* layout.h (Layout::get_executable_sections): Declare.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
249 {
250 for(Layout::Section_list::const_iterator p = sections.begin();
251 p != sections.end();
252 ++p)
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
257 ++p)
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
266 {
267 for(Layout::Section_list::const_iterator p = sections.begin();
268 p != sections.end();
269 ++p)
270 {
271 Output_section* os = *p;
272 Section_info info;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
278 }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
286 {
287 size_t i = 0;
288 for(Layout::Section_list::const_iterator p = sections.begin();
289 p != sections.end();
290 ++p, ++i)
291 {
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297 if (i >= this->section_infos_.size())
298 {
299 gold_fatal("Section_info of %s missing.\n", os->name());
300 }
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
309 }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections. This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320 Layout* layout = this->layout_;
321 off_t file_size = layout->finalize(this->input_objects_,
322 this->symtab_,
323 this->target_,
324 task);
325
326 // Now we know the final size of the output file and we know where
327 // each piece of information goes.
328
329 if (this->mapfile_ != NULL)
330 {
331 this->mapfile_->print_discarded_sections(this->input_objects_);
332 layout->print_to_mapfile(this->mapfile_);
333 }
334
335 Output_file* of;
336 if (layout->incremental_base() == NULL)
337 {
338 of = new Output_file(parameters->options().output_file_name());
339 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340 of->set_is_temporary();
341 of->open(file_size);
342 }
343 else
344 {
345 of = layout->incremental_base()->output_file();
346
347 // Apply the incremental relocations for symbols whose values
348 // have changed. We do this before we resize the file and start
349 // writing anything else to it, so that we can read the old
350 // incremental information from the file before (possibly)
351 // overwriting it.
352 if (parameters->incremental_update())
353 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354 this->layout_,
355 of);
356
357 of->resize(file_size);
358 }
359
360 // Queue up the final set of tasks.
361 gold::queue_final_tasks(this->options_, this->input_objects_,
362 this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368 : number_of_input_files_(number_of_input_files),
369 script_options_(script_options),
370 namepool_(),
371 sympool_(),
372 dynpool_(),
373 signatures_(),
374 section_name_map_(),
375 segment_list_(),
376 section_list_(),
377 unattached_section_list_(),
378 special_output_list_(),
379 section_headers_(NULL),
380 tls_segment_(NULL),
381 relro_segment_(NULL),
382 interp_segment_(NULL),
383 increase_relro_(0),
384 symtab_section_(NULL),
385 symtab_xindex_(NULL),
386 dynsym_section_(NULL),
387 dynsym_xindex_(NULL),
388 dynamic_section_(NULL),
389 dynamic_symbol_(NULL),
390 dynamic_data_(NULL),
391 eh_frame_section_(NULL),
392 eh_frame_data_(NULL),
393 added_eh_frame_data_(false),
394 eh_frame_hdr_section_(NULL),
395 gdb_index_data_(NULL),
396 build_id_note_(NULL),
397 debug_abbrev_(NULL),
398 debug_info_(NULL),
399 group_signatures_(),
400 output_file_size_(-1),
401 have_added_input_section_(false),
402 sections_are_attached_(false),
403 input_requires_executable_stack_(false),
404 input_with_gnu_stack_note_(false),
405 input_without_gnu_stack_note_(false),
406 has_static_tls_(false),
407 any_postprocessing_sections_(false),
408 resized_signatures_(false),
409 have_stabstr_section_(false),
410 section_ordering_specified_(false),
411 unique_segment_for_sections_specified_(false),
412 incremental_inputs_(NULL),
413 record_output_section_data_from_script_(false),
414 script_output_section_data_list_(),
415 segment_states_(NULL),
416 relaxation_debug_check_(NULL),
417 section_order_map_(),
418 section_segment_map_(),
419 input_section_position_(),
420 input_section_glob_(),
421 incremental_base_(NULL),
422 free_list_()
423 {
424 // Make space for more than enough segments for a typical file.
425 // This is just for efficiency--it's OK if we wind up needing more.
426 this->segment_list_.reserve(12);
427
428 // We expect two unattached Output_data objects: the file header and
429 // the segment headers.
430 this->special_output_list_.reserve(2);
431
432 // Initialize structure needed for an incremental build.
433 if (parameters->incremental())
434 this->incremental_inputs_ = new Incremental_inputs;
435
436 // The section name pool is worth optimizing in all cases, because
437 // it is small, but there are often overlaps due to .rel sections.
438 this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446 this->incremental_base_ = base;
447 this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455 return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465 "abbrev",
466 "addr", // Fission extension
467 // "aranges", // not used by gdb as of 7.4
468 "frame",
469 "info",
470 "types",
471 "line",
472 "loc",
473 "macinfo",
474 "macro",
475 // "pubnames", // not used by gdb as of 7.4
476 // "pubtypes", // not used by gdb as of 7.4
477 "ranges",
478 "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485 "abbrev",
486 // "addr", // Fission extension
487 // "aranges", // not used by gdb as of 7.4
488 // "frame",
489 "info",
490 // "types",
491 "line",
492 // "loc",
493 // "macinfo",
494 // "macro",
495 // "pubnames", // not used by gdb as of 7.4
496 // "pubtypes", // not used by gdb as of 7.4
497 // "ranges",
498 "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506 "aranges",
507 "pubnames",
508 "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518 // We can do this faster: binary search or a hashtable. But why bother?
519 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520 if (strcmp(suffix, gdb_sections[i]) == 0)
521 return true;
522 return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530 // We can do this faster: binary search or a hashtable. But why bother?
531 for (size_t i = 0;
532 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533 ++i)
534 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535 return true;
536 return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545 // We can do this faster: binary search or a hashtable. But why bother?
546 for (size_t i = 0;
547 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548 ++i)
549 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550 return true;
551 return false;
552 }
553
554 // Sometimes we compress sections. This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections. This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566 return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files. Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575 return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583 const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585 if (!parameters->options().relocatable()
586 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
587 return false;
588
589 switch (shdr.get_sh_type())
590 {
591 case elfcpp::SHT_NULL:
592 case elfcpp::SHT_SYMTAB:
593 case elfcpp::SHT_DYNSYM:
594 case elfcpp::SHT_HASH:
595 case elfcpp::SHT_DYNAMIC:
596 case elfcpp::SHT_SYMTAB_SHNDX:
597 return false;
598
599 case elfcpp::SHT_STRTAB:
600 // Discard the sections which have special meanings in the ELF
601 // ABI. Keep others (e.g., .stabstr). We could also do this by
602 // checking the sh_link fields of the appropriate sections.
603 return (strcmp(name, ".dynstr") != 0
604 && strcmp(name, ".strtab") != 0
605 && strcmp(name, ".shstrtab") != 0);
606
607 case elfcpp::SHT_RELA:
608 case elfcpp::SHT_REL:
609 case elfcpp::SHT_GROUP:
610 // If we are emitting relocations these should be handled
611 // elsewhere.
612 gold_assert(!parameters->options().relocatable());
613 return false;
614
615 case elfcpp::SHT_PROGBITS:
616 if (parameters->options().strip_debug()
617 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
618 {
619 if (is_debug_info_section(name))
620 return false;
621 }
622 if (parameters->options().strip_debug_non_line()
623 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
624 {
625 // Debugging sections can only be recognized by name.
626 if (is_prefix_of(".debug_", name)
627 && !is_lines_only_debug_section(name + 7))
628 return false;
629 if (is_prefix_of(".zdebug_", name)
630 && !is_lines_only_debug_section(name + 8))
631 return false;
632 }
633 if (parameters->options().strip_debug_gdb()
634 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
635 {
636 // Debugging sections can only be recognized by name.
637 if (is_prefix_of(".debug_", name)
638 && !is_gdb_debug_section(name + 7))
639 return false;
640 if (is_prefix_of(".zdebug_", name)
641 && !is_gdb_debug_section(name + 8))
642 return false;
643 }
644 if (parameters->options().gdb_index()
645 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
646 {
647 // When building .gdb_index, we can strip .debug_pubnames,
648 // .debug_pubtypes, and .debug_aranges sections.
649 if (is_prefix_of(".debug_", name)
650 && is_gdb_fast_lookup_section(name + 7))
651 return false;
652 if (is_prefix_of(".zdebug_", name)
653 && is_gdb_fast_lookup_section(name + 8))
654 return false;
655 }
656 if (parameters->options().strip_lto_sections()
657 && !parameters->options().relocatable()
658 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
659 {
660 // Ignore LTO sections containing intermediate code.
661 if (is_prefix_of(".gnu.lto_", name))
662 return false;
663 }
664 // The GNU linker strips .gnu_debuglink sections, so we do too.
665 // This is a feature used to keep debugging information in
666 // separate files.
667 if (strcmp(name, ".gnu_debuglink") == 0)
668 return false;
669 return true;
670
671 default:
672 return true;
673 }
674 }
675
676 // Return an output section named NAME, or NULL if there is none.
677
678 Output_section*
679 Layout::find_output_section(const char* name) const
680 {
681 for (Section_list::const_iterator p = this->section_list_.begin();
682 p != this->section_list_.end();
683 ++p)
684 if (strcmp((*p)->name(), name) == 0)
685 return *p;
686 return NULL;
687 }
688
689 // Return an output segment of type TYPE, with segment flags SET set
690 // and segment flags CLEAR clear. Return NULL if there is none.
691
692 Output_segment*
693 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
694 elfcpp::Elf_Word clear) const
695 {
696 for (Segment_list::const_iterator p = this->segment_list_.begin();
697 p != this->segment_list_.end();
698 ++p)
699 if (static_cast<elfcpp::PT>((*p)->type()) == type
700 && ((*p)->flags() & set) == set
701 && ((*p)->flags() & clear) == 0)
702 return *p;
703 return NULL;
704 }
705
706 // When we put a .ctors or .dtors section with more than one word into
707 // a .init_array or .fini_array section, we need to reverse the words
708 // in the .ctors/.dtors section. This is because .init_array executes
709 // constructors front to back, where .ctors executes them back to
710 // front, and vice-versa for .fini_array/.dtors. Although we do want
711 // to remap .ctors/.dtors into .init_array/.fini_array because it can
712 // be more efficient, we don't want to change the order in which
713 // constructors/destructors are run. This set just keeps track of
714 // these sections which need to be reversed. It is only changed by
715 // Layout::layout. It should be a private member of Layout, but that
716 // would require layout.h to #include object.h to get the definition
717 // of Section_id.
718 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
719
720 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
721 // .init_array/.fini_array section.
722
723 bool
724 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
725 {
726 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
727 != ctors_sections_in_init_array.end());
728 }
729
730 // Return the output section to use for section NAME with type TYPE
731 // and section flags FLAGS. NAME must be canonicalized in the string
732 // pool, and NAME_KEY is the key. ORDER is where this should appear
733 // in the output sections. IS_RELRO is true for a relro section.
734
735 Output_section*
736 Layout::get_output_section(const char* name, Stringpool::Key name_key,
737 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
738 Output_section_order order, bool is_relro)
739 {
740 elfcpp::Elf_Word lookup_type = type;
741
742 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
743 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
744 // .init_array, .fini_array, and .preinit_array sections by name
745 // whatever their type in the input file. We do this because the
746 // types are not always right in the input files.
747 if (lookup_type == elfcpp::SHT_INIT_ARRAY
748 || lookup_type == elfcpp::SHT_FINI_ARRAY
749 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
750 lookup_type = elfcpp::SHT_PROGBITS;
751
752 elfcpp::Elf_Xword lookup_flags = flags;
753
754 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
755 // read-write with read-only sections. Some other ELF linkers do
756 // not do this. FIXME: Perhaps there should be an option
757 // controlling this.
758 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
759
760 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
761 const std::pair<Key, Output_section*> v(key, NULL);
762 std::pair<Section_name_map::iterator, bool> ins(
763 this->section_name_map_.insert(v));
764
765 if (!ins.second)
766 return ins.first->second;
767 else
768 {
769 // This is the first time we've seen this name/type/flags
770 // combination. For compatibility with the GNU linker, we
771 // combine sections with contents and zero flags with sections
772 // with non-zero flags. This is a workaround for cases where
773 // assembler code forgets to set section flags. FIXME: Perhaps
774 // there should be an option to control this.
775 Output_section* os = NULL;
776
777 if (lookup_type == elfcpp::SHT_PROGBITS)
778 {
779 if (flags == 0)
780 {
781 Output_section* same_name = this->find_output_section(name);
782 if (same_name != NULL
783 && (same_name->type() == elfcpp::SHT_PROGBITS
784 || same_name->type() == elfcpp::SHT_INIT_ARRAY
785 || same_name->type() == elfcpp::SHT_FINI_ARRAY
786 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
787 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
788 os = same_name;
789 }
790 else if ((flags & elfcpp::SHF_TLS) == 0)
791 {
792 elfcpp::Elf_Xword zero_flags = 0;
793 const Key zero_key(name_key, std::make_pair(lookup_type,
794 zero_flags));
795 Section_name_map::iterator p =
796 this->section_name_map_.find(zero_key);
797 if (p != this->section_name_map_.end())
798 os = p->second;
799 }
800 }
801
802 if (os == NULL)
803 os = this->make_output_section(name, type, flags, order, is_relro);
804
805 ins.first->second = os;
806 return os;
807 }
808 }
809
810 // Returns TRUE iff NAME (an input section from RELOBJ) will
811 // be mapped to an output section that should be KEPT.
812
813 bool
814 Layout::keep_input_section(const Relobj* relobj, const char* name)
815 {
816 if (! this->script_options_->saw_sections_clause())
817 return false;
818
819 Script_sections* ss = this->script_options_->script_sections();
820 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
821 Output_section** output_section_slot;
822 Script_sections::Section_type script_section_type;
823 bool keep;
824
825 name = ss->output_section_name(file_name, name, &output_section_slot,
826 &script_section_type, &keep);
827 return name != NULL && keep;
828 }
829
830 // Clear the input section flags that should not be copied to the
831 // output section.
832
833 elfcpp::Elf_Xword
834 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
835 {
836 // Some flags in the input section should not be automatically
837 // copied to the output section.
838 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
839 | elfcpp::SHF_GROUP
840 | elfcpp::SHF_MERGE
841 | elfcpp::SHF_STRINGS);
842
843 // We only clear the SHF_LINK_ORDER flag in for
844 // a non-relocatable link.
845 if (!parameters->options().relocatable())
846 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
847
848 return input_section_flags;
849 }
850
851 // Pick the output section to use for section NAME, in input file
852 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
853 // linker created section. IS_INPUT_SECTION is true if we are
854 // choosing an output section for an input section found in a input
855 // file. ORDER is where this section should appear in the output
856 // sections. IS_RELRO is true for a relro section. This will return
857 // NULL if the input section should be discarded.
858
859 Output_section*
860 Layout::choose_output_section(const Relobj* relobj, const char* name,
861 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
862 bool is_input_section, Output_section_order order,
863 bool is_relro)
864 {
865 // We should not see any input sections after we have attached
866 // sections to segments.
867 gold_assert(!is_input_section || !this->sections_are_attached_);
868
869 flags = this->get_output_section_flags(flags);
870
871 if (this->script_options_->saw_sections_clause())
872 {
873 // We are using a SECTIONS clause, so the output section is
874 // chosen based only on the name.
875
876 Script_sections* ss = this->script_options_->script_sections();
877 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
878 Output_section** output_section_slot;
879 Script_sections::Section_type script_section_type;
880 const char* orig_name = name;
881 bool keep;
882 name = ss->output_section_name(file_name, name, &output_section_slot,
883 &script_section_type, &keep);
884
885 if (name == NULL)
886 {
887 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
888 "because it is not allowed by the "
889 "SECTIONS clause of the linker script"),
890 orig_name);
891 // The SECTIONS clause says to discard this input section.
892 return NULL;
893 }
894
895 // We can only handle script section types ST_NONE and ST_NOLOAD.
896 switch (script_section_type)
897 {
898 case Script_sections::ST_NONE:
899 break;
900 case Script_sections::ST_NOLOAD:
901 flags &= elfcpp::SHF_ALLOC;
902 break;
903 default:
904 gold_unreachable();
905 }
906
907 // If this is an orphan section--one not mentioned in the linker
908 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
909 // default processing below.
910
911 if (output_section_slot != NULL)
912 {
913 if (*output_section_slot != NULL)
914 {
915 (*output_section_slot)->update_flags_for_input_section(flags);
916 return *output_section_slot;
917 }
918
919 // We don't put sections found in the linker script into
920 // SECTION_NAME_MAP_. That keeps us from getting confused
921 // if an orphan section is mapped to a section with the same
922 // name as one in the linker script.
923
924 name = this->namepool_.add(name, false, NULL);
925
926 Output_section* os = this->make_output_section(name, type, flags,
927 order, is_relro);
928
929 os->set_found_in_sections_clause();
930
931 // Special handling for NOLOAD sections.
932 if (script_section_type == Script_sections::ST_NOLOAD)
933 {
934 os->set_is_noload();
935
936 // The constructor of Output_section sets addresses of non-ALLOC
937 // sections to 0 by default. We don't want that for NOLOAD
938 // sections even if they have no SHF_ALLOC flag.
939 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
940 && os->is_address_valid())
941 {
942 gold_assert(os->address() == 0
943 && !os->is_offset_valid()
944 && !os->is_data_size_valid());
945 os->reset_address_and_file_offset();
946 }
947 }
948
949 *output_section_slot = os;
950 return os;
951 }
952 }
953
954 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
955
956 size_t len = strlen(name);
957 char* uncompressed_name = NULL;
958
959 // Compressed debug sections should be mapped to the corresponding
960 // uncompressed section.
961 if (is_compressed_debug_section(name))
962 {
963 uncompressed_name = new char[len];
964 uncompressed_name[0] = '.';
965 gold_assert(name[0] == '.' && name[1] == 'z');
966 strncpy(&uncompressed_name[1], &name[2], len - 2);
967 uncompressed_name[len - 1] = '\0';
968 len -= 1;
969 name = uncompressed_name;
970 }
971
972 // Turn NAME from the name of the input section into the name of the
973 // output section.
974 if (is_input_section
975 && !this->script_options_->saw_sections_clause()
976 && !parameters->options().relocatable())
977 {
978 const char *orig_name = name;
979 name = parameters->target().output_section_name(relobj, name, &len);
980 if (name == NULL)
981 name = Layout::output_section_name(relobj, orig_name, &len);
982 }
983
984 Stringpool::Key name_key;
985 name = this->namepool_.add_with_length(name, len, true, &name_key);
986
987 if (uncompressed_name != NULL)
988 delete[] uncompressed_name;
989
990 // Find or make the output section. The output section is selected
991 // based on the section name, type, and flags.
992 return this->get_output_section(name, name_key, type, flags, order, is_relro);
993 }
994
995 // For incremental links, record the initial fixed layout of a section
996 // from the base file, and return a pointer to the Output_section.
997
998 template<int size, bool big_endian>
999 Output_section*
1000 Layout::init_fixed_output_section(const char* name,
1001 elfcpp::Shdr<size, big_endian>& shdr)
1002 {
1003 unsigned int sh_type = shdr.get_sh_type();
1004
1005 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1006 // PRE_INIT_ARRAY, and NOTE sections.
1007 // All others will be created from scratch and reallocated.
1008 if (!can_incremental_update(sh_type))
1009 return NULL;
1010
1011 // If we're generating a .gdb_index section, we need to regenerate
1012 // it from scratch.
1013 if (parameters->options().gdb_index()
1014 && sh_type == elfcpp::SHT_PROGBITS
1015 && strcmp(name, ".gdb_index") == 0)
1016 return NULL;
1017
1018 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1019 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1020 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1021 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1022 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1023 shdr.get_sh_addralign();
1024
1025 // Make the output section.
1026 Stringpool::Key name_key;
1027 name = this->namepool_.add(name, true, &name_key);
1028 Output_section* os = this->get_output_section(name, name_key, sh_type,
1029 sh_flags, ORDER_INVALID, false);
1030 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1031 if (sh_type != elfcpp::SHT_NOBITS)
1032 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1033 return os;
1034 }
1035
1036 // Return the output section to use for input section SHNDX, with name
1037 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1038 // index of a relocation section which applies to this section, or 0
1039 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1040 // relocation section if there is one. Set *OFF to the offset of this
1041 // input section without the output section. Return NULL if the
1042 // section should be discarded. Set *OFF to -1 if the section
1043 // contents should not be written directly to the output file, but
1044 // will instead receive special handling.
1045
1046 template<int size, bool big_endian>
1047 Output_section*
1048 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1049 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1050 unsigned int reloc_shndx, unsigned int, off_t* off)
1051 {
1052 *off = 0;
1053
1054 if (!this->include_section(object, name, shdr))
1055 return NULL;
1056
1057 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1058
1059 // In a relocatable link a grouped section must not be combined with
1060 // any other sections.
