 0))))
1417 os->set_may_sort_attached_input_sections();
1418
1419 // Check for .stab*str sections, as .stab* sections need to link to
1420 // them.
1421 if (type == elfcpp::SHT_STRTAB
1422 && !this->have_stabstr_section_
1423 && strncmp(name, ".stab", 5) == 0
1424 && strcmp(name + strlen(name) - 3, "str") == 0)
1425 this->have_stabstr_section_ = true;
1426
1427 // During a full incremental link, we add patch space to most
1428 // PROGBITS and NOBITS sections. Flag those that may be
1429 // arbitrarily padded.
1430 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1431 && order != ORDER_INTERP
1432 && order != ORDER_INIT
1433 && order != ORDER_PLT
1434 && order != ORDER_FINI
1435 && order != ORDER_RELRO_LAST
1436 && order != ORDER_NON_RELRO_FIRST
1437 && strcmp(name, ".ctors") != 0
1438 && strcmp(name, ".dtors") != 0
1439 && strcmp(name, ".jcr") != 0)
1440 os->set_is_patch_space_allowed();
1441
1442 // If we have already attached the sections to segments, then we
1443 // need to attach this one now. This happens for sections created
1444 // directly by the linker.
1445 if (this->sections_are_attached_)
1446 this->attach_section_to_segment(os);
1447
1448 return os;
1449 }
1450
1451 // Return the default order in which a section should be placed in an
1452 // output segment. This function captures a lot of the ideas in
1453 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1454 // linker created section is normally set when the section is created;
1455 // this function is used for input sections.
1456
1457 Output_section_order
1458 Layout::default_section_order(Output_section* os, bool is_relro_local)
1459 {
1460 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1461 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1462 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1463 bool is_bss = false;
1464
1465 switch (os->type())
1466 {
1467 default:
1468 case elfcpp::SHT_PROGBITS:
1469 break;
1470 case elfcpp::SHT_NOBITS:
1471 is_bss = true;
1472 break;
1473 case elfcpp::SHT_RELA:
1474 case elfcpp::SHT_REL:
1475 if (!is_write)
1476 return ORDER_DYNAMIC_RELOCS;
1477 break;
1478 case elfcpp::SHT_HASH:
1479 case elfcpp::SHT_DYNAMIC:
1480 case elfcpp::SHT_SHLIB:
1481 case elfcpp::SHT_DYNSYM:
1482 case elfcpp::SHT_GNU_HASH:
1483 case elfcpp::SHT_GNU_verdef:
1484 case elfcpp::SHT_GNU_verneed:
1485 case elfcpp::SHT_GNU_versym:
1486 if (!is_write)
1487 return ORDER_DYNAMIC_LINKER;
1488 break;
1489 case elfcpp::SHT_NOTE:
1490 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1491 }
1492
1493 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1494 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1495
1496 if (!is_bss && !is_write)
1497 {
1498 if (is_execinstr)
1499 {
1500 if (strcmp(os->name(), ".init") == 0)
1501 return ORDER_INIT;
1502 else if (strcmp(os->name(), ".fini") == 0)
1503 return ORDER_FINI;
1504 }
1505 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1506 }
1507
1508 if (os->is_relro())
1509 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1510
1511 if (os->is_small_section())
1512 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1513 if (os->is_large_section())
1514 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1515
1516 return is_bss ? ORDER_BSS : ORDER_DATA;
1517 }
1518
1519 // Attach output sections to segments. This is called after we have
1520 // seen all the input sections.
1521
1522 void
1523 Layout::attach_sections_to_segments()
1524 {
1525 for (Section_list::iterator p = this->section_list_.begin();
1526 p != this->section_list_.end();
1527 ++p)
1528 this->attach_section_to_segment(*p);
1529
1530 this->sections_are_attached_ = true;
1531 }
1532
1533 // Attach an output section to a segment.
1534
1535 void
1536 Layout::attach_section_to_segment(Output_section* os)
1537 {
1538 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1539 this->unattached_section_list_.push_back(os);
1540 else
1541 this->attach_allocated_section_to_segment(os);
1542 }
1543
1544 // Attach an allocated output section to a segment.
1545
1546 void
1547 Layout::attach_allocated_section_to_segment(Output_section* os)
1548 {
1549 elfcpp::Elf_Xword flags = os->flags();
1550 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1551
1552 if (parameters->options().relocatable())
1553 return;
1554
1555 // If we have a SECTIONS clause, we can't handle the attachment to
1556 // segments until after we've seen all the sections.
1557 if (this->script_options_->saw_sections_clause())
1558 return;
1559
1560 gold_assert(!this->script_options_->saw_phdrs_clause());
1561
1562 // This output section goes into a PT_LOAD segment.
1563
1564 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1565
1566 // Check for --section-start.
1567 uint64_t addr;
1568 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1569
1570 // In general the only thing we really care about for PT_LOAD
1571 // segments is whether or not they are writable or executable,
1572 // so that is how we search for them.
1573 // Large data sections also go into their own PT_LOAD segment.
1574 // People who need segments sorted on some other basis will
1575 // have to use a linker script.
1576
1577 Segment_list::const_iterator p;
1578 for (p = this->segment_list_.begin();
1579 p != this->segment_list_.end();
1580 ++p)
1581 {
1582 if ((*p)->type() != elfcpp::PT_LOAD)
1583 continue;
1584 if (!parameters->options().omagic()
1585 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1586 continue;
1587 if (parameters->options().rosegment()
1588 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1589 continue;
1590 // If -Tbss was specified, we need to separate the data and BSS
1591 // segments.
1592 if (parameters->options().user_set_Tbss())
1593 {
1594 if ((os->type() == elfcpp::SHT_NOBITS)
1595 == (*p)->has_any_data_sections())
1596 continue;
1597 }
1598 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1599 continue;
1600
1601 if (is_address_set)
1602 {
1603 if ((*p)->are_addresses_set())
1604 continue;
1605
1606 (*p)->add_initial_output_data(os);
1607 (*p)->update_flags_for_output_section(seg_flags);
1608 (*p)->set_addresses(addr, addr);
1609 break;
1610 }
1611
1612 (*p)->add_output_section_to_load(this, os, seg_flags);
1613 break;
1614 }
1615
1616 if (p == this->segment_list_.end())
1617 {
1618 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1619 seg_flags);
1620 if (os->is_large_data_section())
1621 oseg->set_is_large_data_segment();
1622 oseg->add_output_section_to_load(this, os, seg_flags);
1623 if (is_address_set)
1624 oseg->set_addresses(addr, addr);
1625 }
1626
1627 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1628 // segment.
1629 if (os->type() == elfcpp::SHT_NOTE)
1630 {
1631 // See if we already have an equivalent PT_NOTE segment.
1632 for (p = this->segment_list_.begin();
1633 p != segment_list_.end();
1634 ++p)
1635 {
1636 if ((*p)->type() == elfcpp::PT_NOTE
1637 && (((*p)->flags() & elfcpp::PF_W)
1638 == (seg_flags & elfcpp::PF_W)))
1639 {
1640 (*p)->add_output_section_to_nonload(os, seg_flags);
1641 break;
1642 }
1643 }
1644
1645 if (p == this->segment_list_.end())
1646 {
1647 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1648 seg_flags);
1649 oseg->add_output_section_to_nonload(os, seg_flags);
1650 }
1651 }
1652
1653 // If we see a loadable SHF_TLS section, we create a PT_TLS
1654 // segment. There can only be one such segment.
1655 if ((flags & elfcpp::SHF_TLS) != 0)
1656 {
1657 if (this->tls_segment_ == NULL)
1658 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1659 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1660 }
1661
1662 // If -z relro is in effect, and we see a relro section, we create a
1663 // PT_GNU_RELRO segment. There can only be one such segment.
1664 if (os->is_relro() && parameters->options().relro())
1665 {
1666 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1667 if (this->relro_segment_ == NULL)
1668 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1669 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1670 }
1671
1672 // If we see a section named .interp, put it into a PT_INTERP
1673 // segment. This seems broken to me, but this is what GNU ld does,
1674 // and glibc expects it.
1675 if (strcmp(os->name(), ".interp") == 0
1676 && !this->script_options_->saw_phdrs_clause())
1677 {
1678 if (this->interp_segment_ == NULL)
1679 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1680 else
1681 gold_warning(_("multiple '.interp' sections in input files "
1682 "may cause confusing PT_INTERP segment"));
1683 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1684 }
1685 }
1686
1687 // Make an output section for a script.
1688
1689 Output_section*
1690 Layout::make_output_section_for_script(
1691 const char* name,
1692 Script_sections::Section_type section_type)
1693 {
1694 name = this->namepool_.add(name, false, NULL);
1695 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1696 if (section_type == Script_sections::ST_NOLOAD)
1697 sh_flags = 0;
1698 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1699 sh_flags, ORDER_INVALID,
1700 false);
1701 os->set_found_in_sections_clause();
1702 if (section_type == Script_sections::ST_NOLOAD)
1703 os->set_is_noload();
1704 return os;
1705 }
1706
1707 // Return the number of segments we expect to see.
1708
1709 size_t
1710 Layout::expected_segment_count() const
1711 {
1712 size_t ret = this->segment_list_.size();
1713
1714 // If we didn't see a SECTIONS clause in a linker script, we should
1715 // already have the complete list of segments. Otherwise we ask the
1716 // SECTIONS clause how many segments it expects, and add in the ones
1717 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1718
1719 if (!this->script_options_->saw_sections_clause())
1720 return ret;
1721 else
1722 {
1723 const Script_sections* ss = this->script_options_->script_sections();
1724 return ret + ss->expected_segment_count(this);
1725 }
1726 }
1727
1728 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1729 // is whether we saw a .note.GNU-stack section in the object file.
1730 // GNU_STACK_FLAGS is the section flags. The flags give the
1731 // protection required for stack memory. We record this in an
1732 // executable as a PT_GNU_STACK segment. If an object file does not
1733 // have a .note.GNU-stack segment, we must assume that it is an old
1734 // object. On some targets that will force an executable stack.
1735
1736 void
1737 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1738 const Object* obj)
1739 {
1740 if (!seen_gnu_stack)
1741 {
1742 this->input_without_gnu_stack_note_ = true;
1743 if (parameters->options().warn_execstack()
1744 && parameters->target().is_default_stack_executable())
1745 gold_warning(_("%s: missing .note.GNU-stack section"
1746 " implies executable stack"),
1747 obj->name().c_str());
1748 }
1749 else
1750 {
1751 this->input_with_gnu_stack_note_ = true;
1752 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1753 {
1754 this->input_requires_executable_stack_ = true;
1755 if (parameters->options().warn_execstack()
1756 || parameters->options().is_stack_executable())
1757 gold_warning(_("%s: requires executable stack"),
1758 obj->name().c_str());
1759 }
1760 }
1761 }
1762
1763 // Create automatic note sections.
1764
1765 void
1766 Layout::create_notes()
1767 {
1768 this->create_gold_note();
1769 this->create_executable_stack_info();
1770 this->create_build_id();
1771 }
1772
1773 // Create the dynamic sections which are needed before we read the
1774 // relocs.
1775
1776 void
1777 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1778 {
1779 if (parameters->doing_static_link())
1780 return;
1781
1782 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1783 elfcpp::SHT_DYNAMIC,
1784 (elfcpp::SHF_ALLOC
1785 | elfcpp::SHF_WRITE),
1786 false, ORDER_RELRO,
1787 true);
1788
1789 this->dynamic_symbol_ =
1790 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1791 this->dynamic_section_, 0, 0,
1792 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1793 elfcpp::STV_HIDDEN, 0, false, false);
1794
1795 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1796
1797 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1798 }
1799
1800 // For each output section whose name can be represented as C symbol,
1801 // define __start and __stop symbols for the section. This is a GNU
1802 // extension.
1803
1804 void
1805 Layout::define_section_symbols(Symbol_table* symtab)
1806 {
1807 for (Section_list::const_iterator p = this->section_list_.begin();
1808 p != this->section_list_.end();
1809 ++p)
1810 {
1811 const char* const name = (*p)->name();
1812 if (is_cident(name))
1813 {
1814 const std::string name_string(name);
1815 const std::string start_name(cident_section_start_prefix
1816 + name_string);
1817 const std::string stop_name(cident_section_stop_prefix
1818 + name_string);
1819
1820 symtab->define_in_output_data(start_name.c_str(),
1821 NULL, // version
1822 Symbol_table::PREDEFINED,
1823 *p,
1824 0, // value
1825 0, // symsize
1826 elfcpp::STT_NOTYPE,
1827 elfcpp::STB_GLOBAL,
1828 elfcpp::STV_DEFAULT,
1829 0, // nonvis
1830 false, // offset_is_from_end
1831 true); // only_if_ref
1832
1833 symtab->define_in_output_data(stop_name.c_str(),
1834 NULL, // version
1835 Symbol_table::PREDEFINED,
1836 *p,
1837 0, // value
1838 0, // symsize
1839 elfcpp::STT_NOTYPE,
1840 elfcpp::STB_GLOBAL,
1841 elfcpp::STV_DEFAULT,
1842 0, // nonvis
1843 true, // offset_is_from_end
1844 true); // only_if_ref
1845 }
1846 }
1847 }
1848
1849 // Define symbols for group signatures.
1850
1851 void
1852 Layout::define_group_signatures(Symbol_table* symtab)
1853 {
1854 for (Group_signatures::iterator p = this->group_signatures_.begin();
1855 p != this->group_signatures_.end();
1856 ++p)
1857 {
1858 Symbol* sym = symtab->lookup(p->signature, NULL);
1859 if (sym != NULL)
1860 p->section->set_info_symndx(sym);
1861 else
1862 {
1863 // Force the name of the group section to the group
1864 // signature, and use the group's section symbol as the
1865 // signature symbol.
1866 if (strcmp(p->section->name(), p->signature) != 0)
1867 {
1868 const char* name = this->namepool_.add(p->signature,
1869 true, NULL);
1870 p->section->set_name(name);
1871 }
1872 p->section->set_needs_symtab_index();
1873 p->section->set_info_section_symndx(p->section);
1874 }
1875 }
1876
1877 this->group_signatures_.clear();
1878 }
1879
1880 // Find the first read-only PT_LOAD segment, creating one if
1881 // necessary.
1882
1883 Output_segment*
1884 Layout::find_first_load_seg()
1885 {
1886 Output_segment* best = NULL;
1887 for (Segment_list::const_iterator p = this->segment_list_.begin();
1888 p != this->segment_list_.end();
1889 ++p)
1890 {
1891 if ((*p)->type() == elfcpp::PT_LOAD
1892 && ((*p)->flags() & elfcpp::PF_R) != 0
1893 && (parameters->options().omagic()
1894 || ((*p)->flags() & elfcpp::PF_W) == 0))
1895 {
1896 if (best == NULL || this->segment_precedes(*p, best))
1897 best = *p;
1898 }
1899 }
1900 if (best != NULL)
1901 return best;
1902
1903 gold_assert(!this->script_options_->saw_phdrs_clause());
1904
1905 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1906 elfcpp::PF_R);
1907 return load_seg;
1908 }
1909
1910 // Save states of all current output segments. Store saved states
1911 // in SEGMENT_STATES.
