Fix --dynamic-list so that symbols not in the list are still exported.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list. Creates a single free list node that
76 // describes the entire region of length LEN. If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83 this->list_.push_front(Free_list_node(0, len));
84 this->last_remove_ = this->list_.begin();
85 this->extend_ = extend;
86 this->length_ = len;
87 ++Free_list::num_lists;
88 ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list. Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node. We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103 if (start == end)
104 return;
105 gold_assert(start < end);
106
107 ++Free_list::num_removes;
108
109 Iterator p = this->last_remove_;
110 if (p->start_ > start)
111 p = this->list_.begin();
112
113 for (; p != this->list_.end(); ++p)
114 {
115 ++Free_list::num_remove_visits;
116 // Find a node that wholly contains the indicated region.
117 if (p->start_ <= start && p->end_ >= end)
118 {
119 // Case 1: the indicated region spans the whole node.
120 // Add some fuzz to avoid creating tiny free chunks.
121 if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 p = this->list_.erase(p);
123 // Case 2: remove a chunk from the start of the node.
124 else if (p->start_ + 3 >= start)
125 p->start_ = end;
126 // Case 3: remove a chunk from the end of the node.
127 else if (p->end_ <= end + 3)
128 p->end_ = start;
129 // Case 4: remove a chunk from the middle, and split
130 // the node into two.
131 else
132 {
133 Free_list_node newnode(p->start_, start);
134 p->start_ = end;
135 this->list_.insert(p, newnode);
136 ++Free_list::num_nodes;
137 }
138 this->last_remove_ = p;
139 return;
140 }
141 }
142
143 // Did not find a node containing the given chunk. This could happen
144 // because a small chunk was already removed due to the fuzz.
145 gold_debug(DEBUG_INCREMENTAL,
146 "Free_list::remove(%d,%d) not found",
147 static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list. Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157 gold_debug(DEBUG_INCREMENTAL,
158 "Free_list::allocate(%08lx, %d, %08lx)",
159 static_cast<long>(len), static_cast<int>(align),
160 static_cast<long>(minoff));
161 if (len == 0)
162 return align_address(minoff, align);
163
164 ++Free_list::num_allocates;
165
166 // We usually want to drop free chunks smaller than 4 bytes.
167 // If we need to guarantee a minimum hole size, though, we need
168 // to keep track of all free chunks.
169 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172 {
173 ++Free_list::num_allocate_visits;
174 off_t start = p->start_ > minoff ? p->start_ : minoff;
175 start = align_address(start, align);
176 off_t end = start + len;
177 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178 {
179 this->length_ = end;
180 p->end_ = end;
181 }
182 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183 {
184 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 this->list_.erase(p);
186 else if (p->start_ + fuzz >= start)
187 p->start_ = end;
188 else if (p->end_ <= end + fuzz)
189 p->end_ = start;
190 else
191 {
192 Free_list_node newnode(p->start_, start);
193 p->start_ = end;
194 this->list_.insert(p, newnode);
195 ++Free_list::num_nodes;
196 }
197 return start;
198 }
199 }
200 if (this->extend_)
201 {
202 off_t start = align_address(this->length_, align);
203 this->length_ = start + len;
204 return start;
205 }
206 return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213 gold_info("Free list:\n start end length\n");
214 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
216 static_cast<long>(p->end_),
217 static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224 fprintf(stderr, _("%s: total free lists: %u\n"),
225 program_name, Free_list::num_lists);
226 fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 program_name, Free_list::num_nodes);
228 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 program_name, Free_list::num_removes);
230 fprintf(stderr, _("%s: nodes visited: %u\n"),
231 program_name, Free_list::num_remove_visits);
232 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 program_name, Free_list::num_allocates);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244 public:
245 Hash_task(const unsigned char* src,
246 size_t size,
247 unsigned char* dst,
248 Task_token* build_id_blocker,
249 Task_token* final_blocker)
250 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251 final_blocker_(final_blocker)
252 { }
253
254 void
255 run(Workqueue*)
256 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258 Task_token*
259 is_runnable();
260
261 // Unblock FINAL_BLOCKER_ when done.
262 void
263 locks(Task_locker* tl)
264 { tl->add(this, this->final_blocker_); }
265
266 std::string
267 get_name() const
268 { return "Hash_task"; }
269
270 private:
271 const unsigned char* const src_;
272 const size_t size_;
273 unsigned char* const dst_;
274 Task_token* const build_id_blocker_;
275 Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281 if (this->build_id_blocker_->is_blocked())
282 return this->build_id_blocker_;
283 return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 array_of_hashes_(NULL),
453 size_of_array_of_hashes_(0),
454 input_view_(NULL),
455 debug_abbrev_(NULL),
456 debug_info_(NULL),
457 group_signatures_(),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL),
471 record_output_section_data_from_script_(false),
472 script_output_section_data_list_(),
473 segment_states_(NULL),
474 relaxation_debug_check_(NULL),
475 section_order_map_(),
476 section_segment_map_(),
477 input_section_position_(),
478 input_section_glob_(),
479 incremental_base_(NULL),
480 free_list_()
481 {
482 // Make space for more than enough segments for a typical file.
483 // This is just for efficiency--it's OK if we wind up needing more.
484 this->segment_list_.reserve(12);
485
486 // We expect two unattached Output_data objects: the file header and
487 // the segment headers.
488 this->special_output_list_.reserve(2);
489
490 // Initialize structure needed for an incremental build.
491 if (parameters->incremental())
492 this->incremental_inputs_ = new Incremental_inputs;
493
494 // The section name pool is worth optimizing in all cases, because
495 // it is small, but there are often overlaps due to .rel sections.
496 this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504 this->incremental_base_ = base;
505 this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513 return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523 "abbrev",
524 "addr", // Fission extension
525 // "aranges", // not used by gdb as of 7.4
526 "frame",
527 "gdb_scripts",
528 "info",
529 "types",
530 "line",
531 "loc",
532 "macinfo",
533 "macro",
534 // "pubnames", // not used by gdb as of 7.4
535 // "pubtypes", // not used by gdb as of 7.4
536 // "gnu_pubnames", // Fission extension
537 // "gnu_pubtypes", // Fission extension
538 "ranges",
539 "str",
540 "str_offsets",
541 };
542
543 // This is the minimum set of sections needed for line numbers.
544
545 static const char* lines_only_debug_sections[] =
546 {
547 "abbrev",
548 // "addr", // Fission extension
549 // "aranges", // not used by gdb as of 7.4
550 // "frame",
551 // "gdb_scripts",
552 "info",
553 // "types",
554 "line",
555 // "loc",
556 // "macinfo",
557 // "macro",
558 // "pubnames", // not used by gdb as of 7.4
559 // "pubtypes", // not used by gdb as of 7.4
560 // "gnu_pubnames", // Fission extension
561 // "gnu_pubtypes", // Fission extension
562 // "ranges",
563 "str",
564 "str_offsets", // Fission extension
565 };
566
567 // These sections are the DWARF fast-lookup tables, and are not needed
568 // when building a .gdb_index section.
569
570 static const char* gdb_fast_lookup_sections[] =
571 {
572 "aranges",
573 "pubnames",
574 "gnu_pubnames",
575 "pubtypes",
576 "gnu_pubtypes",
577 };
578
579 // Returns whether the given debug section is in the list of
580 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
581 // portion of the name following ".debug_" or ".zdebug_".
582
583 static inline bool
584 is_gdb_debug_section(const char* suffix)
585 {
586 // We can do this faster: binary search or a hashtable. But why bother?
587 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
588 if (strcmp(suffix, gdb_sections[i]) == 0)
589 return true;
590 return false;
591 }
592
593 // Returns whether the given section is needed for lines-only debugging.
594
595 static inline bool
596 is_lines_only_debug_section(const char* suffix)
597 {
598 // We can do this faster: binary search or a hashtable. But why bother?
599 for (size_t i = 0;
600 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
601 ++i)
602 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
603 return true;
604 return false;
605 }
606
607 // Returns whether the given section is a fast-lookup section that
608 // will not be needed when building a .gdb_index section.
609
610 static inline bool
611 is_gdb_fast_lookup_section(const char* suffix)
612 {
613 // We can do this faster: binary search or a hashtable. But why bother?
614 for (size_t i = 0;
615 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
616 ++i)
617 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
618 return true;
619 return false;
620 }
621
622 // Sometimes we compress sections. This is typically done for
623 // sections that are not part of normal program execution (such as
624 // .debug_* sections), and where the readers of these sections know
625 // how to deal with compressed sections. This routine doesn't say for
626 // certain whether we'll compress -- it depends on commandline options
627 // as well -- just whether this section is a candidate for compression.
628 // (The Output_compressed_section class decides whether to compress
629 // a given section, and picks the name of the compressed section.)
630
631 static bool
632 is_compressible_debug_section(const char* secname)
633 {
634 return (is_prefix_of(".debug", secname));
635 }
636
637 // We may see compressed debug sections in input files. Return TRUE
638 // if this is the name of a compressed debug section.
639
640 bool
641 is_compressed_debug_section(const char* secname)
642 {
643 return (is_prefix_of(".zdebug", secname));
644 }
645
646 // Whether to include this section in the link.
647
648 template<int size, bool big_endian>
649 bool
650 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
651 const elfcpp::Shdr<size, big_endian>& shdr)
652 {
653 if (!parameters->options().relocatable()
654 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
655 return false;
656
657 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
658
659 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
660 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
661 return parameters->target().should_include_section(sh_type);
662
663 switch (sh_type)
664 {
665 case elfcpp::SHT_NULL:
666 case elfcpp::SHT_SYMTAB:
667 case elfcpp::SHT_DYNSYM:
668 case elfcpp::SHT_HASH:
669 case elfcpp::SHT_DYNAMIC:
670 case elfcpp::SHT_SYMTAB_SHNDX:
671 return false;
672
673 case elfcpp::SHT_STRTAB:
674 // Discard the sections which have special meanings in the ELF
675 // ABI. Keep others (e.g., .stabstr). We could also do this by
676 // checking the sh_link fields of the appropriate sections.
677 return (strcmp(name, ".dynstr") != 0
678 && strcmp(name, ".strtab") != 0
679 && strcmp(name, ".shstrtab") != 0);
680
681 case elfcpp::SHT_RELA:
682 case elfcpp::SHT_REL:
683 case elfcpp::SHT_GROUP:
684 // If we are emitting relocations these should be handled
685 // elsewhere.
686 gold_assert(!parameters->options().relocatable());
687 return false;
688
689 case elfcpp::SHT_PROGBITS:
690 if (parameters->options().strip_debug()
691 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
692 {
693 if (is_debug_info_section(name))
694 return false;
695 }
696 if (parameters->options().strip_debug_non_line()
697 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698 {
699 // Debugging sections can only be recognized by name.
700 if (is_prefix_of(".debug_", name)
701 && !is_lines_only_debug_section(name + 7))
702 return false;
703 if (is_prefix_of(".zdebug_", name)
704 && !is_lines_only_debug_section(name + 8))
705 return false;
706 }
707 if (parameters->options().strip_debug_gdb()
708 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
709 {
710 // Debugging sections can only be recognized by name.
711 if (is_prefix_of(".debug_", name)
712 && !is_gdb_debug_section(name + 7))
713 return false;
714 if (is_prefix_of(".zdebug_", name)
715 && !is_gdb_debug_section(name + 8))
716 return false;
717 }
718 if (parameters->options().gdb_index()
719 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
720 {
721 // When building .gdb_index, we can strip .debug_pubnames,
722 // .debug_pubtypes, and .debug_aranges sections.
723 if (is_prefix_of(".debug_", name)
724 && is_gdb_fast_lookup_section(name + 7))
725 return false;
726 if (is_prefix_of(".zdebug_", name)
727 && is_gdb_fast_lookup_section(name + 8))
728 return false;
729 }
730 if (parameters->options().strip_lto_sections()
731 && !parameters->options().relocatable()
732 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
733 {
734 // Ignore LTO sections containing intermediate code.
735 if (is_prefix_of(".gnu.lto_", name))
736 return false;
737 }
738 // The GNU linker strips .gnu_debuglink sections, so we do too.
739 // This is a feature used to keep debugging information in
740 // separate files.
741 if (strcmp(name, ".gnu_debuglink") == 0)
742 return false;
743 return true;
744
745 default:
746 return true;
747 }
748 }
749
750 // Return an output section named NAME, or NULL if there is none.
751
752 Output_section*
753 Layout::find_output_section(const char* name) const
754 {
755 for (Section_list::const_iterator p = this->section_list_.begin();
756 p != this->section_list_.end();
757 ++p)
758 if (strcmp((*p)->name(), name) == 0)
759 return *p;
760 return NULL;
761 }
762
763 // Return an output segment of type TYPE, with segment flags SET set
764 // and segment flags CLEAR clear. Return NULL if there is none.
765
766 Output_segment*
767 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
768 elfcpp::Elf_Word clear) const
769 {
770 for (Segment_list::const_iterator p = this->segment_list_.begin();
771 p != this->segment_list_.end();
772 ++p)
773 if (static_cast<elfcpp::PT>((*p)->type()) == type
774 && ((*p)->flags() & set) == set
775 && ((*p)->flags() & clear) == 0)
776 return *p;
777 return NULL;
778 }
779
780 // When we put a .ctors or .dtors section with more than one word into
781 // a .init_array or .fini_array section, we need to reverse the words
782 // in the .ctors/.dtors section. This is because .init_array executes
783 // constructors front to back, where .ctors executes them back to
784 // front, and vice-versa for .fini_array/.dtors. Although we do want
785 // to remap .ctors/.dtors into .init_array/.fini_array because it can
786 // be more efficient, we don't want to change the order in which
787 // constructors/destructors are run. This set just keeps track of
788 // these sections which need to be reversed. It is only changed by
789 // Layout::layout. It should be a private member of Layout, but that
790 // would require layout.h to #include object.h to get the definition
791 // of Section_id.
792 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
793
794 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
795 // .init_array/.fini_array section.
796
797 bool
798 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
799 {
800 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
801 != ctors_sections_in_init_array.end());
802 }
803
804 // Return the output section to use for section NAME with type TYPE
805 // and section flags FLAGS. NAME must be canonicalized in the string
806 // pool, and NAME_KEY is the key. ORDER is where this should appear
807 // in the output sections. IS_RELRO is true for a relro section.
808
809 Output_section*
810 Layout::get_output_section(const char* name, Stringpool::Key name_key,
811 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
812 Output_section_order order, bool is_relro)
813 {
814 elfcpp::Elf_Word lookup_type = type;
815
816 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
817 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
818 // .init_array, .fini_array, and .preinit_array sections by name
819 // whatever their type in the input file. We do this because the
820 // types are not always right in the input files.
821 if (lookup_type == elfcpp::SHT_INIT_ARRAY
822 || lookup_type == elfcpp::SHT_FINI_ARRAY
823 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
824 lookup_type = elfcpp::SHT_PROGBITS;
825
826 elfcpp::Elf_Xword lookup_flags = flags;
827
828 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
829 // read-write with read-only sections. Some other ELF linkers do
830 // not do this. FIXME: Perhaps there should be an option
831 // controlling this.
832 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
833
834 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
835 const std::pair<Key, Output_section*> v(key, NULL);
836 std::pair<Section_name_map::iterator, bool> ins(
837 this->section_name_map_.insert(v));
838
839 if (!ins.second)
840 return ins.first->second;
841 else
842 {
843 // This is the first time we've seen this name/type/flags
844 // combination. For compatibility with the GNU linker, we
845 // combine sections with contents and zero flags with sections
846 // with non-zero flags. This is a workaround for cases where
847 // assembler code forgets to set section flags. FIXME: Perhaps
848 // there should be an option to control this.
849 Output_section* os = NULL;
850
851 if (lookup_type == elfcpp::SHT_PROGBITS)
852 {
853 if (flags == 0)
854 {
855 Output_section* same_name = this->find_output_section(name);
856 if (same_name != NULL
857 && (same_name->type() == elfcpp::SHT_PROGBITS
858 || same_name->type() == elfcpp::SHT_INIT_ARRAY
859 || same_name->type() == elfcpp::SHT_FINI_ARRAY
860 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
861 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
862 os = same_name;
863 }
864 else if ((flags & elfcpp::SHF_TLS) == 0)
865 {
866 elfcpp::Elf_Xword zero_flags = 0;
867 const Key zero_key(name_key, std::make_pair(lookup_type,
868 zero_flags));
869 Section_name_map::iterator p =
870 this->section_name_map_.find(zero_key);
871 if (p != this->section_name_map_.end())
872 os = p->second;
873 }
874 }
875
876 if (os == NULL)
877 os = this->make_output_section(name, type, flags, order, is_relro);
878
879 ins.first->second = os;
880 return os;
881 }
882 }
883
884 // Returns TRUE iff NAME (an input section from RELOBJ) will
885 // be mapped to an output section that should be KEPT.
886
887 bool
888 Layout::keep_input_section(const Relobj* relobj, const char* name)
889 {
890 if (! this->script_options_->saw_sections_clause())
891 return false;
892
893 Script_sections* ss = this->script_options_->script_sections();
894 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
895 Output_section** output_section_slot;
896 Script_sections::Section_type script_section_type;
897 bool keep;
898
899 name = ss->output_section_name(file_name, name, &output_section_slot,
900 &script_section_type, &keep);
901 return name != NULL && keep;
902 }
903
904 // Clear the input section flags that should not be copied to the
905 // output section.
906
907 elfcpp::Elf_Xword
908 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
909 {
910 // Some flags in the input section should not be automatically
911 // copied to the output section.
912 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
913 | elfcpp::SHF_GROUP
914 | elfcpp::SHF_MERGE
915 | elfcpp::SHF_STRINGS);
916
917 // We only clear the SHF_LINK_ORDER flag in for
918 // a non-relocatable link.
919 if (!parameters->options().relocatable())
920 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
921
922 return input_section_flags;
923 }
924
925 // Pick the output section to use for section NAME, in input file
926 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
927 // linker created section. IS_INPUT_SECTION is true if we are
928 // choosing an output section for an input section found in a input
929 // file. ORDER is where this section should appear in the output
930 // sections. IS_RELRO is true for a relro section. This will return
931 // NULL if the input section should be discarded.
932
933 Output_section*
934 Layout::choose_output_section(const Relobj* relobj, const char* name,
935 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
936 bool is_input_section, Output_section_order order,
937 bool is_relro)
938 {
939 // We should not see any input sections after we have attached
940 // sections to segments.
941 gold_assert(!is_input_section || !this->sections_are_attached_);
942
943 flags = this->get_output_section_flags(flags);
944
945 if (this->script_options_->saw_sections_clause())
946 {
947 // We are using a SECTIONS clause, so the output section is
948 // chosen based only on the name.
949
950 Script_sections* ss = this->script_options_->script_sections();
951 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
952 Output_section** output_section_slot;
953 Script_sections::Section_type script_section_type;
954 const char* orig_name = name;
955 bool keep;
956 name = ss->output_section_name(file_name, name, &output_section_slot,
957 &script_section_type, &keep);
958
959 if (name == NULL)
960 {
961 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
962 "because it is not allowed by the "
963 "SECTIONS clause of the linker script"),
964 orig_name);
965 // The SECTIONS clause says to discard this input section.
966 return NULL;
967 }
968
969 // We can only handle script section types ST_NONE and ST_NOLOAD.
970 switch (script_section_type)
971 {
972 case Script_sections::ST_NONE:
973 break;
974 case Script_sections::ST_NOLOAD:
975 flags &= elfcpp::SHF_ALLOC;
976 break;
977 default:
978 gold_unreachable();
979 }
980
981 // If this is an orphan section--one not mentioned in the linker
982 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
983 // default processing below.
984
985 if (output_section_slot != NULL)
986 {
987 if (*output_section_slot != NULL)
988 {
989 (*output_section_slot)->update_flags_for_input_section(flags);
990 return *output_section_slot;
991 }
992
993 // We don't put sections found in the linker script into
994 // SECTION_NAME_MAP_. That keeps us from getting confused
995 // if an orphan section is mapped to a section with the same
996 // name as one in the linker script.
997
998 name = this->namepool_.add(name, false, NULL);
999
1000 Output_section* os = this->make_output_section(name, type, flags,
1001 order, is_relro);
1002
1003 os->set_found_in_sections_clause();
1004
1005 // Special handling for NOLOAD sections.
1006 if (script_section_type == Script_sections::ST_NOLOAD)
1007 {
1008 os->set_is_noload();
1009
1010 // The constructor of Output_section sets addresses of non-ALLOC
1011 // sections to 0 by default. We don't want that for NOLOAD
1012 // sections even if they have no SHF_ALLOC flag.
1013 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1014 && os->is_address_valid())
1015 {
1016 gold_assert(os->address() == 0
1017 && !os->is_offset_valid()
1018 && !os->is_data_size_valid());
1019 os->reset_address_and_file_offset();
1020 }
1021 }
1022
1023 *output_section_slot = os;
1024 return os;
1025 }
1026 }
1027
1028 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1029
1030 size_t len = strlen(name);
1031 char* uncompressed_name = NULL;
1032
1033 // Compressed debug sections should be mapped to the corresponding
1034 // uncompressed section.
1035 if (is_compressed_debug_section(name))
1036 {
1037 uncompressed_name = new char[len];
1038 uncompressed_name[0] = '.';
1039 gold_assert(name[0] == '.' && name[1] == 'z');
1040 strncpy(&uncompressed_name[1], &name[2], len - 2);
1041 uncompressed_name[len - 1] = '\0';
1042 len -= 1;
1043 name = uncompressed_name;
1044 }
1045
1046 // Turn NAME from the name of the input section into the name of the
1047 // output section.
1048 if (is_input_section
1049 && !this->script_options_->saw_sections_clause()
1050 && !parameters->options().relocatable())
1051 {
1052 const char *orig_name = name;
1053 name = parameters->target().output_section_name(relobj, name, &len);
1054 if (name == NULL)
1055 name = Layout::output_section_name(relobj, orig_name, &len);
1056 }
1057
1058 Stringpool::Key name_key;
1059 name = this->namepool_.add_with_length(name, len, true, &name_key);
1060
1061 if (uncompressed_name != NULL)
1062 delete[] uncompressed_name;
1063
1064 // Find or make the output section. The output section is selected
1065 // based on the section name, type, and flags.
