2012-03-21 Cary Coutant <ccoutant@google.com>
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list. Creates a single free list node that
76 // describes the entire region of length LEN. If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83 this->list_.push_front(Free_list_node(0, len));
84 this->last_remove_ = this->list_.begin();
85 this->extend_ = extend;
86 this->length_ = len;
87 ++Free_list::num_lists;
88 ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list. Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node. We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103 if (start == end)
104 return;
105 gold_assert(start < end);
106
107 ++Free_list::num_removes;
108
109 Iterator p = this->last_remove_;
110 if (p->start_ > start)
111 p = this->list_.begin();
112
113 for (; p != this->list_.end(); ++p)
114 {
115 ++Free_list::num_remove_visits;
116 // Find a node that wholly contains the indicated region.
117 if (p->start_ <= start && p->end_ >= end)
118 {
119 // Case 1: the indicated region spans the whole node.
120 // Add some fuzz to avoid creating tiny free chunks.
121 if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 p = this->list_.erase(p);
123 // Case 2: remove a chunk from the start of the node.
124 else if (p->start_ + 3 >= start)
125 p->start_ = end;
126 // Case 3: remove a chunk from the end of the node.
127 else if (p->end_ <= end + 3)
128 p->end_ = start;
129 // Case 4: remove a chunk from the middle, and split
130 // the node into two.
131 else
132 {
133 Free_list_node newnode(p->start_, start);
134 p->start_ = end;
135 this->list_.insert(p, newnode);
136 ++Free_list::num_nodes;
137 }
138 this->last_remove_ = p;
139 return;
140 }
141 }
142
143 // Did not find a node containing the given chunk. This could happen
144 // because a small chunk was already removed due to the fuzz.
145 gold_debug(DEBUG_INCREMENTAL,
146 "Free_list::remove(%d,%d) not found",
147 static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list. Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157 gold_debug(DEBUG_INCREMENTAL,
158 "Free_list::allocate(%08lx, %d, %08lx)",
159 static_cast<long>(len), static_cast<int>(align),
160 static_cast<long>(minoff));
161 if (len == 0)
162 return align_address(minoff, align);
163
164 ++Free_list::num_allocates;
165
166 // We usually want to drop free chunks smaller than 4 bytes.
167 // If we need to guarantee a minimum hole size, though, we need
168 // to keep track of all free chunks.
169 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172 {
173 ++Free_list::num_allocate_visits;
174 off_t start = p->start_ > minoff ? p->start_ : minoff;
175 start = align_address(start, align);
176 off_t end = start + len;
177 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178 {
179 this->length_ = end;
180 p->end_ = end;
181 }
182 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183 {
184 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 this->list_.erase(p);
186 else if (p->start_ + fuzz >= start)
187 p->start_ = end;
188 else if (p->end_ <= end + fuzz)
189 p->end_ = start;
190 else
191 {
192 Free_list_node newnode(p->start_, start);
193 p->start_ = end;
194 this->list_.insert(p, newnode);
195 ++Free_list::num_nodes;
196 }
197 return start;
198 }
199 }
200 if (this->extend_)
201 {
202 off_t start = align_address(this->length_, align);
203 this->length_ = start + len;
204 return start;
205 }
206 return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213 gold_info("Free list:\n start end length\n");
214 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
216 static_cast<long>(p->end_),
217 static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224 fprintf(stderr, _("%s: total free lists: %u\n"),
225 program_name, Free_list::num_lists);
226 fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 program_name, Free_list::num_nodes);
228 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 program_name, Free_list::num_removes);
230 fprintf(stderr, _("%s: nodes visited: %u\n"),
231 program_name, Free_list::num_remove_visits);
232 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 program_name, Free_list::num_allocates);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_allocate_visits);
236 }
237
238 // Layout::Relaxation_debug_check methods.
239
240 // Check that sections and special data are in reset states.
241 // We do not save states for Output_sections and special Output_data.
242 // So we check that they have not assigned any addresses or offsets.
243 // clean_up_after_relaxation simply resets their addresses and offsets.
244 void
245 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
246 const Layout::Section_list& sections,
247 const Layout::Data_list& special_outputs)
248 {
249 for(Layout::Section_list::const_iterator p = sections.begin();
250 p != sections.end();
251 ++p)
252 gold_assert((*p)->address_and_file_offset_have_reset_values());
253
254 for(Layout::Data_list::const_iterator p = special_outputs.begin();
255 p != special_outputs.end();
256 ++p)
257 gold_assert((*p)->address_and_file_offset_have_reset_values());
258 }
259
260 // Save information of SECTIONS for checking later.
261
262 void
263 Layout::Relaxation_debug_check::read_sections(
264 const Layout::Section_list& sections)
265 {
266 for(Layout::Section_list::const_iterator p = sections.begin();
267 p != sections.end();
268 ++p)
269 {
270 Output_section* os = *p;
271 Section_info info;
272 info.output_section = os;
273 info.address = os->is_address_valid() ? os->address() : 0;
274 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
275 info.offset = os->is_offset_valid()? os->offset() : -1 ;
276 this->section_infos_.push_back(info);
277 }
278 }
279
280 // Verify SECTIONS using previously recorded information.
281
282 void
283 Layout::Relaxation_debug_check::verify_sections(
284 const Layout::Section_list& sections)
285 {
286 size_t i = 0;
287 for(Layout::Section_list::const_iterator p = sections.begin();
288 p != sections.end();
289 ++p, ++i)
290 {
291 Output_section* os = *p;
292 uint64_t address = os->is_address_valid() ? os->address() : 0;
293 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
294 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
295
296 if (i >= this->section_infos_.size())
297 {
298 gold_fatal("Section_info of %s missing.\n", os->name());
299 }
300 const Section_info& info = this->section_infos_[i];
301 if (os != info.output_section)
302 gold_fatal("Section order changed. Expecting %s but see %s\n",
303 info.output_section->name(), os->name());
304 if (address != info.address
305 || data_size != info.data_size
306 || offset != info.offset)
307 gold_fatal("Section %s changed.\n", os->name());
308 }
309 }
310
311 // Layout_task_runner methods.
312
313 // Lay out the sections. This is called after all the input objects
314 // have been read.
315
316 void
317 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
318 {
319 Layout* layout = this->layout_;
320 off_t file_size = layout->finalize(this->input_objects_,
321 this->symtab_,
322 this->target_,
323 task);
324
325 // Now we know the final size of the output file and we know where
326 // each piece of information goes.
327
328 if (this->mapfile_ != NULL)
329 {
330 this->mapfile_->print_discarded_sections(this->input_objects_);
331 layout->print_to_mapfile(this->mapfile_);
332 }
333
334 Output_file* of;
335 if (layout->incremental_base() == NULL)
336 {
337 of = new Output_file(parameters->options().output_file_name());
338 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
339 of->set_is_temporary();
340 of->open(file_size);
341 }
342 else
343 {
344 of = layout->incremental_base()->output_file();
345
346 // Apply the incremental relocations for symbols whose values
347 // have changed. We do this before we resize the file and start
348 // writing anything else to it, so that we can read the old
349 // incremental information from the file before (possibly)
350 // overwriting it.
351 if (parameters->incremental_update())
352 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
353 this->layout_,
354 of);
355
356 of->resize(file_size);
357 }
358
359 // Queue up the final set of tasks.
360 gold::queue_final_tasks(this->options_, this->input_objects_,
361 this->symtab_, layout, workqueue, of);
362 }
363
364 // Layout methods.
365
366 Layout::Layout(int number_of_input_files, Script_options* script_options)
367 : number_of_input_files_(number_of_input_files),
368 script_options_(script_options),
369 namepool_(),
370 sympool_(),
371 dynpool_(),
372 signatures_(),
373 section_name_map_(),
374 segment_list_(),
375 section_list_(),
376 unattached_section_list_(),
377 special_output_list_(),
378 section_headers_(NULL),
379 tls_segment_(NULL),
380 relro_segment_(NULL),
381 interp_segment_(NULL),
382 increase_relro_(0),
383 symtab_section_(NULL),
384 symtab_xindex_(NULL),
385 dynsym_section_(NULL),
386 dynsym_xindex_(NULL),
387 dynamic_section_(NULL),
388 dynamic_symbol_(NULL),
389 dynamic_data_(NULL),
390 eh_frame_section_(NULL),
391 eh_frame_data_(NULL),
392 added_eh_frame_data_(false),
393 eh_frame_hdr_section_(NULL),
394 gdb_index_data_(NULL),
395 build_id_note_(NULL),
396 debug_abbrev_(NULL),
397 debug_info_(NULL),
398 group_signatures_(),
399 output_file_size_(-1),
400 have_added_input_section_(false),
401 sections_are_attached_(false),
402 input_requires_executable_stack_(false),
403 input_with_gnu_stack_note_(false),
404 input_without_gnu_stack_note_(false),
405 has_static_tls_(false),
406 any_postprocessing_sections_(false),
407 resized_signatures_(false),
408 have_stabstr_section_(false),
409 section_ordering_specified_(false),
410 incremental_inputs_(NULL),
411 record_output_section_data_from_script_(false),
412 script_output_section_data_list_(),
413 segment_states_(NULL),
414 relaxation_debug_check_(NULL),
415 section_order_map_(),
416 input_section_position_(),
417 input_section_glob_(),
418 incremental_base_(NULL),
419 free_list_()
420 {
421 // Make space for more than enough segments for a typical file.
422 // This is just for efficiency--it's OK if we wind up needing more.
423 this->segment_list_.reserve(12);
424
425 // We expect two unattached Output_data objects: the file header and
426 // the segment headers.
427 this->special_output_list_.reserve(2);
428
429 // Initialize structure needed for an incremental build.
430 if (parameters->incremental())
431 this->incremental_inputs_ = new Incremental_inputs;
432
433 // The section name pool is worth optimizing in all cases, because
434 // it is small, but there are often overlaps due to .rel sections.
435 this->namepool_.set_optimize();
436 }
437
438 // For incremental links, record the base file to be modified.
439
440 void
441 Layout::set_incremental_base(Incremental_binary* base)
442 {
443 this->incremental_base_ = base;
444 this->free_list_.init(base->output_file()->filesize(), true);
445 }
446
447 // Hash a key we use to look up an output section mapping.
448
449 size_t
450 Layout::Hash_key::operator()(const Layout::Key& k) const
451 {
452 return k.first + k.second.first + k.second.second;
453 }
454
455 // Returns whether the given section is in the list of
456 // debug-sections-used-by-some-version-of-gdb. Currently,
457 // we've checked versions of gdb up to and including 6.7.1.
458
459 static const char* gdb_sections[] =
460 { ".debug_abbrev",
461 // ".debug_aranges", // not used by gdb as of 6.7.1
462 ".debug_frame",
463 ".debug_info",
464 ".debug_types",
465 ".debug_line",
466 ".debug_loc",
467 ".debug_macinfo",
468 // ".debug_pubnames", // not used by gdb as of 6.7.1
469 ".debug_ranges",
470 ".debug_str",
471 };
472
473 static const char* lines_only_debug_sections[] =
474 { ".debug_abbrev",
475 // ".debug_aranges", // not used by gdb as of 6.7.1
476 // ".debug_frame",
477 ".debug_info",
478 // ".debug_types",
479 ".debug_line",
480 // ".debug_loc",
481 // ".debug_macinfo",
482 // ".debug_pubnames", // not used by gdb as of 6.7.1
483 // ".debug_ranges",
484 ".debug_str",
485 };
486
487 static inline bool
488 is_gdb_debug_section(const char* str)
489 {
490 // We can do this faster: binary search or a hashtable. But why bother?
491 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
492 if (strcmp(str, gdb_sections[i]) == 0)
493 return true;
494 return false;
495 }
496
497 static inline bool
498 is_lines_only_debug_section(const char* str)
499 {
500 // We can do this faster: binary search or a hashtable. But why bother?
501 for (size_t i = 0;
502 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
503 ++i)
504 if (strcmp(str, lines_only_debug_sections[i]) == 0)
505 return true;
506 return false;
507 }
508
509 // Sometimes we compress sections. This is typically done for
510 // sections that are not part of normal program execution (such as
511 // .debug_* sections), and where the readers of these sections know
512 // how to deal with compressed sections. This routine doesn't say for
513 // certain whether we'll compress -- it depends on commandline options
514 // as well -- just whether this section is a candidate for compression.
515 // (The Output_compressed_section class decides whether to compress
516 // a given section, and picks the name of the compressed section.)
517
518 static bool
519 is_compressible_debug_section(const char* secname)
520 {
521 return (is_prefix_of(".debug", secname));
522 }
523
524 // We may see compressed debug sections in input files. Return TRUE
525 // if this is the name of a compressed debug section.
526
527 bool
528 is_compressed_debug_section(const char* secname)
529 {
530 return (is_prefix_of(".zdebug", secname));
531 }
532
533 // Whether to include this section in the link.
534
535 template<int size, bool big_endian>
536 bool
537 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
538 const elfcpp::Shdr<size, big_endian>& shdr)
539 {
540 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
541 return false;
542
543 switch (shdr.get_sh_type())
544 {
545 case elfcpp::SHT_NULL:
546 case elfcpp::SHT_SYMTAB:
547 case elfcpp::SHT_DYNSYM:
548 case elfcpp::SHT_HASH:
549 case elfcpp::SHT_DYNAMIC:
550 case elfcpp::SHT_SYMTAB_SHNDX:
551 return false;
552
553 case elfcpp::SHT_STRTAB:
554 // Discard the sections which have special meanings in the ELF
555 // ABI. Keep others (e.g., .stabstr). We could also do this by
556 // checking the sh_link fields of the appropriate sections.
557 return (strcmp(name, ".dynstr") != 0
558 && strcmp(name, ".strtab") != 0
559 && strcmp(name, ".shstrtab") != 0);
560
561 case elfcpp::SHT_RELA:
562 case elfcpp::SHT_REL:
563 case elfcpp::SHT_GROUP:
564 // If we are emitting relocations these should be handled
565 // elsewhere.
566 gold_assert(!parameters->options().relocatable()
567 && !parameters->options().emit_relocs());
568 return false;
569
570 case elfcpp::SHT_PROGBITS:
571 if (parameters->options().strip_debug()
572 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573 {
574 if (is_debug_info_section(name))
575 return false;
576 }
577 if (parameters->options().strip_debug_non_line()
578 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
579 {
580 // Debugging sections can only be recognized by name.
581 if (is_prefix_of(".debug", name)
582 && !is_lines_only_debug_section(name))
583 return false;
584 }
585 if (parameters->options().strip_debug_gdb()
586 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
587 {
588 // Debugging sections can only be recognized by name.
589 if (is_prefix_of(".debug", name)
590 && !is_gdb_debug_section(name))
591 return false;
592 }
593 if (parameters->options().strip_lto_sections()
594 && !parameters->options().relocatable()
595 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
596 {
597 // Ignore LTO sections containing intermediate code.
598 if (is_prefix_of(".gnu.lto_", name))
599 return false;
600 }
601 // The GNU linker strips .gnu_debuglink sections, so we do too.
602 // This is a feature used to keep debugging information in
603 // separate files.
604 if (strcmp(name, ".gnu_debuglink") == 0)
605 return false;
606 return true;
607
608 default:
609 return true;
610 }
611 }
612
613 // Return an output section named NAME, or NULL if there is none.
614
615 Output_section*
616 Layout::find_output_section(const char* name) const
617 {
618 for (Section_list::const_iterator p = this->section_list_.begin();
619 p != this->section_list_.end();
620 ++p)
621 if (strcmp((*p)->name(), name) == 0)
622 return *p;
623 return NULL;
624 }
625
626 // Return an output segment of type TYPE, with segment flags SET set
627 // and segment flags CLEAR clear. Return NULL if there is none.
628
629 Output_segment*
630 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
631 elfcpp::Elf_Word clear) const
632 {
633 for (Segment_list::const_iterator p = this->segment_list_.begin();
634 p != this->segment_list_.end();
635 ++p)
636 if (static_cast<elfcpp::PT>((*p)->type()) == type
637 && ((*p)->flags() & set) == set
638 && ((*p)->flags() & clear) == 0)
639 return *p;
640 return NULL;
641 }
642
643 // When we put a .ctors or .dtors section with more than one word into
644 // a .init_array or .fini_array section, we need to reverse the words
645 // in the .ctors/.dtors section. This is because .init_array executes
646 // constructors front to back, where .ctors executes them back to
647 // front, and vice-versa for .fini_array/.dtors. Although we do want
648 // to remap .ctors/.dtors into .init_array/.fini_array because it can
649 // be more efficient, we don't want to change the order in which
650 // constructors/destructors are run. This set just keeps track of
651 // these sections which need to be reversed. It is only changed by
652 // Layout::layout. It should be a private member of Layout, but that
653 // would require layout.h to #include object.h to get the definition
654 // of Section_id.
655 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
656
657 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
658 // .init_array/.fini_array section.
659
660 bool
661 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
662 {
663 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
664 != ctors_sections_in_init_array.end());
665 }
666
667 // Return the output section to use for section NAME with type TYPE
668 // and section flags FLAGS. NAME must be canonicalized in the string
669 // pool, and NAME_KEY is the key. ORDER is where this should appear
670 // in the output sections. IS_RELRO is true for a relro section.
671
672 Output_section*
673 Layout::get_output_section(const char* name, Stringpool::Key name_key,
674 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
675 Output_section_order order, bool is_relro)
676 {
677 elfcpp::Elf_Word lookup_type = type;
678
679 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
680 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
681 // .init_array, .fini_array, and .preinit_array sections by name
682 // whatever their type in the input file. We do this because the
683 // types are not always right in the input files.
684 if (lookup_type == elfcpp::SHT_INIT_ARRAY
685 || lookup_type == elfcpp::SHT_FINI_ARRAY
686 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
687 lookup_type = elfcpp::SHT_PROGBITS;
688
689 elfcpp::Elf_Xword lookup_flags = flags;
690
691 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
692 // read-write with read-only sections. Some other ELF linkers do
693 // not do this. FIXME: Perhaps there should be an option
694 // controlling this.
695 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
696
697 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
698 const std::pair<Key, Output_section*> v(key, NULL);
699 std::pair<Section_name_map::iterator, bool> ins(
700 this->section_name_map_.insert(v));
701
702 if (!ins.second)
703 return ins.first->second;
704 else
705 {
706 // This is the first time we've seen this name/type/flags
707 // combination. For compatibility with the GNU linker, we
708 // combine sections with contents and zero flags with sections
709 // with non-zero flags. This is a workaround for cases where
710 // assembler code forgets to set section flags. FIXME: Perhaps
711 // there should be an option to control this.
712 Output_section* os = NULL;
713
714 if (lookup_type == elfcpp::SHT_PROGBITS)
715 {
716 if (flags == 0)
717 {
718 Output_section* same_name = this->find_output_section(name);
719 if (same_name != NULL
720 && (same_name->type() == elfcpp::SHT_PROGBITS
721 || same_name->type() == elfcpp::SHT_INIT_ARRAY
722 || same_name->type() == elfcpp::SHT_FINI_ARRAY
723 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
724 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
725 os = same_name;
726 }
727 else if ((flags & elfcpp::SHF_TLS) == 0)
728 {
729 elfcpp::Elf_Xword zero_flags = 0;
730 const Key zero_key(name_key, std::make_pair(lookup_type,
731 zero_flags));
732 Section_name_map::iterator p =
733 this->section_name_map_.find(zero_key);
734 if (p != this->section_name_map_.end())
735 os = p->second;
736 }
737 }
738
739 if (os == NULL)
740 os = this->make_output_section(name, type, flags, order, is_relro);
741
742 ins.first->second = os;
743 return os;
744 }
745 }
746
747 // Pick the output section to use for section NAME, in input file
748 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
749 // linker created section. IS_INPUT_SECTION is true if we are
750 // choosing an output section for an input section found in a input
751 // file. ORDER is where this section should appear in the output
752 // sections. IS_RELRO is true for a relro section. This will return
753 // NULL if the input section should be discarded.
754
755 Output_section*
756 Layout::choose_output_section(const Relobj* relobj, const char* name,
757 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
758 bool is_input_section, Output_section_order order,
759 bool is_relro)
760 {
761 // We should not see any input sections after we have attached
762 // sections to segments.
763 gold_assert(!is_input_section || !this->sections_are_attached_);
764
765 // Some flags in the input section should not be automatically
766 // copied to the output section.
767 flags &= ~ (elfcpp::SHF_INFO_LINK
768 | elfcpp::SHF_GROUP
769 | elfcpp::SHF_MERGE
770 | elfcpp::SHF_STRINGS);
771
772 // We only clear the SHF_LINK_ORDER flag in for
773 // a non-relocatable link.
774 if (!parameters->options().relocatable())
775 flags &= ~elfcpp::SHF_LINK_ORDER;
776
777 if (this->script_options_->saw_sections_clause())
778 {
779 // We are using a SECTIONS clause, so the output section is
780 // chosen based only on the name.