1061 Output_section* os;
1062 if (parameters->options().relocatable()
1063 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1064 {
1065 name = this->namepool_.add(name, true, NULL);
1066 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1067 ORDER_INVALID, false);
1068 }
1069 else
1070 {
1071 // Plugins can choose to place one or more subsets of sections in
1072 // unique segments and this is done by mapping these section subsets
1073 // to unique output sections. Check if this section needs to be
1074 // remapped to a unique output section.
1075 Section_segment_map::iterator it
1076 = this->section_segment_map_.find(Const_section_id(object, shndx));
1077 if (it == this->section_segment_map_.end())
1078 {
1079 os = this->choose_output_section(object, name, sh_type,
1080 shdr.get_sh_flags(), true,
1081 ORDER_INVALID, false);
1082 }
1083 else
1084 {
1085 // We know the name of the output section, directly call
1086 // get_output_section here by-passing choose_output_section.
1087 elfcpp::Elf_Xword flags
1088 = this->get_output_section_flags(shdr.get_sh_flags());
1089
1090 const char* os_name = it->second->name;
1091 Stringpool::Key name_key;
1092 os_name = this->namepool_.add(os_name, true, &name_key);
1093 os = this->get_output_section(os_name, name_key, sh_type, flags,
1094 ORDER_INVALID, false);
1095 if (!os->is_unique_segment())
1096 {
1097 os->set_is_unique_segment();
1098 os->set_extra_segment_flags(it->second->flags);
1099 os->set_segment_alignment(it->second->align);
1100 }
1101 }
1102 if (os == NULL)
1103 return NULL;
1104 }
1105
1106 // By default the GNU linker sorts input sections whose names match
1107 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1108 // sections are sorted by name. This is used to implement
1109 // constructor priority ordering. We are compatible. When we put
1110 // .ctor sections in .init_array and .dtor sections in .fini_array,
1111 // we must also sort plain .ctor and .dtor sections.
1112 if (!this->script_options_->saw_sections_clause()
1113 && !parameters->options().relocatable()
1114 && (is_prefix_of(".ctors.", name)
1115 || is_prefix_of(".dtors.", name)
1116 || is_prefix_of(".init_array.", name)
1117 || is_prefix_of(".fini_array.", name)
1118 || (parameters->options().ctors_in_init_array()
1119 && (strcmp(name, ".ctors") == 0
1120 || strcmp(name, ".dtors") == 0))))
1121 os->set_must_sort_attached_input_sections();
1122
1123 // If this is a .ctors or .ctors.* section being mapped to a
1124 // .init_array section, or a .dtors or .dtors.* section being mapped
1125 // to a .fini_array section, we will need to reverse the words if
1126 // there is more than one. Record this section for later. See
1127 // ctors_sections_in_init_array above.
1128 if (!this->script_options_->saw_sections_clause()
1129 && !parameters->options().relocatable()
1130 && shdr.get_sh_size() > size / 8
1131 && (((strcmp(name, ".ctors") == 0
1132 || is_prefix_of(".ctors.", name))
1133 && strcmp(os->name(), ".init_array") == 0)
1134 || ((strcmp(name, ".dtors") == 0
1135 || is_prefix_of(".dtors.", name))
1136 && strcmp(os->name(), ".fini_array") == 0)))
1137 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1138
1139 // FIXME: Handle SHF_LINK_ORDER somewhere.
1140
1141 elfcpp::Elf_Xword orig_flags = os->flags();
1142
1143 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1144 this->script_options_->saw_sections_clause());
1145
1146 // If the flags changed, we may have to change the order.
1147 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1148 {
1149 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1150 elfcpp::Elf_Xword new_flags =
1151 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1152 if (orig_flags != new_flags)
1153 os->set_order(this->default_section_order(os, false));
1154 }
1155
1156 this->have_added_input_section_ = true;
1157
1158 return os;
1159 }
1160
1161 // Maps section SECN to SEGMENT s.
1162 void
1163 Layout::insert_section_segment_map(Const_section_id secn,
1164 Unique_segment_info *s)
1165 {
1166 gold_assert(this->unique_segment_for_sections_specified_);
1167 this->section_segment_map_[secn] = s;
1168 }
1169
1170 // Handle a relocation section when doing a relocatable link.
1171
1172 template<int size, bool big_endian>
1173 Output_section*
1174 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1175 unsigned int,
1176 const elfcpp::Shdr<size, big_endian>& shdr,
1177 Output_section* data_section,
1178 Relocatable_relocs* rr)
1179 {
1180 gold_assert(parameters->options().relocatable()
1181 || parameters->options().emit_relocs());
1182
1183 int sh_type = shdr.get_sh_type();
1184
1185 std::string name;
1186 if (sh_type == elfcpp::SHT_REL)
1187 name = ".rel";
1188 else if (sh_type == elfcpp::SHT_RELA)
1189 name = ".rela";
1190 else
1191 gold_unreachable();
1192 name += data_section->name();
1193
1194 // In a relocatable link relocs for a grouped section must not be
1195 // combined with other reloc sections.
1196 Output_section* os;
1197 if (!parameters->options().relocatable()
1198 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1199 os = this->choose_output_section(object, name.c_str(), sh_type,
1200 shdr.get_sh_flags(), false,
1201 ORDER_INVALID, false);
1202 else
1203 {
1204 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1205 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1206 ORDER_INVALID, false);
1207 }
1208
1209 os->set_should_link_to_symtab();
1210 os->set_info_section(data_section);
1211
1212 Output_section_data* posd;
1213 if (sh_type == elfcpp::SHT_REL)
1214 {
1215 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1216 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1217 size,
1218 big_endian>(rr);
1219 }
1220 else if (sh_type == elfcpp::SHT_RELA)
1221 {
1222 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1223 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1224 size,
1225 big_endian>(rr);
1226 }
1227 else
1228 gold_unreachable();
1229
1230 os->add_output_section_data(posd);
1231 rr->set_output_data(posd);
1232
1233 return os;
1234 }
1235
1236 // Handle a group section when doing a relocatable link.
1237
1238 template<int size, bool big_endian>
1239 void
1240 Layout::layout_group(Symbol_table* symtab,
1241 Sized_relobj_file<size, big_endian>* object,
1242 unsigned int,
1243 const char* group_section_name,
1244 const char* signature,
1245 const elfcpp::Shdr<size, big_endian>& shdr,
1246 elfcpp::Elf_Word flags,
1247 std::vector<unsigned int>* shndxes)
1248 {
1249 gold_assert(parameters->options().relocatable());
1250 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1251 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1252 Output_section* os = this->make_output_section(group_section_name,
1253 elfcpp::SHT_GROUP,
1254 shdr.get_sh_flags(),
1255 ORDER_INVALID, false);
1256
1257 // We need to find a symbol with the signature in the symbol table.
1258 // If we don't find one now, we need to look again later.
1259 Symbol* sym = symtab->lookup(signature, NULL);
1260 if (sym != NULL)
1261 os->set_info_symndx(sym);
1262 else
1263 {
1264 // Reserve some space to minimize reallocations.
1265 if (this->group_signatures_.empty())
1266 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1267
1268 // We will wind up using a symbol whose name is the signature.
1269 // So just put the signature in the symbol name pool to save it.
1270 signature = symtab->canonicalize_name(signature);
1271 this->group_signatures_.push_back(Group_signature(os, signature));
1272 }
1273
1274 os->set_should_link_to_symtab();
1275 os->set_entsize(4);
1276
1277 section_size_type entry_count =
1278 convert_to_section_size_type(shdr.get_sh_size() / 4);
1279 Output_section_data* posd =
1280 new Output_data_group<size, big_endian>(object, entry_count, flags,
1281 shndxes);
1282 os->add_output_section_data(posd);
1283 }
1284
1285 // Special GNU handling of sections name .eh_frame. They will
1286 // normally hold exception frame data as defined by the C++ ABI
1287 // (http://codesourcery.com/cxx-abi/).
1288
1289 template<int size, bool big_endian>
1290 Output_section*
1291 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1292 const unsigned char* symbols,
1293 off_t symbols_size,
1294 const unsigned char* symbol_names,
1295 off_t symbol_names_size,
1296 unsigned int shndx,
1297 const elfcpp::Shdr<size, big_endian>& shdr,
1298 unsigned int reloc_shndx, unsigned int reloc_type,
1299 off_t* off)
1300 {
1301 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1302 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1303 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1304
1305 Output_section* os = this->make_eh_frame_section(object);
1306 if (os == NULL)
1307 return NULL;
1308
1309 gold_assert(this->eh_frame_section_ == os);
1310
1311 elfcpp::Elf_Xword orig_flags = os->flags();
1312
1313 if (!parameters->incremental()
1314 && this->eh_frame_data_->add_ehframe_input_section(object,
1315 symbols,
1316 symbols_size,
1317 symbol_names,
1318 symbol_names_size,
1319 shndx,
1320 reloc_shndx,
1321 reloc_type))
1322 {
1323 os->update_flags_for_input_section(shdr.get_sh_flags());
1324
1325 // A writable .eh_frame section is a RELRO section.
1326 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1327 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1328 {
1329 os->set_is_relro();
1330 os->set_order(ORDER_RELRO);
1331 }
1332
1333 // We found a .eh_frame section we are going to optimize, so now
1334 // we can add the set of optimized sections to the output
1335 // section. We need to postpone adding this until we've found a
1336 // section we can optimize so that the .eh_frame section in
1337 // crtbegin.o winds up at the start of the output section.
1338 if (!this->added_eh_frame_data_)
1339 {
1340 os->add_output_section_data(this->eh_frame_data_);
1341 this->added_eh_frame_data_ = true;
1342 }
1343 *off = -1;
1344 }
1345 else
1346 {
1347 // We couldn't handle this .eh_frame section for some reason.
1348 // Add it as a normal section.
1349 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1350 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1351 reloc_shndx, saw_sections_clause);
1352 this->have_added_input_section_ = true;
1353
1354 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1355 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1356 os->set_order(this->default_section_order(os, false));
1357 }
1358
1359 return os;
1360 }
1361
1362 // Create and return the magic .eh_frame section. Create
1363 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1364 // input .eh_frame section; it may be NULL.
1365
1366 Output_section*
1367 Layout::make_eh_frame_section(const Relobj* object)
1368 {
1369 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1370 // SHT_PROGBITS.
1371 Output_section* os = this->choose_output_section(object, ".eh_frame",
1372 elfcpp::SHT_PROGBITS,
1373 elfcpp::SHF_ALLOC, false,
1374 ORDER_EHFRAME, false);
1375 if (os == NULL)
1376 return NULL;
1377
1378 if (this->eh_frame_section_ == NULL)
1379 {
1380 this->eh_frame_section_ = os;
1381 this->eh_frame_data_ = new Eh_frame();
1382
1383 // For incremental linking, we do not optimize .eh_frame sections
1384 // or create a .eh_frame_hdr section.
1385 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1386 {
1387 Output_section* hdr_os =
1388 this->choose_output_section(NULL, ".eh_frame_hdr",
1389 elfcpp::SHT_PROGBITS,
1390 elfcpp::SHF_ALLOC, false,
1391 ORDER_EHFRAME, false);
1392
1393 if (hdr_os != NULL)
1394 {
1395 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1396 this->eh_frame_data_);
1397 hdr_os->add_output_section_data(hdr_posd);
1398
1399 hdr_os->set_after_input_sections();
1400
1401 if (!this->script_options_->saw_phdrs_clause())
1402 {
1403 Output_segment* hdr_oseg;
1404 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1405 elfcpp::PF_R);
1406 hdr_oseg->add_output_section_to_nonload(hdr_os,
1407 elfcpp::PF_R);
1408 }
1409
1410 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1411 }
1412 }
1413 }
1414
1415 return os;
1416 }
1417
1418 // Add an exception frame for a PLT. This is called from target code.
1419
1420 void
1421 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1422 size_t cie_length, const unsigned char* fde_data,
1423 size_t fde_length)
1424 {
1425 if (parameters->incremental())
1426 {
1427 // FIXME: Maybe this could work some day....
1428 return;
1429 }
1430 Output_section* os = this->make_eh_frame_section(NULL);
1431 if (os == NULL)
1432 return;
1433 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1434 fde_data, fde_length);
1435 if (!this->added_eh_frame_data_)
1436 {
1437 os->add_output_section_data(this->eh_frame_data_);
1438 this->added_eh_frame_data_ = true;
1439 }
1440 }
1441
1442 // Scan a .debug_info or .debug_types section, and add summary
1443 // information to the .gdb_index section.
1444
1445 template<int size, bool big_endian>
1446 void
1447 Layout::add_to_gdb_index(bool is_type_unit,
1448 Sized_relobj<size, big_endian>* object,
1449 const unsigned char* symbols,
1450 off_t symbols_size,
1451 unsigned int shndx,
1452 unsigned int reloc_shndx,
1453 unsigned int reloc_type)
1454 {
1455 if (this->gdb_index_data_ == NULL)
1456 {
1457 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1458 elfcpp::SHT_PROGBITS, 0,
1459 false, ORDER_INVALID,
1460 false);
1461 if (os == NULL)
1462 return;
1463
1464 this->gdb_index_data_ = new Gdb_index(os);
1465 os->add_output_section_data(this->gdb_index_data_);
1466 os->set_after_input_sections();
1467 }
1468
1469 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1470 symbols_size, shndx, reloc_shndx,
1471 reloc_type);
1472 }
1473
1474 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1475 // the output section.
1476
1477 Output_section*
1478 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1479 elfcpp::Elf_Xword flags,
1480 Output_section_data* posd,
1481 Output_section_order order, bool is_relro)
1482 {
1483 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1484 false, order, is_relro);
1485 if (os != NULL)
1486 os->add_output_section_data(posd);
1487 return os;
1488 }
1489
1490 // Map section flags to segment flags.
1491
1492 elfcpp::Elf_Word
1493 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1494 {
1495 elfcpp::Elf_Word ret = elfcpp::PF_R;
1496 if ((flags & elfcpp::SHF_WRITE) != 0)
1497 ret |= elfcpp::PF_W;
1498 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1499 ret |= elfcpp::PF_X;
1500 return ret;
1501 }
1502
1503 // Make a new Output_section, and attach it to segments as
1504 // appropriate. ORDER is the order in which this section should
1505 // appear in the output segment. IS_RELRO is true if this is a relro
1506 // (read-only after relocations) section.
1507
1508 Output_section*
1509 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1510 elfcpp::Elf_Xword flags,
1511 Output_section_order order, bool is_relro)
1512 {
1513 Output_section* os;
1514 if ((flags & elfcpp::SHF_ALLOC) == 0
1515 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1516 && is_compressible_debug_section(name))
1517 os = new Output_compressed_section(&parameters->options(), name, type,
1518 flags);
1519 else if ((flags & elfcpp::SHF_ALLOC) == 0
1520 && parameters->options().strip_debug_non_line()
1521 && strcmp(".debug_abbrev", name) == 0)
1522 {
1523 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1524 name, type, flags);
1525 if (this->debug_info_)
1526 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1527 }
1528 else if ((flags & elfcpp::SHF_ALLOC) == 0
1529 && parameters->options().strip_debug_non_line()
1530 && strcmp(".debug_info", name) == 0)
1531 {
1532 os = this->debug_info_ = new Output_reduced_debug_info_section(
1533 name, type, flags);
1534 if (this->debug_abbrev_)
1535 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1536 }
1537 else
1538 {
1539 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1540 // not have correct section types. Force them here.
1541 if (type == elfcpp::SHT_PROGBITS)
1542 {
1543 if (is_prefix_of(".init_array", name))
1544 type = elfcpp::SHT_INIT_ARRAY;
1545 else if (is_prefix_of(".preinit_array", name))
1546 type = elfcpp::SHT_PREINIT_ARRAY;
1547 else if (is_prefix_of(".fini_array", name))
1548 type = elfcpp::SHT_FINI_ARRAY;
1549 }
1550
1551 // FIXME: const_cast is ugly.
1552 Target* target = const_cast<Target*>(&parameters->target());
1553 os = target->make_output_section(name, type, flags);
1554 }
1555
1556 // With -z relro, we have to recognize the special sections by name.
1557 // There is no other way.
1558 bool is_relro_local = false;
1559 if (!this->script_options_->saw_sections_clause()
1560 && parameters->options().relro()
1561 && (flags & elfcpp::SHF_ALLOC) != 0
1562 && (flags & elfcpp::SHF_WRITE) != 0)
1563 {
1564 if (type == elfcpp::SHT_PROGBITS)
1565 {
1566 if ((flags & elfcpp::SHF_TLS) != 0)
1567 is_relro = true;
1568 else if (strcmp(name, ".data.rel.ro") == 0)
1569 is_relro = true;
1570 else if (strcmp(name, ".data.rel.ro.local") == 0)
1571 {
1572 is_relro = true;
1573 is_relro_local = true;
1574 }
1575 else if (strcmp(name, ".ctors") == 0
1576 || strcmp(name, ".dtors") == 0
1577 || strcmp(name, ".jcr") == 0)
1578 is_relro = true;
1579 }
1580 else if (type == elfcpp::SHT_INIT_ARRAY
1581 || type == elfcpp::SHT_FINI_ARRAY
1582 || type == elfcpp::SHT_PREINIT_ARRAY)
1583 is_relro = true;
1584 }
1585
1586 if (is_relro)
1587 os->set_is_relro();
1588
1589 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1590 order = this->default_section_order(os, is_relro_local);
1591
1592 os->set_order(order);
1593
1594 parameters->target().new_output_section(os);
1595
1596 this->section_list_.push_back(os);
1597
1598 // The GNU linker by default sorts some sections by priority, so we
1599 // do the same. We need to know that this might happen before we
1600 // attach any input sections.
1601 if (!this->script_options_->saw_sections_clause()
1602 && !parameters->options().relocatable()
1603 && (strcmp(name, ".init_array") == 0
1604 || strcmp(name, ".fini_array") == 0
1605 || (!parameters->options().ctors_in_init_array()
1606 && (strcmp(name, ".ctors") == 0
1607 || strcmp(name, ".dtors") == 0))))
1608 os->set_may_sort_attached_input_sections();
1609
1610 // Check for .stab*str sections, as .stab* sections need to link to
1611 // them.
1612 if (type == elfcpp::SHT_STRTAB
1613 && !this->have_stabstr_section_
1614 && strncmp(name, ".stab", 5) == 0
1615 && strcmp(name + strlen(name) - 3, "str") == 0)
1616 this->have_stabstr_section_ = true;
1617
1618 // During a full incremental link, we add patch space to most
1619 // PROGBITS and NOBITS sections. Flag those that may be
1620 // arbitrarily padded.
1621 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1622 && order != ORDER_INTERP
1623 && order != ORDER_INIT
1624 && order != ORDER_PLT
1625 && order != ORDER_FINI
1626 && order != ORDER_RELRO_LAST
1627 && order != ORDER_NON_RELRO_FIRST
1628 && strcmp(name, ".eh_frame") != 0
1629 && strcmp(name, ".ctors") != 0
1630 && strcmp(name, ".dtors") != 0
1631 && strcmp(name, ".jcr") != 0)
1632 {
1633 os->set_is_patch_space_allowed();
1634
1635 // Certain sections require "holes" to be filled with
1636 // specific fill patterns. These fill patterns may have
1637 // a minimum size, so we must prevent allocations from the
1638 // free list that leave a hole smaller than the minimum.
1639 if (strcmp(name, ".debug_info") == 0)
1640 os->set_free_space_fill(new Output_fill_debug_info(false));
1641 else if (strcmp(name, ".debug_types") == 0)
1642 os->set_free_space_fill(new Output_fill_debug_info(true));
1643 else if (strcmp(name, ".debug_line") == 0)
1644 os->set_free_space_fill(new Output_fill_debug_line());
1645 }
1646
1647 // If we have already attached the sections to segments, then we
1648 // need to attach this one now. This happens for sections created
1649 // directly by the linker.
1650 if (this->sections_are_attached_)
1651 this->attach_section_to_segment(&parameters->target(), os);
1652
1653 return os;
1654 }
1655
1656 // Return the default order in which a section should be placed in an
1657 // output segment. This function captures a lot of the ideas in
1658 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1659 // linker created section is normally set when the section is created;
1660 // this function is used for input sections.