1066 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1067 }
1068
1069 // For incremental links, record the initial fixed layout of a section
1070 // from the base file, and return a pointer to the Output_section.
1071
1072 template<int size, bool big_endian>
1073 Output_section*
1074 Layout::init_fixed_output_section(const char* name,
1075 elfcpp::Shdr<size, big_endian>& shdr)
1076 {
1077 unsigned int sh_type = shdr.get_sh_type();
1078
1079 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1080 // PRE_INIT_ARRAY, and NOTE sections.
1081 // All others will be created from scratch and reallocated.
1082 if (!can_incremental_update(sh_type))
1083 return NULL;
1084
1085 // If we're generating a .gdb_index section, we need to regenerate
1086 // it from scratch.
1087 if (parameters->options().gdb_index()
1088 && sh_type == elfcpp::SHT_PROGBITS
1089 && strcmp(name, ".gdb_index") == 0)
1090 return NULL;
1091
1092 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1093 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1094 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1095 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1096 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1097 shdr.get_sh_addralign();
1098
1099 // Make the output section.
1100 Stringpool::Key name_key;
1101 name = this->namepool_.add(name, true, &name_key);
1102 Output_section* os = this->get_output_section(name, name_key, sh_type,
1103 sh_flags, ORDER_INVALID, false);
1104 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1105 if (sh_type != elfcpp::SHT_NOBITS)
1106 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1107 return os;
1108 }
1109
1110 // Return the index by which an input section should be ordered. This
1111 // is used to sort some .text sections, for compatibility with GNU ld.
1112
1113 int
1114 Layout::special_ordering_of_input_section(const char* name)
1115 {
1116 // The GNU linker has some special handling for some sections that
1117 // wind up in the .text section. Sections that start with these
1118 // prefixes must appear first, and must appear in the order listed
1119 // here.
1120 static const char* const text_section_sort[] =
1121 {
1122 ".text.unlikely",
1123 ".text.exit",
1124 ".text.startup",
1125 ".text.hot"
1126 };
1127
1128 for (size_t i = 0;
1129 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1130 i++)
1131 if (is_prefix_of(text_section_sort[i], name))
1132 return i;
1133
1134 return -1;
1135 }
1136
1137 // Return the output section to use for input section SHNDX, with name
1138 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1139 // index of a relocation section which applies to this section, or 0
1140 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1141 // relocation section if there is one. Set *OFF to the offset of this
1142 // input section without the output section. Return NULL if the
1143 // section should be discarded. Set *OFF to -1 if the section
1144 // contents should not be written directly to the output file, but
1145 // will instead receive special handling.
1146
1147 template<int size, bool big_endian>
1148 Output_section*
1149 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1150 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1151 unsigned int reloc_shndx, unsigned int, off_t* off)
1152 {
1153 *off = 0;
1154
1155 if (!this->include_section(object, name, shdr))
1156 return NULL;
1157
1158 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1159
1160 // In a relocatable link a grouped section must not be combined with
1161 // any other sections.
1162 Output_section* os;
1163 if (parameters->options().relocatable()
1164 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1165 {
1166 name = this->namepool_.add(name, true, NULL);
1167 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1168 ORDER_INVALID, false);
1169 }
1170 else
1171 {
1172 // Plugins can choose to place one or more subsets of sections in
1173 // unique segments and this is done by mapping these section subsets
1174 // to unique output sections. Check if this section needs to be
1175 // remapped to a unique output section.
1176 Section_segment_map::iterator it
1177 = this->section_segment_map_.find(Const_section_id(object, shndx));
1178 if (it == this->section_segment_map_.end())
1179 {
1180 os = this->choose_output_section(object, name, sh_type,
1181 shdr.get_sh_flags(), true,
1182 ORDER_INVALID, false);
1183 }
1184 else
1185 {
1186 // We know the name of the output section, directly call
1187 // get_output_section here by-passing choose_output_section.
1188 elfcpp::Elf_Xword flags
1189 = this->get_output_section_flags(shdr.get_sh_flags());
1190
1191 const char* os_name = it->second->name;
1192 Stringpool::Key name_key;
1193 os_name = this->namepool_.add(os_name, true, &name_key);
1194 os = this->get_output_section(os_name, name_key, sh_type, flags,
1195 ORDER_INVALID, false);
1196 if (!os->is_unique_segment())
1197 {
1198 os->set_is_unique_segment();
1199 os->set_extra_segment_flags(it->second->flags);
1200 os->set_segment_alignment(it->second->align);
1201 }
1202 }
1203 if (os == NULL)
1204 return NULL;
1205 }
1206
1207 // By default the GNU linker sorts input sections whose names match
1208 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1209 // sections are sorted by name. This is used to implement
1210 // constructor priority ordering. We are compatible. When we put
1211 // .ctor sections in .init_array and .dtor sections in .fini_array,
1212 // we must also sort plain .ctor and .dtor sections.
1213 if (!this->script_options_->saw_sections_clause()
1214 && !parameters->options().relocatable()
1215 && (is_prefix_of(".ctors.", name)
1216 || is_prefix_of(".dtors.", name)
1217 || is_prefix_of(".init_array.", name)
1218 || is_prefix_of(".fini_array.", name)
1219 || (parameters->options().ctors_in_init_array()
1220 && (strcmp(name, ".ctors") == 0
1221 || strcmp(name, ".dtors") == 0))))
1222 os->set_must_sort_attached_input_sections();
1223
1224 // By default the GNU linker sorts some special text sections ahead
1225 // of others. We are compatible.
1226 if (parameters->options().text_reorder()
1227 && !this->script_options_->saw_sections_clause()
1228 && !this->is_section_ordering_specified()
1229 && !parameters->options().relocatable()
1230 && Layout::special_ordering_of_input_section(name) >= 0)
1231 os->set_must_sort_attached_input_sections();
1232
1233 // If this is a .ctors or .ctors.* section being mapped to a
1234 // .init_array section, or a .dtors or .dtors.* section being mapped
1235 // to a .fini_array section, we will need to reverse the words if
1236 // there is more than one. Record this section for later. See
1237 // ctors_sections_in_init_array above.
1238 if (!this->script_options_->saw_sections_clause()
1239 && !parameters->options().relocatable()
1240 && shdr.get_sh_size() > size / 8
1241 && (((strcmp(name, ".ctors") == 0
1242 || is_prefix_of(".ctors.", name))
1243 && strcmp(os->name(), ".init_array") == 0)
1244 || ((strcmp(name, ".dtors") == 0
1245 || is_prefix_of(".dtors.", name))
1246 && strcmp(os->name(), ".fini_array") == 0)))
1247 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1248
1249 // FIXME: Handle SHF_LINK_ORDER somewhere.
1250
1251 elfcpp::Elf_Xword orig_flags = os->flags();
1252
1253 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1254 this->script_options_->saw_sections_clause());
1255
1256 // If the flags changed, we may have to change the order.
1257 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1258 {
1259 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1260 elfcpp::Elf_Xword new_flags =
1261 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1262 if (orig_flags != new_flags)
1263 os->set_order(this->default_section_order(os, false));
1264 }
1265
1266 this->have_added_input_section_ = true;
1267
1268 return os;
1269 }
1270
1271 // Maps section SECN to SEGMENT s.
1272 void
1273 Layout::insert_section_segment_map(Const_section_id secn,
1274 Unique_segment_info *s)
1275 {
1276 gold_assert(this->unique_segment_for_sections_specified_);
1277 this->section_segment_map_[secn] = s;
1278 }
1279
1280 // Handle a relocation section when doing a relocatable link.
1281
1282 template<int size, bool big_endian>
1283 Output_section*
1284 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1285 unsigned int,
1286 const elfcpp::Shdr<size, big_endian>& shdr,
1287 Output_section* data_section,
1288 Relocatable_relocs* rr)
1289 {
1290 gold_assert(parameters->options().relocatable()
1291 || parameters->options().emit_relocs());
1292
1293 int sh_type = shdr.get_sh_type();
1294
1295 std::string name;
1296 if (sh_type == elfcpp::SHT_REL)
1297 name = ".rel";
1298 else if (sh_type == elfcpp::SHT_RELA)
1299 name = ".rela";
1300 else
1301 gold_unreachable();
1302 name += data_section->name();
1303
1304 // In a relocatable link relocs for a grouped section must not be
1305 // combined with other reloc sections.
1306 Output_section* os;
1307 if (!parameters->options().relocatable()
1308 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1309 os = this->choose_output_section(object, name.c_str(), sh_type,
1310 shdr.get_sh_flags(), false,
1311 ORDER_INVALID, false);
1312 else
1313 {
1314 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1315 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1316 ORDER_INVALID, false);
1317 }
1318
1319 os->set_should_link_to_symtab();
1320 os->set_info_section(data_section);
1321
1322 Output_section_data* posd;
1323 if (sh_type == elfcpp::SHT_REL)
1324 {
1325 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1326 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1327 size,
1328 big_endian>(rr);
1329 }
1330 else if (sh_type == elfcpp::SHT_RELA)
1331 {
1332 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1333 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1334 size,
1335 big_endian>(rr);
1336 }
1337 else
1338 gold_unreachable();
1339
1340 os->add_output_section_data(posd);
1341 rr->set_output_data(posd);
1342
1343 return os;
1344 }
1345
1346 // Handle a group section when doing a relocatable link.
1347
1348 template<int size, bool big_endian>
1349 void
1350 Layout::layout_group(Symbol_table* symtab,
1351 Sized_relobj_file<size, big_endian>* object,
1352 unsigned int,
1353 const char* group_section_name,
1354 const char* signature,
1355 const elfcpp::Shdr<size, big_endian>& shdr,
1356 elfcpp::Elf_Word flags,
1357 std::vector<unsigned int>* shndxes)
1358 {
1359 gold_assert(parameters->options().relocatable());
1360 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1361 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1362 Output_section* os = this->make_output_section(group_section_name,
1363 elfcpp::SHT_GROUP,
1364 shdr.get_sh_flags(),
1365 ORDER_INVALID, false);
1366
1367 // We need to find a symbol with the signature in the symbol table.
1368 // If we don't find one now, we need to look again later.
1369 Symbol* sym = symtab->lookup(signature, NULL);
1370 if (sym != NULL)
1371 os->set_info_symndx(sym);
1372 else
1373 {
1374 // Reserve some space to minimize reallocations.
1375 if (this->group_signatures_.empty())
1376 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1377
1378 // We will wind up using a symbol whose name is the signature.
1379 // So just put the signature in the symbol name pool to save it.
1380 signature = symtab->canonicalize_name(signature);
1381 this->group_signatures_.push_back(Group_signature(os, signature));
1382 }
1383
1384 os->set_should_link_to_symtab();
1385 os->set_entsize(4);
1386
1387 section_size_type entry_count =
1388 convert_to_section_size_type(shdr.get_sh_size() / 4);
1389 Output_section_data* posd =
1390 new Output_data_group<size, big_endian>(object, entry_count, flags,
1391 shndxes);
1392 os->add_output_section_data(posd);
1393 }
1394
1395 // Special GNU handling of sections name .eh_frame. They will
1396 // normally hold exception frame data as defined by the C++ ABI
1397 // (http://codesourcery.com/cxx-abi/).
1398
1399 template<int size, bool big_endian>
1400 Output_section*
1401 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1402 const unsigned char* symbols,
1403 off_t symbols_size,
1404 const unsigned char* symbol_names,
1405 off_t symbol_names_size,
1406 unsigned int shndx,
1407 const elfcpp::Shdr<size, big_endian>& shdr,
1408 unsigned int reloc_shndx, unsigned int reloc_type,
1409 off_t* off)
1410 {
1411 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1412 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1413 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1414
1415 Output_section* os = this->make_eh_frame_section(object);
1416 if (os == NULL)
1417 return NULL;
1418
1419 gold_assert(this->eh_frame_section_ == os);
1420
1421 elfcpp::Elf_Xword orig_flags = os->flags();
1422
1423 if (!parameters->incremental()
1424 && this->eh_frame_data_->add_ehframe_input_section(object,
1425 symbols,
1426 symbols_size,
1427 symbol_names,
1428 symbol_names_size,
1429 shndx,
1430 reloc_shndx,
1431 reloc_type))
1432 {
1433 os->update_flags_for_input_section(shdr.get_sh_flags());
1434
1435 // A writable .eh_frame section is a RELRO section.
1436 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1437 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1438 {
1439 os->set_is_relro();
1440 os->set_order(ORDER_RELRO);
1441 }
1442
1443 // We found a .eh_frame section we are going to optimize, so now
1444 // we can add the set of optimized sections to the output
1445 // section. We need to postpone adding this until we've found a
1446 // section we can optimize so that the .eh_frame section in
1447 // crtbegin.o winds up at the start of the output section.
1448 if (!this->added_eh_frame_data_)
1449 {
1450 os->add_output_section_data(this->eh_frame_data_);
1451 this->added_eh_frame_data_ = true;
1452 }
1453 *off = -1;
1454 }
1455 else
1456 {
1457 // We couldn't handle this .eh_frame section for some reason.
1458 // Add it as a normal section.
1459 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1460 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1461 reloc_shndx, saw_sections_clause);
1462 this->have_added_input_section_ = true;
1463
1464 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1465 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1466 os->set_order(this->default_section_order(os, false));
1467 }
1468
1469 return os;
1470 }
1471
1472 // Create and return the magic .eh_frame section. Create
1473 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1474 // input .eh_frame section; it may be NULL.
1475
1476 Output_section*
1477 Layout::make_eh_frame_section(const Relobj* object)
1478 {
1479 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1480 // SHT_PROGBITS.
1481 Output_section* os = this->choose_output_section(object, ".eh_frame",
1482 elfcpp::SHT_PROGBITS,
1483 elfcpp::SHF_ALLOC, false,
1484 ORDER_EHFRAME, false);
1485 if (os == NULL)
1486 return NULL;
1487
1488 if (this->eh_frame_section_ == NULL)
1489 {
1490 this->eh_frame_section_ = os;
1491 this->eh_frame_data_ = new Eh_frame();
1492
1493 // For incremental linking, we do not optimize .eh_frame sections
1494 // or create a .eh_frame_hdr section.
1495 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1496 {
1497 Output_section* hdr_os =
1498 this->choose_output_section(NULL, ".eh_frame_hdr",
1499 elfcpp::SHT_PROGBITS,
1500 elfcpp::SHF_ALLOC, false,
1501 ORDER_EHFRAME, false);
1502
1503 if (hdr_os != NULL)
1504 {
1505 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1506 this->eh_frame_data_);
1507 hdr_os->add_output_section_data(hdr_posd);
1508
1509 hdr_os->set_after_input_sections();
1510
1511 if (!this->script_options_->saw_phdrs_clause())
1512 {
1513 Output_segment* hdr_oseg;
1514 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1515 elfcpp::PF_R);
1516 hdr_oseg->add_output_section_to_nonload(hdr_os,
1517 elfcpp::PF_R);
1518 }
1519
1520 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1521 }
1522 }
1523 }
1524
1525 return os;
1526 }
1527
1528 // Add an exception frame for a PLT. This is called from target code.
1529
1530 void
1531 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1532 size_t cie_length, const unsigned char* fde_data,
1533 size_t fde_length)
1534 {
1535 if (parameters->incremental())
1536 {
1537 // FIXME: Maybe this could work some day....
1538 return;
1539 }
1540 Output_section* os = this->make_eh_frame_section(NULL);
1541 if (os == NULL)
1542 return;
1543 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1544 fde_data, fde_length);
1545 if (!this->added_eh_frame_data_)
1546 {
1547 os->add_output_section_data(this->eh_frame_data_);
1548 this->added_eh_frame_data_ = true;
1549 }
1550 }
1551
1552 // Scan a .debug_info or .debug_types section, and add summary
1553 // information to the .gdb_index section.
1554
1555 template<int size, bool big_endian>
1556 void
1557 Layout::add_to_gdb_index(bool is_type_unit,
1558 Sized_relobj<size, big_endian>* object,
1559 const unsigned char* symbols,
1560 off_t symbols_size,
1561 unsigned int shndx,
1562 unsigned int reloc_shndx,
1563 unsigned int reloc_type)
1564 {
1565 if (this->gdb_index_data_ == NULL)
1566 {
1567 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1568 elfcpp::SHT_PROGBITS, 0,
1569 false, ORDER_INVALID,
1570 false);
1571 if (os == NULL)
1572 return;
1573
1574 this->gdb_index_data_ = new Gdb_index(os);
1575 os->add_output_section_data(this->gdb_index_data_);
1576 os->set_after_input_sections();
1577 }
1578
1579 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1580 symbols_size, shndx, reloc_shndx,
1581 reloc_type);
1582 }
1583
1584 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1585 // the output section.
1586
1587 Output_section*
1588 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1589 elfcpp::Elf_Xword flags,
1590 Output_section_data* posd,
1591 Output_section_order order, bool is_relro)
1592 {
1593 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1594 false, order, is_relro);
1595 if (os != NULL)
1596 os->add_output_section_data(posd);
1597 return os;
1598 }
1599
1600 // Map section flags to segment flags.
1601
1602 elfcpp::Elf_Word
1603 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1604 {
1605 elfcpp::Elf_Word ret = elfcpp::PF_R;
1606 if ((flags & elfcpp::SHF_WRITE) != 0)
1607 ret |= elfcpp::PF_W;
1608 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1609 ret |= elfcpp::PF_X;
1610 return ret;
1611 }
1612
1613 // Make a new Output_section, and attach it to segments as
1614 // appropriate. ORDER is the order in which this section should
1615 // appear in the output segment. IS_RELRO is true if this is a relro
1616 // (read-only after relocations) section.
1617
1618 Output_section*
1619 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1620 elfcpp::Elf_Xword flags,
1621 Output_section_order order, bool is_relro)
1622 {
1623 Output_section* os;
1624 if ((flags & elfcpp::SHF_ALLOC) == 0
1625 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1626 && is_compressible_debug_section(name))
1627 os = new Output_compressed_section(&parameters->options(), name, type,
1628 flags);
1629 else if ((flags & elfcpp::SHF_ALLOC) == 0
1630 && parameters->options().strip_debug_non_line()
1631 && strcmp(".debug_abbrev", name) == 0)
1632 {
1633 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1634 name, type, flags);
1635 if (this->debug_info_)
1636 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1637 }
1638 else if ((flags & elfcpp::SHF_ALLOC) == 0
1639 && parameters->options().strip_debug_non_line()
1640 && strcmp(".debug_info", name) == 0)
1641 {
1642 os = this->debug_info_ = new Output_reduced_debug_info_section(
1643 name, type, flags);
1644 if (this->debug_abbrev_)
1645 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1646 }
1647 else
1648 {
1649 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1650 // not have correct section types. Force them here.
1651 if (type == elfcpp::SHT_PROGBITS)
1652 {
1653 if (is_prefix_of(".init_array", name))
1654 type = elfcpp::SHT_INIT_ARRAY;
1655 else if (is_prefix_of(".preinit_array", name))
1656 type = elfcpp::SHT_PREINIT_ARRAY;
1657 else if (is_prefix_of(".fini_array", name))
1658 type = elfcpp::SHT_FINI_ARRAY;
1659 }
1660
1661 // FIXME: const_cast is ugly.
1662 Target* target = const_cast<Target*>(&parameters->target());
1663 os = target->make_output_section(name, type, flags);
1664 }
1665
1666 // With -z relro, we have to recognize the special sections by name.
1667 // There is no other way.
1668 bool is_relro_local = false;
1669 if (!this->script_options_->saw_sections_clause()
1670 && parameters->options().relro()
1671 && (flags & elfcpp::SHF_ALLOC) != 0
1672 && (flags & elfcpp::SHF_WRITE) != 0)
1673 {
1674 if (type == elfcpp::SHT_PROGBITS)
1675 {
1676 if ((flags & elfcpp::SHF_TLS) != 0)
1677 is_relro = true;
1678 else if (strcmp(name, ".data.rel.ro") == 0)
1679 is_relro = true;
1680 else if (strcmp(name, ".data.rel.ro.local") == 0)
1681 {
1682 is_relro = true;
1683 is_relro_local = true;
1684 }
1685 else if (strcmp(name, ".ctors") == 0
1686 || strcmp(name, ".dtors") == 0
1687 || strcmp(name, ".jcr") == 0)
1688 is_relro = true;
1689 }
1690 else if (type == elfcpp::SHT_INIT_ARRAY
1691 || type == elfcpp::SHT_FINI_ARRAY
1692 || type == elfcpp::SHT_PREINIT_ARRAY)
1693 is_relro = true;
1694 }
1695
1696 if (is_relro)
1697 os->set_is_relro();
1698
1699 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1700 order = this->default_section_order(os, is_relro_local);
1701
1702 os->set_order(order);
1703
1704 parameters->target().new_output_section(os);
1705
1706 this->section_list_.push_back(os);
1707
1708 // The GNU linker by default sorts some sections by priority, so we
1709 // do the same. We need to know that this might happen before we
1710 // attach any input sections.
1711 if (!this->script_options_->saw_sections_clause()
1712 && !parameters->options().relocatable()
1713 && (strcmp(name, ".init_array") == 0
1714 || strcmp(name, ".fini_array") == 0
1715 || (!parameters->options().ctors_in_init_array()
1716 && (strcmp(name, ".ctors") == 0
1717 || strcmp(name, ".dtors") == 0))))
1718 os->set_may_sort_attached_input_sections();
1719
1720 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1721 // sections before other .text sections. We are compatible. We
1722 // need to know that this might happen before we attach any input
1723 // sections.
1724 if (parameters->options().text_reorder()
1725 && !this->script_options_->saw_sections_clause()
1726 && !this->is_section_ordering_specified()
1727 && !parameters->options().relocatable()
1728 && strcmp(name, ".text") == 0)
1729 os->set_may_sort_attached_input_sections();
1730
1731 // GNU linker sorts section by name with --sort-section=name.
1732 if (strcmp(parameters->options().sort_section(), "name") == 0)
1733 os->set_must_sort_attached_input_sections();
1734
1735 // Check for .stab*str sections, as .stab* sections need to link to
1736 // them.