781
782 Script_sections* ss = this->script_options_->script_sections();
783 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
784 Output_section** output_section_slot;
785 Script_sections::Section_type script_section_type;
786 const char* orig_name = name;
787 name = ss->output_section_name(file_name, name, &output_section_slot,
788 &script_section_type);
789 if (name == NULL)
790 {
791 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
792 "because it is not allowed by the "
793 "SECTIONS clause of the linker script"),
794 orig_name);
795 // The SECTIONS clause says to discard this input section.
796 return NULL;
797 }
798
799 // We can only handle script section types ST_NONE and ST_NOLOAD.
800 switch (script_section_type)
801 {
802 case Script_sections::ST_NONE:
803 break;
804 case Script_sections::ST_NOLOAD:
805 flags &= elfcpp::SHF_ALLOC;
806 break;
807 default:
808 gold_unreachable();
809 }
810
811 // If this is an orphan section--one not mentioned in the linker
812 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
813 // default processing below.
814
815 if (output_section_slot != NULL)
816 {
817 if (*output_section_slot != NULL)
818 {
819 (*output_section_slot)->update_flags_for_input_section(flags);
820 return *output_section_slot;
821 }
822
823 // We don't put sections found in the linker script into
824 // SECTION_NAME_MAP_. That keeps us from getting confused
825 // if an orphan section is mapped to a section with the same
826 // name as one in the linker script.
827
828 name = this->namepool_.add(name, false, NULL);
829
830 Output_section* os = this->make_output_section(name, type, flags,
831 order, is_relro);
832
833 os->set_found_in_sections_clause();
834
835 // Special handling for NOLOAD sections.
836 if (script_section_type == Script_sections::ST_NOLOAD)
837 {
838 os->set_is_noload();
839
840 // The constructor of Output_section sets addresses of non-ALLOC
841 // sections to 0 by default. We don't want that for NOLOAD
842 // sections even if they have no SHF_ALLOC flag.
843 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
844 && os->is_address_valid())
845 {
846 gold_assert(os->address() == 0
847 && !os->is_offset_valid()
848 && !os->is_data_size_valid());
849 os->reset_address_and_file_offset();
850 }
851 }
852
853 *output_section_slot = os;
854 return os;
855 }
856 }
857
858 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
859
860 size_t len = strlen(name);
861 char* uncompressed_name = NULL;
862
863 // Compressed debug sections should be mapped to the corresponding
864 // uncompressed section.
865 if (is_compressed_debug_section(name))
866 {
867 uncompressed_name = new char[len];
868 uncompressed_name[0] = '.';
869 gold_assert(name[0] == '.' && name[1] == 'z');
870 strncpy(&uncompressed_name[1], &name[2], len - 2);
871 uncompressed_name[len - 1] = '\0';
872 len -= 1;
873 name = uncompressed_name;
874 }
875
876 // Turn NAME from the name of the input section into the name of the
877 // output section.
878 if (is_input_section
879 && !this->script_options_->saw_sections_clause()
880 && !parameters->options().relocatable())
881 name = Layout::output_section_name(relobj, name, &len);
882
883 Stringpool::Key name_key;
884 name = this->namepool_.add_with_length(name, len, true, &name_key);
885
886 if (uncompressed_name != NULL)
887 delete[] uncompressed_name;
888
889 // Find or make the output section. The output section is selected
890 // based on the section name, type, and flags.
891 return this->get_output_section(name, name_key, type, flags, order, is_relro);
892 }
893
894 // For incremental links, record the initial fixed layout of a section
895 // from the base file, and return a pointer to the Output_section.
896
897 template<int size, bool big_endian>
898 Output_section*
899 Layout::init_fixed_output_section(const char* name,
900 elfcpp::Shdr<size, big_endian>& shdr)
901 {
902 unsigned int sh_type = shdr.get_sh_type();
903
904 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
905 // PRE_INIT_ARRAY, and NOTE sections.
906 // All others will be created from scratch and reallocated.
907 if (!can_incremental_update(sh_type))
908 return NULL;
909
910 // If we're generating a .gdb_index section, we need to regenerate
911 // it from scratch.
912 if (parameters->options().gdb_index()
913 && sh_type == elfcpp::SHT_PROGBITS
914 && strcmp(name, ".gdb_index") == 0)
915 return NULL;
916
917 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
918 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
919 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
920 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
921 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
922 shdr.get_sh_addralign();
923
924 // Make the output section.
925 Stringpool::Key name_key;
926 name = this->namepool_.add(name, true, &name_key);
927 Output_section* os = this->get_output_section(name, name_key, sh_type,
928 sh_flags, ORDER_INVALID, false);
929 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
930 if (sh_type != elfcpp::SHT_NOBITS)
931 this->free_list_.remove(sh_offset, sh_offset + sh_size);
932 return os;
933 }
934
935 // Return the output section to use for input section SHNDX, with name
936 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
937 // index of a relocation section which applies to this section, or 0
938 // if none, or -1U if more than one. RELOC_TYPE is the type of the
939 // relocation section if there is one. Set *OFF to the offset of this
940 // input section without the output section. Return NULL if the
941 // section should be discarded. Set *OFF to -1 if the section
942 // contents should not be written directly to the output file, but
943 // will instead receive special handling.
944
945 template<int size, bool big_endian>
946 Output_section*
947 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
948 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
949 unsigned int reloc_shndx, unsigned int, off_t* off)
950 {
951 *off = 0;
952
953 if (!this->include_section(object, name, shdr))
954 return NULL;
955
956 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
957
958 // In a relocatable link a grouped section must not be combined with
959 // any other sections.
960 Output_section* os;
961 if (parameters->options().relocatable()
962 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
963 {
964 name = this->namepool_.add(name, true, NULL);
965 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
966 ORDER_INVALID, false);
967 }
968 else
969 {
970 os = this->choose_output_section(object, name, sh_type,
971 shdr.get_sh_flags(), true,
972 ORDER_INVALID, false);
973 if (os == NULL)
974 return NULL;
975 }
976
977 // By default the GNU linker sorts input sections whose names match
978 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
979 // sections are sorted by name. This is used to implement
980 // constructor priority ordering. We are compatible. When we put
981 // .ctor sections in .init_array and .dtor sections in .fini_array,
982 // we must also sort plain .ctor and .dtor sections.
983 if (!this->script_options_->saw_sections_clause()
984 && !parameters->options().relocatable()
985 && (is_prefix_of(".ctors.", name)
986 || is_prefix_of(".dtors.", name)
987 || is_prefix_of(".init_array.", name)
988 || is_prefix_of(".fini_array.", name)
989 || (parameters->options().ctors_in_init_array()
990 && (strcmp(name, ".ctors") == 0
991 || strcmp(name, ".dtors") == 0))))
992 os->set_must_sort_attached_input_sections();
993
994 // If this is a .ctors or .ctors.* section being mapped to a
995 // .init_array section, or a .dtors or .dtors.* section being mapped
996 // to a .fini_array section, we will need to reverse the words if
997 // there is more than one. Record this section for later. See
998 // ctors_sections_in_init_array above.
999 if (!this->script_options_->saw_sections_clause()
1000 && !parameters->options().relocatable()
1001 && shdr.get_sh_size() > size / 8
1002 && (((strcmp(name, ".ctors") == 0
1003 || is_prefix_of(".ctors.", name))
1004 && strcmp(os->name(), ".init_array") == 0)
1005 || ((strcmp(name, ".dtors") == 0
1006 || is_prefix_of(".dtors.", name))
1007 && strcmp(os->name(), ".fini_array") == 0)))
1008 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1009
1010 // FIXME: Handle SHF_LINK_ORDER somewhere.
1011
1012 elfcpp::Elf_Xword orig_flags = os->flags();
1013
1014 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1015 this->script_options_->saw_sections_clause());
1016
1017 // If the flags changed, we may have to change the order.
1018 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1019 {
1020 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1021 elfcpp::Elf_Xword new_flags =
1022 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1023 if (orig_flags != new_flags)
1024 os->set_order(this->default_section_order(os, false));
1025 }
1026
1027 this->have_added_input_section_ = true;
1028
1029 return os;
1030 }
1031
1032 // Handle a relocation section when doing a relocatable link.
1033
1034 template<int size, bool big_endian>
1035 Output_section*
1036 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1037 unsigned int,
1038 const elfcpp::Shdr<size, big_endian>& shdr,
1039 Output_section* data_section,
1040 Relocatable_relocs* rr)
1041 {
1042 gold_assert(parameters->options().relocatable()
1043 || parameters->options().emit_relocs());
1044
1045 int sh_type = shdr.get_sh_type();
1046
1047 std::string name;
1048 if (sh_type == elfcpp::SHT_REL)
1049 name = ".rel";
1050 else if (sh_type == elfcpp::SHT_RELA)
1051 name = ".rela";
1052 else
1053 gold_unreachable();
1054 name += data_section->name();
1055
1056 // In a relocatable link relocs for a grouped section must not be
1057 // combined with other reloc sections.
1058 Output_section* os;
1059 if (!parameters->options().relocatable()
1060 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1061 os = this->choose_output_section(object, name.c_str(), sh_type,
1062 shdr.get_sh_flags(), false,
1063 ORDER_INVALID, false);
1064 else
1065 {
1066 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1067 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1068 ORDER_INVALID, false);
1069 }
1070
1071 os->set_should_link_to_symtab();
1072 os->set_info_section(data_section);
1073
1074 Output_section_data* posd;
1075 if (sh_type == elfcpp::SHT_REL)
1076 {
1077 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1078 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1079 size,
1080 big_endian>(rr);
1081 }
1082 else if (sh_type == elfcpp::SHT_RELA)
1083 {
1084 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1085 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1086 size,
1087 big_endian>(rr);
1088 }
1089 else
1090 gold_unreachable();
1091
1092 os->add_output_section_data(posd);
1093 rr->set_output_data(posd);
1094
1095 return os;
1096 }
1097
1098 // Handle a group section when doing a relocatable link.
1099
1100 template<int size, bool big_endian>
1101 void
1102 Layout::layout_group(Symbol_table* symtab,
1103 Sized_relobj_file<size, big_endian>* object,
1104 unsigned int,
1105 const char* group_section_name,
1106 const char* signature,
1107 const elfcpp::Shdr<size, big_endian>& shdr,
1108 elfcpp::Elf_Word flags,
1109 std::vector<unsigned int>* shndxes)
1110 {
1111 gold_assert(parameters->options().relocatable());
1112 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1113 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1114 Output_section* os = this->make_output_section(group_section_name,
1115 elfcpp::SHT_GROUP,
1116 shdr.get_sh_flags(),
1117 ORDER_INVALID, false);
1118
1119 // We need to find a symbol with the signature in the symbol table.
1120 // If we don't find one now, we need to look again later.
1121 Symbol* sym = symtab->lookup(signature, NULL);
1122 if (sym != NULL)
1123 os->set_info_symndx(sym);
1124 else
1125 {
1126 // Reserve some space to minimize reallocations.
1127 if (this->group_signatures_.empty())
1128 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1129
1130 // We will wind up using a symbol whose name is the signature.
1131 // So just put the signature in the symbol name pool to save it.
1132 signature = symtab->canonicalize_name(signature);
1133 this->group_signatures_.push_back(Group_signature(os, signature));
1134 }
1135
1136 os->set_should_link_to_symtab();
1137 os->set_entsize(4);
1138
1139 section_size_type entry_count =
1140 convert_to_section_size_type(shdr.get_sh_size() / 4);
1141 Output_section_data* posd =
1142 new Output_data_group<size, big_endian>(object, entry_count, flags,
1143 shndxes);
1144 os->add_output_section_data(posd);
1145 }
1146
1147 // Special GNU handling of sections name .eh_frame. They will
1148 // normally hold exception frame data as defined by the C++ ABI
1149 // (http://codesourcery.com/cxx-abi/).
1150
1151 template<int size, bool big_endian>
1152 Output_section*
1153 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1154 const unsigned char* symbols,
1155 off_t symbols_size,
1156 const unsigned char* symbol_names,
1157 off_t symbol_names_size,
1158 unsigned int shndx,
1159 const elfcpp::Shdr<size, big_endian>& shdr,
1160 unsigned int reloc_shndx, unsigned int reloc_type,
1161 off_t* off)
1162 {
1163 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1164 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1165 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1166
1167 Output_section* os = this->make_eh_frame_section(object);
1168 if (os == NULL)
1169 return NULL;
1170
1171 gold_assert(this->eh_frame_section_ == os);
1172
1173 elfcpp::Elf_Xword orig_flags = os->flags();
1174
1175 if (!parameters->incremental()
1176 && this->eh_frame_data_->add_ehframe_input_section(object,
1177 symbols,
1178 symbols_size,
1179 symbol_names,
1180 symbol_names_size,
1181 shndx,
1182 reloc_shndx,
1183 reloc_type))
1184 {
1185 os->update_flags_for_input_section(shdr.get_sh_flags());
1186
1187 // A writable .eh_frame section is a RELRO section.
1188 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1189 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1190 {
1191 os->set_is_relro();
1192 os->set_order(ORDER_RELRO);
1193 }
1194
1195 // We found a .eh_frame section we are going to optimize, so now
1196 // we can add the set of optimized sections to the output
1197 // section. We need to postpone adding this until we've found a
1198 // section we can optimize so that the .eh_frame section in
1199 // crtbegin.o winds up at the start of the output section.
1200 if (!this->added_eh_frame_data_)
1201 {
1202 os->add_output_section_data(this->eh_frame_data_);
1203 this->added_eh_frame_data_ = true;
1204 }
1205 *off = -1;
1206 }
1207 else
1208 {
1209 // We couldn't handle this .eh_frame section for some reason.
1210 // Add it as a normal section.
1211 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1212 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1213 reloc_shndx, saw_sections_clause);
1214 this->have_added_input_section_ = true;
1215
1216 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1217 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1218 os->set_order(this->default_section_order(os, false));
1219 }
1220
1221 return os;
1222 }
1223
1224 // Create and return the magic .eh_frame section. Create
1225 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1226 // input .eh_frame section; it may be NULL.
1227
1228 Output_section*
1229 Layout::make_eh_frame_section(const Relobj* object)
1230 {
1231 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1232 // SHT_PROGBITS.
1233 Output_section* os = this->choose_output_section(object, ".eh_frame",
1234 elfcpp::SHT_PROGBITS,
1235 elfcpp::SHF_ALLOC, false,
1236 ORDER_EHFRAME, false);
1237 if (os == NULL)
1238 return NULL;
1239
1240 if (this->eh_frame_section_ == NULL)
1241 {
1242 this->eh_frame_section_ = os;
1243 this->eh_frame_data_ = new Eh_frame();
1244
1245 // For incremental linking, we do not optimize .eh_frame sections
1246 // or create a .eh_frame_hdr section.
1247 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1248 {
1249 Output_section* hdr_os =
1250 this->choose_output_section(NULL, ".eh_frame_hdr",
1251 elfcpp::SHT_PROGBITS,
1252 elfcpp::SHF_ALLOC, false,
1253 ORDER_EHFRAME, false);
1254
1255 if (hdr_os != NULL)
1256 {
1257 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1258 this->eh_frame_data_);
1259 hdr_os->add_output_section_data(hdr_posd);
1260
1261 hdr_os->set_after_input_sections();
1262
1263 if (!this->script_options_->saw_phdrs_clause())
1264 {
1265 Output_segment* hdr_oseg;
1266 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1267 elfcpp::PF_R);
1268 hdr_oseg->add_output_section_to_nonload(hdr_os,
1269 elfcpp::PF_R);
1270 }
1271
1272 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1273 }
1274 }
1275 }
1276
1277 return os;
1278 }
1279
1280 // Add an exception frame for a PLT. This is called from target code.
1281
1282 void
1283 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1284 size_t cie_length, const unsigned char* fde_data,
1285 size_t fde_length)
1286 {
1287 if (parameters->incremental())
1288 {
1289 // FIXME: Maybe this could work some day....
1290 return;
1291 }
1292 Output_section* os = this->make_eh_frame_section(NULL);
1293 if (os == NULL)
1294 return;
1295 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1296 fde_data, fde_length);
1297 if (!this->added_eh_frame_data_)
1298 {
1299 os->add_output_section_data(this->eh_frame_data_);
1300 this->added_eh_frame_data_ = true;
1301 }
1302 }
1303
1304 // Scan a .debug_info or .debug_types section, and add summary
1305 // information to the .gdb_index section.
1306
1307 template<int size, bool big_endian>
1308 void
1309 Layout::add_to_gdb_index(bool is_type_unit,
1310 Sized_relobj<size, big_endian>* object,
1311 const unsigned char* symbols,
1312 off_t symbols_size,
1313 unsigned int shndx,
1314 unsigned int reloc_shndx,
1315 unsigned int reloc_type)
1316 {
1317 if (this->gdb_index_data_ == NULL)
1318 {
1319 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1320 elfcpp::SHT_PROGBITS, 0,
1321 false, ORDER_INVALID,
1322 false);
1323 if (os == NULL)
1324 return;
1325
1326 this->gdb_index_data_ = new Gdb_index(os);
1327 os->add_output_section_data(this->gdb_index_data_);
1328 os->set_after_input_sections();
1329 }
1330
1331 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1332 symbols_size, shndx, reloc_shndx,
1333 reloc_type);
1334 }
1335
1336 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1337 // the output section.
1338
1339 Output_section*
1340 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1341 elfcpp::Elf_Xword flags,
1342 Output_section_data* posd,
1343 Output_section_order order, bool is_relro)
1344 {
1345 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1346 false, order, is_relro);
1347 if (os != NULL)
1348 os->add_output_section_data(posd);
1349 return os;
1350 }
1351
1352 // Map section flags to segment flags.
1353
1354 elfcpp::Elf_Word
1355 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1356 {
1357 elfcpp::Elf_Word ret = elfcpp::PF_R;
1358 if ((flags & elfcpp::SHF_WRITE) != 0)
1359 ret |= elfcpp::PF_W;
1360 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1361 ret |= elfcpp::PF_X;
1362 return ret;
1363 }
1364
1365 // Make a new Output_section, and attach it to segments as
1366 // appropriate. ORDER is the order in which this section should
1367 // appear in the output segment. IS_RELRO is true if this is a relro
1368 // (read-only after relocations) section.
1369
1370 Output_section*
1371 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1372 elfcpp::Elf_Xword flags,
1373 Output_section_order order, bool is_relro)
1374 {
1375 Output_section* os;
1376 if ((flags & elfcpp::SHF_ALLOC) == 0
1377 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1378 && is_compressible_debug_section(name))
1379 os = new Output_compressed_section(&parameters->options(), name, type,
1380 flags);
1381 else if ((flags & elfcpp::SHF_ALLOC) == 0
1382 && parameters->options().strip_debug_non_line()
1383 && strcmp(".debug_abbrev", name) == 0)
1384 {
1385 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1386 name, type, flags);
1387 if (this->debug_info_)
1388 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1389 }
1390 else if ((flags & elfcpp::SHF_ALLOC) == 0
1391 && parameters->options().strip_debug_non_line()
1392 && strcmp(".debug_info", name) == 0)
1393 {
1394 os = this->debug_info_ = new Output_reduced_debug_info_section(
1395 name, type, flags);
1396 if (this->debug_abbrev_)
1397 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1398 }
1399 else
1400 {
1401 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1402 // not have correct section types. Force them here.
1403 if (type == elfcpp::SHT_PROGBITS)
1404 {
1405 if (is_prefix_of(".init_array", name))
1406 type = elfcpp::SHT_INIT_ARRAY;
1407 else if (is_prefix_of(".preinit_array", name))
1408 type = elfcpp::SHT_PREINIT_ARRAY;
1409 else if (is_prefix_of(".fini_array", name))
1410 type = elfcpp::SHT_FINI_ARRAY;
1411 }
1412
1413 // FIXME: const_cast is ugly.
1414 Target* target = const_cast<Target*>(&parameters->target());
1415 os = target->make_output_section(name, type, flags);
1416 }
1417
1418 // With -z relro, we have to recognize the special sections by name.
1419 // There is no other way.