1912
1913 void
1914 Layout::save_segments(Segment_states* segment_states)
1915 {
1916 for (Segment_list::const_iterator p = this->segment_list_.begin();
1917 p != this->segment_list_.end();
1918 ++p)
1919 {
1920 Output_segment* segment = *p;
1921 // Shallow copy.
1922 Output_segment* copy = new Output_segment(*segment);
1923 (*segment_states)[segment] = copy;
1924 }
1925 }
1926
1927 // Restore states of output segments and delete any segment not found in
1928 // SEGMENT_STATES.
1929
1930 void
1931 Layout::restore_segments(const Segment_states* segment_states)
1932 {
1933 // Go through the segment list and remove any segment added in the
1934 // relaxation loop.
1935 this->tls_segment_ = NULL;
1936 this->relro_segment_ = NULL;
1937 Segment_list::iterator list_iter = this->segment_list_.begin();
1938 while (list_iter != this->segment_list_.end())
1939 {
1940 Output_segment* segment = *list_iter;
1941 Segment_states::const_iterator states_iter =
1942 segment_states->find(segment);
1943 if (states_iter != segment_states->end())
1944 {
1945 const Output_segment* copy = states_iter->second;
1946 // Shallow copy to restore states.
1947 *segment = *copy;
1948
1949 // Also fix up TLS and RELRO segment pointers as appropriate.
1950 if (segment->type() == elfcpp::PT_TLS)
1951 this->tls_segment_ = segment;
1952 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1953 this->relro_segment_ = segment;
1954
1955 ++list_iter;
1956 }
1957 else
1958 {
1959 list_iter = this->segment_list_.erase(list_iter);
1960 // This is a segment created during section layout. It should be
1961 // safe to remove it since we should have removed all pointers to it.
1962 delete segment;
1963 }
1964 }
1965 }
1966
1967 // Clean up after relaxation so that sections can be laid out again.
1968
1969 void
1970 Layout::clean_up_after_relaxation()
1971 {
1972 // Restore the segments to point state just prior to the relaxation loop.
1973 Script_sections* script_section = this->script_options_->script_sections();
1974 script_section->release_segments();
1975 this->restore_segments(this->segment_states_);
1976
1977 // Reset section addresses and file offsets
1978 for (Section_list::iterator p = this->section_list_.begin();
1979 p != this->section_list_.end();
1980 ++p)
1981 {
1982 (*p)->restore_states();
1983
1984 // If an input section changes size because of relaxation,
1985 // we need to adjust the section offsets of all input sections.
1986 // after such a section.
1987 if ((*p)->section_offsets_need_adjustment())
1988 (*p)->adjust_section_offsets();
1989
1990 (*p)->reset_address_and_file_offset();
1991 }
1992
1993 // Reset special output object address and file offsets.
1994 for (Data_list::iterator p = this->special_output_list_.begin();
1995 p != this->special_output_list_.end();
1996 ++p)
1997 (*p)->reset_address_and_file_offset();
1998
1999 // A linker script may have created some output section data objects.
2000 // They are useless now.
2001 for (Output_section_data_list::const_iterator p =
2002 this->script_output_section_data_list_.begin();
2003 p != this->script_output_section_data_list_.end();
2004 ++p)
2005 delete *p;
2006 this->script_output_section_data_list_.clear();
2007 }
2008
2009 // Prepare for relaxation.
2010
2011 void
2012 Layout::prepare_for_relaxation()
2013 {
2014 // Create an relaxation debug check if in debugging mode.
2015 if (is_debugging_enabled(DEBUG_RELAXATION))
2016 this->relaxation_debug_check_ = new Relaxation_debug_check();
2017
2018 // Save segment states.
2019 this->segment_states_ = new Segment_states();
2020 this->save_segments(this->segment_states_);
2021
2022 for(Section_list::const_iterator p = this->section_list_.begin();
2023 p != this->section_list_.end();
2024 ++p)
2025 (*p)->save_states();
2026
2027 if (is_debugging_enabled(DEBUG_RELAXATION))
2028 this->relaxation_debug_check_->check_output_data_for_reset_values(
2029 this->section_list_, this->special_output_list_);
2030
2031 // Also enable recording of output section data from scripts.
2032 this->record_output_section_data_from_script_ = true;
2033 }
2034
2035 // Relaxation loop body: If target has no relaxation, this runs only once
2036 // Otherwise, the target relaxation hook is called at the end of
2037 // each iteration. If the hook returns true, it means re-layout of
2038 // section is required.
2039 //
2040 // The number of segments created by a linking script without a PHDRS
2041 // clause may be affected by section sizes and alignments. There is
2042 // a remote chance that relaxation causes different number of PT_LOAD
2043 // segments are created and sections are attached to different segments.
2044 // Therefore, we always throw away all segments created during section
2045 // layout. In order to be able to restart the section layout, we keep
2046 // a copy of the segment list right before the relaxation loop and use
2047 // that to restore the segments.
2048 //
2049 // PASS is the current relaxation pass number.
2050 // SYMTAB is a symbol table.
2051 // PLOAD_SEG is the address of a pointer for the load segment.
2052 // PHDR_SEG is a pointer to the PHDR segment.
2053 // SEGMENT_HEADERS points to the output segment header.
2054 // FILE_HEADER points to the output file header.
2055 // PSHNDX is the address to store the output section index.
2056
2057 off_t inline
2058 Layout::relaxation_loop_body(
2059 int pass,
2060 Target* target,
2061 Symbol_table* symtab,
2062 Output_segment** pload_seg,
2063 Output_segment* phdr_seg,
2064 Output_segment_headers* segment_headers,
2065 Output_file_header* file_header,
2066 unsigned int* pshndx)
2067 {
2068 // If this is not the first iteration, we need to clean up after
2069 // relaxation so that we can lay out the sections again.
2070 if (pass != 0)
2071 this->clean_up_after_relaxation();
2072
2073 // If there is a SECTIONS clause, put all the input sections into
2074 // the required order.
2075 Output_segment* load_seg;
2076 if (this->script_options_->saw_sections_clause())
2077 load_seg = this->set_section_addresses_from_script(symtab);
2078 else if (parameters->options().relocatable())
2079 load_seg = NULL;
2080 else
2081 load_seg = this->find_first_load_seg();
2082
2083 if (parameters->options().oformat_enum()
2084 != General_options::OBJECT_FORMAT_ELF)
2085 load_seg = NULL;
2086
2087 // If the user set the address of the text segment, that may not be
2088 // compatible with putting the segment headers and file headers into
2089 // that segment.
2090 if (parameters->options().user_set_Ttext())
2091 load_seg = NULL;
2092
2093 gold_assert(phdr_seg == NULL
2094 || load_seg != NULL
2095 || this->script_options_->saw_sections_clause());
2096
2097 // If the address of the load segment we found has been set by
2098 // --section-start rather than by a script, then adjust the VMA and
2099 // LMA downward if possible to include the file and section headers.
2100 uint64_t header_gap = 0;
2101 if (load_seg != NULL
2102 && load_seg->are_addresses_set()
2103 && !this->script_options_->saw_sections_clause()
2104 && !parameters->options().relocatable())
2105 {
2106 file_header->finalize_data_size();
2107 segment_headers->finalize_data_size();
2108 size_t sizeof_headers = (file_header->data_size()
2109 + segment_headers->data_size());
2110 const uint64_t abi_pagesize = target->abi_pagesize();
2111 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2112 hdr_paddr &= ~(abi_pagesize - 1);
2113 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2114 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2115 load_seg = NULL;
2116 else
2117 {
2118 load_seg->set_addresses(load_seg->vaddr() - subtract,
2119 load_seg->paddr() - subtract);
2120 header_gap = subtract - sizeof_headers;
2121 }
2122 }
2123
2124 // Lay out the segment headers.
2125 if (!parameters->options().relocatable())
2126 {
2127 gold_assert(segment_headers != NULL);
2128 if (header_gap != 0 && load_seg != NULL)
2129 {
2130 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2131 load_seg->add_initial_output_data(z);
2132 }
2133 if (load_seg != NULL)
2134 load_seg->add_initial_output_data(segment_headers);
2135 if (phdr_seg != NULL)
2136 phdr_seg->add_initial_output_data(segment_headers);
2137 }
2138
2139 // Lay out the file header.
2140 if (load_seg != NULL)
2141 load_seg->add_initial_output_data(file_header);
2142
2143 if (this->script_options_->saw_phdrs_clause()
2144 && !parameters->options().relocatable())
2145 {
2146 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2147 // clause in a linker script.
2148 Script_sections* ss = this->script_options_->script_sections();
2149 ss->put_headers_in_phdrs(file_header, segment_headers);
2150 }
2151
2152 // We set the output section indexes in set_segment_offsets and
2153 // set_section_indexes.
2154 *pshndx = 1;
2155
2156 // Set the file offsets of all the segments, and all the sections
2157 // they contain.
2158 off_t off;
2159 if (!parameters->options().relocatable())
2160 off = this->set_segment_offsets(target, load_seg, pshndx);
2161 else
2162 off = this->set_relocatable_section_offsets(file_header, pshndx);
2163
2164 // Verify that the dummy relaxation does not change anything.
2165 if (is_debugging_enabled(DEBUG_RELAXATION))
2166 {
2167 if (pass == 0)
2168 this->relaxation_debug_check_->read_sections(this->section_list_);
2169 else
2170 this->relaxation_debug_check_->verify_sections(this->section_list_);
2171 }
2172
2173 *pload_seg = load_seg;
2174 return off;
2175 }
2176
2177 // Search the list of patterns and find the postion of the given section
2178 // name in the output section. If the section name matches a glob
2179 // pattern and a non-glob name, then the non-glob position takes
2180 // precedence. Return 0 if no match is found.
2181
2182 unsigned int
2183 Layout::find_section_order_index(const std::string& section_name)
2184 {
2185 Unordered_map<std::string, unsigned int>::iterator map_it;
2186 map_it = this->input_section_position_.find(section_name);
2187 if (map_it != this->input_section_position_.end())
2188 return map_it->second;
2189
2190 // Absolute match failed. Linear search the glob patterns.
2191 std::vector<std::string>::iterator it;
2192 for (it = this->input_section_glob_.begin();
2193 it != this->input_section_glob_.end();
2194 ++it)
2195 {
2196 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2197 {
2198 map_it = this->input_section_position_.find(*it);
2199 gold_assert(map_it != this->input_section_position_.end());
2200 return map_it->second;
2201 }
2202 }
2203 return 0;
2204 }
2205
2206 // Read the sequence of input sections from the file specified with
2207 // --section-ordering-file.
2208
2209 void
2210 Layout::read_layout_from_file()
2211 {
2212 const char* filename = parameters->options().section_ordering_file();
2213 std::ifstream in;
2214 std::string line;
2215
2216 in.open(filename);
2217 if (!in)
2218 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2219 filename, strerror(errno));
2220
2221 std::getline(in, line); // this chops off the trailing \n, if any
2222 unsigned int position = 1;
2223
2224 while (in)
2225 {
2226 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2227 line.resize(line.length() - 1);
2228 // Ignore comments, beginning with '#'
2229 if (line[0] == '#')
2230 {
2231 std::getline(in, line);
2232 continue;
2233 }
2234 this->input_section_position_[line] = position;
2235 // Store all glob patterns in a vector.
2236 if (is_wildcard_string(line.c_str()))
2237 this->input_section_glob_.push_back(line);
2238 position++;
2239 std::getline(in, line);
2240 }
2241 }
2242
2243 // Finalize the layout. When this is called, we have created all the
2244 // output sections and all the output segments which are based on
2245 // input sections. We have several things to do, and we have to do
2246 // them in the right order, so that we get the right results correctly
2247 // and efficiently.
2248
2249 // 1) Finalize the list of output segments and create the segment
2250 // table header.
2251
2252 // 2) Finalize the dynamic symbol table and associated sections.
2253
2254 // 3) Determine the final file offset of all the output segments.
2255
2256 // 4) Determine the final file offset of all the SHF_ALLOC output
2257 // sections.
2258
2259 // 5) Create the symbol table sections and the section name table
2260 // section.
2261
2262 // 6) Finalize the symbol table: set symbol values to their final
2263 // value and make a final determination of which symbols are going
2264 // into the output symbol table.
2265
2266 // 7) Create the section table header.
2267
2268 // 8) Determine the final file offset of all the output sections which
2269 // are not SHF_ALLOC, including the section table header.
2270
2271 // 9) Finalize the ELF file header.
2272
2273 // This function returns the size of the output file.
2274
2275 off_t
2276 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2277 Target* target, const Task* task)
2278 {
2279 target->finalize_sections(this, input_objects, symtab);
2280
2281 this->count_local_symbols(task, input_objects);
2282
2283 this->link_stabs_sections();
2284
2285 Output_segment* phdr_seg = NULL;
2286 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2287 {
2288 // There was a dynamic object in the link. We need to create
2289 // some information for the dynamic linker.
2290
2291 // Create the PT_PHDR segment which will hold the program
2292 // headers.
2293 if (!this->script_options_->saw_phdrs_clause())
2294 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2295
2296 // Create the dynamic symbol table, including the hash table.
2297 Output_section* dynstr;
2298 std::vector<Symbol*> dynamic_symbols;
2299 unsigned int local_dynamic_count;
2300 Versions versions(*this->script_options()->version_script_info(),
2301 &this->dynpool_);
2302 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2303 &local_dynamic_count, &dynamic_symbols,
2304 &versions);
2305
2306 // Create the .interp section to hold the name of the
2307 // interpreter, and put it in a PT_INTERP segment. Don't do it
2308 // if we saw a .interp section in an input file.
2309 if ((!parameters->options().shared()
2310 || parameters->options().dynamic_linker() != NULL)
2311 && this->interp_segment_ == NULL)
2312 this->create_interp(target);
2313
2314 // Finish the .dynamic section to hold the dynamic data, and put
2315 // it in a PT_DYNAMIC segment.
2316 this->finish_dynamic_section(input_objects, symtab);
2317
2318 // We should have added everything we need to the dynamic string
2319 // table.
2320 this->dynpool_.set_string_offsets();
2321
2322 // Create the version sections. We can't do this until the
2323 // dynamic string table is complete.
2324 this->create_version_sections(&versions, symtab, local_dynamic_count,
2325 dynamic_symbols, dynstr);
2326
2327 // Set the size of the _DYNAMIC symbol. We can't do this until
2328 // after we call create_version_sections.
2329 this->set_dynamic_symbol_size(symtab);
2330 }
2331
2332 // Create segment headers.
2333 Output_segment_headers* segment_headers =
2334 (parameters->options().relocatable()
2335 ? NULL
2336 : new Output_segment_headers(this->segment_list_));
2337
2338 // Lay out the file header.