1661
1662 Output_section_order
1663 Layout::default_section_order(Output_section* os, bool is_relro_local)
1664 {
1665 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1666 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1667 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1668 bool is_bss = false;
1669
1670 switch (os->type())
1671 {
1672 default:
1673 case elfcpp::SHT_PROGBITS:
1674 break;
1675 case elfcpp::SHT_NOBITS:
1676 is_bss = true;
1677 break;
1678 case elfcpp::SHT_RELA:
1679 case elfcpp::SHT_REL:
1680 if (!is_write)
1681 return ORDER_DYNAMIC_RELOCS;
1682 break;
1683 case elfcpp::SHT_HASH:
1684 case elfcpp::SHT_DYNAMIC:
1685 case elfcpp::SHT_SHLIB:
1686 case elfcpp::SHT_DYNSYM:
1687 case elfcpp::SHT_GNU_HASH:
1688 case elfcpp::SHT_GNU_verdef:
1689 case elfcpp::SHT_GNU_verneed:
1690 case elfcpp::SHT_GNU_versym:
1691 if (!is_write)
1692 return ORDER_DYNAMIC_LINKER;
1693 break;
1694 case elfcpp::SHT_NOTE:
1695 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1696 }
1697
1698 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1699 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1700
1701 if (!is_bss && !is_write)
1702 {
1703 if (is_execinstr)
1704 {
1705 if (strcmp(os->name(), ".init") == 0)
1706 return ORDER_INIT;
1707 else if (strcmp(os->name(), ".fini") == 0)
1708 return ORDER_FINI;
1709 }
1710 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1711 }
1712
1713 if (os->is_relro())
1714 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1715
1716 if (os->is_small_section())
1717 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1718 if (os->is_large_section())
1719 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1720
1721 return is_bss ? ORDER_BSS : ORDER_DATA;
1722 }
1723
1724 // Attach output sections to segments. This is called after we have
1725 // seen all the input sections.
1726
1727 void
1728 Layout::attach_sections_to_segments(const Target* target)
1729 {
1730 for (Section_list::iterator p = this->section_list_.begin();
1731 p != this->section_list_.end();
1732 ++p)
1733 this->attach_section_to_segment(target, *p);
1734
1735 this->sections_are_attached_ = true;
1736 }
1737
1738 // Attach an output section to a segment.
1739
1740 void
1741 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1742 {
1743 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1744 this->unattached_section_list_.push_back(os);
1745 else
1746 this->attach_allocated_section_to_segment(target, os);
1747 }
1748
1749 // Attach an allocated output section to a segment.
1750
1751 void
1752 Layout::attach_allocated_section_to_segment(const Target* target,
1753 Output_section* os)
1754 {
1755 elfcpp::Elf_Xword flags = os->flags();
1756 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1757
1758 if (parameters->options().relocatable())
1759 return;
1760
1761 // If we have a SECTIONS clause, we can't handle the attachment to
1762 // segments until after we've seen all the sections.
1763 if (this->script_options_->saw_sections_clause())
1764 return;
1765
1766 gold_assert(!this->script_options_->saw_phdrs_clause());
1767
1768 // This output section goes into a PT_LOAD segment.
1769
1770 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1771
1772 // If this output section's segment has extra flags that need to be set,
1773 // coming from a linker plugin, do that.
1774 seg_flags |= os->extra_segment_flags();
1775
1776 // Check for --section-start.
1777 uint64_t addr;
1778 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1779
1780 // In general the only thing we really care about for PT_LOAD
1781 // segments is whether or not they are writable or executable,
1782 // so that is how we search for them.
1783 // Large data sections also go into their own PT_LOAD segment.
1784 // People who need segments sorted on some other basis will
1785 // have to use a linker script.
1786
1787 Segment_list::const_iterator p;
1788 if (!os->is_unique_segment())
1789 {
1790 for (p = this->segment_list_.begin();
1791 p != this->segment_list_.end();
1792 ++p)
1793 {
1794 if ((*p)->type() != elfcpp::PT_LOAD)
1795 continue;
1796 if ((*p)->is_unique_segment())
1797 continue;
1798 if (!parameters->options().omagic()
1799 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1800 continue;
1801 if ((target->isolate_execinstr() || parameters->options().rosegment())
1802 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1803 continue;
1804 // If -Tbss was specified, we need to separate the data and BSS
1805 // segments.
1806 if (parameters->options().user_set_Tbss())
1807 {
1808 if ((os->type() == elfcpp::SHT_NOBITS)
1809 == (*p)->has_any_data_sections())
1810 continue;
1811 }
1812 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1813 continue;
1814
1815 if (is_address_set)
1816 {
1817 if ((*p)->are_addresses_set())
1818 continue;
1819
1820 (*p)->add_initial_output_data(os);
1821 (*p)->update_flags_for_output_section(seg_flags);
1822 (*p)->set_addresses(addr, addr);
1823 break;
1824 }
1825
1826 (*p)->add_output_section_to_load(this, os, seg_flags);
1827 break;
1828 }
1829 }
1830
1831 if (p == this->segment_list_.end()
1832 || os->is_unique_segment())
1833 {
1834 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1835 seg_flags);
1836 if (os->is_large_data_section())
1837 oseg->set_is_large_data_segment();
1838 oseg->add_output_section_to_load(this, os, seg_flags);
1839 if (is_address_set)
1840 oseg->set_addresses(addr, addr);
1841 // Check if segment should be marked unique. For segments marked
1842 // unique by linker plugins, set the new alignment if specified.
1843 if (os->is_unique_segment())
1844 {
1845 oseg->set_is_unique_segment();
1846 if (os->segment_alignment() != 0)
1847 oseg->set_minimum_p_align(os->segment_alignment());
1848 }
1849 }
1850
1851 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1852 // segment.
1853 if (os->type() == elfcpp::SHT_NOTE)
1854 {
1855 // See if we already have an equivalent PT_NOTE segment.
1856 for (p = this->segment_list_.begin();
1857 p != segment_list_.end();
1858 ++p)
1859 {
1860 if ((*p)->type() == elfcpp::PT_NOTE
1861 && (((*p)->flags() & elfcpp::PF_W)
1862 == (seg_flags & elfcpp::PF_W)))
1863 {
1864 (*p)->add_output_section_to_nonload(os, seg_flags);
1865 break;
1866 }
1867 }
1868
1869 if (p == this->segment_list_.end())
1870 {
1871 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1872 seg_flags);
1873 oseg->add_output_section_to_nonload(os, seg_flags);
1874 }
1875 }
1876
1877 // If we see a loadable SHF_TLS section, we create a PT_TLS
1878 // segment. There can only be one such segment.
1879 if ((flags & elfcpp::SHF_TLS) != 0)
1880 {
1881 if (this->tls_segment_ == NULL)
1882 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1883 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1884 }
1885
1886 // If -z relro is in effect, and we see a relro section, we create a
1887 // PT_GNU_RELRO segment. There can only be one such segment.
1888 if (os->is_relro() && parameters->options().relro())
1889 {
1890 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1891 if (this->relro_segment_ == NULL)
1892 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1893 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1894 }
1895
1896 // If we see a section named .interp, put it into a PT_INTERP
1897 // segment. This seems broken to me, but this is what GNU ld does,
1898 // and glibc expects it.
1899 if (strcmp(os->name(), ".interp") == 0
1900 && !this->script_options_->saw_phdrs_clause())
1901 {
1902 if (this->interp_segment_ == NULL)
1903 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1904 else
1905 gold_warning(_("multiple '.interp' sections in input files "
1906 "may cause confusing PT_INTERP segment"));
1907 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1908 }
1909 }
1910
1911 // Make an output section for a script.
1912
1913 Output_section*
1914 Layout::make_output_section_for_script(
1915 const char* name,
1916 Script_sections::Section_type section_type)
1917 {
1918 name = this->namepool_.add(name, false, NULL);
1919 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1920 if (section_type == Script_sections::ST_NOLOAD)
1921 sh_flags = 0;
1922 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1923 sh_flags, ORDER_INVALID,
1924 false);
1925 os->set_found_in_sections_clause();
1926 if (section_type == Script_sections::ST_NOLOAD)
1927 os->set_is_noload();
1928 return os;
1929 }
1930
1931 // Return the number of segments we expect to see.
1932
1933 size_t
1934 Layout::expected_segment_count() const
1935 {
1936 size_t ret = this->segment_list_.size();
1937
1938 // If we didn't see a SECTIONS clause in a linker script, we should
1939 // already have the complete list of segments. Otherwise we ask the
1940 // SECTIONS clause how many segments it expects, and add in the ones
1941 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1942
1943 if (!this->script_options_->saw_sections_clause())
1944 return ret;
1945 else
1946 {
1947 const Script_sections* ss = this->script_options_->script_sections();
1948 return ret + ss->expected_segment_count(this);
1949 }
1950 }
1951
1952 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1953 // is whether we saw a .note.GNU-stack section in the object file.
1954 // GNU_STACK_FLAGS is the section flags. The flags give the
1955 // protection required for stack memory. We record this in an
1956 // executable as a PT_GNU_STACK segment. If an object file does not
1957 // have a .note.GNU-stack segment, we must assume that it is an old
1958 // object. On some targets that will force an executable stack.
1959
1960 void
1961 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1962 const Object* obj)
1963 {
1964 if (!seen_gnu_stack)
1965 {
1966 this->input_without_gnu_stack_note_ = true;
1967 if (parameters->options().warn_execstack()
1968 && parameters->target().is_default_stack_executable())
1969 gold_warning(_("%s: missing .note.GNU-stack section"
1970 " implies executable stack"),
1971 obj->name().c_str());
1972 }
1973 else
1974 {
1975 this->input_with_gnu_stack_note_ = true;
1976 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1977 {
1978 this->input_requires_executable_stack_ = true;
1979 if (parameters->options().warn_execstack()
1980 || parameters->options().is_stack_executable())
1981 gold_warning(_("%s: requires executable stack"),
1982 obj->name().c_str());
1983 }
1984 }
1985 }
1986
1987 // Create automatic note sections.
1988
1989 void
1990 Layout::create_notes()
1991 {
1992 this->create_gold_note();
1993 this->create_executable_stack_info();
1994 this->create_build_id();
1995 }
1996
1997 // Create the dynamic sections which are needed before we read the
1998 // relocs.
1999
2000 void
2001 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2002 {
2003 if (parameters->doing_static_link())
2004 return;
2005
2006 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2007 elfcpp::SHT_DYNAMIC,
2008 (elfcpp::SHF_ALLOC
2009 | elfcpp::SHF_WRITE),
2010 false, ORDER_RELRO,
2011 true);
2012
2013 // A linker script may discard .dynamic, so check for NULL.
2014 if (this->dynamic_section_ != NULL)
2015 {
2016 this->dynamic_symbol_ =
2017 symtab->define_in_output_data("_DYNAMIC", NULL,
2018 Symbol_table::PREDEFINED,
2019 this->dynamic_section_, 0, 0,
2020 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2021 elfcpp::STV_HIDDEN, 0, false, false);
2022
2023 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2024
2025 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2026 }
2027 }
2028
2029 // For each output section whose name can be represented as C symbol,
2030 // define __start and __stop symbols for the section. This is a GNU
2031 // extension.
2032
2033 void
2034 Layout::define_section_symbols(Symbol_table* symtab)
2035 {
2036 for (Section_list::const_iterator p = this->section_list_.begin();
2037 p != this->section_list_.end();
2038 ++p)
2039 {
2040 const char* const name = (*p)->name();
2041 if (is_cident(name))
2042 {
2043 const std::string name_string(name);
2044 const std::string start_name(cident_section_start_prefix
2045 + name_string);
2046 const std::string stop_name(cident_section_stop_prefix
2047 + name_string);
2048
2049 symtab->define_in_output_data(start_name.c_str(),
2050 NULL, // version
2051 Symbol_table::PREDEFINED,
2052 *p,
2053 0, // value
2054 0, // symsize
2055 elfcpp::STT_NOTYPE,
2056 elfcpp::STB_GLOBAL,
2057 elfcpp::STV_DEFAULT,
2058 0, // nonvis
2059 false, // offset_is_from_end
2060 true); // only_if_ref
2061
2062 symtab->define_in_output_data(stop_name.c_str(),
2063 NULL, // version
2064 Symbol_table::PREDEFINED,
2065 *p,
2066 0, // value
2067 0, // symsize
2068 elfcpp::STT_NOTYPE,
2069 elfcpp::STB_GLOBAL,
2070 elfcpp::STV_DEFAULT,
2071 0, // nonvis
2072 true, // offset_is_from_end
2073 true); // only_if_ref
2074 }
2075 }
2076 }
2077
2078 // Define symbols for group signatures.
2079
2080 void
2081 Layout::define_group_signatures(Symbol_table* symtab)
2082 {
2083 for (Group_signatures::iterator p = this->group_signatures_.begin();
2084 p != this->group_signatures_.end();
2085 ++p)
2086 {
2087 Symbol* sym = symtab->lookup(p->signature, NULL);
2088 if (sym != NULL)
2089 p->section->set_info_symndx(sym);
2090 else
2091 {
2092 // Force the name of the group section to the group
2093 // signature, and use the group's section symbol as the
2094 // signature symbol.
2095 if (strcmp(p->section->name(), p->signature) != 0)
2096 {
2097 const char* name = this->namepool_.add(p->signature,
2098 true, NULL);
2099 p->section->set_name(name);
2100 }
2101 p->section->set_needs_symtab_index();
2102 p->section->set_info_section_symndx(p->section);
2103 }
2104 }
2105
2106 this->group_signatures_.clear();
2107 }
2108
2109 // Find the first read-only PT_LOAD segment, creating one if
2110 // necessary.
2111
2112 Output_segment*
2113 Layout::find_first_load_seg(const Target* target)
2114 {
2115 Output_segment* best = NULL;
2116 for (Segment_list::const_iterator p = this->segment_list_.begin();
2117 p != this->segment_list_.end();
2118 ++p)
2119 {
2120 if ((*p)->type() == elfcpp::PT_LOAD
2121 && ((*p)->flags() & elfcpp::PF_R) != 0
2122 && (parameters->options().omagic()
2123 || ((*p)->flags() & elfcpp::PF_W) == 0)
2124 && (!target->isolate_execinstr()
2125 || ((*p)->flags() & elfcpp::PF_X) == 0))
2126 {
2127 if (best == NULL || this->segment_precedes(*p, best))
2128 best = *p;
2129 }
2130 }
2131 if (best != NULL)
2132 return best;
2133
2134 gold_assert(!this->script_options_->saw_phdrs_clause());
2135
2136 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2137 elfcpp::PF_R);
2138 return load_seg;
2139 }
2140
2141 // Save states of all current output segments. Store saved states
2142 // in SEGMENT_STATES.
2143
2144 void
2145 Layout::save_segments(Segment_states* segment_states)
2146 {
2147 for (Segment_list::const_iterator p = this->segment_list_.begin();
2148 p != this->segment_list_.end();
2149 ++p)
2150 {
2151 Output_segment* segment = *p;
2152 // Shallow copy.
2153 Output_segment* copy = new Output_segment(*segment);
2154 (*segment_states)[segment] = copy;
2155 }
2156 }
2157
2158 // Restore states of output segments and delete any segment not found in
2159 // SEGMENT_STATES.
2160
2161 void
2162 Layout::restore_segments(const Segment_states* segment_states)
2163 {
2164 // Go through the segment list and remove any segment added in the
2165 // relaxation loop.
2166 this->tls_segment_ = NULL;
2167 this->relro_segment_ = NULL;
2168 Segment_list::iterator list_iter = this->segment_list_.begin();
2169 while (list_iter != this->segment_list_.end())
2170 {
2171 Output_segment* segment = *list_iter;
2172 Segment_states::const_iterator states_iter =
2173 segment_states->find(segment);
2174 if (states_iter != segment_states->end())
2175 {
2176 const Output_segment* copy = states_iter->second;
2177 // Shallow copy to restore states.
2178 *segment = *copy;
2179
2180 // Also fix up TLS and RELRO segment pointers as appropriate.
2181 if (segment->type() == elfcpp::PT_TLS)
2182 this->tls_segment_ = segment;
2183 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2184 this->relro_segment_ = segment;
2185
2186 ++list_iter;
2187 }
2188 else
2189 {
2190 list_iter = this->segment_list_.erase(list_iter);
2191 // This is a segment created during section layout. It should be
2192 // safe to remove it since we should have removed all pointers to it.
2193 delete segment;
2194 }
2195 }
2196 }
2197
2198 // Clean up after relaxation so that sections can be laid out again.
2199
2200 void
2201 Layout::clean_up_after_relaxation()
2202 {
2203 // Restore the segments to point state just prior to the relaxation loop.
2204 Script_sections* script_section = this->script_options_->script_sections();
2205 script_section->release_segments();
2206 this->restore_segments(this->segment_states_);
2207
2208 // Reset section addresses and file offsets
2209 for (Section_list::iterator p = this->section_list_.begin();
2210 p != this->section_list_.end();
2211 ++p)
2212 {
2213 (*p)->restore_states();
2214
2215 // If an input section changes size because of relaxation,
2216 // we need to adjust the section offsets of all input sections.
2217 // after such a section.
2218 if ((*p)->section_offsets_need_adjustment())
2219 (*p)->adjust_section_offsets();
2220
2221 (*p)->reset_address_and_file_offset();
2222 }
2223
2224 // Reset special output object address and file offsets.
2225 for (Data_list::iterator p = this->special_output_list_.begin();
2226 p != this->special_output_list_.end();
2227 ++p)
2228 (*p)->reset_address_and_file_offset();
2229
2230 // A linker script may have created some output section data objects.
2231 // They are useless now.
2232 for (Output_section_data_list::const_iterator p =
2233 this->script_output_section_data_list_.begin();
2234 p != this->script_output_section_data_list_.end();
2235 ++p)
2236 delete *p;
2237 this->script_output_section_data_list_.clear();
2238 }
2239
2240 // Prepare for relaxation.
2241
2242 void
2243 Layout::prepare_for_relaxation()
2244 {
2245 // Create an relaxation debug check if in debugging mode.
2246 if (is_debugging_enabled(DEBUG_RELAXATION))
2247 this->relaxation_debug_check_ = new Relaxation_debug_check();
2248
2249 // Save segment states.
2250 this->segment_states_ = new Segment_states();
2251 this->save_segments(this->segment_states_);
2252
2253 for(Section_list::const_iterator p = this->section_list_.begin();
2254 p != this->section_list_.end();
2255 ++p)
2256 (*p)->save_states();
2257
2258 if (is_debugging_enabled(DEBUG_RELAXATION))
2259 this->relaxation_debug_check_->check_output_data_for_reset_values(
2260 this->section_list_, this->special_output_list_);
2261
2262 // Also enable recording of output section data from scripts.
2263 this->record_output_section_data_from_script_ = true;
2264 }
2265
2266 // Relaxation loop body: If target has no relaxation, this runs only once
2267 // Otherwise, the target relaxation hook is called at the end of
2268 // each iteration. If the hook returns true, it means re-layout of
2269 // section is required.
2270 //
2271 // The number of segments created by a linking script without a PHDRS
2272 // clause may be affected by section sizes and alignments. There is
2273 // a remote chance that relaxation causes different number of PT_LOAD
2274 // segments are created and sections are attached to different segments.
2275 // Therefore, we always throw away all segments created during section
2276 // layout. In order to be able to restart the section layout, we keep
2277 // a copy of the segment list right before the relaxation loop and use
2278 // that to restore the segments.
2279 //
2280 // PASS is the current relaxation pass number.
2281 // SYMTAB is a symbol table.
2282 // PLOAD_SEG is the address of a pointer for the load segment.
2283 // PHDR_SEG is a pointer to the PHDR segment.
2284 // SEGMENT_HEADERS points to the output segment header.
2285 // FILE_HEADER points to the output file header.
2286 // PSHNDX is the address to store the output section index.
2287
2288 off_t inline
2289 Layout::relaxation_loop_body(
2290 int pass,
2291 Target* target,
2292 Symbol_table* symtab,
2293 Output_segment** pload_seg,
2294 Output_segment* phdr_seg,
2295 Output_segment_headers* segment_headers,
2296 Output_file_header* file_header,
2297 unsigned int* pshndx)
2298 {
2299 // If this is not the first iteration, we need to clean up after
2300 // relaxation so that we can lay out the sections again.
2301 if (pass != 0)
2302 this->clean_up_after_relaxation();
2303
2304 // If there is a SECTIONS clause, put all the input sections into
2305 // the required order.
2306 Output_segment* load_seg;
2307 if (this->script_options_->saw_sections_clause())
2308 load_seg = this->set_section_addresses_from_script(symtab);
2309 else if (parameters->options().relocatable())
2310 load_seg = NULL;
2311 else
2312 load_seg = this->find_first_load_seg(target);
2313
2314 if (parameters->options().oformat_enum()
2315 != General_options::OBJECT_FORMAT_ELF)
2316 load_seg = NULL;
2317
2318 // If the user set the address of the text segment, that may not be
2319 // compatible with putting the segment headers and file headers into
2320 // that segment.
2321 if (parameters->options().user_set_Ttext()
2322 && parameters->options().Ttext() % target->abi_pagesize() != 0)
2323 {
2324 load_seg = NULL;
2325 phdr_seg = NULL;
2326 }
2327
2328 gold_assert(phdr_seg == NULL
2329 || load_seg != NULL
2330 || this->script_options_->saw_sections_clause());
2331
2332 // If the address of the load segment we found has been set by
2333 // --section-start rather than by a script, then adjust the VMA and
2334 // LMA downward if possible to include the file and section headers.