1737 if (type == elfcpp::SHT_STRTAB
1738 && !this->have_stabstr_section_
1739 && strncmp(name, ".stab", 5) == 0
1740 && strcmp(name + strlen(name) - 3, "str") == 0)
1741 this->have_stabstr_section_ = true;
1742
1743 // During a full incremental link, we add patch space to most
1744 // PROGBITS and NOBITS sections. Flag those that may be
1745 // arbitrarily padded.
1746 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1747 && order != ORDER_INTERP
1748 && order != ORDER_INIT
1749 && order != ORDER_PLT
1750 && order != ORDER_FINI
1751 && order != ORDER_RELRO_LAST
1752 && order != ORDER_NON_RELRO_FIRST
1753 && strcmp(name, ".eh_frame") != 0
1754 && strcmp(name, ".ctors") != 0
1755 && strcmp(name, ".dtors") != 0
1756 && strcmp(name, ".jcr") != 0)
1757 {
1758 os->set_is_patch_space_allowed();
1759
1760 // Certain sections require "holes" to be filled with
1761 // specific fill patterns. These fill patterns may have
1762 // a minimum size, so we must prevent allocations from the
1763 // free list that leave a hole smaller than the minimum.
1764 if (strcmp(name, ".debug_info") == 0)
1765 os->set_free_space_fill(new Output_fill_debug_info(false));
1766 else if (strcmp(name, ".debug_types") == 0)
1767 os->set_free_space_fill(new Output_fill_debug_info(true));
1768 else if (strcmp(name, ".debug_line") == 0)
1769 os->set_free_space_fill(new Output_fill_debug_line());
1770 }
1771
1772 // If we have already attached the sections to segments, then we
1773 // need to attach this one now. This happens for sections created
1774 // directly by the linker.
1775 if (this->sections_are_attached_)
1776 this->attach_section_to_segment(&parameters->target(), os);
1777
1778 return os;
1779 }
1780
1781 // Return the default order in which a section should be placed in an
1782 // output segment. This function captures a lot of the ideas in
1783 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1784 // linker created section is normally set when the section is created;
1785 // this function is used for input sections.
1786
1787 Output_section_order
1788 Layout::default_section_order(Output_section* os, bool is_relro_local)
1789 {
1790 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1791 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1792 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1793 bool is_bss = false;
1794
1795 switch (os->type())
1796 {
1797 default:
1798 case elfcpp::SHT_PROGBITS:
1799 break;
1800 case elfcpp::SHT_NOBITS:
1801 is_bss = true;
1802 break;
1803 case elfcpp::SHT_RELA:
1804 case elfcpp::SHT_REL:
1805 if (!is_write)
1806 return ORDER_DYNAMIC_RELOCS;
1807 break;
1808 case elfcpp::SHT_HASH:
1809 case elfcpp::SHT_DYNAMIC:
1810 case elfcpp::SHT_SHLIB:
1811 case elfcpp::SHT_DYNSYM:
1812 case elfcpp::SHT_GNU_HASH:
1813 case elfcpp::SHT_GNU_verdef:
1814 case elfcpp::SHT_GNU_verneed:
1815 case elfcpp::SHT_GNU_versym:
1816 if (!is_write)
1817 return ORDER_DYNAMIC_LINKER;
1818 break;
1819 case elfcpp::SHT_NOTE:
1820 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1821 }
1822
1823 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1824 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1825
1826 if (!is_bss && !is_write)
1827 {
1828 if (is_execinstr)
1829 {
1830 if (strcmp(os->name(), ".init") == 0)
1831 return ORDER_INIT;
1832 else if (strcmp(os->name(), ".fini") == 0)
1833 return ORDER_FINI;
1834 }
1835 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1836 }
1837
1838 if (os->is_relro())
1839 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1840
1841 if (os->is_small_section())
1842 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1843 if (os->is_large_section())
1844 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1845
1846 return is_bss ? ORDER_BSS : ORDER_DATA;
1847 }
1848
1849 // Attach output sections to segments. This is called after we have
1850 // seen all the input sections.
1851
1852 void
1853 Layout::attach_sections_to_segments(const Target* target)
1854 {
1855 for (Section_list::iterator p = this->section_list_.begin();
1856 p != this->section_list_.end();
1857 ++p)
1858 this->attach_section_to_segment(target, *p);
1859
1860 this->sections_are_attached_ = true;
1861 }
1862
1863 // Attach an output section to a segment.
1864
1865 void
1866 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1867 {
1868 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1869 this->unattached_section_list_.push_back(os);
1870 else
1871 this->attach_allocated_section_to_segment(target, os);
1872 }
1873
1874 // Attach an allocated output section to a segment.
1875
1876 void
1877 Layout::attach_allocated_section_to_segment(const Target* target,
1878 Output_section* os)
1879 {
1880 elfcpp::Elf_Xword flags = os->flags();
1881 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1882
1883 if (parameters->options().relocatable())
1884 return;
1885
1886 // If we have a SECTIONS clause, we can't handle the attachment to
1887 // segments until after we've seen all the sections.
1888 if (this->script_options_->saw_sections_clause())
1889 return;
1890
1891 gold_assert(!this->script_options_->saw_phdrs_clause());
1892
1893 // This output section goes into a PT_LOAD segment.
1894
1895 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1896
1897 // If this output section's segment has extra flags that need to be set,
1898 // coming from a linker plugin, do that.
1899 seg_flags |= os->extra_segment_flags();
1900
1901 // Check for --section-start.
1902 uint64_t addr;
1903 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1904
1905 // In general the only thing we really care about for PT_LOAD
1906 // segments is whether or not they are writable or executable,
1907 // so that is how we search for them.
1908 // Large data sections also go into their own PT_LOAD segment.
1909 // People who need segments sorted on some other basis will
1910 // have to use a linker script.
1911
1912 Segment_list::const_iterator p;
1913 if (!os->is_unique_segment())
1914 {
1915 for (p = this->segment_list_.begin();
1916 p != this->segment_list_.end();
1917 ++p)
1918 {
1919 if ((*p)->type() != elfcpp::PT_LOAD)
1920 continue;
1921 if ((*p)->is_unique_segment())
1922 continue;
1923 if (!parameters->options().omagic()
1924 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1925 continue;
1926 if ((target->isolate_execinstr() || parameters->options().rosegment())
1927 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1928 continue;
1929 // If -Tbss was specified, we need to separate the data and BSS
1930 // segments.
1931 if (parameters->options().user_set_Tbss())
1932 {
1933 if ((os->type() == elfcpp::SHT_NOBITS)
1934 == (*p)->has_any_data_sections())
1935 continue;
1936 }
1937 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1938 continue;
1939
1940 if (is_address_set)
1941 {
1942 if ((*p)->are_addresses_set())
1943 continue;
1944
1945 (*p)->add_initial_output_data(os);
1946 (*p)->update_flags_for_output_section(seg_flags);
1947 (*p)->set_addresses(addr, addr);
1948 break;
1949 }
1950
1951 (*p)->add_output_section_to_load(this, os, seg_flags);
1952 break;
1953 }
1954 }
1955
1956 if (p == this->segment_list_.end()
1957 || os->is_unique_segment())
1958 {
1959 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1960 seg_flags);
1961 if (os->is_large_data_section())
1962 oseg->set_is_large_data_segment();
1963 oseg->add_output_section_to_load(this, os, seg_flags);
1964 if (is_address_set)
1965 oseg->set_addresses(addr, addr);
1966 // Check if segment should be marked unique. For segments marked
1967 // unique by linker plugins, set the new alignment if specified.
1968 if (os->is_unique_segment())
1969 {
1970 oseg->set_is_unique_segment();
1971 if (os->segment_alignment() != 0)
1972 oseg->set_minimum_p_align(os->segment_alignment());
1973 }
1974 }
1975
1976 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1977 // segment.
1978 if (os->type() == elfcpp::SHT_NOTE)
1979 {
1980 // See if we already have an equivalent PT_NOTE segment.
1981 for (p = this->segment_list_.begin();
1982 p != segment_list_.end();
1983 ++p)
1984 {
1985 if ((*p)->type() == elfcpp::PT_NOTE
1986 && (((*p)->flags() & elfcpp::PF_W)
1987 == (seg_flags & elfcpp::PF_W)))
1988 {
1989 (*p)->add_output_section_to_nonload(os, seg_flags);
1990 break;
1991 }
1992 }
1993
1994 if (p == this->segment_list_.end())
1995 {
1996 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1997 seg_flags);
1998 oseg->add_output_section_to_nonload(os, seg_flags);
1999 }
2000 }
2001
2002 // If we see a loadable SHF_TLS section, we create a PT_TLS
2003 // segment. There can only be one such segment.
2004 if ((flags & elfcpp::SHF_TLS) != 0)
2005 {
2006 if (this->tls_segment_ == NULL)
2007 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2008 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2009 }
2010
2011 // If -z relro is in effect, and we see a relro section, we create a
2012 // PT_GNU_RELRO segment. There can only be one such segment.
2013 if (os->is_relro() && parameters->options().relro())
2014 {
2015 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2016 if (this->relro_segment_ == NULL)
2017 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2018 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2019 }
2020
2021 // If we see a section named .interp, put it into a PT_INTERP
2022 // segment. This seems broken to me, but this is what GNU ld does,
2023 // and glibc expects it.
2024 if (strcmp(os->name(), ".interp") == 0
2025 && !this->script_options_->saw_phdrs_clause())
2026 {
2027 if (this->interp_segment_ == NULL)
2028 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2029 else
2030 gold_warning(_("multiple '.interp' sections in input files "
2031 "may cause confusing PT_INTERP segment"));
2032 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2033 }
2034 }
2035
2036 // Make an output section for a script.
2037
2038 Output_section*
2039 Layout::make_output_section_for_script(
2040 const char* name,
2041 Script_sections::Section_type section_type)
2042 {
2043 name = this->namepool_.add(name, false, NULL);
2044 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2045 if (section_type == Script_sections::ST_NOLOAD)
2046 sh_flags = 0;
2047 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2048 sh_flags, ORDER_INVALID,
2049 false);
2050 os->set_found_in_sections_clause();
2051 if (section_type == Script_sections::ST_NOLOAD)
2052 os->set_is_noload();
2053 return os;
2054 }
2055
2056 // Return the number of segments we expect to see.
2057
2058 size_t
2059 Layout::expected_segment_count() const
2060 {
2061 size_t ret = this->segment_list_.size();
2062
2063 // If we didn't see a SECTIONS clause in a linker script, we should
2064 // already have the complete list of segments. Otherwise we ask the
2065 // SECTIONS clause how many segments it expects, and add in the ones
2066 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2067
2068 if (!this->script_options_->saw_sections_clause())
2069 return ret;
2070 else
2071 {
2072 const Script_sections* ss = this->script_options_->script_sections();
2073 return ret + ss->expected_segment_count(this);
2074 }
2075 }
2076
2077 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2078 // is whether we saw a .note.GNU-stack section in the object file.
2079 // GNU_STACK_FLAGS is the section flags. The flags give the
2080 // protection required for stack memory. We record this in an
2081 // executable as a PT_GNU_STACK segment. If an object file does not
2082 // have a .note.GNU-stack segment, we must assume that it is an old
2083 // object. On some targets that will force an executable stack.
2084
2085 void
2086 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2087 const Object* obj)
2088 {
2089 if (!seen_gnu_stack)
2090 {
2091 this->input_without_gnu_stack_note_ = true;
2092 if (parameters->options().warn_execstack()
2093 && parameters->target().is_default_stack_executable())
2094 gold_warning(_("%s: missing .note.GNU-stack section"
2095 " implies executable stack"),
2096 obj->name().c_str());
2097 }
2098 else
2099 {
2100 this->input_with_gnu_stack_note_ = true;
2101 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2102 {
2103 this->input_requires_executable_stack_ = true;
2104 if (parameters->options().warn_execstack())
2105 gold_warning(_("%s: requires executable stack"),
2106 obj->name().c_str());
2107 }
2108 }
2109 }
2110
2111 // Create automatic note sections.
2112
2113 void
2114 Layout::create_notes()
2115 {
2116 this->create_gold_note();
2117 this->create_executable_stack_info();
2118 this->create_build_id();
2119 }
2120
2121 // Create the dynamic sections which are needed before we read the
2122 // relocs.
2123
2124 void
2125 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2126 {
2127 if (parameters->doing_static_link())
2128 return;
2129
2130 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2131 elfcpp::SHT_DYNAMIC,
2132 (elfcpp::SHF_ALLOC
2133 | elfcpp::SHF_WRITE),
2134 false, ORDER_RELRO,
2135 true);
2136
2137 // A linker script may discard .dynamic, so check for NULL.
2138 if (this->dynamic_section_ != NULL)
2139 {
2140 this->dynamic_symbol_ =
2141 symtab->define_in_output_data("_DYNAMIC", NULL,
2142 Symbol_table::PREDEFINED,
2143 this->dynamic_section_, 0, 0,
2144 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2145 elfcpp::STV_HIDDEN, 0, false, false);
2146
2147 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2148
2149 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2150 }
2151 }
2152
2153 // For each output section whose name can be represented as C symbol,
2154 // define __start and __stop symbols for the section. This is a GNU
2155 // extension.
2156
2157 void
2158 Layout::define_section_symbols(Symbol_table* symtab)
2159 {
2160 for (Section_list::const_iterator p = this->section_list_.begin();
2161 p != this->section_list_.end();
2162 ++p)
2163 {
2164 const char* const name = (*p)->name();
2165 if (is_cident(name))
2166 {
2167 const std::string name_string(name);
2168 const std::string start_name(cident_section_start_prefix
2169 + name_string);
2170 const std::string stop_name(cident_section_stop_prefix
2171 + name_string);
2172
2173 symtab->define_in_output_data(start_name.c_str(),
2174 NULL, // version
2175 Symbol_table::PREDEFINED,
2176 *p,
2177 0, // value
2178 0, // symsize
2179 elfcpp::STT_NOTYPE,
2180 elfcpp::STB_GLOBAL,
2181 elfcpp::STV_DEFAULT,
2182 0, // nonvis
2183 false, // offset_is_from_end
2184 true); // only_if_ref
2185
2186 symtab->define_in_output_data(stop_name.c_str(),
2187 NULL, // version
2188 Symbol_table::PREDEFINED,
2189 *p,
2190 0, // value
2191 0, // symsize
2192 elfcpp::STT_NOTYPE,
2193 elfcpp::STB_GLOBAL,
2194 elfcpp::STV_DEFAULT,
2195 0, // nonvis
2196 true, // offset_is_from_end
2197 true); // only_if_ref
2198 }
2199 }
2200 }
2201
2202 // Define symbols for group signatures.
2203
2204 void
2205 Layout::define_group_signatures(Symbol_table* symtab)
2206 {
2207 for (Group_signatures::iterator p = this->group_signatures_.begin();
2208 p != this->group_signatures_.end();
2209 ++p)
2210 {
2211 Symbol* sym = symtab->lookup(p->signature, NULL);
2212 if (sym != NULL)
2213 p->section->set_info_symndx(sym);
2214 else
2215 {
2216 // Force the name of the group section to the group
2217 // signature, and use the group's section symbol as the
2218 // signature symbol.
2219 if (strcmp(p->section->name(), p->signature) != 0)
2220 {
2221 const char* name = this->namepool_.add(p->signature,
2222 true, NULL);
2223 p->section->set_name(name);
2224 }
2225 p->section->set_needs_symtab_index();
2226 p->section->set_info_section_symndx(p->section);
2227 }
2228 }
2229
2230 this->group_signatures_.clear();
2231 }
2232
2233 // Find the first read-only PT_LOAD segment, creating one if
2234 // necessary.
2235
2236 Output_segment*
2237 Layout::find_first_load_seg(const Target* target)
2238 {
2239 Output_segment* best = NULL;
2240 for (Segment_list::const_iterator p = this->segment_list_.begin();
2241 p != this->segment_list_.end();
2242 ++p)
2243 {
2244 if ((*p)->type() == elfcpp::PT_LOAD
2245 && ((*p)->flags() & elfcpp::PF_R) != 0
2246 && (parameters->options().omagic()
2247 || ((*p)->flags() & elfcpp::PF_W) == 0)
2248 && (!target->isolate_execinstr()
2249 || ((*p)->flags() & elfcpp::PF_X) == 0))
2250 {
2251 if (best == NULL || this->segment_precedes(*p, best))
2252 best = *p;
2253 }
2254 }
2255 if (best != NULL)
2256 return best;
2257
2258 gold_assert(!this->script_options_->saw_phdrs_clause());
2259
2260 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2261 elfcpp::PF_R);
2262 return load_seg;
2263 }
2264
2265 // Save states of all current output segments. Store saved states
2266 // in SEGMENT_STATES.
2267
2268 void
2269 Layout::save_segments(Segment_states* segment_states)
2270 {
2271 for (Segment_list::const_iterator p = this->segment_list_.begin();
2272 p != this->segment_list_.end();
2273 ++p)
2274 {
2275 Output_segment* segment = *p;
2276 // Shallow copy.
2277 Output_segment* copy = new Output_segment(*segment);
2278 (*segment_states)[segment] = copy;
2279 }
2280 }
2281
2282 // Restore states of output segments and delete any segment not found in
2283 // SEGMENT_STATES.
2284
2285 void
2286 Layout::restore_segments(const Segment_states* segment_states)
2287 {
2288 // Go through the segment list and remove any segment added in the
2289 // relaxation loop.
2290 this->tls_segment_ = NULL;
2291 this->relro_segment_ = NULL;
2292 Segment_list::iterator list_iter = this->segment_list_.begin();
2293 while (list_iter != this->segment_list_.end())
2294 {
2295 Output_segment* segment = *list_iter;
2296 Segment_states::const_iterator states_iter =
2297 segment_states->find(segment);
2298 if (states_iter != segment_states->end())
2299 {
2300 const Output_segment* copy = states_iter->second;
2301 // Shallow copy to restore states.
2302 *segment = *copy;
2303
2304 // Also fix up TLS and RELRO segment pointers as appropriate.
2305 if (segment->type() == elfcpp::PT_TLS)
2306 this->tls_segment_ = segment;
2307 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2308 this->relro_segment_ = segment;
2309
2310 ++list_iter;
2311 }
2312 else
2313 {
2314 list_iter = this->segment_list_.erase(list_iter);
2315 // This is a segment created during section layout. It should be
2316 // safe to remove it since we should have removed all pointers to it.
2317 delete segment;
2318 }
2319 }
2320 }
2321
2322 // Clean up after relaxation so that sections can be laid out again.
2323
2324 void
2325 Layout::clean_up_after_relaxation()
2326 {
2327 // Restore the segments to point state just prior to the relaxation loop.
2328 Script_sections* script_section = this->script_options_->script_sections();
2329 script_section->release_segments();
2330 this->restore_segments(this->segment_states_);
2331
2332 // Reset section addresses and file offsets
2333 for (Section_list::iterator p = this->section_list_.begin();
2334 p != this->section_list_.end();
2335 ++p)
2336 {
2337 (*p)->restore_states();
2338
2339 // If an input section changes size because of relaxation,
2340 // we need to adjust the section offsets of all input sections.
2341 // after such a section.
2342 if ((*p)->section_offsets_need_adjustment())
2343 (*p)->adjust_section_offsets();
2344
2345 (*p)->reset_address_and_file_offset();
2346 }
2347
2348 // Reset special output object address and file offsets.
2349 for (Data_list::iterator p = this->special_output_list_.begin();
2350 p != this->special_output_list_.end();
2351 ++p)
2352 (*p)->reset_address_and_file_offset();
2353
2354 // A linker script may have created some output section data objects.
2355 // They are useless now.
2356 for (Output_section_data_list::const_iterator p =
2357 this->script_output_section_data_list_.begin();
2358 p != this->script_output_section_data_list_.end();
2359 ++p)
2360 delete *p;
2361 this->script_output_section_data_list_.clear();
2362
2363 // Special-case fill output objects are recreated each time through
2364 // the relaxation loop.
2365 this->reset_relax_output();
2366 }
2367
2368 void
2369 Layout::reset_relax_output()
2370 {
2371 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2372 p != this->relax_output_list_.end();
2373 ++p)
2374 delete *p;
2375 this->relax_output_list_.clear();
2376 }
2377
2378 // Prepare for relaxation.
2379
2380 void
2381 Layout::prepare_for_relaxation()
2382 {
2383 // Create an relaxation debug check if in debugging mode.
2384 if (is_debugging_enabled(DEBUG_RELAXATION))
2385 this->relaxation_debug_check_ = new Relaxation_debug_check();
2386
2387 // Save segment states.
2388 this->segment_states_ = new Segment_states();
2389 this->save_segments(this->segment_states_);
2390
2391 for(Section_list::const_iterator p = this->section_list_.begin();
2392 p != this->section_list_.end();
2393 ++p)
2394 (*p)->save_states();
2395
2396 if (is_debugging_enabled(DEBUG_RELAXATION))
2397 this->relaxation_debug_check_->check_output_data_for_reset_values(
2398 this->section_list_, this->special_output_list_,
2399 this->relax_output_list_);
2400
2401 // Also enable recording of output section data from scripts.
2402 this->record_output_section_data_from_script_ = true;
2403 }
2404
2405 // If the user set the address of the text segment, that may not be
2406 // compatible with putting the segment headers and file headers into
2407 // that segment. For isolate_execinstr() targets, it's the rodata
2408 // segment rather than text where we might put the headers.
2409 static inline bool
2410 load_seg_unusable_for_headers(const Target* target)
2411 {
2412 const General_options& options = parameters->options();
2413 if (target->isolate_execinstr())
2414 return (options.user_set_Trodata_segment()
2415 && options.Trodata_segment() % target->abi_pagesize() != 0);
2416 else
2417 return (options.user_set_Ttext()
2418 && options.Ttext() % target->abi_pagesize() != 0);
2419 }
2420
2421 // Relaxation loop body: If target has no relaxation, this runs only once
2422 // Otherwise, the target relaxation hook is called at the end of
2423 // each iteration. If the hook returns true, it means re-layout of
2424 // section is required.
2425 //
2426 // The number of segments created by a linking script without a PHDRS
2427 // clause may be affected by section sizes and alignments. There is
2428 // a remote chance that relaxation causes different number of PT_LOAD
2429 // segments are created and sections are attached to different segments.