2339 Output_file_header* file_header = new Output_file_header(target, symtab,
2340 segment_headers);
2341
2342 this->special_output_list_.push_back(file_header);
2343 if (segment_headers != NULL)
2344 this->special_output_list_.push_back(segment_headers);
2345
2346 // Find approriate places for orphan output sections if we are using
2347 // a linker script.
2348 if (this->script_options_->saw_sections_clause())
2349 this->place_orphan_sections_in_script();
2350
2351 Output_segment* load_seg;
2352 off_t off;
2353 unsigned int shndx;
2354 int pass = 0;
2355
2356 // Take a snapshot of the section layout as needed.
2357 if (target->may_relax())
2358 this->prepare_for_relaxation();
2359
2360 // Run the relaxation loop to lay out sections.
2361 do
2362 {
2363 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2364 phdr_seg, segment_headers, file_header,
2365 &shndx);
2366 pass++;
2367 }
2368 while (target->may_relax()
2369 && target->relax(pass, input_objects, symtab, this, task));
2370
2371 // Set the file offsets of all the non-data sections we've seen so
2372 // far which don't have to wait for the input sections. We need
2373 // this in order to finalize local symbols in non-allocated
2374 // sections.
2375 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2376
2377 // Set the section indexes of all unallocated sections seen so far,
2378 // in case any of them are somehow referenced by a symbol.
2379 shndx = this->set_section_indexes(shndx);
2380
2381 // Create the symbol table sections.
2382 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2383 if (!parameters->doing_static_link())
2384 this->assign_local_dynsym_offsets(input_objects);
2385
2386 // Process any symbol assignments from a linker script. This must
2387 // be called after the symbol table has been finalized.
2388 this->script_options_->finalize_symbols(symtab, this);
2389
2390 // Create the incremental inputs sections.
2391 if (this->incremental_inputs_)
2392 {
2393 this->incremental_inputs_->finalize();
2394 this->create_incremental_info_sections(symtab);
2395 }
2396
2397 // Create the .shstrtab section.
2398 Output_section* shstrtab_section = this->create_shstrtab();
2399
2400 // Set the file offsets of the rest of the non-data sections which
2401 // don't have to wait for the input sections.
2402 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2403
2404 // Now that all sections have been created, set the section indexes
2405 // for any sections which haven't been done yet.
2406 shndx = this->set_section_indexes(shndx);
2407
2408 // Create the section table header.
2409 this->create_shdrs(shstrtab_section, &off);
2410
2411 // If there are no sections which require postprocessing, we can
2412 // handle the section names now, and avoid a resize later.
2413 if (!this->any_postprocessing_sections_)
2414 {
2415 off = this->set_section_offsets(off,
2416 POSTPROCESSING_SECTIONS_PASS);
2417 off =
2418 this->set_section_offsets(off,
2419 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2420 }
2421
2422 file_header->set_section_info(this->section_headers_, shstrtab_section);
2423
2424 // Now we know exactly where everything goes in the output file
2425 // (except for non-allocated sections which require postprocessing).
2426 Output_data::layout_complete();
2427
2428 this->output_file_size_ = off;
2429
2430 return off;
2431 }
2432
2433 // Create a note header following the format defined in the ELF ABI.
2434 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2435 // of the section to create, DESCSZ is the size of the descriptor.
2436 // ALLOCATE is true if the section should be allocated in memory.
2437 // This returns the new note section. It sets *TRAILING_PADDING to
2438 // the number of trailing zero bytes required.
2439
2440 Output_section*
2441 Layout::create_note(const char* name, int note_type,
2442 const char* section_name, size_t descsz,
2443 bool allocate, size_t* trailing_padding)
2444 {
2445 // Authorities all agree that the values in a .note field should
2446 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2447 // they differ on what the alignment is for 64-bit binaries.
2448 // The GABI says unambiguously they take 8-byte alignment:
2449 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2450 // Other documentation says alignment should always be 4 bytes:
2451 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2452 // GNU ld and GNU readelf both support the latter (at least as of
2453 // version 2.16.91), and glibc always generates the latter for
2454 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2455 // here.
2456 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2457 const int size = parameters->target().get_size();
2458 #else
2459 const int size = 32;
2460 #endif
2461
2462 // The contents of the .note section.
2463 size_t namesz = strlen(name) + 1;
2464 size_t aligned_namesz = align_address(namesz, size / 8);
2465 size_t aligned_descsz = align_address(descsz, size / 8);
2466
2467 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2468
2469 unsigned char* buffer = new unsigned char[notehdrsz];
2470 memset(buffer, 0, notehdrsz);
2471
2472 bool is_big_endian = parameters->target().is_big_endian();
2473
2474 if (size == 32)
2475 {
2476 if (!is_big_endian)
2477 {
2478 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2479 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2480 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2481 }
2482 else
2483 {
2484 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2485 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2486 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2487 }
2488 }
2489 else if (size == 64)
2490 {
2491 if (!is_big_endian)
2492 {
2493 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2494 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2495 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2496 }
2497 else
2498 {
2499 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2500 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2501 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2502 }
2503 }
2504 else
2505 gold_unreachable();
2506
2507 memcpy(buffer + 3 * (size / 8), name, namesz);
2508
2509 elfcpp::Elf_Xword flags = 0;
2510 Output_section_order order = ORDER_INVALID;
2511 if (allocate)
2512 {
2513 flags = elfcpp::SHF_ALLOC;
2514 order = ORDER_RO_NOTE;
2515 }
2516 Output_section* os = this->choose_output_section(NULL, section_name,
2517 elfcpp::SHT_NOTE,
2518 flags, false, order, false);
2519 if (os == NULL)
2520 return NULL;
2521
2522 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2523 size / 8,
2524 "** note header");
2525 os->add_output_section_data(posd);
2526
2527 *trailing_padding = aligned_descsz - descsz;
2528
2529 return os;
2530 }
2531
2532 // For an executable or shared library, create a note to record the
2533 // version of gold used to create the binary.
2534
2535 void
2536 Layout::create_gold_note()
2537 {
2538 if (parameters->options().relocatable()
2539 || parameters->incremental_update())
2540 return;
2541
2542 std::string desc = std::string("gold ") + gold::get_version_string();
2543
2544 size_t trailing_padding;
2545 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2546 ".note.gnu.gold-version", desc.size(),
2547 false, &trailing_padding);
2548 if (os == NULL)
2549 return;
2550
2551 Output_section_data* posd = new Output_data_const(desc, 4);
2552 os->add_output_section_data(posd);
2553
2554 if (trailing_padding > 0)
2555 {
2556 posd = new Output_data_zero_fill(trailing_padding, 0);
2557 os->add_output_section_data(posd);
2558 }
2559 }
2560
2561 // Record whether the stack should be executable. This can be set
2562 // from the command line using the -z execstack or -z noexecstack
2563 // options. Otherwise, if any input file has a .note.GNU-stack
2564 // section with the SHF_EXECINSTR flag set, the stack should be
2565 // executable. Otherwise, if at least one input file a
2566 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2567 // section, we use the target default for whether the stack should be
2568 // executable. Otherwise, we don't generate a stack note. When
2569 // generating a object file, we create a .note.GNU-stack section with
2570 // the appropriate marking. When generating an executable or shared
2571 // library, we create a PT_GNU_STACK segment.
2572
2573 void
2574 Layout::create_executable_stack_info()
2575 {
2576 bool is_stack_executable;
2577 if (parameters->options().is_execstack_set())
2578 is_stack_executable = parameters->options().is_stack_executable();
2579 else if (!this->input_with_gnu_stack_note_)
2580 return;
2581 else
2582 {
2583 if (this->input_requires_executable_stack_)
2584 is_stack_executable = true;
2585 else if (this->input_without_gnu_stack_note_)
2586 is_stack_executable =
2587 parameters->target().is_default_stack_executable();
2588 else
2589 is_stack_executable = false;
2590 }
2591
2592 if (parameters->options().relocatable())
2593 {
2594 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2595 elfcpp::Elf_Xword flags = 0;
2596 if (is_stack_executable)
2597 flags |= elfcpp::SHF_EXECINSTR;
2598 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2599 ORDER_INVALID, false);
2600 }
2601 else
2602 {
2603 if (this->script_options_->saw_phdrs_clause())
2604 return;
2605 int flags = elfcpp::PF_R | elfcpp::PF_W;
2606 if (is_stack_executable)
2607 flags |= elfcpp::PF_X;
2608 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2609 }
2610 }
2611
2612 // If --build-id was used, set up the build ID note.
2613
2614 void
2615 Layout::create_build_id()
2616 {
2617 if (!parameters->options().user_set_build_id())
2618 return;
2619
2620 const char* style = parameters->options().build_id();
2621 if (strcmp(style, "none") == 0)
2622 return;
2623
2624 // Set DESCSZ to the size of the note descriptor. When possible,
2625 // set DESC to the note descriptor contents.
2626 size_t descsz;
2627 std::string desc;
2628 if (strcmp(style, "md5") == 0)
2629 descsz = 128 / 8;
2630 else if (strcmp(style, "sha1") == 0)
2631 descsz = 160 / 8;
2632 else if (strcmp(style, "uuid") == 0)
2633 {
2634 const size_t uuidsz = 128 / 8;
2635
2636 char buffer[uuidsz];
2637 memset(buffer, 0, uuidsz);
2638
2639 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2640 if (descriptor < 0)
2641 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2642 strerror(errno));
2643 else
2644 {
2645 ssize_t got = ::read(descriptor, buffer, uuidsz);
2646 release_descriptor(descriptor, true);
2647 if (got < 0)
2648 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2649 else if (static_cast<size_t>(got) != uuidsz)
2650 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2651 uuidsz, got);
2652 }
2653
2654 desc.assign(buffer, uuidsz);
2655 descsz = uuidsz;
2656 }
2657 else if (strncmp(style, "0x", 2) == 0)
2658 {
2659 hex_init();
2660 const char* p = style + 2;
2661 while (*p != '\0')
2662 {
2663 if (hex_p(p[0]) && hex_p(p[1]))
2664 {
2665 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2666 desc += c;
2667 p += 2;
2668 }
2669 else if (*p == '-' || *p == ':')
2670 ++p;
2671 else
2672 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2673 style);
2674 }
2675 descsz = desc.size();
2676 }
2677 else
2678 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2679
2680 // Create the note.
2681 size_t trailing_padding;
2682 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2683 ".note.gnu.build-id", descsz, true,
2684 &trailing_padding);
2685 if (os == NULL)
2686 return;
2687
2688 if (!desc.empty())
2689 {
2690 // We know the value already, so we fill it in now.
2691 gold_assert(desc.size() == descsz);
2692
2693 Output_section_data* posd = new Output_data_const(desc, 4);
2694 os->add_output_section_data(posd);
2695
2696 if (trailing_padding != 0)
2697 {
2698 posd = new Output_data_zero_fill(trailing_padding, 0);
2699 os->add_output_section_data(posd);
2700 }
2701 }
2702 else
2703 {
2704 // We need to compute a checksum after we have completed the
2705 // link.
2706 gold_assert(trailing_padding == 0);
2707 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2708 os->add_output_section_data(this->build_id_note_);
2709 }
2710 }
2711
2712 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2713 // field of the former should point to the latter. I'm not sure who
2714 // started this, but the GNU linker does it, and some tools depend
2715 // upon it.
2716
2717 void
2718 Layout::link_stabs_sections()
2719 {
2720 if (!this->have_stabstr_section_)
2721 return;
2722
2723 for (Section_list::iterator p = this->section_list_.begin();
2724 p != this->section_list_.end();
2725 ++p)
2726 {
2727 if ((*p)->type() != elfcpp::SHT_STRTAB)
2728 continue;
2729
2730 const char* name = (*p)->name();
2731 if (strncmp(name, ".stab", 5) != 0)
2732 continue;
2733
2734 size_t len = strlen(name);
2735 if (strcmp(name + len - 3, "str") != 0)
2736 continue;
2737
2738 std::string stab_name(name, len - 3);
2739 Output_section* stab_sec;
2740 stab_sec = this->find_output_section(stab_name.c_str());
2741 if (stab_sec != NULL)
2742 stab_sec->set_link_section(*p);
2743 }
2744 }
2745
2746 // Create .gnu_incremental_inputs and related sections needed
2747 // for the next run of incremental linking to check what has changed.
2748
2749 void
2750 Layout::create_incremental_info_sections(Symbol_table* symtab)
2751 {
2752 Incremental_inputs* incr = this->incremental_inputs_;
2753
2754 gold_assert(incr != NULL);
2755
2756 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2757 incr->create_data_sections(symtab);
2758
2759 // Add the .gnu_incremental_inputs section.
2760 const char* incremental_inputs_name =
2761 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2762 Output_section* incremental_inputs_os =
2763 this->make_output_section(incremental_inputs_name,
2764 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2765 ORDER_INVALID, false);
2766 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2767
2768 // Add the .gnu_incremental_symtab section.
2769 const char* incremental_symtab_name =
2770 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2771 Output_section* incremental_symtab_os =
2772 this->make_output_section(incremental_symtab_name,
2773 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2774 ORDER_INVALID, false);
2775 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2776 incremental_symtab_os->set_entsize(4);
2777
2778 // Add the .gnu_incremental_relocs section.
2779 const char* incremental_relocs_name =
2780 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2781 Output_section* incremental_relocs_os =
2782 this->make_output_section(incremental_relocs_name,
2783 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2784 ORDER_INVALID, false);
2785 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2786 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2787
2788 // Add the .gnu_incremental_got_plt section.
2789 const char* incremental_got_plt_name =
2790 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2791 Output_section* incremental_got_plt_os =
2792 this->make_output_section(incremental_got_plt_name,
2793 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2794 ORDER_INVALID, false);
2795 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2796
2797 // Add the .gnu_incremental_strtab section.
2798 const char* incremental_strtab_name =
2799 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2800 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2801 elfcpp::SHT_STRTAB, 0,
2802 ORDER_INVALID, false);
2803 Output_data_strtab* strtab_data =
2804 new Output_data_strtab(incr->get_stringpool());
2805 incremental_strtab_os->add_output_section_data(strtab_data);
2806
2807 incremental_inputs_os->set_after_input_sections();
2808 incremental_symtab_os->set_after_input_sections();
2809 incremental_relocs_os->set_after_input_sections();
2810 incremental_got_plt_os->set_after_input_sections();
2811
2812 incremental_inputs_os->set_link_section(incremental_strtab_os);
2813 incremental_symtab_os->set_link_section(incremental_inputs_os);
2814 incremental_relocs_os->set_link_section(incremental_inputs_os);
2815 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2816 }
2817
2818 // Return whether SEG1 should be before SEG2 in the output file. This
2819 // is based entirely on the segment type and flags. When this is
2820 // called the segment addresses have normally not yet been set.