2335 uint64_t header_gap = 0;
2336 if (load_seg != NULL
2337 && load_seg->are_addresses_set()
2338 && !this->script_options_->saw_sections_clause()
2339 && !parameters->options().relocatable())
2340 {
2341 file_header->finalize_data_size();
2342 segment_headers->finalize_data_size();
2343 size_t sizeof_headers = (file_header->data_size()
2344 + segment_headers->data_size());
2345 const uint64_t abi_pagesize = target->abi_pagesize();
2346 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2347 hdr_paddr &= ~(abi_pagesize - 1);
2348 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2349 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2350 load_seg = NULL;
2351 else
2352 {
2353 load_seg->set_addresses(load_seg->vaddr() - subtract,
2354 load_seg->paddr() - subtract);
2355 header_gap = subtract - sizeof_headers;
2356 }
2357 }
2358
2359 // Lay out the segment headers.
2360 if (!parameters->options().relocatable())
2361 {
2362 gold_assert(segment_headers != NULL);
2363 if (header_gap != 0 && load_seg != NULL)
2364 {
2365 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2366 load_seg->add_initial_output_data(z);
2367 }
2368 if (load_seg != NULL)
2369 load_seg->add_initial_output_data(segment_headers);
2370 if (phdr_seg != NULL)
2371 phdr_seg->add_initial_output_data(segment_headers);
2372 }
2373
2374 // Lay out the file header.
2375 if (load_seg != NULL)
2376 load_seg->add_initial_output_data(file_header);
2377
2378 if (this->script_options_->saw_phdrs_clause()
2379 && !parameters->options().relocatable())
2380 {
2381 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2382 // clause in a linker script.
2383 Script_sections* ss = this->script_options_->script_sections();
2384 ss->put_headers_in_phdrs(file_header, segment_headers);
2385 }
2386
2387 // We set the output section indexes in set_segment_offsets and
2388 // set_section_indexes.
2389 *pshndx = 1;
2390
2391 // Set the file offsets of all the segments, and all the sections
2392 // they contain.
2393 off_t off;
2394 if (!parameters->options().relocatable())
2395 off = this->set_segment_offsets(target, load_seg, pshndx);
2396 else
2397 off = this->set_relocatable_section_offsets(file_header, pshndx);
2398
2399 // Verify that the dummy relaxation does not change anything.
2400 if (is_debugging_enabled(DEBUG_RELAXATION))
2401 {
2402 if (pass == 0)
2403 this->relaxation_debug_check_->read_sections(this->section_list_);
2404 else
2405 this->relaxation_debug_check_->verify_sections(this->section_list_);
2406 }
2407
2408 *pload_seg = load_seg;
2409 return off;
2410 }
2411
2412 // Search the list of patterns and find the postion of the given section
2413 // name in the output section. If the section name matches a glob
2414 // pattern and a non-glob name, then the non-glob position takes
2415 // precedence. Return 0 if no match is found.
2416
2417 unsigned int
2418 Layout::find_section_order_index(const std::string& section_name)
2419 {
2420 Unordered_map<std::string, unsigned int>::iterator map_it;
2421 map_it = this->input_section_position_.find(section_name);
2422 if (map_it != this->input_section_position_.end())
2423 return map_it->second;
2424
2425 // Absolute match failed. Linear search the glob patterns.
2426 std::vector<std::string>::iterator it;
2427 for (it = this->input_section_glob_.begin();
2428 it != this->input_section_glob_.end();
2429 ++it)
2430 {
2431 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2432 {
2433 map_it = this->input_section_position_.find(*it);
2434 gold_assert(map_it != this->input_section_position_.end());
2435 return map_it->second;
2436 }
2437 }
2438 return 0;
2439 }
2440
2441 // Read the sequence of input sections from the file specified with
2442 // option --section-ordering-file.
2443
2444 void
2445 Layout::read_layout_from_file()
2446 {
2447 const char* filename = parameters->options().section_ordering_file();
2448 std::ifstream in;
2449 std::string line;
2450
2451 in.open(filename);
2452 if (!in)
2453 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2454 filename, strerror(errno));
2455
2456 std::getline(in, line); // this chops off the trailing \n, if any
2457 unsigned int position = 1;
2458 this->set_section_ordering_specified();
2459
2460 while (in)
2461 {
2462 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2463 line.resize(line.length() - 1);
2464 // Ignore comments, beginning with '#'
2465 if (line[0] == '#')
2466 {
2467 std::getline(in, line);
2468 continue;
2469 }
2470 this->input_section_position_[line] = position;
2471 // Store all glob patterns in a vector.
2472 if (is_wildcard_string(line.c_str()))
2473 this->input_section_glob_.push_back(line);
2474 position++;
2475 std::getline(in, line);
2476 }
2477 }
2478
2479 // Finalize the layout. When this is called, we have created all the
2480 // output sections and all the output segments which are based on
2481 // input sections. We have several things to do, and we have to do
2482 // them in the right order, so that we get the right results correctly
2483 // and efficiently.
2484
2485 // 1) Finalize the list of output segments and create the segment
2486 // table header.
2487
2488 // 2) Finalize the dynamic symbol table and associated sections.
2489
2490 // 3) Determine the final file offset of all the output segments.
2491
2492 // 4) Determine the final file offset of all the SHF_ALLOC output
2493 // sections.
2494
2495 // 5) Create the symbol table sections and the section name table
2496 // section.
2497
2498 // 6) Finalize the symbol table: set symbol values to their final
2499 // value and make a final determination of which symbols are going
2500 // into the output symbol table.
2501
2502 // 7) Create the section table header.
2503
2504 // 8) Determine the final file offset of all the output sections which
2505 // are not SHF_ALLOC, including the section table header.
2506
2507 // 9) Finalize the ELF file header.
2508
2509 // This function returns the size of the output file.
2510
2511 off_t
2512 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2513 Target* target, const Task* task)
2514 {
2515 target->finalize_sections(this, input_objects, symtab);
2516
2517 this->count_local_symbols(task, input_objects);
2518
2519 this->link_stabs_sections();
2520
2521 Output_segment* phdr_seg = NULL;
2522 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2523 {
2524 // There was a dynamic object in the link. We need to create
2525 // some information for the dynamic linker.
2526
2527 // Create the PT_PHDR segment which will hold the program
2528 // headers.
2529 if (!this->script_options_->saw_phdrs_clause())
2530 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2531
2532 // Create the dynamic symbol table, including the hash table.
2533 Output_section* dynstr;
2534 std::vector<Symbol*> dynamic_symbols;
2535 unsigned int local_dynamic_count;
2536 Versions versions(*this->script_options()->version_script_info(),
2537 &this->dynpool_);
2538 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2539 &local_dynamic_count, &dynamic_symbols,
2540 &versions);
2541
2542 // Create the .interp section to hold the name of the
2543 // interpreter, and put it in a PT_INTERP segment. Don't do it
2544 // if we saw a .interp section in an input file.
2545 if ((!parameters->options().shared()
2546 || parameters->options().dynamic_linker() != NULL)
2547 && this->interp_segment_ == NULL)
2548 this->create_interp(target);
2549
2550 // Finish the .dynamic section to hold the dynamic data, and put
2551 // it in a PT_DYNAMIC segment.
2552 this->finish_dynamic_section(input_objects, symtab);
2553
2554 // We should have added everything we need to the dynamic string
2555 // table.
2556 this->dynpool_.set_string_offsets();
2557
2558 // Create the version sections. We can't do this until the
2559 // dynamic string table is complete.
2560 this->create_version_sections(&versions, symtab, local_dynamic_count,
2561 dynamic_symbols, dynstr);
2562
2563 // Set the size of the _DYNAMIC symbol. We can't do this until
2564 // after we call create_version_sections.
2565 this->set_dynamic_symbol_size(symtab);
2566 }
2567
2568 // Create segment headers.
2569 Output_segment_headers* segment_headers =
2570 (parameters->options().relocatable()
2571 ? NULL
2572 : new Output_segment_headers(this->segment_list_));
2573
2574 // Lay out the file header.
2575 Output_file_header* file_header = new Output_file_header(target, symtab,
2576 segment_headers);
2577
2578 this->special_output_list_.push_back(file_header);
2579 if (segment_headers != NULL)
2580 this->special_output_list_.push_back(segment_headers);
2581
2582 // Find approriate places for orphan output sections if we are using
2583 // a linker script.
2584 if (this->script_options_->saw_sections_clause())
2585 this->place_orphan_sections_in_script();
2586
2587 Output_segment* load_seg;
2588 off_t off;
2589 unsigned int shndx;
2590 int pass = 0;
2591
2592 // Take a snapshot of the section layout as needed.
2593 if (target->may_relax())
2594 this->prepare_for_relaxation();
2595
2596 // Run the relaxation loop to lay out sections.
2597 do
2598 {
2599 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2600 phdr_seg, segment_headers, file_header,
2601 &shndx);
2602 pass++;
2603 }
2604 while (target->may_relax()
2605 && target->relax(pass, input_objects, symtab, this, task));
2606
2607 // If there is a load segment that contains the file and program headers,
2608 // provide a symbol __ehdr_start pointing there.
2609 // A program can use this to examine itself robustly.
2610 if (load_seg != NULL)
2611 symtab->define_in_output_segment("__ehdr_start", NULL,
2612 Symbol_table::PREDEFINED, load_seg, 0, 0,
2613 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2614 elfcpp::STV_DEFAULT, 0,
2615 Symbol::SEGMENT_START, true);
2616
2617 // Set the file offsets of all the non-data sections we've seen so
2618 // far which don't have to wait for the input sections. We need
2619 // this in order to finalize local symbols in non-allocated
2620 // sections.
2621 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2622
2623 // Set the section indexes of all unallocated sections seen so far,
2624 // in case any of them are somehow referenced by a symbol.
2625 shndx = this->set_section_indexes(shndx);
2626
2627 // Create the symbol table sections.
2628 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2629 if (!parameters->doing_static_link())
2630 this->assign_local_dynsym_offsets(input_objects);
2631
2632 // Process any symbol assignments from a linker script. This must
2633 // be called after the symbol table has been finalized.
2634 this->script_options_->finalize_symbols(symtab, this);
2635
2636 // Create the incremental inputs sections.
2637 if (this->incremental_inputs_)
2638 {
2639 this->incremental_inputs_->finalize();
2640 this->create_incremental_info_sections(symtab);
2641 }
2642
2643 // Create the .shstrtab section.
2644 Output_section* shstrtab_section = this->create_shstrtab();
2645
2646 // Set the file offsets of the rest of the non-data sections which
2647 // don't have to wait for the input sections.
2648 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2649
2650 // Now that all sections have been created, set the section indexes
2651 // for any sections which haven't been done yet.
2652 shndx = this->set_section_indexes(shndx);
2653
2654 // Create the section table header.
2655 this->create_shdrs(shstrtab_section, &off);
2656
2657 // If there are no sections which require postprocessing, we can
2658 // handle the section names now, and avoid a resize later.
2659 if (!this->any_postprocessing_sections_)
2660 {
2661 off = this->set_section_offsets(off,
2662 POSTPROCESSING_SECTIONS_PASS);
2663 off =
2664 this->set_section_offsets(off,
2665 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2666 }
2667
2668 file_header->set_section_info(this->section_headers_, shstrtab_section);
2669
2670 // Now we know exactly where everything goes in the output file
2671 // (except for non-allocated sections which require postprocessing).
2672 Output_data::layout_complete();
2673
2674 this->output_file_size_ = off;
2675
2676 return off;
2677 }
2678
2679 // Create a note header following the format defined in the ELF ABI.
2680 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2681 // of the section to create, DESCSZ is the size of the descriptor.
2682 // ALLOCATE is true if the section should be allocated in memory.
2683 // This returns the new note section. It sets *TRAILING_PADDING to
2684 // the number of trailing zero bytes required.
2685
2686 Output_section*
2687 Layout::create_note(const char* name, int note_type,
2688 const char* section_name, size_t descsz,
2689 bool allocate, size_t* trailing_padding)
2690 {
2691 // Authorities all agree that the values in a .note field should
2692 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2693 // they differ on what the alignment is for 64-bit binaries.
2694 // The GABI says unambiguously they take 8-byte alignment:
2695 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2696 // Other documentation says alignment should always be 4 bytes:
2697 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2698 // GNU ld and GNU readelf both support the latter (at least as of
2699 // version 2.16.91), and glibc always generates the latter for
2700 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2701 // here.
2702 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2703 const int size = parameters->target().get_size();
2704 #else
2705 const int size = 32;
2706 #endif
2707
2708 // The contents of the .note section.
2709 size_t namesz = strlen(name) + 1;
2710 size_t aligned_namesz = align_address(namesz, size / 8);
2711 size_t aligned_descsz = align_address(descsz, size / 8);
2712
2713 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2714
2715 unsigned char* buffer = new unsigned char[notehdrsz];
2716 memset(buffer, 0, notehdrsz);
2717
2718 bool is_big_endian = parameters->target().is_big_endian();
2719
2720 if (size == 32)
2721 {
2722 if (!is_big_endian)
2723 {
2724 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2725 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2726 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2727 }
2728 else
2729 {
2730 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2731 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2732 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2733 }
2734 }
2735 else if (size == 64)
2736 {
2737 if (!is_big_endian)
2738 {
2739 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2740 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2741 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2742 }
2743 else
2744 {
2745 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2746 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2747 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2748 }
2749 }
2750 else
2751 gold_unreachable();
2752
2753 memcpy(buffer + 3 * (size / 8), name, namesz);
2754
2755 elfcpp::Elf_Xword flags = 0;
2756 Output_section_order order = ORDER_INVALID;
2757 if (allocate)
2758 {
2759 flags = elfcpp::SHF_ALLOC;
2760 order = ORDER_RO_NOTE;
2761 }
2762 Output_section* os = this->choose_output_section(NULL, section_name,
2763 elfcpp::SHT_NOTE,
2764 flags, false, order, false);
2765 if (os == NULL)
2766 return NULL;
2767
2768 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2769 size / 8,
2770 "** note header");
2771 os->add_output_section_data(posd);
2772
2773 *trailing_padding = aligned_descsz - descsz;
2774
2775 return os;
2776 }
2777
2778 // For an executable or shared library, create a note to record the
2779 // version of gold used to create the binary.
2780
2781 void
2782 Layout::create_gold_note()
2783 {
2784 if (parameters->options().relocatable()
2785 || parameters->incremental_update())
2786 return;
2787
2788 std::string desc = std::string("gold ") + gold::get_version_string();
2789
2790 size_t trailing_padding;
2791 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2792 ".note.gnu.gold-version", desc.size(),
2793 false, &trailing_padding);
2794 if (os == NULL)
2795 return;
2796
2797 Output_section_data* posd = new Output_data_const(desc, 4);
2798 os->add_output_section_data(posd);
2799
2800 if (trailing_padding > 0)
2801 {
2802 posd = new Output_data_zero_fill(trailing_padding, 0);
2803 os->add_output_section_data(posd);
2804 }
2805 }
2806
2807 // Record whether the stack should be executable. This can be set
2808 // from the command line using the -z execstack or -z noexecstack
2809 // options. Otherwise, if any input file has a .note.GNU-stack
2810 // section with the SHF_EXECINSTR flag set, the stack should be
2811 // executable. Otherwise, if at least one input file a
2812 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2813 // section, we use the target default for whether the stack should be
2814 // executable. Otherwise, we don't generate a stack note. When
2815 // generating a object file, we create a .note.GNU-stack section with
2816 // the appropriate marking. When generating an executable or shared
2817 // library, we create a PT_GNU_STACK segment.
2818
2819 void
2820 Layout::create_executable_stack_info()
2821 {
2822 bool is_stack_executable;
2823 if (parameters->options().is_execstack_set())
2824 is_stack_executable = parameters->options().is_stack_executable();
2825 else if (!this->input_with_gnu_stack_note_)
2826 return;
2827 else
2828 {
2829 if (this->input_requires_executable_stack_)
2830 is_stack_executable = true;
2831 else if (this->input_without_gnu_stack_note_)
2832 is_stack_executable =
2833 parameters->target().is_default_stack_executable();
2834 else
2835 is_stack_executable = false;
2836 }
2837
2838 if (parameters->options().relocatable())
2839 {
2840 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2841 elfcpp::Elf_Xword flags = 0;
2842 if (is_stack_executable)
2843 flags |= elfcpp::SHF_EXECINSTR;
2844 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2845 ORDER_INVALID, false);
2846 }
2847 else
2848 {
2849 if (this->script_options_->saw_phdrs_clause())
2850 return;
2851 int flags = elfcpp::PF_R | elfcpp::PF_W;
2852 if (is_stack_executable)
2853 flags |= elfcpp::PF_X;
2854 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2855 }
2856 }
2857
2858 // If --build-id was used, set up the build ID note.
2859
2860 void
2861 Layout::create_build_id()
2862 {
2863 if (!parameters->options().user_set_build_id())
2864 return;
2865
2866 const char* style = parameters->options().build_id();
2867 if (strcmp(style, "none") == 0)
2868 return;
2869
2870 // Set DESCSZ to the size of the note descriptor. When possible,
2871 // set DESC to the note descriptor contents.
2872 size_t descsz;
2873 std::string desc;
2874 if (strcmp(style, "md5") == 0)
2875 descsz = 128 / 8;
2876 else if (strcmp(style, "sha1") == 0)
2877 descsz = 160 / 8;
2878 else if (strcmp(style, "uuid") == 0)
2879 {
2880 const size_t uuidsz = 128 / 8;
2881
2882 char buffer[uuidsz];
2883 memset(buffer, 0, uuidsz);
2884
2885 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2886 if (descriptor < 0)
2887 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2888 strerror(errno));
2889 else
2890 {
2891 ssize_t got = ::read(descriptor, buffer, uuidsz);
2892 release_descriptor(descriptor, true);
2893 if (got < 0)
2894 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2895 else if (static_cast<size_t>(got) != uuidsz)
2896 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2897 uuidsz, got);
2898 }
2899
2900 desc.assign(buffer, uuidsz);
2901 descsz = uuidsz;
2902 }
2903 else if (strncmp(style, "0x", 2) == 0)
2904 {
2905 hex_init();
2906 const char* p = style + 2;
2907 while (*p != '\0')
2908 {
2909 if (hex_p(p[0]) && hex_p(p[1]))
2910 {
2911 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2912 desc += c;
2913 p += 2;
2914 }
2915 else if (*p == '-' || *p == ':')
2916 ++p;
2917 else
2918 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2919 style);
2920 }
2921 descsz = desc.size();
2922 }
2923 else
2924 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2925
2926 // Create the note.
2927 size_t trailing_padding;
2928 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2929 ".note.gnu.build-id", descsz, true,
2930 &trailing_padding);
2931 if (os == NULL)
2932 return;
2933
2934 if (!desc.empty())
2935 {
2936 // We know the value already, so we fill it in now.
2937 gold_assert(desc.size() == descsz);
2938
2939 Output_section_data* posd = new Output_data_const(desc, 4);
2940 os->add_output_section_data(posd);
2941
2942 if (trailing_padding != 0)
2943 {
2944 posd = new Output_data_zero_fill(trailing_padding, 0);
2945 os->add_output_section_data(posd);
2946 }
2947 }
2948 else
2949 {
2950 // We need to compute a checksum after we have completed the
2951 // link.
2952 gold_assert(trailing_padding == 0);
2953 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2954 os->add_output_section_data(this->build_id_note_);
2955 }
2956 }
2957
2958 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2959 // field of the former should point to the latter. I'm not sure who
2960 // started this, but the GNU linker does it, and some tools depend
2961 // upon it.
2962
2963 void
2964 Layout::link_stabs_sections()
2965 {
2966 if (!this->have_stabstr_section_)
2967 return;
2968
2969 for (Section_list::iterator p = this->section_list_.begin();
2970 p != this->section_list_.end();
2971 ++p)
2972 {
2973 if ((*p)->type() != elfcpp::SHT_STRTAB)
2974 continue;
2975
2976 const char* name = (*p)->name();
2977 if (strncmp(name, ".stab", 5) != 0)
2978 continue;
2979
2980 size_t len = strlen(name);
2981 if (strcmp(name + len - 3, "str") != 0)
2982 continue;
2983
2984 std::string stab_name(name, len - 3);
2985 Output_section* stab_sec;
2986 stab_sec = this->find_output_section(stab_name.c_str());
2987 if (stab_sec != NULL)
2988 stab_sec->set_link_section(*p);
2989 }
2990 }
2991
2992 // Create .gnu_incremental_inputs and related sections needed
2993 // for the next run of incremental linking to check what has changed.
2994
2995 void
2996 Layout::create_incremental_info_sections(Symbol_table* symtab)
2997 {
2998 Incremental_inputs* incr = this->incremental_inputs_;
2999
3000 gold_assert(incr != NULL);
3001
3002 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3003 incr->create_data_sections(symtab);
3004
3005 // Add the .gnu_incremental_inputs section.
3006 const char* incremental_inputs_name =
3007 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3008 Output_section* incremental_inputs_os =
3009 this->make_output_section(incremental_inputs_name,
3010 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3011 ORDER_INVALID, false);
3012 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3013
3014 // Add the .gnu_incremental_symtab section.