2430 // Therefore, we always throw away all segments created during section
2431 // layout. In order to be able to restart the section layout, we keep
2432 // a copy of the segment list right before the relaxation loop and use
2433 // that to restore the segments.
2434 //
2435 // PASS is the current relaxation pass number.
2436 // SYMTAB is a symbol table.
2437 // PLOAD_SEG is the address of a pointer for the load segment.
2438 // PHDR_SEG is a pointer to the PHDR segment.
2439 // SEGMENT_HEADERS points to the output segment header.
2440 // FILE_HEADER points to the output file header.
2441 // PSHNDX is the address to store the output section index.
2442
2443 off_t inline
2444 Layout::relaxation_loop_body(
2445 int pass,
2446 Target* target,
2447 Symbol_table* symtab,
2448 Output_segment** pload_seg,
2449 Output_segment* phdr_seg,
2450 Output_segment_headers* segment_headers,
2451 Output_file_header* file_header,
2452 unsigned int* pshndx)
2453 {
2454 // If this is not the first iteration, we need to clean up after
2455 // relaxation so that we can lay out the sections again.
2456 if (pass != 0)
2457 this->clean_up_after_relaxation();
2458
2459 // If there is a SECTIONS clause, put all the input sections into
2460 // the required order.
2461 Output_segment* load_seg;
2462 if (this->script_options_->saw_sections_clause())
2463 load_seg = this->set_section_addresses_from_script(symtab);
2464 else if (parameters->options().relocatable())
2465 load_seg = NULL;
2466 else
2467 load_seg = this->find_first_load_seg(target);
2468
2469 if (parameters->options().oformat_enum()
2470 != General_options::OBJECT_FORMAT_ELF)
2471 load_seg = NULL;
2472
2473 if (load_seg_unusable_for_headers(target))
2474 {
2475 load_seg = NULL;
2476 phdr_seg = NULL;
2477 }
2478
2479 gold_assert(phdr_seg == NULL
2480 || load_seg != NULL
2481 || this->script_options_->saw_sections_clause());
2482
2483 // If the address of the load segment we found has been set by
2484 // --section-start rather than by a script, then adjust the VMA and
2485 // LMA downward if possible to include the file and section headers.
2486 uint64_t header_gap = 0;
2487 if (load_seg != NULL
2488 && load_seg->are_addresses_set()
2489 && !this->script_options_->saw_sections_clause()
2490 && !parameters->options().relocatable())
2491 {
2492 file_header->finalize_data_size();
2493 segment_headers->finalize_data_size();
2494 size_t sizeof_headers = (file_header->data_size()
2495 + segment_headers->data_size());
2496 const uint64_t abi_pagesize = target->abi_pagesize();
2497 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2498 hdr_paddr &= ~(abi_pagesize - 1);
2499 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2500 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2501 load_seg = NULL;
2502 else
2503 {
2504 load_seg->set_addresses(load_seg->vaddr() - subtract,
2505 load_seg->paddr() - subtract);
2506 header_gap = subtract - sizeof_headers;
2507 }
2508 }
2509
2510 // Lay out the segment headers.
2511 if (!parameters->options().relocatable())
2512 {
2513 gold_assert(segment_headers != NULL);
2514 if (header_gap != 0 && load_seg != NULL)
2515 {
2516 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2517 load_seg->add_initial_output_data(z);
2518 }
2519 if (load_seg != NULL)
2520 load_seg->add_initial_output_data(segment_headers);
2521 if (phdr_seg != NULL)
2522 phdr_seg->add_initial_output_data(segment_headers);
2523 }
2524
2525 // Lay out the file header.
2526 if (load_seg != NULL)
2527 load_seg->add_initial_output_data(file_header);
2528
2529 if (this->script_options_->saw_phdrs_clause()
2530 && !parameters->options().relocatable())
2531 {
2532 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2533 // clause in a linker script.
2534 Script_sections* ss = this->script_options_->script_sections();
2535 ss->put_headers_in_phdrs(file_header, segment_headers);
2536 }
2537
2538 // We set the output section indexes in set_segment_offsets and
2539 // set_section_indexes.
2540 *pshndx = 1;
2541
2542 // Set the file offsets of all the segments, and all the sections
2543 // they contain.
2544 off_t off;
2545 if (!parameters->options().relocatable())
2546 off = this->set_segment_offsets(target, load_seg, pshndx);
2547 else
2548 off = this->set_relocatable_section_offsets(file_header, pshndx);
2549
2550 // Verify that the dummy relaxation does not change anything.
2551 if (is_debugging_enabled(DEBUG_RELAXATION))
2552 {
2553 if (pass == 0)
2554 this->relaxation_debug_check_->read_sections(this->section_list_);
2555 else
2556 this->relaxation_debug_check_->verify_sections(this->section_list_);
2557 }
2558
2559 *pload_seg = load_seg;
2560 return off;
2561 }
2562
2563 // Search the list of patterns and find the postion of the given section
2564 // name in the output section. If the section name matches a glob
2565 // pattern and a non-glob name, then the non-glob position takes
2566 // precedence. Return 0 if no match is found.
2567
2568 unsigned int
2569 Layout::find_section_order_index(const std::string& section_name)
2570 {
2571 Unordered_map<std::string, unsigned int>::iterator map_it;
2572 map_it = this->input_section_position_.find(section_name);
2573 if (map_it != this->input_section_position_.end())
2574 return map_it->second;
2575
2576 // Absolute match failed. Linear search the glob patterns.
2577 std::vector<std::string>::iterator it;
2578 for (it = this->input_section_glob_.begin();
2579 it != this->input_section_glob_.end();
2580 ++it)
2581 {
2582 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2583 {
2584 map_it = this->input_section_position_.find(*it);
2585 gold_assert(map_it != this->input_section_position_.end());
2586 return map_it->second;
2587 }
2588 }
2589 return 0;
2590 }
2591
2592 // Read the sequence of input sections from the file specified with
2593 // option --section-ordering-file.
2594
2595 void
2596 Layout::read_layout_from_file()
2597 {
2598 const char* filename = parameters->options().section_ordering_file();
2599 std::ifstream in;
2600 std::string line;
2601
2602 in.open(filename);
2603 if (!in)
2604 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2605 filename, strerror(errno));
2606
2607 std::getline(in, line); // this chops off the trailing \n, if any
2608 unsigned int position = 1;
2609 this->set_section_ordering_specified();
2610
2611 while (in)
2612 {
2613 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2614 line.resize(line.length() - 1);
2615 // Ignore comments, beginning with '#'
2616 if (line[0] == '#')
2617 {
2618 std::getline(in, line);
2619 continue;
2620 }
2621 this->input_section_position_[line] = position;
2622 // Store all glob patterns in a vector.
2623 if (is_wildcard_string(line.c_str()))
2624 this->input_section_glob_.push_back(line);
2625 position++;
2626 std::getline(in, line);
2627 }
2628 }
2629
2630 // Finalize the layout. When this is called, we have created all the
2631 // output sections and all the output segments which are based on
2632 // input sections. We have several things to do, and we have to do
2633 // them in the right order, so that we get the right results correctly
2634 // and efficiently.
2635
2636 // 1) Finalize the list of output segments and create the segment
2637 // table header.
2638
2639 // 2) Finalize the dynamic symbol table and associated sections.
2640
2641 // 3) Determine the final file offset of all the output segments.
2642
2643 // 4) Determine the final file offset of all the SHF_ALLOC output
2644 // sections.
2645
2646 // 5) Create the symbol table sections and the section name table
2647 // section.
2648
2649 // 6) Finalize the symbol table: set symbol values to their final
2650 // value and make a final determination of which symbols are going
2651 // into the output symbol table.
2652
2653 // 7) Create the section table header.
2654
2655 // 8) Determine the final file offset of all the output sections which
2656 // are not SHF_ALLOC, including the section table header.
2657
2658 // 9) Finalize the ELF file header.
2659
2660 // This function returns the size of the output file.
2661
2662 off_t
2663 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2664 Target* target, const Task* task)
2665 {
2666 target->finalize_sections(this, input_objects, symtab);
2667
2668 this->count_local_symbols(task, input_objects);
2669
2670 this->link_stabs_sections();
2671
2672 Output_segment* phdr_seg = NULL;
2673 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2674 {
2675 // There was a dynamic object in the link. We need to create
2676 // some information for the dynamic linker.
2677
2678 // Create the PT_PHDR segment which will hold the program
2679 // headers.
2680 if (!this->script_options_->saw_phdrs_clause())
2681 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2682
2683 // Create the dynamic symbol table, including the hash table.
2684 Output_section* dynstr;
2685 std::vector<Symbol*> dynamic_symbols;
2686 unsigned int local_dynamic_count;
2687 Versions versions(*this->script_options()->version_script_info(),
2688 &this->dynpool_);
2689 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2690 &local_dynamic_count, &dynamic_symbols,
2691 &versions);
2692
2693 // Create the .interp section to hold the name of the
2694 // interpreter, and put it in a PT_INTERP segment. Don't do it
2695 // if we saw a .interp section in an input file.
2696 if ((!parameters->options().shared()
2697 || parameters->options().dynamic_linker() != NULL)
2698 && this->interp_segment_ == NULL)
2699 this->create_interp(target);
2700
2701 // Finish the .dynamic section to hold the dynamic data, and put
2702 // it in a PT_DYNAMIC segment.
2703 this->finish_dynamic_section(input_objects, symtab);
2704
2705 // We should have added everything we need to the dynamic string
2706 // table.
2707 this->dynpool_.set_string_offsets();
2708
2709 // Create the version sections. We can't do this until the
2710 // dynamic string table is complete.
2711 this->create_version_sections(&versions, symtab, local_dynamic_count,
2712 dynamic_symbols, dynstr);
2713
2714 // Set the size of the _DYNAMIC symbol. We can't do this until
2715 // after we call create_version_sections.
2716 this->set_dynamic_symbol_size(symtab);
2717 }
2718
2719 // Create segment headers.
2720 Output_segment_headers* segment_headers =
2721 (parameters->options().relocatable()
2722 ? NULL
2723 : new Output_segment_headers(this->segment_list_));
2724
2725 // Lay out the file header.
2726 Output_file_header* file_header = new Output_file_header(target, symtab,
2727 segment_headers);
2728
2729 this->special_output_list_.push_back(file_header);
2730 if (segment_headers != NULL)
2731 this->special_output_list_.push_back(segment_headers);
2732
2733 // Find approriate places for orphan output sections if we are using
2734 // a linker script.
2735 if (this->script_options_->saw_sections_clause())
2736 this->place_orphan_sections_in_script();
2737
2738 Output_segment* load_seg;
2739 off_t off;
2740 unsigned int shndx;
2741 int pass = 0;
2742
2743 // Take a snapshot of the section layout as needed.
2744 if (target->may_relax())
2745 this->prepare_for_relaxation();
2746
2747 // Run the relaxation loop to lay out sections.
2748 do
2749 {
2750 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2751 phdr_seg, segment_headers, file_header,
2752 &shndx);
2753 pass++;
2754 }
2755 while (target->may_relax()
2756 && target->relax(pass, input_objects, symtab, this, task));
2757
2758 // If there is a load segment that contains the file and program headers,
2759 // provide a symbol __ehdr_start pointing there.
2760 // A program can use this to examine itself robustly.
2761 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2762 if (ehdr_start != NULL && ehdr_start->is_predefined())
2763 {
2764 if (load_seg != NULL)
2765 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2766 else
2767 ehdr_start->set_undefined();
2768 }
2769
2770 // Set the file offsets of all the non-data sections we've seen so
2771 // far which don't have to wait for the input sections. We need
2772 // this in order to finalize local symbols in non-allocated
2773 // sections.
2774 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2775
2776 // Set the section indexes of all unallocated sections seen so far,
2777 // in case any of them are somehow referenced by a symbol.
2778 shndx = this->set_section_indexes(shndx);
2779
2780 // Create the symbol table sections.
2781 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2782 if (!parameters->doing_static_link())
2783 this->assign_local_dynsym_offsets(input_objects);
2784
2785 // Process any symbol assignments from a linker script. This must
2786 // be called after the symbol table has been finalized.
2787 this->script_options_->finalize_symbols(symtab, this);
2788
2789 // Create the incremental inputs sections.
2790 if (this->incremental_inputs_)
2791 {
2792 this->incremental_inputs_->finalize();
2793 this->create_incremental_info_sections(symtab);
2794 }
2795
2796 // Create the .shstrtab section.
2797 Output_section* shstrtab_section = this->create_shstrtab();
2798
2799 // Set the file offsets of the rest of the non-data sections which
2800 // don't have to wait for the input sections.
2801 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2802
2803 // Now that all sections have been created, set the section indexes
2804 // for any sections which haven't been done yet.
2805 shndx = this->set_section_indexes(shndx);
2806
2807 // Create the section table header.
2808 this->create_shdrs(shstrtab_section, &off);
2809
2810 // If there are no sections which require postprocessing, we can
2811 // handle the section names now, and avoid a resize later.
2812 if (!this->any_postprocessing_sections_)
2813 {
2814 off = this->set_section_offsets(off,
2815 POSTPROCESSING_SECTIONS_PASS);
2816 off =
2817 this->set_section_offsets(off,
2818 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2819 }
2820
2821 file_header->set_section_info(this->section_headers_, shstrtab_section);
2822
2823 // Now we know exactly where everything goes in the output file
2824 // (except for non-allocated sections which require postprocessing).
2825 Output_data::layout_complete();
2826
2827 this->output_file_size_ = off;
2828
2829 return off;
2830 }
2831
2832 // Create a note header following the format defined in the ELF ABI.
2833 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2834 // of the section to create, DESCSZ is the size of the descriptor.
2835 // ALLOCATE is true if the section should be allocated in memory.
2836 // This returns the new note section. It sets *TRAILING_PADDING to
2837 // the number of trailing zero bytes required.
2838
2839 Output_section*
2840 Layout::create_note(const char* name, int note_type,
2841 const char* section_name, size_t descsz,
2842 bool allocate, size_t* trailing_padding)
2843 {
2844 // Authorities all agree that the values in a .note field should
2845 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2846 // they differ on what the alignment is for 64-bit binaries.
2847 // The GABI says unambiguously they take 8-byte alignment:
2848 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2849 // Other documentation says alignment should always be 4 bytes:
2850 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2851 // GNU ld and GNU readelf both support the latter (at least as of
2852 // version 2.16.91), and glibc always generates the latter for
2853 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2854 // here.
2855 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2856 const int size = parameters->target().get_size();
2857 #else
2858 const int size = 32;
2859 #endif
2860
2861 // The contents of the .note section.
2862 size_t namesz = strlen(name) + 1;
2863 size_t aligned_namesz = align_address(namesz, size / 8);
2864 size_t aligned_descsz = align_address(descsz, size / 8);
2865
2866 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2867
2868 unsigned char* buffer = new unsigned char[notehdrsz];
2869 memset(buffer, 0, notehdrsz);
2870
2871 bool is_big_endian = parameters->target().is_big_endian();
2872
2873 if (size == 32)
2874 {
2875 if (!is_big_endian)
2876 {
2877 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2878 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2879 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2880 }
2881 else
2882 {
2883 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2884 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2885 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2886 }
2887 }
2888 else if (size == 64)
2889 {
2890 if (!is_big_endian)
2891 {
2892 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2893 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2894 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2895 }
2896 else
2897 {
2898 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2899 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2900 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2901 }
2902 }
2903 else
2904 gold_unreachable();
2905
2906 memcpy(buffer + 3 * (size / 8), name, namesz);
2907
2908 elfcpp::Elf_Xword flags = 0;
2909 Output_section_order order = ORDER_INVALID;
2910 if (allocate)
2911 {
2912 flags = elfcpp::SHF_ALLOC;
2913 order = ORDER_RO_NOTE;
2914 }
2915 Output_section* os = this->choose_output_section(NULL, section_name,
2916 elfcpp::SHT_NOTE,
2917 flags, false, order, false);
2918 if (os == NULL)
2919 return NULL;
2920
2921 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2922 size / 8,
2923 "** note header");
2924 os->add_output_section_data(posd);
2925
2926 *trailing_padding = aligned_descsz - descsz;
2927
2928 return os;
2929 }
2930
2931 // For an executable or shared library, create a note to record the
2932 // version of gold used to create the binary.
2933
2934 void
2935 Layout::create_gold_note()
2936 {
2937 if (parameters->options().relocatable()
2938 || parameters->incremental_update())
2939 return;
2940
2941 std::string desc = std::string("gold ") + gold::get_version_string();
2942
2943 size_t trailing_padding;
2944 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2945 ".note.gnu.gold-version", desc.size(),
2946 false, &trailing_padding);
2947 if (os == NULL)
2948 return;
2949
2950 Output_section_data* posd = new Output_data_const(desc, 4);
2951 os->add_output_section_data(posd);
2952
2953 if (trailing_padding > 0)
2954 {
2955 posd = new Output_data_zero_fill(trailing_padding, 0);
2956 os->add_output_section_data(posd);
2957 }
2958 }
2959
2960 // Record whether the stack should be executable. This can be set
2961 // from the command line using the -z execstack or -z noexecstack
2962 // options. Otherwise, if any input file has a .note.GNU-stack
2963 // section with the SHF_EXECINSTR flag set, the stack should be
2964 // executable. Otherwise, if at least one input file a
2965 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2966 // section, we use the target default for whether the stack should be
2967 // executable. Otherwise, we don't generate a stack note. When
2968 // generating a object file, we create a .note.GNU-stack section with
2969 // the appropriate marking. When generating an executable or shared
2970 // library, we create a PT_GNU_STACK segment.
2971
2972 void
2973 Layout::create_executable_stack_info()
2974 {
2975 bool is_stack_executable;
2976 if (parameters->options().is_execstack_set())
2977 {
2978 is_stack_executable = parameters->options().is_stack_executable();
2979 if (!is_stack_executable
2980 && this->input_requires_executable_stack_
2981 && parameters->options().warn_execstack())
2982 gold_warning(_("one or more inputs require executable stack, "
2983 "but -z noexecstack was given"));
2984 }
2985 else if (!this->input_with_gnu_stack_note_)
2986 return;
2987 else
2988 {
2989 if (this->input_requires_executable_stack_)
2990 is_stack_executable = true;
2991 else if (this->input_without_gnu_stack_note_)
2992 is_stack_executable =
2993 parameters->target().is_default_stack_executable();
2994 else
2995 is_stack_executable = false;
2996 }
2997
2998 if (parameters->options().relocatable())
2999 {
3000 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3001 elfcpp::Elf_Xword flags = 0;
3002 if (is_stack_executable)
3003 flags |= elfcpp::SHF_EXECINSTR;
3004 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3005 ORDER_INVALID, false);
3006 }
3007 else
3008 {
3009 if (this->script_options_->saw_phdrs_clause())
3010 return;
3011 int flags = elfcpp::PF_R | elfcpp::PF_W;
3012 if (is_stack_executable)
3013 flags |= elfcpp::PF_X;
3014 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3015 }
3016 }
3017
3018 // If --build-id was used, set up the build ID note.
3019
3020 void
3021 Layout::create_build_id()
3022 {
3023 if (!parameters->options().user_set_build_id())
3024 return;
3025
3026 const char* style = parameters->options().build_id();
3027 if (strcmp(style, "none") == 0)
3028 return;
3029
3030 // Set DESCSZ to the size of the note descriptor. When possible,
3031 // set DESC to the note descriptor contents.
3032 size_t descsz;
3033 std::string desc;
3034 if (strcmp(style, "md5") == 0)
3035 descsz = 128 / 8;
3036 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3037 descsz = 160 / 8;
3038 else if (strcmp(style, "uuid") == 0)
3039 {
3040 const size_t uuidsz = 128 / 8;
3041
3042 char buffer[uuidsz];
3043 memset(buffer, 0, uuidsz);
3044
3045 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3046 if (descriptor < 0)
3047 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3048 strerror(errno));
3049 else
3050 {
3051 ssize_t got = ::read(descriptor, buffer, uuidsz);
3052 release_descriptor(descriptor, true);
3053 if (got < 0)
3054 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3055 else if (static_cast<size_t>(got) != uuidsz)
3056 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3057 uuidsz, got);
3058 }
3059
3060 desc.assign(buffer, uuidsz);
3061 descsz = uuidsz;
3062 }
3063 else if (strncmp(style, "0x", 2) == 0)
3064 {
3065 hex_init();
3066 const char* p = style + 2;
3067 while (*p != '\0')
3068 {
3069 if (hex_p(p[0]) && hex_p(p[1]))
3070 {
3071 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3072 desc += c;
3073 p += 2;
3074 }
3075 else if (*p == '-' || *p == ':')
3076 ++p;
3077 else
3078 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3079 style);
3080 }
3081 descsz = desc.size();
3082 }
3083 else
3084 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3085
3086 // Create the note.
3087 size_t trailing_padding;
3088 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3089 ".note.gnu.build-id", descsz, true,
3090 &trailing_padding);
3091 if (os == NULL)
3092 return;
3093
3094 if (!desc.empty())
3095 {
3096 // We know the value already, so we fill it in now.
3097 gold_assert(desc.size() == descsz);
3098
3099 Output_section_data* posd = new Output_data_const(desc, 4);
3100 os->add_output_section_data(posd);
3101
3102 if (trailing_padding != 0)
3103 {
3104 posd = new Output_data_zero_fill(trailing_padding, 0);
3105 os->add_output_section_data(posd);
3106 }
3107 }
3108 else
3109 {
3110 // We need to compute a checksum after we have completed the
3111 // link.
3112 gold_assert(trailing_padding == 0);
3113 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3114 os->add_output_section_data(this->build_id_note_);
3115 }
3116 }
3117
3118 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3119 // field of the former should point to the latter. I'm not sure who
3120 // started this, but the GNU linker does it, and some tools depend
3121 // upon it.
