Fix extraneous warning about executable stack.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list. Creates a single free list node that
76 // describes the entire region of length LEN. If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83 this->list_.push_front(Free_list_node(0, len));
84 this->last_remove_ = this->list_.begin();
85 this->extend_ = extend;
86 this->length_ = len;
87 ++Free_list::num_lists;
88 ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list. Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node. We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103 if (start == end)
104 return;
105 gold_assert(start < end);
106
107 ++Free_list::num_removes;
108
109 Iterator p = this->last_remove_;
110 if (p->start_ > start)
111 p = this->list_.begin();
112
113 for (; p != this->list_.end(); ++p)
114 {
115 ++Free_list::num_remove_visits;
116 // Find a node that wholly contains the indicated region.
117 if (p->start_ <= start && p->end_ >= end)
118 {
119 // Case 1: the indicated region spans the whole node.
120 // Add some fuzz to avoid creating tiny free chunks.
121 if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 p = this->list_.erase(p);
123 // Case 2: remove a chunk from the start of the node.
124 else if (p->start_ + 3 >= start)
125 p->start_ = end;
126 // Case 3: remove a chunk from the end of the node.
127 else if (p->end_ <= end + 3)
128 p->end_ = start;
129 // Case 4: remove a chunk from the middle, and split
130 // the node into two.
131 else
132 {
133 Free_list_node newnode(p->start_, start);
134 p->start_ = end;
135 this->list_.insert(p, newnode);
136 ++Free_list::num_nodes;
137 }
138 this->last_remove_ = p;
139 return;
140 }
141 }
142
143 // Did not find a node containing the given chunk. This could happen
144 // because a small chunk was already removed due to the fuzz.
145 gold_debug(DEBUG_INCREMENTAL,
146 "Free_list::remove(%d,%d) not found",
147 static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list. Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157 gold_debug(DEBUG_INCREMENTAL,
158 "Free_list::allocate(%08lx, %d, %08lx)",
159 static_cast<long>(len), static_cast<int>(align),
160 static_cast<long>(minoff));
161 if (len == 0)
162 return align_address(minoff, align);
163
164 ++Free_list::num_allocates;
165
166 // We usually want to drop free chunks smaller than 4 bytes.
167 // If we need to guarantee a minimum hole size, though, we need
168 // to keep track of all free chunks.
169 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172 {
173 ++Free_list::num_allocate_visits;
174 off_t start = p->start_ > minoff ? p->start_ : minoff;
175 start = align_address(start, align);
176 off_t end = start + len;
177 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178 {
179 this->length_ = end;
180 p->end_ = end;
181 }
182 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183 {
184 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 this->list_.erase(p);
186 else if (p->start_ + fuzz >= start)
187 p->start_ = end;
188 else if (p->end_ <= end + fuzz)
189 p->end_ = start;
190 else
191 {
192 Free_list_node newnode(p->start_, start);
193 p->start_ = end;
194 this->list_.insert(p, newnode);
195 ++Free_list::num_nodes;
196 }
197 return start;
198 }
199 }
200 if (this->extend_)
201 {
202 off_t start = align_address(this->length_, align);
203 this->length_ = start + len;
204 return start;
205 }
206 return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213 gold_info("Free list:\n start end length\n");
214 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
216 static_cast<long>(p->end_),
217 static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224 fprintf(stderr, _("%s: total free lists: %u\n"),
225 program_name, Free_list::num_lists);
226 fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 program_name, Free_list::num_nodes);
228 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 program_name, Free_list::num_removes);
230 fprintf(stderr, _("%s: nodes visited: %u\n"),
231 program_name, Free_list::num_remove_visits);
232 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 program_name, Free_list::num_allocates);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244 public:
245 Hash_task(const unsigned char* src,
246 size_t size,
247 unsigned char* dst,
248 Task_token* build_id_blocker,
249 Task_token* final_blocker)
250 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251 final_blocker_(final_blocker)
252 { }
253
254 void
255 run(Workqueue*)
256 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258 Task_token*
259 is_runnable();
260
261 // Unblock FINAL_BLOCKER_ when done.
262 void
263 locks(Task_locker* tl)
264 { tl->add(this, this->final_blocker_); }
265
266 std::string
267 get_name() const
268 { return "Hash_task"; }
269
270 private:
271 const unsigned char* const src_;
272 const size_t size_;
273 unsigned char* const dst_;
274 Task_token* const build_id_blocker_;
275 Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281 if (this->build_id_blocker_->is_blocked())
282 return this->build_id_blocker_;
283 return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 array_of_hashes_(NULL),
453 size_of_array_of_hashes_(0),
454 input_view_(NULL),
455 debug_abbrev_(NULL),
456 debug_info_(NULL),
457 group_signatures_(),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL),
471 record_output_section_data_from_script_(false),
472 script_output_section_data_list_(),
473 segment_states_(NULL),
474 relaxation_debug_check_(NULL),
475 section_order_map_(),
476 section_segment_map_(),
477 input_section_position_(),
478 input_section_glob_(),
479 incremental_base_(NULL),
480 free_list_()
481 {
482 // Make space for more than enough segments for a typical file.
483 // This is just for efficiency--it's OK if we wind up needing more.
484 this->segment_list_.reserve(12);
485
486 // We expect two unattached Output_data objects: the file header and
487 // the segment headers.
488 this->special_output_list_.reserve(2);
489
490 // Initialize structure needed for an incremental build.
491 if (parameters->incremental())
492 this->incremental_inputs_ = new Incremental_inputs;
493
494 // The section name pool is worth optimizing in all cases, because
495 // it is small, but there are often overlaps due to .rel sections.
496 this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504 this->incremental_base_ = base;
505 this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513 return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523 "abbrev",
524 "addr", // Fission extension
525 // "aranges", // not used by gdb as of 7.4
526 "frame",
527 "gdb_scripts",
528 "info",
529 "types",
530 "line",
531 "loc",
532 "macinfo",
533 "macro",
534 // "pubnames", // not used by gdb as of 7.4
535 // "pubtypes", // not used by gdb as of 7.4
536 // "gnu_pubnames", // Fission extension
537 // "gnu_pubtypes", // Fission extension
538 "ranges",
539 "str",
540 "str_offsets",
541 };
542
543 // This is the minimum set of sections needed for line numbers.
544
545 static const char* lines_only_debug_sections[] =
546 {
547 "abbrev",
548 // "addr", // Fission extension
549 // "aranges", // not used by gdb as of 7.4
550 // "frame",
551 // "gdb_scripts",
552 "info",
553 // "types",
554 "line",
555 // "loc",
556 // "macinfo",
557 // "macro",
558 // "pubnames", // not used by gdb as of 7.4
559 // "pubtypes", // not used by gdb as of 7.4
560 // "gnu_pubnames", // Fission extension
561 // "gnu_pubtypes", // Fission extension
562 // "ranges",
563 "str",
564 "str_offsets", // Fission extension
565 };
566
567 // These sections are the DWARF fast-lookup tables, and are not needed
568 // when building a .gdb_index section.
569
570 static const char* gdb_fast_lookup_sections[] =
571 {
572 "aranges",
573 "pubnames",
574 "gnu_pubnames",
575 "pubtypes",
576 "gnu_pubtypes",
577 };
578
579 // Returns whether the given debug section is in the list of
580 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
581 // portion of the name following ".debug_" or ".zdebug_".
582
583 static inline bool
584 is_gdb_debug_section(const char* suffix)
585 {
586 // We can do this faster: binary search or a hashtable. But why bother?
587 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
588 if (strcmp(suffix, gdb_sections[i]) == 0)
589 return true;
590 return false;
591 }
592
593 // Returns whether the given section is needed for lines-only debugging.
594
595 static inline bool
596 is_lines_only_debug_section(const char* suffix)
597 {
598 // We can do this faster: binary search or a hashtable. But why bother?
599 for (size_t i = 0;
600 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
601 ++i)
602 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
603 return true;
604 return false;
605 }
606
607 // Returns whether the given section is a fast-lookup section that
608 // will not be needed when building a .gdb_index section.
609
610 static inline bool
611 is_gdb_fast_lookup_section(const char* suffix)
612 {
613 // We can do this faster: binary search or a hashtable. But why bother?
614 for (size_t i = 0;
615 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
616 ++i)
617 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
618 return true;
619 return false;
620 }
621
622 // Sometimes we compress sections. This is typically done for
623 // sections that are not part of normal program execution (such as
624 // .debug_* sections), and where the readers of these sections know
625 // how to deal with compressed sections. This routine doesn't say for
626 // certain whether we'll compress -- it depends on commandline options
627 // as well -- just whether this section is a candidate for compression.
628 // (The Output_compressed_section class decides whether to compress
629 // a given section, and picks the name of the compressed section.)
630
631 static bool
632 is_compressible_debug_section(const char* secname)
633 {
634 return (is_prefix_of(".debug", secname));
635 }
636
637 // We may see compressed debug sections in input files. Return TRUE
638 // if this is the name of a compressed debug section.
639
640 bool
641 is_compressed_debug_section(const char* secname)
642 {
643 return (is_prefix_of(".zdebug", secname));
644 }
645
646 // Whether to include this section in the link.
647
648 template<int size, bool big_endian>
649 bool
650 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
651 const elfcpp::Shdr<size, big_endian>& shdr)
652 {
653 if (!parameters->options().relocatable()
654 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
655 return false;
656
657 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
658
659 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
660 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
661 return parameters->target().should_include_section(sh_type);
662
663 switch (sh_type)
664 {
665 case elfcpp::SHT_NULL:
666 case elfcpp::SHT_SYMTAB:
667 case elfcpp::SHT_DYNSYM:
668 case elfcpp::SHT_HASH:
669 case elfcpp::SHT_DYNAMIC:
670 case elfcpp::SHT_SYMTAB_SHNDX:
671 return false;
672
673 case elfcpp::SHT_STRTAB:
674 // Discard the sections which have special meanings in the ELF
675 // ABI. Keep others (e.g., .stabstr). We could also do this by
676 // checking the sh_link fields of the appropriate sections.
677 return (strcmp(name, ".dynstr") != 0
678 && strcmp(name, ".strtab") != 0
679 && strcmp(name, ".shstrtab") != 0);
680
681 case elfcpp::SHT_RELA:
682 case elfcpp::SHT_REL:
683 case elfcpp::SHT_GROUP:
684 // If we are emitting relocations these should be handled
685 // elsewhere.
686 gold_assert(!parameters->options().relocatable());
687 return false;
688
689 case elfcpp::SHT_PROGBITS:
690 if (parameters->options().strip_debug()
691 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
692 {
693 if (is_debug_info_section(name))
694 return false;
695 }
696 if (parameters->options().strip_debug_non_line()
697 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698 {
699 // Debugging sections can only be recognized by name.
700 if (is_prefix_of(".debug_", name)
701 && !is_lines_only_debug_section(name + 7))
702 return false;
703 if (is_prefix_of(".zdebug_", name)
704 && !is_lines_only_debug_section(name + 8))
705 return false;
706 }
707 if (parameters->options().strip_debug_gdb()
708 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
709 {
710 // Debugging sections can only be recognized by name.
711 if (is_prefix_of(".debug_", name)
712 && !is_gdb_debug_section(name + 7))
713 return false;
714 if (is_prefix_of(".zdebug_", name)
715 && !is_gdb_debug_section(name + 8))
716 return false;
717 }
718 if (parameters->options().gdb_index()
719 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
720 {
721 // When building .gdb_index, we can strip .debug_pubnames,
722 // .debug_pubtypes, and .debug_aranges sections.
723 if (is_prefix_of(".debug_", name)
724 && is_gdb_fast_lookup_section(name + 7))
725 return false;
726 if (is_prefix_of(".zdebug_", name)
727 && is_gdb_fast_lookup_section(name + 8))
728 return false;
729 }
730 if (parameters->options().strip_lto_sections()
731 && !parameters->options().relocatable()
732 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
733 {
734 // Ignore LTO sections containing intermediate code.
735 if (is_prefix_of(".gnu.lto_", name))
736 return false;
737 }
738 // The GNU linker strips .gnu_debuglink sections, so we do too.
739 // This is a feature used to keep debugging information in
740 // separate files.
741 if (strcmp(name, ".gnu_debuglink") == 0)
742 return false;
743 return true;
744
745 default:
746 return true;
747 }
748 }
749
750 // Return an output section named NAME, or NULL if there is none.
751
752 Output_section*
753 Layout::find_output_section(const char* name) const
754 {
755 for (Section_list::const_iterator p = this->section_list_.begin();
756 p != this->section_list_.end();
757 ++p)
758 if (strcmp((*p)->name(), name) == 0)
759 return *p;
760 return NULL;
761 }
762
763 // Return an output segment of type TYPE, with segment flags SET set
764 // and segment flags CLEAR clear. Return NULL if there is none.
765
766 Output_segment*
767 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
768 elfcpp::Elf_Word clear) const
769 {
770 for (Segment_list::const_iterator p = this->segment_list_.begin();
771 p != this->segment_list_.end();
772 ++p)
773 if (static_cast<elfcpp::PT>((*p)->type()) == type
774 && ((*p)->flags() & set) == set
775 && ((*p)->flags() & clear) == 0)
776 return *p;
777 return NULL;
778 }
779
780 // When we put a .ctors or .dtors section with more than one word into
781 // a .init_array or .fini_array section, we need to reverse the words
782 // in the .ctors/.dtors section. This is because .init_array executes
783 // constructors front to back, where .ctors executes them back to
784 // front, and vice-versa for .fini_array/.dtors. Although we do want
785 // to remap .ctors/.dtors into .init_array/.fini_array because it can
786 // be more efficient, we don't want to change the order in which
787 // constructors/destructors are run. This set just keeps track of
788 // these sections which need to be reversed. It is only changed by
789 // Layout::layout. It should be a private member of Layout, but that
790 // would require layout.h to #include object.h to get the definition
791 // of Section_id.
792 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
793
794 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
795 // .init_array/.fini_array section.
796
797 bool
798 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
799 {
800 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
801 != ctors_sections_in_init_array.end());
802 }
803
804 // Return the output section to use for section NAME with type TYPE
805 // and section flags FLAGS. NAME must be canonicalized in the string
806 // pool, and NAME_KEY is the key. ORDER is where this should appear
807 // in the output sections. IS_RELRO is true for a relro section.
808
809 Output_section*
810 Layout::get_output_section(const char* name, Stringpool::Key name_key,
811 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
812 Output_section_order order, bool is_relro)
813 {
814 elfcpp::Elf_Word lookup_type = type;
815
816 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
817 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
818 // .init_array, .fini_array, and .preinit_array sections by name
819 // whatever their type in the input file. We do this because the
820 // types are not always right in the input files.
821 if (lookup_type == elfcpp::SHT_INIT_ARRAY
822 || lookup_type == elfcpp::SHT_FINI_ARRAY
823 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
824 lookup_type = elfcpp::SHT_PROGBITS;
825
826 elfcpp::Elf_Xword lookup_flags = flags;
827
828 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
829 // read-write with read-only sections. Some other ELF linkers do
830 // not do this. FIXME: Perhaps there should be an option
831 // controlling this.
832 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
833
834 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
835 const std::pair<Key, Output_section*> v(key, NULL);
836 std::pair<Section_name_map::iterator, bool> ins(
837 this->section_name_map_.insert(v));
838
839 if (!ins.second)
840 return ins.first->second;
841 else
842 {
843 // This is the first time we've seen this name/type/flags
844 // combination. For compatibility with the GNU linker, we
845 // combine sections with contents and zero flags with sections
846 // with non-zero flags. This is a workaround for cases where
847 // assembler code forgets to set section flags. FIXME: Perhaps
848 // there should be an option to control this.
849 Output_section* os = NULL;
850
851 if (lookup_type == elfcpp::SHT_PROGBITS)
852 {
853 if (flags == 0)
854 {
855 Output_section* same_name = this->find_output_section(name);
856 if (same_name != NULL
857 && (same_name->type() == elfcpp::SHT_PROGBITS
858 || same_name->type() == elfcpp::SHT_INIT_ARRAY
859 || same_name->type() == elfcpp::SHT_FINI_ARRAY
860 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
861 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
862 os = same_name;
863 }
864 else if ((flags & elfcpp::SHF_TLS) == 0)
865 {
866 elfcpp::Elf_Xword zero_flags = 0;
867 const Key zero_key(name_key, std::make_pair(lookup_type,
868 zero_flags));
869 Section_name_map::iterator p =
870 this->section_name_map_.find(zero_key);
871 if (p != this->section_name_map_.end())
872 os = p->second;
873 }
874 }
875
876 if (os == NULL)
877 os = this->make_output_section(name, type, flags, order, is_relro);
878
879 ins.first->second = os;
880 return os;
881 }
882 }
883
884 // Returns TRUE iff NAME (an input section from RELOBJ) will
885 // be mapped to an output section that should be KEPT.
886
887 bool
888 Layout::keep_input_section(const Relobj* relobj, const char* name)
889 {
890 if (! this->script_options_->saw_sections_clause())
891 return false;
892
893 Script_sections* ss = this->script_options_->script_sections();
894 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
895 Output_section** output_section_slot;
896 Script_sections::Section_type script_section_type;
897 bool keep;
898
899 name = ss->output_section_name(file_name, name, &output_section_slot,
900 &script_section_type, &keep);
901 return name != NULL && keep;
902 }
903
904 // Clear the input section flags that should not be copied to the
905 // output section.
906
907 elfcpp::Elf_Xword
908 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
909 {
910 // Some flags in the input section should not be automatically
911 // copied to the output section.
912 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
913 | elfcpp::SHF_GROUP
914 | elfcpp::SHF_MERGE
915 | elfcpp::SHF_STRINGS);
916
917 // We only clear the SHF_LINK_ORDER flag in for
918 // a non-relocatable link.
919 if (!parameters->options().relocatable())
920 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
921
922 return input_section_flags;
923 }
924
925 // Pick the output section to use for section NAME, in input file
926 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
927 // linker created section. IS_INPUT_SECTION is true if we are
928 // choosing an output section for an input section found in a input
929 // file. ORDER is where this section should appear in the output
930 // sections. IS_RELRO is true for a relro section. This will return
931 // NULL if the input section should be discarded.
932
933 Output_section*
934 Layout::choose_output_section(const Relobj* relobj, const char* name,
935 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
936 bool is_input_section, Output_section_order order,
937 bool is_relro)
938 {
939 // We should not see any input sections after we have attached
940 // sections to segments.
941 gold_assert(!is_input_section || !this->sections_are_attached_);
942
943 flags = this->get_output_section_flags(flags);
944
945 if (this->script_options_->saw_sections_clause())
946 {
947 // We are using a SECTIONS clause, so the output section is
948 // chosen based only on the name.
949
950 Script_sections* ss = this->script_options_->script_sections();
951 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
952 Output_section** output_section_slot;
953 Script_sections::Section_type script_section_type;
954 const char* orig_name = name;
955 bool keep;
956 name = ss->output_section_name(file_name, name, &output_section_slot,
957 &script_section_type, &keep);
958
959 if (name == NULL)
960 {
961 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
962 "because it is not allowed by the "
963 "SECTIONS clause of the linker script"),
964 orig_name);
965 // The SECTIONS clause says to discard this input section.
966 return NULL;
967 }
968
969 // We can only handle script section types ST_NONE and ST_NOLOAD.
970 switch (script_section_type)
971 {
972 case Script_sections::ST_NONE:
973 break;
974 case Script_sections::ST_NOLOAD:
975 flags &= elfcpp::SHF_ALLOC;
976 break;
977 default:
978 gold_unreachable();
979 }
980
981 // If this is an orphan section--one not mentioned in the linker
982 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
983 // default processing below.
984
985 if (output_section_slot != NULL)
986 {
987 if (*output_section_slot != NULL)
988 {
989 (*output_section_slot)->update_flags_for_input_section(flags);
990 return *output_section_slot;
991 }
992
993 // We don't put sections found in the linker script into
994 // SECTION_NAME_MAP_. That keeps us from getting confused
995 // if an orphan section is mapped to a section with the same
996 // name as one in the linker script.
997
998 name = this->namepool_.add(name, false, NULL);
999
1000 Output_section* os = this->make_output_section(name, type, flags,
1001 order, is_relro);
1002
1003 os->set_found_in_sections_clause();
1004
1005 // Special handling for NOLOAD sections.
1006 if (script_section_type == Script_sections::ST_NOLOAD)
1007 {
1008 os->set_is_noload();
1009
1010 // The constructor of Output_section sets addresses of non-ALLOC
1011 // sections to 0 by default. We don't want that for NOLOAD
1012 // sections even if they have no SHF_ALLOC flag.
1013 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1014 && os->is_address_valid())
1015 {
1016 gold_assert(os->address() == 0
1017 && !os->is_offset_valid()
1018 && !os->is_data_size_valid());
1019 os->reset_address_and_file_offset();
1020 }
1021 }
1022
1023 *output_section_slot = os;
1024 return os;
1025 }
1026 }
1027
1028 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1029
1030 size_t len = strlen(name);
1031 char* uncompressed_name = NULL;
1032
1033 // Compressed debug sections should be mapped to the corresponding
1034 // uncompressed section.
1035 if (is_compressed_debug_section(name))
1036 {
1037 uncompressed_name = new char[len];
1038 uncompressed_name[0] = '.';
1039 gold_assert(name[0] == '.' && name[1] == 'z');
1040 strncpy(&uncompressed_name[1], &name[2], len - 2);
1041 uncompressed_name[len - 1] = '\0';
1042 len -= 1;
1043 name = uncompressed_name;
1044 }
1045
1046 // Turn NAME from the name of the input section into the name of the
1047 // output section.
1048 if (is_input_section
1049 && !this->script_options_->saw_sections_clause()
1050 && !parameters->options().relocatable())
1051 {
1052 const char *orig_name = name;
1053 name = parameters->target().output_section_name(relobj, name, &len);
1054 if (name == NULL)
1055 name = Layout::output_section_name(relobj, orig_name, &len);
1056 }
1057
1058 Stringpool::Key name_key;
1059 name = this->namepool_.add_with_length(name, len, true, &name_key);
1060
1061 if (uncompressed_name != NULL)
1062 delete[] uncompressed_name;
1063
1064 // Find or make the output section. The output section is selected
1065 // based on the section name, type, and flags.