3015 const char* incremental_symtab_name =
3016 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3017 Output_section* incremental_symtab_os =
3018 this->make_output_section(incremental_symtab_name,
3019 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3020 ORDER_INVALID, false);
3021 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3022 incremental_symtab_os->set_entsize(4);
3023
3024 // Add the .gnu_incremental_relocs section.
3025 const char* incremental_relocs_name =
3026 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3027 Output_section* incremental_relocs_os =
3028 this->make_output_section(incremental_relocs_name,
3029 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3030 ORDER_INVALID, false);
3031 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3032 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3033
3034 // Add the .gnu_incremental_got_plt section.
3035 const char* incremental_got_plt_name =
3036 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3037 Output_section* incremental_got_plt_os =
3038 this->make_output_section(incremental_got_plt_name,
3039 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3040 ORDER_INVALID, false);
3041 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3042
3043 // Add the .gnu_incremental_strtab section.
3044 const char* incremental_strtab_name =
3045 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3046 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3047 elfcpp::SHT_STRTAB, 0,
3048 ORDER_INVALID, false);
3049 Output_data_strtab* strtab_data =
3050 new Output_data_strtab(incr->get_stringpool());
3051 incremental_strtab_os->add_output_section_data(strtab_data);
3052
3053 incremental_inputs_os->set_after_input_sections();
3054 incremental_symtab_os->set_after_input_sections();
3055 incremental_relocs_os->set_after_input_sections();
3056 incremental_got_plt_os->set_after_input_sections();
3057
3058 incremental_inputs_os->set_link_section(incremental_strtab_os);
3059 incremental_symtab_os->set_link_section(incremental_inputs_os);
3060 incremental_relocs_os->set_link_section(incremental_inputs_os);
3061 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3062 }
3063
3064 // Return whether SEG1 should be before SEG2 in the output file. This
3065 // is based entirely on the segment type and flags. When this is
3066 // called the segment addresses have normally not yet been set.
3067
3068 bool
3069 Layout::segment_precedes(const Output_segment* seg1,
3070 const Output_segment* seg2)
3071 {
3072 elfcpp::Elf_Word type1 = seg1->type();
3073 elfcpp::Elf_Word type2 = seg2->type();
3074
3075 // The single PT_PHDR segment is required to precede any loadable
3076 // segment. We simply make it always first.
3077 if (type1 == elfcpp::PT_PHDR)
3078 {
3079 gold_assert(type2 != elfcpp::PT_PHDR);
3080 return true;
3081 }
3082 if (type2 == elfcpp::PT_PHDR)
3083 return false;
3084
3085 // The single PT_INTERP segment is required to precede any loadable
3086 // segment. We simply make it always second.
3087 if (type1 == elfcpp::PT_INTERP)
3088 {
3089 gold_assert(type2 != elfcpp::PT_INTERP);
3090 return true;
3091 }
3092 if (type2 == elfcpp::PT_INTERP)
3093 return false;
3094
3095 // We then put PT_LOAD segments before any other segments.
3096 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3097 return true;
3098 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3099 return false;
3100
3101 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3102 // segment, because that is where the dynamic linker expects to find
3103 // it (this is just for efficiency; other positions would also work
3104 // correctly).
3105 if (type1 == elfcpp::PT_TLS
3106 && type2 != elfcpp::PT_TLS
3107 && type2 != elfcpp::PT_GNU_RELRO)
3108 return false;
3109 if (type2 == elfcpp::PT_TLS
3110 && type1 != elfcpp::PT_TLS
3111 && type1 != elfcpp::PT_GNU_RELRO)
3112 return true;
3113
3114 // We put the PT_GNU_RELRO segment last, because that is where the
3115 // dynamic linker expects to find it (as with PT_TLS, this is just
3116 // for efficiency).
3117 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3118 return false;
3119 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3120 return true;
3121
3122 const elfcpp::Elf_Word flags1 = seg1->flags();
3123 const elfcpp::Elf_Word flags2 = seg2->flags();
3124
3125 // The order of non-PT_LOAD segments is unimportant. We simply sort
3126 // by the numeric segment type and flags values. There should not
3127 // be more than one segment with the same type and flags.
3128 if (type1 != elfcpp::PT_LOAD)
3129 {
3130 if (type1 != type2)
3131 return type1 < type2;
3132 gold_assert(flags1 != flags2);
3133 return flags1 < flags2;
3134 }
3135
3136 // If the addresses are set already, sort by load address.
3137 if (seg1->are_addresses_set())
3138 {
3139 if (!seg2->are_addresses_set())
3140 return true;
3141
3142 unsigned int section_count1 = seg1->output_section_count();
3143 unsigned int section_count2 = seg2->output_section_count();
3144 if (section_count1 == 0 && section_count2 > 0)
3145 return true;
3146 if (section_count1 > 0 && section_count2 == 0)
3147 return false;
3148
3149 uint64_t paddr1 = (seg1->are_addresses_set()
3150 ? seg1->paddr()
3151 : seg1->first_section_load_address());
3152 uint64_t paddr2 = (seg2->are_addresses_set()
3153 ? seg2->paddr()
3154 : seg2->first_section_load_address());
3155
3156 if (paddr1 != paddr2)
3157 return paddr1 < paddr2;
3158 }
3159 else if (seg2->are_addresses_set())
3160 return false;
3161
3162 // A segment which holds large data comes after a segment which does
3163 // not hold large data.
3164 if (seg1->is_large_data_segment())
3165 {
3166 if (!seg2->is_large_data_segment())
3167 return false;
3168 }
3169 else if (seg2->is_large_data_segment())
3170 return true;
3171
3172 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3173 // segments come before writable segments. Then writable segments
3174 // with data come before writable segments without data. Then
3175 // executable segments come before non-executable segments. Then
3176 // the unlikely case of a non-readable segment comes before the
3177 // normal case of a readable segment. If there are multiple
3178 // segments with the same type and flags, we require that the
3179 // address be set, and we sort by virtual address and then physical
3180 // address.
3181 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3182 return (flags1 & elfcpp::PF_W) == 0;
3183 if ((flags1 & elfcpp::PF_W) != 0
3184 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3185 return seg1->has_any_data_sections();
3186 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3187 return (flags1 & elfcpp::PF_X) != 0;
3188 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3189 return (flags1 & elfcpp::PF_R) == 0;
3190
3191 // We shouldn't get here--we shouldn't create segments which we
3192 // can't distinguish. Unless of course we are using a weird linker
3193 // script or overlapping --section-start options. We could also get
3194 // here if plugins want unique segments for subsets of sections.
3195 gold_assert(this->script_options_->saw_phdrs_clause()
3196 || parameters->options().any_section_start()
3197 || this->is_unique_segment_for_sections_specified());
3198 return false;
3199 }
3200
3201 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3202
3203 static off_t
3204 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3205 {
3206 uint64_t unsigned_off = off;
3207 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3208 | (addr & (abi_pagesize - 1)));
3209 if (aligned_off < unsigned_off)
3210 aligned_off += abi_pagesize;
3211 return aligned_off;
3212 }
3213
3214 // Set the file offsets of all the segments, and all the sections they
3215 // contain. They have all been created. LOAD_SEG must be be laid out
3216 // first. Return the offset of the data to follow.
3217
3218 off_t
3219 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3220 unsigned int* pshndx)
3221 {
3222 // Sort them into the final order. We use a stable sort so that we
3223 // don't randomize the order of indistinguishable segments created
3224 // by linker scripts.
3225 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3226 Layout::Compare_segments(this));
3227
3228 // Find the PT_LOAD segments, and set their addresses and offsets
3229 // and their section's addresses and offsets.
3230 uint64_t start_addr;
3231 if (parameters->options().user_set_Ttext())
3232 start_addr = parameters->options().Ttext();
3233 else if (parameters->options().output_is_position_independent())
3234 start_addr = 0;
3235 else
3236 start_addr = target->default_text_segment_address();
3237
3238 uint64_t addr = start_addr;
3239 off_t off = 0;
3240
3241 // If LOAD_SEG is NULL, then the file header and segment headers
3242 // will not be loadable. But they still need to be at offset 0 in
3243 // the file. Set their offsets now.
3244 if (load_seg == NULL)
3245 {
3246 for (Data_list::iterator p = this->special_output_list_.begin();
3247 p != this->special_output_list_.end();
3248 ++p)
3249 {
3250 off = align_address(off, (*p)->addralign());
3251 (*p)->set_address_and_file_offset(0, off);
3252 off += (*p)->data_size();
3253 }
3254 }
3255
3256 unsigned int increase_relro = this->increase_relro_;
3257 if (this->script_options_->saw_sections_clause())
3258 increase_relro = 0;
3259
3260 const bool check_sections = parameters->options().check_sections();
3261 Output_segment* last_load_segment = NULL;
3262
3263 unsigned int shndx_begin = *pshndx;
3264 unsigned int shndx_load_seg = *pshndx;
3265
3266 for (Segment_list::iterator p = this->segment_list_.begin();
3267 p != this->segment_list_.end();
3268 ++p)
3269 {
3270 if ((*p)->type() == elfcpp::PT_LOAD)
3271 {
3272 if (target->isolate_execinstr())
3273 {
3274 // When we hit the segment that should contain the
3275 // file headers, reset the file offset so we place
3276 // it and subsequent segments appropriately.
3277 // We'll fix up the preceding segments below.
3278 if (load_seg == *p)
3279 {
3280 if (off == 0)
3281 load_seg = NULL;
3282 else
3283 {
3284 off = 0;
3285 shndx_load_seg = *pshndx;
3286 }
3287 }
3288 }
3289 else
3290 {
3291 // Verify that the file headers fall into the first segment.
3292 if (load_seg != NULL && load_seg != *p)
3293 gold_unreachable();
3294 load_seg = NULL;
3295 }
3296
3297 bool are_addresses_set = (*p)->are_addresses_set();
3298 if (are_addresses_set)
3299 {
3300 // When it comes to setting file offsets, we care about
3301 // the physical address.
3302 addr = (*p)->paddr();
3303 }
3304 else if (parameters->options().user_set_Ttext()
3305 && ((*p)->flags() & elfcpp::PF_W) == 0)
3306 {
3307 are_addresses_set = true;
3308 }
3309 else if (parameters->options().user_set_Tdata()
3310 && ((*p)->flags() & elfcpp::PF_W) != 0
3311 && (!parameters->options().user_set_Tbss()
3312 || (*p)->has_any_data_sections()))
3313 {
3314 addr = parameters->options().Tdata();
3315 are_addresses_set = true;
3316 }
3317 else if (parameters->options().user_set_Tbss()
3318 && ((*p)->flags() & elfcpp::PF_W) != 0
3319 && !(*p)->has_any_data_sections())
3320 {
3321 addr = parameters->options().Tbss();
3322 are_addresses_set = true;
3323 }
3324
3325 uint64_t orig_addr = addr;
3326 uint64_t orig_off = off;
3327
3328 uint64_t aligned_addr = 0;
3329 uint64_t abi_pagesize = target->abi_pagesize();
3330 uint64_t common_pagesize = target->common_pagesize();
3331
3332 if (!parameters->options().nmagic()
3333 && !parameters->options().omagic())
3334 (*p)->set_minimum_p_align(abi_pagesize);
3335
3336 if (!are_addresses_set)
3337 {
3338 // Skip the address forward one page, maintaining the same
3339 // position within the page. This lets us store both segments
3340 // overlapping on a single page in the file, but the loader will
3341 // put them on different pages in memory. We will revisit this
3342 // decision once we know the size of the segment.
3343
3344 addr = align_address(addr, (*p)->maximum_alignment());
3345 aligned_addr = addr;
3346
3347 if (load_seg == *p)
3348 {
3349 // This is the segment that will contain the file
3350 // headers, so its offset will have to be exactly zero.
3351 gold_assert(orig_off == 0);
3352
3353 // If the target wants a fixed minimum distance from the
3354 // text segment to the read-only segment, move up now.
3355 uint64_t min_addr = start_addr + target->rosegment_gap();
3356 if (addr < min_addr)
3357 addr = min_addr;
3358
3359 // But this is not the first segment! To make its
3360 // address congruent with its offset, that address better
3361 // be aligned to the ABI-mandated page size.
3362 addr = align_address(addr, abi_pagesize);
3363 aligned_addr = addr;
3364 }
3365 else
3366 {
3367 if ((addr & (abi_pagesize - 1)) != 0)
3368 addr = addr + abi_pagesize;
3369
3370 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3371 }
3372 }
3373
3374 if (!parameters->options().nmagic()
3375 && !parameters->options().omagic())
3376 off = align_file_offset(off, addr, abi_pagesize);
3377 else
3378 {
3379 // This is -N or -n with a section script which prevents
3380 // us from using a load segment. We need to ensure that
3381 // the file offset is aligned to the alignment of the
3382 // segment. This is because the linker script
3383 // implicitly assumed a zero offset. If we don't align
3384 // here, then the alignment of the sections in the
3385 // linker script may not match the alignment of the
3386 // sections in the set_section_addresses call below,
3387 // causing an error about dot moving backward.
3388 off = align_address(off, (*p)->maximum_alignment());
3389 }
3390
3391 unsigned int shndx_hold = *pshndx;
3392 bool has_relro = false;
3393 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3394 &increase_relro,
3395 &has_relro,
3396 &off, pshndx);
3397
3398 // Now that we know the size of this segment, we may be able
3399 // to save a page in memory, at the cost of wasting some
3400 // file space, by instead aligning to the start of a new
3401 // page. Here we use the real machine page size rather than
3402 // the ABI mandated page size. If the segment has been
3403 // aligned so that the relro data ends at a page boundary,
3404 // we do not try to realign it.
3405
3406 if (!are_addresses_set
3407 && !has_relro
3408 && aligned_addr != addr
3409 && !parameters->incremental())
3410 {
3411 uint64_t first_off = (common_pagesize
3412 - (aligned_addr
3413 & (common_pagesize - 1)));
3414 uint64_t last_off = new_addr & (common_pagesize - 1);
3415 if (first_off > 0
3416 && last_off > 0
3417 && ((aligned_addr & ~ (common_pagesize - 1))
3418 != (new_addr & ~ (common_pagesize - 1)))
3419 && first_off + last_off <= common_pagesize)
3420 {
3421 *pshndx = shndx_hold;
3422 addr = align_address(aligned_addr, common_pagesize);
3423 addr = align_address(addr, (*p)->maximum_alignment());
3424 if ((addr & (abi_pagesize - 1)) != 0)
3425 addr = addr + abi_pagesize;
3426 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3427 off = align_file_offset(off, addr, abi_pagesize);
3428
3429 increase_relro = this->increase_relro_;
3430 if (this->script_options_->saw_sections_clause())
3431 increase_relro = 0;
3432 has_relro = false;
3433
3434 new_addr = (*p)->set_section_addresses(this, true, addr,
3435 &increase_relro,
3436 &has_relro,
3437 &off, pshndx);
3438 }
3439 }
3440
3441 addr = new_addr;
3442
3443 // Implement --check-sections. We know that the segments
3444 // are sorted by LMA.
3445 if (check_sections && last_load_segment != NULL)
3446 {
3447 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3448 if (last_load_segment->paddr() + last_load_segment->memsz()
3449 > (*p)->paddr())
3450 {
3451 unsigned long long lb1 = last_load_segment->paddr();
3452 unsigned long long le1 = lb1 + last_load_segment->memsz();
3453 unsigned long long lb2 = (*p)->paddr();
3454 unsigned long long le2 = lb2 + (*p)->memsz();
3455 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3456 "[0x%llx -> 0x%llx]"),
3457 lb1, le1, lb2, le2);
3458 }
3459 }
3460 last_load_segment = *p;
3461 }
3462 }
3463
3464 if (load_seg != NULL && target->isolate_execinstr())
3465 {
3466 // Process the early segments again, setting their file offsets
3467 // so they land after the segments starting at LOAD_SEG.
3468 off = align_file_offset(off, 0, target->abi_pagesize());
3469
3470 for (Segment_list::iterator p = this->segment_list_.begin();
3471 *p != load_seg;
3472 ++p)
3473 {
3474 if ((*p)->type() == elfcpp::PT_LOAD)
3475 {
3476 // We repeat the whole job of assigning addresses and
3477 // offsets, but we really only want to change the offsets and
3478 // must ensure that the addresses all come out the same as
3479 // they did the first time through.
3480 bool has_relro = false;
3481 const uint64_t old_addr = (*p)->vaddr();
3482 const uint64_t old_end = old_addr + (*p)->memsz();
3483 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3484 old_addr,
3485 &increase_relro,
3486 &has_relro,
3487 &off,
3488 &shndx_begin);
3489 gold_assert(new_addr == old_end);
3490 }
3491 }
3492
3493 gold_assert(shndx_begin == shndx_load_seg);
3494 }
3495
3496 // Handle the non-PT_LOAD segments, setting their offsets from their
3497 // section's offsets.
3498 for (Segment_list::iterator p = this->segment_list_.begin();
3499 p != this->segment_list_.end();
3500 ++p)
3501 {
3502 if ((*p)->type() != elfcpp::PT_LOAD)
3503 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3504 ? increase_relro
3505 : 0);
3506 }
3507
3508 // Set the TLS offsets for each section in the PT_TLS segment.
3509 if (this->tls_segment_ != NULL)
3510 this->tls_segment_->set_tls_offsets();
3511
3512 return off;
3513 }
3514
3515 // Set the offsets of all the allocated sections when doing a
3516 // relocatable link. This does the same jobs as set_segment_offsets,
3517 // only for a relocatable link.
3518
3519 off_t
3520 Layout::set_relocatable_section_offsets(Output_data* file_header,
3521 unsigned int* pshndx)
3522 {
3523 off_t off = 0;
3524
3525 file_header->set_address_and_file_offset(0, 0);
3526 off += file_header->data_size();
3527
3528 for (Section_list::iterator p = this->section_list_.begin();
3529 p != this->section_list_.end();
3530 ++p)
3531 {
3532 // We skip unallocated sections here, except that group sections
3533 // have to come first.
3534 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3535 && (*p)->type() != elfcpp::SHT_GROUP)
3536 continue;
3537
3538 off = align_address(off, (*p)->addralign());
3539
3540 // The linker script might have set the address.
3541 if (!(*p)->is_address_valid())
3542 (*p)->set_address(0);
3543 (*p)->set_file_offset(off);
3544 (*p)->finalize_data_size();
3545 off += (*p)->data_size();
3546
3547 (*p)->set_out_shndx(*pshndx);
3548 ++*pshndx;
3549 }
3550
3551 return off;
3552 }
3553
3554 // Set the file offset of all the sections not associated with a
3555 // segment.
3556
3557 off_t
3558 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3559 {
3560 off_t startoff = off;
3561 off_t maxoff = off;
3562
3563 for (Section_list::iterator p = this->unattached_section_list_.begin();
3564 p != this->unattached_section_list_.end();
3565 ++p)
3566 {
3567 // The symtab section is handled in create_symtab_sections.
3568 if (*p == this->symtab_section_)
3569 continue;
3570
3571 // If we've already set the data size, don't set it again.
3572 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3573 continue;
3574
3575 if (pass == BEFORE_INPUT_SECTIONS_PASS
3576 && (*p)->requires_postprocessing())
3577 {
3578 (*p)->create_postprocessing_buffer();
3579 this->any_postprocessing_sections_ = true;
3580 }
3581
3582 if (pass == BEFORE_INPUT_SECTIONS_PASS
3583 && (*p)->after_input_sections())
3584 continue;
3585 else if (pass == POSTPROCESSING_SECTIONS_PASS
3586 && (!(*p)->after_input_sections()
3587 || (*p)->type() == elfcpp::SHT_STRTAB))
3588 continue;
3589 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3590 && (!(*p)->after_input_sections()
3591 || (*p)->type() != elfcpp::SHT_STRTAB))
3592 continue;
3593
3594 if (!parameters->incremental_update())
3595 {
3596 off = align_address(off, (*p)->addralign());
3597 (*p)->set_file_offset(off);
3598 (*p)->finalize_data_size();
3599 }
3600 else
3601 {
3602 // Incremental update: allocate file space from free list.
3603 (*p)->pre_finalize_data_size();
3604 off_t current_size = (*p)->current_data_size();
3605 off = this->allocate(current_size, (*p)->addralign(), startoff);
3606 if (off == -1)
3607 {
3608 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3609 this->free_list_.dump();
3610 gold_assert((*p)->output_section() != NULL);
3611 gold_fallback(_("out of patch space for section %s; "
3612 "relink with --incremental-full"),
3613 (*p)->output_section()->name());
3614 }
3615 (*p)->set_file_offset(off);
3616 (*p)->finalize_data_size();
3617 if ((*p)->data_size() > current_size)
3618 {
3619 gold_assert((*p)->output_section() != NULL);
3620 gold_fallback(_("%s: section changed size; "
3621 "relink with --incremental-full"),
3622 (*p)->output_section()->name());
3623 }
3624 gold_debug(DEBUG_INCREMENTAL,
3625 "set_section_offsets: %08lx %08lx %s",
3626 static_cast<long>(off),
3627 static_cast<long>((*p)->data_size()),
3628 ((*p)->output_section() != NULL
3629 ? (*p)->output_section()->name() : "(special)"));
3630 }
3631
3632 off += (*p)->data_size();
3633 if (off > maxoff)
3634 maxoff = off;
3635
3636 // At this point the name must be set.