3122
3123 void
3124 Layout::link_stabs_sections()
3125 {
3126 if (!this->have_stabstr_section_)
3127 return;
3128
3129 for (Section_list::iterator p = this->section_list_.begin();
3130 p != this->section_list_.end();
3131 ++p)
3132 {
3133 if ((*p)->type() != elfcpp::SHT_STRTAB)
3134 continue;
3135
3136 const char* name = (*p)->name();
3137 if (strncmp(name, ".stab", 5) != 0)
3138 continue;
3139
3140 size_t len = strlen(name);
3141 if (strcmp(name + len - 3, "str") != 0)
3142 continue;
3143
3144 std::string stab_name(name, len - 3);
3145 Output_section* stab_sec;
3146 stab_sec = this->find_output_section(stab_name.c_str());
3147 if (stab_sec != NULL)
3148 stab_sec->set_link_section(*p);
3149 }
3150 }
3151
3152 // Create .gnu_incremental_inputs and related sections needed
3153 // for the next run of incremental linking to check what has changed.
3154
3155 void
3156 Layout::create_incremental_info_sections(Symbol_table* symtab)
3157 {
3158 Incremental_inputs* incr = this->incremental_inputs_;
3159
3160 gold_assert(incr != NULL);
3161
3162 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3163 incr->create_data_sections(symtab);
3164
3165 // Add the .gnu_incremental_inputs section.
3166 const char* incremental_inputs_name =
3167 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3168 Output_section* incremental_inputs_os =
3169 this->make_output_section(incremental_inputs_name,
3170 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3171 ORDER_INVALID, false);
3172 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3173
3174 // Add the .gnu_incremental_symtab section.
3175 const char* incremental_symtab_name =
3176 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3177 Output_section* incremental_symtab_os =
3178 this->make_output_section(incremental_symtab_name,
3179 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3180 ORDER_INVALID, false);
3181 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3182 incremental_symtab_os->set_entsize(4);
3183
3184 // Add the .gnu_incremental_relocs section.
3185 const char* incremental_relocs_name =
3186 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3187 Output_section* incremental_relocs_os =
3188 this->make_output_section(incremental_relocs_name,
3189 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3190 ORDER_INVALID, false);
3191 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3192 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3193
3194 // Add the .gnu_incremental_got_plt section.
3195 const char* incremental_got_plt_name =
3196 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3197 Output_section* incremental_got_plt_os =
3198 this->make_output_section(incremental_got_plt_name,
3199 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3200 ORDER_INVALID, false);
3201 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3202
3203 // Add the .gnu_incremental_strtab section.
3204 const char* incremental_strtab_name =
3205 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3206 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3207 elfcpp::SHT_STRTAB, 0,
3208 ORDER_INVALID, false);
3209 Output_data_strtab* strtab_data =
3210 new Output_data_strtab(incr->get_stringpool());
3211 incremental_strtab_os->add_output_section_data(strtab_data);
3212
3213 incremental_inputs_os->set_after_input_sections();
3214 incremental_symtab_os->set_after_input_sections();
3215 incremental_relocs_os->set_after_input_sections();
3216 incremental_got_plt_os->set_after_input_sections();
3217
3218 incremental_inputs_os->set_link_section(incremental_strtab_os);
3219 incremental_symtab_os->set_link_section(incremental_inputs_os);
3220 incremental_relocs_os->set_link_section(incremental_inputs_os);
3221 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3222 }
3223
3224 // Return whether SEG1 should be before SEG2 in the output file. This
3225 // is based entirely on the segment type and flags. When this is
3226 // called the segment addresses have normally not yet been set.
3227
3228 bool
3229 Layout::segment_precedes(const Output_segment* seg1,
3230 const Output_segment* seg2)
3231 {
3232 elfcpp::Elf_Word type1 = seg1->type();
3233 elfcpp::Elf_Word type2 = seg2->type();
3234
3235 // The single PT_PHDR segment is required to precede any loadable
3236 // segment. We simply make it always first.
3237 if (type1 == elfcpp::PT_PHDR)
3238 {
3239 gold_assert(type2 != elfcpp::PT_PHDR);
3240 return true;
3241 }
3242 if (type2 == elfcpp::PT_PHDR)
3243 return false;
3244
3245 // The single PT_INTERP segment is required to precede any loadable
3246 // segment. We simply make it always second.
3247 if (type1 == elfcpp::PT_INTERP)
3248 {
3249 gold_assert(type2 != elfcpp::PT_INTERP);
3250 return true;
3251 }
3252 if (type2 == elfcpp::PT_INTERP)
3253 return false;
3254
3255 // We then put PT_LOAD segments before any other segments.
3256 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3257 return true;
3258 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3259 return false;
3260
3261 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3262 // segment, because that is where the dynamic linker expects to find
3263 // it (this is just for efficiency; other positions would also work
3264 // correctly).
3265 if (type1 == elfcpp::PT_TLS
3266 && type2 != elfcpp::PT_TLS
3267 && type2 != elfcpp::PT_GNU_RELRO)
3268 return false;
3269 if (type2 == elfcpp::PT_TLS
3270 && type1 != elfcpp::PT_TLS
3271 && type1 != elfcpp::PT_GNU_RELRO)
3272 return true;
3273
3274 // We put the PT_GNU_RELRO segment last, because that is where the
3275 // dynamic linker expects to find it (as with PT_TLS, this is just
3276 // for efficiency).
3277 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3278 return false;
3279 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3280 return true;
3281
3282 const elfcpp::Elf_Word flags1 = seg1->flags();
3283 const elfcpp::Elf_Word flags2 = seg2->flags();
3284
3285 // The order of non-PT_LOAD segments is unimportant. We simply sort
3286 // by the numeric segment type and flags values. There should not
3287 // be more than one segment with the same type and flags, except
3288 // when a linker script specifies such.
3289 if (type1 != elfcpp::PT_LOAD)
3290 {
3291 if (type1 != type2)
3292 return type1 < type2;
3293 gold_assert(flags1 != flags2
3294 || this->script_options_->saw_phdrs_clause());
3295 return flags1 < flags2;
3296 }
3297
3298 // If the addresses are set already, sort by load address.
3299 if (seg1->are_addresses_set())
3300 {
3301 if (!seg2->are_addresses_set())
3302 return true;
3303
3304 unsigned int section_count1 = seg1->output_section_count();
3305 unsigned int section_count2 = seg2->output_section_count();
3306 if (section_count1 == 0 && section_count2 > 0)
3307 return true;
3308 if (section_count1 > 0 && section_count2 == 0)
3309 return false;
3310
3311 uint64_t paddr1 = (seg1->are_addresses_set()
3312 ? seg1->paddr()
3313 : seg1->first_section_load_address());
3314 uint64_t paddr2 = (seg2->are_addresses_set()
3315 ? seg2->paddr()
3316 : seg2->first_section_load_address());
3317
3318 if (paddr1 != paddr2)
3319 return paddr1 < paddr2;
3320 }
3321 else if (seg2->are_addresses_set())
3322 return false;
3323
3324 // A segment which holds large data comes after a segment which does
3325 // not hold large data.
3326 if (seg1->is_large_data_segment())
3327 {
3328 if (!seg2->is_large_data_segment())
3329 return false;
3330 }
3331 else if (seg2->is_large_data_segment())
3332 return true;
3333
3334 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3335 // segments come before writable segments. Then writable segments
3336 // with data come before writable segments without data. Then
3337 // executable segments come before non-executable segments. Then
3338 // the unlikely case of a non-readable segment comes before the
3339 // normal case of a readable segment. If there are multiple
3340 // segments with the same type and flags, we require that the
3341 // address be set, and we sort by virtual address and then physical
3342 // address.
3343 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3344 return (flags1 & elfcpp::PF_W) == 0;
3345 if ((flags1 & elfcpp::PF_W) != 0
3346 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3347 return seg1->has_any_data_sections();
3348 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3349 return (flags1 & elfcpp::PF_X) != 0;
3350 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3351 return (flags1 & elfcpp::PF_R) == 0;
3352
3353 // We shouldn't get here--we shouldn't create segments which we
3354 // can't distinguish. Unless of course we are using a weird linker
3355 // script or overlapping --section-start options. We could also get
3356 // here if plugins want unique segments for subsets of sections.
3357 gold_assert(this->script_options_->saw_phdrs_clause()
3358 || parameters->options().any_section_start()
3359 || this->is_unique_segment_for_sections_specified());
3360 return false;
3361 }
3362
3363 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3364
3365 static off_t
3366 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3367 {
3368 uint64_t unsigned_off = off;
3369 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3370 | (addr & (abi_pagesize - 1)));
3371 if (aligned_off < unsigned_off)
3372 aligned_off += abi_pagesize;
3373 return aligned_off;
3374 }
3375
3376 // On targets where the text segment contains only executable code,
3377 // a non-executable segment is never the text segment.
3378
3379 static inline bool
3380 is_text_segment(const Target* target, const Output_segment* seg)
3381 {
3382 elfcpp::Elf_Xword flags = seg->flags();
3383 if ((flags & elfcpp::PF_W) != 0)
3384 return false;
3385 if ((flags & elfcpp::PF_X) == 0)
3386 return !target->isolate_execinstr();
3387 return true;
3388 }
3389
3390 // Set the file offsets of all the segments, and all the sections they
3391 // contain. They have all been created. LOAD_SEG must be be laid out
3392 // first. Return the offset of the data to follow.
3393
3394 off_t
3395 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3396 unsigned int* pshndx)
3397 {
3398 // Sort them into the final order. We use a stable sort so that we
3399 // don't randomize the order of indistinguishable segments created
3400 // by linker scripts.
3401 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3402 Layout::Compare_segments(this));
3403
3404 // Find the PT_LOAD segments, and set their addresses and offsets
3405 // and their section's addresses and offsets.
3406 uint64_t start_addr;
3407 if (parameters->options().user_set_Ttext())
3408 start_addr = parameters->options().Ttext();
3409 else if (parameters->options().output_is_position_independent())
3410 start_addr = 0;
3411 else
3412 start_addr = target->default_text_segment_address();
3413
3414 uint64_t addr = start_addr;
3415 off_t off = 0;
3416
3417 // If LOAD_SEG is NULL, then the file header and segment headers
3418 // will not be loadable. But they still need to be at offset 0 in
3419 // the file. Set their offsets now.
3420 if (load_seg == NULL)
3421 {
3422 for (Data_list::iterator p = this->special_output_list_.begin();
3423 p != this->special_output_list_.end();
3424 ++p)
3425 {
3426 off = align_address(off, (*p)->addralign());
3427 (*p)->set_address_and_file_offset(0, off);
3428 off += (*p)->data_size();
3429 }
3430 }
3431
3432 unsigned int increase_relro = this->increase_relro_;
3433 if (this->script_options_->saw_sections_clause())
3434 increase_relro = 0;
3435
3436 const bool check_sections = parameters->options().check_sections();
3437 Output_segment* last_load_segment = NULL;
3438
3439 unsigned int shndx_begin = *pshndx;
3440 unsigned int shndx_load_seg = *pshndx;
3441
3442 for (Segment_list::iterator p = this->segment_list_.begin();
3443 p != this->segment_list_.end();
3444 ++p)
3445 {
3446 if ((*p)->type() == elfcpp::PT_LOAD)
3447 {
3448 if (target->isolate_execinstr())
3449 {
3450 // When we hit the segment that should contain the
3451 // file headers, reset the file offset so we place
3452 // it and subsequent segments appropriately.
3453 // We'll fix up the preceding segments below.
3454 if (load_seg == *p)
3455 {
3456 if (off == 0)
3457 load_seg = NULL;
3458 else
3459 {
3460 off = 0;
3461 shndx_load_seg = *pshndx;
3462 }
3463 }
3464 }
3465 else
3466 {
3467 // Verify that the file headers fall into the first segment.
3468 if (load_seg != NULL && load_seg != *p)
3469 gold_unreachable();
3470 load_seg = NULL;
3471 }
3472
3473 bool are_addresses_set = (*p)->are_addresses_set();
3474 if (are_addresses_set)
3475 {
3476 // When it comes to setting file offsets, we care about
3477 // the physical address.
3478 addr = (*p)->paddr();
3479 }
3480 else if (parameters->options().user_set_Ttext()
3481 && (parameters->options().omagic()
3482 || is_text_segment(target, *p)))
3483 {
3484 are_addresses_set = true;
3485 }
3486 else if (parameters->options().user_set_Trodata_segment()
3487 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3488 {
3489 addr = parameters->options().Trodata_segment();
3490 are_addresses_set = true;
3491 }
3492 else if (parameters->options().user_set_Tdata()
3493 && ((*p)->flags() & elfcpp::PF_W) != 0
3494 && (!parameters->options().user_set_Tbss()
3495 || (*p)->has_any_data_sections()))
3496 {
3497 addr = parameters->options().Tdata();
3498 are_addresses_set = true;
3499 }
3500 else if (parameters->options().user_set_Tbss()
3501 && ((*p)->flags() & elfcpp::PF_W) != 0
3502 && !(*p)->has_any_data_sections())
3503 {
3504 addr = parameters->options().Tbss();
3505 are_addresses_set = true;
3506 }
3507
3508 uint64_t orig_addr = addr;
3509 uint64_t orig_off = off;
3510
3511 uint64_t aligned_addr = 0;
3512 uint64_t abi_pagesize = target->abi_pagesize();
3513 uint64_t common_pagesize = target->common_pagesize();
3514
3515 if (!parameters->options().nmagic()
3516 && !parameters->options().omagic())
3517 (*p)->set_minimum_p_align(abi_pagesize);
3518
3519 if (!are_addresses_set)
3520 {
3521 // Skip the address forward one page, maintaining the same
3522 // position within the page. This lets us store both segments
3523 // overlapping on a single page in the file, but the loader will
3524 // put them on different pages in memory. We will revisit this
3525 // decision once we know the size of the segment.
3526
3527 uint64_t max_align = (*p)->maximum_alignment();
3528 if (max_align > abi_pagesize)
3529 addr = align_address(addr, max_align);
3530 aligned_addr = addr;
3531
3532 if (load_seg == *p)
3533 {
3534 // This is the segment that will contain the file
3535 // headers, so its offset will have to be exactly zero.
3536 gold_assert(orig_off == 0);
3537
3538 // If the target wants a fixed minimum distance from the
3539 // text segment to the read-only segment, move up now.
3540 uint64_t min_addr =
3541 start_addr + (parameters->options().user_set_rosegment_gap()
3542 ? parameters->options().rosegment_gap()
3543 : target->rosegment_gap());
3544 if (addr < min_addr)
3545 addr = min_addr;
3546
3547 // But this is not the first segment! To make its
3548 // address congruent with its offset, that address better
3549 // be aligned to the ABI-mandated page size.
3550 addr = align_address(addr, abi_pagesize);
3551 aligned_addr = addr;
3552 }
3553 else
3554 {
3555 if ((addr & (abi_pagesize - 1)) != 0)
3556 addr = addr + abi_pagesize;
3557
3558 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3559 }
3560 }
3561
3562 if (!parameters->options().nmagic()
3563 && !parameters->options().omagic())
3564 {
3565 // Here we are also taking care of the case when
3566 // the maximum segment alignment is larger than the page size.
3567 off = align_file_offset(off, addr,
3568 std::max(abi_pagesize,
3569 (*p)->maximum_alignment()));
3570 }
3571 else
3572 {
3573 // This is -N or -n with a section script which prevents
3574 // us from using a load segment. We need to ensure that
3575 // the file offset is aligned to the alignment of the
3576 // segment. This is because the linker script
3577 // implicitly assumed a zero offset. If we don't align
3578 // here, then the alignment of the sections in the
3579 // linker script may not match the alignment of the
3580 // sections in the set_section_addresses call below,
3581 // causing an error about dot moving backward.
3582 off = align_address(off, (*p)->maximum_alignment());
3583 }
3584
3585 unsigned int shndx_hold = *pshndx;
3586 bool has_relro = false;
3587 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3588 false, addr,
3589 &increase_relro,
3590 &has_relro,
3591 &off, pshndx);
3592
3593 // Now that we know the size of this segment, we may be able
3594 // to save a page in memory, at the cost of wasting some
3595 // file space, by instead aligning to the start of a new
3596 // page. Here we use the real machine page size rather than
3597 // the ABI mandated page size. If the segment has been
3598 // aligned so that the relro data ends at a page boundary,
3599 // we do not try to realign it.
3600
3601 if (!are_addresses_set
3602 && !has_relro
3603 && aligned_addr != addr
3604 && !parameters->incremental())
3605 {
3606 uint64_t first_off = (common_pagesize
3607 - (aligned_addr
3608 & (common_pagesize - 1)));
3609 uint64_t last_off = new_addr & (common_pagesize - 1);
3610 if (first_off > 0
3611 && last_off > 0
3612 && ((aligned_addr & ~ (common_pagesize - 1))
3613 != (new_addr & ~ (common_pagesize - 1)))
3614 && first_off + last_off <= common_pagesize)
3615 {
3616 *pshndx = shndx_hold;
3617 addr = align_address(aligned_addr, common_pagesize);
3618 addr = align_address(addr, (*p)->maximum_alignment());
3619 if ((addr & (abi_pagesize - 1)) != 0)
3620 addr = addr + abi_pagesize;
3621 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3622 off = align_file_offset(off, addr, abi_pagesize);
3623
3624 increase_relro = this->increase_relro_;
3625 if (this->script_options_->saw_sections_clause())
3626 increase_relro = 0;
3627 has_relro = false;
3628
3629 new_addr = (*p)->set_section_addresses(target, this,
3630 true, addr,
3631 &increase_relro,
3632 &has_relro,
3633 &off, pshndx);
3634 }
3635 }
3636
3637 addr = new_addr;
3638
3639 // Implement --check-sections. We know that the segments
3640 // are sorted by LMA.
3641 if (check_sections && last_load_segment != NULL)
3642 {
3643 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3644 if (last_load_segment->paddr() + last_load_segment->memsz()
3645 > (*p)->paddr())
3646 {
3647 unsigned long long lb1 = last_load_segment->paddr();
3648 unsigned long long le1 = lb1 + last_load_segment->memsz();
3649 unsigned long long lb2 = (*p)->paddr();
3650 unsigned long long le2 = lb2 + (*p)->memsz();
3651 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3652 "[0x%llx -> 0x%llx]"),
3653 lb1, le1, lb2, le2);
3654 }
3655 }
3656 last_load_segment = *p;
3657 }
3658 }
3659
3660 if (load_seg != NULL && target->isolate_execinstr())
3661 {
3662 // Process the early segments again, setting their file offsets
3663 // so they land after the segments starting at LOAD_SEG.
3664 off = align_file_offset(off, 0, target->abi_pagesize());
3665
3666 this->reset_relax_output();
3667
3668 for (Segment_list::iterator p = this->segment_list_.begin();
3669 *p != load_seg;
3670 ++p)
3671 {
3672 if ((*p)->type() == elfcpp::PT_LOAD)
3673 {
3674 // We repeat the whole job of assigning addresses and
3675 // offsets, but we really only want to change the offsets and
3676 // must ensure that the addresses all come out the same as
3677 // they did the first time through.
3678 bool has_relro = false;
3679 const uint64_t old_addr = (*p)->vaddr();
3680 const uint64_t old_end = old_addr + (*p)->memsz();
3681 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3682 true, old_addr,
3683 &increase_relro,
3684 &has_relro,
3685 &off,
3686 &shndx_begin);
3687 gold_assert(new_addr == old_end);
3688 }
3689 }
3690
3691 gold_assert(shndx_begin == shndx_load_seg);
3692 }
3693
3694 // Handle the non-PT_LOAD segments, setting their offsets from their
3695 // section's offsets.
3696 for (Segment_list::iterator p = this->segment_list_.begin();
3697 p != this->segment_list_.end();
3698 ++p)
3699 {
3700 if ((*p)->type() != elfcpp::PT_LOAD)
3701 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3702 ? increase_relro
3703 : 0);
3704 }
3705
3706 // Set the TLS offsets for each section in the PT_TLS segment.
3707 if (this->tls_segment_ != NULL)
3708 this->tls_segment_->set_tls_offsets();
3709
3710 return off;
3711 }
3712
3713 // Set the offsets of all the allocated sections when doing a
3714 // relocatable link. This does the same jobs as set_segment_offsets,
3715 // only for a relocatable link.
3716
3717 off_t
3718 Layout::set_relocatable_section_offsets(Output_data* file_header,
3719 unsigned int* pshndx)
3720 {
3721 off_t off = 0;
3722
3723 file_header->set_address_and_file_offset(0, 0);
3724 off += file_header->data_size();
3725
3726 for (Section_list::iterator p = this->section_list_.begin();
3727 p != this->section_list_.end();
3728 ++p)
3729 {
3730 // We skip unallocated sections here, except that group sections
3731 // have to come first.
3732 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3733 && (*p)->type() != elfcpp::SHT_GROUP)
3734 continue;
3735
3736 off = align_address(off, (*p)->addralign());
3737
3738 // The linker script might have set the address.
3739 if (!(*p)->is_address_valid())
3740 (*p)->set_address(0);
3741 (*p)->set_file_offset(off);
3742 (*p)->finalize_data_size();
3743 if ((*p)->type() != elfcpp::SHT_NOBITS)
3744 off += (*p)->data_size();
3745
3746 (*p)->set_out_shndx(*pshndx);
3747 ++*pshndx;
3748 }
3749
3750 return off;
3751 }
3752
3753 // Set the file offset of all the sections not associated with a
3754 // segment.
3755
3756 off_t
3757 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3758 {
3759 off_t startoff = off;
3760 off_t maxoff = off;
3761
3762 for (Section_list::iterator p = this->unattached_section_list_.begin();
3763 p != this->unattached_section_list_.end();
3764 ++p)
3765 {
3766 // The symtab section is handled in create_symtab_sections.
3767 if (*p == this->symtab_section_)
3768 continue;
3769
3770 // If we've already set the data size, don't set it again.
3771 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3772 continue;
3773
3774 if (pass == BEFORE_INPUT_SECTIONS_PASS
3775 && (*p)->requires_postprocessing())
3776 {
3777 (*p)->create_postprocessing_buffer();
3778 this->any_postprocessing_sections_ = true;
3779 }
3780
3781 if (pass == BEFORE_INPUT_SECTIONS_PASS
3782 && (*p)->after_input_sections())
3783 continue;
3784 else if (pass == POSTPROCESSING_SECTIONS_PASS
3785 && (!(*p)->after_input_sections()
3786 || (*p)->type() == elfcpp::SHT_STRTAB))
3787 continue;
3788 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3789 && (!(*p)->after_input_sections()
3790 || (*p)->type() != elfcpp::SHT_STRTAB))
3791 continue;
3792
3793 if (!parameters->incremental_update())
3794 {
3795 off = align_address(off, (*p)->addralign());
3796 (*p)->set_file_offset(off);
3797 (*p)->finalize_data_size();
3798 }
3799 else
3800 {
3801 // Incremental update: allocate file space from free list.