1066 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1067 }
1068
1069 // For incremental links, record the initial fixed layout of a section
1070 // from the base file, and return a pointer to the Output_section.
1071
1072 template<int size, bool big_endian>
1073 Output_section*
1074 Layout::init_fixed_output_section(const char* name,
1075 elfcpp::Shdr<size, big_endian>& shdr)
1076 {
1077 unsigned int sh_type = shdr.get_sh_type();
1078
1079 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1080 // PRE_INIT_ARRAY, and NOTE sections.
1081 // All others will be created from scratch and reallocated.
1082 if (!can_incremental_update(sh_type))
1083 return NULL;
1084
1085 // If we're generating a .gdb_index section, we need to regenerate
1086 // it from scratch.
1087 if (parameters->options().gdb_index()
1088 && sh_type == elfcpp::SHT_PROGBITS
1089 && strcmp(name, ".gdb_index") == 0)
1090 return NULL;
1091
1092 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1093 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1094 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1095 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1096 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1097 shdr.get_sh_addralign();
1098
1099 // Make the output section.
1100 Stringpool::Key name_key;
1101 name = this->namepool_.add(name, true, &name_key);
1102 Output_section* os = this->get_output_section(name, name_key, sh_type,
1103 sh_flags, ORDER_INVALID, false);
1104 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1105 if (sh_type != elfcpp::SHT_NOBITS)
1106 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1107 return os;
1108 }
1109
1110 // Return the index by which an input section should be ordered. This
1111 // is used to sort some .text sections, for compatibility with GNU ld.
1112
1113 int
1114 Layout::special_ordering_of_input_section(const char* name)
1115 {
1116 // The GNU linker has some special handling for some sections that
1117 // wind up in the .text section. Sections that start with these
1118 // prefixes must appear first, and must appear in the order listed
1119 // here.
1120 static const char* const text_section_sort[] =
1121 {
1122 ".text.unlikely",
1123 ".text.exit",
1124 ".text.startup",
1125 ".text.hot"
1126 };
1127
1128 for (size_t i = 0;
1129 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1130 i++)
1131 if (is_prefix_of(text_section_sort[i], name))
1132 return i;
1133
1134 return -1;
1135 }
1136
1137 // Return the output section to use for input section SHNDX, with name
1138 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1139 // index of a relocation section which applies to this section, or 0
1140 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1141 // relocation section if there is one. Set *OFF to the offset of this
1142 // input section without the output section. Return NULL if the
1143 // section should be discarded. Set *OFF to -1 if the section
1144 // contents should not be written directly to the output file, but
1145 // will instead receive special handling.
1146
1147 template<int size, bool big_endian>
1148 Output_section*
1149 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1150 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1151 unsigned int reloc_shndx, unsigned int, off_t* off)
1152 {
1153 *off = 0;
1154
1155 if (!this->include_section(object, name, shdr))
1156 return NULL;
1157
1158 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1159
1160 // In a relocatable link a grouped section must not be combined with
1161 // any other sections.
1162 Output_section* os;
1163 if (parameters->options().relocatable()
1164 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1165 {
1166 name = this->namepool_.add(name, true, NULL);
1167 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1168 ORDER_INVALID, false);
1169 }
1170 else
1171 {
1172 // Plugins can choose to place one or more subsets of sections in
1173 // unique segments and this is done by mapping these section subsets
1174 // to unique output sections. Check if this section needs to be
1175 // remapped to a unique output section.
1176 Section_segment_map::iterator it
1177 = this->section_segment_map_.find(Const_section_id(object, shndx));
1178 if (it == this->section_segment_map_.end())
1179 {
1180 os = this->choose_output_section(object, name, sh_type,
1181 shdr.get_sh_flags(), true,
1182 ORDER_INVALID, false);
1183 }
1184 else
1185 {
1186 // We know the name of the output section, directly call
1187 // get_output_section here by-passing choose_output_section.
1188 elfcpp::Elf_Xword flags
1189 = this->get_output_section_flags(shdr.get_sh_flags());
1190
1191 const char* os_name = it->second->name;
1192 Stringpool::Key name_key;
1193 os_name = this->namepool_.add(os_name, true, &name_key);
1194 os = this->get_output_section(os_name, name_key, sh_type, flags,
1195 ORDER_INVALID, false);
1196 if (!os->is_unique_segment())
1197 {
1198 os->set_is_unique_segment();
1199 os->set_extra_segment_flags(it->second->flags);
1200 os->set_segment_alignment(it->second->align);
1201 }
1202 }
1203 if (os == NULL)
1204 return NULL;
1205 }
1206
1207 // By default the GNU linker sorts input sections whose names match
1208 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1209 // sections are sorted by name. This is used to implement
1210 // constructor priority ordering. We are compatible. When we put
1211 // .ctor sections in .init_array and .dtor sections in .fini_array,
1212 // we must also sort plain .ctor and .dtor sections.
1213 if (!this->script_options_->saw_sections_clause()
1214 && !parameters->options().relocatable()
1215 && (is_prefix_of(".ctors.", name)
1216 || is_prefix_of(".dtors.", name)
1217 || is_prefix_of(".init_array.", name)
1218 || is_prefix_of(".fini_array.", name)
1219 || (parameters->options().ctors_in_init_array()
1220 && (strcmp(name, ".ctors") == 0
1221 || strcmp(name, ".dtors") == 0))))
1222 os->set_must_sort_attached_input_sections();
1223
1224 // By default the GNU linker sorts some special text sections ahead
1225 // of others. We are compatible.
1226 if (parameters->options().text_reorder()
1227 && !this->script_options_->saw_sections_clause()
1228 && !this->is_section_ordering_specified()
1229 && !parameters->options().relocatable()
1230 && Layout::special_ordering_of_input_section(name) >= 0)
1231 os->set_must_sort_attached_input_sections();
1232
1233 // If this is a .ctors or .ctors.* section being mapped to a
1234 // .init_array section, or a .dtors or .dtors.* section being mapped
1235 // to a .fini_array section, we will need to reverse the words if
1236 // there is more than one. Record this section for later. See
1237 // ctors_sections_in_init_array above.
1238 if (!this->script_options_->saw_sections_clause()
1239 && !parameters->options().relocatable()
1240 && shdr.get_sh_size() > size / 8
1241 && (((strcmp(name, ".ctors") == 0
1242 || is_prefix_of(".ctors.", name))
1243 && strcmp(os->name(), ".init_array") == 0)
1244 || ((strcmp(name, ".dtors") == 0
1245 || is_prefix_of(".dtors.", name))
1246 && strcmp(os->name(), ".fini_array") == 0)))
1247 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1248
1249 // FIXME: Handle SHF_LINK_ORDER somewhere.
1250
1251 elfcpp::Elf_Xword orig_flags = os->flags();
1252
1253 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1254 this->script_options_->saw_sections_clause());
1255
1256 // If the flags changed, we may have to change the order.
1257 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1258 {
1259 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1260 elfcpp::Elf_Xword new_flags =
1261 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1262 if (orig_flags != new_flags)
1263 os->set_order(this->default_section_order(os, false));
1264 }
1265
1266 this->have_added_input_section_ = true;
1267
1268 return os;
1269 }
1270
1271 // Maps section SECN to SEGMENT s.
1272 void
1273 Layout::insert_section_segment_map(Const_section_id secn,
1274 Unique_segment_info *s)
1275 {
1276 gold_assert(this->unique_segment_for_sections_specified_);
1277 this->section_segment_map_[secn] = s;
1278 }
1279
1280 // Handle a relocation section when doing a relocatable link.
1281
1282 template<int size, bool big_endian>
1283 Output_section*
1284 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1285 unsigned int,
1286 const elfcpp::Shdr<size, big_endian>& shdr,
1287 Output_section* data_section,
1288 Relocatable_relocs* rr)
1289 {
1290 gold_assert(parameters->options().relocatable()
1291 || parameters->options().emit_relocs());
1292
1293 int sh_type = shdr.get_sh_type();
1294
1295 std::string name;
1296 if (sh_type == elfcpp::SHT_REL)
1297 name = ".rel";
1298 else if (sh_type == elfcpp::SHT_RELA)
1299 name = ".rela";
1300 else
1301 gold_unreachable();
1302 name += data_section->name();
1303
1304 // In a relocatable link relocs for a grouped section must not be
1305 // combined with other reloc sections.
1306 Output_section* os;
1307 if (!parameters->options().relocatable()
1308 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1309 os = this->choose_output_section(object, name.c_str(), sh_type,
1310 shdr.get_sh_flags(), false,
1311 ORDER_INVALID, false);
1312 else
1313 {
1314 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1315 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1316 ORDER_INVALID, false);
1317 }
1318
1319 os->set_should_link_to_symtab();
1320 os->set_info_section(data_section);
1321
1322 Output_section_data* posd;
1323 if (sh_type == elfcpp::SHT_REL)
1324 {
1325 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1326 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1327 size,
1328 big_endian>(rr);
1329 }
1330 else if (sh_type == elfcpp::SHT_RELA)
1331 {
1332 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1333 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1334 size,
1335 big_endian>(rr);
1336 }
1337 else
1338 gold_unreachable();
1339
1340 os->add_output_section_data(posd);
1341 rr->set_output_data(posd);
1342
1343 return os;
1344 }
1345
1346 // Handle a group section when doing a relocatable link.
1347
1348 template<int size, bool big_endian>
1349 void
1350 Layout::layout_group(Symbol_table* symtab,
1351 Sized_relobj_file<size, big_endian>* object,
1352 unsigned int,
1353 const char* group_section_name,
1354 const char* signature,
1355 const elfcpp::Shdr<size, big_endian>& shdr,
1356 elfcpp::Elf_Word flags,
1357 std::vector<unsigned int>* shndxes)
1358 {
1359 gold_assert(parameters->options().relocatable());
1360 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1361 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1362 Output_section* os = this->make_output_section(group_section_name,
1363 elfcpp::SHT_GROUP,
1364 shdr.get_sh_flags(),
1365 ORDER_INVALID, false);
1366
1367 // We need to find a symbol with the signature in the symbol table.
1368 // If we don't find one now, we need to look again later.
1369 Symbol* sym = symtab->lookup(signature, NULL);
1370 if (sym != NULL)
1371 os->set_info_symndx(sym);
1372 else
1373 {
1374 // Reserve some space to minimize reallocations.
1375 if (this->group_signatures_.empty())
1376 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1377
1378 // We will wind up using a symbol whose name is the signature.
1379 // So just put the signature in the symbol name pool to save it.
1380 signature = symtab->canonicalize_name(signature);
1381 this->group_signatures_.push_back(Group_signature(os, signature));
1382 }
1383
1384 os->set_should_link_to_symtab();
1385 os->set_entsize(4);
1386
1387 section_size_type entry_count =
1388 convert_to_section_size_type(shdr.get_sh_size() / 4);
1389 Output_section_data* posd =
1390 new Output_data_group<size, big_endian>(object, entry_count, flags,
1391 shndxes);
1392 os->add_output_section_data(posd);
1393 }
1394
1395 // Special GNU handling of sections name .eh_frame. They will
1396 // normally hold exception frame data as defined by the C++ ABI
1397 // (http://codesourcery.com/cxx-abi/).
1398
1399 template<int size, bool big_endian>
1400 Output_section*
1401 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1402 const unsigned char* symbols,
1403 off_t symbols_size,
1404 const unsigned char* symbol_names,
1405 off_t symbol_names_size,
1406 unsigned int shndx,
1407 const elfcpp::Shdr<size, big_endian>& shdr,
1408 unsigned int reloc_shndx, unsigned int reloc_type,
1409 off_t* off)
1410 {
1411 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1412 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1413 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1414
1415 Output_section* os = this->make_eh_frame_section(object);
1416 if (os == NULL)
1417 return NULL;
1418
1419 gold_assert(this->eh_frame_section_ == os);
1420
1421 elfcpp::Elf_Xword orig_flags = os->flags();
1422
1423 if (!parameters->incremental()
1424 && this->eh_frame_data_->add_ehframe_input_section(object,
1425 symbols,
1426 symbols_size,
1427 symbol_names,
1428 symbol_names_size,
1429 shndx,
1430 reloc_shndx,
1431 reloc_type))
1432 {
1433 os->update_flags_for_input_section(shdr.get_sh_flags());
1434
1435 // A writable .eh_frame section is a RELRO section.
1436 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1437 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1438 {
1439 os->set_is_relro();
1440 os->set_order(ORDER_RELRO);
1441 }
1442
1443 // We found a .eh_frame section we are going to optimize, so now
1444 // we can add the set of optimized sections to the output
1445 // section. We need to postpone adding this until we've found a
1446 // section we can optimize so that the .eh_frame section in
1447 // crtbegin.o winds up at the start of the output section.
1448 if (!this->added_eh_frame_data_)
1449 {
1450 os->add_output_section_data(this->eh_frame_data_);
1451 this->added_eh_frame_data_ = true;
1452 }
1453 *off = -1;
1454 }
1455 else
1456 {
1457 // We couldn't handle this .eh_frame section for some reason.
1458 // Add it as a normal section.
1459 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1460 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1461 reloc_shndx, saw_sections_clause);
1462 this->have_added_input_section_ = true;
1463
1464 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1465 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1466 os->set_order(this->default_section_order(os, false));
1467 }
1468
1469 return os;
1470 }
1471
1472 // Create and return the magic .eh_frame section. Create
1473 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1474 // input .eh_frame section; it may be NULL.
1475
1476 Output_section*
1477 Layout::make_eh_frame_section(const Relobj* object)
1478 {
1479 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1480 // SHT_PROGBITS.
1481 Output_section* os = this->choose_output_section(object, ".eh_frame",
1482 elfcpp::SHT_PROGBITS,
1483 elfcpp::SHF_ALLOC, false,
1484 ORDER_EHFRAME, false);
1485 if (os == NULL)
1486 return NULL;
1487
1488 if (this->eh_frame_section_ == NULL)
1489 {
1490 this->eh_frame_section_ = os;
1491 this->eh_frame_data_ = new Eh_frame();
1492
1493 // For incremental linking, we do not optimize .eh_frame sections
1494 // or create a .eh_frame_hdr section.
1495 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1496 {
1497 Output_section* hdr_os =
1498 this->choose_output_section(NULL, ".eh_frame_hdr",
1499 elfcpp::SHT_PROGBITS,
1500 elfcpp::SHF_ALLOC, false,
1501 ORDER_EHFRAME, false);
1502
1503 if (hdr_os != NULL)
1504 {
1505 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1506 this->eh_frame_data_);
1507 hdr_os->add_output_section_data(hdr_posd);
1508
1509 hdr_os->set_after_input_sections();
1510
1511 if (!this->script_options_->saw_phdrs_clause())
1512 {
1513 Output_segment* hdr_oseg;
1514 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1515 elfcpp::PF_R);
1516 hdr_oseg->add_output_section_to_nonload(hdr_os,
1517 elfcpp::PF_R);
1518 }
1519
1520 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1521 }
1522 }
1523 }
1524
1525 return os;
1526 }
1527
1528 // Add an exception frame for a PLT. This is called from target code.
1529
1530 void
1531 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1532 size_t cie_length, const unsigned char* fde_data,
1533 size_t fde_length)
1534 {
1535 if (parameters->incremental())
1536 {
1537 // FIXME: Maybe this could work some day....
1538 return;
1539 }
1540 Output_section* os = this->make_eh_frame_section(NULL);
1541 if (os == NULL)
1542 return;
1543 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1544 fde_data, fde_length);
1545 if (!this->added_eh_frame_data_)
1546 {
1547 os->add_output_section_data(this->eh_frame_data_);
1548 this->added_eh_frame_data_ = true;
1549 }
1550 }
1551
1552 // Scan a .debug_info or .debug_types section, and add summary
1553 // information to the .gdb_index section.
1554
1555 template<int size, bool big_endian>
1556 void
1557 Layout::add_to_gdb_index(bool is_type_unit,
1558 Sized_relobj<size, big_endian>* object,
1559 const unsigned char* symbols,
1560 off_t symbols_size,
1561 unsigned int shndx,
1562 unsigned int reloc_shndx,
1563 unsigned int reloc_type)
1564 {
1565 if (this->gdb_index_data_ == NULL)
1566 {
1567 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1568 elfcpp::SHT_PROGBITS, 0,
1569 false, ORDER_INVALID,
1570 false);
1571 if (os == NULL)
1572 return;
1573
1574 this->gdb_index_data_ = new Gdb_index(os);
1575 os->add_output_section_data(this->gdb_index_data_);
1576 os->set_after_input_sections();
1577 }
1578
1579 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1580 symbols_size, shndx, reloc_shndx,
1581 reloc_type);
1582 }
1583
1584 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1585 // the output section.
1586
1587 Output_section*
1588 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1589 elfcpp::Elf_Xword flags,
1590 Output_section_data* posd,
1591 Output_section_order order, bool is_relro)
1592 {
1593 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1594 false, order, is_relro);
1595 if (os != NULL)
1596 os->add_output_section_data(posd);
1597 return os;
1598 }
1599
1600 // Map section flags to segment flags.
1601
1602 elfcpp::Elf_Word
1603 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1604 {
1605 elfcpp::Elf_Word ret = elfcpp::PF_R;
1606 if ((flags & elfcpp::SHF_WRITE) != 0)
1607 ret |= elfcpp::PF_W;
1608 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1609 ret |= elfcpp::PF_X;
1610 return ret;
1611 }
1612
1613 // Make a new Output_section, and attach it to segments as
1614 // appropriate. ORDER is the order in which this section should
1615 // appear in the output segment. IS_RELRO is true if this is a relro
1616 // (read-only after relocations) section.
1617
1618 Output_section*
1619 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1620 elfcpp::Elf_Xword flags,
1621 Output_section_order order, bool is_relro)
1622 {
1623 Output_section* os;
1624 if ((flags & elfcpp::SHF_ALLOC) == 0
1625 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1626 && is_compressible_debug_section(name))
1627 os = new Output_compressed_section(&parameters->options(), name, type,
1628 flags);
1629 else if ((flags & elfcpp::SHF_ALLOC) == 0
1630 && parameters->options().strip_debug_non_line()
1631 && strcmp(".debug_abbrev", name) == 0)
1632 {
1633 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1634 name, type, flags);
1635 if (this->debug_info_)
1636 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1637 }
1638 else if ((flags & elfcpp::SHF_ALLOC) == 0
1639 && parameters->options().strip_debug_non_line()
1640 && strcmp(".debug_info", name) == 0)
1641 {
1642 os = this->debug_info_ = new Output_reduced_debug_info_section(
1643 name, type, flags);
1644 if (this->debug_abbrev_)
1645 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1646 }
1647 else
1648 {
1649 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1650 // not have correct section types. Force them here.
1651 if (type == elfcpp::SHT_PROGBITS)
1652 {
1653 if (is_prefix_of(".init_array", name))
1654 type = elfcpp::SHT_INIT_ARRAY;
1655 else if (is_prefix_of(".preinit_array", name))
1656 type = elfcpp::SHT_PREINIT_ARRAY;
1657 else if (is_prefix_of(".fini_array", name))
1658 type = elfcpp::SHT_FINI_ARRAY;
1659 }
1660
1661 // FIXME: const_cast is ugly.
1662 Target* target = const_cast<Target*>(&parameters->target());
1663 os = target->make_output_section(name, type, flags);
1664 }
1665
1666 // With -z relro, we have to recognize the special sections by name.
1667 // There is no other way.
1668 bool is_relro_local = false;
1669 if (!this->script_options_->saw_sections_clause()
1670 && parameters->options().relro()
1671 && (flags & elfcpp::SHF_ALLOC) != 0
1672 && (flags & elfcpp::SHF_WRITE) != 0)
1673 {
1674 if (type == elfcpp::SHT_PROGBITS)
1675 {
1676 if ((flags & elfcpp::SHF_TLS) != 0)
1677 is_relro = true;
1678 else if (strcmp(name, ".data.rel.ro") == 0)
1679 is_relro = true;
1680 else if (strcmp(name, ".data.rel.ro.local") == 0)
1681 {
1682 is_relro = true;
1683 is_relro_local = true;
1684 }
1685 else if (strcmp(name, ".ctors") == 0
1686 || strcmp(name, ".dtors") == 0
1687 || strcmp(name, ".jcr") == 0)
1688 is_relro = true;
1689 }
1690 else if (type == elfcpp::SHT_INIT_ARRAY
1691 || type == elfcpp::SHT_FINI_ARRAY
1692 || type == elfcpp::SHT_PREINIT_ARRAY)
1693 is_relro = true;
1694 }
1695
1696 if (is_relro)
1697 os->set_is_relro();
1698
1699 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1700 order = this->default_section_order(os, is_relro_local);
1701
1702 os->set_order(order);
1703
1704 parameters->target().new_output_section(os);
1705
1706 this->section_list_.push_back(os);
1707
1708 // The GNU linker by default sorts some sections by priority, so we
1709 // do the same. We need to know that this might happen before we
1710 // attach any input sections.
1711 if (!this->script_options_->saw_sections_clause()
1712 && !parameters->options().relocatable()
1713 && (strcmp(name, ".init_array") == 0
1714 || strcmp(name, ".fini_array") == 0
1715 || (!parameters->options().ctors_in_init_array()
1716 && (strcmp(name, ".ctors") == 0
1717 || strcmp(name, ".dtors") == 0))))
1718 os->set_may_sort_attached_input_sections();
1719
1720 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1721 // sections before other .text sections. We are compatible. We
1722 // need to know that this might happen before we attach any input
1723 // sections.
1724 if (parameters->options().text_reorder()
1725 && !this->script_options_->saw_sections_clause()
1726 && !this->is_section_ordering_specified()
1727 && !parameters->options().relocatable()
1728 && strcmp(name, ".text") == 0)
1729 os->set_may_sort_attached_input_sections();
1730
1731 // GNU linker sorts section by name with --sort-section=name.
1732 if (strcmp(parameters->options().sort_section(), "name") == 0)
1733 os->set_must_sort_attached_input_sections();
1734
1735 // Check for .stab*str sections, as .stab* sections need to link to
1736 // them.