1420 bool is_relro_local = false;
1421 if (!this->script_options_->saw_sections_clause()
1422 && parameters->options().relro()
1423 && (flags & elfcpp::SHF_ALLOC) != 0
1424 && (flags & elfcpp::SHF_WRITE) != 0)
1425 {
1426 if (type == elfcpp::SHT_PROGBITS)
1427 {
1428 if (strcmp(name, ".data.rel.ro") == 0)
1429 is_relro = true;
1430 else if (strcmp(name, ".data.rel.ro.local") == 0)
1431 {
1432 is_relro = true;
1433 is_relro_local = true;
1434 }
1435 else if (strcmp(name, ".ctors") == 0
1436 || strcmp(name, ".dtors") == 0
1437 || strcmp(name, ".jcr") == 0)
1438 is_relro = true;
1439 }
1440 else if (type == elfcpp::SHT_INIT_ARRAY
1441 || type == elfcpp::SHT_FINI_ARRAY
1442 || type == elfcpp::SHT_PREINIT_ARRAY)
1443 is_relro = true;
1444 }
1445
1446 if (is_relro)
1447 os->set_is_relro();
1448
1449 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1450 order = this->default_section_order(os, is_relro_local);
1451
1452 os->set_order(order);
1453
1454 parameters->target().new_output_section(os);
1455
1456 this->section_list_.push_back(os);
1457
1458 // The GNU linker by default sorts some sections by priority, so we
1459 // do the same. We need to know that this might happen before we
1460 // attach any input sections.
1461 if (!this->script_options_->saw_sections_clause()
1462 && !parameters->options().relocatable()
1463 && (strcmp(name, ".init_array") == 0
1464 || strcmp(name, ".fini_array") == 0
1465 || (!parameters->options().ctors_in_init_array()
1466 && (strcmp(name, ".ctors") == 0
1467 || strcmp(name, ".dtors") == 0))))
1468 os->set_may_sort_attached_input_sections();
1469
1470 // Check for .stab*str sections, as .stab* sections need to link to
1471 // them.
1472 if (type == elfcpp::SHT_STRTAB
1473 && !this->have_stabstr_section_
1474 && strncmp(name, ".stab", 5) == 0
1475 && strcmp(name + strlen(name) - 3, "str") == 0)
1476 this->have_stabstr_section_ = true;
1477
1478 // During a full incremental link, we add patch space to most
1479 // PROGBITS and NOBITS sections. Flag those that may be
1480 // arbitrarily padded.
1481 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1482 && order != ORDER_INTERP
1483 && order != ORDER_INIT
1484 && order != ORDER_PLT
1485 && order != ORDER_FINI
1486 && order != ORDER_RELRO_LAST
1487 && order != ORDER_NON_RELRO_FIRST
1488 && strcmp(name, ".eh_frame") != 0
1489 && strcmp(name, ".ctors") != 0
1490 && strcmp(name, ".dtors") != 0
1491 && strcmp(name, ".jcr") != 0)
1492 {
1493 os->set_is_patch_space_allowed();
1494
1495 // Certain sections require "holes" to be filled with
1496 // specific fill patterns. These fill patterns may have
1497 // a minimum size, so we must prevent allocations from the
1498 // free list that leave a hole smaller than the minimum.
1499 if (strcmp(name, ".debug_info") == 0)
1500 os->set_free_space_fill(new Output_fill_debug_info(false));
1501 else if (strcmp(name, ".debug_types") == 0)
1502 os->set_free_space_fill(new Output_fill_debug_info(true));
1503 else if (strcmp(name, ".debug_line") == 0)
1504 os->set_free_space_fill(new Output_fill_debug_line());
1505 }
1506
1507 // If we have already attached the sections to segments, then we
1508 // need to attach this one now. This happens for sections created
1509 // directly by the linker.
1510 if (this->sections_are_attached_)
1511 this->attach_section_to_segment(os);
1512
1513 return os;
1514 }
1515
1516 // Return the default order in which a section should be placed in an
1517 // output segment. This function captures a lot of the ideas in
1518 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1519 // linker created section is normally set when the section is created;
1520 // this function is used for input sections.
1521
1522 Output_section_order
1523 Layout::default_section_order(Output_section* os, bool is_relro_local)
1524 {
1525 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1526 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1527 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1528 bool is_bss = false;
1529
1530 switch (os->type())
1531 {
1532 default:
1533 case elfcpp::SHT_PROGBITS:
1534 break;
1535 case elfcpp::SHT_NOBITS:
1536 is_bss = true;
1537 break;
1538 case elfcpp::SHT_RELA:
1539 case elfcpp::SHT_REL:
1540 if (!is_write)
1541 return ORDER_DYNAMIC_RELOCS;
1542 break;
1543 case elfcpp::SHT_HASH:
1544 case elfcpp::SHT_DYNAMIC:
1545 case elfcpp::SHT_SHLIB:
1546 case elfcpp::SHT_DYNSYM:
1547 case elfcpp::SHT_GNU_HASH:
1548 case elfcpp::SHT_GNU_verdef:
1549 case elfcpp::SHT_GNU_verneed:
1550 case elfcpp::SHT_GNU_versym:
1551 if (!is_write)
1552 return ORDER_DYNAMIC_LINKER;
1553 break;
1554 case elfcpp::SHT_NOTE:
1555 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1556 }
1557
1558 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1559 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1560
1561 if (!is_bss && !is_write)
1562 {
1563 if (is_execinstr)
1564 {
1565 if (strcmp(os->name(), ".init") == 0)
1566 return ORDER_INIT;
1567 else if (strcmp(os->name(), ".fini") == 0)
1568 return ORDER_FINI;
1569 }
1570 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1571 }
1572
1573 if (os->is_relro())
1574 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1575
1576 if (os->is_small_section())
1577 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1578 if (os->is_large_section())
1579 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1580
1581 return is_bss ? ORDER_BSS : ORDER_DATA;
1582 }
1583
1584 // Attach output sections to segments. This is called after we have
1585 // seen all the input sections.
1586
1587 void
1588 Layout::attach_sections_to_segments()
1589 {
1590 for (Section_list::iterator p = this->section_list_.begin();
1591 p != this->section_list_.end();
1592 ++p)
1593 this->attach_section_to_segment(*p);
1594
1595 this->sections_are_attached_ = true;
1596 }
1597
1598 // Attach an output section to a segment.
1599
1600 void
1601 Layout::attach_section_to_segment(Output_section* os)
1602 {
1603 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1604 this->unattached_section_list_.push_back(os);
1605 else
1606 this->attach_allocated_section_to_segment(os);
1607 }
1608
1609 // Attach an allocated output section to a segment.
1610
1611 void
1612 Layout::attach_allocated_section_to_segment(Output_section* os)
1613 {
1614 elfcpp::Elf_Xword flags = os->flags();
1615 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1616
1617 if (parameters->options().relocatable())
1618 return;
1619
1620 // If we have a SECTIONS clause, we can't handle the attachment to
1621 // segments until after we've seen all the sections.
1622 if (this->script_options_->saw_sections_clause())
1623 return;
1624
1625 gold_assert(!this->script_options_->saw_phdrs_clause());
1626
1627 // This output section goes into a PT_LOAD segment.
1628
1629 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1630
1631 // Check for --section-start.
1632 uint64_t addr;
1633 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1634
1635 // In general the only thing we really care about for PT_LOAD
1636 // segments is whether or not they are writable or executable,
1637 // so that is how we search for them.
1638 // Large data sections also go into their own PT_LOAD segment.
1639 // People who need segments sorted on some other basis will
1640 // have to use a linker script.
1641
1642 Segment_list::const_iterator p;
1643 for (p = this->segment_list_.begin();
1644 p != this->segment_list_.end();
1645 ++p)
1646 {
1647 if ((*p)->type() != elfcpp::PT_LOAD)
1648 continue;
1649 if (!parameters->options().omagic()
1650 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1651 continue;
1652 if (parameters->options().rosegment()
1653 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1654 continue;
1655 // If -Tbss was specified, we need to separate the data and BSS
1656 // segments.
1657 if (parameters->options().user_set_Tbss())
1658 {
1659 if ((os->type() == elfcpp::SHT_NOBITS)
1660 == (*p)->has_any_data_sections())
1661 continue;
1662 }
1663 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1664 continue;
1665
1666 if (is_address_set)
1667 {
1668 if ((*p)->are_addresses_set())
1669 continue;
1670
1671 (*p)->add_initial_output_data(os);
1672 (*p)->update_flags_for_output_section(seg_flags);
1673 (*p)->set_addresses(addr, addr);
1674 break;
1675 }
1676
1677 (*p)->add_output_section_to_load(this, os, seg_flags);
1678 break;
1679 }
1680
1681 if (p == this->segment_list_.end())
1682 {
1683 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1684 seg_flags);
1685 if (os->is_large_data_section())
1686 oseg->set_is_large_data_segment();
1687 oseg->add_output_section_to_load(this, os, seg_flags);
1688 if (is_address_set)
1689 oseg->set_addresses(addr, addr);
1690 }
1691
1692 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1693 // segment.
1694 if (os->type() == elfcpp::SHT_NOTE)
1695 {
1696 // See if we already have an equivalent PT_NOTE segment.
1697 for (p = this->segment_list_.begin();
1698 p != segment_list_.end();
1699 ++p)
1700 {
1701 if ((*p)->type() == elfcpp::PT_NOTE
1702 && (((*p)->flags() & elfcpp::PF_W)
1703 == (seg_flags & elfcpp::PF_W)))
1704 {
1705 (*p)->add_output_section_to_nonload(os, seg_flags);
1706 break;
1707 }
1708 }
1709
1710 if (p == this->segment_list_.end())
1711 {
1712 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1713 seg_flags);
1714 oseg->add_output_section_to_nonload(os, seg_flags);
1715 }
1716 }
1717
1718 // If we see a loadable SHF_TLS section, we create a PT_TLS
1719 // segment. There can only be one such segment.
1720 if ((flags & elfcpp::SHF_TLS) != 0)
1721 {
1722 if (this->tls_segment_ == NULL)
1723 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1724 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1725 }
1726
1727 // If -z relro is in effect, and we see a relro section, we create a
1728 // PT_GNU_RELRO segment. There can only be one such segment.
1729 if (os->is_relro() && parameters->options().relro())
1730 {
1731 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1732 if (this->relro_segment_ == NULL)
1733 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1734 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1735 }
1736
1737 // If we see a section named .interp, put it into a PT_INTERP
1738 // segment. This seems broken to me, but this is what GNU ld does,
1739 // and glibc expects it.
1740 if (strcmp(os->name(), ".interp") == 0
1741 && !this->script_options_->saw_phdrs_clause())
1742 {
1743 if (this->interp_segment_ == NULL)
1744 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1745 else
1746 gold_warning(_("multiple '.interp' sections in input files "
1747 "may cause confusing PT_INTERP segment"));
1748 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1749 }
1750 }
1751
1752 // Make an output section for a script.
1753
1754 Output_section*
1755 Layout::make_output_section_for_script(
1756 const char* name,
1757 Script_sections::Section_type section_type)
1758 {
1759 name = this->namepool_.add(name, false, NULL);
1760 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1761 if (section_type == Script_sections::ST_NOLOAD)
1762 sh_flags = 0;
1763 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1764 sh_flags, ORDER_INVALID,
1765 false);
1766 os->set_found_in_sections_clause();
1767 if (section_type == Script_sections::ST_NOLOAD)
1768 os->set_is_noload();
1769 return os;
1770 }
1771
1772 // Return the number of segments we expect to see.
1773
1774 size_t
1775 Layout::expected_segment_count() const
1776 {
1777 size_t ret = this->segment_list_.size();
1778
1779 // If we didn't see a SECTIONS clause in a linker script, we should
1780 // already have the complete list of segments. Otherwise we ask the
1781 // SECTIONS clause how many segments it expects, and add in the ones
1782 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1783
1784 if (!this->script_options_->saw_sections_clause())
1785 return ret;
1786 else
1787 {
1788 const Script_sections* ss = this->script_options_->script_sections();
1789 return ret + ss->expected_segment_count(this);
1790 }
1791 }
1792
1793 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1794 // is whether we saw a .note.GNU-stack section in the object file.
1795 // GNU_STACK_FLAGS is the section flags. The flags give the
1796 // protection required for stack memory. We record this in an
1797 // executable as a PT_GNU_STACK segment. If an object file does not
1798 // have a .note.GNU-stack segment, we must assume that it is an old
1799 // object. On some targets that will force an executable stack.
1800
1801 void
1802 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1803 const Object* obj)
1804 {
1805 if (!seen_gnu_stack)
1806 {
1807 this->input_without_gnu_stack_note_ = true;
1808 if (parameters->options().warn_execstack()
1809 && parameters->target().is_default_stack_executable())
1810 gold_warning(_("%s: missing .note.GNU-stack section"
1811 " implies executable stack"),
1812 obj->name().c_str());
1813 }
1814 else
1815 {
1816 this->input_with_gnu_stack_note_ = true;
1817 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1818 {
1819 this->input_requires_executable_stack_ = true;
1820 if (parameters->options().warn_execstack()
1821 || parameters->options().is_stack_executable())
1822 gold_warning(_("%s: requires executable stack"),
1823 obj->name().c_str());
1824 }
1825 }
1826 }
1827
1828 // Create automatic note sections.
1829
1830 void
1831 Layout::create_notes()
1832 {
1833 this->create_gold_note();
1834 this->create_executable_stack_info();
1835 this->create_build_id();
1836 }
1837
1838 // Create the dynamic sections which are needed before we read the
1839 // relocs.
1840
1841 void
1842 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1843 {
1844 if (parameters->doing_static_link())
1845 return;
1846
1847 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1848 elfcpp::SHT_DYNAMIC,
1849 (elfcpp::SHF_ALLOC
1850 | elfcpp::SHF_WRITE),
1851 false, ORDER_RELRO,
1852 true);
1853
1854 // A linker script may discard .dynamic, so check for NULL.
1855 if (this->dynamic_section_ != NULL)
1856 {
1857 this->dynamic_symbol_ =
1858 symtab->define_in_output_data("_DYNAMIC", NULL,
1859 Symbol_table::PREDEFINED,
1860 this->dynamic_section_, 0, 0,
1861 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1862 elfcpp::STV_HIDDEN, 0, false, false);
1863
1864 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1865
1866 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1867 }
1868 }
1869
1870 // For each output section whose name can be represented as C symbol,
1871 // define __start and __stop symbols for the section. This is a GNU
1872 // extension.
1873
1874 void
1875 Layout::define_section_symbols(Symbol_table* symtab)
1876 {
1877 for (Section_list::const_iterator p = this->section_list_.begin();
1878 p != this->section_list_.end();
1879 ++p)
1880 {
1881 const char* const name = (*p)->name();
1882 if (is_cident(name))
1883 {
1884 const std::string name_string(name);
1885 const std::string start_name(cident_section_start_prefix
1886 + name_string);
1887 const std::string stop_name(cident_section_stop_prefix
1888 + name_string);
1889
1890 symtab->define_in_output_data(start_name.c_str(),
1891 NULL, // version
1892 Symbol_table::PREDEFINED,
1893 *p,
1894 0, // value
1895 0, // symsize
1896 elfcpp::STT_NOTYPE,
1897 elfcpp::STB_GLOBAL,
1898 elfcpp::STV_DEFAULT,
1899 0, // nonvis
1900 false, // offset_is_from_end
1901 true); // only_if_ref
1902
1903 symtab->define_in_output_data(stop_name.c_str(),
1904 NULL, // version
1905 Symbol_table::PREDEFINED,
1906 *p,
1907 0, // value
1908 0, // symsize
1909 elfcpp::STT_NOTYPE,
1910 elfcpp::STB_GLOBAL,
1911 elfcpp::STV_DEFAULT,
1912 0, // nonvis
1913 true, // offset_is_from_end
1914 true); // only_if_ref
1915 }
1916 }
1917 }
1918
1919 // Define symbols for group signatures.
1920
1921 void
1922 Layout::define_group_signatures(Symbol_table* symtab)
1923 {
1924 for (Group_signatures::iterator p = this->group_signatures_.begin();
1925 p != this->group_signatures_.end();
1926 ++p)
1927 {
1928 Symbol* sym = symtab->lookup(p->signature, NULL);
1929 if (sym != NULL)
1930 p->section->set_info_symndx(sym);
1931 else
1932 {
1933 // Force the name of the group section to the group
1934 // signature, and use the group's section symbol as the
1935 // signature symbol.
1936 if (strcmp(p->section->name(), p->signature) != 0)
1937 {
1938 const char* name = this->namepool_.add(p->signature,
1939 true, NULL);
1940 p->section->set_name(name);
1941 }
1942 p->section->set_needs_symtab_index();
1943 p->section->set_info_section_symndx(p->section);
1944 }
1945 }
1946
1947 this->group_signatures_.clear();
1948 }
1949
1950 // Find the first read-only PT_LOAD segment, creating one if
1951 // necessary.
1952
1953 Output_segment*
1954 Layout::find_first_load_seg()
1955 {
1956 Output_segment* best = NULL;
1957 for (Segment_list::const_iterator p = this->segment_list_.begin();
1958 p != this->segment_list_.end();
1959 ++p)
1960 {
1961 if ((*p)->type() == elfcpp::PT_LOAD
1962 && ((*p)->flags() & elfcpp::PF_R) != 0
1963 && (parameters->options().omagic()
1964 || ((*p)->flags() & elfcpp::PF_W) == 0))
1965 {
1966 if (best == NULL || this->segment_precedes(*p, best))
1967 best = *p;
1968 }
1969 }
1970 if (best != NULL)
1971 return best;
1972
1973 gold_assert(!this->script_options_->saw_phdrs_clause());
1974
1975 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1976 elfcpp::PF_R);
1977 return load_seg;
1978 }
1979
1980 // Save states of all current output segments. Store saved states
1981 // in SEGMENT_STATES.
1982
1983 void
1984 Layout::save_segments(Segment_states* segment_states)
1985 {
1986 for (Segment_list::const_iterator p = this->segment_list_.begin();
1987 p != this->segment_list_.end();
1988 ++p)
1989 {
1990 Output_segment* segment = *p;
1991 // Shallow copy.
1992 Output_segment* copy = new Output_segment(*segment);
1993 (*segment_states)[segment] = copy;
1994 }
1995 }
1996
1997 // Restore states of output segments and delete any segment not found in
1998 // SEGMENT_STATES.
1999
2000 void
2001 Layout::restore_segments(const Segment_states* segment_states)
2002 {
2003 // Go through the segment list and remove any segment added in the
2004 // relaxation loop.
2005 this->tls_segment_ = NULL;
2006 this->relro_segment_ = NULL;
2007 Segment_list::iterator list_iter = this->segment_list_.begin();
2008 while (list_iter != this->segment_list_.end())
2009 {
2010 Output_segment* segment = *list_iter;
2011 Segment_states::const_iterator states_iter =
2012 segment_states->find(segment);
2013 if (states_iter != segment_states->end())
2014 {
2015 const Output_segment* copy = states_iter->second;
2016 // Shallow copy to restore states.
2017 *segment = *copy;
2018
2019 // Also fix up TLS and RELRO segment pointers as appropriate.
2020 if (segment->type() == elfcpp::PT_TLS)
2021 this->tls_segment_ = segment;
2022 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2023 this->relro_segment_ = segment;
2024
2025 ++list_iter;
2026 }
2027 else
2028 {
2029 list_iter = this->segment_list_.erase(list_iter);
2030 // This is a segment created during section layout. It should be
2031 // safe to remove it since we should have removed all pointers to it.
2032 delete segment;
2033 }
2034 }
2035 }
2036
2037 // Clean up after relaxation so that sections can be laid out again.
2038
2039 void
2040 Layout::clean_up_after_relaxation()
2041 {
2042 // Restore the segments to point state just prior to the relaxation loop.
2043 Script_sections* script_section = this->script_options_->script_sections();
2044 script_section->release_segments();
2045 this->restore_segments(this->segment_states_);
2046
2047 // Reset section addresses and file offsets
2048 for (Section_list::iterator p = this->section_list_.begin();
2049 p != this->section_list_.end();
2050 ++p)
2051 {
2052 (*p)->restore_states();
2053
2054 // If an input section changes size because of relaxation,
2055 // we need to adjust the section offsets of all input sections.
2056 // after such a section.
2057 if ((*p)->section_offsets_need_adjustment())
2058 (*p)->adjust_section_offsets();
2059
2060 (*p)->reset_address_and_file_offset();
2061 }
2062
2063 // Reset special output object address and file offsets.
2064 for (Data_list::iterator p = this->special_output_list_.begin();
2065 p != this->special_output_list_.end();
2066 ++p)
2067 (*p)->reset_address_and_file_offset();
2068
2069 // A linker script may have created some output section data objects.
2070 // They are useless now.
2071 for (Output_section_data_list::const_iterator p =
2072 this->script_output_section_data_list_.begin();
2073 p != this->script_output_section_data_list_.end();
2074 ++p)
2075 delete *p;
2076 this->script_output_section_data_list_.clear();
2077 }
2078
2079 // Prepare for relaxation.
2080
2081 void
2082 Layout::prepare_for_relaxation()
2083 {
2084 // Create an relaxation debug check if in debugging mode.
2085 if (is_debugging_enabled(DEBUG_RELAXATION))
2086 this->relaxation_debug_check_ = new Relaxation_debug_check();
2087
2088 // Save segment states.