2821
2822 bool
2823 Layout::segment_precedes(const Output_segment* seg1,
2824 const Output_segment* seg2)
2825 {
2826 elfcpp::Elf_Word type1 = seg1->type();
2827 elfcpp::Elf_Word type2 = seg2->type();
2828
2829 // The single PT_PHDR segment is required to precede any loadable
2830 // segment. We simply make it always first.
2831 if (type1 == elfcpp::PT_PHDR)
2832 {
2833 gold_assert(type2 != elfcpp::PT_PHDR);
2834 return true;
2835 }
2836 if (type2 == elfcpp::PT_PHDR)
2837 return false;
2838
2839 // The single PT_INTERP segment is required to precede any loadable
2840 // segment. We simply make it always second.
2841 if (type1 == elfcpp::PT_INTERP)
2842 {
2843 gold_assert(type2 != elfcpp::PT_INTERP);
2844 return true;
2845 }
2846 if (type2 == elfcpp::PT_INTERP)
2847 return false;
2848
2849 // We then put PT_LOAD segments before any other segments.
2850 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2851 return true;
2852 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2853 return false;
2854
2855 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2856 // segment, because that is where the dynamic linker expects to find
2857 // it (this is just for efficiency; other positions would also work
2858 // correctly).
2859 if (type1 == elfcpp::PT_TLS
2860 && type2 != elfcpp::PT_TLS
2861 && type2 != elfcpp::PT_GNU_RELRO)
2862 return false;
2863 if (type2 == elfcpp::PT_TLS
2864 && type1 != elfcpp::PT_TLS
2865 && type1 != elfcpp::PT_GNU_RELRO)
2866 return true;
2867
2868 // We put the PT_GNU_RELRO segment last, because that is where the
2869 // dynamic linker expects to find it (as with PT_TLS, this is just
2870 // for efficiency).
2871 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2872 return false;
2873 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2874 return true;
2875
2876 const elfcpp::Elf_Word flags1 = seg1->flags();
2877 const elfcpp::Elf_Word flags2 = seg2->flags();
2878
2879 // The order of non-PT_LOAD segments is unimportant. We simply sort
2880 // by the numeric segment type and flags values. There should not
2881 // be more than one segment with the same type and flags.
2882 if (type1 != elfcpp::PT_LOAD)
2883 {
2884 if (type1 != type2)
2885 return type1 < type2;
2886 gold_assert(flags1 != flags2);
2887 return flags1 < flags2;
2888 }
2889
2890 // If the addresses are set already, sort by load address.
2891 if (seg1->are_addresses_set())
2892 {
2893 if (!seg2->are_addresses_set())
2894 return true;
2895
2896 unsigned int section_count1 = seg1->output_section_count();
2897 unsigned int section_count2 = seg2->output_section_count();
2898 if (section_count1 == 0 && section_count2 > 0)
2899 return true;
2900 if (section_count1 > 0 && section_count2 == 0)
2901 return false;
2902
2903 uint64_t paddr1 = (seg1->are_addresses_set()
2904 ? seg1->paddr()
2905 : seg1->first_section_load_address());
2906 uint64_t paddr2 = (seg2->are_addresses_set()
2907 ? seg2->paddr()
2908 : seg2->first_section_load_address());
2909
2910 if (paddr1 != paddr2)
2911 return paddr1 < paddr2;
2912 }
2913 else if (seg2->are_addresses_set())
2914 return false;
2915
2916 // A segment which holds large data comes after a segment which does
2917 // not hold large data.
2918 if (seg1->is_large_data_segment())
2919 {
2920 if (!seg2->is_large_data_segment())
2921 return false;
2922 }
2923 else if (seg2->is_large_data_segment())
2924 return true;
2925
2926 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2927 // segments come before writable segments. Then writable segments
2928 // with data come before writable segments without data. Then
2929 // executable segments come before non-executable segments. Then
2930 // the unlikely case of a non-readable segment comes before the
2931 // normal case of a readable segment. If there are multiple
2932 // segments with the same type and flags, we require that the
2933 // address be set, and we sort by virtual address and then physical
2934 // address.
2935 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2936 return (flags1 & elfcpp::PF_W) == 0;
2937 if ((flags1 & elfcpp::PF_W) != 0
2938 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2939 return seg1->has_any_data_sections();
2940 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2941 return (flags1 & elfcpp::PF_X) != 0;
2942 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2943 return (flags1 & elfcpp::PF_R) == 0;
2944
2945 // We shouldn't get here--we shouldn't create segments which we
2946 // can't distinguish. Unless of course we are using a weird linker
2947 // script.
2948 gold_assert(this->script_options_->saw_phdrs_clause());
2949 return false;
2950 }
2951
2952 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2953
2954 static off_t
2955 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2956 {
2957 uint64_t unsigned_off = off;
2958 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2959 | (addr & (abi_pagesize - 1)));
2960 if (aligned_off < unsigned_off)
2961 aligned_off += abi_pagesize;
2962 return aligned_off;
2963 }
2964
2965 // Set the file offsets of all the segments, and all the sections they
2966 // contain. They have all been created. LOAD_SEG must be be laid out
2967 // first. Return the offset of the data to follow.
2968
2969 off_t
2970 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2971 unsigned int* pshndx)
2972 {
2973 // Sort them into the final order. We use a stable sort so that we
2974 // don't randomize the order of indistinguishable segments created
2975 // by linker scripts.
2976 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
2977 Layout::Compare_segments(this));
2978
2979 // Find the PT_LOAD segments, and set their addresses and offsets
2980 // and their section's addresses and offsets.
2981 uint64_t addr;
2982 if (parameters->options().user_set_Ttext())
2983 addr = parameters->options().Ttext();
2984 else if (parameters->options().output_is_position_independent())
2985 addr = 0;
2986 else
2987 addr = target->default_text_segment_address();
2988 off_t off = 0;
2989
2990 // If LOAD_SEG is NULL, then the file header and segment headers
2991 // will not be loadable. But they still need to be at offset 0 in
2992 // the file. Set their offsets now.
2993 if (load_seg == NULL)
2994 {
2995 for (Data_list::iterator p = this->special_output_list_.begin();
2996 p != this->special_output_list_.end();
2997 ++p)
2998 {
2999 off = align_address(off, (*p)->addralign());
3000 (*p)->set_address_and_file_offset(0, off);
3001 off += (*p)->data_size();
3002 }
3003 }
3004
3005 unsigned int increase_relro = this->increase_relro_;
3006 if (this->script_options_->saw_sections_clause())
3007 increase_relro = 0;
3008
3009 const bool check_sections = parameters->options().check_sections();
3010 Output_segment* last_load_segment = NULL;
3011
3012 for (Segment_list::iterator p = this->segment_list_.begin();
3013 p != this->segment_list_.end();
3014 ++p)
3015 {
3016 if ((*p)->type() == elfcpp::PT_LOAD)
3017 {
3018 if (load_seg != NULL && load_seg != *p)
3019 gold_unreachable();
3020 load_seg = NULL;
3021
3022 bool are_addresses_set = (*p)->are_addresses_set();
3023 if (are_addresses_set)
3024 {
3025 // When it comes to setting file offsets, we care about
3026 // the physical address.
3027 addr = (*p)->paddr();
3028 }
3029 else if (parameters->options().user_set_Tdata()
3030 && ((*p)->flags() & elfcpp::PF_W) != 0
3031 && (!parameters->options().user_set_Tbss()
3032 || (*p)->has_any_data_sections()))
3033 {
3034 addr = parameters->options().Tdata();
3035 are_addresses_set = true;
3036 }
3037 else if (parameters->options().user_set_Tbss()
3038 && ((*p)->flags() & elfcpp::PF_W) != 0
3039 && !(*p)->has_any_data_sections())
3040 {
3041 addr = parameters->options().Tbss();
3042 are_addresses_set = true;
3043 }
3044
3045 uint64_t orig_addr = addr;
3046 uint64_t orig_off = off;
3047
3048 uint64_t aligned_addr = 0;
3049 uint64_t abi_pagesize = target->abi_pagesize();
3050 uint64_t common_pagesize = target->common_pagesize();
3051
3052 if (!parameters->options().nmagic()
3053 && !parameters->options().omagic())
3054 (*p)->set_minimum_p_align(common_pagesize);
3055
3056 if (!are_addresses_set)
3057 {
3058 // Skip the address forward one page, maintaining the same
3059 // position within the page. This lets us store both segments
3060 // overlapping on a single page in the file, but the loader will
3061 // put them on different pages in memory. We will revisit this
3062 // decision once we know the size of the segment.
3063
3064 addr = align_address(addr, (*p)->maximum_alignment());
3065 aligned_addr = addr;
3066
3067 if ((addr & (abi_pagesize - 1)) != 0)
3068 addr = addr + abi_pagesize;
3069
3070 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3071 }
3072
3073 if (!parameters->options().nmagic()
3074 && !parameters->options().omagic())
3075 off = align_file_offset(off, addr, abi_pagesize);
3076 else if (load_seg == NULL)
3077 {
3078 // This is -N or -n with a section script which prevents
3079 // us from using a load segment. We need to ensure that
3080 // the file offset is aligned to the alignment of the
3081 // segment. This is because the linker script
3082 // implicitly assumed a zero offset. If we don't align
3083 // here, then the alignment of the sections in the
3084 // linker script may not match the alignment of the
3085 // sections in the set_section_addresses call below,
3086 // causing an error about dot moving backward.
3087 off = align_address(off, (*p)->maximum_alignment());
3088 }
3089
3090 unsigned int shndx_hold = *pshndx;
3091 bool has_relro = false;
3092 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3093 &increase_relro,
3094 &has_relro,
3095 &off, pshndx);
3096
3097 // Now that we know the size of this segment, we may be able
3098 // to save a page in memory, at the cost of wasting some
3099 // file space, by instead aligning to the start of a new
3100 // page. Here we use the real machine page size rather than
3101 // the ABI mandated page size. If the segment has been
3102 // aligned so that the relro data ends at a page boundary,
3103 // we do not try to realign it.
3104
3105 if (!are_addresses_set
3106 && !has_relro
3107 && aligned_addr != addr
3108 && !parameters->incremental())
3109 {
3110 uint64_t first_off = (common_pagesize
3111 - (aligned_addr
3112 & (common_pagesize - 1)));
3113 uint64_t last_off = new_addr & (common_pagesize - 1);
3114 if (first_off > 0
3115 && last_off > 0
3116 && ((aligned_addr & ~ (common_pagesize - 1))
3117 != (new_addr & ~ (common_pagesize - 1)))
3118 && first_off + last_off <= common_pagesize)
3119 {
3120 *pshndx = shndx_hold;
3121 addr = align_address(aligned_addr, common_pagesize);
3122 addr = align_address(addr, (*p)->maximum_alignment());
3123 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3124 off = align_file_offset(off, addr, abi_pagesize);
3125
3126 increase_relro = this->increase_relro_;
3127 if (this->script_options_->saw_sections_clause())
3128 increase_relro = 0;
3129 has_relro = false;
3130
3131 new_addr = (*p)->set_section_addresses(this, true, addr,
3132 &increase_relro,
3133 &has_relro,
3134 &off, pshndx);
3135 }
3136 }
3137
3138 addr = new_addr;
3139
3140 // Implement --check-sections. We know that the segments
3141 // are sorted by LMA.
3142 if (check_sections && last_load_segment != NULL)
3143 {
3144 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3145 if (last_load_segment->paddr() + last_load_segment->memsz()
3146 > (*p)->paddr())
3147 {
3148 unsigned long long lb1 = last_load_segment->paddr();
3149 unsigned long long le1 = lb1 + last_load_segment->memsz();
3150 unsigned long long lb2 = (*p)->paddr();
3151 unsigned long long le2 = lb2 + (*p)->memsz();
3152 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3153 "[0x%llx -> 0x%llx]"),
3154 lb1, le1, lb2, le2);
3155 }
3156 }
3157 last_load_segment = *p;
3158 }
3159 }
3160
3161 // Handle the non-PT_LOAD segments, setting their offsets from their
3162 // section's offsets.
3163 for (Segment_list::iterator p = this->segment_list_.begin();
3164 p != this->segment_list_.end();
3165 ++p)
3166 {
3167 if ((*p)->type() != elfcpp::PT_LOAD)
3168 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3169 ? increase_relro
3170 : 0);
3171 }
3172
3173 // Set the TLS offsets for each section in the PT_TLS segment.
3174 if (this->tls_segment_ != NULL)
3175 this->tls_segment_->set_tls_offsets();
3176
3177 return off;
3178 }
3179
3180 // Set the offsets of all the allocated sections when doing a
3181 // relocatable link. This does the same jobs as set_segment_offsets,
3182 // only for a relocatable link.
3183
3184 off_t
3185 Layout::set_relocatable_section_offsets(Output_data* file_header,
3186 unsigned int* pshndx)
3187 {
3188 off_t off = 0;
3189
3190 file_header->set_address_and_file_offset(0, 0);
3191 off += file_header->data_size();
3192
3193 for (Section_list::iterator p = this->section_list_.begin();
3194 p != this->section_list_.end();
3195 ++p)
3196 {
3197 // We skip unallocated sections here, except that group sections
3198 // have to come first.
3199 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3200 && (*p)->type() != elfcpp::SHT_GROUP)
3201 continue;
3202
3203 off = align_address(off, (*p)->addralign());
3204
3205 // The linker script might have set the address.
3206 if (!(*p)->is_address_valid())
3207 (*p)->set_address(0);
3208 (*p)->set_file_offset(off);
3209 (*p)->finalize_data_size();
3210 off += (*p)->data_size();
3211
3212 (*p)->set_out_shndx(*pshndx);
3213 ++*pshndx;
3214 }
3215
3216 return off;
3217 }
3218
3219 // Set the file offset of all the sections not associated with a
3220 // segment.
3221
3222 off_t
3223 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3224 {
3225 off_t startoff = off;
3226 off_t maxoff = off;
3227
3228 for (Section_list::iterator p = this->unattached_section_list_.begin();
3229 p != this->unattached_section_list_.end();
3230 ++p)
3231 {
3232 // The symtab section is handled in create_symtab_sections.
3233 if (*p == this->symtab_section_)
3234 continue;
3235
3236 // If we've already set the data size, don't set it again.
3237 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3238 continue;
3239
3240 if (pass == BEFORE_INPUT_SECTIONS_PASS
3241 && (*p)->requires_postprocessing())
3242 {
3243 (*p)->create_postprocessing_buffer();
3244 this->any_postprocessing_sections_ = true;
3245 }
3246
3247 if (pass == BEFORE_INPUT_SECTIONS_PASS
3248 && (*p)->after_input_sections())
3249 continue;
3250 else if (pass == POSTPROCESSING_SECTIONS_PASS
3251 && (!(*p)->after_input_sections()
3252 || (*p)->type() == elfcpp::SHT_STRTAB))
3253 continue;
3254 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3255 && (!(*p)->after_input_sections()
3256 || (*p)->type() != elfcpp::SHT_STRTAB))
3257 continue;
3258
3259 if (!parameters->incremental_update())
3260 {
3261 off = align_address(off, (*p)->addralign());
3262 (*p)->set_file_offset(off);
3263 (*p)->finalize_data_size();
3264 }
3265 else
3266 {
3267 // Incremental update: allocate file space from free list.