1737 if (type == elfcpp::SHT_STRTAB
1738 && !this->have_stabstr_section_
1739 && strncmp(name, ".stab", 5) == 0
1740 && strcmp(name + strlen(name) - 3, "str") == 0)
1741 this->have_stabstr_section_ = true;
1742
1743 // During a full incremental link, we add patch space to most
1744 // PROGBITS and NOBITS sections. Flag those that may be
1745 // arbitrarily padded.
1746 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1747 && order != ORDER_INTERP
1748 && order != ORDER_INIT
1749 && order != ORDER_PLT
1750 && order != ORDER_FINI
1751 && order != ORDER_RELRO_LAST
1752 && order != ORDER_NON_RELRO_FIRST
1753 && strcmp(name, ".eh_frame") != 0
1754 && strcmp(name, ".ctors") != 0
1755 && strcmp(name, ".dtors") != 0
1756 && strcmp(name, ".jcr") != 0)
1757 {
1758 os->set_is_patch_space_allowed();
1759
1760 // Certain sections require "holes" to be filled with
1761 // specific fill patterns. These fill patterns may have
1762 // a minimum size, so we must prevent allocations from the
1763 // free list that leave a hole smaller than the minimum.
1764 if (strcmp(name, ".debug_info") == 0)
1765 os->set_free_space_fill(new Output_fill_debug_info(false));
1766 else if (strcmp(name, ".debug_types") == 0)
1767 os->set_free_space_fill(new Output_fill_debug_info(true));
1768 else if (strcmp(name, ".debug_line") == 0)
1769 os->set_free_space_fill(new Output_fill_debug_line());
1770 }
1771
1772 // If we have already attached the sections to segments, then we
1773 // need to attach this one now. This happens for sections created
1774 // directly by the linker.
1775 if (this->sections_are_attached_)
1776 this->attach_section_to_segment(&parameters->target(), os);
1777
1778 return os;
1779 }
1780
1781 // Return the default order in which a section should be placed in an
1782 // output segment. This function captures a lot of the ideas in
1783 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1784 // linker created section is normally set when the section is created;
1785 // this function is used for input sections.
1786
1787 Output_section_order
1788 Layout::default_section_order(Output_section* os, bool is_relro_local)
1789 {
1790 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1791 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1792 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1793 bool is_bss = false;
1794
1795 switch (os->type())
1796 {
1797 default:
1798 case elfcpp::SHT_PROGBITS:
1799 break;
1800 case elfcpp::SHT_NOBITS:
1801 is_bss = true;
1802 break;
1803 case elfcpp::SHT_RELA:
1804 case elfcpp::SHT_REL:
1805 if (!is_write)
1806 return ORDER_DYNAMIC_RELOCS;
1807 break;
1808 case elfcpp::SHT_HASH:
1809 case elfcpp::SHT_DYNAMIC:
1810 case elfcpp::SHT_SHLIB:
1811 case elfcpp::SHT_DYNSYM:
1812 case elfcpp::SHT_GNU_HASH:
1813 case elfcpp::SHT_GNU_verdef:
1814 case elfcpp::SHT_GNU_verneed:
1815 case elfcpp::SHT_GNU_versym:
1816 if (!is_write)
1817 return ORDER_DYNAMIC_LINKER;
1818 break;
1819 case elfcpp::SHT_NOTE:
1820 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1821 }
1822
1823 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1824 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1825
1826 if (!is_bss && !is_write)
1827 {
1828 if (is_execinstr)
1829 {
1830 if (strcmp(os->name(), ".init") == 0)
1831 return ORDER_INIT;
1832 else if (strcmp(os->name(), ".fini") == 0)
1833 return ORDER_FINI;
1834 }
1835 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1836 }
1837
1838 if (os->is_relro())
1839 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1840
1841 if (os->is_small_section())
1842 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1843 if (os->is_large_section())
1844 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1845
1846 return is_bss ? ORDER_BSS : ORDER_DATA;
1847 }
1848
1849 // Attach output sections to segments. This is called after we have
1850 // seen all the input sections.
1851
1852 void
1853 Layout::attach_sections_to_segments(const Target* target)
1854 {
1855 for (Section_list::iterator p = this->section_list_.begin();
1856 p != this->section_list_.end();
1857 ++p)
1858 this->attach_section_to_segment(target, *p);
1859
1860 this->sections_are_attached_ = true;
1861 }
1862
1863 // Attach an output section to a segment.
1864
1865 void
1866 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1867 {
1868 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1869 this->unattached_section_list_.push_back(os);
1870 else
1871 this->attach_allocated_section_to_segment(target, os);
1872 }
1873
1874 // Attach an allocated output section to a segment.
1875
1876 void
1877 Layout::attach_allocated_section_to_segment(const Target* target,
1878 Output_section* os)
1879 {
1880 elfcpp::Elf_Xword flags = os->flags();
1881 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1882
1883 if (parameters->options().relocatable())
1884 return;
1885
1886 // If we have a SECTIONS clause, we can't handle the attachment to
1887 // segments until after we've seen all the sections.
1888 if (this->script_options_->saw_sections_clause())
1889 return;
1890
1891 gold_assert(!this->script_options_->saw_phdrs_clause());
1892
1893 // This output section goes into a PT_LOAD segment.
1894
1895 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1896
1897 // If this output section's segment has extra flags that need to be set,
1898 // coming from a linker plugin, do that.
1899 seg_flags |= os->extra_segment_flags();
1900
1901 // Check for --section-start.
1902 uint64_t addr;
1903 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1904
1905 // In general the only thing we really care about for PT_LOAD
1906 // segments is whether or not they are writable or executable,
1907 // so that is how we search for them.
1908 // Large data sections also go into their own PT_LOAD segment.
1909 // People who need segments sorted on some other basis will
1910 // have to use a linker script.
1911
1912 Segment_list::const_iterator p;
1913 if (!os->is_unique_segment())
1914 {
1915 for (p = this->segment_list_.begin();
1916 p != this->segment_list_.end();
1917 ++p)
1918 {
1919 if ((*p)->type() != elfcpp::PT_LOAD)
1920 continue;
1921 if ((*p)->is_unique_segment())
1922 continue;
1923 if (!parameters->options().omagic()
1924 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1925 continue;
1926 if ((target->isolate_execinstr() || parameters->options().rosegment())
1927 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1928 continue;
1929 // If -Tbss was specified, we need to separate the data and BSS
1930 // segments.
1931 if (parameters->options().user_set_Tbss())
1932 {
1933 if ((os->type() == elfcpp::SHT_NOBITS)
1934 == (*p)->has_any_data_sections())
1935 continue;
1936 }
1937 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1938 continue;
1939
1940 if (is_address_set)
1941 {
1942 if ((*p)->are_addresses_set())
1943 continue;
1944
1945 (*p)->add_initial_output_data(os);
1946 (*p)->update_flags_for_output_section(seg_flags);
1947 (*p)->set_addresses(addr, addr);
1948 break;
1949 }
1950
1951 (*p)->add_output_section_to_load(this, os, seg_flags);
1952 break;
1953 }
1954 }
1955
1956 if (p == this->segment_list_.end()
1957 || os->is_unique_segment())
1958 {
1959 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1960 seg_flags);
1961 if (os->is_large_data_section())
1962 oseg->set_is_large_data_segment();
1963 oseg->add_output_section_to_load(this, os, seg_flags);
1964 if (is_address_set)
1965 oseg->set_addresses(addr, addr);
1966 // Check if segment should be marked unique. For segments marked
1967 // unique by linker plugins, set the new alignment if specified.
1968 if (os->is_unique_segment())
1969 {
1970 oseg->set_is_unique_segment();
1971 if (os->segment_alignment() != 0)
1972 oseg->set_minimum_p_align(os->segment_alignment());
1973 }
1974 }
1975
1976 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1977 // segment.
1978 if (os->type() == elfcpp::SHT_NOTE)
1979 {
1980 // See if we already have an equivalent PT_NOTE segment.
1981 for (p = this->segment_list_.begin();
1982 p != segment_list_.end();
1983 ++p)
1984 {
1985 if ((*p)->type() == elfcpp::PT_NOTE
1986 && (((*p)->flags() & elfcpp::PF_W)
1987 == (seg_flags & elfcpp::PF_W)))
1988 {
1989 (*p)->add_output_section_to_nonload(os, seg_flags);
1990 break;
1991 }
1992 }
1993
1994 if (p == this->segment_list_.end())
1995 {
1996 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1997 seg_flags);
1998 oseg->add_output_section_to_nonload(os, seg_flags);
1999 }
2000 }
2001
2002 // If we see a loadable SHF_TLS section, we create a PT_TLS
2003 // segment. There can only be one such segment.
2004 if ((flags & elfcpp::SHF_TLS) != 0)
2005 {
2006 if (this->tls_segment_ == NULL)
2007 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2008 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2009 }
2010
2011 // If -z relro is in effect, and we see a relro section, we create a
2012 // PT_GNU_RELRO segment. There can only be one such segment.
2013 if (os->is_relro() && parameters->options().relro())
2014 {
2015 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2016 if (this->relro_segment_ == NULL)
2017 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2018 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2019 }
2020
2021 // If we see a section named .interp, put it into a PT_INTERP
2022 // segment. This seems broken to me, but this is what GNU ld does,
2023 // and glibc expects it.
2024 if (strcmp(os->name(), ".interp") == 0
2025 && !this->script_options_->saw_phdrs_clause())
2026 {
2027 if (this->interp_segment_ == NULL)
2028 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2029 else
2030 gold_warning(_("multiple '.interp' sections in input files "
2031 "may cause confusing PT_INTERP segment"));
2032 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2033 }
2034 }
2035
2036 // Make an output section for a script.
2037
2038 Output_section*
2039 Layout::make_output_section_for_script(
2040 const char* name,
2041 Script_sections::Section_type section_type)
2042 {
2043 name = this->namepool_.add(name, false, NULL);
2044 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2045 if (section_type == Script_sections::ST_NOLOAD)
2046 sh_flags = 0;
2047 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2048 sh_flags, ORDER_INVALID,
2049 false);
2050 os->set_found_in_sections_clause();
2051 if (section_type == Script_sections::ST_NOLOAD)
2052 os->set_is_noload();
2053 return os;
2054 }
2055
2056 // Return the number of segments we expect to see.
2057
2058 size_t
2059 Layout::expected_segment_count() const
2060 {
2061 size_t ret = this->segment_list_.size();
2062
2063 // If we didn't see a SECTIONS clause in a linker script, we should
2064 // already have the complete list of segments. Otherwise we ask the
2065 // SECTIONS clause how many segments it expects, and add in the ones
2066 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2067
2068 if (!this->script_options_->saw_sections_clause())
2069 return ret;
2070 else
2071 {
2072 const Script_sections* ss = this->script_options_->script_sections();
2073 return ret + ss->expected_segment_count(this);
2074 }
2075 }
2076
2077 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2078 // is whether we saw a .note.GNU-stack section in the object file.
2079 // GNU_STACK_FLAGS is the section flags. The flags give the
2080 // protection required for stack memory. We record this in an
2081 // executable as a PT_GNU_STACK segment. If an object file does not
2082 // have a .note.GNU-stack segment, we must assume that it is an old
2083 // object. On some targets that will force an executable stack.
2084
2085 void
2086 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2087 const Object* obj)
2088 {
2089 if (!seen_gnu_stack)
2090 {
2091 this->input_without_gnu_stack_note_ = true;
2092 if (parameters->options().warn_execstack()
2093 && parameters->target().is_default_stack_executable())
2094 gold_warning(_("%s: missing .note.GNU-stack section"
2095 " implies executable stack"),
2096 obj->name().c_str());
2097 }
2098 else
2099 {
2100 this->input_with_gnu_stack_note_ = true;
2101 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2102 {
2103 this->input_requires_executable_stack_ = true;
2104 if (parameters->options().warn_execstack())
2105 gold_warning(_("%s: requires executable stack"),
2106 obj->name().c_str());
2107 }
2108 }
2109 }
2110
2111 // Create automatic note sections.
2112
2113 void
2114 Layout::create_notes()
2115 {
2116 this->create_gold_note();
2117 this->create_executable_stack_info();
2118 this->create_build_id();
2119 }
2120
2121 // Create the dynamic sections which are needed before we read the
2122 // relocs.
2123
2124 void
2125 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2126 {
2127 if (parameters->doing_static_link())
2128 return;
2129
2130 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2131 elfcpp::SHT_DYNAMIC,
2132 (elfcpp::SHF_ALLOC
2133 | elfcpp::SHF_WRITE),
2134 false, ORDER_RELRO,
2135 true);
2136
2137 // A linker script may discard .dynamic, so check for NULL.
2138 if (this->dynamic_section_ != NULL)
2139 {
2140 this->dynamic_symbol_ =
2141 symtab->define_in_output_data("_DYNAMIC", NULL,
2142 Symbol_table::PREDEFINED,
2143 this->dynamic_section_, 0, 0,
2144 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2145 elfcpp::STV_HIDDEN, 0, false, false);
2146
2147 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2148
2149 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2150 }
2151 }
2152
2153 // For each output section whose name can be represented as C symbol,
2154 // define __start and __stop symbols for the section. This is a GNU
2155 // extension.
2156
2157 void
2158 Layout::define_section_symbols(Symbol_table* symtab)
2159 {
2160 for (Section_list::const_iterator p = this->section_list_.begin();
2161 p != this->section_list_.end();
2162 ++p)
2163 {
2164 const char* const name = (*p)->name();
2165 if (is_cident(name))
2166 {
2167 const std::string name_string(name);
2168 const std::string start_name(cident_section_start_prefix
2169 + name_string);
2170 const std::string stop_name(cident_section_stop_prefix
2171 + name_string);
2172
2173 symtab->define_in_output_data(start_name.c_str(),
2174 NULL, // version
2175 Symbol_table::PREDEFINED,
2176 *p,
2177 0, // value
2178 0, // symsize
2179 elfcpp::STT_NOTYPE,
2180 elfcpp::STB_GLOBAL,
2181 elfcpp::STV_DEFAULT,
2182 0, // nonvis
2183 false, // offset_is_from_end
2184 true); // only_if_ref
2185
2186 symtab->define_in_output_data(stop_name.c_str(),
2187 NULL, // version
2188 Symbol_table::PREDEFINED,
2189 *p,
2190 0, // value
2191 0, // symsize
2192 elfcpp::STT_NOTYPE,
2193 elfcpp::STB_GLOBAL,
2194 elfcpp::STV_DEFAULT,
2195 0, // nonvis
2196 true, // offset_is_from_end
2197 true); // only_if_ref
2198 }
2199 }
2200 }
2201
2202 // Define symbols for group signatures.
2203
2204 void
2205 Layout::define_group_signatures(Symbol_table* symtab)
2206 {
2207 for (Group_signatures::iterator p = this->group_signatures_.begin();
2208 p != this->group_signatures_.end();
2209 ++p)
2210 {
2211 Symbol* sym = symtab->lookup(p->signature, NULL);
2212 if (sym != NULL)
2213 p->section->set_info_symndx(sym);
2214 else
2215 {
2216 // Force the name of the group section to the group
2217 // signature, and use the group's section symbol as the
2218 // signature symbol.
2219 if (strcmp(p->section->name(), p->signature) != 0)
2220 {
2221 const char* name = this->namepool_.add(p->signature,
2222 true, NULL);
2223 p->section->set_name(name);
2224 }
2225 p->section->set_needs_symtab_index();
2226 p->section->set_info_section_symndx(p->section);
2227 }
2228 }
2229
2230 this->group_signatures_.clear();
2231 }
2232
2233 // Find the first read-only PT_LOAD segment, creating one if
2234 // necessary.
2235
2236 Output_segment*
2237 Layout::find_first_load_seg(const Target* target)
2238 {
2239 Output_segment* best = NULL;
2240 for (Segment_list::const_iterator p = this->segment_list_.begin();
2241 p != this->segment_list_.end();
2242 ++p)
2243 {
2244 if ((*p)->type() == elfcpp::PT_LOAD
2245 && ((*p)->flags() & elfcpp::PF_R) != 0
2246 && (parameters->options().omagic()
2247 || ((*p)->flags() & elfcpp::PF_W) == 0)
2248 && (!target->isolate_execinstr()
2249 || ((*p)->flags() & elfcpp::PF_X) == 0))
2250 {
2251 if (best == NULL || this->segment_precedes(*p, best))
2252 best = *p;
2253 }
2254 }
2255 if (best != NULL)
2256 return best;
2257
2258 gold_assert(!this->script_options_->saw_phdrs_clause());
2259
2260 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2261 elfcpp::PF_R);
2262 return load_seg;
2263 }
2264
2265 // Save states of all current output segments. Store saved states
2266 // in SEGMENT_STATES.
2267
2268 void
2269 Layout::save_segments(Segment_states* segment_states)
2270 {
2271 for (Segment_list::const_iterator p = this->segment_list_.begin();
2272 p != this->segment_list_.end();
2273 ++p)
2274 {
2275 Output_segment* segment = *p;
2276 // Shallow copy.
2277 Output_segment* copy = new Output_segment(*segment);
2278 (*segment_states)[segment] = copy;
2279 }
2280 }
2281
2282 // Restore states of output segments and delete any segment not found in
2283 // SEGMENT_STATES.
2284
2285 void
2286 Layout::restore_segments(const Segment_states* segment_states)
2287 {
2288 // Go through the segment list and remove any segment added in the
2289 // relaxation loop.
2290 this->tls_segment_ = NULL;
2291 this->relro_segment_ = NULL;
2292 Segment_list::iterator list_iter = this->segment_list_.begin();
2293 while (list_iter != this->segment_list_.end())
2294 {
2295 Output_segment* segment = *list_iter;
2296 Segment_states::const_iterator states_iter =
2297 segment_states->find(segment);
2298 if (states_iter != segment_states->end())
2299 {
2300 const Output_segment* copy = states_iter->second;
2301 // Shallow copy to restore states.
2302 *segment = *copy;
2303
2304 // Also fix up TLS and RELRO segment pointers as appropriate.
2305 if (segment->type() == elfcpp::PT_TLS)
2306 this->tls_segment_ = segment;
2307 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2308 this->relro_segment_ = segment;
2309
2310 ++list_iter;
2311 }
2312 else
2313 {
2314 list_iter = this->segment_list_.erase(list_iter);
2315 // This is a segment created during section layout. It should be
2316 // safe to remove it since we should have removed all pointers to it.
2317 delete segment;
2318 }
2319 }
2320 }
2321
2322 // Clean up after relaxation so that sections can be laid out again.
2323
2324 void
2325 Layout::clean_up_after_relaxation()
2326 {
2327 // Restore the segments to point state just prior to the relaxation loop.
2328 Script_sections* script_section = this->script_options_->script_sections();
2329 script_section->release_segments();
2330 this->restore_segments(this->segment_states_);
2331
2332 // Reset section addresses and file offsets
2333 for (Section_list::iterator p = this->section_list_.begin();
2334 p != this->section_list_.end();
2335 ++p)
2336 {
2337 (*p)->restore_states();
2338
2339 // If an input section changes size because of relaxation,
2340 // we need to adjust the section offsets of all input sections.
2341 // after such a section.
2342 if ((*p)->section_offsets_need_adjustment())
2343 (*p)->adjust_section_offsets();
2344
2345 (*p)->reset_address_and_file_offset();
2346 }
2347
2348 // Reset special output object address and file offsets.
2349 for (Data_list::iterator p = this->special_output_list_.begin();
2350 p != this->special_output_list_.end();
2351 ++p)
2352 (*p)->reset_address_and_file_offset();
2353
2354 // A linker script may have created some output section data objects.
2355 // They are useless now.
2356 for (Output_section_data_list::const_iterator p =
2357 this->script_output_section_data_list_.begin();
2358 p != this->script_output_section_data_list_.end();
2359 ++p)
2360 delete *p;
2361 this->script_output_section_data_list_.clear();
2362
2363 // Special-case fill output objects are recreated each time through
2364 // the relaxation loop.
2365 this->reset_relax_output();
2366 }
2367
2368 void
2369 Layout::reset_relax_output()
2370 {
2371 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2372 p != this->relax_output_list_.end();
2373 ++p)
2374 delete *p;
2375 this->relax_output_list_.clear();
2376 }
2377
2378 // Prepare for relaxation.
2379
2380 void
2381 Layout::prepare_for_relaxation()
2382 {
2383 // Create an relaxation debug check if in debugging mode.
2384 if (is_debugging_enabled(DEBUG_RELAXATION))
2385 this->relaxation_debug_check_ = new Relaxation_debug_check();
2386
2387 // Save segment states.
2388 this->segment_states_ = new Segment_states();
2389 this->save_segments(this->segment_states_);
2390
2391 for(Section_list::const_iterator p = this->section_list_.begin();
2392 p != this->section_list_.end();
2393 ++p)
2394 (*p)->save_states();
2395
2396 if (is_debugging_enabled(DEBUG_RELAXATION))
2397 this->relaxation_debug_check_->check_output_data_for_reset_values(
2398 this->section_list_, this->special_output_list_,
2399 this->relax_output_list_);
2400
2401 // Also enable recording of output section data from scripts.
2402 this->record_output_section_data_from_script_ = true;
2403 }
2404
2405 // If the user set the address of the text segment, that may not be
2406 // compatible with putting the segment headers and file headers into
2407 // that segment. For isolate_execinstr() targets, it's the rodata
2408 // segment rather than text where we might put the headers.
2409 static inline bool
2410 load_seg_unusable_for_headers(const Target* target)
2411 {
2412 const General_options& options = parameters->options();
2413 if (target->isolate_execinstr())
2414 return (options.user_set_Trodata_segment()
2415 && options.Trodata_segment() % target->abi_pagesize() != 0);
2416 else
2417 return (options.user_set_Ttext()
2418 && options.Ttext() % target->abi_pagesize() != 0);
2419 }
2420
2421 // Relaxation loop body: If target has no relaxation, this runs only once
2422 // Otherwise, the target relaxation hook is called at the end of
2423 // each iteration. If the hook returns true, it means re-layout of
2424 // section is required.
2425 //
2426 // The number of segments created by a linking script without a PHDRS
2427 // clause may be affected by section sizes and alignments. There is
2428 // a remote chance that relaxation causes different number of PT_LOAD
2429 // segments are created and sections are attached to different segments.