2089 this->segment_states_ = new Segment_states();
2090 this->save_segments(this->segment_states_);
2091
2092 for(Section_list::const_iterator p = this->section_list_.begin();
2093 p != this->section_list_.end();
2094 ++p)
2095 (*p)->save_states();
2096
2097 if (is_debugging_enabled(DEBUG_RELAXATION))
2098 this->relaxation_debug_check_->check_output_data_for_reset_values(
2099 this->section_list_, this->special_output_list_);
2100
2101 // Also enable recording of output section data from scripts.
2102 this->record_output_section_data_from_script_ = true;
2103 }
2104
2105 // Relaxation loop body: If target has no relaxation, this runs only once
2106 // Otherwise, the target relaxation hook is called at the end of
2107 // each iteration. If the hook returns true, it means re-layout of
2108 // section is required.
2109 //
2110 // The number of segments created by a linking script without a PHDRS
2111 // clause may be affected by section sizes and alignments. There is
2112 // a remote chance that relaxation causes different number of PT_LOAD
2113 // segments are created and sections are attached to different segments.
2114 // Therefore, we always throw away all segments created during section
2115 // layout. In order to be able to restart the section layout, we keep
2116 // a copy of the segment list right before the relaxation loop and use
2117 // that to restore the segments.
2118 //
2119 // PASS is the current relaxation pass number.
2120 // SYMTAB is a symbol table.
2121 // PLOAD_SEG is the address of a pointer for the load segment.
2122 // PHDR_SEG is a pointer to the PHDR segment.
2123 // SEGMENT_HEADERS points to the output segment header.
2124 // FILE_HEADER points to the output file header.
2125 // PSHNDX is the address to store the output section index.
2126
2127 off_t inline
2128 Layout::relaxation_loop_body(
2129 int pass,
2130 Target* target,
2131 Symbol_table* symtab,
2132 Output_segment** pload_seg,
2133 Output_segment* phdr_seg,
2134 Output_segment_headers* segment_headers,
2135 Output_file_header* file_header,
2136 unsigned int* pshndx)
2137 {
2138 // If this is not the first iteration, we need to clean up after
2139 // relaxation so that we can lay out the sections again.
2140 if (pass != 0)
2141 this->clean_up_after_relaxation();
2142
2143 // If there is a SECTIONS clause, put all the input sections into
2144 // the required order.
2145 Output_segment* load_seg;
2146 if (this->script_options_->saw_sections_clause())
2147 load_seg = this->set_section_addresses_from_script(symtab);
2148 else if (parameters->options().relocatable())
2149 load_seg = NULL;
2150 else
2151 load_seg = this->find_first_load_seg();
2152
2153 if (parameters->options().oformat_enum()
2154 != General_options::OBJECT_FORMAT_ELF)
2155 load_seg = NULL;
2156
2157 // If the user set the address of the text segment, that may not be
2158 // compatible with putting the segment headers and file headers into
2159 // that segment.
2160 if (parameters->options().user_set_Ttext()
2161 && parameters->options().Ttext() % target->common_pagesize() != 0)
2162 {
2163 load_seg = NULL;
2164 phdr_seg = NULL;
2165 }
2166
2167 gold_assert(phdr_seg == NULL
2168 || load_seg != NULL
2169 || this->script_options_->saw_sections_clause());
2170
2171 // If the address of the load segment we found has been set by
2172 // --section-start rather than by a script, then adjust the VMA and
2173 // LMA downward if possible to include the file and section headers.
2174 uint64_t header_gap = 0;
2175 if (load_seg != NULL
2176 && load_seg->are_addresses_set()
2177 && !this->script_options_->saw_sections_clause()
2178 && !parameters->options().relocatable())
2179 {
2180 file_header->finalize_data_size();
2181 segment_headers->finalize_data_size();
2182 size_t sizeof_headers = (file_header->data_size()
2183 + segment_headers->data_size());
2184 const uint64_t abi_pagesize = target->abi_pagesize();
2185 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2186 hdr_paddr &= ~(abi_pagesize - 1);
2187 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2188 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2189 load_seg = NULL;
2190 else
2191 {
2192 load_seg->set_addresses(load_seg->vaddr() - subtract,
2193 load_seg->paddr() - subtract);
2194 header_gap = subtract - sizeof_headers;
2195 }
2196 }
2197
2198 // Lay out the segment headers.
2199 if (!parameters->options().relocatable())
2200 {
2201 gold_assert(segment_headers != NULL);
2202 if (header_gap != 0 && load_seg != NULL)
2203 {
2204 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2205 load_seg->add_initial_output_data(z);
2206 }
2207 if (load_seg != NULL)
2208 load_seg->add_initial_output_data(segment_headers);
2209 if (phdr_seg != NULL)
2210 phdr_seg->add_initial_output_data(segment_headers);
2211 }
2212
2213 // Lay out the file header.
2214 if (load_seg != NULL)
2215 load_seg->add_initial_output_data(file_header);
2216
2217 if (this->script_options_->saw_phdrs_clause()
2218 && !parameters->options().relocatable())
2219 {
2220 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2221 // clause in a linker script.
2222 Script_sections* ss = this->script_options_->script_sections();
2223 ss->put_headers_in_phdrs(file_header, segment_headers);
2224 }
2225
2226 // We set the output section indexes in set_segment_offsets and
2227 // set_section_indexes.
2228 *pshndx = 1;
2229
2230 // Set the file offsets of all the segments, and all the sections
2231 // they contain.
2232 off_t off;
2233 if (!parameters->options().relocatable())
2234 off = this->set_segment_offsets(target, load_seg, pshndx);
2235 else
2236 off = this->set_relocatable_section_offsets(file_header, pshndx);
2237
2238 // Verify that the dummy relaxation does not change anything.
2239 if (is_debugging_enabled(DEBUG_RELAXATION))
2240 {
2241 if (pass == 0)
2242 this->relaxation_debug_check_->read_sections(this->section_list_);
2243 else
2244 this->relaxation_debug_check_->verify_sections(this->section_list_);
2245 }
2246
2247 *pload_seg = load_seg;
2248 return off;
2249 }
2250
2251 // Search the list of patterns and find the postion of the given section
2252 // name in the output section. If the section name matches a glob
2253 // pattern and a non-glob name, then the non-glob position takes
2254 // precedence. Return 0 if no match is found.
2255
2256 unsigned int
2257 Layout::find_section_order_index(const std::string& section_name)
2258 {
2259 Unordered_map<std::string, unsigned int>::iterator map_it;
2260 map_it = this->input_section_position_.find(section_name);
2261 if (map_it != this->input_section_position_.end())
2262 return map_it->second;
2263
2264 // Absolute match failed. Linear search the glob patterns.
2265 std::vector<std::string>::iterator it;
2266 for (it = this->input_section_glob_.begin();
2267 it != this->input_section_glob_.end();
2268 ++it)
2269 {
2270 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2271 {
2272 map_it = this->input_section_position_.find(*it);
2273 gold_assert(map_it != this->input_section_position_.end());
2274 return map_it->second;
2275 }
2276 }
2277 return 0;
2278 }
2279
2280 // Read the sequence of input sections from the file specified with
2281 // option --section-ordering-file.
2282
2283 void
2284 Layout::read_layout_from_file()
2285 {
2286 const char* filename = parameters->options().section_ordering_file();
2287 std::ifstream in;
2288 std::string line;
2289
2290 in.open(filename);
2291 if (!in)
2292 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2293 filename, strerror(errno));
2294
2295 std::getline(in, line); // this chops off the trailing \n, if any
2296 unsigned int position = 1;
2297 this->set_section_ordering_specified();
2298
2299 while (in)
2300 {
2301 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2302 line.resize(line.length() - 1);
2303 // Ignore comments, beginning with '#'
2304 if (line[0] == '#')
2305 {
2306 std::getline(in, line);
2307 continue;
2308 }
2309 this->input_section_position_[line] = position;
2310 // Store all glob patterns in a vector.
2311 if (is_wildcard_string(line.c_str()))
2312 this->input_section_glob_.push_back(line);
2313 position++;
2314 std::getline(in, line);
2315 }
2316 }
2317
2318 // Finalize the layout. When this is called, we have created all the
2319 // output sections and all the output segments which are based on
2320 // input sections. We have several things to do, and we have to do
2321 // them in the right order, so that we get the right results correctly
2322 // and efficiently.
2323
2324 // 1) Finalize the list of output segments and create the segment
2325 // table header.
2326
2327 // 2) Finalize the dynamic symbol table and associated sections.
2328
2329 // 3) Determine the final file offset of all the output segments.
2330
2331 // 4) Determine the final file offset of all the SHF_ALLOC output
2332 // sections.
2333
2334 // 5) Create the symbol table sections and the section name table
2335 // section.
2336
2337 // 6) Finalize the symbol table: set symbol values to their final
2338 // value and make a final determination of which symbols are going
2339 // into the output symbol table.
2340
2341 // 7) Create the section table header.
2342
2343 // 8) Determine the final file offset of all the output sections which
2344 // are not SHF_ALLOC, including the section table header.
2345
2346 // 9) Finalize the ELF file header.
2347
2348 // This function returns the size of the output file.
2349
2350 off_t
2351 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2352 Target* target, const Task* task)
2353 {
2354 target->finalize_sections(this, input_objects, symtab);
2355
2356 this->count_local_symbols(task, input_objects);
2357
2358 this->link_stabs_sections();
2359
2360 Output_segment* phdr_seg = NULL;
2361 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2362 {
2363 // There was a dynamic object in the link. We need to create
2364 // some information for the dynamic linker.
2365
2366 // Create the PT_PHDR segment which will hold the program
2367 // headers.
2368 if (!this->script_options_->saw_phdrs_clause())
2369 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2370
2371 // Create the dynamic symbol table, including the hash table.
2372 Output_section* dynstr;
2373 std::vector<Symbol*> dynamic_symbols;
2374 unsigned int local_dynamic_count;
2375 Versions versions(*this->script_options()->version_script_info(),
2376 &this->dynpool_);
2377 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2378 &local_dynamic_count, &dynamic_symbols,
2379 &versions);
2380
2381 // Create the .interp section to hold the name of the
2382 // interpreter, and put it in a PT_INTERP segment. Don't do it
2383 // if we saw a .interp section in an input file.
2384 if ((!parameters->options().shared()
2385 || parameters->options().dynamic_linker() != NULL)
2386 && this->interp_segment_ == NULL)
2387 this->create_interp(target);
2388
2389 // Finish the .dynamic section to hold the dynamic data, and put
2390 // it in a PT_DYNAMIC segment.
2391 this->finish_dynamic_section(input_objects, symtab);
2392
2393 // We should have added everything we need to the dynamic string
2394 // table.
2395 this->dynpool_.set_string_offsets();
2396
2397 // Create the version sections. We can't do this until the
2398 // dynamic string table is complete.
2399 this->create_version_sections(&versions, symtab, local_dynamic_count,
2400 dynamic_symbols, dynstr);
2401
2402 // Set the size of the _DYNAMIC symbol. We can't do this until
2403 // after we call create_version_sections.
2404 this->set_dynamic_symbol_size(symtab);
2405 }
2406
2407 // Create segment headers.
2408 Output_segment_headers* segment_headers =
2409 (parameters->options().relocatable()
2410 ? NULL
2411 : new Output_segment_headers(this->segment_list_));
2412
2413 // Lay out the file header.
2414 Output_file_header* file_header = new Output_file_header(target, symtab,
2415 segment_headers);
2416
2417 this->special_output_list_.push_back(file_header);
2418 if (segment_headers != NULL)
2419 this->special_output_list_.push_back(segment_headers);
2420
2421 // Find approriate places for orphan output sections if we are using
2422 // a linker script.
2423 if (this->script_options_->saw_sections_clause())
2424 this->place_orphan_sections_in_script();
2425
2426 Output_segment* load_seg;
2427 off_t off;
2428 unsigned int shndx;
2429 int pass = 0;
2430
2431 // Take a snapshot of the section layout as needed.
2432 if (target->may_relax())
2433 this->prepare_for_relaxation();
2434
2435 // Run the relaxation loop to lay out sections.
2436 do
2437 {
2438 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2439 phdr_seg, segment_headers, file_header,
2440 &shndx);
2441 pass++;
2442 }
2443 while (target->may_relax()
2444 && target->relax(pass, input_objects, symtab, this, task));
2445
2446 // Set the file offsets of all the non-data sections we've seen so
2447 // far which don't have to wait for the input sections. We need
2448 // this in order to finalize local symbols in non-allocated
2449 // sections.
2450 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2451
2452 // Set the section indexes of all unallocated sections seen so far,
2453 // in case any of them are somehow referenced by a symbol.
2454 shndx = this->set_section_indexes(shndx);
2455
2456 // Create the symbol table sections.
2457 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2458 if (!parameters->doing_static_link())
2459 this->assign_local_dynsym_offsets(input_objects);
2460
2461 // Process any symbol assignments from a linker script. This must
2462 // be called after the symbol table has been finalized.
2463 this->script_options_->finalize_symbols(symtab, this);
2464
2465 // Create the incremental inputs sections.
2466 if (this->incremental_inputs_)
2467 {
2468 this->incremental_inputs_->finalize();
2469 this->create_incremental_info_sections(symtab);
2470 }
2471
2472 // Create the .shstrtab section.
2473 Output_section* shstrtab_section = this->create_shstrtab();
2474
2475 // Set the file offsets of the rest of the non-data sections which
2476 // don't have to wait for the input sections.
2477 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2478
2479 // Now that all sections have been created, set the section indexes
2480 // for any sections which haven't been done yet.
2481 shndx = this->set_section_indexes(shndx);
2482
2483 // Create the section table header.
2484 this->create_shdrs(shstrtab_section, &off);
2485
2486 // If there are no sections which require postprocessing, we can
2487 // handle the section names now, and avoid a resize later.
2488 if (!this->any_postprocessing_sections_)
2489 {
2490 off = this->set_section_offsets(off,
2491 POSTPROCESSING_SECTIONS_PASS);
2492 off =
2493 this->set_section_offsets(off,
2494 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2495 }
2496
2497 file_header->set_section_info(this->section_headers_, shstrtab_section);
2498
2499 // Now we know exactly where everything goes in the output file
2500 // (except for non-allocated sections which require postprocessing).
2501 Output_data::layout_complete();
2502
2503 this->output_file_size_ = off;
2504
2505 return off;
2506 }
2507
2508 // Create a note header following the format defined in the ELF ABI.
2509 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2510 // of the section to create, DESCSZ is the size of the descriptor.
2511 // ALLOCATE is true if the section should be allocated in memory.
2512 // This returns the new note section. It sets *TRAILING_PADDING to
2513 // the number of trailing zero bytes required.
2514
2515 Output_section*
2516 Layout::create_note(const char* name, int note_type,
2517 const char* section_name, size_t descsz,
2518 bool allocate, size_t* trailing_padding)
2519 {
2520 // Authorities all agree that the values in a .note field should
2521 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2522 // they differ on what the alignment is for 64-bit binaries.
2523 // The GABI says unambiguously they take 8-byte alignment:
2524 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2525 // Other documentation says alignment should always be 4 bytes:
2526 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2527 // GNU ld and GNU readelf both support the latter (at least as of
2528 // version 2.16.91), and glibc always generates the latter for
2529 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2530 // here.
2531 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2532 const int size = parameters->target().get_size();
2533 #else
2534 const int size = 32;
2535 #endif
2536
2537 // The contents of the .note section.
2538 size_t namesz = strlen(name) + 1;
2539 size_t aligned_namesz = align_address(namesz, size / 8);
2540 size_t aligned_descsz = align_address(descsz, size / 8);
2541
2542 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2543
2544 unsigned char* buffer = new unsigned char[notehdrsz];
2545 memset(buffer, 0, notehdrsz);
2546
2547 bool is_big_endian = parameters->target().is_big_endian();
2548
2549 if (size == 32)
2550 {
2551 if (!is_big_endian)
2552 {
2553 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2554 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2555 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2556 }
2557 else
2558 {
2559 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2560 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2561 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2562 }
2563 }
2564 else if (size == 64)
2565 {
2566 if (!is_big_endian)
2567 {
2568 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2569 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2570 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2571 }
2572 else
2573 {
2574 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2575 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2576 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2577 }
2578 }
2579 else
2580 gold_unreachable();
2581
2582 memcpy(buffer + 3 * (size / 8), name, namesz);
2583
2584 elfcpp::Elf_Xword flags = 0;
2585 Output_section_order order = ORDER_INVALID;
2586 if (allocate)
2587 {
2588 flags = elfcpp::SHF_ALLOC;
2589 order = ORDER_RO_NOTE;
2590 }
2591 Output_section* os = this->choose_output_section(NULL, section_name,
2592 elfcpp::SHT_NOTE,
2593 flags, false, order, false);
2594 if (os == NULL)
2595 return NULL;
2596
2597 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2598 size / 8,
2599 "** note header");
2600 os->add_output_section_data(posd);
2601
2602 *trailing_padding = aligned_descsz - descsz;
2603
2604 return os;
2605 }
2606
2607 // For an executable or shared library, create a note to record the
2608 // version of gold used to create the binary.
2609
2610 void
2611 Layout::create_gold_note()
2612 {
2613 if (parameters->options().relocatable()
2614 || parameters->incremental_update())
2615 return;
2616
2617 std::string desc = std::string("gold ") + gold::get_version_string();
2618
2619 size_t trailing_padding;
2620 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2621 ".note.gnu.gold-version", desc.size(),
2622 false, &trailing_padding);
2623 if (os == NULL)
2624 return;
2625
2626 Output_section_data* posd = new Output_data_const(desc, 4);
2627 os->add_output_section_data(posd);
2628
2629 if (trailing_padding > 0)
2630 {
2631 posd = new Output_data_zero_fill(trailing_padding, 0);
2632 os->add_output_section_data(posd);
2633 }
2634 }
2635
2636 // Record whether the stack should be executable. This can be set
2637 // from the command line using the -z execstack or -z noexecstack
2638 // options. Otherwise, if any input file has a .note.GNU-stack
2639 // section with the SHF_EXECINSTR flag set, the stack should be
2640 // executable. Otherwise, if at least one input file a
2641 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2642 // section, we use the target default for whether the stack should be
2643 // executable. Otherwise, we don't generate a stack note. When
2644 // generating a object file, we create a .note.GNU-stack section with
2645 // the appropriate marking. When generating an executable or shared
2646 // library, we create a PT_GNU_STACK segment.
2647
2648 void
2649 Layout::create_executable_stack_info()
2650 {
2651 bool is_stack_executable;
2652 if (parameters->options().is_execstack_set())
2653 is_stack_executable = parameters->options().is_stack_executable();
2654 else if (!this->input_with_gnu_stack_note_)
2655 return;
2656 else
2657 {
2658 if (this->input_requires_executable_stack_)
2659 is_stack_executable = true;
2660 else if (this->input_without_gnu_stack_note_)
2661 is_stack_executable =
2662 parameters->target().is_default_stack_executable();
2663 else
2664 is_stack_executable = false;
2665 }
2666
2667 if (parameters->options().relocatable())
2668 {
2669 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2670 elfcpp::Elf_Xword flags = 0;
2671 if (is_stack_executable)
2672 flags |= elfcpp::SHF_EXECINSTR;
2673 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2674 ORDER_INVALID, false);
2675 }
2676 else
2677 {
2678 if (this->script_options_->saw_phdrs_clause())
2679 return;
2680 int flags = elfcpp::PF_R | elfcpp::PF_W;
2681 if (is_stack_executable)
2682 flags |= elfcpp::PF_X;
2683 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2684 }
2685 }
2686
2687 // If --build-id was used, set up the build ID note.
2688
2689 void
2690 Layout::create_build_id()
2691 {
2692 if (!parameters->options().user_set_build_id())
2693 return;
2694
2695 const char* style = parameters->options().build_id();
2696 if (strcmp(style, "none") == 0)
2697 return;
2698
2699 // Set DESCSZ to the size of the note descriptor. When possible,
2700 // set DESC to the note descriptor contents.
2701 size_t descsz;
2702 std::string desc;
2703 if (strcmp(style, "md5") == 0)
2704 descsz = 128 / 8;
2705 else if (strcmp(style, "sha1") == 0)
2706 descsz = 160 / 8;
2707 else if (strcmp(style, "uuid") == 0)
2708 {
2709 const size_t uuidsz = 128 / 8;
2710
2711 char buffer[uuidsz];
2712 memset(buffer, 0, uuidsz);
2713
2714 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2715 if (descriptor < 0)
2716 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2717 strerror(errno));
2718 else
2719 {
2720 ssize_t got = ::read(descriptor, buffer, uuidsz);
2721 release_descriptor(descriptor, true);
2722 if (got < 0)
2723 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2724 else if (static_cast<size_t>(got) != uuidsz)
2725 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2726 uuidsz, got);
2727 }
2728
2729 desc.assign(buffer, uuidsz);
2730 descsz = uuidsz;
2731 }
2732 else if (strncmp(style, "0x", 2) == 0)
2733 {
2734 hex_init();
2735 const char* p = style + 2;
2736 while (*p != '\0')
2737 {
2738 if (hex_p(p[0]) && hex_p(p[1]))
2739 {
2740 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2741 desc += c;
2742 p += 2;
2743 }
2744 else if (*p == '-' || *p == ':')
2745 ++p;
2746 else
2747 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2748 style);
2749 }
2750 descsz = desc.size();
2751 }
2752 else
2753 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2754
2755 // Create the note.