3268 (*p)->pre_finalize_data_size();
3269 off_t current_size = (*p)->current_data_size();
3270 off = this->allocate(current_size, (*p)->addralign(), startoff);
3271 if (off == -1)
3272 {
3273 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3274 this->free_list_.dump();
3275 gold_assert((*p)->output_section() != NULL);
3276 gold_fallback(_("out of patch space for section %s; "
3277 "relink with --incremental-full"),
3278 (*p)->output_section()->name());
3279 }
3280 (*p)->set_file_offset(off);
3281 (*p)->finalize_data_size();
3282 if ((*p)->data_size() > current_size)
3283 {
3284 gold_assert((*p)->output_section() != NULL);
3285 gold_fallback(_("%s: section changed size; "
3286 "relink with --incremental-full"),
3287 (*p)->output_section()->name());
3288 }
3289 gold_debug(DEBUG_INCREMENTAL,
3290 "set_section_offsets: %08lx %08lx %s",
3291 static_cast<long>(off),
3292 static_cast<long>((*p)->data_size()),
3293 ((*p)->output_section() != NULL
3294 ? (*p)->output_section()->name() : "(special)"));
3295 }
3296
3297 off += (*p)->data_size();
3298 if (off > maxoff)
3299 maxoff = off;
3300
3301 // At this point the name must be set.
3302 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3303 this->namepool_.add((*p)->name(), false, NULL);
3304 }
3305 return maxoff;
3306 }
3307
3308 // Set the section indexes of all the sections not associated with a
3309 // segment.
3310
3311 unsigned int
3312 Layout::set_section_indexes(unsigned int shndx)
3313 {
3314 for (Section_list::iterator p = this->unattached_section_list_.begin();
3315 p != this->unattached_section_list_.end();
3316 ++p)
3317 {
3318 if (!(*p)->has_out_shndx())
3319 {
3320 (*p)->set_out_shndx(shndx);
3321 ++shndx;
3322 }
3323 }
3324 return shndx;
3325 }
3326
3327 // Set the section addresses according to the linker script. This is
3328 // only called when we see a SECTIONS clause. This returns the
3329 // program segment which should hold the file header and segment
3330 // headers, if any. It will return NULL if they should not be in a
3331 // segment.
3332
3333 Output_segment*
3334 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3335 {
3336 Script_sections* ss = this->script_options_->script_sections();
3337 gold_assert(ss->saw_sections_clause());
3338 return this->script_options_->set_section_addresses(symtab, this);
3339 }
3340
3341 // Place the orphan sections in the linker script.
3342
3343 void
3344 Layout::place_orphan_sections_in_script()
3345 {
3346 Script_sections* ss = this->script_options_->script_sections();
3347 gold_assert(ss->saw_sections_clause());
3348
3349 // Place each orphaned output section in the script.
3350 for (Section_list::iterator p = this->section_list_.begin();
3351 p != this->section_list_.end();
3352 ++p)
3353 {
3354 if (!(*p)->found_in_sections_clause())
3355 ss->place_orphan(*p);
3356 }
3357 }
3358
3359 // Count the local symbols in the regular symbol table and the dynamic
3360 // symbol table, and build the respective string pools.
3361
3362 void
3363 Layout::count_local_symbols(const Task* task,
3364 const Input_objects* input_objects)
3365 {
3366 // First, figure out an upper bound on the number of symbols we'll
3367 // be inserting into each pool. This helps us create the pools with
3368 // the right size, to avoid unnecessary hashtable resizing.
3369 unsigned int symbol_count = 0;
3370 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3371 p != input_objects->relobj_end();
3372 ++p)
3373 symbol_count += (*p)->local_symbol_count();
3374
3375 // Go from "upper bound" to "estimate." We overcount for two
3376 // reasons: we double-count symbols that occur in more than one
3377 // object file, and we count symbols that are dropped from the
3378 // output. Add it all together and assume we overcount by 100%.
3379 symbol_count /= 2;
3380
3381 // We assume all symbols will go into both the sympool and dynpool.
3382 this->sympool_.reserve(symbol_count);
3383 this->dynpool_.reserve(symbol_count);
3384
3385 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3386 p != input_objects->relobj_end();
3387 ++p)
3388 {
3389 Task_lock_obj<Object> tlo(task, *p);
3390 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3391 }
3392 }
3393
3394 // Create the symbol table sections. Here we also set the final
3395 // values of the symbols. At this point all the loadable sections are
3396 // fully laid out. SHNUM is the number of sections so far.
3397
3398 void
3399 Layout::create_symtab_sections(const Input_objects* input_objects,
3400 Symbol_table* symtab,
3401 unsigned int shnum,
3402 off_t* poff)
3403 {
3404 int symsize;
3405 unsigned int align;
3406 if (parameters->target().get_size() == 32)
3407 {
3408 symsize = elfcpp::Elf_sizes<32>::sym_size;
3409 align = 4;
3410 }
3411 else if (parameters->target().get_size() == 64)
3412 {
3413 symsize = elfcpp::Elf_sizes<64>::sym_size;
3414 align = 8;
3415 }
3416 else
3417 gold_unreachable();
3418
3419 // Compute file offsets relative to the start of the symtab section.
3420 off_t off = 0;
3421
3422 // Save space for the dummy symbol at the start of the section. We
3423 // never bother to write this out--it will just be left as zero.
3424 off += symsize;
3425 unsigned int local_symbol_index = 1;
3426
3427 // Add STT_SECTION symbols for each Output section which needs one.
3428 for (Section_list::iterator p = this->section_list_.begin();
3429 p != this->section_list_.end();
3430 ++p)
3431 {
3432 if (!(*p)->needs_symtab_index())
3433 (*p)->set_symtab_index(-1U);
3434 else
3435 {
3436 (*p)->set_symtab_index(local_symbol_index);
3437 ++local_symbol_index;
3438 off += symsize;
3439 }
3440 }
3441
3442 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3443 p != input_objects->relobj_end();
3444 ++p)
3445 {
3446 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3447 off, symtab);
3448 off += (index - local_symbol_index) * symsize;
3449 local_symbol_index = index;
3450 }
3451
3452 unsigned int local_symcount = local_symbol_index;
3453 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3454
3455 off_t dynoff;
3456 size_t dyn_global_index;
3457 size_t dyncount;
3458 if (this->dynsym_section_ == NULL)
3459 {
3460 dynoff = 0;
3461 dyn_global_index = 0;
3462 dyncount = 0;
3463 }
3464 else
3465 {
3466 dyn_global_index = this->dynsym_section_->info();
3467 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3468 dynoff = this->dynsym_section_->offset() + locsize;
3469 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3470 gold_assert(static_cast<off_t>(dyncount * symsize)
3471 == this->dynsym_section_->data_size() - locsize);
3472 }
3473
3474 off_t global_off = off;
3475 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3476 &this->sympool_, &local_symcount);
3477
3478 if (!parameters->options().strip_all())
3479 {
3480 this->sympool_.set_string_offsets();
3481
3482 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3483 Output_section* osymtab = this->make_output_section(symtab_name,
3484 elfcpp::SHT_SYMTAB,
3485 0, ORDER_INVALID,
3486 false);
3487 this->symtab_section_ = osymtab;
3488
3489 Output_section_data* pos = new Output_data_fixed_space(off, align,
3490 "** symtab");
3491 osymtab->add_output_section_data(pos);
3492
3493 // We generate a .symtab_shndx section if we have more than
3494 // SHN_LORESERVE sections. Technically it is possible that we
3495 // don't need one, because it is possible that there are no
3496 // symbols in any of sections with indexes larger than
3497 // SHN_LORESERVE. That is probably unusual, though, and it is
3498 // easier to always create one than to compute section indexes
3499 // twice (once here, once when writing out the symbols).
3500 if (shnum >= elfcpp::SHN_LORESERVE)
3501 {
3502 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3503 false, NULL);
3504 Output_section* osymtab_xindex =
3505 this->make_output_section(symtab_xindex_name,
3506 elfcpp::SHT_SYMTAB_SHNDX, 0,
3507 ORDER_INVALID, false);
3508
3509 size_t symcount = off / symsize;
3510 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3511
3512 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3513
3514 osymtab_xindex->set_link_section(osymtab);
3515 osymtab_xindex->set_addralign(4);
3516 osymtab_xindex->set_entsize(4);
3517
3518 osymtab_xindex->set_after_input_sections();
3519
3520 // This tells the driver code to wait until the symbol table
3521 // has written out before writing out the postprocessing
3522 // sections, including the .symtab_shndx section.
3523 this->any_postprocessing_sections_ = true;
3524 }
3525
3526 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3527 Output_section* ostrtab = this->make_output_section(strtab_name,
3528 elfcpp::SHT_STRTAB,
3529 0, ORDER_INVALID,
3530 false);
3531
3532 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3533 ostrtab->add_output_section_data(pstr);
3534
3535 off_t symtab_off;
3536 if (!parameters->incremental_update())
3537 symtab_off = align_address(*poff, align);
3538 else
3539 {
3540 symtab_off = this->allocate(off, align, *poff);
3541 if (off == -1)
3542 gold_fallback(_("out of patch space for symbol table; "
3543 "relink with --incremental-full"));
3544 gold_debug(DEBUG_INCREMENTAL,
3545 "create_symtab_sections: %08lx %08lx .symtab",
3546 static_cast<long>(symtab_off),
3547 static_cast<long>(off));
3548 }
3549
3550 symtab->set_file_offset(symtab_off + global_off);
3551 osymtab->set_file_offset(symtab_off);
3552 osymtab->finalize_data_size();
3553 osymtab->set_link_section(ostrtab);
3554 osymtab->set_info(local_symcount);
3555 osymtab->set_entsize(symsize);
3556
3557 if (symtab_off + off > *poff)
3558 *poff = symtab_off + off;
3559 }
3560 }
3561
3562 // Create the .shstrtab section, which holds the names of the
3563 // sections. At the time this is called, we have created all the
3564 // output sections except .shstrtab itself.
3565
3566 Output_section*
3567 Layout::create_shstrtab()
3568 {
3569 // FIXME: We don't need to create a .shstrtab section if we are
3570 // stripping everything.
3571
3572 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3573
3574 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3575 ORDER_INVALID, false);
3576
3577 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3578 {
3579 // We can't write out this section until we've set all the
3580 // section names, and we don't set the names of compressed
3581 // output sections until relocations are complete. FIXME: With
3582 // the current names we use, this is unnecessary.
3583 os->set_after_input_sections();
3584 }
3585
3586 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3587 os->add_output_section_data(posd);
3588
3589 return os;
3590 }
3591
3592 // Create the section headers. SIZE is 32 or 64. OFF is the file
3593 // offset.
3594
3595 void
3596 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3597 {
3598 Output_section_headers* oshdrs;
3599 oshdrs = new Output_section_headers(this,
3600 &this->segment_list_,
3601 &this->section_list_,
3602 &this->unattached_section_list_,
3603 &this->namepool_,
3604 shstrtab_section);
3605 off_t off;
3606 if (!parameters->incremental_update())
3607 off = align_address(*poff, oshdrs->addralign());
3608 else
3609 {
3610 oshdrs->pre_finalize_data_size();
3611 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3612 if (off == -1)
3613 gold_fallback(_("out of patch space for section header table; "
3614 "relink with --incremental-full"));
3615 gold_debug(DEBUG_INCREMENTAL,
3616 "create_shdrs: %08lx %08lx (section header table)",
3617 static_cast<long>(off),
3618 static_cast<long>(off + oshdrs->data_size()));
3619 }
3620 oshdrs->set_address_and_file_offset(0, off);
3621 off += oshdrs->data_size();
3622 if (off > *poff)
3623 *poff = off;
3624 this->section_headers_ = oshdrs;
3625 }
3626
3627 // Count the allocated sections.
3628
3629 size_t
3630 Layout::allocated_output_section_count() const
3631 {
3632 size_t section_count = 0;
3633 for (Segment_list::const_iterator p = this->segment_list_.begin();
3634 p != this->segment_list_.end();
3635 ++p)
3636 section_count += (*p)->output_section_count();
3637 return section_count;
3638 }
3639
3640 // Create the dynamic symbol table.
3641
3642 void
3643 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3644 Symbol_table* symtab,
3645 Output_section** pdynstr,
3646 unsigned int* plocal_dynamic_count,
3647 std::vector<Symbol*>* pdynamic_symbols,
3648 Versions* pversions)
3649 {
3650 // Count all the symbols in the dynamic symbol table, and set the
3651 // dynamic symbol indexes.
3652
3653 // Skip symbol 0, which is always all zeroes.
3654 unsigned int index = 1;
3655
3656 // Add STT_SECTION symbols for each Output section which needs one.
3657 for (Section_list::iterator p = this->section_list_.begin();
3658 p != this->section_list_.end();
3659 ++p)
3660 {
3661 if (!(*p)->needs_dynsym_index())
3662 (*p)->set_dynsym_index(-1U);
3663 else
3664 {
3665 (*p)->set_dynsym_index(index);
3666 ++index;
3667 }
3668 }
3669
3670 // Count the local symbols that need to go in the dynamic symbol table,
3671 // and set the dynamic symbol indexes.
3672 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3673 p != input_objects->relobj_end();
3674 ++p)
3675 {
3676 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3677 index = new_index;
3678 }
3679
3680 unsigned int local_symcount = index;
3681 *plocal_dynamic_count = local_symcount;
3682
3683 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3684 &this->dynpool_, pversions);
3685
3686 int symsize;
3687 unsigned int align;
3688 const int size = parameters->target().get_size();
3689 if (size == 32)
3690 {
3691 symsize = elfcpp::Elf_sizes<32>::sym_size;
3692 align = 4;
3693 }
3694 else if (size == 64)
3695 {
3696 symsize = elfcpp::Elf_sizes<64>::sym_size;
3697 align = 8;
3698 }
3699 else
3700 gold_unreachable();
3701
3702 // Create the dynamic symbol table section.
3703
3704 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3705 elfcpp::SHT_DYNSYM,
3706 elfcpp::SHF_ALLOC,
3707 false,
3708 ORDER_DYNAMIC_LINKER,
3709 false);
3710
3711 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3712 align,
3713 "** dynsym");
3714 dynsym->add_output_section_data(odata);
3715
3716 dynsym->set_info(local_symcount);
3717 dynsym->set_entsize(symsize);
3718 dynsym->set_addralign(align);
3719
3720 this->dynsym_section_ = dynsym;
3721
3722 Output_data_dynamic* const odyn = this->dynamic_data_;
3723 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3724 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3725
3726 // If there are more than SHN_LORESERVE allocated sections, we
3727 // create a .dynsym_shndx section. It is possible that we don't
3728 // need one, because it is possible that there are no dynamic
3729 // symbols in any of the sections with indexes larger than
3730 // SHN_LORESERVE. This is probably unusual, though, and at this
3731 // time we don't know the actual section indexes so it is
3732 // inconvenient to check.