3637 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3638 this->namepool_.add((*p)->name(), false, NULL);
3639 }
3640 return maxoff;
3641 }
3642
3643 // Set the section indexes of all the sections not associated with a
3644 // segment.
3645
3646 unsigned int
3647 Layout::set_section_indexes(unsigned int shndx)
3648 {
3649 for (Section_list::iterator p = this->unattached_section_list_.begin();
3650 p != this->unattached_section_list_.end();
3651 ++p)
3652 {
3653 if (!(*p)->has_out_shndx())
3654 {
3655 (*p)->set_out_shndx(shndx);
3656 ++shndx;
3657 }
3658 }
3659 return shndx;
3660 }
3661
3662 // Set the section addresses according to the linker script. This is
3663 // only called when we see a SECTIONS clause. This returns the
3664 // program segment which should hold the file header and segment
3665 // headers, if any. It will return NULL if they should not be in a
3666 // segment.
3667
3668 Output_segment*
3669 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3670 {
3671 Script_sections* ss = this->script_options_->script_sections();
3672 gold_assert(ss->saw_sections_clause());
3673 return this->script_options_->set_section_addresses(symtab, this);
3674 }
3675
3676 // Place the orphan sections in the linker script.
3677
3678 void
3679 Layout::place_orphan_sections_in_script()
3680 {
3681 Script_sections* ss = this->script_options_->script_sections();
3682 gold_assert(ss->saw_sections_clause());
3683
3684 // Place each orphaned output section in the script.
3685 for (Section_list::iterator p = this->section_list_.begin();
3686 p != this->section_list_.end();
3687 ++p)
3688 {
3689 if (!(*p)->found_in_sections_clause())
3690 ss->place_orphan(*p);
3691 }
3692 }
3693
3694 // Count the local symbols in the regular symbol table and the dynamic
3695 // symbol table, and build the respective string pools.
3696
3697 void
3698 Layout::count_local_symbols(const Task* task,
3699 const Input_objects* input_objects)
3700 {
3701 // First, figure out an upper bound on the number of symbols we'll
3702 // be inserting into each pool. This helps us create the pools with
3703 // the right size, to avoid unnecessary hashtable resizing.
3704 unsigned int symbol_count = 0;
3705 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3706 p != input_objects->relobj_end();
3707 ++p)
3708 symbol_count += (*p)->local_symbol_count();
3709
3710 // Go from "upper bound" to "estimate." We overcount for two
3711 // reasons: we double-count symbols that occur in more than one
3712 // object file, and we count symbols that are dropped from the
3713 // output. Add it all together and assume we overcount by 100%.
3714 symbol_count /= 2;
3715
3716 // We assume all symbols will go into both the sympool and dynpool.
3717 this->sympool_.reserve(symbol_count);
3718 this->dynpool_.reserve(symbol_count);
3719
3720 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3721 p != input_objects->relobj_end();
3722 ++p)
3723 {
3724 Task_lock_obj<Object> tlo(task, *p);
3725 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3726 }
3727 }
3728
3729 // Create the symbol table sections. Here we also set the final
3730 // values of the symbols. At this point all the loadable sections are
3731 // fully laid out. SHNUM is the number of sections so far.
3732
3733 void
3734 Layout::create_symtab_sections(const Input_objects* input_objects,
3735 Symbol_table* symtab,
3736 unsigned int shnum,
3737 off_t* poff)
3738 {
3739 int symsize;
3740 unsigned int align;
3741 if (parameters->target().get_size() == 32)
3742 {
3743 symsize = elfcpp::Elf_sizes<32>::sym_size;
3744 align = 4;
3745 }
3746 else if (parameters->target().get_size() == 64)
3747 {
3748 symsize = elfcpp::Elf_sizes<64>::sym_size;
3749 align = 8;
3750 }
3751 else
3752 gold_unreachable();
3753
3754 // Compute file offsets relative to the start of the symtab section.
3755 off_t off = 0;
3756
3757 // Save space for the dummy symbol at the start of the section. We
3758 // never bother to write this out--it will just be left as zero.
3759 off += symsize;
3760 unsigned int local_symbol_index = 1;
3761
3762 // Add STT_SECTION symbols for each Output section which needs one.
3763 for (Section_list::iterator p = this->section_list_.begin();
3764 p != this->section_list_.end();
3765 ++p)
3766 {
3767 if (!(*p)->needs_symtab_index())
3768 (*p)->set_symtab_index(-1U);
3769 else
3770 {
3771 (*p)->set_symtab_index(local_symbol_index);
3772 ++local_symbol_index;
3773 off += symsize;
3774 }
3775 }
3776
3777 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3778 p != input_objects->relobj_end();
3779 ++p)
3780 {
3781 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3782 off, symtab);
3783 off += (index - local_symbol_index) * symsize;
3784 local_symbol_index = index;
3785 }
3786
3787 unsigned int local_symcount = local_symbol_index;
3788 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3789
3790 off_t dynoff;
3791 size_t dyn_global_index;
3792 size_t dyncount;
3793 if (this->dynsym_section_ == NULL)
3794 {
3795 dynoff = 0;
3796 dyn_global_index = 0;
3797 dyncount = 0;
3798 }
3799 else
3800 {
3801 dyn_global_index = this->dynsym_section_->info();
3802 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3803 dynoff = this->dynsym_section_->offset() + locsize;
3804 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3805 gold_assert(static_cast<off_t>(dyncount * symsize)
3806 == this->dynsym_section_->data_size() - locsize);
3807 }
3808
3809 off_t global_off = off;
3810 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3811 &this->sympool_, &local_symcount);
3812
3813 if (!parameters->options().strip_all())
3814 {
3815 this->sympool_.set_string_offsets();
3816
3817 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3818 Output_section* osymtab = this->make_output_section(symtab_name,
3819 elfcpp::SHT_SYMTAB,
3820 0, ORDER_INVALID,
3821 false);
3822 this->symtab_section_ = osymtab;
3823
3824 Output_section_data* pos = new Output_data_fixed_space(off, align,
3825 "** symtab");
3826 osymtab->add_output_section_data(pos);
3827
3828 // We generate a .symtab_shndx section if we have more than
3829 // SHN_LORESERVE sections. Technically it is possible that we
3830 // don't need one, because it is possible that there are no
3831 // symbols in any of sections with indexes larger than
3832 // SHN_LORESERVE. That is probably unusual, though, and it is
3833 // easier to always create one than to compute section indexes
3834 // twice (once here, once when writing out the symbols).
3835 if (shnum >= elfcpp::SHN_LORESERVE)
3836 {
3837 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3838 false, NULL);
3839 Output_section* osymtab_xindex =
3840 this->make_output_section(symtab_xindex_name,
3841 elfcpp::SHT_SYMTAB_SHNDX, 0,
3842 ORDER_INVALID, false);
3843
3844 size_t symcount = off / symsize;
3845 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3846
3847 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3848
3849 osymtab_xindex->set_link_section(osymtab);
3850 osymtab_xindex->set_addralign(4);
3851 osymtab_xindex->set_entsize(4);
3852
3853 osymtab_xindex->set_after_input_sections();
3854
3855 // This tells the driver code to wait until the symbol table
3856 // has written out before writing out the postprocessing
3857 // sections, including the .symtab_shndx section.
3858 this->any_postprocessing_sections_ = true;
3859 }
3860
3861 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3862 Output_section* ostrtab = this->make_output_section(strtab_name,
3863 elfcpp::SHT_STRTAB,
3864 0, ORDER_INVALID,
3865 false);
3866
3867 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3868 ostrtab->add_output_section_data(pstr);
3869
3870 off_t symtab_off;
3871 if (!parameters->incremental_update())
3872 symtab_off = align_address(*poff, align);
3873 else
3874 {
3875 symtab_off = this->allocate(off, align, *poff);
3876 if (off == -1)
3877 gold_fallback(_("out of patch space for symbol table; "
3878 "relink with --incremental-full"));
3879 gold_debug(DEBUG_INCREMENTAL,
3880 "create_symtab_sections: %08lx %08lx .symtab",
3881 static_cast<long>(symtab_off),
3882 static_cast<long>(off));
3883 }
3884
3885 symtab->set_file_offset(symtab_off + global_off);
3886 osymtab->set_file_offset(symtab_off);
3887 osymtab->finalize_data_size();
3888 osymtab->set_link_section(ostrtab);
3889 osymtab->set_info(local_symcount);
3890 osymtab->set_entsize(symsize);
3891
3892 if (symtab_off + off > *poff)
3893 *poff = symtab_off + off;
3894 }
3895 }
3896
3897 // Create the .shstrtab section, which holds the names of the
3898 // sections. At the time this is called, we have created all the
3899 // output sections except .shstrtab itself.
3900
3901 Output_section*
3902 Layout::create_shstrtab()
3903 {
3904 // FIXME: We don't need to create a .shstrtab section if we are
3905 // stripping everything.
3906
3907 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3908
3909 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3910 ORDER_INVALID, false);
3911
3912 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3913 {
3914 // We can't write out this section until we've set all the
3915 // section names, and we don't set the names of compressed
3916 // output sections until relocations are complete. FIXME: With
3917 // the current names we use, this is unnecessary.
3918 os->set_after_input_sections();
3919 }
3920
3921 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3922 os->add_output_section_data(posd);
3923
3924 return os;
3925 }
3926
3927 // Create the section headers. SIZE is 32 or 64. OFF is the file
3928 // offset.
3929
3930 void
3931 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3932 {
3933 Output_section_headers* oshdrs;
3934 oshdrs = new Output_section_headers(this,
3935 &this->segment_list_,
3936 &this->section_list_,
3937 &this->unattached_section_list_,
3938 &this->namepool_,
3939 shstrtab_section);
3940 off_t off;
3941 if (!parameters->incremental_update())
3942 off = align_address(*poff, oshdrs->addralign());
3943 else
3944 {
3945 oshdrs->pre_finalize_data_size();
3946 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3947 if (off == -1)
3948 gold_fallback(_("out of patch space for section header table; "
3949 "relink with --incremental-full"));
3950 gold_debug(DEBUG_INCREMENTAL,
3951 "create_shdrs: %08lx %08lx (section header table)",
3952 static_cast<long>(off),
3953 static_cast<long>(off + oshdrs->data_size()));
3954 }
3955 oshdrs->set_address_and_file_offset(0, off);
3956 off += oshdrs->data_size();
3957 if (off > *poff)
3958 *poff = off;
3959 this->section_headers_ = oshdrs;
3960 }
3961
3962 // Count the allocated sections.
3963
3964 size_t
3965 Layout::allocated_output_section_count() const
3966 {
3967 size_t section_count = 0;
3968 for (Segment_list::const_iterator p = this->segment_list_.begin();
3969 p != this->segment_list_.end();
3970 ++p)
3971 section_count += (*p)->output_section_count();
3972 return section_count;
3973 }
3974
3975 // Create the dynamic symbol table.
3976
3977 void
3978 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3979 Symbol_table* symtab,
3980 Output_section** pdynstr,
3981 unsigned int* plocal_dynamic_count,
3982 std::vector<Symbol*>* pdynamic_symbols,
3983 Versions* pversions)
3984 {
3985 // Count all the symbols in the dynamic symbol table, and set the
3986 // dynamic symbol indexes.
3987
3988 // Skip symbol 0, which is always all zeroes.
3989 unsigned int index = 1;
3990
3991 // Add STT_SECTION symbols for each Output section which needs one.
3992 for (Section_list::iterator p = this->section_list_.begin();
3993 p != this->section_list_.end();
3994 ++p)
3995 {
3996 if (!(*p)->needs_dynsym_index())
3997 (*p)->set_dynsym_index(-1U);
3998 else
3999 {
4000 (*p)->set_dynsym_index(index);
4001 ++index;
4002 }
4003 }
4004
4005 // Count the local symbols that need to go in the dynamic symbol table,
4006 // and set the dynamic symbol indexes.
4007 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4008 p != input_objects->relobj_end();
4009 ++p)
4010 {
4011 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4012 index = new_index;
4013 }
4014
4015 unsigned int local_symcount = index;
4016 *plocal_dynamic_count = local_symcount;
4017
4018 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4019 &this->dynpool_, pversions);
4020
4021 int symsize;
4022 unsigned int align;
4023 const int size = parameters->target().get_size();
4024 if (size == 32)
4025 {
4026 symsize = elfcpp::Elf_sizes<32>::sym_size;
4027 align = 4;
4028 }
4029 else if (size == 64)
4030 {
4031 symsize = elfcpp::Elf_sizes<64>::sym_size;
4032 align = 8;
4033 }
4034 else
4035 gold_unreachable();
4036
4037 // Create the dynamic symbol table section.
4038
4039 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4040 elfcpp::SHT_DYNSYM,
4041 elfcpp::SHF_ALLOC,
4042 false,
4043 ORDER_DYNAMIC_LINKER,
4044 false);
4045
4046 // Check for NULL as a linker script may discard .dynsym.
4047 if (dynsym != NULL)
4048 {
4049 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4050 align,
4051 "** dynsym");
4052 dynsym->add_output_section_data(odata);
4053
4054 dynsym->set_info(local_symcount);
4055 dynsym->set_entsize(symsize);
4056 dynsym->set_addralign(align);
4057
4058 this->dynsym_section_ = dynsym;
4059 }
4060
4061 Output_data_dynamic* const odyn = this->dynamic_data_;
4062 if (odyn != NULL)
4063 {
4064 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4065 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4066 }
4067
4068 // If there are more than SHN_LORESERVE allocated sections, we
4069 // create a .dynsym_shndx section. It is possible that we don't
4070 // need one, because it is possible that there are no dynamic
4071 // symbols in any of the sections with indexes larger than
4072 // SHN_LORESERVE. This is probably unusual, though, and at this
4073 // time we don't know the actual section indexes so it is
4074 // inconvenient to check.
4075 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4076 {
4077 Output_section* dynsym_xindex =
4078 this->choose_output_section(NULL, ".dynsym_shndx",
4079 elfcpp::SHT_SYMTAB_SHNDX,
4080 elfcpp::SHF_ALLOC,
4081 false, ORDER_DYNAMIC_LINKER, false);
4082
4083 if (dynsym_xindex != NULL)
4084 {
4085 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4086
4087 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4088
4089 dynsym_xindex->set_link_section(dynsym);
4090 dynsym_xindex->set_addralign(4);
4091 dynsym_xindex->set_entsize(4);
4092
4093 dynsym_xindex->set_after_input_sections();
4094
4095 // This tells the driver code to wait until the symbol table
4096 // has written out before writing out the postprocessing
4097 // sections, including the .dynsym_shndx section.
4098 this->any_postprocessing_sections_ = true;
4099 }
4100 }
4101
4102 // Create the dynamic string table section.
4103
4104 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4105 elfcpp::SHT_STRTAB,
4106 elfcpp::SHF_ALLOC,
4107 false,
4108 ORDER_DYNAMIC_LINKER,
4109 false);
4110
4111 if (dynstr != NULL)
4112 {
4113 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4114 dynstr->add_output_section_data(strdata);
4115
4116 if (dynsym != NULL)
4117 dynsym->set_link_section(dynstr);
4118 if (this->dynamic_section_ != NULL)
4119 this->dynamic_section_->set_link_section(dynstr);
4120
4121 if (odyn != NULL)
4122 {
4123 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4124 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4125 }
4126
4127 *pdynstr = dynstr;
4128 }
4129
4130 // Create the hash tables.
4131
4132 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4133 || strcmp(parameters->options().hash_style(), "both") == 0)
4134 {
4135 unsigned char* phash;
4136 unsigned int hashlen;
4137 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4138 &phash, &hashlen);
4139
4140 Output_section* hashsec =
4141 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4142 elfcpp::SHF_ALLOC, false,
4143 ORDER_DYNAMIC_LINKER, false);
4144
4145 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4146 hashlen,
4147 align,
4148 "** hash");
4149 if (hashsec != NULL && hashdata != NULL)
4150 hashsec->add_output_section_data(hashdata);
4151
4152 if (hashsec != NULL)
4153 {
4154 if (dynsym != NULL)
4155 hashsec->set_link_section(dynsym);
4156 hashsec->set_entsize(4);
4157 }
4158
4159 if (odyn != NULL)
4160 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4161 }
4162
4163 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4164 || strcmp(parameters->options().hash_style(), "both") == 0)
4165 {
4166 unsigned char* phash;
4167 unsigned int hashlen;
4168 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4169 &phash, &hashlen);
4170
4171 Output_section* hashsec =
4172 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4173 elfcpp::SHF_ALLOC, false,
4174 ORDER_DYNAMIC_LINKER, false);
4175
4176 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4177 hashlen,
4178 align,
4179 "** hash");
4180 if (hashsec != NULL && hashdata != NULL)
4181 hashsec->add_output_section_data(hashdata);
4182
4183 if (hashsec != NULL)
4184 {
4185 if (dynsym != NULL)
4186 hashsec->set_link_section(dynsym);
4187
4188 // For a 64-bit target, the entries in .gnu.hash do not have
4189 // a uniform size, so we only set the entry size for a
4190 // 32-bit target.
4191 if (parameters->target().get_size() == 32)
4192 hashsec->set_entsize(4);
4193
4194 if (odyn != NULL)
4195 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4196 }
4197 }
4198 }
4199
4200 // Assign offsets to each local portion of the dynamic symbol table.
4201
4202 void
4203 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4204 {
4205 Output_section* dynsym = this->dynsym_section_;
4206 if (dynsym == NULL)
4207 return;
4208
4209 off_t off = dynsym->offset();
4210
4211 // Skip the dummy symbol at the start of the section.
4212 off += dynsym->entsize();
4213
4214 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4215 p != input_objects->relobj_end();
4216 ++p)
4217 {
4218 unsigned int count = (*p)->set_local_dynsym_offset(off);
4219 off += count * dynsym->entsize();
4220 }
4221 }
4222
4223 // Create the version sections.
4224
4225 void
4226 Layout::create_version_sections(const Versions* versions,
4227 const Symbol_table* symtab,
4228 unsigned int local_symcount,
4229 const std::vector<Symbol*>& dynamic_symbols,
4230 const Output_section* dynstr)
4231 {
4232 if (!versions->any_defs() && !versions->any_needs())
4233 return;
4234
4235 switch (parameters->size_and_endianness())
4236 {
4237 #ifdef HAVE_TARGET_32_LITTLE
4238 case Parameters::TARGET_32_LITTLE:
4239 this->sized_create_version_sections<32, false>(versions, symtab,
4240 local_symcount,
4241 dynamic_symbols, dynstr);
4242 break;
4243 #endif
4244 #ifdef HAVE_TARGET_32_BIG
4245 case Parameters::TARGET_32_BIG:
4246 this->sized_create_version_sections<32, true>(versions, symtab,
4247 local_symcount,
4248 dynamic_symbols, dynstr);
4249 break;
4250 #endif
4251 #ifdef HAVE_TARGET_64_LITTLE
4252 case Parameters::TARGET_64_LITTLE:
4253 this->sized_create_version_sections<64, false>(versions, symtab,
4254 local_symcount,
4255 dynamic_symbols, dynstr);
4256 break;
4257 #endif
4258 #ifdef HAVE_TARGET_64_BIG
4259 case Parameters::TARGET_64_BIG:
4260 this->sized_create_version_sections<64, true>(versions, symtab,
4261 local_symcount,
4262 dynamic_symbols, dynstr);
4263 break;
4264 #endif
4265 default:
4266 gold_unreachable();
4267 }
4268 }
4269
4270 // Create the version sections, sized version.
4271
4272 template<int size, bool big_endian>
4273 void
4274 Layout::sized_create_version_sections(
4275 const Versions* versions,
4276 const Symbol_table* symtab,
4277 unsigned int local_symcount,
4278 const std::vector<Symbol*>& dynamic_symbols,
4279 const Output_section* dynstr)
4280 {
4281 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4282 elfcpp::SHT_GNU_versym,
4283 elfcpp::SHF_ALLOC,
4284 false,
4285 ORDER_DYNAMIC_LINKER,
4286 false);
4287
4288 // Check for NULL since a linker script may discard this section.