2756 size_t trailing_padding;
2757 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2758 ".note.gnu.build-id", descsz, true,
2759 &trailing_padding);
2760 if (os == NULL)
2761 return;
2762
2763 if (!desc.empty())
2764 {
2765 // We know the value already, so we fill it in now.
2766 gold_assert(desc.size() == descsz);
2767
2768 Output_section_data* posd = new Output_data_const(desc, 4);
2769 os->add_output_section_data(posd);
2770
2771 if (trailing_padding != 0)
2772 {
2773 posd = new Output_data_zero_fill(trailing_padding, 0);
2774 os->add_output_section_data(posd);
2775 }
2776 }
2777 else
2778 {
2779 // We need to compute a checksum after we have completed the
2780 // link.
2781 gold_assert(trailing_padding == 0);
2782 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2783 os->add_output_section_data(this->build_id_note_);
2784 }
2785 }
2786
2787 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2788 // field of the former should point to the latter. I'm not sure who
2789 // started this, but the GNU linker does it, and some tools depend
2790 // upon it.
2791
2792 void
2793 Layout::link_stabs_sections()
2794 {
2795 if (!this->have_stabstr_section_)
2796 return;
2797
2798 for (Section_list::iterator p = this->section_list_.begin();
2799 p != this->section_list_.end();
2800 ++p)
2801 {
2802 if ((*p)->type() != elfcpp::SHT_STRTAB)
2803 continue;
2804
2805 const char* name = (*p)->name();
2806 if (strncmp(name, ".stab", 5) != 0)
2807 continue;
2808
2809 size_t len = strlen(name);
2810 if (strcmp(name + len - 3, "str") != 0)
2811 continue;
2812
2813 std::string stab_name(name, len - 3);
2814 Output_section* stab_sec;
2815 stab_sec = this->find_output_section(stab_name.c_str());
2816 if (stab_sec != NULL)
2817 stab_sec->set_link_section(*p);
2818 }
2819 }
2820
2821 // Create .gnu_incremental_inputs and related sections needed
2822 // for the next run of incremental linking to check what has changed.
2823
2824 void
2825 Layout::create_incremental_info_sections(Symbol_table* symtab)
2826 {
2827 Incremental_inputs* incr = this->incremental_inputs_;
2828
2829 gold_assert(incr != NULL);
2830
2831 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2832 incr->create_data_sections(symtab);
2833
2834 // Add the .gnu_incremental_inputs section.
2835 const char* incremental_inputs_name =
2836 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2837 Output_section* incremental_inputs_os =
2838 this->make_output_section(incremental_inputs_name,
2839 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2840 ORDER_INVALID, false);
2841 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2842
2843 // Add the .gnu_incremental_symtab section.
2844 const char* incremental_symtab_name =
2845 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2846 Output_section* incremental_symtab_os =
2847 this->make_output_section(incremental_symtab_name,
2848 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2849 ORDER_INVALID, false);
2850 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2851 incremental_symtab_os->set_entsize(4);
2852
2853 // Add the .gnu_incremental_relocs section.
2854 const char* incremental_relocs_name =
2855 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2856 Output_section* incremental_relocs_os =
2857 this->make_output_section(incremental_relocs_name,
2858 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2859 ORDER_INVALID, false);
2860 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2861 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2862
2863 // Add the .gnu_incremental_got_plt section.
2864 const char* incremental_got_plt_name =
2865 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2866 Output_section* incremental_got_plt_os =
2867 this->make_output_section(incremental_got_plt_name,
2868 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2869 ORDER_INVALID, false);
2870 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2871
2872 // Add the .gnu_incremental_strtab section.
2873 const char* incremental_strtab_name =
2874 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2875 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2876 elfcpp::SHT_STRTAB, 0,
2877 ORDER_INVALID, false);
2878 Output_data_strtab* strtab_data =
2879 new Output_data_strtab(incr->get_stringpool());
2880 incremental_strtab_os->add_output_section_data(strtab_data);
2881
2882 incremental_inputs_os->set_after_input_sections();
2883 incremental_symtab_os->set_after_input_sections();
2884 incremental_relocs_os->set_after_input_sections();
2885 incremental_got_plt_os->set_after_input_sections();
2886
2887 incremental_inputs_os->set_link_section(incremental_strtab_os);
2888 incremental_symtab_os->set_link_section(incremental_inputs_os);
2889 incremental_relocs_os->set_link_section(incremental_inputs_os);
2890 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2891 }
2892
2893 // Return whether SEG1 should be before SEG2 in the output file. This
2894 // is based entirely on the segment type and flags. When this is
2895 // called the segment addresses have normally not yet been set.
2896
2897 bool
2898 Layout::segment_precedes(const Output_segment* seg1,
2899 const Output_segment* seg2)
2900 {
2901 elfcpp::Elf_Word type1 = seg1->type();
2902 elfcpp::Elf_Word type2 = seg2->type();
2903
2904 // The single PT_PHDR segment is required to precede any loadable
2905 // segment. We simply make it always first.
2906 if (type1 == elfcpp::PT_PHDR)
2907 {
2908 gold_assert(type2 != elfcpp::PT_PHDR);
2909 return true;
2910 }
2911 if (type2 == elfcpp::PT_PHDR)
2912 return false;
2913
2914 // The single PT_INTERP segment is required to precede any loadable
2915 // segment. We simply make it always second.
2916 if (type1 == elfcpp::PT_INTERP)
2917 {
2918 gold_assert(type2 != elfcpp::PT_INTERP);
2919 return true;
2920 }
2921 if (type2 == elfcpp::PT_INTERP)
2922 return false;
2923
2924 // We then put PT_LOAD segments before any other segments.
2925 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2926 return true;
2927 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2928 return false;
2929
2930 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2931 // segment, because that is where the dynamic linker expects to find
2932 // it (this is just for efficiency; other positions would also work
2933 // correctly).
2934 if (type1 == elfcpp::PT_TLS
2935 && type2 != elfcpp::PT_TLS
2936 && type2 != elfcpp::PT_GNU_RELRO)
2937 return false;
2938 if (type2 == elfcpp::PT_TLS
2939 && type1 != elfcpp::PT_TLS
2940 && type1 != elfcpp::PT_GNU_RELRO)
2941 return true;
2942
2943 // We put the PT_GNU_RELRO segment last, because that is where the
2944 // dynamic linker expects to find it (as with PT_TLS, this is just
2945 // for efficiency).
2946 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2947 return false;
2948 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2949 return true;
2950
2951 const elfcpp::Elf_Word flags1 = seg1->flags();
2952 const elfcpp::Elf_Word flags2 = seg2->flags();
2953
2954 // The order of non-PT_LOAD segments is unimportant. We simply sort
2955 // by the numeric segment type and flags values. There should not
2956 // be more than one segment with the same type and flags.
2957 if (type1 != elfcpp::PT_LOAD)
2958 {
2959 if (type1 != type2)
2960 return type1 < type2;
2961 gold_assert(flags1 != flags2);
2962 return flags1 < flags2;
2963 }
2964
2965 // If the addresses are set already, sort by load address.
2966 if (seg1->are_addresses_set())
2967 {
2968 if (!seg2->are_addresses_set())
2969 return true;
2970
2971 unsigned int section_count1 = seg1->output_section_count();
2972 unsigned int section_count2 = seg2->output_section_count();
2973 if (section_count1 == 0 && section_count2 > 0)
2974 return true;
2975 if (section_count1 > 0 && section_count2 == 0)
2976 return false;
2977
2978 uint64_t paddr1 = (seg1->are_addresses_set()
2979 ? seg1->paddr()
2980 : seg1->first_section_load_address());
2981 uint64_t paddr2 = (seg2->are_addresses_set()
2982 ? seg2->paddr()
2983 : seg2->first_section_load_address());
2984
2985 if (paddr1 != paddr2)
2986 return paddr1 < paddr2;
2987 }
2988 else if (seg2->are_addresses_set())
2989 return false;
2990
2991 // A segment which holds large data comes after a segment which does
2992 // not hold large data.
2993 if (seg1->is_large_data_segment())
2994 {
2995 if (!seg2->is_large_data_segment())
2996 return false;
2997 }
2998 else if (seg2->is_large_data_segment())
2999 return true;
3000
3001 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3002 // segments come before writable segments. Then writable segments
3003 // with data come before writable segments without data. Then
3004 // executable segments come before non-executable segments. Then
3005 // the unlikely case of a non-readable segment comes before the
3006 // normal case of a readable segment. If there are multiple
3007 // segments with the same type and flags, we require that the
3008 // address be set, and we sort by virtual address and then physical
3009 // address.
3010 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3011 return (flags1 & elfcpp::PF_W) == 0;
3012 if ((flags1 & elfcpp::PF_W) != 0
3013 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3014 return seg1->has_any_data_sections();
3015 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3016 return (flags1 & elfcpp::PF_X) != 0;
3017 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3018 return (flags1 & elfcpp::PF_R) == 0;
3019
3020 // We shouldn't get here--we shouldn't create segments which we
3021 // can't distinguish. Unless of course we are using a weird linker
3022 // script or overlapping --section-start options.
3023 gold_assert(this->script_options_->saw_phdrs_clause()
3024 || parameters->options().any_section_start());
3025 return false;
3026 }
3027
3028 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3029
3030 static off_t
3031 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3032 {
3033 uint64_t unsigned_off = off;
3034 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3035 | (addr & (abi_pagesize - 1)));
3036 if (aligned_off < unsigned_off)
3037 aligned_off += abi_pagesize;
3038 return aligned_off;
3039 }
3040
3041 // Set the file offsets of all the segments, and all the sections they
3042 // contain. They have all been created. LOAD_SEG must be be laid out
3043 // first. Return the offset of the data to follow.
3044
3045 off_t
3046 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3047 unsigned int* pshndx)
3048 {
3049 // Sort them into the final order. We use a stable sort so that we
3050 // don't randomize the order of indistinguishable segments created
3051 // by linker scripts.
3052 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3053 Layout::Compare_segments(this));
3054
3055 // Find the PT_LOAD segments, and set their addresses and offsets
3056 // and their section's addresses and offsets.
3057 uint64_t addr;
3058 if (parameters->options().user_set_Ttext())
3059 addr = parameters->options().Ttext();
3060 else if (parameters->options().output_is_position_independent())
3061 addr = 0;
3062 else
3063 addr = target->default_text_segment_address();
3064 off_t off = 0;
3065
3066 // If LOAD_SEG is NULL, then the file header and segment headers
3067 // will not be loadable. But they still need to be at offset 0 in
3068 // the file. Set their offsets now.
3069 if (load_seg == NULL)
3070 {
3071 for (Data_list::iterator p = this->special_output_list_.begin();
3072 p != this->special_output_list_.end();
3073 ++p)
3074 {
3075 off = align_address(off, (*p)->addralign());
3076 (*p)->set_address_and_file_offset(0, off);
3077 off += (*p)->data_size();
3078 }
3079 }
3080
3081 unsigned int increase_relro = this->increase_relro_;
3082 if (this->script_options_->saw_sections_clause())
3083 increase_relro = 0;
3084
3085 const bool check_sections = parameters->options().check_sections();
3086 Output_segment* last_load_segment = NULL;
3087
3088 for (Segment_list::iterator p = this->segment_list_.begin();
3089 p != this->segment_list_.end();
3090 ++p)
3091 {
3092 if ((*p)->type() == elfcpp::PT_LOAD)
3093 {
3094 if (load_seg != NULL && load_seg != *p)
3095 gold_unreachable();
3096 load_seg = NULL;
3097
3098 bool are_addresses_set = (*p)->are_addresses_set();
3099 if (are_addresses_set)
3100 {
3101 // When it comes to setting file offsets, we care about
3102 // the physical address.
3103 addr = (*p)->paddr();
3104 }
3105 else if (parameters->options().user_set_Ttext()
3106 && ((*p)->flags() & elfcpp::PF_W) == 0)
3107 {
3108 are_addresses_set = true;
3109 }
3110 else if (parameters->options().user_set_Tdata()
3111 && ((*p)->flags() & elfcpp::PF_W) != 0
3112 && (!parameters->options().user_set_Tbss()
3113 || (*p)->has_any_data_sections()))
3114 {
3115 addr = parameters->options().Tdata();
3116 are_addresses_set = true;
3117 }
3118 else if (parameters->options().user_set_Tbss()
3119 && ((*p)->flags() & elfcpp::PF_W) != 0
3120 && !(*p)->has_any_data_sections())
3121 {
3122 addr = parameters->options().Tbss();
3123 are_addresses_set = true;
3124 }
3125
3126 uint64_t orig_addr = addr;
3127 uint64_t orig_off = off;
3128
3129 uint64_t aligned_addr = 0;
3130 uint64_t abi_pagesize = target->abi_pagesize();
3131 uint64_t common_pagesize = target->common_pagesize();
3132
3133 if (!parameters->options().nmagic()
3134 && !parameters->options().omagic())
3135 (*p)->set_minimum_p_align(common_pagesize);
3136
3137 if (!are_addresses_set)
3138 {
3139 // Skip the address forward one page, maintaining the same
3140 // position within the page. This lets us store both segments
3141 // overlapping on a single page in the file, but the loader will
3142 // put them on different pages in memory. We will revisit this
3143 // decision once we know the size of the segment.
3144
3145 addr = align_address(addr, (*p)->maximum_alignment());
3146 aligned_addr = addr;
3147
3148 if ((addr & (abi_pagesize - 1)) != 0)
3149 addr = addr + abi_pagesize;
3150
3151 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3152 }
3153
3154 if (!parameters->options().nmagic()
3155 && !parameters->options().omagic())
3156 off = align_file_offset(off, addr, abi_pagesize);
3157 else if (load_seg == NULL)
3158 {
3159 // This is -N or -n with a section script which prevents
3160 // us from using a load segment. We need to ensure that
3161 // the file offset is aligned to the alignment of the
3162 // segment. This is because the linker script
3163 // implicitly assumed a zero offset. If we don't align
3164 // here, then the alignment of the sections in the
3165 // linker script may not match the alignment of the
3166 // sections in the set_section_addresses call below,
3167 // causing an error about dot moving backward.
3168 off = align_address(off, (*p)->maximum_alignment());
3169 }
3170
3171 unsigned int shndx_hold = *pshndx;
3172 bool has_relro = false;
3173 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3174 &increase_relro,
3175 &has_relro,
3176 &off, pshndx);
3177
3178 // Now that we know the size of this segment, we may be able
3179 // to save a page in memory, at the cost of wasting some
3180 // file space, by instead aligning to the start of a new
3181 // page. Here we use the real machine page size rather than
3182 // the ABI mandated page size. If the segment has been
3183 // aligned so that the relro data ends at a page boundary,
3184 // we do not try to realign it.
3185
3186 if (!are_addresses_set
3187 && !has_relro
3188 && aligned_addr != addr
3189 && !parameters->incremental())
3190 {
3191 uint64_t first_off = (common_pagesize
3192 - (aligned_addr
3193 & (common_pagesize - 1)));
3194 uint64_t last_off = new_addr & (common_pagesize - 1);
3195 if (first_off > 0
3196 && last_off > 0
3197 && ((aligned_addr & ~ (common_pagesize - 1))
3198 != (new_addr & ~ (common_pagesize - 1)))
3199 && first_off + last_off <= common_pagesize)
3200 {
3201 *pshndx = shndx_hold;
3202 addr = align_address(aligned_addr, common_pagesize);
3203 addr = align_address(addr, (*p)->maximum_alignment());
3204 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3205 off = align_file_offset(off, addr, abi_pagesize);
3206
3207 increase_relro = this->increase_relro_;
3208 if (this->script_options_->saw_sections_clause())
3209 increase_relro = 0;
3210 has_relro = false;
3211
3212 new_addr = (*p)->set_section_addresses(this, true, addr,
3213 &increase_relro,
3214 &has_relro,
3215 &off, pshndx);
3216 }
3217 }
3218
3219 addr = new_addr;
3220
3221 // Implement --check-sections. We know that the segments
3222 // are sorted by LMA.
3223 if (check_sections && last_load_segment != NULL)
3224 {
3225 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3226 if (last_load_segment->paddr() + last_load_segment->memsz()
3227 > (*p)->paddr())
3228 {
3229 unsigned long long lb1 = last_load_segment->paddr();
3230 unsigned long long le1 = lb1 + last_load_segment->memsz();
3231 unsigned long long lb2 = (*p)->paddr();
3232 unsigned long long le2 = lb2 + (*p)->memsz();
3233 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3234 "[0x%llx -> 0x%llx]"),
3235 lb1, le1, lb2, le2);
3236 }
3237 }
3238 last_load_segment = *p;
3239 }
3240 }
3241
3242 // Handle the non-PT_LOAD segments, setting their offsets from their
3243 // section's offsets.
3244 for (Segment_list::iterator p = this->segment_list_.begin();
3245 p != this->segment_list_.end();
3246 ++p)
3247 {
3248 if ((*p)->type() != elfcpp::PT_LOAD)
3249 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3250 ? increase_relro
3251 : 0);
3252 }
3253
3254 // Set the TLS offsets for each section in the PT_TLS segment.
3255 if (this->tls_segment_ != NULL)
3256 this->tls_segment_->set_tls_offsets();
3257
3258 return off;
3259 }
3260
3261 // Set the offsets of all the allocated sections when doing a
3262 // relocatable link. This does the same jobs as set_segment_offsets,
3263 // only for a relocatable link.
3264
3265 off_t
3266 Layout::set_relocatable_section_offsets(Output_data* file_header,
3267 unsigned int* pshndx)
3268 {
3269 off_t off = 0;
3270
3271 file_header->set_address_and_file_offset(0, 0);
3272 off += file_header->data_size();
3273
3274 for (Section_list::iterator p = this->section_list_.begin();
3275 p != this->section_list_.end();
3276 ++p)
3277 {
3278 // We skip unallocated sections here, except that group sections
3279 // have to come first.
3280 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3281 && (*p)->type() != elfcpp::SHT_GROUP)
3282 continue;
3283
3284 off = align_address(off, (*p)->addralign());
3285
3286 // The linker script might have set the address.
3287 if (!(*p)->is_address_valid())
3288 (*p)->set_address(0);
3289 (*p)->set_file_offset(off);
3290 (*p)->finalize_data_size();
3291 off += (*p)->data_size();
3292
3293 (*p)->set_out_shndx(*pshndx);
3294 ++*pshndx;
3295 }
3296
3297 return off;
3298 }
3299
3300 // Set the file offset of all the sections not associated with a
3301 // segment.
3302
3303 off_t
3304 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3305 {
3306 off_t startoff = off;
3307 off_t maxoff = off;
3308
3309 for (Section_list::iterator p = this->unattached_section_list_.begin();
3310 p != this->unattached_section_list_.end();
3311 ++p)
3312 {
3313 // The symtab section is handled in create_symtab_sections.
3314 if (*p == this->symtab_section_)
3315 continue;
3316
3317 // If we've already set the data size, don't set it again.
3318 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3319 continue;
3320
3321 if (pass == BEFORE_INPUT_SECTIONS_PASS
3322 && (*p)->requires_postprocessing())
3323 {
3324 (*p)->create_postprocessing_buffer();
3325 this->any_postprocessing_sections_ = true;
3326 }
3327
3328 if (pass == BEFORE_INPUT_SECTIONS_PASS
3329 && (*p)->after_input_sections())
3330 continue;
3331 else if (pass == POSTPROCESSING_SECTIONS_PASS
3332 && (!(*p)->after_input_sections()
3333 || (*p)->type() == elfcpp::SHT_STRTAB))
3334 continue;
3335 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3336 && (!(*p)->after_input_sections()
3337 || (*p)->type() != elfcpp::SHT_STRTAB))
3338 continue;
3339
3340 if (!parameters->incremental_update())
3341 {
3342 off = align_address(off, (*p)->addralign());
3343 (*p)->set_file_offset(off);
3344 (*p)->finalize_data_size();
3345 }
3346 else
3347 {
3348 // Incremental update: allocate file space from free list.