3733 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3734 {
3735 Output_section* dynsym_xindex =
3736 this->choose_output_section(NULL, ".dynsym_shndx",
3737 elfcpp::SHT_SYMTAB_SHNDX,
3738 elfcpp::SHF_ALLOC,
3739 false, ORDER_DYNAMIC_LINKER, false);
3740
3741 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3742
3743 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3744
3745 dynsym_xindex->set_link_section(dynsym);
3746 dynsym_xindex->set_addralign(4);
3747 dynsym_xindex->set_entsize(4);
3748
3749 dynsym_xindex->set_after_input_sections();
3750
3751 // This tells the driver code to wait until the symbol table has
3752 // written out before writing out the postprocessing sections,
3753 // including the .dynsym_shndx section.
3754 this->any_postprocessing_sections_ = true;
3755 }
3756
3757 // Create the dynamic string table section.
3758
3759 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3760 elfcpp::SHT_STRTAB,
3761 elfcpp::SHF_ALLOC,
3762 false,
3763 ORDER_DYNAMIC_LINKER,
3764 false);
3765
3766 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3767 dynstr->add_output_section_data(strdata);
3768
3769 dynsym->set_link_section(dynstr);
3770 this->dynamic_section_->set_link_section(dynstr);
3771
3772 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3773 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3774
3775 *pdynstr = dynstr;
3776
3777 // Create the hash tables.
3778
3779 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3780 || strcmp(parameters->options().hash_style(), "both") == 0)
3781 {
3782 unsigned char* phash;
3783 unsigned int hashlen;
3784 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3785 &phash, &hashlen);
3786
3787 Output_section* hashsec =
3788 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3789 elfcpp::SHF_ALLOC, false,
3790 ORDER_DYNAMIC_LINKER, false);
3791
3792 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3793 hashlen,
3794 align,
3795 "** hash");
3796 hashsec->add_output_section_data(hashdata);
3797
3798 hashsec->set_link_section(dynsym);
3799 hashsec->set_entsize(4);
3800
3801 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3802 }
3803
3804 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3805 || strcmp(parameters->options().hash_style(), "both") == 0)
3806 {
3807 unsigned char* phash;
3808 unsigned int hashlen;
3809 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3810 &phash, &hashlen);
3811
3812 Output_section* hashsec =
3813 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3814 elfcpp::SHF_ALLOC, false,
3815 ORDER_DYNAMIC_LINKER, false);
3816
3817 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3818 hashlen,
3819 align,
3820 "** hash");
3821 hashsec->add_output_section_data(hashdata);
3822
3823 hashsec->set_link_section(dynsym);
3824
3825 // For a 64-bit target, the entries in .gnu.hash do not have a
3826 // uniform size, so we only set the entry size for a 32-bit
3827 // target.
3828 if (parameters->target().get_size() == 32)
3829 hashsec->set_entsize(4);
3830
3831 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3832 }
3833 }
3834
3835 // Assign offsets to each local portion of the dynamic symbol table.
3836
3837 void
3838 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3839 {
3840 Output_section* dynsym = this->dynsym_section_;
3841 gold_assert(dynsym != NULL);
3842
3843 off_t off = dynsym->offset();
3844
3845 // Skip the dummy symbol at the start of the section.
3846 off += dynsym->entsize();
3847
3848 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3849 p != input_objects->relobj_end();
3850 ++p)
3851 {
3852 unsigned int count = (*p)->set_local_dynsym_offset(off);
3853 off += count * dynsym->entsize();
3854 }
3855 }
3856
3857 // Create the version sections.
3858
3859 void
3860 Layout::create_version_sections(const Versions* versions,
3861 const Symbol_table* symtab,
3862 unsigned int local_symcount,
3863 const std::vector<Symbol*>& dynamic_symbols,
3864 const Output_section* dynstr)
3865 {
3866 if (!versions->any_defs() && !versions->any_needs())
3867 return;
3868
3869 switch (parameters->size_and_endianness())
3870 {
3871 #ifdef HAVE_TARGET_32_LITTLE
3872 case Parameters::TARGET_32_LITTLE:
3873 this->sized_create_version_sections<32, false>(versions, symtab,
3874 local_symcount,
3875 dynamic_symbols, dynstr);
3876 break;
3877 #endif
3878 #ifdef HAVE_TARGET_32_BIG
3879 case Parameters::TARGET_32_BIG:
3880 this->sized_create_version_sections<32, true>(versions, symtab,
3881 local_symcount,
3882 dynamic_symbols, dynstr);
3883 break;
3884 #endif
3885 #ifdef HAVE_TARGET_64_LITTLE
3886 case Parameters::TARGET_64_LITTLE:
3887 this->sized_create_version_sections<64, false>(versions, symtab,
3888 local_symcount,
3889 dynamic_symbols, dynstr);
3890 break;
3891 #endif
3892 #ifdef HAVE_TARGET_64_BIG
3893 case Parameters::TARGET_64_BIG:
3894 this->sized_create_version_sections<64, true>(versions, symtab,
3895 local_symcount,
3896 dynamic_symbols, dynstr);
3897 break;
3898 #endif
3899 default:
3900 gold_unreachable();
3901 }
3902 }
3903
3904 // Create the version sections, sized version.
3905
3906 template<int size, bool big_endian>
3907 void
3908 Layout::sized_create_version_sections(
3909 const Versions* versions,
3910 const Symbol_table* symtab,
3911 unsigned int local_symcount,
3912 const std::vector<Symbol*>& dynamic_symbols,
3913 const Output_section* dynstr)
3914 {
3915 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3916 elfcpp::SHT_GNU_versym,
3917 elfcpp::SHF_ALLOC,
3918 false,
3919 ORDER_DYNAMIC_LINKER,
3920 false);
3921
3922 unsigned char* vbuf;
3923 unsigned int vsize;
3924 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3925 local_symcount,
3926 dynamic_symbols,
3927 &vbuf, &vsize);
3928
3929 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3930 "** versions");
3931
3932 vsec->add_output_section_data(vdata);
3933 vsec->set_entsize(2);
3934 vsec->set_link_section(this->dynsym_section_);
3935
3936 Output_data_dynamic* const odyn = this->dynamic_data_;
3937 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3938
3939 if (versions->any_defs())
3940 {
3941 Output_section* vdsec;
3942 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3943 elfcpp::SHT_GNU_verdef,
3944 elfcpp::SHF_ALLOC,
3945 false, ORDER_DYNAMIC_LINKER, false);
3946
3947 unsigned char* vdbuf;
3948 unsigned int vdsize;
3949 unsigned int vdentries;
3950 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3951 &vdsize, &vdentries);
3952
3953 Output_section_data* vddata =
3954 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3955
3956 vdsec->add_output_section_data(vddata);
3957 vdsec->set_link_section(dynstr);
3958 vdsec->set_info(vdentries);
3959
3960 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3961 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3962 }
3963
3964 if (versions->any_needs())
3965 {
3966 Output_section* vnsec;
3967 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3968 elfcpp::SHT_GNU_verneed,
3969 elfcpp::SHF_ALLOC,
3970 false, ORDER_DYNAMIC_LINKER, false);
3971
3972 unsigned char* vnbuf;
3973 unsigned int vnsize;
3974 unsigned int vnentries;
3975 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3976 &vnbuf, &vnsize,
3977 &vnentries);
3978
3979 Output_section_data* vndata =
3980 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3981
3982 vnsec->add_output_section_data(vndata);
3983 vnsec->set_link_section(dynstr);
3984 vnsec->set_info(vnentries);
3985
3986 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3987 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3988 }
3989 }
3990
3991 // Create the .interp section and PT_INTERP segment.
3992
3993 void
3994 Layout::create_interp(const Target* target)
3995 {
3996 gold_assert(this->interp_segment_ == NULL);
3997
3998 const char* interp = parameters->options().dynamic_linker();
3999 if (interp == NULL)
4000 {
4001 interp = target->dynamic_linker();
4002 gold_assert(interp != NULL);
4003 }
4004
4005 size_t len = strlen(interp) + 1;
4006
4007 Output_section_data* odata = new Output_data_const(interp, len, 1);
4008
4009 Output_section* osec = this->choose_output_section(NULL, ".interp",
4010 elfcpp::SHT_PROGBITS,
4011 elfcpp::SHF_ALLOC,
4012 false, ORDER_INTERP,
4013 false);
4014 osec->add_output_section_data(odata);
4015 }
4016
4017 // Add dynamic tags for the PLT and the dynamic relocs. This is
4018 // called by the target-specific code. This does nothing if not doing
4019 // a dynamic link.
4020
4021 // USE_REL is true for REL relocs rather than RELA relocs.
4022
4023 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4024
4025 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4026 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4027 // some targets have multiple reloc sections in PLT_REL.
4028
4029 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4030 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
4031
4032 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4033 // executable.
4034
4035 void
4036 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4037 const Output_data* plt_rel,
4038 const Output_data_reloc_generic* dyn_rel,
4039 bool add_debug, bool dynrel_includes_plt)
4040 {
4041 Output_data_dynamic* odyn = this->dynamic_data_;
4042 if (odyn == NULL)
4043 return;
4044
4045 if (plt_got != NULL && plt_got->output_section() != NULL)
4046 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4047
4048 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4049 {
4050 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4051 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4052 odyn->add_constant(elfcpp::DT_PLTREL,
4053 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4054 }
4055
4056 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4057 {
4058 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4059 dyn_rel);
4060 if (plt_rel != NULL && dynrel_includes_plt)
4061 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4062 dyn_rel, plt_rel);
4063 else
4064 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4065 dyn_rel);
4066 const int size = parameters->target().get_size();
4067 elfcpp::DT rel_tag;
4068 int rel_size;
4069 if (use_rel)
4070 {
4071 rel_tag = elfcpp::DT_RELENT;
4072 if (size == 32)
4073 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4074 else if (size == 64)
4075 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4076 else
4077 gold_unreachable();
4078 }
4079 else
4080 {
4081 rel_tag = elfcpp::DT_RELAENT;
4082 if (size == 32)
4083 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4084 else if (size == 64)
4085 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4086 else
4087 gold_unreachable();
4088 }
4089 odyn->add_constant(rel_tag, rel_size);
4090
4091 if (parameters->options().combreloc())
4092 {
4093 size_t c = dyn_rel->relative_reloc_count();
4094 if (c > 0)
4095 odyn->add_constant((use_rel
4096 ? elfcpp::DT_RELCOUNT
4097 : elfcpp::DT_RELACOUNT),
4098 c);
4099 }
4100 }
4101
4102 if (add_debug && !parameters->options().shared())
4103 {
4104 // The value of the DT_DEBUG tag is filled in by the dynamic
4105 // linker at run time, and used by the debugger.
4106 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4107 }
4108 }
4109
4110 // Finish the .dynamic section and PT_DYNAMIC segment.
4111
4112 void
4113 Layout::finish_dynamic_section(const Input_objects* input_objects,
4114 const Symbol_table* symtab)
4115 {
4116 if (!this->script_options_->saw_phdrs_clause())
4117 {
4118 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4119 (elfcpp::PF_R
4120 | elfcpp::PF_W));
4121 oseg->add_output_section_to_nonload(this->dynamic_section_,
4122 elfcpp::PF_R | elfcpp::PF_W);
4123 }
4124
4125 Output_data_dynamic* const odyn = this->dynamic_data_;
4126
4127 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4128 p != input_objects->dynobj_end();
4129 ++p)
4130 {
4131 if (!(*p)->is_needed() && (*p)->as_needed())
4132 {
4133 // This dynamic object was linked with --as-needed, but it
4134 // is not needed.
4135 continue;
4136 }
4137
4138 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4139 }
4140
4141 if (parameters->options().shared())
4142 {
4143 const char* soname = parameters->options().soname();
4144 if (soname != NULL)
4145 odyn->add_string(elfcpp::DT_SONAME, soname);
4146 }
4147
4148 Symbol* sym = symtab->lookup(parameters->options().init());
4149 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4150 odyn->add_symbol(elfcpp::DT_INIT, sym);
4151
4152 sym = symtab->lookup(parameters->options().fini());
4153 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4154 odyn->add_symbol(elfcpp::DT_FINI, sym);
4155
4156 // Look for .init_array, .preinit_array and .fini_array by checking
4157 // section types.
4158 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4159 p != this->section_list_.end();
4160 ++p)
4161 switch((*p)->type())
4162 {
4163 case elfcpp::SHT_FINI_ARRAY:
4164 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4165 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4166 break;
4167 case elfcpp::SHT_INIT_ARRAY:
4168 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4169 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4170 break;
4171 case elfcpp::SHT_PREINIT_ARRAY:
4172 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4173 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4174 break;
4175 default:
4176 break;
4177 }
4178
4179 // Add a DT_RPATH entry if needed.
4180 const General_options::Dir_list& rpath(parameters->options().rpath());
4181 if (!rpath.empty())
4182 {
4183 std::string rpath_val;
4184 for (General_options::Dir_list::const_iterator p = rpath.begin();
4185 p != rpath.end();
4186 ++p)
4187 {
4188 if (rpath_val.empty())
4189 rpath_val = p->name();
4190 else
4191 {
4192 // Eliminate duplicates.
4193 General_options::Dir_list::const_iterator q;
4194 for (q = rpath.begin(); q != p; ++q)
4195 if (q->name() == p->name())
4196 break;
4197 if (q == p)
4198 {
4199 rpath_val += ':';
4200 rpath_val += p->name();
4201 }
4202 }
4203 }
4204
4205 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4206 if (parameters->options().enable_new_dtags())
4207 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4208 }
4209
4210 // Look for text segments that have dynamic relocations.
4211 bool have_textrel = false;
4212 if (!this->script_options_->saw_sections_clause())
4213 {
4214 for (Segment_list::const_iterator p = this->segment_list_.begin();
4215 p != this->segment_list_.end();
4216 ++p)
4217 {
4218 if ((*p)->type() == elfcpp::PT_LOAD
4219 && ((*p)->flags() & elfcpp::PF_W) == 0
4220 && (*p)->has_dynamic_reloc())
4221 {
4222 have_textrel = true;
4223 break;
4224 }
4225 }
4226 }
4227 else
4228 {
4229 // We don't know the section -> segment mapping, so we are
4230 // conservative and just look for readonly sections with
4231 // relocations. If those sections wind up in writable segments,
4232 // then we have created an unnecessary DT_TEXTREL entry.
4233 for (Section_list::const_iterator p = this->section_list_.begin();
4234 p != this->section_list_.end();
4235 ++p)
4236 {
4237 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4238 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4239 && (*p)->has_dynamic_reloc())
4240 {
4241 have_textrel = true;
4242 break;
4243 }
4244 }
4245 }
4246
4247 if (parameters->options().filter() != NULL)
4248 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4249 if (parameters->options().any_auxiliary())
4250 {
4251 for (options::String_set::const_iterator p =
4252 parameters->options().auxiliary_begin();
4253 p != parameters->options().auxiliary_end();
4254 ++p)
4255 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4256 }
4257
4258 // Add a DT_FLAGS entry if necessary.