4289 if (vsec != NULL)
4290 {
4291 unsigned char* vbuf;
4292 unsigned int vsize;
4293 versions->symbol_section_contents<size, big_endian>(symtab,
4294 &this->dynpool_,
4295 local_symcount,
4296 dynamic_symbols,
4297 &vbuf, &vsize);
4298
4299 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4300 "** versions");
4301
4302 vsec->add_output_section_data(vdata);
4303 vsec->set_entsize(2);
4304 vsec->set_link_section(this->dynsym_section_);
4305 }
4306
4307 Output_data_dynamic* const odyn = this->dynamic_data_;
4308 if (odyn != NULL && vsec != NULL)
4309 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4310
4311 if (versions->any_defs())
4312 {
4313 Output_section* vdsec;
4314 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4315 elfcpp::SHT_GNU_verdef,
4316 elfcpp::SHF_ALLOC,
4317 false, ORDER_DYNAMIC_LINKER, false);
4318
4319 if (vdsec != NULL)
4320 {
4321 unsigned char* vdbuf;
4322 unsigned int vdsize;
4323 unsigned int vdentries;
4324 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4325 &vdbuf, &vdsize,
4326 &vdentries);
4327
4328 Output_section_data* vddata =
4329 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4330
4331 vdsec->add_output_section_data(vddata);
4332 vdsec->set_link_section(dynstr);
4333 vdsec->set_info(vdentries);
4334
4335 if (odyn != NULL)
4336 {
4337 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4338 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4339 }
4340 }
4341 }
4342
4343 if (versions->any_needs())
4344 {
4345 Output_section* vnsec;
4346 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4347 elfcpp::SHT_GNU_verneed,
4348 elfcpp::SHF_ALLOC,
4349 false, ORDER_DYNAMIC_LINKER, false);
4350
4351 if (vnsec != NULL)
4352 {
4353 unsigned char* vnbuf;
4354 unsigned int vnsize;
4355 unsigned int vnentries;
4356 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4357 &vnbuf, &vnsize,
4358 &vnentries);
4359
4360 Output_section_data* vndata =
4361 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4362
4363 vnsec->add_output_section_data(vndata);
4364 vnsec->set_link_section(dynstr);
4365 vnsec->set_info(vnentries);
4366
4367 if (odyn != NULL)
4368 {
4369 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4370 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4371 }
4372 }
4373 }
4374 }
4375
4376 // Create the .interp section and PT_INTERP segment.
4377
4378 void
4379 Layout::create_interp(const Target* target)
4380 {
4381 gold_assert(this->interp_segment_ == NULL);
4382
4383 const char* interp = parameters->options().dynamic_linker();
4384 if (interp == NULL)
4385 {
4386 interp = target->dynamic_linker();
4387 gold_assert(interp != NULL);
4388 }
4389
4390 size_t len = strlen(interp) + 1;
4391
4392 Output_section_data* odata = new Output_data_const(interp, len, 1);
4393
4394 Output_section* osec = this->choose_output_section(NULL, ".interp",
4395 elfcpp::SHT_PROGBITS,
4396 elfcpp::SHF_ALLOC,
4397 false, ORDER_INTERP,
4398 false);
4399 if (osec != NULL)
4400 osec->add_output_section_data(odata);
4401 }
4402
4403 // Add dynamic tags for the PLT and the dynamic relocs. This is
4404 // called by the target-specific code. This does nothing if not doing
4405 // a dynamic link.
4406
4407 // USE_REL is true for REL relocs rather than RELA relocs.
4408
4409 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4410
4411 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4412 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4413 // some targets have multiple reloc sections in PLT_REL.
4414
4415 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4416 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4417 // section.
4418
4419 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4420 // executable.
4421
4422 void
4423 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4424 const Output_data* plt_rel,
4425 const Output_data_reloc_generic* dyn_rel,
4426 bool add_debug, bool dynrel_includes_plt)
4427 {
4428 Output_data_dynamic* odyn = this->dynamic_data_;
4429 if (odyn == NULL)
4430 return;
4431
4432 if (plt_got != NULL && plt_got->output_section() != NULL)
4433 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4434
4435 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4436 {
4437 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4438 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4439 odyn->add_constant(elfcpp::DT_PLTREL,
4440 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4441 }
4442
4443 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4444 || (dynrel_includes_plt
4445 && plt_rel != NULL
4446 && plt_rel->output_section() != NULL))
4447 {
4448 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4449 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4450 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4451 (have_dyn_rel
4452 ? dyn_rel->output_section()
4453 : plt_rel->output_section()));
4454 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4455 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4456 odyn->add_section_size(size_tag,
4457 dyn_rel->output_section(),
4458 plt_rel->output_section());
4459 else if (have_dyn_rel)
4460 odyn->add_section_size(size_tag, dyn_rel->output_section());
4461 else
4462 odyn->add_section_size(size_tag, plt_rel->output_section());
4463 const int size = parameters->target().get_size();
4464 elfcpp::DT rel_tag;
4465 int rel_size;
4466 if (use_rel)
4467 {
4468 rel_tag = elfcpp::DT_RELENT;
4469 if (size == 32)
4470 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4471 else if (size == 64)
4472 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4473 else
4474 gold_unreachable();
4475 }
4476 else
4477 {
4478 rel_tag = elfcpp::DT_RELAENT;
4479 if (size == 32)
4480 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4481 else if (size == 64)
4482 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4483 else
4484 gold_unreachable();
4485 }
4486 odyn->add_constant(rel_tag, rel_size);
4487
4488 if (parameters->options().combreloc() && have_dyn_rel)
4489 {
4490 size_t c = dyn_rel->relative_reloc_count();
4491 if (c > 0)
4492 odyn->add_constant((use_rel
4493 ? elfcpp::DT_RELCOUNT
4494 : elfcpp::DT_RELACOUNT),
4495 c);
4496 }
4497 }
4498
4499 if (add_debug && !parameters->options().shared())
4500 {
4501 // The value of the DT_DEBUG tag is filled in by the dynamic
4502 // linker at run time, and used by the debugger.
4503 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4504 }
4505 }
4506
4507 // Finish the .dynamic section and PT_DYNAMIC segment.
4508
4509 void
4510 Layout::finish_dynamic_section(const Input_objects* input_objects,
4511 const Symbol_table* symtab)
4512 {
4513 if (!this->script_options_->saw_phdrs_clause()
4514 && this->dynamic_section_ != NULL)
4515 {
4516 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4517 (elfcpp::PF_R
4518 | elfcpp::PF_W));
4519 oseg->add_output_section_to_nonload(this->dynamic_section_,
4520 elfcpp::PF_R | elfcpp::PF_W);
4521 }
4522
4523 Output_data_dynamic* const odyn = this->dynamic_data_;
4524 if (odyn == NULL)
4525 return;
4526
4527 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4528 p != input_objects->dynobj_end();
4529 ++p)
4530 {
4531 if (!(*p)->is_needed() && (*p)->as_needed())
4532 {
4533 // This dynamic object was linked with --as-needed, but it
4534 // is not needed.
4535 continue;
4536 }
4537
4538 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4539 }
4540
4541 if (parameters->options().shared())
4542 {
4543 const char* soname = parameters->options().soname();
4544 if (soname != NULL)
4545 odyn->add_string(elfcpp::DT_SONAME, soname);
4546 }
4547
4548 Symbol* sym = symtab->lookup(parameters->options().init());
4549 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4550 odyn->add_symbol(elfcpp::DT_INIT, sym);
4551
4552 sym = symtab->lookup(parameters->options().fini());
4553 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4554 odyn->add_symbol(elfcpp::DT_FINI, sym);
4555
4556 // Look for .init_array, .preinit_array and .fini_array by checking
4557 // section types.
4558 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4559 p != this->section_list_.end();
4560 ++p)
4561 switch((*p)->type())
4562 {
4563 case elfcpp::SHT_FINI_ARRAY:
4564 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4565 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4566 break;
4567 case elfcpp::SHT_INIT_ARRAY:
4568 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4569 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4570 break;
4571 case elfcpp::SHT_PREINIT_ARRAY:
4572 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4573 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4574 break;
4575 default:
4576 break;
4577 }
4578
4579 // Add a DT_RPATH entry if needed.
4580 const General_options::Dir_list& rpath(parameters->options().rpath());
4581 if (!rpath.empty())
4582 {
4583 std::string rpath_val;
4584 for (General_options::Dir_list::const_iterator p = rpath.begin();
4585 p != rpath.end();
4586 ++p)
4587 {
4588 if (rpath_val.empty())
4589 rpath_val = p->name();
4590 else
4591 {
4592 // Eliminate duplicates.
4593 General_options::Dir_list::const_iterator q;
4594 for (q = rpath.begin(); q != p; ++q)
4595 if (q->name() == p->name())
4596 break;
4597 if (q == p)
4598 {
4599 rpath_val += ':';
4600 rpath_val += p->name();
4601 }
4602 }
4603 }
4604
4605 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4606 if (parameters->options().enable_new_dtags())
4607 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4608 }
4609
4610 // Look for text segments that have dynamic relocations.
4611 bool have_textrel = false;
4612 if (!this->script_options_->saw_sections_clause())
4613 {
4614 for (Segment_list::const_iterator p = this->segment_list_.begin();
4615 p != this->segment_list_.end();
4616 ++p)
4617 {
4618 if ((*p)->type() == elfcpp::PT_LOAD
4619 && ((*p)->flags() & elfcpp::PF_W) == 0
4620 && (*p)->has_dynamic_reloc())
4621 {
4622 have_textrel = true;
4623 break;
4624 }
4625 }
4626 }
4627 else
4628 {
4629 // We don't know the section -> segment mapping, so we are
4630 // conservative and just look for readonly sections with
4631 // relocations. If those sections wind up in writable segments,
4632 // then we have created an unnecessary DT_TEXTREL entry.
4633 for (Section_list::const_iterator p = this->section_list_.begin();
4634 p != this->section_list_.end();
4635 ++p)
4636 {
4637 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4638 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4639 && (*p)->has_dynamic_reloc())
4640 {
4641 have_textrel = true;
4642 break;
4643 }
4644 }
4645 }
4646
4647 if (parameters->options().filter() != NULL)
4648 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4649 if (parameters->options().any_auxiliary())
4650 {
4651 for (options::String_set::const_iterator p =
4652 parameters->options().auxiliary_begin();
4653 p != parameters->options().auxiliary_end();
4654 ++p)
4655 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4656 }
4657
4658 // Add a DT_FLAGS entry if necessary.
4659 unsigned int flags = 0;
4660 if (have_textrel)
4661 {
4662 // Add a DT_TEXTREL for compatibility with older loaders.
4663 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4664 flags |= elfcpp::DF_TEXTREL;
4665
4666 if (parameters->options().text())
4667 gold_error(_("read-only segment has dynamic relocations"));
4668 else if (parameters->options().warn_shared_textrel()
4669 && parameters->options().shared())
4670 gold_warning(_("shared library text segment is not shareable"));
4671 }
4672 if (parameters->options().shared() && this->has_static_tls())
4673 flags |= elfcpp::DF_STATIC_TLS;
4674 if (parameters->options().origin())
4675 flags |= elfcpp::DF_ORIGIN;
4676 if (parameters->options().Bsymbolic())
4677 {
4678 flags |= elfcpp::DF_SYMBOLIC;
4679 // Add DT_SYMBOLIC for compatibility with older loaders.
4680 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4681 }
4682 if (parameters->options().now())
4683 flags |= elfcpp::DF_BIND_NOW;
4684 if (flags != 0)
4685 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4686
4687 flags = 0;
4688 if (parameters->options().initfirst())
4689 flags |= elfcpp::DF_1_INITFIRST;
4690 if (parameters->options().interpose())
4691 flags |= elfcpp::DF_1_INTERPOSE;
4692 if (parameters->options().loadfltr())
4693 flags |= elfcpp::DF_1_LOADFLTR;
4694 if (parameters->options().nodefaultlib())
4695 flags |= elfcpp::DF_1_NODEFLIB;
4696 if (parameters->options().nodelete())
4697 flags |= elfcpp::DF_1_NODELETE;
4698 if (parameters->options().nodlopen())
4699 flags |= elfcpp::DF_1_NOOPEN;
4700 if (parameters->options().nodump())
4701 flags |= elfcpp::DF_1_NODUMP;
4702 if (!parameters->options().shared())
4703 flags &= ~(elfcpp::DF_1_INITFIRST
4704 | elfcpp::DF_1_NODELETE
4705 | elfcpp::DF_1_NOOPEN);
4706 if (parameters->options().origin())
4707 flags |= elfcpp::DF_1_ORIGIN;
4708 if (parameters->options().now())
4709 flags |= elfcpp::DF_1_NOW;
4710 if (parameters->options().Bgroup())
4711 flags |= elfcpp::DF_1_GROUP;
4712 if (flags != 0)
4713 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4714 }
4715
4716 // Set the size of the _DYNAMIC symbol table to be the size of the
4717 // dynamic data.
4718
4719 void
4720 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4721 {
4722 Output_data_dynamic* const odyn = this->dynamic_data_;
4723 if (odyn == NULL)
4724 return;
4725 odyn->finalize_data_size();
4726 if (this->dynamic_symbol_ == NULL)
4727 return;
4728 off_t data_size = odyn->data_size();
4729 const int size = parameters->target().get_size();
4730 if (size == 32)
4731 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4732 else if (size == 64)
4733 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4734 else
4735 gold_unreachable();
4736 }
4737
4738 // The mapping of input section name prefixes to output section names.
4739 // In some cases one prefix is itself a prefix of another prefix; in
4740 // such a case the longer prefix must come first. These prefixes are
4741 // based on the GNU linker default ELF linker script.
4742
4743 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4744 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4745 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4746 {
4747 MAPPING_INIT(".text.", ".text"),
4748 MAPPING_INIT(".rodata.", ".rodata"),
4749 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4750 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4751 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4752 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4753 MAPPING_INIT(".data.", ".data"),
4754 MAPPING_INIT(".bss.", ".bss"),
4755 MAPPING_INIT(".tdata.", ".tdata"),
4756 MAPPING_INIT(".tbss.", ".tbss"),
4757 MAPPING_INIT(".init_array.", ".init_array"),
4758 MAPPING_INIT(".fini_array.", ".fini_array"),
4759 MAPPING_INIT(".sdata.", ".sdata"),
4760 MAPPING_INIT(".sbss.", ".sbss"),
4761 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4762 // differently depending on whether it is creating a shared library.
4763 MAPPING_INIT(".sdata2.", ".sdata"),
4764 MAPPING_INIT(".sbss2.", ".sbss"),
4765 MAPPING_INIT(".lrodata.", ".lrodata"),
4766 MAPPING_INIT(".ldata.", ".ldata"),
4767 MAPPING_INIT(".lbss.", ".lbss"),
4768 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4769 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4770 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4771 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4772 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4773 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4774 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4775 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4776 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4777 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4778 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4779 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4780 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4781 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4782 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4783 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4784 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4785 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4786 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4787 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4788 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4789 };
4790 #undef MAPPING_INIT
4791 #undef MAPPING_INIT_EXACT
4792
4793 const int Layout::section_name_mapping_count =
4794 (sizeof(Layout::section_name_mapping)
4795 / sizeof(Layout::section_name_mapping[0]));
4796
4797 // Choose the output section name to use given an input section name.
4798 // Set *PLEN to the length of the name. *PLEN is initialized to the
4799 // length of NAME.
4800
4801 const char*
4802 Layout::output_section_name(const Relobj* relobj, const char* name,
4803 size_t* plen)
4804 {
4805 // gcc 4.3 generates the following sorts of section names when it
4806 // needs a section name specific to a function:
4807 // .text.FN
4808 // .rodata.FN
4809 // .sdata2.FN
4810 // .data.FN
4811 // .data.rel.FN
4812 // .data.rel.local.FN
4813 // .data.rel.ro.FN
4814 // .data.rel.ro.local.FN
4815 // .sdata.FN
4816 // .bss.FN
4817 // .sbss.FN
4818 // .tdata.FN
4819 // .tbss.FN
4820
4821 // The GNU linker maps all of those to the part before the .FN,
4822 // except that .data.rel.local.FN is mapped to .data, and
4823 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4824 // beginning with .data.rel.ro.local are grouped together.
4825
4826 // For an anonymous namespace, the string FN can contain a '.'.
4827
4828 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4829 // GNU linker maps to .rodata.
4830
4831 // The .data.rel.ro sections are used with -z relro. The sections
4832 // are recognized by name. We use the same names that the GNU
4833 // linker does for these sections.
4834
4835 // It is hard to handle this in a principled way, so we don't even
4836 // try. We use a table of mappings. If the input section name is
4837 // not found in the table, we simply use it as the output section
4838 // name.
4839
4840 const Section_name_mapping* psnm = section_name_mapping;
4841 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4842 {
4843 if (psnm->fromlen > 0)
4844 {
4845 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4846 {
4847 *plen = psnm->tolen;
4848 return psnm->to;
4849 }
4850 }
4851 else
4852 {
4853 if (strcmp(name, psnm->from) == 0)
4854 {
4855 *plen = psnm->tolen;
4856 return psnm->to;
4857 }
4858 }
4859 }
4860
4861 // As an additional complication, .ctors sections are output in
4862 // either .ctors or .init_array sections, and .dtors sections are
4863 // output in either .dtors or .fini_array sections.
4864 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4865 {
4866 if (parameters->options().ctors_in_init_array())
4867 {
4868 *plen = 11;
4869 return name[1] == 'c' ? ".init_array" : ".fini_array";
4870 }
4871 else
4872 {
4873 *plen = 6;
4874 return name[1] == 'c' ? ".ctors" : ".dtors";
4875 }
4876 }
4877 if (parameters->options().ctors_in_init_array()
4878 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4879 {
4880 // To make .init_array/.fini_array work with gcc we must exclude
4881 // .ctors and .dtors sections from the crtbegin and crtend
4882 // files.
4883 if (relobj == NULL
4884 || (!Layout::match_file_name(relobj, "crtbegin")
4885 && !Layout::match_file_name(relobj, "crtend")))
4886 {
4887 *plen = 11;
4888 return name[1] == 'c' ? ".init_array" : ".fini_array";
4889 }
4890 }
4891
4892 return name;
4893 }
4894
4895 // Return true if RELOBJ is an input file whose base name matches
4896 // FILE_NAME. The base name must have an extension of ".o", and must
4897 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4898 // to match crtbegin.o as well as crtbeginS.o without getting confused
4899 // by other possibilities. Overall matching the file name this way is
4900 // a dreadful hack, but the GNU linker does it in order to better
4901 // support gcc, and we need to be compatible.
4902
4903 bool
4904 Layout::match_file_name(const Relobj* relobj, const char* match)
4905 {
4906 const std::string& file_name(relobj->name());
4907 const char* base_name = lbasename(file_name.c_str());
4908 size_t match_len = strlen(match);
4909 if (strncmp(base_name, match, match_len) != 0)
4910 return false;
4911 size_t base_len = strlen(base_name);
4912 if (base_len != match_len + 2 && base_len != match_len + 3)
4913 return false;
4914 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4915 }
4916
4917 // Check if a comdat group or .gnu.linkonce section with the given
4918 // NAME is selected for the link. If there is already a section,
4919 // *KEPT_SECTION is set to point to the existing section and the
4920 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4921 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4922 // *KEPT_SECTION is set to the internal copy and the function returns
4923 // true.
4924
4925 bool
4926 Layout::find_or_add_kept_section(const std::string& name,
4927 Relobj* object,
4928 unsigned int shndx,
4929 bool is_comdat,
4930 bool is_group_name,
4931 Kept_section** kept_section)
4932 {
4933 // It's normal to see a couple of entries here, for the x86 thunk
4934 // sections. If we see more than a few, we're linking a C++
4935 // program, and we resize to get more space to minimize rehashing.
4936 if (this->signatures_.size() > 4
4937 && !this->resized_signatures_)
4938 {
4939 reserve_unordered_map(&this->signatures_,
4940 this->number_of_input_files_ * 64);
4941 this->resized_signatures_ = true;
4942 }
4943
4944 Kept_section candidate;
4945 std::pair<Signatures::iterator, bool> ins =
4946 this->signatures_.insert(std::make_pair(name, candidate));
4947
4948 if (kept_section != NULL)
4949 *kept_section = &ins.first->second;
4950 if (ins.second)
4951 {
4952 // This is the first time we've seen this signature.
4953 ins.first->second.set_object(object);
4954 ins.first->second.set_shndx(shndx);
4955 if (is_comdat)
4956 ins.first->second.set_is_comdat();
4957 if (is_group_name)
4958 ins.first->second.set_is_group_name();
4959 return true;
4960 }
4961
4962 // We have already seen this signature.
4963
4964 if (ins.first->second.is_group_name())
4965 {
4966 // We've already seen a real section group with this signature.
4967 // If the kept group is from a plugin object, and we're in the
4968 // replacement phase, accept the new one as a replacement.
4969 if (ins.first->second.object() == NULL
4970 && parameters->options().plugins()->in_replacement_phase())
4971 {
4972 ins.first->second.set_object(object);
4973 ins.first->second.set_shndx(shndx);
4974 return true;
4975 }
4976 return false;
4977 }
4978 else if (is_group_name)
4979 {
4980 // This is a real section group, and we've already seen a
4981 // linkonce section with this signature. Record that we've seen
4982 // a section group, and don't include this section group.