3349 (*p)->pre_finalize_data_size();
3350 off_t current_size = (*p)->current_data_size();
3351 off = this->allocate(current_size, (*p)->addralign(), startoff);
3352 if (off == -1)
3353 {
3354 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3355 this->free_list_.dump();
3356 gold_assert((*p)->output_section() != NULL);
3357 gold_fallback(_("out of patch space for section %s; "
3358 "relink with --incremental-full"),
3359 (*p)->output_section()->name());
3360 }
3361 (*p)->set_file_offset(off);
3362 (*p)->finalize_data_size();
3363 if ((*p)->data_size() > current_size)
3364 {
3365 gold_assert((*p)->output_section() != NULL);
3366 gold_fallback(_("%s: section changed size; "
3367 "relink with --incremental-full"),
3368 (*p)->output_section()->name());
3369 }
3370 gold_debug(DEBUG_INCREMENTAL,
3371 "set_section_offsets: %08lx %08lx %s",
3372 static_cast<long>(off),
3373 static_cast<long>((*p)->data_size()),
3374 ((*p)->output_section() != NULL
3375 ? (*p)->output_section()->name() : "(special)"));
3376 }
3377
3378 off += (*p)->data_size();
3379 if (off > maxoff)
3380 maxoff = off;
3381
3382 // At this point the name must be set.
3383 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3384 this->namepool_.add((*p)->name(), false, NULL);
3385 }
3386 return maxoff;
3387 }
3388
3389 // Set the section indexes of all the sections not associated with a
3390 // segment.
3391
3392 unsigned int
3393 Layout::set_section_indexes(unsigned int shndx)
3394 {
3395 for (Section_list::iterator p = this->unattached_section_list_.begin();
3396 p != this->unattached_section_list_.end();
3397 ++p)
3398 {
3399 if (!(*p)->has_out_shndx())
3400 {
3401 (*p)->set_out_shndx(shndx);
3402 ++shndx;
3403 }
3404 }
3405 return shndx;
3406 }
3407
3408 // Set the section addresses according to the linker script. This is
3409 // only called when we see a SECTIONS clause. This returns the
3410 // program segment which should hold the file header and segment
3411 // headers, if any. It will return NULL if they should not be in a
3412 // segment.
3413
3414 Output_segment*
3415 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3416 {
3417 Script_sections* ss = this->script_options_->script_sections();
3418 gold_assert(ss->saw_sections_clause());
3419 return this->script_options_->set_section_addresses(symtab, this);
3420 }
3421
3422 // Place the orphan sections in the linker script.
3423
3424 void
3425 Layout::place_orphan_sections_in_script()
3426 {
3427 Script_sections* ss = this->script_options_->script_sections();
3428 gold_assert(ss->saw_sections_clause());
3429
3430 // Place each orphaned output section in the script.
3431 for (Section_list::iterator p = this->section_list_.begin();
3432 p != this->section_list_.end();
3433 ++p)
3434 {
3435 if (!(*p)->found_in_sections_clause())
3436 ss->place_orphan(*p);
3437 }
3438 }
3439
3440 // Count the local symbols in the regular symbol table and the dynamic
3441 // symbol table, and build the respective string pools.
3442
3443 void
3444 Layout::count_local_symbols(const Task* task,
3445 const Input_objects* input_objects)
3446 {
3447 // First, figure out an upper bound on the number of symbols we'll
3448 // be inserting into each pool. This helps us create the pools with
3449 // the right size, to avoid unnecessary hashtable resizing.
3450 unsigned int symbol_count = 0;
3451 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3452 p != input_objects->relobj_end();
3453 ++p)
3454 symbol_count += (*p)->local_symbol_count();
3455
3456 // Go from "upper bound" to "estimate." We overcount for two
3457 // reasons: we double-count symbols that occur in more than one
3458 // object file, and we count symbols that are dropped from the
3459 // output. Add it all together and assume we overcount by 100%.
3460 symbol_count /= 2;
3461
3462 // We assume all symbols will go into both the sympool and dynpool.
3463 this->sympool_.reserve(symbol_count);
3464 this->dynpool_.reserve(symbol_count);
3465
3466 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3467 p != input_objects->relobj_end();
3468 ++p)
3469 {
3470 Task_lock_obj<Object> tlo(task, *p);
3471 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3472 }
3473 }
3474
3475 // Create the symbol table sections. Here we also set the final
3476 // values of the symbols. At this point all the loadable sections are
3477 // fully laid out. SHNUM is the number of sections so far.
3478
3479 void
3480 Layout::create_symtab_sections(const Input_objects* input_objects,
3481 Symbol_table* symtab,
3482 unsigned int shnum,
3483 off_t* poff)
3484 {
3485 int symsize;
3486 unsigned int align;
3487 if (parameters->target().get_size() == 32)
3488 {
3489 symsize = elfcpp::Elf_sizes<32>::sym_size;
3490 align = 4;
3491 }
3492 else if (parameters->target().get_size() == 64)
3493 {
3494 symsize = elfcpp::Elf_sizes<64>::sym_size;
3495 align = 8;
3496 }
3497 else
3498 gold_unreachable();
3499
3500 // Compute file offsets relative to the start of the symtab section.
3501 off_t off = 0;
3502
3503 // Save space for the dummy symbol at the start of the section. We
3504 // never bother to write this out--it will just be left as zero.
3505 off += symsize;
3506 unsigned int local_symbol_index = 1;
3507
3508 // Add STT_SECTION symbols for each Output section which needs one.
3509 for (Section_list::iterator p = this->section_list_.begin();
3510 p != this->section_list_.end();
3511 ++p)
3512 {
3513 if (!(*p)->needs_symtab_index())
3514 (*p)->set_symtab_index(-1U);
3515 else
3516 {
3517 (*p)->set_symtab_index(local_symbol_index);
3518 ++local_symbol_index;
3519 off += symsize;
3520 }
3521 }
3522
3523 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3524 p != input_objects->relobj_end();
3525 ++p)
3526 {
3527 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3528 off, symtab);
3529 off += (index - local_symbol_index) * symsize;
3530 local_symbol_index = index;
3531 }
3532
3533 unsigned int local_symcount = local_symbol_index;
3534 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3535
3536 off_t dynoff;
3537 size_t dyn_global_index;
3538 size_t dyncount;
3539 if (this->dynsym_section_ == NULL)
3540 {
3541 dynoff = 0;
3542 dyn_global_index = 0;
3543 dyncount = 0;
3544 }
3545 else
3546 {
3547 dyn_global_index = this->dynsym_section_->info();
3548 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3549 dynoff = this->dynsym_section_->offset() + locsize;
3550 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3551 gold_assert(static_cast<off_t>(dyncount * symsize)
3552 == this->dynsym_section_->data_size() - locsize);
3553 }
3554
3555 off_t global_off = off;
3556 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3557 &this->sympool_, &local_symcount);
3558
3559 if (!parameters->options().strip_all())
3560 {
3561 this->sympool_.set_string_offsets();
3562
3563 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3564 Output_section* osymtab = this->make_output_section(symtab_name,
3565 elfcpp::SHT_SYMTAB,
3566 0, ORDER_INVALID,
3567 false);
3568 this->symtab_section_ = osymtab;
3569
3570 Output_section_data* pos = new Output_data_fixed_space(off, align,
3571 "** symtab");
3572 osymtab->add_output_section_data(pos);
3573
3574 // We generate a .symtab_shndx section if we have more than
3575 // SHN_LORESERVE sections. Technically it is possible that we
3576 // don't need one, because it is possible that there are no
3577 // symbols in any of sections with indexes larger than
3578 // SHN_LORESERVE. That is probably unusual, though, and it is
3579 // easier to always create one than to compute section indexes
3580 // twice (once here, once when writing out the symbols).
3581 if (shnum >= elfcpp::SHN_LORESERVE)
3582 {
3583 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3584 false, NULL);
3585 Output_section* osymtab_xindex =
3586 this->make_output_section(symtab_xindex_name,
3587 elfcpp::SHT_SYMTAB_SHNDX, 0,
3588 ORDER_INVALID, false);
3589
3590 size_t symcount = off / symsize;
3591 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3592
3593 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3594
3595 osymtab_xindex->set_link_section(osymtab);
3596 osymtab_xindex->set_addralign(4);
3597 osymtab_xindex->set_entsize(4);
3598
3599 osymtab_xindex->set_after_input_sections();
3600
3601 // This tells the driver code to wait until the symbol table
3602 // has written out before writing out the postprocessing
3603 // sections, including the .symtab_shndx section.
3604 this->any_postprocessing_sections_ = true;
3605 }
3606
3607 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3608 Output_section* ostrtab = this->make_output_section(strtab_name,
3609 elfcpp::SHT_STRTAB,
3610 0, ORDER_INVALID,
3611 false);
3612
3613 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3614 ostrtab->add_output_section_data(pstr);
3615
3616 off_t symtab_off;
3617 if (!parameters->incremental_update())
3618 symtab_off = align_address(*poff, align);
3619 else
3620 {
3621 symtab_off = this->allocate(off, align, *poff);
3622 if (off == -1)
3623 gold_fallback(_("out of patch space for symbol table; "
3624 "relink with --incremental-full"));
3625 gold_debug(DEBUG_INCREMENTAL,
3626 "create_symtab_sections: %08lx %08lx .symtab",
3627 static_cast<long>(symtab_off),
3628 static_cast<long>(off));
3629 }
3630
3631 symtab->set_file_offset(symtab_off + global_off);
3632 osymtab->set_file_offset(symtab_off);
3633 osymtab->finalize_data_size();
3634 osymtab->set_link_section(ostrtab);
3635 osymtab->set_info(local_symcount);
3636 osymtab->set_entsize(symsize);
3637
3638 if (symtab_off + off > *poff)
3639 *poff = symtab_off + off;
3640 }
3641 }
3642
3643 // Create the .shstrtab section, which holds the names of the
3644 // sections. At the time this is called, we have created all the
3645 // output sections except .shstrtab itself.
3646
3647 Output_section*
3648 Layout::create_shstrtab()
3649 {
3650 // FIXME: We don't need to create a .shstrtab section if we are
3651 // stripping everything.
3652
3653 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3654
3655 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3656 ORDER_INVALID, false);
3657
3658 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3659 {
3660 // We can't write out this section until we've set all the
3661 // section names, and we don't set the names of compressed
3662 // output sections until relocations are complete. FIXME: With
3663 // the current names we use, this is unnecessary.
3664 os->set_after_input_sections();
3665 }
3666
3667 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3668 os->add_output_section_data(posd);
3669
3670 return os;
3671 }
3672
3673 // Create the section headers. SIZE is 32 or 64. OFF is the file
3674 // offset.
3675
3676 void
3677 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3678 {
3679 Output_section_headers* oshdrs;
3680 oshdrs = new Output_section_headers(this,
3681 &this->segment_list_,
3682 &this->section_list_,
3683 &this->unattached_section_list_,
3684 &this->namepool_,
3685 shstrtab_section);
3686 off_t off;
3687 if (!parameters->incremental_update())
3688 off = align_address(*poff, oshdrs->addralign());
3689 else
3690 {
3691 oshdrs->pre_finalize_data_size();
3692 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3693 if (off == -1)
3694 gold_fallback(_("out of patch space for section header table; "
3695 "relink with --incremental-full"));
3696 gold_debug(DEBUG_INCREMENTAL,
3697 "create_shdrs: %08lx %08lx (section header table)",
3698 static_cast<long>(off),
3699 static_cast<long>(off + oshdrs->data_size()));
3700 }
3701 oshdrs->set_address_and_file_offset(0, off);
3702 off += oshdrs->data_size();
3703 if (off > *poff)
3704 *poff = off;
3705 this->section_headers_ = oshdrs;
3706 }
3707
3708 // Count the allocated sections.
3709
3710 size_t
3711 Layout::allocated_output_section_count() const
3712 {
3713 size_t section_count = 0;
3714 for (Segment_list::const_iterator p = this->segment_list_.begin();
3715 p != this->segment_list_.end();
3716 ++p)
3717 section_count += (*p)->output_section_count();
3718 return section_count;
3719 }
3720
3721 // Create the dynamic symbol table.
3722
3723 void
3724 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3725 Symbol_table* symtab,
3726 Output_section** pdynstr,
3727 unsigned int* plocal_dynamic_count,
3728 std::vector<Symbol*>* pdynamic_symbols,
3729 Versions* pversions)
3730 {
3731 // Count all the symbols in the dynamic symbol table, and set the
3732 // dynamic symbol indexes.
3733
3734 // Skip symbol 0, which is always all zeroes.
3735 unsigned int index = 1;
3736
3737 // Add STT_SECTION symbols for each Output section which needs one.
3738 for (Section_list::iterator p = this->section_list_.begin();
3739 p != this->section_list_.end();
3740 ++p)
3741 {
3742 if (!(*p)->needs_dynsym_index())
3743 (*p)->set_dynsym_index(-1U);
3744 else
3745 {
3746 (*p)->set_dynsym_index(index);
3747 ++index;
3748 }
3749 }
3750
3751 // Count the local symbols that need to go in the dynamic symbol table,
3752 // and set the dynamic symbol indexes.
3753 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3754 p != input_objects->relobj_end();
3755 ++p)
3756 {
3757 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3758 index = new_index;
3759 }
3760
3761 unsigned int local_symcount = index;
3762 *plocal_dynamic_count = local_symcount;
3763
3764 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3765 &this->dynpool_, pversions);
3766
3767 int symsize;
3768 unsigned int align;
3769 const int size = parameters->target().get_size();
3770 if (size == 32)
3771 {
3772 symsize = elfcpp::Elf_sizes<32>::sym_size;
3773 align = 4;
3774 }
3775 else if (size == 64)
3776 {
3777 symsize = elfcpp::Elf_sizes<64>::sym_size;
3778 align = 8;
3779 }
3780 else
3781 gold_unreachable();
3782
3783 // Create the dynamic symbol table section.
3784
3785 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3786 elfcpp::SHT_DYNSYM,
3787 elfcpp::SHF_ALLOC,
3788 false,
3789 ORDER_DYNAMIC_LINKER,
3790 false);
3791
3792 // Check for NULL as a linker script may discard .dynsym.
3793 if (dynsym != NULL)
3794 {
3795 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3796 align,
3797 "** dynsym");
3798 dynsym->add_output_section_data(odata);
3799
3800 dynsym->set_info(local_symcount);
3801 dynsym->set_entsize(symsize);
3802 dynsym->set_addralign(align);
3803
3804 this->dynsym_section_ = dynsym;
3805 }
3806
3807 Output_data_dynamic* const odyn = this->dynamic_data_;
3808 if (odyn != NULL)
3809 {
3810 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3811 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3812 }
3813
3814 // If there are more than SHN_LORESERVE allocated sections, we
3815 // create a .dynsym_shndx section. It is possible that we don't
3816 // need one, because it is possible that there are no dynamic
3817 // symbols in any of the sections with indexes larger than
3818 // SHN_LORESERVE. This is probably unusual, though, and at this
3819 // time we don't know the actual section indexes so it is
3820 // inconvenient to check.
3821 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3822 {
3823 Output_section* dynsym_xindex =
3824 this->choose_output_section(NULL, ".dynsym_shndx",
3825 elfcpp::SHT_SYMTAB_SHNDX,
3826 elfcpp::SHF_ALLOC,
3827 false, ORDER_DYNAMIC_LINKER, false);
3828
3829 if (dynsym_xindex != NULL)
3830 {
3831 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3832
3833 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3834
3835 dynsym_xindex->set_link_section(dynsym);
3836 dynsym_xindex->set_addralign(4);
3837 dynsym_xindex->set_entsize(4);
3838
3839 dynsym_xindex->set_after_input_sections();
3840
3841 // This tells the driver code to wait until the symbol table
3842 // has written out before writing out the postprocessing
3843 // sections, including the .dynsym_shndx section.
3844 this->any_postprocessing_sections_ = true;
3845 }
3846 }
3847
3848 // Create the dynamic string table section.
3849
3850 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3851 elfcpp::SHT_STRTAB,
3852 elfcpp::SHF_ALLOC,
3853 false,
3854 ORDER_DYNAMIC_LINKER,
3855 false);
3856
3857 if (dynstr != NULL)
3858 {
3859 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3860 dynstr->add_output_section_data(strdata);
3861
3862 if (dynsym != NULL)
3863 dynsym->set_link_section(dynstr);
3864 if (this->dynamic_section_ != NULL)
3865 this->dynamic_section_->set_link_section(dynstr);
3866
3867 if (odyn != NULL)
3868 {
3869 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3870 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3871 }
3872
3873 *pdynstr = dynstr;
3874 }
3875
3876 // Create the hash tables.
3877
3878 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3879 || strcmp(parameters->options().hash_style(), "both") == 0)
3880 {
3881 unsigned char* phash;
3882 unsigned int hashlen;
3883 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3884 &phash, &hashlen);
3885
3886 Output_section* hashsec =
3887 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3888 elfcpp::SHF_ALLOC, false,
3889 ORDER_DYNAMIC_LINKER, false);
3890
3891 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3892 hashlen,
3893 align,
3894 "** hash");
3895 if (hashsec != NULL && hashdata != NULL)
3896 hashsec->add_output_section_data(hashdata);
3897
3898 if (hashsec != NULL)
3899 {
3900 if (dynsym != NULL)
3901 hashsec->set_link_section(dynsym);
3902 hashsec->set_entsize(4);
3903 }
3904
3905 if (odyn != NULL)
3906 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3907 }
3908
3909 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3910 || strcmp(parameters->options().hash_style(), "both") == 0)
3911 {
3912 unsigned char* phash;
3913 unsigned int hashlen;
3914 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3915 &phash, &hashlen);
3916
3917 Output_section* hashsec =
3918 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3919 elfcpp::SHF_ALLOC, false,
3920 ORDER_DYNAMIC_LINKER, false);
3921
3922 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3923 hashlen,
3924 align,
3925 "** hash");
3926 if (hashsec != NULL && hashdata != NULL)
3927 hashsec->add_output_section_data(hashdata);
3928
3929 if (hashsec != NULL)
3930 {
3931 if (dynsym != NULL)
3932 hashsec->set_link_section(dynsym);
3933
3934 // For a 64-bit target, the entries in .gnu.hash do not have
3935 // a uniform size, so we only set the entry size for a
3936 // 32-bit target.
3937 if (parameters->target().get_size() == 32)
3938 hashsec->set_entsize(4);
3939
3940 if (odyn != NULL)
3941 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3942 }
3943 }
3944 }
3945
3946 // Assign offsets to each local portion of the dynamic symbol table.
3947
3948 void
3949 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3950 {
3951 Output_section* dynsym = this->dynsym_section_;
3952 if (dynsym == NULL)
3953 return;
3954
3955 off_t off = dynsym->offset();
3956
3957 // Skip the dummy symbol at the start of the section.
3958 off += dynsym->entsize();
3959
3960 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3961 p != input_objects->relobj_end();
3962 ++p)
3963 {
3964 unsigned int count = (*p)->set_local_dynsym_offset(off);
3965 off += count * dynsym->entsize();
3966 }
3967 }
3968
3969 // Create the version sections.
3970
3971 void
3972 Layout::create_version_sections(const Versions* versions,
3973 const Symbol_table* symtab,
3974 unsigned int local_symcount,
3975 const std::vector<Symbol*>& dynamic_symbols,
3976 const Output_section* dynstr)
3977 {
3978 if (!versions->any_defs() && !versions->any_needs())
3979 return;
3980
3981 switch (parameters->size_and_endianness())
3982 {
3983 #ifdef HAVE_TARGET_32_LITTLE
3984 case Parameters::TARGET_32_LITTLE:
3985 this->sized_create_version_sections<32, false>(versions, symtab,
3986 local_symcount,
3987 dynamic_symbols, dynstr);
3988 break;
3989 #endif
3990 #ifdef HAVE_TARGET_32_BIG
3991 case Parameters::TARGET_32_BIG:
3992 this->sized_create_version_sections<32, true>(versions, symtab,
3993 local_symcount,
3994 dynamic_symbols, dynstr);
3995 break;
3996 #endif
3997 #ifdef HAVE_TARGET_64_LITTLE
3998 case Parameters::TARGET_64_LITTLE:
3999 this->sized_create_version_sections<64, false>(versions, symtab,
4000 local_symcount,
4001 dynamic_symbols, dynstr);
4002 break;
4003 #endif
4004 #ifdef HAVE_TARGET_64_BIG
4005 case Parameters::TARGET_64_BIG:
4006 this->sized_create_version_sections<64, true>(versions, symtab,
4007 local_symcount,
4008 dynamic_symbols, dynstr);
4009 break;
4010 #endif
4011 default:
4012 gold_unreachable();
4013 }
4014 }
4015
4016 // Create the version sections, sized version.
4017
4018 template<int size, bool big_endian>
4019 void
4020 Layout::sized_create_version_sections(
4021 const Versions* versions,
4022 const Symbol_table* symtab,
4023 unsigned int local_symcount,
4024 const std::vector<Symbol*>& dynamic_symbols,
4025 const Output_section* dynstr)
4026 {
4027 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4028 elfcpp::SHT_GNU_versym,
4029 elfcpp::SHF_ALLOC,
4030 false,
4031 ORDER_DYNAMIC_LINKER,
4032 false);
4033
4034 // Check for NULL since a linker script may discard this section.