2430 // Therefore, we always throw away all segments created during section
2431 // layout. In order to be able to restart the section layout, we keep
2432 // a copy of the segment list right before the relaxation loop and use
2433 // that to restore the segments.
2434 //
2435 // PASS is the current relaxation pass number.
2436 // SYMTAB is a symbol table.
2437 // PLOAD_SEG is the address of a pointer for the load segment.
2438 // PHDR_SEG is a pointer to the PHDR segment.
2439 // SEGMENT_HEADERS points to the output segment header.
2440 // FILE_HEADER points to the output file header.
2441 // PSHNDX is the address to store the output section index.
2442
2443 off_t inline
2444 Layout::relaxation_loop_body(
2445 int pass,
2446 Target* target,
2447 Symbol_table* symtab,
2448 Output_segment** pload_seg,
2449 Output_segment* phdr_seg,
2450 Output_segment_headers* segment_headers,
2451 Output_file_header* file_header,
2452 unsigned int* pshndx)
2453 {
2454 // If this is not the first iteration, we need to clean up after
2455 // relaxation so that we can lay out the sections again.
2456 if (pass != 0)
2457 this->clean_up_after_relaxation();
2458
2459 // If there is a SECTIONS clause, put all the input sections into
2460 // the required order.
2461 Output_segment* load_seg;
2462 if (this->script_options_->saw_sections_clause())
2463 load_seg = this->set_section_addresses_from_script(symtab);
2464 else if (parameters->options().relocatable())
2465 load_seg = NULL;
2466 else
2467 load_seg = this->find_first_load_seg(target);
2468
2469 if (parameters->options().oformat_enum()
2470 != General_options::OBJECT_FORMAT_ELF)
2471 load_seg = NULL;
2472
2473 if (load_seg_unusable_for_headers(target))
2474 {
2475 load_seg = NULL;
2476 phdr_seg = NULL;
2477 }
2478
2479 gold_assert(phdr_seg == NULL
2480 || load_seg != NULL
2481 || this->script_options_->saw_sections_clause());
2482
2483 // If the address of the load segment we found has been set by
2484 // --section-start rather than by a script, then adjust the VMA and
2485 // LMA downward if possible to include the file and section headers.
2486 uint64_t header_gap = 0;
2487 if (load_seg != NULL
2488 && load_seg->are_addresses_set()
2489 && !this->script_options_->saw_sections_clause()
2490 && !parameters->options().relocatable())
2491 {
2492 file_header->finalize_data_size();
2493 segment_headers->finalize_data_size();
2494 size_t sizeof_headers = (file_header->data_size()
2495 + segment_headers->data_size());
2496 const uint64_t abi_pagesize = target->abi_pagesize();
2497 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2498 hdr_paddr &= ~(abi_pagesize - 1);
2499 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2500 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2501 load_seg = NULL;
2502 else
2503 {
2504 load_seg->set_addresses(load_seg->vaddr() - subtract,
2505 load_seg->paddr() - subtract);
2506 header_gap = subtract - sizeof_headers;
2507 }
2508 }
2509
2510 // Lay out the segment headers.
2511 if (!parameters->options().relocatable())
2512 {
2513 gold_assert(segment_headers != NULL);
2514 if (header_gap != 0 && load_seg != NULL)
2515 {
2516 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2517 load_seg->add_initial_output_data(z);
2518 }
2519 if (load_seg != NULL)
2520 load_seg->add_initial_output_data(segment_headers);
2521 if (phdr_seg != NULL)
2522 phdr_seg->add_initial_output_data(segment_headers);
2523 }
2524
2525 // Lay out the file header.
2526 if (load_seg != NULL)
2527 load_seg->add_initial_output_data(file_header);
2528
2529 if (this->script_options_->saw_phdrs_clause()
2530 && !parameters->options().relocatable())
2531 {
2532 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2533 // clause in a linker script.
2534 Script_sections* ss = this->script_options_->script_sections();
2535 ss->put_headers_in_phdrs(file_header, segment_headers);
2536 }
2537
2538 // We set the output section indexes in set_segment_offsets and
2539 // set_section_indexes.
2540 *pshndx = 1;
2541
2542 // Set the file offsets of all the segments, and all the sections
2543 // they contain.
2544 off_t off;
2545 if (!parameters->options().relocatable())
2546 off = this->set_segment_offsets(target, load_seg, pshndx);
2547 else
2548 off = this->set_relocatable_section_offsets(file_header, pshndx);
2549
2550 // Verify that the dummy relaxation does not change anything.
2551 if (is_debugging_enabled(DEBUG_RELAXATION))
2552 {
2553 if (pass == 0)
2554 this->relaxation_debug_check_->read_sections(this->section_list_);
2555 else
2556 this->relaxation_debug_check_->verify_sections(this->section_list_);
2557 }
2558
2559 *pload_seg = load_seg;
2560 return off;
2561 }
2562
2563 // Search the list of patterns and find the postion of the given section
2564 // name in the output section. If the section name matches a glob
2565 // pattern and a non-glob name, then the non-glob position takes
2566 // precedence. Return 0 if no match is found.
2567
2568 unsigned int
2569 Layout::find_section_order_index(const std::string& section_name)
2570 {
2571 Unordered_map<std::string, unsigned int>::iterator map_it;
2572 map_it = this->input_section_position_.find(section_name);
2573 if (map_it != this->input_section_position_.end())
2574 return map_it->second;
2575
2576 // Absolute match failed. Linear search the glob patterns.
2577 std::vector<std::string>::iterator it;
2578 for (it = this->input_section_glob_.begin();
2579 it != this->input_section_glob_.end();
2580 ++it)
2581 {
2582 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2583 {
2584 map_it = this->input_section_position_.find(*it);
2585 gold_assert(map_it != this->input_section_position_.end());
2586 return map_it->second;
2587 }
2588 }
2589 return 0;
2590 }
2591
2592 // Read the sequence of input sections from the file specified with
2593 // option --section-ordering-file.
2594
2595 void
2596 Layout::read_layout_from_file()
2597 {
2598 const char* filename = parameters->options().section_ordering_file();
2599 std::ifstream in;
2600 std::string line;
2601
2602 in.open(filename);
2603 if (!in)
2604 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2605 filename, strerror(errno));
2606
2607 std::getline(in, line); // this chops off the trailing \n, if any
2608 unsigned int position = 1;
2609 this->set_section_ordering_specified();
2610
2611 while (in)
2612 {
2613 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2614 line.resize(line.length() - 1);
2615 // Ignore comments, beginning with '#'
2616 if (line[0] == '#')
2617 {
2618 std::getline(in, line);
2619 continue;
2620 }
2621 this->input_section_position_[line] = position;
2622 // Store all glob patterns in a vector.
2623 if (is_wildcard_string(line.c_str()))
2624 this->input_section_glob_.push_back(line);
2625 position++;
2626 std::getline(in, line);
2627 }
2628 }
2629
2630 // Finalize the layout. When this is called, we have created all the
2631 // output sections and all the output segments which are based on
2632 // input sections. We have several things to do, and we have to do
2633 // them in the right order, so that we get the right results correctly
2634 // and efficiently.
2635
2636 // 1) Finalize the list of output segments and create the segment
2637 // table header.
2638
2639 // 2) Finalize the dynamic symbol table and associated sections.
2640
2641 // 3) Determine the final file offset of all the output segments.
2642
2643 // 4) Determine the final file offset of all the SHF_ALLOC output
2644 // sections.
2645
2646 // 5) Create the symbol table sections and the section name table
2647 // section.
2648
2649 // 6) Finalize the symbol table: set symbol values to their final
2650 // value and make a final determination of which symbols are going
2651 // into the output symbol table.
2652
2653 // 7) Create the section table header.
2654
2655 // 8) Determine the final file offset of all the output sections which
2656 // are not SHF_ALLOC, including the section table header.
2657
2658 // 9) Finalize the ELF file header.
2659
2660 // This function returns the size of the output file.
2661
2662 off_t
2663 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2664 Target* target, const Task* task)
2665 {
2666 target->finalize_sections(this, input_objects, symtab);
2667
2668 this->count_local_symbols(task, input_objects);
2669
2670 this->link_stabs_sections();
2671
2672 Output_segment* phdr_seg = NULL;
2673 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2674 {
2675 // There was a dynamic object in the link. We need to create
2676 // some information for the dynamic linker.
2677
2678 // Create the PT_PHDR segment which will hold the program
2679 // headers.
2680 if (!this->script_options_->saw_phdrs_clause())
2681 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2682
2683 // Create the dynamic symbol table, including the hash table.
2684 Output_section* dynstr;
2685 std::vector<Symbol*> dynamic_symbols;
2686 unsigned int local_dynamic_count;
2687 Versions versions(*this->script_options()->version_script_info(),
2688 &this->dynpool_);
2689 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2690 &local_dynamic_count, &dynamic_symbols,
2691 &versions);
2692
2693 // Create the .interp section to hold the name of the
2694 // interpreter, and put it in a PT_INTERP segment. Don't do it
2695 // if we saw a .interp section in an input file.
2696 if ((!parameters->options().shared()
2697 || parameters->options().dynamic_linker() != NULL)
2698 && this->interp_segment_ == NULL)
2699 this->create_interp(target);
2700
2701 // Finish the .dynamic section to hold the dynamic data, and put
2702 // it in a PT_DYNAMIC segment.
2703 this->finish_dynamic_section(input_objects, symtab);
2704
2705 // We should have added everything we need to the dynamic string
2706 // table.
2707 this->dynpool_.set_string_offsets();
2708
2709 // Create the version sections. We can't do this until the
2710 // dynamic string table is complete.
2711 this->create_version_sections(&versions, symtab, local_dynamic_count,
2712 dynamic_symbols, dynstr);
2713
2714 // Set the size of the _DYNAMIC symbol. We can't do this until
2715 // after we call create_version_sections.
2716 this->set_dynamic_symbol_size(symtab);
2717 }
2718
2719 // Create segment headers.
2720 Output_segment_headers* segment_headers =
2721 (parameters->options().relocatable()
2722 ? NULL
2723 : new Output_segment_headers(this->segment_list_));
2724
2725 // Lay out the file header.
2726 Output_file_header* file_header = new Output_file_header(target, symtab,
2727 segment_headers);
2728
2729 this->special_output_list_.push_back(file_header);
2730 if (segment_headers != NULL)
2731 this->special_output_list_.push_back(segment_headers);
2732
2733 // Find approriate places for orphan output sections if we are using
2734 // a linker script.
2735 if (this->script_options_->saw_sections_clause())
2736 this->place_orphan_sections_in_script();
2737
2738 Output_segment* load_seg;
2739 off_t off;
2740 unsigned int shndx;
2741 int pass = 0;
2742
2743 // Take a snapshot of the section layout as needed.
2744 if (target->may_relax())
2745 this->prepare_for_relaxation();
2746
2747 // Run the relaxation loop to lay out sections.
2748 do
2749 {
2750 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2751 phdr_seg, segment_headers, file_header,
2752 &shndx);
2753 pass++;
2754 }
2755 while (target->may_relax()
2756 && target->relax(pass, input_objects, symtab, this, task));
2757
2758 // If there is a load segment that contains the file and program headers,
2759 // provide a symbol __ehdr_start pointing there.
2760 // A program can use this to examine itself robustly.
2761 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2762 if (ehdr_start != NULL && ehdr_start->is_predefined())
2763 {
2764 if (load_seg != NULL)
2765 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2766 else
2767 ehdr_start->set_undefined();
2768 }
2769
2770 // Set the file offsets of all the non-data sections we've seen so
2771 // far which don't have to wait for the input sections. We need
2772 // this in order to finalize local symbols in non-allocated
2773 // sections.
2774 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2775
2776 // Set the section indexes of all unallocated sections seen so far,
2777 // in case any of them are somehow referenced by a symbol.
2778 shndx = this->set_section_indexes(shndx);
2779
2780 // Create the symbol table sections.
2781 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2782 if (!parameters->doing_static_link())
2783 this->assign_local_dynsym_offsets(input_objects);
2784
2785 // Process any symbol assignments from a linker script. This must
2786 // be called after the symbol table has been finalized.
2787 this->script_options_->finalize_symbols(symtab, this);
2788
2789 // Create the incremental inputs sections.
2790 if (this->incremental_inputs_)
2791 {
2792 this->incremental_inputs_->finalize();
2793 this->create_incremental_info_sections(symtab);
2794 }
2795
2796 // Create the .shstrtab section.
2797 Output_section* shstrtab_section = this->create_shstrtab();
2798
2799 // Set the file offsets of the rest of the non-data sections which
2800 // don't have to wait for the input sections.
2801 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2802
2803 // Now that all sections have been created, set the section indexes
2804 // for any sections which haven't been done yet.
2805 shndx = this->set_section_indexes(shndx);
2806
2807 // Create the section table header.
2808 this->create_shdrs(shstrtab_section, &off);
2809
2810 // If there are no sections which require postprocessing, we can
2811 // handle the section names now, and avoid a resize later.
2812 if (!this->any_postprocessing_sections_)
2813 {
2814 off = this->set_section_offsets(off,
2815 POSTPROCESSING_SECTIONS_PASS);
2816 off =
2817 this->set_section_offsets(off,
2818 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2819 }
2820
2821 file_header->set_section_info(this->section_headers_, shstrtab_section);
2822
2823 // Now we know exactly where everything goes in the output file
2824 // (except for non-allocated sections which require postprocessing).
2825 Output_data::layout_complete();
2826
2827 this->output_file_size_ = off;
2828
2829 return off;
2830 }
2831
2832 // Create a note header following the format defined in the ELF ABI.
2833 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2834 // of the section to create, DESCSZ is the size of the descriptor.
2835 // ALLOCATE is true if the section should be allocated in memory.
2836 // This returns the new note section. It sets *TRAILING_PADDING to
2837 // the number of trailing zero bytes required.
2838
2839 Output_section*
2840 Layout::create_note(const char* name, int note_type,
2841 const char* section_name, size_t descsz,
2842 bool allocate, size_t* trailing_padding)
2843 {
2844 // Authorities all agree that the values in a .note field should
2845 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2846 // they differ on what the alignment is for 64-bit binaries.
2847 // The GABI says unambiguously they take 8-byte alignment:
2848 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2849 // Other documentation says alignment should always be 4 bytes:
2850 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2851 // GNU ld and GNU readelf both support the latter (at least as of
2852 // version 2.16.91), and glibc always generates the latter for
2853 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2854 // here.
2855 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2856 const int size = parameters->target().get_size();
2857 #else
2858 const int size = 32;
2859 #endif
2860
2861 // The contents of the .note section.
2862 size_t namesz = strlen(name) + 1;
2863 size_t aligned_namesz = align_address(namesz, size / 8);
2864 size_t aligned_descsz = align_address(descsz, size / 8);
2865
2866 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2867
2868 unsigned char* buffer = new unsigned char[notehdrsz];
2869 memset(buffer, 0, notehdrsz);
2870
2871 bool is_big_endian = parameters->target().is_big_endian();
2872
2873 if (size == 32)
2874 {
2875 if (!is_big_endian)
2876 {
2877 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2878 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2879 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2880 }
2881 else
2882 {
2883 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2884 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2885 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2886 }
2887 }
2888 else if (size == 64)
2889 {
2890 if (!is_big_endian)
2891 {
2892 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2893 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2894 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2895 }
2896 else
2897 {
2898 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2899 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2900 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2901 }
2902 }
2903 else
2904 gold_unreachable();
2905
2906 memcpy(buffer + 3 * (size / 8), name, namesz);
2907
2908 elfcpp::Elf_Xword flags = 0;
2909 Output_section_order order = ORDER_INVALID;
2910 if (allocate)
2911 {
2912 flags = elfcpp::SHF_ALLOC;
2913 order = ORDER_RO_NOTE;
2914 }
2915 Output_section* os = this->choose_output_section(NULL, section_name,
2916 elfcpp::SHT_NOTE,
2917 flags, false, order, false);
2918 if (os == NULL)
2919 return NULL;
2920
2921 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2922 size / 8,
2923 "** note header");
2924 os->add_output_section_data(posd);
2925
2926 *trailing_padding = aligned_descsz - descsz;
2927
2928 return os;
2929 }
2930
2931 // For an executable or shared library, create a note to record the
2932 // version of gold used to create the binary.
2933
2934 void
2935 Layout::create_gold_note()
2936 {
2937 if (parameters->options().relocatable()
2938 || parameters->incremental_update())
2939 return;
2940
2941 std::string desc = std::string("gold ") + gold::get_version_string();
2942
2943 size_t trailing_padding;
2944 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2945 ".note.gnu.gold-version", desc.size(),
2946 false, &trailing_padding);
2947 if (os == NULL)
2948 return;
2949
2950 Output_section_data* posd = new Output_data_const(desc, 4);
2951 os->add_output_section_data(posd);
2952
2953 if (trailing_padding > 0)
2954 {
2955 posd = new Output_data_zero_fill(trailing_padding, 0);
2956 os->add_output_section_data(posd);
2957 }
2958 }
2959
2960 // Record whether the stack should be executable. This can be set
2961 // from the command line using the -z execstack or -z noexecstack
2962 // options. Otherwise, if any input file has a .note.GNU-stack
2963 // section with the SHF_EXECINSTR flag set, the stack should be
2964 // executable. Otherwise, if at least one input file a
2965 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2966 // section, we use the target default for whether the stack should be
2967 // executable. Otherwise, we don't generate a stack note. When
2968 // generating a object file, we create a .note.GNU-stack section with
2969 // the appropriate marking. When generating an executable or shared
2970 // library, we create a PT_GNU_STACK segment.
2971
2972 void
2973 Layout::create_executable_stack_info()
2974 {
2975 bool is_stack_executable;
2976 if (parameters->options().is_execstack_set())
2977 {
2978 is_stack_executable = parameters->options().is_stack_executable();
2979 if (!is_stack_executable
2980 && this->input_requires_executable_stack_
2981 && parameters->options().warn_execstack())
2982 gold_warning(_("one or more inputs require executable stack, "
2983 "but -z noexecstack was given"));
2984 }
2985 else if (!this->input_with_gnu_stack_note_)
2986 return;
2987 else
2988 {
2989 if (this->input_requires_executable_stack_)
2990 is_stack_executable = true;
2991 else if (this->input_without_gnu_stack_note_)
2992 is_stack_executable =
2993 parameters->target().is_default_stack_executable();
2994 else
2995 is_stack_executable = false;
2996 }
2997
2998 if (parameters->options().relocatable())
2999 {
3000 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3001 elfcpp::Elf_Xword flags = 0;
3002 if (is_stack_executable)
3003 flags |= elfcpp::SHF_EXECINSTR;
3004 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3005 ORDER_INVALID, false);
3006 }
3007 else
3008 {
3009 if (this->script_options_->saw_phdrs_clause())
3010 return;
3011 int flags = elfcpp::PF_R | elfcpp::PF_W;
3012 if (is_stack_executable)
3013 flags |= elfcpp::PF_X;
3014 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3015 }
3016 }
3017
3018 // If --build-id was used, set up the build ID note.
3019
3020 void
3021 Layout::create_build_id()
3022 {
3023 if (!parameters->options().user_set_build_id())
3024 return;
3025
3026 const char* style = parameters->options().build_id();
3027 if (strcmp(style, "none") == 0)
3028 return;
3029
3030 // Set DESCSZ to the size of the note descriptor. When possible,
3031 // set DESC to the note descriptor contents.
3032 size_t descsz;
3033 std::string desc;
3034 if (strcmp(style, "md5") == 0)
3035 descsz = 128 / 8;
3036 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3037 descsz = 160 / 8;
3038 else if (strcmp(style, "uuid") == 0)
3039 {
3040 const size_t uuidsz = 128 / 8;
3041
3042 char buffer[uuidsz];
3043 memset(buffer, 0, uuidsz);
3044
3045 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3046 if (descriptor < 0)
3047 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3048 strerror(errno));
3049 else
3050 {
3051 ssize_t got = ::read(descriptor, buffer, uuidsz);
3052 release_descriptor(descriptor, true);
3053 if (got < 0)
3054 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3055 else if (static_cast<size_t>(got) != uuidsz)
3056 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3057 uuidsz, got);
3058 }
3059
3060 desc.assign(buffer, uuidsz);
3061 descsz = uuidsz;
3062 }
3063 else if (strncmp(style, "0x", 2) == 0)
3064 {
3065 hex_init();
3066 const char* p = style + 2;
3067 while (*p != '\0')
3068 {
3069 if (hex_p(p[0]) && hex_p(p[1]))
3070 {
3071 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3072 desc += c;
3073 p += 2;
3074 }
3075 else if (*p == '-' || *p == ':')
3076 ++p;
3077 else
3078 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3079 style);
3080 }
3081 descsz = desc.size();
3082 }
3083 else
3084 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3085
3086 // Create the note.
3087 size_t trailing_padding;
3088 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3089 ".note.gnu.build-id", descsz, true,
3090 &trailing_padding);
3091 if (os == NULL)
3092 return;
3093
3094 if (!desc.empty())
3095 {
3096 // We know the value already, so we fill it in now.
3097 gold_assert(desc.size() == descsz);
3098
3099 Output_section_data* posd = new Output_data_const(desc, 4);
3100 os->add_output_section_data(posd);
3101
3102 if (trailing_padding != 0)
3103 {
3104 posd = new Output_data_zero_fill(trailing_padding, 0);
3105 os->add_output_section_data(posd);
3106 }
3107 }
3108 else
3109 {
3110 // We need to compute a checksum after we have completed the
3111 // link.
3112 gold_assert(trailing_padding == 0);
3113 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3114 os->add_output_section_data(this->build_id_note_);
3115 }
3116 }
3117
3118 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3119 // field of the former should point to the latter. I'm not sure who
3120 // started this, but the GNU linker does it, and some tools depend
3121 // upon it.