3802 (*p)->pre_finalize_data_size();
3803 off_t current_size = (*p)->current_data_size();
3804 off = this->allocate(current_size, (*p)->addralign(), startoff);
3805 if (off == -1)
3806 {
3807 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3808 this->free_list_.dump();
3809 gold_assert((*p)->output_section() != NULL);
3810 gold_fallback(_("out of patch space for section %s; "
3811 "relink with --incremental-full"),
3812 (*p)->output_section()->name());
3813 }
3814 (*p)->set_file_offset(off);
3815 (*p)->finalize_data_size();
3816 if ((*p)->data_size() > current_size)
3817 {
3818 gold_assert((*p)->output_section() != NULL);
3819 gold_fallback(_("%s: section changed size; "
3820 "relink with --incremental-full"),
3821 (*p)->output_section()->name());
3822 }
3823 gold_debug(DEBUG_INCREMENTAL,
3824 "set_section_offsets: %08lx %08lx %s",
3825 static_cast<long>(off),
3826 static_cast<long>((*p)->data_size()),
3827 ((*p)->output_section() != NULL
3828 ? (*p)->output_section()->name() : "(special)"));
3829 }
3830
3831 off += (*p)->data_size();
3832 if (off > maxoff)
3833 maxoff = off;
3834
3835 // At this point the name must be set.
3836 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3837 this->namepool_.add((*p)->name(), false, NULL);
3838 }
3839 return maxoff;
3840 }
3841
3842 // Set the section indexes of all the sections not associated with a
3843 // segment.
3844
3845 unsigned int
3846 Layout::set_section_indexes(unsigned int shndx)
3847 {
3848 for (Section_list::iterator p = this->unattached_section_list_.begin();
3849 p != this->unattached_section_list_.end();
3850 ++p)
3851 {
3852 if (!(*p)->has_out_shndx())
3853 {
3854 (*p)->set_out_shndx(shndx);
3855 ++shndx;
3856 }
3857 }
3858 return shndx;
3859 }
3860
3861 // Set the section addresses according to the linker script. This is
3862 // only called when we see a SECTIONS clause. This returns the
3863 // program segment which should hold the file header and segment
3864 // headers, if any. It will return NULL if they should not be in a
3865 // segment.
3866
3867 Output_segment*
3868 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3869 {
3870 Script_sections* ss = this->script_options_->script_sections();
3871 gold_assert(ss->saw_sections_clause());
3872 return this->script_options_->set_section_addresses(symtab, this);
3873 }
3874
3875 // Place the orphan sections in the linker script.
3876
3877 void
3878 Layout::place_orphan_sections_in_script()
3879 {
3880 Script_sections* ss = this->script_options_->script_sections();
3881 gold_assert(ss->saw_sections_clause());
3882
3883 // Place each orphaned output section in the script.
3884 for (Section_list::iterator p = this->section_list_.begin();
3885 p != this->section_list_.end();
3886 ++p)
3887 {
3888 if (!(*p)->found_in_sections_clause())
3889 ss->place_orphan(*p);
3890 }
3891 }
3892
3893 // Count the local symbols in the regular symbol table and the dynamic
3894 // symbol table, and build the respective string pools.
3895
3896 void
3897 Layout::count_local_symbols(const Task* task,
3898 const Input_objects* input_objects)
3899 {
3900 // First, figure out an upper bound on the number of symbols we'll
3901 // be inserting into each pool. This helps us create the pools with
3902 // the right size, to avoid unnecessary hashtable resizing.
3903 unsigned int symbol_count = 0;
3904 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3905 p != input_objects->relobj_end();
3906 ++p)
3907 symbol_count += (*p)->local_symbol_count();
3908
3909 // Go from "upper bound" to "estimate." We overcount for two
3910 // reasons: we double-count symbols that occur in more than one
3911 // object file, and we count symbols that are dropped from the
3912 // output. Add it all together and assume we overcount by 100%.
3913 symbol_count /= 2;
3914
3915 // We assume all symbols will go into both the sympool and dynpool.
3916 this->sympool_.reserve(symbol_count);
3917 this->dynpool_.reserve(symbol_count);
3918
3919 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3920 p != input_objects->relobj_end();
3921 ++p)
3922 {
3923 Task_lock_obj<Object> tlo(task, *p);
3924 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3925 }
3926 }
3927
3928 // Create the symbol table sections. Here we also set the final
3929 // values of the symbols. At this point all the loadable sections are
3930 // fully laid out. SHNUM is the number of sections so far.
3931
3932 void
3933 Layout::create_symtab_sections(const Input_objects* input_objects,
3934 Symbol_table* symtab,
3935 unsigned int shnum,
3936 off_t* poff)
3937 {
3938 int symsize;
3939 unsigned int align;
3940 if (parameters->target().get_size() == 32)
3941 {
3942 symsize = elfcpp::Elf_sizes<32>::sym_size;
3943 align = 4;
3944 }
3945 else if (parameters->target().get_size() == 64)
3946 {
3947 symsize = elfcpp::Elf_sizes<64>::sym_size;
3948 align = 8;
3949 }
3950 else
3951 gold_unreachable();
3952
3953 // Compute file offsets relative to the start of the symtab section.
3954 off_t off = 0;
3955
3956 // Save space for the dummy symbol at the start of the section. We
3957 // never bother to write this out--it will just be left as zero.
3958 off += symsize;
3959 unsigned int local_symbol_index = 1;
3960
3961 // Add STT_SECTION symbols for each Output section which needs one.
3962 for (Section_list::iterator p = this->section_list_.begin();
3963 p != this->section_list_.end();
3964 ++p)
3965 {
3966 if (!(*p)->needs_symtab_index())
3967 (*p)->set_symtab_index(-1U);
3968 else
3969 {
3970 (*p)->set_symtab_index(local_symbol_index);
3971 ++local_symbol_index;
3972 off += symsize;
3973 }
3974 }
3975
3976 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3977 p != input_objects->relobj_end();
3978 ++p)
3979 {
3980 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3981 off, symtab);
3982 off += (index - local_symbol_index) * symsize;
3983 local_symbol_index = index;
3984 }
3985
3986 unsigned int local_symcount = local_symbol_index;
3987 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3988
3989 off_t dynoff;
3990 size_t dyn_global_index;
3991 size_t dyncount;
3992 if (this->dynsym_section_ == NULL)
3993 {
3994 dynoff = 0;
3995 dyn_global_index = 0;
3996 dyncount = 0;
3997 }
3998 else
3999 {
4000 dyn_global_index = this->dynsym_section_->info();
4001 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4002 dynoff = this->dynsym_section_->offset() + locsize;
4003 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4004 gold_assert(static_cast<off_t>(dyncount * symsize)
4005 == this->dynsym_section_->data_size() - locsize);
4006 }
4007
4008 off_t global_off = off;
4009 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4010 &this->sympool_, &local_symcount);
4011
4012 if (!parameters->options().strip_all())
4013 {
4014 this->sympool_.set_string_offsets();
4015
4016 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4017 Output_section* osymtab = this->make_output_section(symtab_name,
4018 elfcpp::SHT_SYMTAB,
4019 0, ORDER_INVALID,
4020 false);
4021 this->symtab_section_ = osymtab;
4022
4023 Output_section_data* pos = new Output_data_fixed_space(off, align,
4024 "** symtab");
4025 osymtab->add_output_section_data(pos);
4026
4027 // We generate a .symtab_shndx section if we have more than
4028 // SHN_LORESERVE sections. Technically it is possible that we
4029 // don't need one, because it is possible that there are no
4030 // symbols in any of sections with indexes larger than
4031 // SHN_LORESERVE. That is probably unusual, though, and it is
4032 // easier to always create one than to compute section indexes
4033 // twice (once here, once when writing out the symbols).
4034 if (shnum >= elfcpp::SHN_LORESERVE)
4035 {
4036 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4037 false, NULL);
4038 Output_section* osymtab_xindex =
4039 this->make_output_section(symtab_xindex_name,
4040 elfcpp::SHT_SYMTAB_SHNDX, 0,
4041 ORDER_INVALID, false);
4042
4043 size_t symcount = off / symsize;
4044 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4045
4046 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4047
4048 osymtab_xindex->set_link_section(osymtab);
4049 osymtab_xindex->set_addralign(4);
4050 osymtab_xindex->set_entsize(4);
4051
4052 osymtab_xindex->set_after_input_sections();
4053
4054 // This tells the driver code to wait until the symbol table
4055 // has written out before writing out the postprocessing
4056 // sections, including the .symtab_shndx section.
4057 this->any_postprocessing_sections_ = true;
4058 }
4059
4060 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4061 Output_section* ostrtab = this->make_output_section(strtab_name,
4062 elfcpp::SHT_STRTAB,
4063 0, ORDER_INVALID,
4064 false);
4065
4066 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4067 ostrtab->add_output_section_data(pstr);
4068
4069 off_t symtab_off;
4070 if (!parameters->incremental_update())
4071 symtab_off = align_address(*poff, align);
4072 else
4073 {
4074 symtab_off = this->allocate(off, align, *poff);
4075 if (off == -1)
4076 gold_fallback(_("out of patch space for symbol table; "
4077 "relink with --incremental-full"));
4078 gold_debug(DEBUG_INCREMENTAL,
4079 "create_symtab_sections: %08lx %08lx .symtab",
4080 static_cast<long>(symtab_off),
4081 static_cast<long>(off));
4082 }
4083
4084 symtab->set_file_offset(symtab_off + global_off);
4085 osymtab->set_file_offset(symtab_off);
4086 osymtab->finalize_data_size();
4087 osymtab->set_link_section(ostrtab);
4088 osymtab->set_info(local_symcount);
4089 osymtab->set_entsize(symsize);
4090
4091 if (symtab_off + off > *poff)
4092 *poff = symtab_off + off;
4093 }
4094 }
4095
4096 // Create the .shstrtab section, which holds the names of the
4097 // sections. At the time this is called, we have created all the
4098 // output sections except .shstrtab itself.
4099
4100 Output_section*
4101 Layout::create_shstrtab()
4102 {
4103 // FIXME: We don't need to create a .shstrtab section if we are
4104 // stripping everything.
4105
4106 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4107
4108 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4109 ORDER_INVALID, false);
4110
4111 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4112 {
4113 // We can't write out this section until we've set all the
4114 // section names, and we don't set the names of compressed
4115 // output sections until relocations are complete. FIXME: With
4116 // the current names we use, this is unnecessary.
4117 os->set_after_input_sections();
4118 }
4119
4120 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4121 os->add_output_section_data(posd);
4122
4123 return os;
4124 }
4125
4126 // Create the section headers. SIZE is 32 or 64. OFF is the file
4127 // offset.
4128
4129 void
4130 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4131 {
4132 Output_section_headers* oshdrs;
4133 oshdrs = new Output_section_headers(this,
4134 &this->segment_list_,
4135 &this->section_list_,
4136 &this->unattached_section_list_,
4137 &this->namepool_,
4138 shstrtab_section);
4139 off_t off;
4140 if (!parameters->incremental_update())
4141 off = align_address(*poff, oshdrs->addralign());
4142 else
4143 {
4144 oshdrs->pre_finalize_data_size();
4145 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4146 if (off == -1)
4147 gold_fallback(_("out of patch space for section header table; "
4148 "relink with --incremental-full"));
4149 gold_debug(DEBUG_INCREMENTAL,
4150 "create_shdrs: %08lx %08lx (section header table)",
4151 static_cast<long>(off),
4152 static_cast<long>(off + oshdrs->data_size()));
4153 }
4154 oshdrs->set_address_and_file_offset(0, off);
4155 off += oshdrs->data_size();
4156 if (off > *poff)
4157 *poff = off;
4158 this->section_headers_ = oshdrs;
4159 }
4160
4161 // Count the allocated sections.
4162
4163 size_t
4164 Layout::allocated_output_section_count() const
4165 {
4166 size_t section_count = 0;
4167 for (Segment_list::const_iterator p = this->segment_list_.begin();
4168 p != this->segment_list_.end();
4169 ++p)
4170 section_count += (*p)->output_section_count();
4171 return section_count;
4172 }
4173
4174 // Create the dynamic symbol table.
4175
4176 void
4177 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4178 Symbol_table* symtab,
4179 Output_section** pdynstr,
4180 unsigned int* plocal_dynamic_count,
4181 std::vector<Symbol*>* pdynamic_symbols,
4182 Versions* pversions)
4183 {
4184 // Count all the symbols in the dynamic symbol table, and set the
4185 // dynamic symbol indexes.
4186
4187 // Skip symbol 0, which is always all zeroes.
4188 unsigned int index = 1;
4189
4190 // Add STT_SECTION symbols for each Output section which needs one.
4191 for (Section_list::iterator p = this->section_list_.begin();
4192 p != this->section_list_.end();
4193 ++p)
4194 {
4195 if (!(*p)->needs_dynsym_index())
4196 (*p)->set_dynsym_index(-1U);
4197 else
4198 {
4199 (*p)->set_dynsym_index(index);
4200 ++index;
4201 }
4202 }
4203
4204 // Count the local symbols that need to go in the dynamic symbol table,
4205 // and set the dynamic symbol indexes.
4206 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4207 p != input_objects->relobj_end();
4208 ++p)
4209 {
4210 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4211 index = new_index;
4212 }
4213
4214 unsigned int local_symcount = index;
4215 *plocal_dynamic_count = local_symcount;
4216
4217 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4218 &this->dynpool_, pversions);
4219
4220 int symsize;
4221 unsigned int align;
4222 const int size = parameters->target().get_size();
4223 if (size == 32)
4224 {
4225 symsize = elfcpp::Elf_sizes<32>::sym_size;
4226 align = 4;
4227 }
4228 else if (size == 64)
4229 {
4230 symsize = elfcpp::Elf_sizes<64>::sym_size;
4231 align = 8;
4232 }
4233 else
4234 gold_unreachable();
4235
4236 // Create the dynamic symbol table section.
4237
4238 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4239 elfcpp::SHT_DYNSYM,
4240 elfcpp::SHF_ALLOC,
4241 false,
4242 ORDER_DYNAMIC_LINKER,
4243 false);
4244
4245 // Check for NULL as a linker script may discard .dynsym.
4246 if (dynsym != NULL)
4247 {
4248 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4249 align,
4250 "** dynsym");
4251 dynsym->add_output_section_data(odata);
4252
4253 dynsym->set_info(local_symcount);
4254 dynsym->set_entsize(symsize);
4255 dynsym->set_addralign(align);
4256
4257 this->dynsym_section_ = dynsym;
4258 }
4259
4260 Output_data_dynamic* const odyn = this->dynamic_data_;
4261 if (odyn != NULL)
4262 {
4263 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4264 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4265 }
4266
4267 // If there are more than SHN_LORESERVE allocated sections, we
4268 // create a .dynsym_shndx section. It is possible that we don't
4269 // need one, because it is possible that there are no dynamic
4270 // symbols in any of the sections with indexes larger than
4271 // SHN_LORESERVE. This is probably unusual, though, and at this
4272 // time we don't know the actual section indexes so it is
4273 // inconvenient to check.
4274 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4275 {
4276 Output_section* dynsym_xindex =
4277 this->choose_output_section(NULL, ".dynsym_shndx",
4278 elfcpp::SHT_SYMTAB_SHNDX,
4279 elfcpp::SHF_ALLOC,
4280 false, ORDER_DYNAMIC_LINKER, false);
4281
4282 if (dynsym_xindex != NULL)
4283 {
4284 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4285
4286 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4287
4288 dynsym_xindex->set_link_section(dynsym);
4289 dynsym_xindex->set_addralign(4);
4290 dynsym_xindex->set_entsize(4);
4291
4292 dynsym_xindex->set_after_input_sections();
4293
4294 // This tells the driver code to wait until the symbol table
4295 // has written out before writing out the postprocessing
4296 // sections, including the .dynsym_shndx section.
4297 this->any_postprocessing_sections_ = true;
4298 }
4299 }
4300
4301 // Create the dynamic string table section.
4302
4303 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4304 elfcpp::SHT_STRTAB,
4305 elfcpp::SHF_ALLOC,
4306 false,
4307 ORDER_DYNAMIC_LINKER,
4308 false);
4309 *pdynstr = dynstr;
4310 if (dynstr != NULL)
4311 {
4312 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4313 dynstr->add_output_section_data(strdata);
4314
4315 if (dynsym != NULL)
4316 dynsym->set_link_section(dynstr);
4317 if (this->dynamic_section_ != NULL)
4318 this->dynamic_section_->set_link_section(dynstr);
4319
4320 if (odyn != NULL)
4321 {
4322 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4323 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4324 }
4325 }
4326
4327 // Create the hash tables. The Gnu-style hash table must be
4328 // built first, because it changes the order of the symbols
4329 // in the dynamic symbol table.
4330
4331 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4332 || strcmp(parameters->options().hash_style(), "both") == 0)
4333 {
4334 unsigned char* phash;
4335 unsigned int hashlen;
4336 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4337 &phash, &hashlen);
4338
4339 Output_section* hashsec =
4340 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4341 elfcpp::SHF_ALLOC, false,
4342 ORDER_DYNAMIC_LINKER, false);
4343
4344 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4345 hashlen,
4346 align,
4347 "** hash");
4348 if (hashsec != NULL && hashdata != NULL)
4349 hashsec->add_output_section_data(hashdata);
4350
4351 if (hashsec != NULL)
4352 {
4353 if (dynsym != NULL)
4354 hashsec->set_link_section(dynsym);
4355
4356 // For a 64-bit target, the entries in .gnu.hash do not have
4357 // a uniform size, so we only set the entry size for a
4358 // 32-bit target.
4359 if (parameters->target().get_size() == 32)
4360 hashsec->set_entsize(4);
4361
4362 if (odyn != NULL)
4363 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4364 }
4365 }
4366
4367 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4368 || strcmp(parameters->options().hash_style(), "both") == 0)
4369 {
4370 unsigned char* phash;
4371 unsigned int hashlen;
4372 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4373 &phash, &hashlen);
4374
4375 Output_section* hashsec =
4376 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4377 elfcpp::SHF_ALLOC, false,
4378 ORDER_DYNAMIC_LINKER, false);
4379
4380 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4381 hashlen,
4382 align,
4383 "** hash");
4384 if (hashsec != NULL && hashdata != NULL)
4385 hashsec->add_output_section_data(hashdata);
4386
4387 if (hashsec != NULL)
4388 {
4389 if (dynsym != NULL)
4390 hashsec->set_link_section(dynsym);
4391 hashsec->set_entsize(4);
4392 }
4393
4394 if (odyn != NULL)
4395 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4396 }
4397 }
4398
4399 // Assign offsets to each local portion of the dynamic symbol table.
4400
4401 void
4402 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4403 {
4404 Output_section* dynsym = this->dynsym_section_;
4405 if (dynsym == NULL)
4406 return;
4407
4408 off_t off = dynsym->offset();
4409
4410 // Skip the dummy symbol at the start of the section.
4411 off += dynsym->entsize();
4412
4413 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4414 p != input_objects->relobj_end();
4415 ++p)
4416 {
4417 unsigned int count = (*p)->set_local_dynsym_offset(off);
4418 off += count * dynsym->entsize();
4419 }
4420 }
4421
4422 // Create the version sections.
4423
4424 void
4425 Layout::create_version_sections(const Versions* versions,
4426 const Symbol_table* symtab,
4427 unsigned int local_symcount,
4428 const std::vector<Symbol*>& dynamic_symbols,
4429 const Output_section* dynstr)
4430 {
4431 if (!versions->any_defs() && !versions->any_needs())
4432 return;
4433
4434 switch (parameters->size_and_endianness())
4435 {
4436 #ifdef HAVE_TARGET_32_LITTLE
4437 case Parameters::TARGET_32_LITTLE:
4438 this->sized_create_version_sections<32, false>(versions, symtab,
4439 local_symcount,
4440 dynamic_symbols, dynstr);
4441 break;
4442 #endif
4443 #ifdef HAVE_TARGET_32_BIG
4444 case Parameters::TARGET_32_BIG:
4445 this->sized_create_version_sections<32, true>(versions, symtab,
4446 local_symcount,
4447 dynamic_symbols, dynstr);
4448 break;
4449 #endif
4450 #ifdef HAVE_TARGET_64_LITTLE
4451 case Parameters::TARGET_64_LITTLE:
4452 this->sized_create_version_sections<64, false>(versions, symtab,
4453 local_symcount,
4454 dynamic_symbols, dynstr);
4455 break;
4456 #endif
4457 #ifdef HAVE_TARGET_64_BIG
4458 case Parameters::TARGET_64_BIG:
4459 this->sized_create_version_sections<64, true>(versions, symtab,
4460 local_symcount,
4461 dynamic_symbols, dynstr);
4462 break;
4463 #endif
4464 default:
4465 gold_unreachable();
4466 }
4467 }
4468
4469 // Create the version sections, sized version.
4470
4471 template<int size, bool big_endian>
4472 void
4473 Layout::sized_create_version_sections(
4474 const Versions* versions,
4475 const Symbol_table* symtab,
4476 unsigned int local_symcount,
4477 const std::vector<Symbol*>& dynamic_symbols,
4478 const Output_section* dynstr)
4479 {
4480 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4481 elfcpp::SHT_GNU_versym,
4482 elfcpp::SHF_ALLOC,
4483 false,
4484 ORDER_DYNAMIC_LINKER,
4485 false);
4486
4487 // Check for NULL since a linker script may discard this section.