4035 if (vsec != NULL)
4036 {
4037 unsigned char* vbuf;
4038 unsigned int vsize;
4039 versions->symbol_section_contents<size, big_endian>(symtab,
4040 &this->dynpool_,
4041 local_symcount,
4042 dynamic_symbols,
4043 &vbuf, &vsize);
4044
4045 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4046 "** versions");
4047
4048 vsec->add_output_section_data(vdata);
4049 vsec->set_entsize(2);
4050 vsec->set_link_section(this->dynsym_section_);
4051 }
4052
4053 Output_data_dynamic* const odyn = this->dynamic_data_;
4054 if (odyn != NULL && vsec != NULL)
4055 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4056
4057 if (versions->any_defs())
4058 {
4059 Output_section* vdsec;
4060 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4061 elfcpp::SHT_GNU_verdef,
4062 elfcpp::SHF_ALLOC,
4063 false, ORDER_DYNAMIC_LINKER, false);
4064
4065 if (vdsec != NULL)
4066 {
4067 unsigned char* vdbuf;
4068 unsigned int vdsize;
4069 unsigned int vdentries;
4070 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4071 &vdbuf, &vdsize,
4072 &vdentries);
4073
4074 Output_section_data* vddata =
4075 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4076
4077 vdsec->add_output_section_data(vddata);
4078 vdsec->set_link_section(dynstr);
4079 vdsec->set_info(vdentries);
4080
4081 if (odyn != NULL)
4082 {
4083 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4084 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4085 }
4086 }
4087 }
4088
4089 if (versions->any_needs())
4090 {
4091 Output_section* vnsec;
4092 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4093 elfcpp::SHT_GNU_verneed,
4094 elfcpp::SHF_ALLOC,
4095 false, ORDER_DYNAMIC_LINKER, false);
4096
4097 if (vnsec != NULL)
4098 {
4099 unsigned char* vnbuf;
4100 unsigned int vnsize;
4101 unsigned int vnentries;
4102 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4103 &vnbuf, &vnsize,
4104 &vnentries);
4105
4106 Output_section_data* vndata =
4107 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4108
4109 vnsec->add_output_section_data(vndata);
4110 vnsec->set_link_section(dynstr);
4111 vnsec->set_info(vnentries);
4112
4113 if (odyn != NULL)
4114 {
4115 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4116 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4117 }
4118 }
4119 }
4120 }
4121
4122 // Create the .interp section and PT_INTERP segment.
4123
4124 void
4125 Layout::create_interp(const Target* target)
4126 {
4127 gold_assert(this->interp_segment_ == NULL);
4128
4129 const char* interp = parameters->options().dynamic_linker();
4130 if (interp == NULL)
4131 {
4132 interp = target->dynamic_linker();
4133 gold_assert(interp != NULL);
4134 }
4135
4136 size_t len = strlen(interp) + 1;
4137
4138 Output_section_data* odata = new Output_data_const(interp, len, 1);
4139
4140 Output_section* osec = this->choose_output_section(NULL, ".interp",
4141 elfcpp::SHT_PROGBITS,
4142 elfcpp::SHF_ALLOC,
4143 false, ORDER_INTERP,
4144 false);
4145 if (osec != NULL)
4146 osec->add_output_section_data(odata);
4147 }
4148
4149 // Add dynamic tags for the PLT and the dynamic relocs. This is
4150 // called by the target-specific code. This does nothing if not doing
4151 // a dynamic link.
4152
4153 // USE_REL is true for REL relocs rather than RELA relocs.
4154
4155 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4156
4157 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4158 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4159 // some targets have multiple reloc sections in PLT_REL.
4160
4161 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4162 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4163 // section.
4164
4165 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4166 // executable.
4167
4168 void
4169 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4170 const Output_data* plt_rel,
4171 const Output_data_reloc_generic* dyn_rel,
4172 bool add_debug, bool dynrel_includes_plt)
4173 {
4174 Output_data_dynamic* odyn = this->dynamic_data_;
4175 if (odyn == NULL)
4176 return;
4177
4178 if (plt_got != NULL && plt_got->output_section() != NULL)
4179 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4180
4181 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4182 {
4183 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4184 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4185 odyn->add_constant(elfcpp::DT_PLTREL,
4186 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4187 }
4188
4189 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4190 {
4191 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4192 dyn_rel->output_section());
4193 if (plt_rel != NULL
4194 && plt_rel->output_section() != NULL
4195 && dynrel_includes_plt)
4196 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4197 dyn_rel->output_section(),
4198 plt_rel->output_section());
4199 else
4200 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4201 dyn_rel->output_section());
4202 const int size = parameters->target().get_size();
4203 elfcpp::DT rel_tag;
4204 int rel_size;
4205 if (use_rel)
4206 {
4207 rel_tag = elfcpp::DT_RELENT;
4208 if (size == 32)
4209 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4210 else if (size == 64)
4211 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4212 else
4213 gold_unreachable();
4214 }
4215 else
4216 {
4217 rel_tag = elfcpp::DT_RELAENT;
4218 if (size == 32)
4219 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4220 else if (size == 64)
4221 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4222 else
4223 gold_unreachable();
4224 }
4225 odyn->add_constant(rel_tag, rel_size);
4226
4227 if (parameters->options().combreloc())
4228 {
4229 size_t c = dyn_rel->relative_reloc_count();
4230 if (c > 0)
4231 odyn->add_constant((use_rel
4232 ? elfcpp::DT_RELCOUNT
4233 : elfcpp::DT_RELACOUNT),
4234 c);
4235 }
4236 }
4237
4238 if (add_debug && !parameters->options().shared())
4239 {
4240 // The value of the DT_DEBUG tag is filled in by the dynamic
4241 // linker at run time, and used by the debugger.
4242 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4243 }
4244 }
4245
4246 // Finish the .dynamic section and PT_DYNAMIC segment.
4247
4248 void
4249 Layout::finish_dynamic_section(const Input_objects* input_objects,
4250 const Symbol_table* symtab)
4251 {
4252 if (!this->script_options_->saw_phdrs_clause()
4253 && this->dynamic_section_ != NULL)
4254 {
4255 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4256 (elfcpp::PF_R
4257 | elfcpp::PF_W));
4258 oseg->add_output_section_to_nonload(this->dynamic_section_,
4259 elfcpp::PF_R | elfcpp::PF_W);
4260 }
4261
4262 Output_data_dynamic* const odyn = this->dynamic_data_;
4263 if (odyn == NULL)
4264 return;
4265
4266 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4267 p != input_objects->dynobj_end();
4268 ++p)
4269 {
4270 if (!(*p)->is_needed() && (*p)->as_needed())
4271 {
4272 // This dynamic object was linked with --as-needed, but it
4273 // is not needed.
4274 continue;
4275 }
4276
4277 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4278 }
4279
4280 if (parameters->options().shared())
4281 {
4282 const char* soname = parameters->options().soname();
4283 if (soname != NULL)
4284 odyn->add_string(elfcpp::DT_SONAME, soname);
4285 }
4286
4287 Symbol* sym = symtab->lookup(parameters->options().init());
4288 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4289 odyn->add_symbol(elfcpp::DT_INIT, sym);
4290
4291 sym = symtab->lookup(parameters->options().fini());
4292 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4293 odyn->add_symbol(elfcpp::DT_FINI, sym);
4294
4295 // Look for .init_array, .preinit_array and .fini_array by checking
4296 // section types.
4297 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4298 p != this->section_list_.end();
4299 ++p)
4300 switch((*p)->type())
4301 {
4302 case elfcpp::SHT_FINI_ARRAY:
4303 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4304 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4305 break;
4306 case elfcpp::SHT_INIT_ARRAY:
4307 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4308 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4309 break;
4310 case elfcpp::SHT_PREINIT_ARRAY:
4311 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4312 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4313 break;
4314 default:
4315 break;
4316 }
4317
4318 // Add a DT_RPATH entry if needed.
4319 const General_options::Dir_list& rpath(parameters->options().rpath());
4320 if (!rpath.empty())
4321 {
4322 std::string rpath_val;
4323 for (General_options::Dir_list::const_iterator p = rpath.begin();
4324 p != rpath.end();
4325 ++p)
4326 {
4327 if (rpath_val.empty())
4328 rpath_val = p->name();
4329 else
4330 {
4331 // Eliminate duplicates.
4332 General_options::Dir_list::const_iterator q;
4333 for (q = rpath.begin(); q != p; ++q)
4334 if (q->name() == p->name())
4335 break;
4336 if (q == p)
4337 {
4338 rpath_val += ':';
4339 rpath_val += p->name();
4340 }
4341 }
4342 }
4343
4344 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4345 if (parameters->options().enable_new_dtags())
4346 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4347 }
4348
4349 // Look for text segments that have dynamic relocations.
4350 bool have_textrel = false;
4351 if (!this->script_options_->saw_sections_clause())
4352 {
4353 for (Segment_list::const_iterator p = this->segment_list_.begin();
4354 p != this->segment_list_.end();
4355 ++p)
4356 {
4357 if ((*p)->type() == elfcpp::PT_LOAD
4358 && ((*p)->flags() & elfcpp::PF_W) == 0
4359 && (*p)->has_dynamic_reloc())
4360 {
4361 have_textrel = true;
4362 break;
4363 }
4364 }
4365 }
4366 else
4367 {
4368 // We don't know the section -> segment mapping, so we are
4369 // conservative and just look for readonly sections with
4370 // relocations. If those sections wind up in writable segments,
4371 // then we have created an unnecessary DT_TEXTREL entry.
4372 for (Section_list::const_iterator p = this->section_list_.begin();
4373 p != this->section_list_.end();
4374 ++p)
4375 {
4376 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4377 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4378 && (*p)->has_dynamic_reloc())
4379 {
4380 have_textrel = true;
4381 break;
4382 }
4383 }
4384 }
4385
4386 if (parameters->options().filter() != NULL)
4387 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4388 if (parameters->options().any_auxiliary())
4389 {
4390 for (options::String_set::const_iterator p =
4391 parameters->options().auxiliary_begin();
4392 p != parameters->options().auxiliary_end();
4393 ++p)
4394 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4395 }
4396
4397 // Add a DT_FLAGS entry if necessary.
4398 unsigned int flags = 0;
4399 if (have_textrel)
4400 {
4401 // Add a DT_TEXTREL for compatibility with older loaders.
4402 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4403 flags |= elfcpp::DF_TEXTREL;
4404
4405 if (parameters->options().text())
4406 gold_error(_("read-only segment has dynamic relocations"));
4407 else if (parameters->options().warn_shared_textrel()
4408 && parameters->options().shared())
4409 gold_warning(_("shared library text segment is not shareable"));
4410 }
4411 if (parameters->options().shared() && this->has_static_tls())
4412 flags |= elfcpp::DF_STATIC_TLS;
4413 if (parameters->options().origin())
4414 flags |= elfcpp::DF_ORIGIN;
4415 if (parameters->options().Bsymbolic())
4416 {
4417 flags |= elfcpp::DF_SYMBOLIC;
4418 // Add DT_SYMBOLIC for compatibility with older loaders.
4419 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4420 }
4421 if (parameters->options().now())
4422 flags |= elfcpp::DF_BIND_NOW;
4423 if (flags != 0)
4424 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4425
4426 flags = 0;
4427 if (parameters->options().initfirst())
4428 flags |= elfcpp::DF_1_INITFIRST;
4429 if (parameters->options().interpose())
4430 flags |= elfcpp::DF_1_INTERPOSE;
4431 if (parameters->options().loadfltr())
4432 flags |= elfcpp::DF_1_LOADFLTR;
4433 if (parameters->options().nodefaultlib())
4434 flags |= elfcpp::DF_1_NODEFLIB;
4435 if (parameters->options().nodelete())
4436 flags |= elfcpp::DF_1_NODELETE;
4437 if (parameters->options().nodlopen())
4438 flags |= elfcpp::DF_1_NOOPEN;
4439 if (parameters->options().nodump())
4440 flags |= elfcpp::DF_1_NODUMP;
4441 if (!parameters->options().shared())
4442 flags &= ~(elfcpp::DF_1_INITFIRST
4443 | elfcpp::DF_1_NODELETE
4444 | elfcpp::DF_1_NOOPEN);
4445 if (parameters->options().origin())
4446 flags |= elfcpp::DF_1_ORIGIN;
4447 if (parameters->options().now())
4448 flags |= elfcpp::DF_1_NOW;
4449 if (parameters->options().Bgroup())
4450 flags |= elfcpp::DF_1_GROUP;
4451 if (flags != 0)
4452 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4453 }
4454
4455 // Set the size of the _DYNAMIC symbol table to be the size of the
4456 // dynamic data.
4457
4458 void
4459 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4460 {
4461 Output_data_dynamic* const odyn = this->dynamic_data_;
4462 if (odyn == NULL)
4463 return;
4464 odyn->finalize_data_size();
4465 if (this->dynamic_symbol_ == NULL)
4466 return;
4467 off_t data_size = odyn->data_size();
4468 const int size = parameters->target().get_size();
4469 if (size == 32)
4470 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4471 else if (size == 64)
4472 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4473 else
4474 gold_unreachable();
4475 }
4476
4477 // The mapping of input section name prefixes to output section names.
4478 // In some cases one prefix is itself a prefix of another prefix; in
4479 // such a case the longer prefix must come first. These prefixes are
4480 // based on the GNU linker default ELF linker script.
4481
4482 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4483 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4484 {
4485 MAPPING_INIT(".text.", ".text"),
4486 MAPPING_INIT(".rodata.", ".rodata"),
4487 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4488 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4489 MAPPING_INIT(".data.", ".data"),
4490 MAPPING_INIT(".bss.", ".bss"),
4491 MAPPING_INIT(".tdata.", ".tdata"),
4492 MAPPING_INIT(".tbss.", ".tbss"),
4493 MAPPING_INIT(".init_array.", ".init_array"),
4494 MAPPING_INIT(".fini_array.", ".fini_array"),
4495 MAPPING_INIT(".sdata.", ".sdata"),
4496 MAPPING_INIT(".sbss.", ".sbss"),
4497 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4498 // differently depending on whether it is creating a shared library.
4499 MAPPING_INIT(".sdata2.", ".sdata"),
4500 MAPPING_INIT(".sbss2.", ".sbss"),
4501 MAPPING_INIT(".lrodata.", ".lrodata"),
4502 MAPPING_INIT(".ldata.", ".ldata"),
4503 MAPPING_INIT(".lbss.", ".lbss"),
4504 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4505 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4506 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4507 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4508 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4509 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4510 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4511 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4512 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4513 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4514 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4515 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4516 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4517 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4518 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4519 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4520 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4521 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4522 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4523 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4524 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4525 };
4526 #undef MAPPING_INIT
4527
4528 const int Layout::section_name_mapping_count =
4529 (sizeof(Layout::section_name_mapping)
4530 / sizeof(Layout::section_name_mapping[0]));
4531
4532 // Choose the output section name to use given an input section name.
4533 // Set *PLEN to the length of the name. *PLEN is initialized to the
4534 // length of NAME.
4535
4536 const char*
4537 Layout::output_section_name(const Relobj* relobj, const char* name,
4538 size_t* plen)
4539 {
4540 // gcc 4.3 generates the following sorts of section names when it
4541 // needs a section name specific to a function:
4542 // .text.FN
4543 // .rodata.FN
4544 // .sdata2.FN
4545 // .data.FN
4546 // .data.rel.FN
4547 // .data.rel.local.FN
4548 // .data.rel.ro.FN
4549 // .data.rel.ro.local.FN
4550 // .sdata.FN
4551 // .bss.FN
4552 // .sbss.FN
4553 // .tdata.FN
4554 // .tbss.FN
4555
4556 // The GNU linker maps all of those to the part before the .FN,
4557 // except that .data.rel.local.FN is mapped to .data, and
4558 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4559 // beginning with .data.rel.ro.local are grouped together.
4560
4561 // For an anonymous namespace, the string FN can contain a '.'.
4562
4563 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4564 // GNU linker maps to .rodata.
4565
4566 // The .data.rel.ro sections are used with -z relro. The sections
4567 // are recognized by name. We use the same names that the GNU
4568 // linker does for these sections.
4569
4570 // It is hard to handle this in a principled way, so we don't even
4571 // try. We use a table of mappings. If the input section name is
4572 // not found in the table, we simply use it as the output section
4573 // name.
4574
4575 const Section_name_mapping* psnm = section_name_mapping;
4576 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4577 {
4578 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4579 {
4580 *plen = psnm->tolen;
4581 return psnm->to;
4582 }
4583 }
4584
4585 // As an additional complication, .ctors sections are output in
4586 // either .ctors or .init_array sections, and .dtors sections are
4587 // output in either .dtors or .fini_array sections.
4588 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4589 {
4590 if (parameters->options().ctors_in_init_array())
4591 {
4592 *plen = 11;
4593 return name[1] == 'c' ? ".init_array" : ".fini_array";
4594 }
4595 else
4596 {
4597 *plen = 6;
4598 return name[1] == 'c' ? ".ctors" : ".dtors";
4599 }
4600 }
4601 if (parameters->options().ctors_in_init_array()
4602 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4603 {
4604 // To make .init_array/.fini_array work with gcc we must exclude
4605 // .ctors and .dtors sections from the crtbegin and crtend
4606 // files.
4607 if (relobj == NULL
4608 || (!Layout::match_file_name(relobj, "crtbegin")
4609 && !Layout::match_file_name(relobj, "crtend")))
4610 {
4611 *plen = 11;
4612 return name[1] == 'c' ? ".init_array" : ".fini_array";
4613 }
4614 }
4615
4616 return name;
4617 }
4618
4619 // Return true if RELOBJ is an input file whose base name matches
4620 // FILE_NAME. The base name must have an extension of ".o", and must
4621 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4622 // to match crtbegin.o as well as crtbeginS.o without getting confused
4623 // by other possibilities. Overall matching the file name this way is
4624 // a dreadful hack, but the GNU linker does it in order to better
4625 // support gcc, and we need to be compatible.
4626
4627 bool
4628 Layout::match_file_name(const Relobj* relobj, const char* match)
4629 {
4630 const std::string& file_name(relobj->name());
4631 const char* base_name = lbasename(file_name.c_str());
4632 size_t match_len = strlen(match);
4633 if (strncmp(base_name, match, match_len) != 0)
4634 return false;
4635 size_t base_len = strlen(base_name);
4636 if (base_len != match_len + 2 && base_len != match_len + 3)
4637 return false;
4638 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4639 }
4640
4641 // Check if a comdat group or .gnu.linkonce section with the given
4642 // NAME is selected for the link. If there is already a section,
4643 // *KEPT_SECTION is set to point to the existing section and the
4644 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4645 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4646 // *KEPT_SECTION is set to the internal copy and the function returns
4647 // true.
4648
4649 bool
4650 Layout::find_or_add_kept_section(const std::string& name,
4651 Relobj* object,
4652 unsigned int shndx,
4653 bool is_comdat,
4654 bool is_group_name,
4655 Kept_section** kept_section)
4656 {
4657 // It's normal to see a couple of entries here, for the x86 thunk
4658 // sections. If we see more than a few, we're linking a C++
4659 // program, and we resize to get more space to minimize rehashing.
4660 if (this->signatures_.size() > 4
4661 && !this->resized_signatures_)
4662 {
4663 reserve_unordered_map(&this->signatures_,
4664 this->number_of_input_files_ * 64);
4665 this->resized_signatures_ = true;
4666 }
4667
4668 Kept_section candidate;
4669 std::pair<Signatures::iterator, bool> ins =
4670 this->signatures_.insert(std::make_pair(name, candidate));
4671
4672 if (kept_section != NULL)
4673 *kept_section = &ins.first->second;
4674 if (ins.second)
4675 {
4676 // This is the first time we've seen this signature.
4677 ins.first->second.set_object(object);
4678 ins.first->second.set_shndx(shndx);
4679 if (is_comdat)
4680 ins.first->second.set_is_comdat();
4681 if (is_group_name)
4682 ins.first->second.set_is_group_name();
4683 return true;
4684 }
4685
4686 // We have already seen this signature.
4687
4688 if (ins.first->second.is_group_name())
4689 {
4690 // We've already seen a real section group with this signature.
4691 // If the kept group is from a plugin object, and we're in the
4692 // replacement phase, accept the new one as a replacement.
4693 if (ins.first->second.object() == NULL
4694 && parameters->options().plugins()->in_replacement_phase())
4695 {
4696 ins.first->second.set_object(object);
4697 ins.first->second.set_shndx(shndx);
4698 return true;
4699 }
4700 return false;
4701 }
4702 else if (is_group_name)
4703 {
4704 // This is a real section group, and we've already seen a
4705 // linkonce section with this signature. Record that we've seen
4706 // a section group, and don't include this section group.