3122
3123 void
3124 Layout::link_stabs_sections()
3125 {
3126 if (!this->have_stabstr_section_)
3127 return;
3128
3129 for (Section_list::iterator p = this->section_list_.begin();
3130 p != this->section_list_.end();
3131 ++p)
3132 {
3133 if ((*p)->type() != elfcpp::SHT_STRTAB)
3134 continue;
3135
3136 const char* name = (*p)->name();
3137 if (strncmp(name, ".stab", 5) != 0)
3138 continue;
3139
3140 size_t len = strlen(name);
3141 if (strcmp(name + len - 3, "str") != 0)
3142 continue;
3143
3144 std::string stab_name(name, len - 3);
3145 Output_section* stab_sec;
3146 stab_sec = this->find_output_section(stab_name.c_str());
3147 if (stab_sec != NULL)
3148 stab_sec->set_link_section(*p);
3149 }
3150 }
3151
3152 // Create .gnu_incremental_inputs and related sections needed
3153 // for the next run of incremental linking to check what has changed.
3154
3155 void
3156 Layout::create_incremental_info_sections(Symbol_table* symtab)
3157 {
3158 Incremental_inputs* incr = this->incremental_inputs_;
3159
3160 gold_assert(incr != NULL);
3161
3162 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3163 incr->create_data_sections(symtab);
3164
3165 // Add the .gnu_incremental_inputs section.
3166 const char* incremental_inputs_name =
3167 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3168 Output_section* incremental_inputs_os =
3169 this->make_output_section(incremental_inputs_name,
3170 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3171 ORDER_INVALID, false);
3172 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3173
3174 // Add the .gnu_incremental_symtab section.
3175 const char* incremental_symtab_name =
3176 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3177 Output_section* incremental_symtab_os =
3178 this->make_output_section(incremental_symtab_name,
3179 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3180 ORDER_INVALID, false);
3181 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3182 incremental_symtab_os->set_entsize(4);
3183
3184 // Add the .gnu_incremental_relocs section.
3185 const char* incremental_relocs_name =
3186 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3187 Output_section* incremental_relocs_os =
3188 this->make_output_section(incremental_relocs_name,
3189 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3190 ORDER_INVALID, false);
3191 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3192 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3193
3194 // Add the .gnu_incremental_got_plt section.
3195 const char* incremental_got_plt_name =
3196 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3197 Output_section* incremental_got_plt_os =
3198 this->make_output_section(incremental_got_plt_name,
3199 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3200 ORDER_INVALID, false);
3201 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3202
3203 // Add the .gnu_incremental_strtab section.
3204 const char* incremental_strtab_name =
3205 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3206 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3207 elfcpp::SHT_STRTAB, 0,
3208 ORDER_INVALID, false);
3209 Output_data_strtab* strtab_data =
3210 new Output_data_strtab(incr->get_stringpool());
3211 incremental_strtab_os->add_output_section_data(strtab_data);
3212
3213 incremental_inputs_os->set_after_input_sections();
3214 incremental_symtab_os->set_after_input_sections();
3215 incremental_relocs_os->set_after_input_sections();
3216 incremental_got_plt_os->set_after_input_sections();
3217
3218 incremental_inputs_os->set_link_section(incremental_strtab_os);
3219 incremental_symtab_os->set_link_section(incremental_inputs_os);
3220 incremental_relocs_os->set_link_section(incremental_inputs_os);
3221 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3222 }
3223
3224 // Return whether SEG1 should be before SEG2 in the output file. This
3225 // is based entirely on the segment type and flags. When this is
3226 // called the segment addresses have normally not yet been set.
3227
3228 bool
3229 Layout::segment_precedes(const Output_segment* seg1,
3230 const Output_segment* seg2)
3231 {
3232 elfcpp::Elf_Word type1 = seg1->type();
3233 elfcpp::Elf_Word type2 = seg2->type();
3234
3235 // The single PT_PHDR segment is required to precede any loadable
3236 // segment. We simply make it always first.
3237 if (type1 == elfcpp::PT_PHDR)
3238 {
3239 gold_assert(type2 != elfcpp::PT_PHDR);
3240 return true;
3241 }
3242 if (type2 == elfcpp::PT_PHDR)
3243 return false;
3244
3245 // The single PT_INTERP segment is required to precede any loadable
3246 // segment. We simply make it always second.
3247 if (type1 == elfcpp::PT_INTERP)
3248 {
3249 gold_assert(type2 != elfcpp::PT_INTERP);
3250 return true;
3251 }
3252 if (type2 == elfcpp::PT_INTERP)
3253 return false;
3254
3255 // We then put PT_LOAD segments before any other segments.
3256 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3257 return true;
3258 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3259 return false;
3260
3261 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3262 // segment, because that is where the dynamic linker expects to find
3263 // it (this is just for efficiency; other positions would also work
3264 // correctly).
3265 if (type1 == elfcpp::PT_TLS
3266 && type2 != elfcpp::PT_TLS
3267 && type2 != elfcpp::PT_GNU_RELRO)
3268 return false;
3269 if (type2 == elfcpp::PT_TLS
3270 && type1 != elfcpp::PT_TLS
3271 && type1 != elfcpp::PT_GNU_RELRO)
3272 return true;
3273
3274 // We put the PT_GNU_RELRO segment last, because that is where the
3275 // dynamic linker expects to find it (as with PT_TLS, this is just
3276 // for efficiency).
3277 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3278 return false;
3279 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3280 return true;
3281
3282 const elfcpp::Elf_Word flags1 = seg1->flags();
3283 const elfcpp::Elf_Word flags2 = seg2->flags();
3284
3285 // The order of non-PT_LOAD segments is unimportant. We simply sort
3286 // by the numeric segment type and flags values. There should not
3287 // be more than one segment with the same type and flags, except
3288 // when a linker script specifies such.
3289 if (type1 != elfcpp::PT_LOAD)
3290 {
3291 if (type1 != type2)
3292 return type1 < type2;
3293 gold_assert(flags1 != flags2
3294 || this->script_options_->saw_phdrs_clause());
3295 return flags1 < flags2;
3296 }
3297
3298 // If the addresses are set already, sort by load address.
3299 if (seg1->are_addresses_set())
3300 {
3301 if (!seg2->are_addresses_set())
3302 return true;
3303
3304 unsigned int section_count1 = seg1->output_section_count();
3305 unsigned int section_count2 = seg2->output_section_count();
3306 if (section_count1 == 0 && section_count2 > 0)
3307 return true;
3308 if (section_count1 > 0 && section_count2 == 0)
3309 return false;
3310
3311 uint64_t paddr1 = (seg1->are_addresses_set()
3312 ? seg1->paddr()
3313 : seg1->first_section_load_address());
3314 uint64_t paddr2 = (seg2->are_addresses_set()
3315 ? seg2->paddr()
3316 : seg2->first_section_load_address());
3317
3318 if (paddr1 != paddr2)
3319 return paddr1 < paddr2;
3320 }
3321 else if (seg2->are_addresses_set())
3322 return false;
3323
3324 // A segment which holds large data comes after a segment which does
3325 // not hold large data.
3326 if (seg1->is_large_data_segment())
3327 {
3328 if (!seg2->is_large_data_segment())
3329 return false;
3330 }
3331 else if (seg2->is_large_data_segment())
3332 return true;
3333
3334 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3335 // segments come before writable segments. Then writable segments
3336 // with data come before writable segments without data. Then
3337 // executable segments come before non-executable segments. Then
3338 // the unlikely case of a non-readable segment comes before the
3339 // normal case of a readable segment. If there are multiple
3340 // segments with the same type and flags, we require that the
3341 // address be set, and we sort by virtual address and then physical
3342 // address.
3343 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3344 return (flags1 & elfcpp::PF_W) == 0;
3345 if ((flags1 & elfcpp::PF_W) != 0
3346 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3347 return seg1->has_any_data_sections();
3348 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3349 return (flags1 & elfcpp::PF_X) != 0;
3350 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3351 return (flags1 & elfcpp::PF_R) == 0;
3352
3353 // We shouldn't get here--we shouldn't create segments which we
3354 // can't distinguish. Unless of course we are using a weird linker
3355 // script or overlapping --section-start options. We could also get
3356 // here if plugins want unique segments for subsets of sections.
3357 gold_assert(this->script_options_->saw_phdrs_clause()
3358 || parameters->options().any_section_start()
3359 || this->is_unique_segment_for_sections_specified());
3360 return false;
3361 }
3362
3363 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3364
3365 static off_t
3366 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3367 {
3368 uint64_t unsigned_off = off;
3369 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3370 | (addr & (abi_pagesize - 1)));
3371 if (aligned_off < unsigned_off)
3372 aligned_off += abi_pagesize;
3373 return aligned_off;
3374 }
3375
3376 // On targets where the text segment contains only executable code,
3377 // a non-executable segment is never the text segment.
3378
3379 static inline bool
3380 is_text_segment(const Target* target, const Output_segment* seg)
3381 {
3382 elfcpp::Elf_Xword flags = seg->flags();
3383 if ((flags & elfcpp::PF_W) != 0)
3384 return false;
3385 if ((flags & elfcpp::PF_X) == 0)
3386 return !target->isolate_execinstr();
3387 return true;
3388 }
3389
3390 // Set the file offsets of all the segments, and all the sections they
3391 // contain. They have all been created. LOAD_SEG must be be laid out
3392 // first. Return the offset of the data to follow.
3393
3394 off_t
3395 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3396 unsigned int* pshndx)
3397 {
3398 // Sort them into the final order. We use a stable sort so that we
3399 // don't randomize the order of indistinguishable segments created
3400 // by linker scripts.
3401 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3402 Layout::Compare_segments(this));
3403
3404 // Find the PT_LOAD segments, and set their addresses and offsets
3405 // and their section's addresses and offsets.
3406 uint64_t start_addr;
3407 if (parameters->options().user_set_Ttext())
3408 start_addr = parameters->options().Ttext();
3409 else if (parameters->options().output_is_position_independent())
3410 start_addr = 0;
3411 else
3412 start_addr = target->default_text_segment_address();
3413
3414 uint64_t addr = start_addr;
3415 off_t off = 0;
3416
3417 // If LOAD_SEG is NULL, then the file header and segment headers
3418 // will not be loadable. But they still need to be at offset 0 in
3419 // the file. Set their offsets now.
3420 if (load_seg == NULL)
3421 {
3422 for (Data_list::iterator p = this->special_output_list_.begin();
3423 p != this->special_output_list_.end();
3424 ++p)
3425 {
3426 off = align_address(off, (*p)->addralign());
3427 (*p)->set_address_and_file_offset(0, off);
3428 off += (*p)->data_size();
3429 }
3430 }
3431
3432 unsigned int increase_relro = this->increase_relro_;
3433 if (this->script_options_->saw_sections_clause())
3434 increase_relro = 0;
3435
3436 const bool check_sections = parameters->options().check_sections();
3437 Output_segment* last_load_segment = NULL;
3438
3439 unsigned int shndx_begin = *pshndx;
3440 unsigned int shndx_load_seg = *pshndx;
3441
3442 for (Segment_list::iterator p = this->segment_list_.begin();
3443 p != this->segment_list_.end();
3444 ++p)
3445 {
3446 if ((*p)->type() == elfcpp::PT_LOAD)
3447 {
3448 if (target->isolate_execinstr())
3449 {
3450 // When we hit the segment that should contain the
3451 // file headers, reset the file offset so we place
3452 // it and subsequent segments appropriately.
3453 // We'll fix up the preceding segments below.
3454 if (load_seg == *p)
3455 {
3456 if (off == 0)
3457 load_seg = NULL;
3458 else
3459 {
3460 off = 0;
3461 shndx_load_seg = *pshndx;
3462 }
3463 }
3464 }
3465 else
3466 {
3467 // Verify that the file headers fall into the first segment.
3468 if (load_seg != NULL && load_seg != *p)
3469 gold_unreachable();
3470 load_seg = NULL;
3471 }
3472
3473 bool are_addresses_set = (*p)->are_addresses_set();
3474 if (are_addresses_set)
3475 {
3476 // When it comes to setting file offsets, we care about
3477 // the physical address.
3478 addr = (*p)->paddr();
3479 }
3480 else if (parameters->options().user_set_Ttext()
3481 && (parameters->options().omagic()
3482 || is_text_segment(target, *p)))
3483 {
3484 are_addresses_set = true;
3485 }
3486 else if (parameters->options().user_set_Trodata_segment()
3487 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3488 {
3489 addr = parameters->options().Trodata_segment();
3490 are_addresses_set = true;
3491 }
3492 else if (parameters->options().user_set_Tdata()
3493 && ((*p)->flags() & elfcpp::PF_W) != 0
3494 && (!parameters->options().user_set_Tbss()
3495 || (*p)->has_any_data_sections()))
3496 {
3497 addr = parameters->options().Tdata();
3498 are_addresses_set = true;
3499 }
3500 else if (parameters->options().user_set_Tbss()
3501 && ((*p)->flags() & elfcpp::PF_W) != 0
3502 && !(*p)->has_any_data_sections())
3503 {
3504 addr = parameters->options().Tbss();
3505 are_addresses_set = true;
3506 }
3507
3508 uint64_t orig_addr = addr;
3509 uint64_t orig_off = off;
3510
3511 uint64_t aligned_addr = 0;
3512 uint64_t abi_pagesize = target->abi_pagesize();
3513 uint64_t common_pagesize = target->common_pagesize();
3514
3515 if (!parameters->options().nmagic()
3516 && !parameters->options().omagic())
3517 (*p)->set_minimum_p_align(abi_pagesize);
3518
3519 if (!are_addresses_set)
3520 {
3521 // Skip the address forward one page, maintaining the same
3522 // position within the page. This lets us store both segments
3523 // overlapping on a single page in the file, but the loader will
3524 // put them on different pages in memory. We will revisit this
3525 // decision once we know the size of the segment.
3526
3527 addr = align_address(addr, (*p)->maximum_alignment());
3528 aligned_addr = addr;
3529
3530 if (load_seg == *p)
3531 {
3532 // This is the segment that will contain the file
3533 // headers, so its offset will have to be exactly zero.
3534 gold_assert(orig_off == 0);
3535
3536 // If the target wants a fixed minimum distance from the
3537 // text segment to the read-only segment, move up now.
3538 uint64_t min_addr =
3539 start_addr + (parameters->options().user_set_rosegment_gap()
3540 ? parameters->options().rosegment_gap()
3541 : target->rosegment_gap());
3542 if (addr < min_addr)
3543 addr = min_addr;
3544
3545 // But this is not the first segment! To make its
3546 // address congruent with its offset, that address better
3547 // be aligned to the ABI-mandated page size.
3548 addr = align_address(addr, abi_pagesize);
3549 aligned_addr = addr;
3550 }
3551 else
3552 {
3553 if ((addr & (abi_pagesize - 1)) != 0)
3554 addr = addr + abi_pagesize;
3555
3556 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3557 }
3558 }
3559
3560 if (!parameters->options().nmagic()
3561 && !parameters->options().omagic())
3562 {
3563 // Here we are also taking care of the case when
3564 // the maximum segment alignment is larger than the page size.
3565 off = align_file_offset(off, addr,
3566 std::max(abi_pagesize,
3567 (*p)->maximum_alignment()));
3568 }
3569 else
3570 {
3571 // This is -N or -n with a section script which prevents
3572 // us from using a load segment. We need to ensure that
3573 // the file offset is aligned to the alignment of the
3574 // segment. This is because the linker script
3575 // implicitly assumed a zero offset. If we don't align
3576 // here, then the alignment of the sections in the
3577 // linker script may not match the alignment of the
3578 // sections in the set_section_addresses call below,
3579 // causing an error about dot moving backward.
3580 off = align_address(off, (*p)->maximum_alignment());
3581 }
3582
3583 unsigned int shndx_hold = *pshndx;
3584 bool has_relro = false;
3585 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3586 false, addr,
3587 &increase_relro,
3588 &has_relro,
3589 &off, pshndx);
3590
3591 // Now that we know the size of this segment, we may be able
3592 // to save a page in memory, at the cost of wasting some
3593 // file space, by instead aligning to the start of a new
3594 // page. Here we use the real machine page size rather than
3595 // the ABI mandated page size. If the segment has been
3596 // aligned so that the relro data ends at a page boundary,
3597 // we do not try to realign it.
3598
3599 if (!are_addresses_set
3600 && !has_relro
3601 && aligned_addr != addr
3602 && !parameters->incremental())
3603 {
3604 uint64_t first_off = (common_pagesize
3605 - (aligned_addr
3606 & (common_pagesize - 1)));
3607 uint64_t last_off = new_addr & (common_pagesize - 1);
3608 if (first_off > 0
3609 && last_off > 0
3610 && ((aligned_addr & ~ (common_pagesize - 1))
3611 != (new_addr & ~ (common_pagesize - 1)))
3612 && first_off + last_off <= common_pagesize)
3613 {
3614 *pshndx = shndx_hold;
3615 addr = align_address(aligned_addr, common_pagesize);
3616 addr = align_address(addr, (*p)->maximum_alignment());
3617 if ((addr & (abi_pagesize - 1)) != 0)
3618 addr = addr + abi_pagesize;
3619 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3620 off = align_file_offset(off, addr, abi_pagesize);
3621
3622 increase_relro = this->increase_relro_;
3623 if (this->script_options_->saw_sections_clause())
3624 increase_relro = 0;
3625 has_relro = false;
3626
3627 new_addr = (*p)->set_section_addresses(target, this,
3628 true, addr,
3629 &increase_relro,
3630 &has_relro,
3631 &off, pshndx);
3632 }
3633 }
3634
3635 addr = new_addr;
3636
3637 // Implement --check-sections. We know that the segments
3638 // are sorted by LMA.
3639 if (check_sections && last_load_segment != NULL)
3640 {
3641 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3642 if (last_load_segment->paddr() + last_load_segment->memsz()
3643 > (*p)->paddr())
3644 {
3645 unsigned long long lb1 = last_load_segment->paddr();
3646 unsigned long long le1 = lb1 + last_load_segment->memsz();
3647 unsigned long long lb2 = (*p)->paddr();
3648 unsigned long long le2 = lb2 + (*p)->memsz();
3649 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3650 "[0x%llx -> 0x%llx]"),
3651 lb1, le1, lb2, le2);
3652 }
3653 }
3654 last_load_segment = *p;
3655 }
3656 }
3657
3658 if (load_seg != NULL && target->isolate_execinstr())
3659 {
3660 // Process the early segments again, setting their file offsets
3661 // so they land after the segments starting at LOAD_SEG.
3662 off = align_file_offset(off, 0, target->abi_pagesize());
3663
3664 this->reset_relax_output();
3665
3666 for (Segment_list::iterator p = this->segment_list_.begin();
3667 *p != load_seg;
3668 ++p)
3669 {
3670 if ((*p)->type() == elfcpp::PT_LOAD)
3671 {
3672 // We repeat the whole job of assigning addresses and
3673 // offsets, but we really only want to change the offsets and
3674 // must ensure that the addresses all come out the same as
3675 // they did the first time through.
3676 bool has_relro = false;
3677 const uint64_t old_addr = (*p)->vaddr();
3678 const uint64_t old_end = old_addr + (*p)->memsz();
3679 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3680 true, old_addr,
3681 &increase_relro,
3682 &has_relro,
3683 &off,
3684 &shndx_begin);
3685 gold_assert(new_addr == old_end);
3686 }
3687 }
3688
3689 gold_assert(shndx_begin == shndx_load_seg);
3690 }
3691
3692 // Handle the non-PT_LOAD segments, setting their offsets from their
3693 // section's offsets.
3694 for (Segment_list::iterator p = this->segment_list_.begin();
3695 p != this->segment_list_.end();
3696 ++p)
3697 {
3698 if ((*p)->type() != elfcpp::PT_LOAD)
3699 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3700 ? increase_relro
3701 : 0);
3702 }
3703
3704 // Set the TLS offsets for each section in the PT_TLS segment.
3705 if (this->tls_segment_ != NULL)
3706 this->tls_segment_->set_tls_offsets();
3707
3708 return off;
3709 }
3710
3711 // Set the offsets of all the allocated sections when doing a
3712 // relocatable link. This does the same jobs as set_segment_offsets,
3713 // only for a relocatable link.
3714
3715 off_t
3716 Layout::set_relocatable_section_offsets(Output_data* file_header,
3717 unsigned int* pshndx)
3718 {
3719 off_t off = 0;
3720
3721 file_header->set_address_and_file_offset(0, 0);
3722 off += file_header->data_size();
3723
3724 for (Section_list::iterator p = this->section_list_.begin();
3725 p != this->section_list_.end();
3726 ++p)
3727 {
3728 // We skip unallocated sections here, except that group sections
3729 // have to come first.
3730 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3731 && (*p)->type() != elfcpp::SHT_GROUP)
3732 continue;
3733
3734 off = align_address(off, (*p)->addralign());
3735
3736 // The linker script might have set the address.
3737 if (!(*p)->is_address_valid())
3738 (*p)->set_address(0);
3739 (*p)->set_file_offset(off);
3740 (*p)->finalize_data_size();
3741 if ((*p)->type() != elfcpp::SHT_NOBITS)
3742 off += (*p)->data_size();
3743
3744 (*p)->set_out_shndx(*pshndx);
3745 ++*pshndx;
3746 }
3747
3748 return off;
3749 }
3750
3751 // Set the file offset of all the sections not associated with a
3752 // segment.
3753
3754 off_t
3755 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3756 {
3757 off_t startoff = off;
3758 off_t maxoff = off;
3759
3760 for (Section_list::iterator p = this->unattached_section_list_.begin();
3761 p != this->unattached_section_list_.end();
3762 ++p)
3763 {
3764 // The symtab section is handled in create_symtab_sections.
3765 if (*p == this->symtab_section_)
3766 continue;
3767
3768 // If we've already set the data size, don't set it again.
3769 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3770 continue;
3771
3772 if (pass == BEFORE_INPUT_SECTIONS_PASS
3773 && (*p)->requires_postprocessing())
3774 {
3775 (*p)->create_postprocessing_buffer();
3776 this->any_postprocessing_sections_ = true;
3777 }
3778
3779 if (pass == BEFORE_INPUT_SECTIONS_PASS
3780 && (*p)->after_input_sections())
3781 continue;
3782 else if (pass == POSTPROCESSING_SECTIONS_PASS
3783 && (!(*p)->after_input_sections()
3784 || (*p)->type() == elfcpp::SHT_STRTAB))
3785 continue;
3786 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3787 && (!(*p)->after_input_sections()
3788 || (*p)->type() != elfcpp::SHT_STRTAB))
3789 continue;
3790
3791 if (!parameters->incremental_update())
3792 {
3793 off = align_address(off, (*p)->addralign());
3794 (*p)->set_file_offset(off);
3795 (*p)->finalize_data_size();
3796 }
3797 else
3798 {
3799 // Incremental update: allocate file space from free list.