4259 unsigned int flags = 0;
4260 if (have_textrel)
4261 {
4262 // Add a DT_TEXTREL for compatibility with older loaders.
4263 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4264 flags |= elfcpp::DF_TEXTREL;
4265
4266 if (parameters->options().text())
4267 gold_error(_("read-only segment has dynamic relocations"));
4268 else if (parameters->options().warn_shared_textrel()
4269 && parameters->options().shared())
4270 gold_warning(_("shared library text segment is not shareable"));
4271 }
4272 if (parameters->options().shared() && this->has_static_tls())
4273 flags |= elfcpp::DF_STATIC_TLS;
4274 if (parameters->options().origin())
4275 flags |= elfcpp::DF_ORIGIN;
4276 if (parameters->options().Bsymbolic())
4277 {
4278 flags |= elfcpp::DF_SYMBOLIC;
4279 // Add DT_SYMBOLIC for compatibility with older loaders.
4280 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4281 }
4282 if (parameters->options().now())
4283 flags |= elfcpp::DF_BIND_NOW;
4284 if (flags != 0)
4285 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4286
4287 flags = 0;
4288 if (parameters->options().initfirst())
4289 flags |= elfcpp::DF_1_INITFIRST;
4290 if (parameters->options().interpose())
4291 flags |= elfcpp::DF_1_INTERPOSE;
4292 if (parameters->options().loadfltr())
4293 flags |= elfcpp::DF_1_LOADFLTR;
4294 if (parameters->options().nodefaultlib())
4295 flags |= elfcpp::DF_1_NODEFLIB;
4296 if (parameters->options().nodelete())
4297 flags |= elfcpp::DF_1_NODELETE;
4298 if (parameters->options().nodlopen())
4299 flags |= elfcpp::DF_1_NOOPEN;
4300 if (parameters->options().nodump())
4301 flags |= elfcpp::DF_1_NODUMP;
4302 if (!parameters->options().shared())
4303 flags &= ~(elfcpp::DF_1_INITFIRST
4304 | elfcpp::DF_1_NODELETE
4305 | elfcpp::DF_1_NOOPEN);
4306 if (parameters->options().origin())
4307 flags |= elfcpp::DF_1_ORIGIN;
4308 if (parameters->options().now())
4309 flags |= elfcpp::DF_1_NOW;
4310 if (flags != 0)
4311 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4312 }
4313
4314 // Set the size of the _DYNAMIC symbol table to be the size of the
4315 // dynamic data.
4316
4317 void
4318 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4319 {
4320 Output_data_dynamic* const odyn = this->dynamic_data_;
4321 odyn->finalize_data_size();
4322 off_t data_size = odyn->data_size();
4323 const int size = parameters->target().get_size();
4324 if (size == 32)
4325 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4326 else if (size == 64)
4327 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4328 else
4329 gold_unreachable();
4330 }
4331
4332 // The mapping of input section name prefixes to output section names.
4333 // In some cases one prefix is itself a prefix of another prefix; in
4334 // such a case the longer prefix must come first. These prefixes are
4335 // based on the GNU linker default ELF linker script.
4336
4337 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4338 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4339 {
4340 MAPPING_INIT(".text.", ".text"),
4341 MAPPING_INIT(".rodata.", ".rodata"),
4342 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4343 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4344 MAPPING_INIT(".data.", ".data"),
4345 MAPPING_INIT(".bss.", ".bss"),
4346 MAPPING_INIT(".tdata.", ".tdata"),
4347 MAPPING_INIT(".tbss.", ".tbss"),
4348 MAPPING_INIT(".init_array.", ".init_array"),
4349 MAPPING_INIT(".fini_array.", ".fini_array"),
4350 MAPPING_INIT(".sdata.", ".sdata"),
4351 MAPPING_INIT(".sbss.", ".sbss"),
4352 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4353 // differently depending on whether it is creating a shared library.
4354 MAPPING_INIT(".sdata2.", ".sdata"),
4355 MAPPING_INIT(".sbss2.", ".sbss"),
4356 MAPPING_INIT(".lrodata.", ".lrodata"),
4357 MAPPING_INIT(".ldata.", ".ldata"),
4358 MAPPING_INIT(".lbss.", ".lbss"),
4359 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4360 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4361 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4362 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4363 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4364 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4365 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4366 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4367 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4368 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4369 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4370 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4371 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4372 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4373 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4374 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4375 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4376 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4377 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4378 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4379 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4380 };
4381 #undef MAPPING_INIT
4382
4383 const int Layout::section_name_mapping_count =
4384 (sizeof(Layout::section_name_mapping)
4385 / sizeof(Layout::section_name_mapping[0]));
4386
4387 // Choose the output section name to use given an input section name.
4388 // Set *PLEN to the length of the name. *PLEN is initialized to the
4389 // length of NAME.
4390
4391 const char*
4392 Layout::output_section_name(const Relobj* relobj, const char* name,
4393 size_t* plen)
4394 {
4395 // gcc 4.3 generates the following sorts of section names when it
4396 // needs a section name specific to a function:
4397 // .text.FN
4398 // .rodata.FN
4399 // .sdata2.FN
4400 // .data.FN
4401 // .data.rel.FN
4402 // .data.rel.local.FN
4403 // .data.rel.ro.FN
4404 // .data.rel.ro.local.FN
4405 // .sdata.FN
4406 // .bss.FN
4407 // .sbss.FN
4408 // .tdata.FN
4409 // .tbss.FN
4410
4411 // The GNU linker maps all of those to the part before the .FN,
4412 // except that .data.rel.local.FN is mapped to .data, and
4413 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4414 // beginning with .data.rel.ro.local are grouped together.
4415
4416 // For an anonymous namespace, the string FN can contain a '.'.
4417
4418 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4419 // GNU linker maps to .rodata.
4420
4421 // The .data.rel.ro sections are used with -z relro. The sections
4422 // are recognized by name. We use the same names that the GNU
4423 // linker does for these sections.
4424
4425 // It is hard to handle this in a principled way, so we don't even
4426 // try. We use a table of mappings. If the input section name is
4427 // not found in the table, we simply use it as the output section
4428 // name.
4429
4430 const Section_name_mapping* psnm = section_name_mapping;
4431 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4432 {
4433 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4434 {
4435 *plen = psnm->tolen;
4436 return psnm->to;
4437 }
4438 }
4439
4440 // As an additional complication, .ctors sections are output in
4441 // either .ctors or .init_array sections, and .dtors sections are
4442 // output in either .dtors or .fini_array sections.
4443 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4444 {
4445 if (parameters->options().ctors_in_init_array())
4446 {
4447 *plen = 11;
4448 return name[1] == 'c' ? ".init_array" : ".fini_array";
4449 }
4450 else
4451 {
4452 *plen = 6;
4453 return name[1] == 'c' ? ".ctors" : ".dtors";
4454 }
4455 }
4456 if (parameters->options().ctors_in_init_array()
4457 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4458 {
4459 // To make .init_array/.fini_array work with gcc we must exclude
4460 // .ctors and .dtors sections from the crtbegin and crtend
4461 // files.
4462 if (relobj == NULL
4463 || (!Layout::match_file_name(relobj, "crtbegin")
4464 && !Layout::match_file_name(relobj, "crtend")))
4465 {
4466 *plen = 11;
4467 return name[1] == 'c' ? ".init_array" : ".fini_array";
4468 }
4469 }
4470
4471 return name;
4472 }
4473
4474 // Return true if RELOBJ is an input file whose base name matches
4475 // FILE_NAME. The base name must have an extension of ".o", and must
4476 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4477 // to match crtbegin.o as well as crtbeginS.o without getting confused
4478 // by other possibilities. Overall matching the file name this way is
4479 // a dreadful hack, but the GNU linker does it in order to better
4480 // support gcc, and we need to be compatible.
4481
4482 bool
4483 Layout::match_file_name(const Relobj* relobj, const char* match)
4484 {
4485 const std::string& file_name(relobj->name());
4486 const char* base_name = lbasename(file_name.c_str());
4487 size_t match_len = strlen(match);
4488 if (strncmp(base_name, match, match_len) != 0)
4489 return false;
4490 size_t base_len = strlen(base_name);
4491 if (base_len != match_len + 2 && base_len != match_len + 3)
4492 return false;
4493 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4494 }
4495
4496 // Check if a comdat group or .gnu.linkonce section with the given
4497 // NAME is selected for the link. If there is already a section,
4498 // *KEPT_SECTION is set to point to the existing section and the
4499 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4500 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4501 // *KEPT_SECTION is set to the internal copy and the function returns
4502 // true.
4503
4504 bool
4505 Layout::find_or_add_kept_section(const std::string& name,
4506 Relobj* object,
4507 unsigned int shndx,
4508 bool is_comdat,
4509 bool is_group_name,
4510 Kept_section** kept_section)
4511 {
4512 // It's normal to see a couple of entries here, for the x86 thunk
4513 // sections. If we see more than a few, we're linking a C++
4514 // program, and we resize to get more space to minimize rehashing.
4515 if (this->signatures_.size() > 4
4516 && !this->resized_signatures_)
4517 {
4518 reserve_unordered_map(&this->signatures_,
4519 this->number_of_input_files_ * 64);
4520 this->resized_signatures_ = true;
4521 }
4522
4523 Kept_section candidate;
4524 std::pair<Signatures::iterator, bool> ins =
4525 this->signatures_.insert(std::make_pair(name, candidate));
4526
4527 if (kept_section != NULL)
4528 *kept_section = &ins.first->second;
4529 if (ins.second)
4530 {
4531 // This is the first time we've seen this signature.
4532 ins.first->second.set_object(object);
4533 ins.first->second.set_shndx(shndx);
4534 if (is_comdat)
4535 ins.first->second.set_is_comdat();
4536 if (is_group_name)
4537 ins.first->second.set_is_group_name();
4538 return true;
4539 }
4540
4541 // We have already seen this signature.
4542
4543 if (ins.first->second.is_group_name())
4544 {
4545 // We've already seen a real section group with this signature.
4546 // If the kept group is from a plugin object, and we're in the
4547 // replacement phase, accept the new one as a replacement.
4548 if (ins.first->second.object() == NULL
4549 && parameters->options().plugins()->in_replacement_phase())
4550 {
4551 ins.first->second.set_object(object);
4552 ins.first->second.set_shndx(shndx);
4553 return true;
4554 }
4555 return false;
4556 }
4557 else if (is_group_name)
4558 {
4559 // This is a real section group, and we've already seen a
4560 // linkonce section with this signature. Record that we've seen
4561 // a section group, and don't include this section group.
4562 ins.first->second.set_is_group_name();
4563 return false;
4564 }
4565 else
4566 {
4567 // We've already seen a linkonce section and this is a linkonce
4568 // section. These don't block each other--this may be the same
4569 // symbol name with different section types.
4570 return true;
4571 }
4572 }
4573
4574 // Store the allocated sections into the section list.
4575
4576 void
4577 Layout::get_allocated_sections(Section_list* section_list) const
4578 {
4579 for (Section_list::const_iterator p = this->section_list_.begin();
4580 p != this->section_list_.end();
4581 ++p)
4582 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4583 section_list->push_back(*p);
4584 }
4585
4586 // Create an output segment.
4587
4588 Output_segment*
4589 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4590 {
4591 gold_assert(!parameters->options().relocatable());
4592 Output_segment* oseg = new Output_segment(type, flags);
4593 this->segment_list_.push_back(oseg);
4594
4595 if (type == elfcpp::PT_TLS)
4596 this->tls_segment_ = oseg;
4597 else if (type == elfcpp::PT_GNU_RELRO)
4598 this->relro_segment_ = oseg;
4599 else if (type == elfcpp::PT_INTERP)
4600 this->interp_segment_ = oseg;
4601
4602 return oseg;
4603 }
4604
4605 // Return the file offset of the normal symbol table.
4606
4607 off_t
4608 Layout::symtab_section_offset() const
4609 {
4610 if (this->symtab_section_ != NULL)
4611 return this->symtab_section_->offset();
4612 return 0;
4613 }
4614
4615 // Return the section index of the normal symbol table. It may have
4616 // been stripped by the -s/--strip-all option.
4617
4618 unsigned int
4619 Layout::symtab_section_shndx() const
4620 {
4621 if (this->symtab_section_ != NULL)
4622 return this->symtab_section_->out_shndx();
4623 return 0;
4624 }
4625
4626 // Write out the Output_sections. Most won't have anything to write,
4627 // since most of the data will come from input sections which are
4628 // handled elsewhere. But some Output_sections do have Output_data.
4629
4630 void
4631 Layout::write_output_sections(Output_file* of) const
4632 {
4633 for (Section_list::const_iterator p = this->section_list_.begin();
4634 p != this->section_list_.end();
4635 ++p)
4636 {
4637 if (!(*p)->after_input_sections())
4638 (*p)->write(of);
4639 }
4640 }
4641
4642 // Write out data not associated with a section or the symbol table.
4643
4644 void
4645 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4646 {
4647 if (!parameters->options().strip_all())
4648 {
4649 const Output_section* symtab_section = this->symtab_section_;
4650 for (Section_list::const_iterator p = this->section_list_.begin();
4651 p != this->section_list_.end();
4652 ++p)
4653 {
4654 if ((*p)->needs_symtab_index())
4655 {
4656 gold_assert(symtab_section != NULL);
4657 unsigned int index = (*p)->symtab_index();
4658 gold_assert(index > 0 && index != -1U);
4659 off_t off = (symtab_section->offset()
4660 + index * symtab_section->entsize());
4661 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4662 }
4663 }
4664 }
4665
4666 const Output_section* dynsym_section = this->dynsym_section_;
4667 for (Section_list::const_iterator p = this->section_list_.begin();
4668 p != this->section_list_.end();
4669 ++p)
4670 {
4671 if ((*p)->needs_dynsym_index())
4672 {
4673 gold_assert(dynsym_section != NULL);
4674 unsigned int index = (*p)->dynsym_index();
4675 gold_assert(index > 0 && index != -1U);
4676 off_t off = (dynsym_section->offset()
4677 + index * dynsym_section->entsize());
4678 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4679 }
4680 }
4681
4682 // Write out the Output_data which are not in an Output_section.
4683 for (Data_list::const_iterator p = this->special_output_list_.begin();
4684 p != this->special_output_list_.end();
4685 ++p)
4686 (*p)->write(of);
4687 }
4688
4689 // Write out the Output_sections which can only be written after the
4690 // input sections are complete.
4691
4692 void
4693 Layout::write_sections_after_input_sections(Output_file* of)
4694 {
4695 // Determine the final section offsets, and thus the final output
4696 // file size. Note we finalize the .shstrab last, to allow the
4697 // after_input_section sections to modify their section-names before
4698 // writing.