4707 ins.first->second.set_is_group_name();
4708 return false;
4709 }
4710 else
4711 {
4712 // We've already seen a linkonce section and this is a linkonce
4713 // section. These don't block each other--this may be the same
4714 // symbol name with different section types.
4715 return true;
4716 }
4717 }
4718
4719 // Store the allocated sections into the section list.
4720
4721 void
4722 Layout::get_allocated_sections(Section_list* section_list) const
4723 {
4724 for (Section_list::const_iterator p = this->section_list_.begin();
4725 p != this->section_list_.end();
4726 ++p)
4727 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4728 section_list->push_back(*p);
4729 }
4730
4731 // Create an output segment.
4732
4733 Output_segment*
4734 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4735 {
4736 gold_assert(!parameters->options().relocatable());
4737 Output_segment* oseg = new Output_segment(type, flags);
4738 this->segment_list_.push_back(oseg);
4739
4740 if (type == elfcpp::PT_TLS)
4741 this->tls_segment_ = oseg;
4742 else if (type == elfcpp::PT_GNU_RELRO)
4743 this->relro_segment_ = oseg;
4744 else if (type == elfcpp::PT_INTERP)
4745 this->interp_segment_ = oseg;
4746
4747 return oseg;
4748 }
4749
4750 // Return the file offset of the normal symbol table.
4751
4752 off_t
4753 Layout::symtab_section_offset() const
4754 {
4755 if (this->symtab_section_ != NULL)
4756 return this->symtab_section_->offset();
4757 return 0;
4758 }
4759
4760 // Return the section index of the normal symbol table. It may have
4761 // been stripped by the -s/--strip-all option.
4762
4763 unsigned int
4764 Layout::symtab_section_shndx() const
4765 {
4766 if (this->symtab_section_ != NULL)
4767 return this->symtab_section_->out_shndx();
4768 return 0;
4769 }
4770
4771 // Write out the Output_sections. Most won't have anything to write,
4772 // since most of the data will come from input sections which are
4773 // handled elsewhere. But some Output_sections do have Output_data.
4774
4775 void
4776 Layout::write_output_sections(Output_file* of) const
4777 {
4778 for (Section_list::const_iterator p = this->section_list_.begin();
4779 p != this->section_list_.end();
4780 ++p)
4781 {
4782 if (!(*p)->after_input_sections())
4783 (*p)->write(of);
4784 }
4785 }
4786
4787 // Write out data not associated with a section or the symbol table.
4788
4789 void
4790 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4791 {
4792 if (!parameters->options().strip_all())
4793 {
4794 const Output_section* symtab_section = this->symtab_section_;
4795 for (Section_list::const_iterator p = this->section_list_.begin();
4796 p != this->section_list_.end();
4797 ++p)
4798 {
4799 if ((*p)->needs_symtab_index())
4800 {
4801 gold_assert(symtab_section != NULL);
4802 unsigned int index = (*p)->symtab_index();
4803 gold_assert(index > 0 && index != -1U);
4804 off_t off = (symtab_section->offset()
4805 + index * symtab_section->entsize());
4806 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4807 }
4808 }
4809 }
4810
4811 const Output_section* dynsym_section = this->dynsym_section_;
4812 for (Section_list::const_iterator p = this->section_list_.begin();
4813 p != this->section_list_.end();
4814 ++p)
4815 {
4816 if ((*p)->needs_dynsym_index())
4817 {
4818 gold_assert(dynsym_section != NULL);
4819 unsigned int index = (*p)->dynsym_index();
4820 gold_assert(index > 0 && index != -1U);
4821 off_t off = (dynsym_section->offset()
4822 + index * dynsym_section->entsize());
4823 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4824 }
4825 }
4826
4827 // Write out the Output_data which are not in an Output_section.
4828 for (Data_list::const_iterator p = this->special_output_list_.begin();
4829 p != this->special_output_list_.end();
4830 ++p)
4831 (*p)->write(of);
4832 }
4833
4834 // Write out the Output_sections which can only be written after the
4835 // input sections are complete.
4836
4837 void
4838 Layout::write_sections_after_input_sections(Output_file* of)
4839 {
4840 // Determine the final section offsets, and thus the final output
4841 // file size. Note we finalize the .shstrab last, to allow the
4842 // after_input_section sections to modify their section-names before
4843 // writing.
4844 if (this->any_postprocessing_sections_)
4845 {
4846 off_t off = this->output_file_size_;
4847 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4848
4849 // Now that we've finalized the names, we can finalize the shstrab.
4850 off =
4851 this->set_section_offsets(off,
4852 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4853
4854 if (off > this->output_file_size_)
4855 {
4856 of->resize(off);
4857 this->output_file_size_ = off;
4858 }
4859 }
4860
4861 for (Section_list::const_iterator p = this->section_list_.begin();
4862 p != this->section_list_.end();
4863 ++p)
4864 {
4865 if ((*p)->after_input_sections())
4866 (*p)->write(of);
4867 }
4868
4869 this->section_headers_->write(of);
4870 }
4871
4872 // If the build ID requires computing a checksum, do so here, and
4873 // write it out. We compute a checksum over the entire file because
4874 // that is simplest.
4875
4876 void
4877 Layout::write_build_id(Output_file* of) const
4878 {
4879 if (this->build_id_note_ == NULL)
4880 return;
4881
4882 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4883
4884 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4885 this->build_id_note_->data_size());
4886
4887 const char* style = parameters->options().build_id();
4888 if (strcmp(style, "sha1") == 0)
4889 {
4890 sha1_ctx ctx;
4891 sha1_init_ctx(&ctx);
4892 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4893 sha1_finish_ctx(&ctx, ov);
4894 }
4895 else if (strcmp(style, "md5") == 0)
4896 {
4897 md5_ctx ctx;
4898 md5_init_ctx(&ctx);
4899 md5_process_bytes(iv, this->output_file_size_, &ctx);
4900 md5_finish_ctx(&ctx, ov);
4901 }
4902 else
4903 gold_unreachable();
4904
4905 of->write_output_view(this->build_id_note_->offset(),
4906 this->build_id_note_->data_size(),
4907 ov);
4908
4909 of->free_input_view(0, this->output_file_size_, iv);
4910 }
4911
4912 // Write out a binary file. This is called after the link is
4913 // complete. IN is the temporary output file we used to generate the
4914 // ELF code. We simply walk through the segments, read them from
4915 // their file offset in IN, and write them to their load address in
4916 // the output file. FIXME: with a bit more work, we could support
4917 // S-records and/or Intel hex format here.
4918
4919 void
4920 Layout::write_binary(Output_file* in) const
4921 {
4922 gold_assert(parameters->options().oformat_enum()
4923 == General_options::OBJECT_FORMAT_BINARY);
4924
4925 // Get the size of the binary file.
4926 uint64_t max_load_address = 0;
4927 for (Segment_list::const_iterator p = this->segment_list_.begin();
4928 p != this->segment_list_.end();
4929 ++p)
4930 {
4931 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4932 {
4933 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4934 if (max_paddr > max_load_address)
4935 max_load_address = max_paddr;
4936 }
4937 }
4938
4939 Output_file out(parameters->options().output_file_name());
4940 out.open(max_load_address);
4941
4942 for (Segment_list::const_iterator p = this->segment_list_.begin();
4943 p != this->segment_list_.end();
4944 ++p)
4945 {
4946 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4947 {
4948 const unsigned char* vin = in->get_input_view((*p)->offset(),
4949 (*p)->filesz());
4950 unsigned char* vout = out.get_output_view((*p)->paddr(),
4951 (*p)->filesz());
4952 memcpy(vout, vin, (*p)->filesz());
4953 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4954 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4955 }
4956 }
4957
4958 out.close();
4959 }
4960
4961 // Print the output sections to the map file.
4962
4963 void
4964 Layout::print_to_mapfile(Mapfile* mapfile) const
4965 {
4966 for (Segment_list::const_iterator p = this->segment_list_.begin();
4967 p != this->segment_list_.end();
4968 ++p)
4969 (*p)->print_sections_to_mapfile(mapfile);
4970 }
4971
4972 // Print statistical information to stderr. This is used for --stats.
4973
4974 void
4975 Layout::print_stats() const
4976 {
4977 this->namepool_.print_stats("section name pool");
4978 this->sympool_.print_stats("output symbol name pool");
4979 this->dynpool_.print_stats("dynamic name pool");
4980
4981 for (Section_list::const_iterator p = this->section_list_.begin();
4982 p != this->section_list_.end();
4983 ++p)
4984 (*p)->print_merge_stats();
4985 }
4986
4987 // Write_sections_task methods.
4988
4989 // We can always run this task.
4990
4991 Task_token*
4992 Write_sections_task::is_runnable()
4993 {
4994 return NULL;
4995 }
4996
4997 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4998 // when finished.
4999
5000 void
5001 Write_sections_task::locks(Task_locker* tl)
5002 {
5003 tl->add(this, this->output_sections_blocker_);
5004 tl->add(this, this->final_blocker_);
5005 }
5006
5007 // Run the task--write out the data.
5008
5009 void
5010 Write_sections_task::run(Workqueue*)
5011 {
5012 this->layout_->write_output_sections(this->of_);
5013 }
5014
5015 // Write_data_task methods.
5016
5017 // We can always run this task.
5018
5019 Task_token*
5020 Write_data_task::is_runnable()
5021 {
5022 return NULL;
5023 }
5024
5025 // We need to unlock FINAL_BLOCKER when finished.
5026
5027 void
5028 Write_data_task::locks(Task_locker* tl)
5029 {
5030 tl->add(this, this->final_blocker_);
5031 }
5032
5033 // Run the task--write out the data.
5034
5035 void
5036 Write_data_task::run(Workqueue*)
5037 {
5038 this->layout_->write_data(this->symtab_, this->of_);
5039 }
5040
5041 // Write_symbols_task methods.
5042
5043 // We can always run this task.
5044
5045 Task_token*
5046 Write_symbols_task::is_runnable()
5047 {
5048 return NULL;
5049 }
5050
5051 // We need to unlock FINAL_BLOCKER when finished.
5052
5053 void
5054 Write_symbols_task::locks(Task_locker* tl)
5055 {
5056 tl->add(this, this->final_blocker_);
5057 }
5058
5059 // Run the task--write out the symbols.
5060
5061 void
5062 Write_symbols_task::run(Workqueue*)
5063 {
5064 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5065 this->layout_->symtab_xindex(),
5066 this->layout_->dynsym_xindex(), this->of_);
5067 }
5068
5069 // Write_after_input_sections_task methods.
5070
5071 // We can only run this task after the input sections have completed.
5072
5073 Task_token*
5074 Write_after_input_sections_task::is_runnable()
5075 {
5076 if (this->input_sections_blocker_->is_blocked())
5077 return this->input_sections_blocker_;
5078 return NULL;
5079 }
5080
5081 // We need to unlock FINAL_BLOCKER when finished.
5082
5083 void
5084 Write_after_input_sections_task::locks(Task_locker* tl)
5085 {
5086 tl->add(this, this->final_blocker_);
5087 }
5088
5089 // Run the task.
5090
5091 void
5092 Write_after_input_sections_task::run(Workqueue*)
5093 {
5094 this->layout_->write_sections_after_input_sections(this->of_);
5095 }
5096
5097 // Close_task_runner methods.
5098
5099 // Run the task--close the file.
5100
5101 void
5102 Close_task_runner::run(Workqueue*, const Task*)
5103 {
5104 // If we need to compute a checksum for the BUILD if, we do so here.
5105 this->layout_->write_build_id(this->of_);
5106
5107 // If we've been asked to create a binary file, we do so here.
5108 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5109 this->layout_->write_binary(this->of_);
5110
5111 this->of_->close();
5112 }
5113
5114 // Instantiate the templates we need. We could use the configure
5115 // script to restrict this to only the ones for implemented targets.
5116
5117 #ifdef HAVE_TARGET_32_LITTLE
5118 template
5119 Output_section*
5120 Layout::init_fixed_output_section<32, false>(
5121 const char* name,
5122 elfcpp::Shdr<32, false>& shdr);
5123 #endif
5124
5125 #ifdef HAVE_TARGET_32_BIG
5126 template
5127 Output_section*
5128 Layout::init_fixed_output_section<32, true>(
5129 const char* name,
5130 elfcpp::Shdr<32, true>& shdr);
5131 #endif
5132
5133 #ifdef HAVE_TARGET_64_LITTLE
5134 template
5135 Output_section*
5136 Layout::init_fixed_output_section<64, false>(
5137 const char* name,
5138 elfcpp::Shdr<64, false>& shdr);
5139 #endif
5140
5141 #ifdef HAVE_TARGET_64_BIG
5142 template
5143 Output_section*
5144 Layout::init_fixed_output_section<64, true>(
5145 const char* name,
5146 elfcpp::Shdr<64, true>& shdr);
5147 #endif
5148
5149 #ifdef HAVE_TARGET_32_LITTLE
5150 template
5151 Output_section*
5152 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5153 unsigned int shndx,
5154 const char* name,
5155 const elfcpp::Shdr<32, false>& shdr,
5156 unsigned int, unsigned int, off_t*);
5157 #endif
5158
5159 #ifdef HAVE_TARGET_32_BIG
5160 template
5161 Output_section*
5162 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5163 unsigned int shndx,
5164 const char* name,
5165 const elfcpp::Shdr<32, true>& shdr,
5166 unsigned int, unsigned int, off_t*);
5167 #endif
5168
5169 #ifdef HAVE_TARGET_64_LITTLE
5170 template
5171 Output_section*
5172 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5173 unsigned int shndx,
5174 const char* name,
5175 const elfcpp::Shdr<64, false>& shdr,
5176 unsigned int, unsigned int, off_t*);
5177 #endif
5178
5179 #ifdef HAVE_TARGET_64_BIG
5180 template
5181 Output_section*
5182 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5183 unsigned int shndx,
5184 const char* name,
5185 const elfcpp::Shdr<64, true>& shdr,
5186 unsigned int, unsigned int, off_t*);
5187 #endif
5188
5189 #ifdef HAVE_TARGET_32_LITTLE
5190 template
5191 Output_section*
5192 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5193 unsigned int reloc_shndx,
5194 const elfcpp::Shdr<32, false>& shdr,
5195 Output_section* data_section,
5196 Relocatable_relocs* rr);
5197 #endif
5198
5199 #ifdef HAVE_TARGET_32_BIG
5200 template
5201 Output_section*
5202 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5203 unsigned int reloc_shndx,
5204 const elfcpp::Shdr<32, true>& shdr,
5205 Output_section* data_section,
5206 Relocatable_relocs* rr);
5207 #endif
5208
5209 #ifdef HAVE_TARGET_64_LITTLE
5210 template
5211 Output_section*
5212 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5213 unsigned int reloc_shndx,
5214 const elfcpp::Shdr<64, false>& shdr,
5215 Output_section* data_section,
5216 Relocatable_relocs* rr);
5217 #endif
5218
5219 #ifdef HAVE_TARGET_64_BIG
5220 template
5221 Output_section*
5222 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5223 unsigned int reloc_shndx,
5224 const elfcpp::Shdr<64, true>& shdr,
5225 Output_section* data_section,
5226 Relocatable_relocs* rr);
5227 #endif
5228
5229 #ifdef HAVE_TARGET_32_LITTLE
5230 template
5231 void
5232 Layout::layout_group<32, false>(Symbol_table* symtab,
5233 Sized_relobj_file<32, false>* object,
5234 unsigned int,
5235 const char* group_section_name,
5236 const char* signature,
5237 const elfcpp::Shdr<32, false>& shdr,
5238 elfcpp::Elf_Word flags,
5239 std::vector<unsigned int>* shndxes);
5240 #endif
5241
5242 #ifdef HAVE_TARGET_32_BIG
5243 template
5244 void
5245 Layout::layout_group<32, true>(Symbol_table* symtab,
5246 Sized_relobj_file<32, true>* object,
5247 unsigned int,
5248 const char* group_section_name,
5249 const char* signature,
5250 const elfcpp::Shdr<32, true>& shdr,
5251 elfcpp::Elf_Word flags,
5252 std::vector<unsigned int>* shndxes);
5253 #endif
5254
5255 #ifdef HAVE_TARGET_64_LITTLE
5256 template
5257 void
5258 Layout::layout_group<64, false>(Symbol_table* symtab,
5259 Sized_relobj_file<64, false>* object,
5260 unsigned int,
5261 const char* group_section_name,
5262 const char* signature,
5263 const elfcpp::Shdr<64, false>& shdr,
5264 elfcpp::Elf_Word flags,
5265 std::vector<unsigned int>* shndxes);
5266 #endif
5267
5268 #ifdef HAVE_TARGET_64_BIG
5269 template
5270 void
5271 Layout::layout_group<64, true>(Symbol_table* symtab,
5272 Sized_relobj_file<64, true>* object,
5273 unsigned int,
5274 const char* group_section_name,
5275 const char* signature,
5276 const elfcpp::Shdr<64, true>& shdr,
5277 elfcpp::Elf_Word flags,
5278 std::vector<unsigned int>* shndxes);
5279 #endif
5280
5281 #ifdef HAVE_TARGET_32_LITTLE
5282 template
5283 Output_section*
5284 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5285 const unsigned char* symbols,
5286 off_t symbols_size,
5287 const unsigned char* symbol_names,
5288 off_t symbol_names_size,
5289 unsigned int shndx,
5290 const elfcpp::Shdr<32, false>& shdr,
5291 unsigned int reloc_shndx,
5292 unsigned int reloc_type,
5293 off_t* off);
5294 #endif
5295
5296 #ifdef HAVE_TARGET_32_BIG
5297 template
5298 Output_section*
5299 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5300 const unsigned char* symbols,
5301 off_t symbols_size,
5302 const unsigned char* symbol_names,
5303 off_t symbol_names_size,
5304 unsigned int shndx,
5305 const elfcpp::Shdr<32, true>& shdr,
5306 unsigned int reloc_shndx,
5307 unsigned int reloc_type,
5308 off_t* off);
5309 #endif
5310
5311 #ifdef HAVE_TARGET_64_LITTLE
5312 template
5313 Output_section*
5314 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5315 const unsigned char* symbols,
5316 off_t symbols_size,
5317 const unsigned char* symbol_names,
5318 off_t symbol_names_size,
5319 unsigned int shndx,
5320 const elfcpp::Shdr<64, false>& shdr,
5321 unsigned int reloc_shndx,
5322 unsigned int reloc_type,
5323 off_t* off);
5324 #endif
5325
5326 #ifdef HAVE_TARGET_64_BIG
5327 template
5328 Output_section*
5329 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5330 const unsigned char* symbols,
5331 off_t symbols_size,
5332 const unsigned char* symbol_names,
5333 off_t symbol_names_size,
5334 unsigned int shndx,
5335 const elfcpp::Shdr<64, true>& shdr,
5336 unsigned int reloc_shndx,
5337 unsigned int reloc_type,
5338 off_t* off);
5339 #endif
5340
5341 #ifdef HAVE_TARGET_32_LITTLE
5342 template
5343 void
5344 Layout::add_to_gdb_index(bool is_type_unit,
5345 Sized_relobj<32, false>* object,
5346 const unsigned char* symbols,
5347 off_t symbols_size,
5348 unsigned int shndx,
5349 unsigned int reloc_shndx,
5350 unsigned int reloc_type);
5351 #endif
5352
5353 #ifdef HAVE_TARGET_32_BIG
5354 template
5355 void
5356 Layout::add_to_gdb_index(bool is_type_unit,
5357 Sized_relobj<32, true>* object,
5358 const unsigned char* symbols,
5359 off_t symbols_size,
5360 unsigned int shndx,
5361 unsigned int reloc_shndx,
5362 unsigned int reloc_type);
5363 #endif
5364
5365 #ifdef HAVE_TARGET_64_LITTLE
5366 template
5367 void
5368 Layout::add_to_gdb_index(bool is_type_unit,
5369 Sized_relobj<64, false>* object,
5370 const unsigned char* symbols,
5371 off_t symbols_size,
5372 unsigned int shndx,
5373 unsigned int reloc_shndx,
5374 unsigned int reloc_type);
5375 #endif
5376
5377 #ifdef HAVE_TARGET_64_BIG
5378 template
5379 void
5380 Layout::add_to_gdb_index(bool is_type_unit,
5381 Sized_relobj<64, true>* object,
5382 const unsigned char* symbols,
5383 off_t symbols_size,
5384 unsigned int shndx,
5385 unsigned int reloc_shndx,
5386 unsigned int reloc_type);
5387 #endif
5388
5389 } // End namespace gold.
This page took 0.193972 seconds and 5 git commands to generate.