3800 (*p)->pre_finalize_data_size();
3801 off_t current_size = (*p)->current_data_size();
3802 off = this->allocate(current_size, (*p)->addralign(), startoff);
3803 if (off == -1)
3804 {
3805 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3806 this->free_list_.dump();
3807 gold_assert((*p)->output_section() != NULL);
3808 gold_fallback(_("out of patch space for section %s; "
3809 "relink with --incremental-full"),
3810 (*p)->output_section()->name());
3811 }
3812 (*p)->set_file_offset(off);
3813 (*p)->finalize_data_size();
3814 if ((*p)->data_size() > current_size)
3815 {
3816 gold_assert((*p)->output_section() != NULL);
3817 gold_fallback(_("%s: section changed size; "
3818 "relink with --incremental-full"),
3819 (*p)->output_section()->name());
3820 }
3821 gold_debug(DEBUG_INCREMENTAL,
3822 "set_section_offsets: %08lx %08lx %s",
3823 static_cast<long>(off),
3824 static_cast<long>((*p)->data_size()),
3825 ((*p)->output_section() != NULL
3826 ? (*p)->output_section()->name() : "(special)"));
3827 }
3828
3829 off += (*p)->data_size();
3830 if (off > maxoff)
3831 maxoff = off;
3832
3833 // At this point the name must be set.
3834 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3835 this->namepool_.add((*p)->name(), false, NULL);
3836 }
3837 return maxoff;
3838 }
3839
3840 // Set the section indexes of all the sections not associated with a
3841 // segment.
3842
3843 unsigned int
3844 Layout::set_section_indexes(unsigned int shndx)
3845 {
3846 for (Section_list::iterator p = this->unattached_section_list_.begin();
3847 p != this->unattached_section_list_.end();
3848 ++p)
3849 {
3850 if (!(*p)->has_out_shndx())
3851 {
3852 (*p)->set_out_shndx(shndx);
3853 ++shndx;
3854 }
3855 }
3856 return shndx;
3857 }
3858
3859 // Set the section addresses according to the linker script. This is
3860 // only called when we see a SECTIONS clause. This returns the
3861 // program segment which should hold the file header and segment
3862 // headers, if any. It will return NULL if they should not be in a
3863 // segment.
3864
3865 Output_segment*
3866 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3867 {
3868 Script_sections* ss = this->script_options_->script_sections();
3869 gold_assert(ss->saw_sections_clause());
3870 return this->script_options_->set_section_addresses(symtab, this);
3871 }
3872
3873 // Place the orphan sections in the linker script.
3874
3875 void
3876 Layout::place_orphan_sections_in_script()
3877 {
3878 Script_sections* ss = this->script_options_->script_sections();
3879 gold_assert(ss->saw_sections_clause());
3880
3881 // Place each orphaned output section in the script.
3882 for (Section_list::iterator p = this->section_list_.begin();
3883 p != this->section_list_.end();
3884 ++p)
3885 {
3886 if (!(*p)->found_in_sections_clause())
3887 ss->place_orphan(*p);
3888 }
3889 }
3890
3891 // Count the local symbols in the regular symbol table and the dynamic
3892 // symbol table, and build the respective string pools.
3893
3894 void
3895 Layout::count_local_symbols(const Task* task,
3896 const Input_objects* input_objects)
3897 {
3898 // First, figure out an upper bound on the number of symbols we'll
3899 // be inserting into each pool. This helps us create the pools with
3900 // the right size, to avoid unnecessary hashtable resizing.
3901 unsigned int symbol_count = 0;
3902 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3903 p != input_objects->relobj_end();
3904 ++p)
3905 symbol_count += (*p)->local_symbol_count();
3906
3907 // Go from "upper bound" to "estimate." We overcount for two
3908 // reasons: we double-count symbols that occur in more than one
3909 // object file, and we count symbols that are dropped from the
3910 // output. Add it all together and assume we overcount by 100%.
3911 symbol_count /= 2;
3912
3913 // We assume all symbols will go into both the sympool and dynpool.
3914 this->sympool_.reserve(symbol_count);
3915 this->dynpool_.reserve(symbol_count);
3916
3917 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3918 p != input_objects->relobj_end();
3919 ++p)
3920 {
3921 Task_lock_obj<Object> tlo(task, *p);
3922 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3923 }
3924 }
3925
3926 // Create the symbol table sections. Here we also set the final
3927 // values of the symbols. At this point all the loadable sections are
3928 // fully laid out. SHNUM is the number of sections so far.
3929
3930 void
3931 Layout::create_symtab_sections(const Input_objects* input_objects,
3932 Symbol_table* symtab,
3933 unsigned int shnum,
3934 off_t* poff)
3935 {
3936 int symsize;
3937 unsigned int align;
3938 if (parameters->target().get_size() == 32)
3939 {
3940 symsize = elfcpp::Elf_sizes<32>::sym_size;
3941 align = 4;
3942 }
3943 else if (parameters->target().get_size() == 64)
3944 {
3945 symsize = elfcpp::Elf_sizes<64>::sym_size;
3946 align = 8;
3947 }
3948 else
3949 gold_unreachable();
3950
3951 // Compute file offsets relative to the start of the symtab section.
3952 off_t off = 0;
3953
3954 // Save space for the dummy symbol at the start of the section. We
3955 // never bother to write this out--it will just be left as zero.
3956 off += symsize;
3957 unsigned int local_symbol_index = 1;
3958
3959 // Add STT_SECTION symbols for each Output section which needs one.
3960 for (Section_list::iterator p = this->section_list_.begin();
3961 p != this->section_list_.end();
3962 ++p)
3963 {
3964 if (!(*p)->needs_symtab_index())
3965 (*p)->set_symtab_index(-1U);
3966 else
3967 {
3968 (*p)->set_symtab_index(local_symbol_index);
3969 ++local_symbol_index;
3970 off += symsize;
3971 }
3972 }
3973
3974 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3975 p != input_objects->relobj_end();
3976 ++p)
3977 {
3978 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3979 off, symtab);
3980 off += (index - local_symbol_index) * symsize;
3981 local_symbol_index = index;
3982 }
3983
3984 unsigned int local_symcount = local_symbol_index;
3985 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3986
3987 off_t dynoff;
3988 size_t dyn_global_index;
3989 size_t dyncount;
3990 if (this->dynsym_section_ == NULL)
3991 {
3992 dynoff = 0;
3993 dyn_global_index = 0;
3994 dyncount = 0;
3995 }
3996 else
3997 {
3998 dyn_global_index = this->dynsym_section_->info();
3999 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4000 dynoff = this->dynsym_section_->offset() + locsize;
4001 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4002 gold_assert(static_cast<off_t>(dyncount * symsize)
4003 == this->dynsym_section_->data_size() - locsize);
4004 }
4005
4006 off_t global_off = off;
4007 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4008 &this->sympool_, &local_symcount);
4009
4010 if (!parameters->options().strip_all())
4011 {
4012 this->sympool_.set_string_offsets();
4013
4014 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4015 Output_section* osymtab = this->make_output_section(symtab_name,
4016 elfcpp::SHT_SYMTAB,
4017 0, ORDER_INVALID,
4018 false);
4019 this->symtab_section_ = osymtab;
4020
4021 Output_section_data* pos = new Output_data_fixed_space(off, align,
4022 "** symtab");
4023 osymtab->add_output_section_data(pos);
4024
4025 // We generate a .symtab_shndx section if we have more than
4026 // SHN_LORESERVE sections. Technically it is possible that we
4027 // don't need one, because it is possible that there are no
4028 // symbols in any of sections with indexes larger than
4029 // SHN_LORESERVE. That is probably unusual, though, and it is
4030 // easier to always create one than to compute section indexes
4031 // twice (once here, once when writing out the symbols).
4032 if (shnum >= elfcpp::SHN_LORESERVE)
4033 {
4034 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4035 false, NULL);
4036 Output_section* osymtab_xindex =
4037 this->make_output_section(symtab_xindex_name,
4038 elfcpp::SHT_SYMTAB_SHNDX, 0,
4039 ORDER_INVALID, false);
4040
4041 size_t symcount = off / symsize;
4042 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4043
4044 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4045
4046 osymtab_xindex->set_link_section(osymtab);
4047 osymtab_xindex->set_addralign(4);
4048 osymtab_xindex->set_entsize(4);
4049
4050 osymtab_xindex->set_after_input_sections();
4051
4052 // This tells the driver code to wait until the symbol table
4053 // has written out before writing out the postprocessing
4054 // sections, including the .symtab_shndx section.
4055 this->any_postprocessing_sections_ = true;
4056 }
4057
4058 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4059 Output_section* ostrtab = this->make_output_section(strtab_name,
4060 elfcpp::SHT_STRTAB,
4061 0, ORDER_INVALID,
4062 false);
4063
4064 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4065 ostrtab->add_output_section_data(pstr);
4066
4067 off_t symtab_off;
4068 if (!parameters->incremental_update())
4069 symtab_off = align_address(*poff, align);
4070 else
4071 {
4072 symtab_off = this->allocate(off, align, *poff);
4073 if (off == -1)
4074 gold_fallback(_("out of patch space for symbol table; "
4075 "relink with --incremental-full"));
4076 gold_debug(DEBUG_INCREMENTAL,
4077 "create_symtab_sections: %08lx %08lx .symtab",
4078 static_cast<long>(symtab_off),
4079 static_cast<long>(off));
4080 }
4081
4082 symtab->set_file_offset(symtab_off + global_off);
4083 osymtab->set_file_offset(symtab_off);
4084 osymtab->finalize_data_size();
4085 osymtab->set_link_section(ostrtab);
4086 osymtab->set_info(local_symcount);
4087 osymtab->set_entsize(symsize);
4088
4089 if (symtab_off + off > *poff)
4090 *poff = symtab_off + off;
4091 }
4092 }
4093
4094 // Create the .shstrtab section, which holds the names of the
4095 // sections. At the time this is called, we have created all the
4096 // output sections except .shstrtab itself.
4097
4098 Output_section*
4099 Layout::create_shstrtab()
4100 {
4101 // FIXME: We don't need to create a .shstrtab section if we are
4102 // stripping everything.
4103
4104 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4105
4106 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4107 ORDER_INVALID, false);
4108
4109 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4110 {
4111 // We can't write out this section until we've set all the
4112 // section names, and we don't set the names of compressed
4113 // output sections until relocations are complete. FIXME: With
4114 // the current names we use, this is unnecessary.
4115 os->set_after_input_sections();
4116 }
4117
4118 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4119 os->add_output_section_data(posd);
4120
4121 return os;
4122 }
4123
4124 // Create the section headers. SIZE is 32 or 64. OFF is the file
4125 // offset.
4126
4127 void
4128 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4129 {
4130 Output_section_headers* oshdrs;
4131 oshdrs = new Output_section_headers(this,
4132 &this->segment_list_,
4133 &this->section_list_,
4134 &this->unattached_section_list_,
4135 &this->namepool_,
4136 shstrtab_section);
4137 off_t off;
4138 if (!parameters->incremental_update())
4139 off = align_address(*poff, oshdrs->addralign());
4140 else
4141 {
4142 oshdrs->pre_finalize_data_size();
4143 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4144 if (off == -1)
4145 gold_fallback(_("out of patch space for section header table; "
4146 "relink with --incremental-full"));
4147 gold_debug(DEBUG_INCREMENTAL,
4148 "create_shdrs: %08lx %08lx (section header table)",
4149 static_cast<long>(off),
4150 static_cast<long>(off + oshdrs->data_size()));
4151 }
4152 oshdrs->set_address_and_file_offset(0, off);
4153 off += oshdrs->data_size();
4154 if (off > *poff)
4155 *poff = off;
4156 this->section_headers_ = oshdrs;
4157 }
4158
4159 // Count the allocated sections.
4160
4161 size_t
4162 Layout::allocated_output_section_count() const
4163 {
4164 size_t section_count = 0;
4165 for (Segment_list::const_iterator p = this->segment_list_.begin();
4166 p != this->segment_list_.end();
4167 ++p)
4168 section_count += (*p)->output_section_count();
4169 return section_count;
4170 }
4171
4172 // Create the dynamic symbol table.
4173
4174 void
4175 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4176 Symbol_table* symtab,
4177 Output_section** pdynstr,
4178 unsigned int* plocal_dynamic_count,
4179 std::vector<Symbol*>* pdynamic_symbols,
4180 Versions* pversions)
4181 {
4182 // Count all the symbols in the dynamic symbol table, and set the
4183 // dynamic symbol indexes.
4184
4185 // Skip symbol 0, which is always all zeroes.
4186 unsigned int index = 1;
4187
4188 // Add STT_SECTION symbols for each Output section which needs one.
4189 for (Section_list::iterator p = this->section_list_.begin();
4190 p != this->section_list_.end();
4191 ++p)
4192 {
4193 if (!(*p)->needs_dynsym_index())
4194 (*p)->set_dynsym_index(-1U);
4195 else
4196 {
4197 (*p)->set_dynsym_index(index);
4198 ++index;
4199 }
4200 }
4201
4202 // Count the local symbols that need to go in the dynamic symbol table,
4203 // and set the dynamic symbol indexes.
4204 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4205 p != input_objects->relobj_end();
4206 ++p)
4207 {
4208 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4209 index = new_index;
4210 }
4211
4212 unsigned int local_symcount = index;
4213 *plocal_dynamic_count = local_symcount;
4214
4215 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4216 &this->dynpool_, pversions);
4217
4218 int symsize;
4219 unsigned int align;
4220 const int size = parameters->target().get_size();
4221 if (size == 32)
4222 {
4223 symsize = elfcpp::Elf_sizes<32>::sym_size;
4224 align = 4;
4225 }
4226 else if (size == 64)
4227 {
4228 symsize = elfcpp::Elf_sizes<64>::sym_size;
4229 align = 8;
4230 }
4231 else
4232 gold_unreachable();
4233
4234 // Create the dynamic symbol table section.
4235
4236 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4237 elfcpp::SHT_DYNSYM,
4238 elfcpp::SHF_ALLOC,
4239 false,
4240 ORDER_DYNAMIC_LINKER,
4241 false);
4242
4243 // Check for NULL as a linker script may discard .dynsym.
4244 if (dynsym != NULL)
4245 {
4246 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4247 align,
4248 "** dynsym");
4249 dynsym->add_output_section_data(odata);
4250
4251 dynsym->set_info(local_symcount);
4252 dynsym->set_entsize(symsize);
4253 dynsym->set_addralign(align);
4254
4255 this->dynsym_section_ = dynsym;
4256 }
4257
4258 Output_data_dynamic* const odyn = this->dynamic_data_;
4259 if (odyn != NULL)
4260 {
4261 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4262 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4263 }
4264
4265 // If there are more than SHN_LORESERVE allocated sections, we
4266 // create a .dynsym_shndx section. It is possible that we don't
4267 // need one, because it is possible that there are no dynamic
4268 // symbols in any of the sections with indexes larger than
4269 // SHN_LORESERVE. This is probably unusual, though, and at this
4270 // time we don't know the actual section indexes so it is
4271 // inconvenient to check.
4272 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4273 {
4274 Output_section* dynsym_xindex =
4275 this->choose_output_section(NULL, ".dynsym_shndx",
4276 elfcpp::SHT_SYMTAB_SHNDX,
4277 elfcpp::SHF_ALLOC,
4278 false, ORDER_DYNAMIC_LINKER, false);
4279
4280 if (dynsym_xindex != NULL)
4281 {
4282 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4283
4284 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4285
4286 dynsym_xindex->set_link_section(dynsym);
4287 dynsym_xindex->set_addralign(4);
4288 dynsym_xindex->set_entsize(4);
4289
4290 dynsym_xindex->set_after_input_sections();
4291
4292 // This tells the driver code to wait until the symbol table
4293 // has written out before writing out the postprocessing
4294 // sections, including the .dynsym_shndx section.
4295 this->any_postprocessing_sections_ = true;
4296 }
4297 }
4298
4299 // Create the dynamic string table section.
4300
4301 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4302 elfcpp::SHT_STRTAB,
4303 elfcpp::SHF_ALLOC,
4304 false,
4305 ORDER_DYNAMIC_LINKER,
4306 false);
4307 *pdynstr = dynstr;
4308 if (dynstr != NULL)
4309 {
4310 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4311 dynstr->add_output_section_data(strdata);
4312
4313 if (dynsym != NULL)
4314 dynsym->set_link_section(dynstr);
4315 if (this->dynamic_section_ != NULL)
4316 this->dynamic_section_->set_link_section(dynstr);
4317
4318 if (odyn != NULL)
4319 {
4320 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4321 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4322 }
4323 }
4324
4325 // Create the hash tables. The Gnu-style hash table must be
4326 // built first, because it changes the order of the symbols
4327 // in the dynamic symbol table.
4328
4329 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4330 || strcmp(parameters->options().hash_style(), "both") == 0)
4331 {
4332 unsigned char* phash;
4333 unsigned int hashlen;
4334 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4335 &phash, &hashlen);
4336
4337 Output_section* hashsec =
4338 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4339 elfcpp::SHF_ALLOC, false,
4340 ORDER_DYNAMIC_LINKER, false);
4341
4342 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4343 hashlen,
4344 align,
4345 "** hash");
4346 if (hashsec != NULL && hashdata != NULL)
4347 hashsec->add_output_section_data(hashdata);
4348
4349 if (hashsec != NULL)
4350 {
4351 if (dynsym != NULL)
4352 hashsec->set_link_section(dynsym);
4353
4354 // For a 64-bit target, the entries in .gnu.hash do not have
4355 // a uniform size, so we only set the entry size for a
4356 // 32-bit target.
4357 if (parameters->target().get_size() == 32)
4358 hashsec->set_entsize(4);
4359
4360 if (odyn != NULL)
4361 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4362 }
4363 }
4364
4365 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4366 || strcmp(parameters->options().hash_style(), "both") == 0)
4367 {
4368 unsigned char* phash;
4369 unsigned int hashlen;
4370 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4371 &phash, &hashlen);
4372
4373 Output_section* hashsec =
4374 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4375 elfcpp::SHF_ALLOC, false,
4376 ORDER_DYNAMIC_LINKER, false);
4377
4378 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4379 hashlen,
4380 align,
4381 "** hash");
4382 if (hashsec != NULL && hashdata != NULL)
4383 hashsec->add_output_section_data(hashdata);
4384
4385 if (hashsec != NULL)
4386 {
4387 if (dynsym != NULL)
4388 hashsec->set_link_section(dynsym);
4389 hashsec->set_entsize(4);
4390 }
4391
4392 if (odyn != NULL)
4393 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4394 }
4395 }
4396
4397 // Assign offsets to each local portion of the dynamic symbol table.
4398
4399 void
4400 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4401 {
4402 Output_section* dynsym = this->dynsym_section_;
4403 if (dynsym == NULL)
4404 return;
4405
4406 off_t off = dynsym->offset();
4407
4408 // Skip the dummy symbol at the start of the section.
4409 off += dynsym->entsize();
4410
4411 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4412 p != input_objects->relobj_end();
4413 ++p)
4414 {
4415 unsigned int count = (*p)->set_local_dynsym_offset(off);
4416 off += count * dynsym->entsize();
4417 }
4418 }
4419
4420 // Create the version sections.
4421
4422 void
4423 Layout::create_version_sections(const Versions* versions,
4424 const Symbol_table* symtab,
4425 unsigned int local_symcount,
4426 const std::vector<Symbol*>& dynamic_symbols,
4427 const Output_section* dynstr)
4428 {
4429 if (!versions->any_defs() && !versions->any_needs())
4430 return;
4431
4432 switch (parameters->size_and_endianness())
4433 {
4434 #ifdef HAVE_TARGET_32_LITTLE
4435 case Parameters::TARGET_32_LITTLE:
4436 this->sized_create_version_sections<32, false>(versions, symtab,
4437 local_symcount,
4438 dynamic_symbols, dynstr);
4439 break;
4440 #endif
4441 #ifdef HAVE_TARGET_32_BIG
4442 case Parameters::TARGET_32_BIG:
4443 this->sized_create_version_sections<32, true>(versions, symtab,
4444 local_symcount,
4445 dynamic_symbols, dynstr);
4446 break;
4447 #endif
4448 #ifdef HAVE_TARGET_64_LITTLE
4449 case Parameters::TARGET_64_LITTLE:
4450 this->sized_create_version_sections<64, false>(versions, symtab,
4451 local_symcount,
4452 dynamic_symbols, dynstr);
4453 break;
4454 #endif
4455 #ifdef HAVE_TARGET_64_BIG
4456 case Parameters::TARGET_64_BIG:
4457 this->sized_create_version_sections<64, true>(versions, symtab,
4458 local_symcount,
4459 dynamic_symbols, dynstr);
4460 break;
4461 #endif
4462 default:
4463 gold_unreachable();
4464 }
4465 }
4466
4467 // Create the version sections, sized version.
4468
4469 template<int size, bool big_endian>
4470 void
4471 Layout::sized_create_version_sections(
4472 const Versions* versions,
4473 const Symbol_table* symtab,
4474 unsigned int local_symcount,
4475 const std::vector<Symbol*>& dynamic_symbols,
4476 const Output_section* dynstr)
4477 {
4478 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4479 elfcpp::SHT_GNU_versym,
4480 elfcpp::SHF_ALLOC,
4481 false,
4482 ORDER_DYNAMIC_LINKER,
4483 false);
4484
4485 // Check for NULL since a linker script may discard this section.