4983 ins.first->second.set_is_group_name();
4984 return false;
4985 }
4986 else
4987 {
4988 // We've already seen a linkonce section and this is a linkonce
4989 // section. These don't block each other--this may be the same
4990 // symbol name with different section types.
4991 return true;
4992 }
4993 }
4994
4995 // Store the allocated sections into the section list.
4996
4997 void
4998 Layout::get_allocated_sections(Section_list* section_list) const
4999 {
5000 for (Section_list::const_iterator p = this->section_list_.begin();
5001 p != this->section_list_.end();
5002 ++p)
5003 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5004 section_list->push_back(*p);
5005 }
5006
5007 // Store the executable sections into the section list.
5008
5009 void
5010 Layout::get_executable_sections(Section_list* section_list) const
5011 {
5012 for (Section_list::const_iterator p = this->section_list_.begin();
5013 p != this->section_list_.end();
5014 ++p)
5015 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5016 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5017 section_list->push_back(*p);
5018 }
5019
5020 // Create an output segment.
5021
5022 Output_segment*
5023 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5024 {
5025 gold_assert(!parameters->options().relocatable());
5026 Output_segment* oseg = new Output_segment(type, flags);
5027 this->segment_list_.push_back(oseg);
5028
5029 if (type == elfcpp::PT_TLS)
5030 this->tls_segment_ = oseg;
5031 else if (type == elfcpp::PT_GNU_RELRO)
5032 this->relro_segment_ = oseg;
5033 else if (type == elfcpp::PT_INTERP)
5034 this->interp_segment_ = oseg;
5035
5036 return oseg;
5037 }
5038
5039 // Return the file offset of the normal symbol table.
5040
5041 off_t
5042 Layout::symtab_section_offset() const
5043 {
5044 if (this->symtab_section_ != NULL)
5045 return this->symtab_section_->offset();
5046 return 0;
5047 }
5048
5049 // Return the section index of the normal symbol table. It may have
5050 // been stripped by the -s/--strip-all option.
5051
5052 unsigned int
5053 Layout::symtab_section_shndx() const
5054 {
5055 if (this->symtab_section_ != NULL)
5056 return this->symtab_section_->out_shndx();
5057 return 0;
5058 }
5059
5060 // Write out the Output_sections. Most won't have anything to write,
5061 // since most of the data will come from input sections which are
5062 // handled elsewhere. But some Output_sections do have Output_data.
5063
5064 void
5065 Layout::write_output_sections(Output_file* of) const
5066 {
5067 for (Section_list::const_iterator p = this->section_list_.begin();
5068 p != this->section_list_.end();
5069 ++p)
5070 {
5071 if (!(*p)->after_input_sections())
5072 (*p)->write(of);
5073 }
5074 }
5075
5076 // Write out data not associated with a section or the symbol table.
5077
5078 void
5079 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5080 {
5081 if (!parameters->options().strip_all())
5082 {
5083 const Output_section* symtab_section = this->symtab_section_;
5084 for (Section_list::const_iterator p = this->section_list_.begin();
5085 p != this->section_list_.end();
5086 ++p)
5087 {
5088 if ((*p)->needs_symtab_index())
5089 {
5090 gold_assert(symtab_section != NULL);
5091 unsigned int index = (*p)->symtab_index();
5092 gold_assert(index > 0 && index != -1U);
5093 off_t off = (symtab_section->offset()
5094 + index * symtab_section->entsize());
5095 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5096 }
5097 }
5098 }
5099
5100 const Output_section* dynsym_section = this->dynsym_section_;
5101 for (Section_list::const_iterator p = this->section_list_.begin();
5102 p != this->section_list_.end();
5103 ++p)
5104 {
5105 if ((*p)->needs_dynsym_index())
5106 {
5107 gold_assert(dynsym_section != NULL);
5108 unsigned int index = (*p)->dynsym_index();
5109 gold_assert(index > 0 && index != -1U);
5110 off_t off = (dynsym_section->offset()
5111 + index * dynsym_section->entsize());
5112 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5113 }
5114 }
5115
5116 // Write out the Output_data which are not in an Output_section.
5117 for (Data_list::const_iterator p = this->special_output_list_.begin();
5118 p != this->special_output_list_.end();
5119 ++p)
5120 (*p)->write(of);
5121 }
5122
5123 // Write out the Output_sections which can only be written after the
5124 // input sections are complete.
5125
5126 void
5127 Layout::write_sections_after_input_sections(Output_file* of)
5128 {
5129 // Determine the final section offsets, and thus the final output
5130 // file size. Note we finalize the .shstrab last, to allow the
5131 // after_input_section sections to modify their section-names before
5132 // writing.
5133 if (this->any_postprocessing_sections_)
5134 {
5135 off_t off = this->output_file_size_;
5136 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5137
5138 // Now that we've finalized the names, we can finalize the shstrab.
5139 off =
5140 this->set_section_offsets(off,
5141 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5142
5143 if (off > this->output_file_size_)
5144 {
5145 of->resize(off);
5146 this->output_file_size_ = off;
5147 }
5148 }
5149
5150 for (Section_list::const_iterator p = this->section_list_.begin();
5151 p != this->section_list_.end();
5152 ++p)
5153 {
5154 if ((*p)->after_input_sections())
5155 (*p)->write(of);
5156 }
5157
5158 this->section_headers_->write(of);
5159 }
5160
5161 // If the build ID requires computing a checksum, do so here, and
5162 // write it out. We compute a checksum over the entire file because
5163 // that is simplest.
5164
5165 void
5166 Layout::write_build_id(Output_file* of) const
5167 {
5168 if (this->build_id_note_ == NULL)
5169 return;
5170
5171 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5172
5173 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5174 this->build_id_note_->data_size());
5175
5176 const char* style = parameters->options().build_id();
5177 if (strcmp(style, "sha1") == 0)
5178 {
5179 sha1_ctx ctx;
5180 sha1_init_ctx(&ctx);
5181 sha1_process_bytes(iv, this->output_file_size_, &ctx);
5182 sha1_finish_ctx(&ctx, ov);
5183 }
5184 else if (strcmp(style, "md5") == 0)
5185 {
5186 md5_ctx ctx;
5187 md5_init_ctx(&ctx);
5188 md5_process_bytes(iv, this->output_file_size_, &ctx);
5189 md5_finish_ctx(&ctx, ov);
5190 }
5191 else
5192 gold_unreachable();
5193
5194 of->write_output_view(this->build_id_note_->offset(),
5195 this->build_id_note_->data_size(),
5196 ov);
5197
5198 of->free_input_view(0, this->output_file_size_, iv);
5199 }
5200
5201 // Write out a binary file. This is called after the link is
5202 // complete. IN is the temporary output file we used to generate the
5203 // ELF code. We simply walk through the segments, read them from
5204 // their file offset in IN, and write them to their load address in
5205 // the output file. FIXME: with a bit more work, we could support
5206 // S-records and/or Intel hex format here.
5207
5208 void
5209 Layout::write_binary(Output_file* in) const
5210 {
5211 gold_assert(parameters->options().oformat_enum()
5212 == General_options::OBJECT_FORMAT_BINARY);
5213
5214 // Get the size of the binary file.
5215 uint64_t max_load_address = 0;
5216 for (Segment_list::const_iterator p = this->segment_list_.begin();
5217 p != this->segment_list_.end();
5218 ++p)
5219 {
5220 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5221 {
5222 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5223 if (max_paddr > max_load_address)
5224 max_load_address = max_paddr;
5225 }
5226 }
5227
5228 Output_file out(parameters->options().output_file_name());
5229 out.open(max_load_address);
5230
5231 for (Segment_list::const_iterator p = this->segment_list_.begin();
5232 p != this->segment_list_.end();
5233 ++p)
5234 {
5235 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5236 {
5237 const unsigned char* vin = in->get_input_view((*p)->offset(),
5238 (*p)->filesz());
5239 unsigned char* vout = out.get_output_view((*p)->paddr(),
5240 (*p)->filesz());
5241 memcpy(vout, vin, (*p)->filesz());
5242 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5243 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5244 }
5245 }
5246
5247 out.close();
5248 }
5249
5250 // Print the output sections to the map file.
5251
5252 void
5253 Layout::print_to_mapfile(Mapfile* mapfile) const
5254 {
5255 for (Segment_list::const_iterator p = this->segment_list_.begin();
5256 p != this->segment_list_.end();
5257 ++p)
5258 (*p)->print_sections_to_mapfile(mapfile);
5259 }
5260
5261 // Print statistical information to stderr. This is used for --stats.
5262
5263 void
5264 Layout::print_stats() const
5265 {
5266 this->namepool_.print_stats("section name pool");
5267 this->sympool_.print_stats("output symbol name pool");
5268 this->dynpool_.print_stats("dynamic name pool");
5269
5270 for (Section_list::const_iterator p = this->section_list_.begin();
5271 p != this->section_list_.end();
5272 ++p)
5273 (*p)->print_merge_stats();
5274 }
5275
5276 // Write_sections_task methods.
5277
5278 // We can always run this task.
5279
5280 Task_token*
5281 Write_sections_task::is_runnable()
5282 {
5283 return NULL;
5284 }
5285
5286 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5287 // when finished.
5288
5289 void
5290 Write_sections_task::locks(Task_locker* tl)
5291 {
5292 tl->add(this, this->output_sections_blocker_);
5293 tl->add(this, this->final_blocker_);
5294 }
5295
5296 // Run the task--write out the data.
5297
5298 void
5299 Write_sections_task::run(Workqueue*)
5300 {
5301 this->layout_->write_output_sections(this->of_);
5302 }
5303
5304 // Write_data_task methods.
5305
5306 // We can always run this task.
5307
5308 Task_token*
5309 Write_data_task::is_runnable()
5310 {
5311 return NULL;
5312 }
5313
5314 // We need to unlock FINAL_BLOCKER when finished.
5315
5316 void
5317 Write_data_task::locks(Task_locker* tl)
5318 {
5319 tl->add(this, this->final_blocker_);
5320 }
5321
5322 // Run the task--write out the data.
5323
5324 void
5325 Write_data_task::run(Workqueue*)
5326 {
5327 this->layout_->write_data(this->symtab_, this->of_);
5328 }
5329
5330 // Write_symbols_task methods.
5331
5332 // We can always run this task.
5333
5334 Task_token*
5335 Write_symbols_task::is_runnable()
5336 {
5337 return NULL;
5338 }
5339
5340 // We need to unlock FINAL_BLOCKER when finished.
5341
5342 void
5343 Write_symbols_task::locks(Task_locker* tl)
5344 {
5345 tl->add(this, this->final_blocker_);
5346 }
5347
5348 // Run the task--write out the symbols.
5349
5350 void
5351 Write_symbols_task::run(Workqueue*)
5352 {
5353 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5354 this->layout_->symtab_xindex(),
5355 this->layout_->dynsym_xindex(), this->of_);
5356 }
5357
5358 // Write_after_input_sections_task methods.
5359
5360 // We can only run this task after the input sections have completed.
5361
5362 Task_token*
5363 Write_after_input_sections_task::is_runnable()
5364 {
5365 if (this->input_sections_blocker_->is_blocked())
5366 return this->input_sections_blocker_;
5367 return NULL;
5368 }
5369
5370 // We need to unlock FINAL_BLOCKER when finished.
5371
5372 void
5373 Write_after_input_sections_task::locks(Task_locker* tl)
5374 {
5375 tl->add(this, this->final_blocker_);
5376 }
5377
5378 // Run the task.
5379
5380 void
5381 Write_after_input_sections_task::run(Workqueue*)
5382 {
5383 this->layout_->write_sections_after_input_sections(this->of_);
5384 }
5385
5386 // Close_task_runner methods.
5387
5388 // Run the task--close the file.
5389
5390 void
5391 Close_task_runner::run(Workqueue*, const Task*)
5392 {
5393 // If we need to compute a checksum for the BUILD if, we do so here.
5394 this->layout_->write_build_id(this->of_);
5395
5396 // If we've been asked to create a binary file, we do so here.
5397 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5398 this->layout_->write_binary(this->of_);
5399
5400 this->of_->close();
5401 }
5402
5403 // Instantiate the templates we need. We could use the configure
5404 // script to restrict this to only the ones for implemented targets.
5405
5406 #ifdef HAVE_TARGET_32_LITTLE
5407 template
5408 Output_section*
5409 Layout::init_fixed_output_section<32, false>(
5410 const char* name,
5411 elfcpp::Shdr<32, false>& shdr);
5412 #endif
5413
5414 #ifdef HAVE_TARGET_32_BIG
5415 template
5416 Output_section*
5417 Layout::init_fixed_output_section<32, true>(
5418 const char* name,
5419 elfcpp::Shdr<32, true>& shdr);
5420 #endif
5421
5422 #ifdef HAVE_TARGET_64_LITTLE
5423 template
5424 Output_section*
5425 Layout::init_fixed_output_section<64, false>(
5426 const char* name,
5427 elfcpp::Shdr<64, false>& shdr);
5428 #endif
5429
5430 #ifdef HAVE_TARGET_64_BIG
5431 template
5432 Output_section*
5433 Layout::init_fixed_output_section<64, true>(
5434 const char* name,
5435 elfcpp::Shdr<64, true>& shdr);
5436 #endif
5437
5438 #ifdef HAVE_TARGET_32_LITTLE
5439 template
5440 Output_section*
5441 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5442 unsigned int shndx,
5443 const char* name,
5444 const elfcpp::Shdr<32, false>& shdr,
5445 unsigned int, unsigned int, off_t*);
5446 #endif
5447
5448 #ifdef HAVE_TARGET_32_BIG
5449 template
5450 Output_section*
5451 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5452 unsigned int shndx,
5453 const char* name,
5454 const elfcpp::Shdr<32, true>& shdr,
5455 unsigned int, unsigned int, off_t*);
5456 #endif
5457
5458 #ifdef HAVE_TARGET_64_LITTLE
5459 template
5460 Output_section*
5461 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5462 unsigned int shndx,
5463 const char* name,
5464 const elfcpp::Shdr<64, false>& shdr,
5465 unsigned int, unsigned int, off_t*);
5466 #endif
5467
5468 #ifdef HAVE_TARGET_64_BIG
5469 template
5470 Output_section*
5471 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5472 unsigned int shndx,
5473 const char* name,
5474 const elfcpp::Shdr<64, true>& shdr,
5475 unsigned int, unsigned int, off_t*);
5476 #endif
5477
5478 #ifdef HAVE_TARGET_32_LITTLE
5479 template
5480 Output_section*
5481 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5482 unsigned int reloc_shndx,
5483 const elfcpp::Shdr<32, false>& shdr,
5484 Output_section* data_section,
5485 Relocatable_relocs* rr);
5486 #endif
5487
5488 #ifdef HAVE_TARGET_32_BIG
5489 template
5490 Output_section*
5491 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5492 unsigned int reloc_shndx,
5493 const elfcpp::Shdr<32, true>& shdr,
5494 Output_section* data_section,
5495 Relocatable_relocs* rr);
5496 #endif
5497
5498 #ifdef HAVE_TARGET_64_LITTLE
5499 template
5500 Output_section*
5501 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5502 unsigned int reloc_shndx,
5503 const elfcpp::Shdr<64, false>& shdr,
5504 Output_section* data_section,
5505 Relocatable_relocs* rr);
5506 #endif
5507
5508 #ifdef HAVE_TARGET_64_BIG
5509 template
5510 Output_section*
5511 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5512 unsigned int reloc_shndx,
5513 const elfcpp::Shdr<64, true>& shdr,
5514 Output_section* data_section,
5515 Relocatable_relocs* rr);
5516 #endif
5517
5518 #ifdef HAVE_TARGET_32_LITTLE
5519 template
5520 void
5521 Layout::layout_group<32, false>(Symbol_table* symtab,
5522 Sized_relobj_file<32, false>* object,
5523 unsigned int,
5524 const char* group_section_name,
5525 const char* signature,
5526 const elfcpp::Shdr<32, false>& shdr,
5527 elfcpp::Elf_Word flags,
5528 std::vector<unsigned int>* shndxes);
5529 #endif
5530
5531 #ifdef HAVE_TARGET_32_BIG
5532 template
5533 void
5534 Layout::layout_group<32, true>(Symbol_table* symtab,
5535 Sized_relobj_file<32, true>* object,
5536 unsigned int,
5537 const char* group_section_name,
5538 const char* signature,
5539 const elfcpp::Shdr<32, true>& shdr,
5540 elfcpp::Elf_Word flags,
5541 std::vector<unsigned int>* shndxes);
5542 #endif
5543
5544 #ifdef HAVE_TARGET_64_LITTLE
5545 template
5546 void
5547 Layout::layout_group<64, false>(Symbol_table* symtab,
5548 Sized_relobj_file<64, false>* object,
5549 unsigned int,
5550 const char* group_section_name,
5551 const char* signature,
5552 const elfcpp::Shdr<64, false>& shdr,
5553 elfcpp::Elf_Word flags,
5554 std::vector<unsigned int>* shndxes);
5555 #endif
5556
5557 #ifdef HAVE_TARGET_64_BIG
5558 template
5559 void
5560 Layout::layout_group<64, true>(Symbol_table* symtab,
5561 Sized_relobj_file<64, true>* object,
5562 unsigned int,
5563 const char* group_section_name,
5564 const char* signature,
5565 const elfcpp::Shdr<64, true>& shdr,
5566 elfcpp::Elf_Word flags,
5567 std::vector<unsigned int>* shndxes);
5568 #endif
5569
5570 #ifdef HAVE_TARGET_32_LITTLE
5571 template
5572 Output_section*
5573 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5574 const unsigned char* symbols,
5575 off_t symbols_size,
5576 const unsigned char* symbol_names,
5577 off_t symbol_names_size,
5578 unsigned int shndx,
5579 const elfcpp::Shdr<32, false>& shdr,
5580 unsigned int reloc_shndx,
5581 unsigned int reloc_type,
5582 off_t* off);
5583 #endif
5584
5585 #ifdef HAVE_TARGET_32_BIG
5586 template
5587 Output_section*
5588 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5589 const unsigned char* symbols,
5590 off_t symbols_size,
5591 const unsigned char* symbol_names,
5592 off_t symbol_names_size,
5593 unsigned int shndx,
5594 const elfcpp::Shdr<32, true>& shdr,
5595 unsigned int reloc_shndx,
5596 unsigned int reloc_type,
5597 off_t* off);
5598 #endif
5599
5600 #ifdef HAVE_TARGET_64_LITTLE
5601 template
5602 Output_section*
5603 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5604 const unsigned char* symbols,
5605 off_t symbols_size,
5606 const unsigned char* symbol_names,
5607 off_t symbol_names_size,
5608 unsigned int shndx,
5609 const elfcpp::Shdr<64, false>& shdr,
5610 unsigned int reloc_shndx,
5611 unsigned int reloc_type,
5612 off_t* off);
5613 #endif
5614
5615 #ifdef HAVE_TARGET_64_BIG
5616 template
5617 Output_section*
5618 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5619 const unsigned char* symbols,
5620 off_t symbols_size,
5621 const unsigned char* symbol_names,
5622 off_t symbol_names_size,
5623 unsigned int shndx,
5624 const elfcpp::Shdr<64, true>& shdr,
5625 unsigned int reloc_shndx,
5626 unsigned int reloc_type,
5627 off_t* off);
5628 #endif
5629
5630 #ifdef HAVE_TARGET_32_LITTLE
5631 template
5632 void
5633 Layout::add_to_gdb_index(bool is_type_unit,
5634 Sized_relobj<32, false>* object,
5635 const unsigned char* symbols,
5636 off_t symbols_size,
5637 unsigned int shndx,
5638 unsigned int reloc_shndx,
5639 unsigned int reloc_type);
5640 #endif
5641
5642 #ifdef HAVE_TARGET_32_BIG
5643 template
5644 void
5645 Layout::add_to_gdb_index(bool is_type_unit,
5646 Sized_relobj<32, true>* object,
5647 const unsigned char* symbols,
5648 off_t symbols_size,
5649 unsigned int shndx,
5650 unsigned int reloc_shndx,
5651 unsigned int reloc_type);
5652 #endif
5653
5654 #ifdef HAVE_TARGET_64_LITTLE
5655 template
5656 void
5657 Layout::add_to_gdb_index(bool is_type_unit,
5658 Sized_relobj<64, false>* object,
5659 const unsigned char* symbols,
5660 off_t symbols_size,
5661 unsigned int shndx,
5662 unsigned int reloc_shndx,
5663 unsigned int reloc_type);
5664 #endif
5665
5666 #ifdef HAVE_TARGET_64_BIG
5667 template
5668 void
5669 Layout::add_to_gdb_index(bool is_type_unit,
5670 Sized_relobj<64, true>* object,
5671 const unsigned char* symbols,
5672 off_t symbols_size,
5673 unsigned int shndx,
5674 unsigned int reloc_shndx,
5675 unsigned int reloc_type);
5676 #endif
5677
5678 } // End namespace gold.
This page took 0.147938 seconds and 5 git commands to generate.