4699 if (this->any_postprocessing_sections_)
4700 {
4701 off_t off = this->output_file_size_;
4702 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4703
4704 // Now that we've finalized the names, we can finalize the shstrab.
4705 off =
4706 this->set_section_offsets(off,
4707 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4708
4709 if (off > this->output_file_size_)
4710 {
4711 of->resize(off);
4712 this->output_file_size_ = off;
4713 }
4714 }
4715
4716 for (Section_list::const_iterator p = this->section_list_.begin();
4717 p != this->section_list_.end();
4718 ++p)
4719 {
4720 if ((*p)->after_input_sections())
4721 (*p)->write(of);
4722 }
4723
4724 this->section_headers_->write(of);
4725 }
4726
4727 // If the build ID requires computing a checksum, do so here, and
4728 // write it out. We compute a checksum over the entire file because
4729 // that is simplest.
4730
4731 void
4732 Layout::write_build_id(Output_file* of) const
4733 {
4734 if (this->build_id_note_ == NULL)
4735 return;
4736
4737 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4738
4739 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4740 this->build_id_note_->data_size());
4741
4742 const char* style = parameters->options().build_id();
4743 if (strcmp(style, "sha1") == 0)
4744 {
4745 sha1_ctx ctx;
4746 sha1_init_ctx(&ctx);
4747 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4748 sha1_finish_ctx(&ctx, ov);
4749 }
4750 else if (strcmp(style, "md5") == 0)
4751 {
4752 md5_ctx ctx;
4753 md5_init_ctx(&ctx);
4754 md5_process_bytes(iv, this->output_file_size_, &ctx);
4755 md5_finish_ctx(&ctx, ov);
4756 }
4757 else
4758 gold_unreachable();
4759
4760 of->write_output_view(this->build_id_note_->offset(),
4761 this->build_id_note_->data_size(),
4762 ov);
4763
4764 of->free_input_view(0, this->output_file_size_, iv);
4765 }
4766
4767 // Write out a binary file. This is called after the link is
4768 // complete. IN is the temporary output file we used to generate the
4769 // ELF code. We simply walk through the segments, read them from
4770 // their file offset in IN, and write them to their load address in
4771 // the output file. FIXME: with a bit more work, we could support
4772 // S-records and/or Intel hex format here.
4773
4774 void
4775 Layout::write_binary(Output_file* in) const
4776 {
4777 gold_assert(parameters->options().oformat_enum()
4778 == General_options::OBJECT_FORMAT_BINARY);
4779
4780 // Get the size of the binary file.
4781 uint64_t max_load_address = 0;
4782 for (Segment_list::const_iterator p = this->segment_list_.begin();
4783 p != this->segment_list_.end();
4784 ++p)
4785 {
4786 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4787 {
4788 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4789 if (max_paddr > max_load_address)
4790 max_load_address = max_paddr;
4791 }
4792 }
4793
4794 Output_file out(parameters->options().output_file_name());
4795 out.open(max_load_address);
4796
4797 for (Segment_list::const_iterator p = this->segment_list_.begin();
4798 p != this->segment_list_.end();
4799 ++p)
4800 {
4801 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4802 {
4803 const unsigned char* vin = in->get_input_view((*p)->offset(),
4804 (*p)->filesz());
4805 unsigned char* vout = out.get_output_view((*p)->paddr(),
4806 (*p)->filesz());
4807 memcpy(vout, vin, (*p)->filesz());
4808 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4809 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4810 }
4811 }
4812
4813 out.close();
4814 }
4815
4816 // Print the output sections to the map file.
4817
4818 void
4819 Layout::print_to_mapfile(Mapfile* mapfile) const
4820 {
4821 for (Segment_list::const_iterator p = this->segment_list_.begin();
4822 p != this->segment_list_.end();
4823 ++p)
4824 (*p)->print_sections_to_mapfile(mapfile);
4825 }
4826
4827 // Print statistical information to stderr. This is used for --stats.
4828
4829 void
4830 Layout::print_stats() const
4831 {
4832 this->namepool_.print_stats("section name pool");
4833 this->sympool_.print_stats("output symbol name pool");
4834 this->dynpool_.print_stats("dynamic name pool");
4835
4836 for (Section_list::const_iterator p = this->section_list_.begin();
4837 p != this->section_list_.end();
4838 ++p)
4839 (*p)->print_merge_stats();
4840 }
4841
4842 // Write_sections_task methods.
4843
4844 // We can always run this task.
4845
4846 Task_token*
4847 Write_sections_task::is_runnable()
4848 {
4849 return NULL;
4850 }
4851
4852 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4853 // when finished.
4854
4855 void
4856 Write_sections_task::locks(Task_locker* tl)
4857 {
4858 tl->add(this, this->output_sections_blocker_);
4859 tl->add(this, this->final_blocker_);
4860 }
4861
4862 // Run the task--write out the data.
4863
4864 void
4865 Write_sections_task::run(Workqueue*)
4866 {
4867 this->layout_->write_output_sections(this->of_);
4868 }
4869
4870 // Write_data_task methods.
4871
4872 // We can always run this task.
4873
4874 Task_token*
4875 Write_data_task::is_runnable()
4876 {
4877 return NULL;
4878 }
4879
4880 // We need to unlock FINAL_BLOCKER when finished.
4881
4882 void
4883 Write_data_task::locks(Task_locker* tl)
4884 {
4885 tl->add(this, this->final_blocker_);
4886 }
4887
4888 // Run the task--write out the data.
4889
4890 void
4891 Write_data_task::run(Workqueue*)
4892 {
4893 this->layout_->write_data(this->symtab_, this->of_);
4894 }
4895
4896 // Write_symbols_task methods.
4897
4898 // We can always run this task.
4899
4900 Task_token*
4901 Write_symbols_task::is_runnable()
4902 {
4903 return NULL;
4904 }
4905
4906 // We need to unlock FINAL_BLOCKER when finished.
4907
4908 void
4909 Write_symbols_task::locks(Task_locker* tl)
4910 {
4911 tl->add(this, this->final_blocker_);
4912 }
4913
4914 // Run the task--write out the symbols.
4915
4916 void
4917 Write_symbols_task::run(Workqueue*)
4918 {
4919 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4920 this->layout_->symtab_xindex(),
4921 this->layout_->dynsym_xindex(), this->of_);
4922 }
4923
4924 // Write_after_input_sections_task methods.
4925
4926 // We can only run this task after the input sections have completed.
4927
4928 Task_token*
4929 Write_after_input_sections_task::is_runnable()
4930 {
4931 if (this->input_sections_blocker_->is_blocked())
4932 return this->input_sections_blocker_;
4933 return NULL;
4934 }
4935
4936 // We need to unlock FINAL_BLOCKER when finished.
4937
4938 void
4939 Write_after_input_sections_task::locks(Task_locker* tl)
4940 {
4941 tl->add(this, this->final_blocker_);
4942 }
4943
4944 // Run the task.
4945
4946 void
4947 Write_after_input_sections_task::run(Workqueue*)
4948 {
4949 this->layout_->write_sections_after_input_sections(this->of_);
4950 }
4951
4952 // Close_task_runner methods.
4953
4954 // Run the task--close the file.
4955
4956 void
4957 Close_task_runner::run(Workqueue*, const Task*)
4958 {
4959 // If we need to compute a checksum for the BUILD if, we do so here.
4960 this->layout_->write_build_id(this->of_);
4961
4962 // If we've been asked to create a binary file, we do so here.
4963 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4964 this->layout_->write_binary(this->of_);
4965
4966 this->of_->close();
4967 }
4968
4969 // Instantiate the templates we need. We could use the configure
4970 // script to restrict this to only the ones for implemented targets.
4971
4972 #ifdef HAVE_TARGET_32_LITTLE
4973 template
4974 Output_section*
4975 Layout::init_fixed_output_section<32, false>(
4976 const char* name,
4977 elfcpp::Shdr<32, false>& shdr);
4978 #endif
4979
4980 #ifdef HAVE_TARGET_32_BIG
4981 template
4982 Output_section*
4983 Layout::init_fixed_output_section<32, true>(
4984 const char* name,
4985 elfcpp::Shdr<32, true>& shdr);
4986 #endif
4987
4988 #ifdef HAVE_TARGET_64_LITTLE
4989 template
4990 Output_section*
4991 Layout::init_fixed_output_section<64, false>(
4992 const char* name,
4993 elfcpp::Shdr<64, false>& shdr);
4994 #endif
4995
4996 #ifdef HAVE_TARGET_64_BIG
4997 template
4998 Output_section*
4999 Layout::init_fixed_output_section<64, true>(
5000 const char* name,
5001 elfcpp::Shdr<64, true>& shdr);
5002 #endif
5003
5004 #ifdef HAVE_TARGET_32_LITTLE
5005 template
5006 Output_section*
5007 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5008 unsigned int shndx,
5009 const char* name,
5010 const elfcpp::Shdr<32, false>& shdr,
5011 unsigned int, unsigned int, off_t*);
5012 #endif
5013
5014 #ifdef HAVE_TARGET_32_BIG
5015 template
5016 Output_section*
5017 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5018 unsigned int shndx,
5019 const char* name,
5020 const elfcpp::Shdr<32, true>& shdr,
5021 unsigned int, unsigned int, off_t*);
5022 #endif
5023
5024 #ifdef HAVE_TARGET_64_LITTLE
5025 template
5026 Output_section*
5027 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5028 unsigned int shndx,
5029 const char* name,
5030 const elfcpp::Shdr<64, false>& shdr,
5031 unsigned int, unsigned int, off_t*);
5032 #endif
5033
5034 #ifdef HAVE_TARGET_64_BIG
5035 template
5036 Output_section*
5037 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5038 unsigned int shndx,
5039 const char* name,
5040 const elfcpp::Shdr<64, true>& shdr,
5041 unsigned int, unsigned int, off_t*);
5042 #endif
5043
5044 #ifdef HAVE_TARGET_32_LITTLE
5045 template
5046 Output_section*
5047 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5048 unsigned int reloc_shndx,
5049 const elfcpp::Shdr<32, false>& shdr,
5050 Output_section* data_section,
5051 Relocatable_relocs* rr);
5052 #endif
5053
5054 #ifdef HAVE_TARGET_32_BIG
5055 template
5056 Output_section*
5057 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5058 unsigned int reloc_shndx,
5059 const elfcpp::Shdr<32, true>& shdr,
5060 Output_section* data_section,
5061 Relocatable_relocs* rr);
5062 #endif
5063
5064 #ifdef HAVE_TARGET_64_LITTLE
5065 template
5066 Output_section*
5067 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5068 unsigned int reloc_shndx,
5069 const elfcpp::Shdr<64, false>& shdr,
5070 Output_section* data_section,
5071 Relocatable_relocs* rr);
5072 #endif
5073
5074 #ifdef HAVE_TARGET_64_BIG
5075 template
5076 Output_section*
5077 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5078 unsigned int reloc_shndx,
5079 const elfcpp::Shdr<64, true>& shdr,
5080 Output_section* data_section,
5081 Relocatable_relocs* rr);
5082 #endif
5083
5084 #ifdef HAVE_TARGET_32_LITTLE
5085 template
5086 void
5087 Layout::layout_group<32, false>(Symbol_table* symtab,
5088 Sized_relobj_file<32, false>* object,
5089 unsigned int,
5090 const char* group_section_name,
5091 const char* signature,
5092 const elfcpp::Shdr<32, false>& shdr,
5093 elfcpp::Elf_Word flags,
5094 std::vector<unsigned int>* shndxes);
5095 #endif
5096
5097 #ifdef HAVE_TARGET_32_BIG
5098 template
5099 void
5100 Layout::layout_group<32, true>(Symbol_table* symtab,
5101 Sized_relobj_file<32, true>* object,
5102 unsigned int,
5103 const char* group_section_name,
5104 const char* signature,
5105 const elfcpp::Shdr<32, true>& shdr,
5106 elfcpp::Elf_Word flags,
5107 std::vector<unsigned int>* shndxes);
5108 #endif
5109
5110 #ifdef HAVE_TARGET_64_LITTLE
5111 template
5112 void
5113 Layout::layout_group<64, false>(Symbol_table* symtab,
5114 Sized_relobj_file<64, false>* object,
5115 unsigned int,
5116 const char* group_section_name,
5117 const char* signature,
5118 const elfcpp::Shdr<64, false>& shdr,
5119 elfcpp::Elf_Word flags,
5120 std::vector<unsigned int>* shndxes);
5121 #endif
5122
5123 #ifdef HAVE_TARGET_64_BIG
5124 template
5125 void
5126 Layout::layout_group<64, true>(Symbol_table* symtab,
5127 Sized_relobj_file<64, true>* object,
5128 unsigned int,
5129 const char* group_section_name,
5130 const char* signature,
5131 const elfcpp::Shdr<64, true>& shdr,
5132 elfcpp::Elf_Word flags,
5133 std::vector<unsigned int>* shndxes);
5134 #endif
5135
5136 #ifdef HAVE_TARGET_32_LITTLE
5137 template
5138 Output_section*
5139 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5140 const unsigned char* symbols,
5141 off_t symbols_size,
5142 const unsigned char* symbol_names,
5143 off_t symbol_names_size,
5144 unsigned int shndx,
5145 const elfcpp::Shdr<32, false>& shdr,
5146 unsigned int reloc_shndx,
5147 unsigned int reloc_type,
5148 off_t* off);
5149 #endif
5150
5151 #ifdef HAVE_TARGET_32_BIG
5152 template
5153 Output_section*
5154 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5155 const unsigned char* symbols,
5156 off_t symbols_size,
5157 const unsigned char* symbol_names,
5158 off_t symbol_names_size,
5159 unsigned int shndx,
5160 const elfcpp::Shdr<32, true>& shdr,
5161 unsigned int reloc_shndx,
5162 unsigned int reloc_type,
5163 off_t* off);
5164 #endif
5165
5166 #ifdef HAVE_TARGET_64_LITTLE
5167 template
5168 Output_section*
5169 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5170 const unsigned char* symbols,
5171 off_t symbols_size,
5172 const unsigned char* symbol_names,
5173 off_t symbol_names_size,
5174 unsigned int shndx,
5175 const elfcpp::Shdr<64, false>& shdr,
5176 unsigned int reloc_shndx,
5177 unsigned int reloc_type,
5178 off_t* off);
5179 #endif
5180
5181 #ifdef HAVE_TARGET_64_BIG
5182 template
5183 Output_section*
5184 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5185 const unsigned char* symbols,
5186 off_t symbols_size,
5187 const unsigned char* symbol_names,
5188 off_t symbol_names_size,
5189 unsigned int shndx,
5190 const elfcpp::Shdr<64, true>& shdr,
5191 unsigned int reloc_shndx,
5192 unsigned int reloc_type,
5193 off_t* off);
5194 #endif
5195
5196 } // End namespace gold.
This page took 0.159786 seconds and 5 git commands to generate.