4486 if (vsec != NULL)
4487 {
4488 unsigned char* vbuf;
4489 unsigned int vsize;
4490 versions->symbol_section_contents<size, big_endian>(symtab,
4491 &this->dynpool_,
4492 local_symcount,
4493 dynamic_symbols,
4494 &vbuf, &vsize);
4495
4496 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4497 "** versions");
4498
4499 vsec->add_output_section_data(vdata);
4500 vsec->set_entsize(2);
4501 vsec->set_link_section(this->dynsym_section_);
4502 }
4503
4504 Output_data_dynamic* const odyn = this->dynamic_data_;
4505 if (odyn != NULL && vsec != NULL)
4506 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4507
4508 if (versions->any_defs())
4509 {
4510 Output_section* vdsec;
4511 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4512 elfcpp::SHT_GNU_verdef,
4513 elfcpp::SHF_ALLOC,
4514 false, ORDER_DYNAMIC_LINKER, false);
4515
4516 if (vdsec != NULL)
4517 {
4518 unsigned char* vdbuf;
4519 unsigned int vdsize;
4520 unsigned int vdentries;
4521 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4522 &vdbuf, &vdsize,
4523 &vdentries);
4524
4525 Output_section_data* vddata =
4526 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4527
4528 vdsec->add_output_section_data(vddata);
4529 vdsec->set_link_section(dynstr);
4530 vdsec->set_info(vdentries);
4531
4532 if (odyn != NULL)
4533 {
4534 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4535 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4536 }
4537 }
4538 }
4539
4540 if (versions->any_needs())
4541 {
4542 Output_section* vnsec;
4543 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4544 elfcpp::SHT_GNU_verneed,
4545 elfcpp::SHF_ALLOC,
4546 false, ORDER_DYNAMIC_LINKER, false);
4547
4548 if (vnsec != NULL)
4549 {
4550 unsigned char* vnbuf;
4551 unsigned int vnsize;
4552 unsigned int vnentries;
4553 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4554 &vnbuf, &vnsize,
4555 &vnentries);
4556
4557 Output_section_data* vndata =
4558 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4559
4560 vnsec->add_output_section_data(vndata);
4561 vnsec->set_link_section(dynstr);
4562 vnsec->set_info(vnentries);
4563
4564 if (odyn != NULL)
4565 {
4566 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4567 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4568 }
4569 }
4570 }
4571 }
4572
4573 // Create the .interp section and PT_INTERP segment.
4574
4575 void
4576 Layout::create_interp(const Target* target)
4577 {
4578 gold_assert(this->interp_segment_ == NULL);
4579
4580 const char* interp = parameters->options().dynamic_linker();
4581 if (interp == NULL)
4582 {
4583 interp = target->dynamic_linker();
4584 gold_assert(interp != NULL);
4585 }
4586
4587 size_t len = strlen(interp) + 1;
4588
4589 Output_section_data* odata = new Output_data_const(interp, len, 1);
4590
4591 Output_section* osec = this->choose_output_section(NULL, ".interp",
4592 elfcpp::SHT_PROGBITS,
4593 elfcpp::SHF_ALLOC,
4594 false, ORDER_INTERP,
4595 false);
4596 if (osec != NULL)
4597 osec->add_output_section_data(odata);
4598 }
4599
4600 // Add dynamic tags for the PLT and the dynamic relocs. This is
4601 // called by the target-specific code. This does nothing if not doing
4602 // a dynamic link.
4603
4604 // USE_REL is true for REL relocs rather than RELA relocs.
4605
4606 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4607
4608 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4609 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4610 // some targets have multiple reloc sections in PLT_REL.
4611
4612 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4613 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4614 // section.
4615
4616 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4617 // executable.
4618
4619 void
4620 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4621 const Output_data* plt_rel,
4622 const Output_data_reloc_generic* dyn_rel,
4623 bool add_debug, bool dynrel_includes_plt)
4624 {
4625 Output_data_dynamic* odyn = this->dynamic_data_;
4626 if (odyn == NULL)
4627 return;
4628
4629 if (plt_got != NULL && plt_got->output_section() != NULL)
4630 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4631
4632 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4633 {
4634 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4635 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4636 odyn->add_constant(elfcpp::DT_PLTREL,
4637 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4638 }
4639
4640 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4641 || (dynrel_includes_plt
4642 && plt_rel != NULL
4643 && plt_rel->output_section() != NULL))
4644 {
4645 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4646 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4647 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4648 (have_dyn_rel
4649 ? dyn_rel->output_section()
4650 : plt_rel->output_section()));
4651 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4652 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4653 odyn->add_section_size(size_tag,
4654 dyn_rel->output_section(),
4655 plt_rel->output_section());
4656 else if (have_dyn_rel)
4657 odyn->add_section_size(size_tag, dyn_rel->output_section());
4658 else
4659 odyn->add_section_size(size_tag, plt_rel->output_section());
4660 const int size = parameters->target().get_size();
4661 elfcpp::DT rel_tag;
4662 int rel_size;
4663 if (use_rel)
4664 {
4665 rel_tag = elfcpp::DT_RELENT;
4666 if (size == 32)
4667 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4668 else if (size == 64)
4669 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4670 else
4671 gold_unreachable();
4672 }
4673 else
4674 {
4675 rel_tag = elfcpp::DT_RELAENT;
4676 if (size == 32)
4677 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4678 else if (size == 64)
4679 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4680 else
4681 gold_unreachable();
4682 }
4683 odyn->add_constant(rel_tag, rel_size);
4684
4685 if (parameters->options().combreloc() && have_dyn_rel)
4686 {
4687 size_t c = dyn_rel->relative_reloc_count();
4688 if (c > 0)
4689 odyn->add_constant((use_rel
4690 ? elfcpp::DT_RELCOUNT
4691 : elfcpp::DT_RELACOUNT),
4692 c);
4693 }
4694 }
4695
4696 if (add_debug && !parameters->options().shared())
4697 {
4698 // The value of the DT_DEBUG tag is filled in by the dynamic
4699 // linker at run time, and used by the debugger.
4700 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4701 }
4702 }
4703
4704 // Finish the .dynamic section and PT_DYNAMIC segment.
4705
4706 void
4707 Layout::finish_dynamic_section(const Input_objects* input_objects,
4708 const Symbol_table* symtab)
4709 {
4710 if (!this->script_options_->saw_phdrs_clause()
4711 && this->dynamic_section_ != NULL)
4712 {
4713 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4714 (elfcpp::PF_R
4715 | elfcpp::PF_W));
4716 oseg->add_output_section_to_nonload(this->dynamic_section_,
4717 elfcpp::PF_R | elfcpp::PF_W);
4718 }
4719
4720 Output_data_dynamic* const odyn = this->dynamic_data_;
4721 if (odyn == NULL)
4722 return;
4723
4724 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4725 p != input_objects->dynobj_end();
4726 ++p)
4727 {
4728 if (!(*p)->is_needed() && (*p)->as_needed())
4729 {
4730 // This dynamic object was linked with --as-needed, but it
4731 // is not needed.
4732 continue;
4733 }
4734
4735 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4736 }
4737
4738 if (parameters->options().shared())
4739 {
4740 const char* soname = parameters->options().soname();
4741 if (soname != NULL)
4742 odyn->add_string(elfcpp::DT_SONAME, soname);
4743 }
4744
4745 Symbol* sym = symtab->lookup(parameters->options().init());
4746 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4747 odyn->add_symbol(elfcpp::DT_INIT, sym);
4748
4749 sym = symtab->lookup(parameters->options().fini());
4750 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4751 odyn->add_symbol(elfcpp::DT_FINI, sym);
4752
4753 // Look for .init_array, .preinit_array and .fini_array by checking
4754 // section types.
4755 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4756 p != this->section_list_.end();
4757 ++p)
4758 switch((*p)->type())
4759 {
4760 case elfcpp::SHT_FINI_ARRAY:
4761 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4762 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4763 break;
4764 case elfcpp::SHT_INIT_ARRAY:
4765 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4766 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4767 break;
4768 case elfcpp::SHT_PREINIT_ARRAY:
4769 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4770 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4771 break;
4772 default:
4773 break;
4774 }
4775
4776 // Add a DT_RPATH entry if needed.
4777 const General_options::Dir_list& rpath(parameters->options().rpath());
4778 if (!rpath.empty())
4779 {
4780 std::string rpath_val;
4781 for (General_options::Dir_list::const_iterator p = rpath.begin();
4782 p != rpath.end();
4783 ++p)
4784 {
4785 if (rpath_val.empty())
4786 rpath_val = p->name();
4787 else
4788 {
4789 // Eliminate duplicates.
4790 General_options::Dir_list::const_iterator q;
4791 for (q = rpath.begin(); q != p; ++q)
4792 if (q->name() == p->name())
4793 break;
4794 if (q == p)
4795 {
4796 rpath_val += ':';
4797 rpath_val += p->name();
4798 }
4799 }
4800 }
4801
4802 if (!parameters->options().enable_new_dtags())
4803 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4804 else
4805 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4806 }
4807
4808 // Look for text segments that have dynamic relocations.
4809 bool have_textrel = false;
4810 if (!this->script_options_->saw_sections_clause())
4811 {
4812 for (Segment_list::const_iterator p = this->segment_list_.begin();
4813 p != this->segment_list_.end();
4814 ++p)
4815 {
4816 if ((*p)->type() == elfcpp::PT_LOAD
4817 && ((*p)->flags() & elfcpp::PF_W) == 0
4818 && (*p)->has_dynamic_reloc())
4819 {
4820 have_textrel = true;
4821 break;
4822 }
4823 }
4824 }
4825 else
4826 {
4827 // We don't know the section -> segment mapping, so we are
4828 // conservative and just look for readonly sections with
4829 // relocations. If those sections wind up in writable segments,
4830 // then we have created an unnecessary DT_TEXTREL entry.
4831 for (Section_list::const_iterator p = this->section_list_.begin();
4832 p != this->section_list_.end();
4833 ++p)
4834 {
4835 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4836 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4837 && (*p)->has_dynamic_reloc())
4838 {
4839 have_textrel = true;
4840 break;
4841 }
4842 }
4843 }
4844
4845 if (parameters->options().filter() != NULL)
4846 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4847 if (parameters->options().any_auxiliary())
4848 {
4849 for (options::String_set::const_iterator p =
4850 parameters->options().auxiliary_begin();
4851 p != parameters->options().auxiliary_end();
4852 ++p)
4853 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4854 }
4855
4856 // Add a DT_FLAGS entry if necessary.
4857 unsigned int flags = 0;
4858 if (have_textrel)
4859 {
4860 // Add a DT_TEXTREL for compatibility with older loaders.
4861 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4862 flags |= elfcpp::DF_TEXTREL;
4863
4864 if (parameters->options().text())
4865 gold_error(_("read-only segment has dynamic relocations"));
4866 else if (parameters->options().warn_shared_textrel()
4867 && parameters->options().shared())
4868 gold_warning(_("shared library text segment is not shareable"));
4869 }
4870 if (parameters->options().shared() && this->has_static_tls())
4871 flags |= elfcpp::DF_STATIC_TLS;
4872 if (parameters->options().origin())
4873 flags |= elfcpp::DF_ORIGIN;
4874 if (parameters->options().Bsymbolic())
4875 {
4876 flags |= elfcpp::DF_SYMBOLIC;
4877 // Add DT_SYMBOLIC for compatibility with older loaders.
4878 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4879 }
4880 if (parameters->options().now())
4881 flags |= elfcpp::DF_BIND_NOW;
4882 if (flags != 0)
4883 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4884
4885 flags = 0;
4886 if (parameters->options().initfirst())
4887 flags |= elfcpp::DF_1_INITFIRST;
4888 if (parameters->options().interpose())
4889 flags |= elfcpp::DF_1_INTERPOSE;
4890 if (parameters->options().loadfltr())
4891 flags |= elfcpp::DF_1_LOADFLTR;
4892 if (parameters->options().nodefaultlib())
4893 flags |= elfcpp::DF_1_NODEFLIB;
4894 if (parameters->options().nodelete())
4895 flags |= elfcpp::DF_1_NODELETE;
4896 if (parameters->options().nodlopen())
4897 flags |= elfcpp::DF_1_NOOPEN;
4898 if (parameters->options().nodump())
4899 flags |= elfcpp::DF_1_NODUMP;
4900 if (!parameters->options().shared())
4901 flags &= ~(elfcpp::DF_1_INITFIRST
4902 | elfcpp::DF_1_NODELETE
4903 | elfcpp::DF_1_NOOPEN);
4904 if (parameters->options().origin())
4905 flags |= elfcpp::DF_1_ORIGIN;
4906 if (parameters->options().now())
4907 flags |= elfcpp::DF_1_NOW;
4908 if (parameters->options().Bgroup())
4909 flags |= elfcpp::DF_1_GROUP;
4910 if (flags != 0)
4911 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4912 }
4913
4914 // Set the size of the _DYNAMIC symbol table to be the size of the
4915 // dynamic data.
4916
4917 void
4918 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4919 {
4920 Output_data_dynamic* const odyn = this->dynamic_data_;
4921 if (odyn == NULL)
4922 return;
4923 odyn->finalize_data_size();
4924 if (this->dynamic_symbol_ == NULL)
4925 return;
4926 off_t data_size = odyn->data_size();
4927 const int size = parameters->target().get_size();
4928 if (size == 32)
4929 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4930 else if (size == 64)
4931 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4932 else
4933 gold_unreachable();
4934 }
4935
4936 // The mapping of input section name prefixes to output section names.
4937 // In some cases one prefix is itself a prefix of another prefix; in
4938 // such a case the longer prefix must come first. These prefixes are
4939 // based on the GNU linker default ELF linker script.
4940
4941 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4942 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4943 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4944 {
4945 MAPPING_INIT(".text.", ".text"),
4946 MAPPING_INIT(".rodata.", ".rodata"),
4947 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4948 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4949 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4950 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4951 MAPPING_INIT(".data.", ".data"),
4952 MAPPING_INIT(".bss.", ".bss"),
4953 MAPPING_INIT(".tdata.", ".tdata"),
4954 MAPPING_INIT(".tbss.", ".tbss"),
4955 MAPPING_INIT(".init_array.", ".init_array"),
4956 MAPPING_INIT(".fini_array.", ".fini_array"),
4957 MAPPING_INIT(".sdata.", ".sdata"),
4958 MAPPING_INIT(".sbss.", ".sbss"),
4959 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4960 // differently depending on whether it is creating a shared library.
4961 MAPPING_INIT(".sdata2.", ".sdata"),
4962 MAPPING_INIT(".sbss2.", ".sbss"),
4963 MAPPING_INIT(".lrodata.", ".lrodata"),
4964 MAPPING_INIT(".ldata.", ".ldata"),
4965 MAPPING_INIT(".lbss.", ".lbss"),
4966 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4967 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4968 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4969 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4970 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4971 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4972 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4973 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4974 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4975 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4976 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4977 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4978 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4979 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4980 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4981 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4982 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4983 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4984 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4985 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4986 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4987 };
4988 #undef MAPPING_INIT
4989 #undef MAPPING_INIT_EXACT
4990
4991 const int Layout::section_name_mapping_count =
4992 (sizeof(Layout::section_name_mapping)
4993 / sizeof(Layout::section_name_mapping[0]));
4994
4995 // Choose the output section name to use given an input section name.
4996 // Set *PLEN to the length of the name. *PLEN is initialized to the
4997 // length of NAME.
4998
4999 const char*
5000 Layout::output_section_name(const Relobj* relobj, const char* name,
5001 size_t* plen)
5002 {
5003 // gcc 4.3 generates the following sorts of section names when it
5004 // needs a section name specific to a function:
5005 // .text.FN
5006 // .rodata.FN
5007 // .sdata2.FN
5008 // .data.FN
5009 // .data.rel.FN
5010 // .data.rel.local.FN
5011 // .data.rel.ro.FN
5012 // .data.rel.ro.local.FN
5013 // .sdata.FN
5014 // .bss.FN
5015 // .sbss.FN
5016 // .tdata.FN
5017 // .tbss.FN
5018
5019 // The GNU linker maps all of those to the part before the .FN,
5020 // except that .data.rel.local.FN is mapped to .data, and
5021 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5022 // beginning with .data.rel.ro.local are grouped together.
5023
5024 // For an anonymous namespace, the string FN can contain a '.'.
5025
5026 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5027 // GNU linker maps to .rodata.
5028
5029 // The .data.rel.ro sections are used with -z relro. The sections
5030 // are recognized by name. We use the same names that the GNU
5031 // linker does for these sections.
5032
5033 // It is hard to handle this in a principled way, so we don't even
5034 // try. We use a table of mappings. If the input section name is
5035 // not found in the table, we simply use it as the output section
5036 // name.
5037
5038 const Section_name_mapping* psnm = section_name_mapping;
5039 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5040 {
5041 if (psnm->fromlen > 0)
5042 {
5043 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5044 {
5045 *plen = psnm->tolen;
5046 return psnm->to;
5047 }
5048 }
5049 else
5050 {
5051 if (strcmp(name, psnm->from) == 0)
5052 {
5053 *plen = psnm->tolen;
5054 return psnm->to;
5055 }
5056 }
5057 }
5058
5059 // As an additional complication, .ctors sections are output in
5060 // either .ctors or .init_array sections, and .dtors sections are
5061 // output in either .dtors or .fini_array sections.
5062 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5063 {
5064 if (parameters->options().ctors_in_init_array())
5065 {
5066 *plen = 11;
5067 return name[1] == 'c' ? ".init_array" : ".fini_array";
5068 }
5069 else
5070 {
5071 *plen = 6;
5072 return name[1] == 'c' ? ".ctors" : ".dtors";
5073 }
5074 }
5075 if (parameters->options().ctors_in_init_array()
5076 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5077 {
5078 // To make .init_array/.fini_array work with gcc we must exclude
5079 // .ctors and .dtors sections from the crtbegin and crtend
5080 // files.
5081 if (relobj == NULL
5082 || (!Layout::match_file_name(relobj, "crtbegin")
5083 && !Layout::match_file_name(relobj, "crtend")))
5084 {
5085 *plen = 11;
5086 return name[1] == 'c' ? ".init_array" : ".fini_array";
5087 }
5088 }
5089
5090 return name;
5091 }
5092
5093 // Return true if RELOBJ is an input file whose base name matches
5094 // FILE_NAME. The base name must have an extension of ".o", and must
5095 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5096 // to match crtbegin.o as well as crtbeginS.o without getting confused
5097 // by other possibilities. Overall matching the file name this way is
5098 // a dreadful hack, but the GNU linker does it in order to better
5099 // support gcc, and we need to be compatible.
5100
5101 bool
5102 Layout::match_file_name(const Relobj* relobj, const char* match)
5103 {
5104 const std::string& file_name(relobj->name());
5105 const char* base_name = lbasename(file_name.c_str());
5106 size_t match_len = strlen(match);
5107 if (strncmp(base_name, match, match_len) != 0)
5108 return false;
5109 size_t base_len = strlen(base_name);
5110 if (base_len != match_len + 2 && base_len != match_len + 3)
5111 return false;
5112 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5113 }
5114
5115 // Check if a comdat group or .gnu.linkonce section with the given
5116 // NAME is selected for the link. If there is already a section,
5117 // *KEPT_SECTION is set to point to the existing section and the
5118 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5119 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5120 // *KEPT_SECTION is set to the internal copy and the function returns
5121 // true.
5122
5123 bool
5124 Layout::find_or_add_kept_section(const std::string& name,
5125 Relobj* object,
5126 unsigned int shndx,
5127 bool is_comdat,
5128 bool is_group_name,
5129 Kept_section** kept_section)
5130 {
5131 // It's normal to see a couple of entries here, for the x86 thunk
5132 // sections. If we see more than a few, we're linking a C++
5133 // program, and we resize to get more space to minimize rehashing.
5134 if (this->signatures_.size() > 4
5135 && !this->resized_signatures_)
5136 {
5137 reserve_unordered_map(&this->signatures_,
5138 this->number_of_input_files_ * 64);
5139 this->resized_signatures_ = true;
5140 }
5141
5142 Kept_section candidate;
5143 std::pair<Signatures::iterator, bool> ins =
5144 this->signatures_.insert(std::make_pair(name, candidate));
5145
5146 if (kept_section != NULL)
5147 *kept_section = &ins.first->second;
5148 if (ins.second)
5149 {
5150 // This is the first time we've seen this signature.
5151 ins.first->second.set_object(object);
5152 ins.first->second.set_shndx(shndx);
5153 if (is_comdat)
5154 ins.first->second.set_is_comdat();
5155 if (is_group_name)
5156 ins.first->second.set_is_group_name();
5157 return true;
5158 }
5159
5160 // We have already seen this signature.
5161
5162 if (ins.first->second.is_group_name())
5163 {
5164 // We've already seen a real section group with this signature.
5165 // If the kept group is from a plugin object, and we're in the
5166 // replacement phase, accept the new one as a replacement.
5167 if (ins.first->second.object() == NULL
5168 && parameters->options().plugins()->in_replacement_phase())
5169 {
5170 ins.first->second.set_object(object);
5171 ins.first->second.set_shndx(shndx);
5172 return true;
5173 }
5174 return false;
5175 }
5176 else if (is_group_name)
5177 {
5178 // This is a real section group, and we've already seen a
5179 // linkonce section with this signature. Record that we've seen
5180 // a section group, and don't include this section group.
5181 ins.first->second.set_is_group_name();
5182 return false;
5183 }
5184 else
5185 {
5186 // We've already seen a linkonce section and this is a linkonce
5187 // section. These don't block each other--this may be the same
5188 // symbol name with different section types.
5189 return true;
5190 }
5191 }
5192
5193 // Store the allocated sections into the section list.
5194
5195 void
5196 Layout::get_allocated_sections(Section_list* section_list) const
5197 {
5198 for (Section_list::const_iterator p = this->section_list_.begin();
5199 p != this->section_list_.end();
5200 ++p)
5201 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5202 section_list->push_back(*p);
5203 }
5204
5205 // Store the executable sections into the section list.
5206
5207 void
5208 Layout::get_executable_sections(Section_list* section_list) const
5209 {
5210 for (Section_list::const_iterator p = this->section_list_.begin();
5211 p != this->section_list_.end();
5212 ++p)
5213 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5214 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5215 section_list->push_back(*p);
5216 }
5217
5218 // Create an output segment.