4488 if (vsec != NULL)
4489 {
4490 unsigned char* vbuf;
4491 unsigned int vsize;
4492 versions->symbol_section_contents<size, big_endian>(symtab,
4493 &this->dynpool_,
4494 local_symcount,
4495 dynamic_symbols,
4496 &vbuf, &vsize);
4497
4498 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4499 "** versions");
4500
4501 vsec->add_output_section_data(vdata);
4502 vsec->set_entsize(2);
4503 vsec->set_link_section(this->dynsym_section_);
4504 }
4505
4506 Output_data_dynamic* const odyn = this->dynamic_data_;
4507 if (odyn != NULL && vsec != NULL)
4508 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4509
4510 if (versions->any_defs())
4511 {
4512 Output_section* vdsec;
4513 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4514 elfcpp::SHT_GNU_verdef,
4515 elfcpp::SHF_ALLOC,
4516 false, ORDER_DYNAMIC_LINKER, false);
4517
4518 if (vdsec != NULL)
4519 {
4520 unsigned char* vdbuf;
4521 unsigned int vdsize;
4522 unsigned int vdentries;
4523 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4524 &vdbuf, &vdsize,
4525 &vdentries);
4526
4527 Output_section_data* vddata =
4528 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4529
4530 vdsec->add_output_section_data(vddata);
4531 vdsec->set_link_section(dynstr);
4532 vdsec->set_info(vdentries);
4533
4534 if (odyn != NULL)
4535 {
4536 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4537 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4538 }
4539 }
4540 }
4541
4542 if (versions->any_needs())
4543 {
4544 Output_section* vnsec;
4545 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4546 elfcpp::SHT_GNU_verneed,
4547 elfcpp::SHF_ALLOC,
4548 false, ORDER_DYNAMIC_LINKER, false);
4549
4550 if (vnsec != NULL)
4551 {
4552 unsigned char* vnbuf;
4553 unsigned int vnsize;
4554 unsigned int vnentries;
4555 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4556 &vnbuf, &vnsize,
4557 &vnentries);
4558
4559 Output_section_data* vndata =
4560 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4561
4562 vnsec->add_output_section_data(vndata);
4563 vnsec->set_link_section(dynstr);
4564 vnsec->set_info(vnentries);
4565
4566 if (odyn != NULL)
4567 {
4568 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4569 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4570 }
4571 }
4572 }
4573 }
4574
4575 // Create the .interp section and PT_INTERP segment.
4576
4577 void
4578 Layout::create_interp(const Target* target)
4579 {
4580 gold_assert(this->interp_segment_ == NULL);
4581
4582 const char* interp = parameters->options().dynamic_linker();
4583 if (interp == NULL)
4584 {
4585 interp = target->dynamic_linker();
4586 gold_assert(interp != NULL);
4587 }
4588
4589 size_t len = strlen(interp) + 1;
4590
4591 Output_section_data* odata = new Output_data_const(interp, len, 1);
4592
4593 Output_section* osec = this->choose_output_section(NULL, ".interp",
4594 elfcpp::SHT_PROGBITS,
4595 elfcpp::SHF_ALLOC,
4596 false, ORDER_INTERP,
4597 false);
4598 if (osec != NULL)
4599 osec->add_output_section_data(odata);
4600 }
4601
4602 // Add dynamic tags for the PLT and the dynamic relocs. This is
4603 // called by the target-specific code. This does nothing if not doing
4604 // a dynamic link.
4605
4606 // USE_REL is true for REL relocs rather than RELA relocs.
4607
4608 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4609
4610 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4611 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4612 // some targets have multiple reloc sections in PLT_REL.
4613
4614 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4615 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4616 // section.
4617
4618 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4619 // executable.
4620
4621 void
4622 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4623 const Output_data* plt_rel,
4624 const Output_data_reloc_generic* dyn_rel,
4625 bool add_debug, bool dynrel_includes_plt)
4626 {
4627 Output_data_dynamic* odyn = this->dynamic_data_;
4628 if (odyn == NULL)
4629 return;
4630
4631 if (plt_got != NULL && plt_got->output_section() != NULL)
4632 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4633
4634 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4635 {
4636 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4637 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4638 odyn->add_constant(elfcpp::DT_PLTREL,
4639 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4640 }
4641
4642 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4643 || (dynrel_includes_plt
4644 && plt_rel != NULL
4645 && plt_rel->output_section() != NULL))
4646 {
4647 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4648 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4649 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4650 (have_dyn_rel
4651 ? dyn_rel->output_section()
4652 : plt_rel->output_section()));
4653 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4654 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4655 odyn->add_section_size(size_tag,
4656 dyn_rel->output_section(),
4657 plt_rel->output_section());
4658 else if (have_dyn_rel)
4659 odyn->add_section_size(size_tag, dyn_rel->output_section());
4660 else
4661 odyn->add_section_size(size_tag, plt_rel->output_section());
4662 const int size = parameters->target().get_size();
4663 elfcpp::DT rel_tag;
4664 int rel_size;
4665 if (use_rel)
4666 {
4667 rel_tag = elfcpp::DT_RELENT;
4668 if (size == 32)
4669 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4670 else if (size == 64)
4671 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4672 else
4673 gold_unreachable();
4674 }
4675 else
4676 {
4677 rel_tag = elfcpp::DT_RELAENT;
4678 if (size == 32)
4679 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4680 else if (size == 64)
4681 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4682 else
4683 gold_unreachable();
4684 }
4685 odyn->add_constant(rel_tag, rel_size);
4686
4687 if (parameters->options().combreloc() && have_dyn_rel)
4688 {
4689 size_t c = dyn_rel->relative_reloc_count();
4690 if (c > 0)
4691 odyn->add_constant((use_rel
4692 ? elfcpp::DT_RELCOUNT
4693 : elfcpp::DT_RELACOUNT),
4694 c);
4695 }
4696 }
4697
4698 if (add_debug && !parameters->options().shared())
4699 {
4700 // The value of the DT_DEBUG tag is filled in by the dynamic
4701 // linker at run time, and used by the debugger.
4702 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4703 }
4704 }
4705
4706 // Finish the .dynamic section and PT_DYNAMIC segment.
4707
4708 void
4709 Layout::finish_dynamic_section(const Input_objects* input_objects,
4710 const Symbol_table* symtab)
4711 {
4712 if (!this->script_options_->saw_phdrs_clause()
4713 && this->dynamic_section_ != NULL)
4714 {
4715 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4716 (elfcpp::PF_R
4717 | elfcpp::PF_W));
4718 oseg->add_output_section_to_nonload(this->dynamic_section_,
4719 elfcpp::PF_R | elfcpp::PF_W);
4720 }
4721
4722 Output_data_dynamic* const odyn = this->dynamic_data_;
4723 if (odyn == NULL)
4724 return;
4725
4726 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4727 p != input_objects->dynobj_end();
4728 ++p)
4729 {
4730 if (!(*p)->is_needed() && (*p)->as_needed())
4731 {
4732 // This dynamic object was linked with --as-needed, but it
4733 // is not needed.
4734 continue;
4735 }
4736
4737 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4738 }
4739
4740 if (parameters->options().shared())
4741 {
4742 const char* soname = parameters->options().soname();
4743 if (soname != NULL)
4744 odyn->add_string(elfcpp::DT_SONAME, soname);
4745 }
4746
4747 Symbol* sym = symtab->lookup(parameters->options().init());
4748 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4749 odyn->add_symbol(elfcpp::DT_INIT, sym);
4750
4751 sym = symtab->lookup(parameters->options().fini());
4752 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4753 odyn->add_symbol(elfcpp::DT_FINI, sym);
4754
4755 // Look for .init_array, .preinit_array and .fini_array by checking
4756 // section types.
4757 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4758 p != this->section_list_.end();
4759 ++p)
4760 switch((*p)->type())
4761 {
4762 case elfcpp::SHT_FINI_ARRAY:
4763 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4764 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4765 break;
4766 case elfcpp::SHT_INIT_ARRAY:
4767 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4768 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4769 break;
4770 case elfcpp::SHT_PREINIT_ARRAY:
4771 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4772 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4773 break;
4774 default:
4775 break;
4776 }
4777
4778 // Add a DT_RPATH entry if needed.
4779 const General_options::Dir_list& rpath(parameters->options().rpath());
4780 if (!rpath.empty())
4781 {
4782 std::string rpath_val;
4783 for (General_options::Dir_list::const_iterator p = rpath.begin();
4784 p != rpath.end();
4785 ++p)
4786 {
4787 if (rpath_val.empty())
4788 rpath_val = p->name();
4789 else
4790 {
4791 // Eliminate duplicates.
4792 General_options::Dir_list::const_iterator q;
4793 for (q = rpath.begin(); q != p; ++q)
4794 if (q->name() == p->name())
4795 break;
4796 if (q == p)
4797 {
4798 rpath_val += ':';
4799 rpath_val += p->name();
4800 }
4801 }
4802 }
4803
4804 if (!parameters->options().enable_new_dtags())
4805 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4806 else
4807 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4808 }
4809
4810 // Look for text segments that have dynamic relocations.
4811 bool have_textrel = false;
4812 if (!this->script_options_->saw_sections_clause())
4813 {
4814 for (Segment_list::const_iterator p = this->segment_list_.begin();
4815 p != this->segment_list_.end();
4816 ++p)
4817 {
4818 if ((*p)->type() == elfcpp::PT_LOAD
4819 && ((*p)->flags() & elfcpp::PF_W) == 0
4820 && (*p)->has_dynamic_reloc())
4821 {
4822 have_textrel = true;
4823 break;
4824 }
4825 }
4826 }
4827 else
4828 {
4829 // We don't know the section -> segment mapping, so we are
4830 // conservative and just look for readonly sections with
4831 // relocations. If those sections wind up in writable segments,
4832 // then we have created an unnecessary DT_TEXTREL entry.
4833 for (Section_list::const_iterator p = this->section_list_.begin();
4834 p != this->section_list_.end();
4835 ++p)
4836 {
4837 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4838 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4839 && (*p)->has_dynamic_reloc())
4840 {
4841 have_textrel = true;
4842 break;
4843 }
4844 }
4845 }
4846
4847 if (parameters->options().filter() != NULL)
4848 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4849 if (parameters->options().any_auxiliary())
4850 {
4851 for (options::String_set::const_iterator p =
4852 parameters->options().auxiliary_begin();
4853 p != parameters->options().auxiliary_end();
4854 ++p)
4855 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4856 }
4857
4858 // Add a DT_FLAGS entry if necessary.
4859 unsigned int flags = 0;
4860 if (have_textrel)
4861 {
4862 // Add a DT_TEXTREL for compatibility with older loaders.
4863 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4864 flags |= elfcpp::DF_TEXTREL;
4865
4866 if (parameters->options().text())
4867 gold_error(_("read-only segment has dynamic relocations"));
4868 else if (parameters->options().warn_shared_textrel()
4869 && parameters->options().shared())
4870 gold_warning(_("shared library text segment is not shareable"));
4871 }
4872 if (parameters->options().shared() && this->has_static_tls())
4873 flags |= elfcpp::DF_STATIC_TLS;
4874 if (parameters->options().origin())
4875 flags |= elfcpp::DF_ORIGIN;
4876 if (parameters->options().Bsymbolic()
4877 && !parameters->options().have_dynamic_list())
4878 {
4879 flags |= elfcpp::DF_SYMBOLIC;
4880 // Add DT_SYMBOLIC for compatibility with older loaders.
4881 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4882 }
4883 if (parameters->options().now())
4884 flags |= elfcpp::DF_BIND_NOW;
4885 if (flags != 0)
4886 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4887
4888 flags = 0;
4889 if (parameters->options().global())
4890 flags |= elfcpp::DF_1_GLOBAL;
4891 if (parameters->options().initfirst())
4892 flags |= elfcpp::DF_1_INITFIRST;
4893 if (parameters->options().interpose())
4894 flags |= elfcpp::DF_1_INTERPOSE;
4895 if (parameters->options().loadfltr())
4896 flags |= elfcpp::DF_1_LOADFLTR;
4897 if (parameters->options().nodefaultlib())
4898 flags |= elfcpp::DF_1_NODEFLIB;
4899 if (parameters->options().nodelete())
4900 flags |= elfcpp::DF_1_NODELETE;
4901 if (parameters->options().nodlopen())
4902 flags |= elfcpp::DF_1_NOOPEN;
4903 if (parameters->options().nodump())
4904 flags |= elfcpp::DF_1_NODUMP;
4905 if (!parameters->options().shared())
4906 flags &= ~(elfcpp::DF_1_INITFIRST
4907 | elfcpp::DF_1_NODELETE
4908 | elfcpp::DF_1_NOOPEN);
4909 if (parameters->options().origin())
4910 flags |= elfcpp::DF_1_ORIGIN;
4911 if (parameters->options().now())
4912 flags |= elfcpp::DF_1_NOW;
4913 if (parameters->options().Bgroup())
4914 flags |= elfcpp::DF_1_GROUP;
4915 if (flags != 0)
4916 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4917 }
4918
4919 // Set the size of the _DYNAMIC symbol table to be the size of the
4920 // dynamic data.
4921
4922 void
4923 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4924 {
4925 Output_data_dynamic* const odyn = this->dynamic_data_;
4926 if (odyn == NULL)
4927 return;
4928 odyn->finalize_data_size();
4929 if (this->dynamic_symbol_ == NULL)
4930 return;
4931 off_t data_size = odyn->data_size();
4932 const int size = parameters->target().get_size();
4933 if (size == 32)
4934 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4935 else if (size == 64)
4936 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4937 else
4938 gold_unreachable();
4939 }
4940
4941 // The mapping of input section name prefixes to output section names.
4942 // In some cases one prefix is itself a prefix of another prefix; in
4943 // such a case the longer prefix must come first. These prefixes are
4944 // based on the GNU linker default ELF linker script.
4945
4946 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4947 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4948 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4949 {
4950 MAPPING_INIT(".text.", ".text"),
4951 MAPPING_INIT(".rodata.", ".rodata"),
4952 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4953 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4954 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4955 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4956 MAPPING_INIT(".data.", ".data"),
4957 MAPPING_INIT(".bss.", ".bss"),
4958 MAPPING_INIT(".tdata.", ".tdata"),
4959 MAPPING_INIT(".tbss.", ".tbss"),
4960 MAPPING_INIT(".init_array.", ".init_array"),
4961 MAPPING_INIT(".fini_array.", ".fini_array"),
4962 MAPPING_INIT(".sdata.", ".sdata"),
4963 MAPPING_INIT(".sbss.", ".sbss"),
4964 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4965 // differently depending on whether it is creating a shared library.
4966 MAPPING_INIT(".sdata2.", ".sdata"),
4967 MAPPING_INIT(".sbss2.", ".sbss"),
4968 MAPPING_INIT(".lrodata.", ".lrodata"),
4969 MAPPING_INIT(".ldata.", ".ldata"),
4970 MAPPING_INIT(".lbss.", ".lbss"),
4971 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4972 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4973 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4974 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4975 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4976 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4977 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4978 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4979 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4980 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4981 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4982 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4983 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4984 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4985 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4986 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4987 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4988 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4989 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4990 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4991 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4992 };
4993 #undef MAPPING_INIT
4994 #undef MAPPING_INIT_EXACT
4995
4996 const int Layout::section_name_mapping_count =
4997 (sizeof(Layout::section_name_mapping)
4998 / sizeof(Layout::section_name_mapping[0]));
4999
5000 // Choose the output section name to use given an input section name.
5001 // Set *PLEN to the length of the name. *PLEN is initialized to the
5002 // length of NAME.
5003
5004 const char*
5005 Layout::output_section_name(const Relobj* relobj, const char* name,
5006 size_t* plen)
5007 {
5008 // gcc 4.3 generates the following sorts of section names when it
5009 // needs a section name specific to a function:
5010 // .text.FN
5011 // .rodata.FN
5012 // .sdata2.FN
5013 // .data.FN
5014 // .data.rel.FN
5015 // .data.rel.local.FN
5016 // .data.rel.ro.FN
5017 // .data.rel.ro.local.FN
5018 // .sdata.FN
5019 // .bss.FN
5020 // .sbss.FN
5021 // .tdata.FN
5022 // .tbss.FN
5023
5024 // The GNU linker maps all of those to the part before the .FN,
5025 // except that .data.rel.local.FN is mapped to .data, and
5026 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5027 // beginning with .data.rel.ro.local are grouped together.
5028
5029 // For an anonymous namespace, the string FN can contain a '.'.
5030
5031 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5032 // GNU linker maps to .rodata.
5033
5034 // The .data.rel.ro sections are used with -z relro. The sections
5035 // are recognized by name. We use the same names that the GNU
5036 // linker does for these sections.
5037
5038 // It is hard to handle this in a principled way, so we don't even
5039 // try. We use a table of mappings. If the input section name is
5040 // not found in the table, we simply use it as the output section
5041 // name.
5042
5043 const Section_name_mapping* psnm = section_name_mapping;
5044 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5045 {
5046 if (psnm->fromlen > 0)
5047 {
5048 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5049 {
5050 *plen = psnm->tolen;
5051 return psnm->to;
5052 }
5053 }
5054 else
5055 {
5056 if (strcmp(name, psnm->from) == 0)
5057 {
5058 *plen = psnm->tolen;
5059 return psnm->to;
5060 }
5061 }
5062 }
5063
5064 // As an additional complication, .ctors sections are output in
5065 // either .ctors or .init_array sections, and .dtors sections are
5066 // output in either .dtors or .fini_array sections.
5067 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5068 {
5069 if (parameters->options().ctors_in_init_array())
5070 {
5071 *plen = 11;
5072 return name[1] == 'c' ? ".init_array" : ".fini_array";
5073 }
5074 else
5075 {
5076 *plen = 6;
5077 return name[1] == 'c' ? ".ctors" : ".dtors";
5078 }
5079 }
5080 if (parameters->options().ctors_in_init_array()
5081 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5082 {
5083 // To make .init_array/.fini_array work with gcc we must exclude
5084 // .ctors and .dtors sections from the crtbegin and crtend
5085 // files.
5086 if (relobj == NULL
5087 || (!Layout::match_file_name(relobj, "crtbegin")
5088 && !Layout::match_file_name(relobj, "crtend")))
5089 {
5090 *plen = 11;
5091 return name[1] == 'c' ? ".init_array" : ".fini_array";
5092 }
5093 }
5094
5095 return name;
5096 }
5097
5098 // Return true if RELOBJ is an input file whose base name matches
5099 // FILE_NAME. The base name must have an extension of ".o", and must
5100 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5101 // to match crtbegin.o as well as crtbeginS.o without getting confused
5102 // by other possibilities. Overall matching the file name this way is
5103 // a dreadful hack, but the GNU linker does it in order to better
5104 // support gcc, and we need to be compatible.
5105
5106 bool
5107 Layout::match_file_name(const Relobj* relobj, const char* match)
5108 {
5109 const std::string& file_name(relobj->name());
5110 const char* base_name = lbasename(file_name.c_str());
5111 size_t match_len = strlen(match);
5112 if (strncmp(base_name, match, match_len) != 0)
5113 return false;
5114 size_t base_len = strlen(base_name);
5115 if (base_len != match_len + 2 && base_len != match_len + 3)
5116 return false;
5117 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5118 }
5119
5120 // Check if a comdat group or .gnu.linkonce section with the given
5121 // NAME is selected for the link. If there is already a section,
5122 // *KEPT_SECTION is set to point to the existing section and the
5123 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5124 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5125 // *KEPT_SECTION is set to the internal copy and the function returns
5126 // true.
5127
5128 bool
5129 Layout::find_or_add_kept_section(const std::string& name,
5130 Relobj* object,
5131 unsigned int shndx,
5132 bool is_comdat,
5133 bool is_group_name,
5134 Kept_section** kept_section)
5135 {
5136 // It's normal to see a couple of entries here, for the x86 thunk
5137 // sections. If we see more than a few, we're linking a C++
5138 // program, and we resize to get more space to minimize rehashing.
5139 if (this->signatures_.size() > 4
5140 && !this->resized_signatures_)
5141 {
5142 reserve_unordered_map(&this->signatures_,
5143 this->number_of_input_files_ * 64);
5144 this->resized_signatures_ = true;
5145 }
5146
5147 Kept_section candidate;
5148 std::pair<Signatures::iterator, bool> ins =
5149 this->signatures_.insert(std::make_pair(name, candidate));
5150
5151 if (kept_section != NULL)
5152 *kept_section = &ins.first->second;
5153 if (ins.second)
5154 {
5155 // This is the first time we've seen this signature.
5156 ins.first->second.set_object(object);
5157 ins.first->second.set_shndx(shndx);
5158 if (is_comdat)
5159 ins.first->second.set_is_comdat();
5160 if (is_group_name)
5161 ins.first->second.set_is_group_name();
5162 return true;
5163 }
5164
5165 // We have already seen this signature.
5166
5167 if (ins.first->second.is_group_name())
5168 {
5169 // We've already seen a real section group with this signature.
5170 // If the kept group is from a plugin object, and we're in the
5171 // replacement phase, accept the new one as a replacement.
5172 if (ins.first->second.object() == NULL
5173 && parameters->options().plugins()->in_replacement_phase())
5174 {
5175 ins.first->second.set_object(object);
5176 ins.first->second.set_shndx(shndx);
5177 return true;
5178 }
5179 return false;
5180 }
5181 else if (is_group_name)
5182 {
5183 // This is a real section group, and we've already seen a
5184 // linkonce section with this signature. Record that we've seen
5185 // a section group, and don't include this section group.
5186 ins.first->second.set_is_group_name();
5187 return false;
5188 }
5189 else
5190 {
5191 // We've already seen a linkonce section and this is a linkonce
5192 // section. These don't block each other--this may be the same
5193 // symbol name with different section types.
5194 return true;
5195 }
5196 }
5197
5198 // Store the allocated sections into the section list.
5199
5200 void
5201 Layout::get_allocated_sections(Section_list* section_list) const
5202 {
5203 for (Section_list::const_iterator p = this->section_list_.begin();
5204 p != this->section_list_.end();
5205 ++p)
5206 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5207 section_list->push_back(*p);
5208 }
5209
5210 // Store the executable sections into the section list.
5211
5212 void
5213 Layout::get_executable_sections(Section_list* section_list) const
5214 {
5215 for (Section_list::const_iterator p = this->section_list_.begin();
5216 p != this->section_list_.end();
5217 ++p)
5218 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5219 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5220 section_list->push_back(*p);
5221 }
5222
5223 // Create an output segment.