5219
5220 Output_segment*
5221 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5222 {
5223 gold_assert(!parameters->options().relocatable());
5224 Output_segment* oseg = new Output_segment(type, flags);
5225 this->segment_list_.push_back(oseg);
5226
5227 if (type == elfcpp::PT_TLS)
5228 this->tls_segment_ = oseg;
5229 else if (type == elfcpp::PT_GNU_RELRO)
5230 this->relro_segment_ = oseg;
5231 else if (type == elfcpp::PT_INTERP)
5232 this->interp_segment_ = oseg;
5233
5234 return oseg;
5235 }
5236
5237 // Return the file offset of the normal symbol table.
5238
5239 off_t
5240 Layout::symtab_section_offset() const
5241 {
5242 if (this->symtab_section_ != NULL)
5243 return this->symtab_section_->offset();
5244 return 0;
5245 }
5246
5247 // Return the section index of the normal symbol table. It may have
5248 // been stripped by the -s/--strip-all option.
5249
5250 unsigned int
5251 Layout::symtab_section_shndx() const
5252 {
5253 if (this->symtab_section_ != NULL)
5254 return this->symtab_section_->out_shndx();
5255 return 0;
5256 }
5257
5258 // Write out the Output_sections. Most won't have anything to write,
5259 // since most of the data will come from input sections which are
5260 // handled elsewhere. But some Output_sections do have Output_data.
5261
5262 void
5263 Layout::write_output_sections(Output_file* of) const
5264 {
5265 for (Section_list::const_iterator p = this->section_list_.begin();
5266 p != this->section_list_.end();
5267 ++p)
5268 {
5269 if (!(*p)->after_input_sections())
5270 (*p)->write(of);
5271 }
5272 }
5273
5274 // Write out data not associated with a section or the symbol table.
5275
5276 void
5277 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5278 {
5279 if (!parameters->options().strip_all())
5280 {
5281 const Output_section* symtab_section = this->symtab_section_;
5282 for (Section_list::const_iterator p = this->section_list_.begin();
5283 p != this->section_list_.end();
5284 ++p)
5285 {
5286 if ((*p)->needs_symtab_index())
5287 {
5288 gold_assert(symtab_section != NULL);
5289 unsigned int index = (*p)->symtab_index();
5290 gold_assert(index > 0 && index != -1U);
5291 off_t off = (symtab_section->offset()
5292 + index * symtab_section->entsize());
5293 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5294 }
5295 }
5296 }
5297
5298 const Output_section* dynsym_section = this->dynsym_section_;
5299 for (Section_list::const_iterator p = this->section_list_.begin();
5300 p != this->section_list_.end();
5301 ++p)
5302 {
5303 if ((*p)->needs_dynsym_index())
5304 {
5305 gold_assert(dynsym_section != NULL);
5306 unsigned int index = (*p)->dynsym_index();
5307 gold_assert(index > 0 && index != -1U);
5308 off_t off = (dynsym_section->offset()
5309 + index * dynsym_section->entsize());
5310 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5311 }
5312 }
5313
5314 // Write out the Output_data which are not in an Output_section.
5315 for (Data_list::const_iterator p = this->special_output_list_.begin();
5316 p != this->special_output_list_.end();
5317 ++p)
5318 (*p)->write(of);
5319
5320 // Write out the Output_data which are not in an Output_section
5321 // and are regenerated in each iteration of relaxation.
5322 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5323 p != this->relax_output_list_.end();
5324 ++p)
5325 (*p)->write(of);
5326 }
5327
5328 // Write out the Output_sections which can only be written after the
5329 // input sections are complete.
5330
5331 void
5332 Layout::write_sections_after_input_sections(Output_file* of)
5333 {
5334 // Determine the final section offsets, and thus the final output
5335 // file size. Note we finalize the .shstrab last, to allow the
5336 // after_input_section sections to modify their section-names before
5337 // writing.
5338 if (this->any_postprocessing_sections_)
5339 {
5340 off_t off = this->output_file_size_;
5341 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5342
5343 // Now that we've finalized the names, we can finalize the shstrab.
5344 off =
5345 this->set_section_offsets(off,
5346 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5347
5348 if (off > this->output_file_size_)
5349 {
5350 of->resize(off);
5351 this->output_file_size_ = off;
5352 }
5353 }
5354
5355 for (Section_list::const_iterator p = this->section_list_.begin();
5356 p != this->section_list_.end();
5357 ++p)
5358 {
5359 if ((*p)->after_input_sections())
5360 (*p)->write(of);
5361 }
5362
5363 this->section_headers_->write(of);
5364 }
5365
5366 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5367 // or as a "tree" where each chunk of the string is hashed and then those
5368 // hashes are put into a (much smaller) string which is hashed with sha1.
5369 // We compute a checksum over the entire file because that is simplest.
5370
5371 Task_token*
5372 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5373 Output_file* of)
5374 {
5375 const size_t filesize = (this->output_file_size() <= 0 ? 0
5376 : static_cast<size_t>(this->output_file_size()));
5377 if (this->build_id_note_ != NULL
5378 && strcmp(parameters->options().build_id(), "tree") == 0
5379 && parameters->options().build_id_chunk_size_for_treehash() > 0
5380 && filesize > 0
5381 && (filesize >=
5382 parameters->options().build_id_min_file_size_for_treehash()))
5383 {
5384 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5385 const size_t chunk_size =
5386 parameters->options().build_id_chunk_size_for_treehash();
5387 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5388 Task_token* post_hash_tasks_blocker = new Task_token(true);
5389 post_hash_tasks_blocker->add_blockers(num_hashes);
5390 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5391 const unsigned char* src = of->get_input_view(0, filesize);
5392 this->input_view_ = src;
5393 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5394 this->array_of_hashes_ = dst;
5395 for (size_t i = 0, src_offset = 0; i < num_hashes;
5396 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5397 {
5398 size_t size = std::min(chunk_size, filesize - src_offset);
5399 workqueue->queue(new Hash_task(src + src_offset,
5400 size,
5401 dst,
5402 build_id_blocker,
5403 post_hash_tasks_blocker));
5404 }
5405 return post_hash_tasks_blocker;
5406 }
5407 return build_id_blocker;
5408 }
5409
5410 // If a tree-style build ID was requested, the parallel part of that computation
5411 // is already done, and the final hash-of-hashes is computed here. For other
5412 // types of build IDs, all the work is done here.
5413
5414 void
5415 Layout::write_build_id(Output_file* of) const
5416 {
5417 if (this->build_id_note_ == NULL)
5418 return;
5419
5420 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5421 this->build_id_note_->data_size());
5422
5423 if (this->array_of_hashes_ == NULL)
5424 {
5425 const size_t output_file_size = this->output_file_size();
5426 const unsigned char* iv = of->get_input_view(0, output_file_size);
5427 const char* style = parameters->options().build_id();
5428
5429 // If we get here with style == "tree" then the output must be
5430 // too small for chunking, and we use SHA-1 in that case.
5431 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5432 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5433 else if (strcmp(style, "md5") == 0)
5434 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5435 else
5436 gold_unreachable();
5437
5438 of->free_input_view(0, output_file_size, iv);
5439 }
5440 else
5441 {
5442 // Non-overlapping substrings of the output file have been hashed.
5443 // Compute SHA-1 hash of the hashes.
5444 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5445 this->size_of_array_of_hashes_, ov);
5446 delete[] this->array_of_hashes_;
5447 of->free_input_view(0, this->output_file_size(), this->input_view_);
5448 }
5449
5450 of->write_output_view(this->build_id_note_->offset(),
5451 this->build_id_note_->data_size(),
5452 ov);
5453 }
5454
5455 // Write out a binary file. This is called after the link is
5456 // complete. IN is the temporary output file we used to generate the
5457 // ELF code. We simply walk through the segments, read them from
5458 // their file offset in IN, and write them to their load address in
5459 // the output file. FIXME: with a bit more work, we could support
5460 // S-records and/or Intel hex format here.
5461
5462 void
5463 Layout::write_binary(Output_file* in) const
5464 {
5465 gold_assert(parameters->options().oformat_enum()
5466 == General_options::OBJECT_FORMAT_BINARY);
5467
5468 // Get the size of the binary file.
5469 uint64_t max_load_address = 0;
5470 for (Segment_list::const_iterator p = this->segment_list_.begin();
5471 p != this->segment_list_.end();
5472 ++p)
5473 {
5474 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5475 {
5476 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5477 if (max_paddr > max_load_address)
5478 max_load_address = max_paddr;
5479 }
5480 }
5481
5482 Output_file out(parameters->options().output_file_name());
5483 out.open(max_load_address);
5484
5485 for (Segment_list::const_iterator p = this->segment_list_.begin();
5486 p != this->segment_list_.end();
5487 ++p)
5488 {
5489 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5490 {
5491 const unsigned char* vin = in->get_input_view((*p)->offset(),
5492 (*p)->filesz());
5493 unsigned char* vout = out.get_output_view((*p)->paddr(),
5494 (*p)->filesz());
5495 memcpy(vout, vin, (*p)->filesz());
5496 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5497 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5498 }
5499 }
5500
5501 out.close();
5502 }
5503
5504 // Print the output sections to the map file.
5505
5506 void
5507 Layout::print_to_mapfile(Mapfile* mapfile) const
5508 {
5509 for (Segment_list::const_iterator p = this->segment_list_.begin();
5510 p != this->segment_list_.end();
5511 ++p)
5512 (*p)->print_sections_to_mapfile(mapfile);
5513 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5514 p != this->unattached_section_list_.end();
5515 ++p)
5516 (*p)->print_to_mapfile(mapfile);
5517 }
5518
5519 // Print statistical information to stderr. This is used for --stats.
5520
5521 void
5522 Layout::print_stats() const
5523 {
5524 this->namepool_.print_stats("section name pool");
5525 this->sympool_.print_stats("output symbol name pool");
5526 this->dynpool_.print_stats("dynamic name pool");
5527
5528 for (Section_list::const_iterator p = this->section_list_.begin();
5529 p != this->section_list_.end();
5530 ++p)
5531 (*p)->print_merge_stats();
5532 }
5533
5534 // Write_sections_task methods.
5535
5536 // We can always run this task.
5537
5538 Task_token*
5539 Write_sections_task::is_runnable()
5540 {
5541 return NULL;
5542 }
5543
5544 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5545 // when finished.
5546
5547 void
5548 Write_sections_task::locks(Task_locker* tl)
5549 {
5550 tl->add(this, this->output_sections_blocker_);
5551 if (this->input_sections_blocker_ != NULL)
5552 tl->add(this, this->input_sections_blocker_);
5553 tl->add(this, this->final_blocker_);
5554 }
5555
5556 // Run the task--write out the data.
5557
5558 void
5559 Write_sections_task::run(Workqueue*)
5560 {
5561 this->layout_->write_output_sections(this->of_);
5562 }
5563
5564 // Write_data_task methods.
5565
5566 // We can always run this task.
5567
5568 Task_token*
5569 Write_data_task::is_runnable()
5570 {
5571 return NULL;
5572 }
5573
5574 // We need to unlock FINAL_BLOCKER when finished.
5575
5576 void
5577 Write_data_task::locks(Task_locker* tl)
5578 {
5579 tl->add(this, this->final_blocker_);
5580 }
5581
5582 // Run the task--write out the data.
5583
5584 void
5585 Write_data_task::run(Workqueue*)
5586 {
5587 this->layout_->write_data(this->symtab_, this->of_);
5588 }
5589
5590 // Write_symbols_task methods.
5591
5592 // We can always run this task.
5593
5594 Task_token*
5595 Write_symbols_task::is_runnable()
5596 {
5597 return NULL;
5598 }
5599
5600 // We need to unlock FINAL_BLOCKER when finished.
5601
5602 void
5603 Write_symbols_task::locks(Task_locker* tl)
5604 {
5605 tl->add(this, this->final_blocker_);
5606 }
5607
5608 // Run the task--write out the symbols.
5609
5610 void
5611 Write_symbols_task::run(Workqueue*)
5612 {
5613 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5614 this->layout_->symtab_xindex(),
5615 this->layout_->dynsym_xindex(), this->of_);
5616 }
5617
5618 // Write_after_input_sections_task methods.
5619
5620 // We can only run this task after the input sections have completed.
5621
5622 Task_token*
5623 Write_after_input_sections_task::is_runnable()
5624 {
5625 if (this->input_sections_blocker_->is_blocked())
5626 return this->input_sections_blocker_;
5627 return NULL;
5628 }
5629
5630 // We need to unlock FINAL_BLOCKER when finished.
5631
5632 void
5633 Write_after_input_sections_task::locks(Task_locker* tl)
5634 {
5635 tl->add(this, this->final_blocker_);
5636 }
5637
5638 // Run the task.
5639
5640 void
5641 Write_after_input_sections_task::run(Workqueue*)
5642 {
5643 this->layout_->write_sections_after_input_sections(this->of_);
5644 }
5645
5646 // Close_task_runner methods.
5647
5648 // Finish up the build ID computation, if necessary, and write a binary file,
5649 // if necessary. Then close the output file.
5650
5651 void
5652 Close_task_runner::run(Workqueue*, const Task*)
5653 {
5654 // At this point the multi-threaded part of the build ID computation,
5655 // if any, is done. See queue_build_id_tasks().
5656 this->layout_->write_build_id(this->of_);
5657
5658 // If we've been asked to create a binary file, we do so here.
5659 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5660 this->layout_->write_binary(this->of_);
5661
5662 this->of_->close();
5663 }
5664
5665 // Instantiate the templates we need. We could use the configure
5666 // script to restrict this to only the ones for implemented targets.
5667
5668 #ifdef HAVE_TARGET_32_LITTLE
5669 template
5670 Output_section*
5671 Layout::init_fixed_output_section<32, false>(
5672 const char* name,
5673 elfcpp::Shdr<32, false>& shdr);
5674 #endif
5675
5676 #ifdef HAVE_TARGET_32_BIG
5677 template
5678 Output_section*
5679 Layout::init_fixed_output_section<32, true>(
5680 const char* name,
5681 elfcpp::Shdr<32, true>& shdr);
5682 #endif
5683
5684 #ifdef HAVE_TARGET_64_LITTLE
5685 template
5686 Output_section*
5687 Layout::init_fixed_output_section<64, false>(
5688 const char* name,
5689 elfcpp::Shdr<64, false>& shdr);
5690 #endif
5691
5692 #ifdef HAVE_TARGET_64_BIG
5693 template
5694 Output_section*
5695 Layout::init_fixed_output_section<64, true>(
5696 const char* name,
5697 elfcpp::Shdr<64, true>& shdr);
5698 #endif
5699
5700 #ifdef HAVE_TARGET_32_LITTLE
5701 template
5702 Output_section*
5703 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5704 unsigned int shndx,
5705 const char* name,
5706 const elfcpp::Shdr<32, false>& shdr,
5707 unsigned int, unsigned int, off_t*);
5708 #endif
5709
5710 #ifdef HAVE_TARGET_32_BIG
5711 template
5712 Output_section*
5713 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5714 unsigned int shndx,
5715 const char* name,
5716 const elfcpp::Shdr<32, true>& shdr,
5717 unsigned int, unsigned int, off_t*);
5718 #endif
5719
5720 #ifdef HAVE_TARGET_64_LITTLE
5721 template
5722 Output_section*
5723 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5724 unsigned int shndx,
5725 const char* name,
5726 const elfcpp::Shdr<64, false>& shdr,
5727 unsigned int, unsigned int, off_t*);
5728 #endif
5729
5730 #ifdef HAVE_TARGET_64_BIG
5731 template
5732 Output_section*
5733 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5734 unsigned int shndx,
5735 const char* name,
5736 const elfcpp::Shdr<64, true>& shdr,
5737 unsigned int, unsigned int, off_t*);
5738 #endif
5739
5740 #ifdef HAVE_TARGET_32_LITTLE
5741 template
5742 Output_section*
5743 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5744 unsigned int reloc_shndx,
5745 const elfcpp::Shdr<32, false>& shdr,
5746 Output_section* data_section,
5747 Relocatable_relocs* rr);
5748 #endif
5749
5750 #ifdef HAVE_TARGET_32_BIG
5751 template
5752 Output_section*
5753 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5754 unsigned int reloc_shndx,
5755 const elfcpp::Shdr<32, true>& shdr,
5756 Output_section* data_section,
5757 Relocatable_relocs* rr);
5758 #endif
5759
5760 #ifdef HAVE_TARGET_64_LITTLE
5761 template
5762 Output_section*
5763 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5764 unsigned int reloc_shndx,
5765 const elfcpp::Shdr<64, false>& shdr,
5766 Output_section* data_section,
5767 Relocatable_relocs* rr);
5768 #endif
5769
5770 #ifdef HAVE_TARGET_64_BIG
5771 template
5772 Output_section*
5773 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5774 unsigned int reloc_shndx,
5775 const elfcpp::Shdr<64, true>& shdr,
5776 Output_section* data_section,
5777 Relocatable_relocs* rr);
5778 #endif
5779
5780 #ifdef HAVE_TARGET_32_LITTLE
5781 template
5782 void
5783 Layout::layout_group<32, false>(Symbol_table* symtab,
5784 Sized_relobj_file<32, false>* object,
5785 unsigned int,
5786 const char* group_section_name,
5787 const char* signature,
5788 const elfcpp::Shdr<32, false>& shdr,
5789 elfcpp::Elf_Word flags,
5790 std::vector<unsigned int>* shndxes);
5791 #endif
5792
5793 #ifdef HAVE_TARGET_32_BIG
5794 template
5795 void
5796 Layout::layout_group<32, true>(Symbol_table* symtab,
5797 Sized_relobj_file<32, true>* object,
5798 unsigned int,
5799 const char* group_section_name,
5800 const char* signature,
5801 const elfcpp::Shdr<32, true>& shdr,
5802 elfcpp::Elf_Word flags,
5803 std::vector<unsigned int>* shndxes);
5804 #endif
5805
5806 #ifdef HAVE_TARGET_64_LITTLE
5807 template
5808 void
5809 Layout::layout_group<64, false>(Symbol_table* symtab,
5810 Sized_relobj_file<64, false>* object,
5811 unsigned int,
5812 const char* group_section_name,
5813 const char* signature,
5814 const elfcpp::Shdr<64, false>& shdr,
5815 elfcpp::Elf_Word flags,
5816 std::vector<unsigned int>* shndxes);
5817 #endif
5818
5819 #ifdef HAVE_TARGET_64_BIG
5820 template
5821 void
5822 Layout::layout_group<64, true>(Symbol_table* symtab,
5823 Sized_relobj_file<64, true>* object,
5824 unsigned int,
5825 const char* group_section_name,
5826 const char* signature,
5827 const elfcpp::Shdr<64, true>& shdr,
5828 elfcpp::Elf_Word flags,
5829 std::vector<unsigned int>* shndxes);
5830 #endif
5831
5832 #ifdef HAVE_TARGET_32_LITTLE
5833 template
5834 Output_section*
5835 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5836 const unsigned char* symbols,
5837 off_t symbols_size,
5838 const unsigned char* symbol_names,
5839 off_t symbol_names_size,
5840 unsigned int shndx,
5841 const elfcpp::Shdr<32, false>& shdr,
5842 unsigned int reloc_shndx,
5843 unsigned int reloc_type,
5844 off_t* off);
5845 #endif
5846
5847 #ifdef HAVE_TARGET_32_BIG
5848 template
5849 Output_section*
5850 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5851 const unsigned char* symbols,
5852 off_t symbols_size,
5853 const unsigned char* symbol_names,
5854 off_t symbol_names_size,
5855 unsigned int shndx,
5856 const elfcpp::Shdr<32, true>& shdr,
5857 unsigned int reloc_shndx,
5858 unsigned int reloc_type,
5859 off_t* off);
5860 #endif
5861
5862 #ifdef HAVE_TARGET_64_LITTLE
5863 template
5864 Output_section*
5865 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5866 const unsigned char* symbols,
5867 off_t symbols_size,
5868 const unsigned char* symbol_names,
5869 off_t symbol_names_size,
5870 unsigned int shndx,
5871 const elfcpp::Shdr<64, false>& shdr,
5872 unsigned int reloc_shndx,
5873 unsigned int reloc_type,
5874 off_t* off);
5875 #endif
5876
5877 #ifdef HAVE_TARGET_64_BIG
5878 template
5879 Output_section*
5880 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5881 const unsigned char* symbols,
5882 off_t symbols_size,
5883 const unsigned char* symbol_names,
5884 off_t symbol_names_size,
5885 unsigned int shndx,
5886 const elfcpp::Shdr<64, true>& shdr,
5887 unsigned int reloc_shndx,
5888 unsigned int reloc_type,
5889 off_t* off);
5890 #endif
5891
5892 #ifdef HAVE_TARGET_32_LITTLE
5893 template
5894 void
5895 Layout::add_to_gdb_index(bool is_type_unit,
5896 Sized_relobj<32, false>* object,
5897 const unsigned char* symbols,
5898 off_t symbols_size,
5899 unsigned int shndx,
5900 unsigned int reloc_shndx,
5901 unsigned int reloc_type);
5902 #endif
5903
5904 #ifdef HAVE_TARGET_32_BIG
5905 template
5906 void
5907 Layout::add_to_gdb_index(bool is_type_unit,
5908 Sized_relobj<32, true>* object,
5909 const unsigned char* symbols,
5910 off_t symbols_size,
5911 unsigned int shndx,
5912 unsigned int reloc_shndx,
5913 unsigned int reloc_type);
5914 #endif
5915
5916 #ifdef HAVE_TARGET_64_LITTLE
5917 template
5918 void
5919 Layout::add_to_gdb_index(bool is_type_unit,
5920 Sized_relobj<64, false>* object,
5921 const unsigned char* symbols,
5922 off_t symbols_size,
5923 unsigned int shndx,
5924 unsigned int reloc_shndx,
5925 unsigned int reloc_type);
5926 #endif
5927
5928 #ifdef HAVE_TARGET_64_BIG
5929 template
5930 void
5931 Layout::add_to_gdb_index(bool is_type_unit,
5932 Sized_relobj<64, true>* object,
5933 const unsigned char* symbols,
5934 off_t symbols_size,
5935 unsigned int shndx,
5936 unsigned int reloc_shndx,
5937 unsigned int reloc_type);
5938 #endif
5939
5940 } // End namespace gold.
This page took 0.254794 seconds and 5 git commands to generate.