5224
5225 Output_segment*
5226 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5227 {
5228 gold_assert(!parameters->options().relocatable());
5229 Output_segment* oseg = new Output_segment(type, flags);
5230 this->segment_list_.push_back(oseg);
5231
5232 if (type == elfcpp::PT_TLS)
5233 this->tls_segment_ = oseg;
5234 else if (type == elfcpp::PT_GNU_RELRO)
5235 this->relro_segment_ = oseg;
5236 else if (type == elfcpp::PT_INTERP)
5237 this->interp_segment_ = oseg;
5238
5239 return oseg;
5240 }
5241
5242 // Return the file offset of the normal symbol table.
5243
5244 off_t
5245 Layout::symtab_section_offset() const
5246 {
5247 if (this->symtab_section_ != NULL)
5248 return this->symtab_section_->offset();
5249 return 0;
5250 }
5251
5252 // Return the section index of the normal symbol table. It may have
5253 // been stripped by the -s/--strip-all option.
5254
5255 unsigned int
5256 Layout::symtab_section_shndx() const
5257 {
5258 if (this->symtab_section_ != NULL)
5259 return this->symtab_section_->out_shndx();
5260 return 0;
5261 }
5262
5263 // Write out the Output_sections. Most won't have anything to write,
5264 // since most of the data will come from input sections which are
5265 // handled elsewhere. But some Output_sections do have Output_data.
5266
5267 void
5268 Layout::write_output_sections(Output_file* of) const
5269 {
5270 for (Section_list::const_iterator p = this->section_list_.begin();
5271 p != this->section_list_.end();
5272 ++p)
5273 {
5274 if (!(*p)->after_input_sections())
5275 (*p)->write(of);
5276 }
5277 }
5278
5279 // Write out data not associated with a section or the symbol table.
5280
5281 void
5282 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5283 {
5284 if (!parameters->options().strip_all())
5285 {
5286 const Output_section* symtab_section = this->symtab_section_;
5287 for (Section_list::const_iterator p = this->section_list_.begin();
5288 p != this->section_list_.end();
5289 ++p)
5290 {
5291 if ((*p)->needs_symtab_index())
5292 {
5293 gold_assert(symtab_section != NULL);
5294 unsigned int index = (*p)->symtab_index();
5295 gold_assert(index > 0 && index != -1U);
5296 off_t off = (symtab_section->offset()
5297 + index * symtab_section->entsize());
5298 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5299 }
5300 }
5301 }
5302
5303 const Output_section* dynsym_section = this->dynsym_section_;
5304 for (Section_list::const_iterator p = this->section_list_.begin();
5305 p != this->section_list_.end();
5306 ++p)
5307 {
5308 if ((*p)->needs_dynsym_index())
5309 {
5310 gold_assert(dynsym_section != NULL);
5311 unsigned int index = (*p)->dynsym_index();
5312 gold_assert(index > 0 && index != -1U);
5313 off_t off = (dynsym_section->offset()
5314 + index * dynsym_section->entsize());
5315 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5316 }
5317 }
5318
5319 // Write out the Output_data which are not in an Output_section.
5320 for (Data_list::const_iterator p = this->special_output_list_.begin();
5321 p != this->special_output_list_.end();
5322 ++p)
5323 (*p)->write(of);
5324
5325 // Write out the Output_data which are not in an Output_section
5326 // and are regenerated in each iteration of relaxation.
5327 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5328 p != this->relax_output_list_.end();
5329 ++p)
5330 (*p)->write(of);
5331 }
5332
5333 // Write out the Output_sections which can only be written after the
5334 // input sections are complete.
5335
5336 void
5337 Layout::write_sections_after_input_sections(Output_file* of)
5338 {
5339 // Determine the final section offsets, and thus the final output
5340 // file size. Note we finalize the .shstrab last, to allow the
5341 // after_input_section sections to modify their section-names before
5342 // writing.
5343 if (this->any_postprocessing_sections_)
5344 {
5345 off_t off = this->output_file_size_;
5346 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5347
5348 // Now that we've finalized the names, we can finalize the shstrab.
5349 off =
5350 this->set_section_offsets(off,
5351 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5352
5353 if (off > this->output_file_size_)
5354 {
5355 of->resize(off);
5356 this->output_file_size_ = off;
5357 }
5358 }
5359
5360 for (Section_list::const_iterator p = this->section_list_.begin();
5361 p != this->section_list_.end();
5362 ++p)
5363 {
5364 if ((*p)->after_input_sections())
5365 (*p)->write(of);
5366 }
5367
5368 this->section_headers_->write(of);
5369 }
5370
5371 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5372 // or as a "tree" where each chunk of the string is hashed and then those
5373 // hashes are put into a (much smaller) string which is hashed with sha1.
5374 // We compute a checksum over the entire file because that is simplest.
5375
5376 Task_token*
5377 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5378 Output_file* of)
5379 {
5380 const size_t filesize = (this->output_file_size() <= 0 ? 0
5381 : static_cast<size_t>(this->output_file_size()));
5382 if (this->build_id_note_ != NULL
5383 && strcmp(parameters->options().build_id(), "tree") == 0
5384 && parameters->options().build_id_chunk_size_for_treehash() > 0
5385 && filesize > 0
5386 && (filesize >=
5387 parameters->options().build_id_min_file_size_for_treehash()))
5388 {
5389 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5390 const size_t chunk_size =
5391 parameters->options().build_id_chunk_size_for_treehash();
5392 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5393 Task_token* post_hash_tasks_blocker = new Task_token(true);
5394 post_hash_tasks_blocker->add_blockers(num_hashes);
5395 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5396 const unsigned char* src = of->get_input_view(0, filesize);
5397 this->input_view_ = src;
5398 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5399 this->array_of_hashes_ = dst;
5400 for (size_t i = 0, src_offset = 0; i < num_hashes;
5401 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5402 {
5403 size_t size = std::min(chunk_size, filesize - src_offset);
5404 workqueue->queue(new Hash_task(src + src_offset,
5405 size,
5406 dst,
5407 build_id_blocker,
5408 post_hash_tasks_blocker));
5409 }
5410 return post_hash_tasks_blocker;
5411 }
5412 return build_id_blocker;
5413 }
5414
5415 // If a tree-style build ID was requested, the parallel part of that computation
5416 // is already done, and the final hash-of-hashes is computed here. For other
5417 // types of build IDs, all the work is done here.
5418
5419 void
5420 Layout::write_build_id(Output_file* of) const
5421 {
5422 if (this->build_id_note_ == NULL)
5423 return;
5424
5425 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5426 this->build_id_note_->data_size());
5427
5428 if (this->array_of_hashes_ == NULL)
5429 {
5430 const size_t output_file_size = this->output_file_size();
5431 const unsigned char* iv = of->get_input_view(0, output_file_size);
5432 const char* style = parameters->options().build_id();
5433
5434 // If we get here with style == "tree" then the output must be
5435 // too small for chunking, and we use SHA-1 in that case.
5436 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5437 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5438 else if (strcmp(style, "md5") == 0)
5439 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5440 else
5441 gold_unreachable();
5442
5443 of->free_input_view(0, output_file_size, iv);
5444 }
5445 else
5446 {
5447 // Non-overlapping substrings of the output file have been hashed.
5448 // Compute SHA-1 hash of the hashes.
5449 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5450 this->size_of_array_of_hashes_, ov);
5451 delete[] this->array_of_hashes_;
5452 of->free_input_view(0, this->output_file_size(), this->input_view_);
5453 }
5454
5455 of->write_output_view(this->build_id_note_->offset(),
5456 this->build_id_note_->data_size(),
5457 ov);
5458 }
5459
5460 // Write out a binary file. This is called after the link is
5461 // complete. IN is the temporary output file we used to generate the
5462 // ELF code. We simply walk through the segments, read them from
5463 // their file offset in IN, and write them to their load address in
5464 // the output file. FIXME: with a bit more work, we could support
5465 // S-records and/or Intel hex format here.
5466
5467 void
5468 Layout::write_binary(Output_file* in) const
5469 {
5470 gold_assert(parameters->options().oformat_enum()
5471 == General_options::OBJECT_FORMAT_BINARY);
5472
5473 // Get the size of the binary file.
5474 uint64_t max_load_address = 0;
5475 for (Segment_list::const_iterator p = this->segment_list_.begin();
5476 p != this->segment_list_.end();
5477 ++p)
5478 {
5479 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5480 {
5481 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5482 if (max_paddr > max_load_address)
5483 max_load_address = max_paddr;
5484 }
5485 }
5486
5487 Output_file out(parameters->options().output_file_name());
5488 out.open(max_load_address);
5489
5490 for (Segment_list::const_iterator p = this->segment_list_.begin();
5491 p != this->segment_list_.end();
5492 ++p)
5493 {
5494 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5495 {
5496 const unsigned char* vin = in->get_input_view((*p)->offset(),
5497 (*p)->filesz());
5498 unsigned char* vout = out.get_output_view((*p)->paddr(),
5499 (*p)->filesz());
5500 memcpy(vout, vin, (*p)->filesz());
5501 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5502 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5503 }
5504 }
5505
5506 out.close();
5507 }
5508
5509 // Print the output sections to the map file.
5510
5511 void
5512 Layout::print_to_mapfile(Mapfile* mapfile) const
5513 {
5514 for (Segment_list::const_iterator p = this->segment_list_.begin();
5515 p != this->segment_list_.end();
5516 ++p)
5517 (*p)->print_sections_to_mapfile(mapfile);
5518 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5519 p != this->unattached_section_list_.end();
5520 ++p)
5521 (*p)->print_to_mapfile(mapfile);
5522 }
5523
5524 // Print statistical information to stderr. This is used for --stats.
5525
5526 void
5527 Layout::print_stats() const
5528 {
5529 this->namepool_.print_stats("section name pool");
5530 this->sympool_.print_stats("output symbol name pool");
5531 this->dynpool_.print_stats("dynamic name pool");
5532
5533 for (Section_list::const_iterator p = this->section_list_.begin();
5534 p != this->section_list_.end();
5535 ++p)
5536 (*p)->print_merge_stats();
5537 }
5538
5539 // Write_sections_task methods.
5540
5541 // We can always run this task.
5542
5543 Task_token*
5544 Write_sections_task::is_runnable()
5545 {
5546 return NULL;
5547 }
5548
5549 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5550 // when finished.
5551
5552 void
5553 Write_sections_task::locks(Task_locker* tl)
5554 {
5555 tl->add(this, this->output_sections_blocker_);
5556 if (this->input_sections_blocker_ != NULL)
5557 tl->add(this, this->input_sections_blocker_);
5558 tl->add(this, this->final_blocker_);
5559 }
5560
5561 // Run the task--write out the data.
5562
5563 void
5564 Write_sections_task::run(Workqueue*)
5565 {
5566 this->layout_->write_output_sections(this->of_);
5567 }
5568
5569 // Write_data_task methods.
5570
5571 // We can always run this task.
5572
5573 Task_token*
5574 Write_data_task::is_runnable()
5575 {
5576 return NULL;
5577 }
5578
5579 // We need to unlock FINAL_BLOCKER when finished.
5580
5581 void
5582 Write_data_task::locks(Task_locker* tl)
5583 {
5584 tl->add(this, this->final_blocker_);
5585 }
5586
5587 // Run the task--write out the data.
5588
5589 void
5590 Write_data_task::run(Workqueue*)
5591 {
5592 this->layout_->write_data(this->symtab_, this->of_);
5593 }
5594
5595 // Write_symbols_task methods.
5596
5597 // We can always run this task.
5598
5599 Task_token*
5600 Write_symbols_task::is_runnable()
5601 {
5602 return NULL;
5603 }
5604
5605 // We need to unlock FINAL_BLOCKER when finished.
5606
5607 void
5608 Write_symbols_task::locks(Task_locker* tl)
5609 {
5610 tl->add(this, this->final_blocker_);
5611 }
5612
5613 // Run the task--write out the symbols.
5614
5615 void
5616 Write_symbols_task::run(Workqueue*)
5617 {
5618 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5619 this->layout_->symtab_xindex(),
5620 this->layout_->dynsym_xindex(), this->of_);
5621 }
5622
5623 // Write_after_input_sections_task methods.
5624
5625 // We can only run this task after the input sections have completed.
5626
5627 Task_token*
5628 Write_after_input_sections_task::is_runnable()
5629 {
5630 if (this->input_sections_blocker_->is_blocked())
5631 return this->input_sections_blocker_;
5632 return NULL;
5633 }
5634
5635 // We need to unlock FINAL_BLOCKER when finished.
5636
5637 void
5638 Write_after_input_sections_task::locks(Task_locker* tl)
5639 {
5640 tl->add(this, this->final_blocker_);
5641 }
5642
5643 // Run the task.
5644
5645 void
5646 Write_after_input_sections_task::run(Workqueue*)
5647 {
5648 this->layout_->write_sections_after_input_sections(this->of_);
5649 }
5650
5651 // Close_task_runner methods.
5652
5653 // Finish up the build ID computation, if necessary, and write a binary file,
5654 // if necessary. Then close the output file.
5655
5656 void
5657 Close_task_runner::run(Workqueue*, const Task*)
5658 {
5659 // At this point the multi-threaded part of the build ID computation,
5660 // if any, is done. See queue_build_id_tasks().
5661 this->layout_->write_build_id(this->of_);
5662
5663 // If we've been asked to create a binary file, we do so here.
5664 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5665 this->layout_->write_binary(this->of_);
5666
5667 this->of_->close();
5668 }
5669
5670 // Instantiate the templates we need. We could use the configure
5671 // script to restrict this to only the ones for implemented targets.
5672
5673 #ifdef HAVE_TARGET_32_LITTLE
5674 template
5675 Output_section*
5676 Layout::init_fixed_output_section<32, false>(
5677 const char* name,
5678 elfcpp::Shdr<32, false>& shdr);
5679 #endif
5680
5681 #ifdef HAVE_TARGET_32_BIG
5682 template
5683 Output_section*
5684 Layout::init_fixed_output_section<32, true>(
5685 const char* name,
5686 elfcpp::Shdr<32, true>& shdr);
5687 #endif
5688
5689 #ifdef HAVE_TARGET_64_LITTLE
5690 template
5691 Output_section*
5692 Layout::init_fixed_output_section<64, false>(
5693 const char* name,
5694 elfcpp::Shdr<64, false>& shdr);
5695 #endif
5696
5697 #ifdef HAVE_TARGET_64_BIG
5698 template
5699 Output_section*
5700 Layout::init_fixed_output_section<64, true>(
5701 const char* name,
5702 elfcpp::Shdr<64, true>& shdr);
5703 #endif
5704
5705 #ifdef HAVE_TARGET_32_LITTLE
5706 template
5707 Output_section*
5708 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5709 unsigned int shndx,
5710 const char* name,
5711 const elfcpp::Shdr<32, false>& shdr,
5712 unsigned int, unsigned int, off_t*);
5713 #endif
5714
5715 #ifdef HAVE_TARGET_32_BIG
5716 template
5717 Output_section*
5718 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5719 unsigned int shndx,
5720 const char* name,
5721 const elfcpp::Shdr<32, true>& shdr,
5722 unsigned int, unsigned int, off_t*);
5723 #endif
5724
5725 #ifdef HAVE_TARGET_64_LITTLE
5726 template
5727 Output_section*
5728 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5729 unsigned int shndx,
5730 const char* name,
5731 const elfcpp::Shdr<64, false>& shdr,
5732 unsigned int, unsigned int, off_t*);
5733 #endif
5734
5735 #ifdef HAVE_TARGET_64_BIG
5736 template
5737 Output_section*
5738 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5739 unsigned int shndx,
5740 const char* name,
5741 const elfcpp::Shdr<64, true>& shdr,
5742 unsigned int, unsigned int, off_t*);
5743 #endif
5744
5745 #ifdef HAVE_TARGET_32_LITTLE
5746 template
5747 Output_section*
5748 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5749 unsigned int reloc_shndx,
5750 const elfcpp::Shdr<32, false>& shdr,
5751 Output_section* data_section,
5752 Relocatable_relocs* rr);
5753 #endif
5754
5755 #ifdef HAVE_TARGET_32_BIG
5756 template
5757 Output_section*
5758 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5759 unsigned int reloc_shndx,
5760 const elfcpp::Shdr<32, true>& shdr,
5761 Output_section* data_section,
5762 Relocatable_relocs* rr);
5763 #endif
5764
5765 #ifdef HAVE_TARGET_64_LITTLE
5766 template
5767 Output_section*
5768 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5769 unsigned int reloc_shndx,
5770 const elfcpp::Shdr<64, false>& shdr,
5771 Output_section* data_section,
5772 Relocatable_relocs* rr);
5773 #endif
5774
5775 #ifdef HAVE_TARGET_64_BIG
5776 template
5777 Output_section*
5778 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5779 unsigned int reloc_shndx,
5780 const elfcpp::Shdr<64, true>& shdr,
5781 Output_section* data_section,
5782 Relocatable_relocs* rr);
5783 #endif
5784
5785 #ifdef HAVE_TARGET_32_LITTLE
5786 template
5787 void
5788 Layout::layout_group<32, false>(Symbol_table* symtab,
5789 Sized_relobj_file<32, false>* object,
5790 unsigned int,
5791 const char* group_section_name,
5792 const char* signature,
5793 const elfcpp::Shdr<32, false>& shdr,
5794 elfcpp::Elf_Word flags,
5795 std::vector<unsigned int>* shndxes);
5796 #endif
5797
5798 #ifdef HAVE_TARGET_32_BIG
5799 template
5800 void
5801 Layout::layout_group<32, true>(Symbol_table* symtab,
5802 Sized_relobj_file<32, true>* object,
5803 unsigned int,
5804 const char* group_section_name,
5805 const char* signature,
5806 const elfcpp::Shdr<32, true>& shdr,
5807 elfcpp::Elf_Word flags,
5808 std::vector<unsigned int>* shndxes);
5809 #endif
5810
5811 #ifdef HAVE_TARGET_64_LITTLE
5812 template
5813 void
5814 Layout::layout_group<64, false>(Symbol_table* symtab,
5815 Sized_relobj_file<64, false>* object,
5816 unsigned int,
5817 const char* group_section_name,
5818 const char* signature,
5819 const elfcpp::Shdr<64, false>& shdr,
5820 elfcpp::Elf_Word flags,
5821 std::vector<unsigned int>* shndxes);
5822 #endif
5823
5824 #ifdef HAVE_TARGET_64_BIG
5825 template
5826 void
5827 Layout::layout_group<64, true>(Symbol_table* symtab,
5828 Sized_relobj_file<64, true>* object,
5829 unsigned int,
5830 const char* group_section_name,
5831 const char* signature,
5832 const elfcpp::Shdr<64, true>& shdr,
5833 elfcpp::Elf_Word flags,
5834 std::vector<unsigned int>* shndxes);
5835 #endif
5836
5837 #ifdef HAVE_TARGET_32_LITTLE
5838 template
5839 Output_section*
5840 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5841 const unsigned char* symbols,
5842 off_t symbols_size,
5843 const unsigned char* symbol_names,
5844 off_t symbol_names_size,
5845 unsigned int shndx,
5846 const elfcpp::Shdr<32, false>& shdr,
5847 unsigned int reloc_shndx,
5848 unsigned int reloc_type,
5849 off_t* off);
5850 #endif
5851
5852 #ifdef HAVE_TARGET_32_BIG
5853 template
5854 Output_section*
5855 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5856 const unsigned char* symbols,
5857 off_t symbols_size,
5858 const unsigned char* symbol_names,
5859 off_t symbol_names_size,
5860 unsigned int shndx,
5861 const elfcpp::Shdr<32, true>& shdr,
5862 unsigned int reloc_shndx,
5863 unsigned int reloc_type,
5864 off_t* off);
5865 #endif
5866
5867 #ifdef HAVE_TARGET_64_LITTLE
5868 template
5869 Output_section*
5870 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5871 const unsigned char* symbols,
5872 off_t symbols_size,
5873 const unsigned char* symbol_names,
5874 off_t symbol_names_size,
5875 unsigned int shndx,
5876 const elfcpp::Shdr<64, false>& shdr,
5877 unsigned int reloc_shndx,
5878 unsigned int reloc_type,
5879 off_t* off);
5880 #endif
5881
5882 #ifdef HAVE_TARGET_64_BIG
5883 template
5884 Output_section*
5885 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5886 const unsigned char* symbols,
5887 off_t symbols_size,
5888 const unsigned char* symbol_names,
5889 off_t symbol_names_size,
5890 unsigned int shndx,
5891 const elfcpp::Shdr<64, true>& shdr,
5892 unsigned int reloc_shndx,
5893 unsigned int reloc_type,
5894 off_t* off);
5895 #endif
5896
5897 #ifdef HAVE_TARGET_32_LITTLE
5898 template
5899 void
5900 Layout::add_to_gdb_index(bool is_type_unit,
5901 Sized_relobj<32, false>* object,
5902 const unsigned char* symbols,
5903 off_t symbols_size,
5904 unsigned int shndx,
5905 unsigned int reloc_shndx,
5906 unsigned int reloc_type);
5907 #endif
5908
5909 #ifdef HAVE_TARGET_32_BIG
5910 template
5911 void
5912 Layout::add_to_gdb_index(bool is_type_unit,
5913 Sized_relobj<32, true>* object,
5914 const unsigned char* symbols,
5915 off_t symbols_size,
5916 unsigned int shndx,
5917 unsigned int reloc_shndx,
5918 unsigned int reloc_type);
5919 #endif
5920
5921 #ifdef HAVE_TARGET_64_LITTLE
5922 template
5923 void
5924 Layout::add_to_gdb_index(bool is_type_unit,
5925 Sized_relobj<64, false>* object,
5926 const unsigned char* symbols,
5927 off_t symbols_size,
5928 unsigned int shndx,
5929 unsigned int reloc_shndx,
5930 unsigned int reloc_type);
5931 #endif
5932
5933 #ifdef HAVE_TARGET_64_BIG
5934 template
5935 void
5936 Layout::add_to_gdb_index(bool is_type_unit,
5937 Sized_relobj<64, true>* object,
5938 const unsigned char* symbols,
5939 off_t symbols_size,
5940 unsigned int shndx,
5941 unsigned int reloc_shndx,
5942 unsigned int reloc_type);
5943 #endif
5944
5945 } // End namespace gold.
This page took 0.24979 seconds and 5 git commands to generate.