Clear SHF_COMPRESSED flag bit from input to output
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list. Creates a single free list node that
76 // describes the entire region of length LEN. If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83 this->list_.push_front(Free_list_node(0, len));
84 this->last_remove_ = this->list_.begin();
85 this->extend_ = extend;
86 this->length_ = len;
87 ++Free_list::num_lists;
88 ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list. Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node. We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103 if (start == end)
104 return;
105 gold_assert(start < end);
106
107 ++Free_list::num_removes;
108
109 Iterator p = this->last_remove_;
110 if (p->start_ > start)
111 p = this->list_.begin();
112
113 for (; p != this->list_.end(); ++p)
114 {
115 ++Free_list::num_remove_visits;
116 // Find a node that wholly contains the indicated region.
117 if (p->start_ <= start && p->end_ >= end)
118 {
119 // Case 1: the indicated region spans the whole node.
120 // Add some fuzz to avoid creating tiny free chunks.
121 if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 p = this->list_.erase(p);
123 // Case 2: remove a chunk from the start of the node.
124 else if (p->start_ + 3 >= start)
125 p->start_ = end;
126 // Case 3: remove a chunk from the end of the node.
127 else if (p->end_ <= end + 3)
128 p->end_ = start;
129 // Case 4: remove a chunk from the middle, and split
130 // the node into two.
131 else
132 {
133 Free_list_node newnode(p->start_, start);
134 p->start_ = end;
135 this->list_.insert(p, newnode);
136 ++Free_list::num_nodes;
137 }
138 this->last_remove_ = p;
139 return;
140 }
141 }
142
143 // Did not find a node containing the given chunk. This could happen
144 // because a small chunk was already removed due to the fuzz.
145 gold_debug(DEBUG_INCREMENTAL,
146 "Free_list::remove(%d,%d) not found",
147 static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list. Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157 gold_debug(DEBUG_INCREMENTAL,
158 "Free_list::allocate(%08lx, %d, %08lx)",
159 static_cast<long>(len), static_cast<int>(align),
160 static_cast<long>(minoff));
161 if (len == 0)
162 return align_address(minoff, align);
163
164 ++Free_list::num_allocates;
165
166 // We usually want to drop free chunks smaller than 4 bytes.
167 // If we need to guarantee a minimum hole size, though, we need
168 // to keep track of all free chunks.
169 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172 {
173 ++Free_list::num_allocate_visits;
174 off_t start = p->start_ > minoff ? p->start_ : minoff;
175 start = align_address(start, align);
176 off_t end = start + len;
177 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178 {
179 this->length_ = end;
180 p->end_ = end;
181 }
182 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183 {
184 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 this->list_.erase(p);
186 else if (p->start_ + fuzz >= start)
187 p->start_ = end;
188 else if (p->end_ <= end + fuzz)
189 p->end_ = start;
190 else
191 {
192 Free_list_node newnode(p->start_, start);
193 p->start_ = end;
194 this->list_.insert(p, newnode);
195 ++Free_list::num_nodes;
196 }
197 return start;
198 }
199 }
200 if (this->extend_)
201 {
202 off_t start = align_address(this->length_, align);
203 this->length_ = start + len;
204 return start;
205 }
206 return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213 gold_info("Free list:\n start end length\n");
214 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
216 static_cast<long>(p->end_),
217 static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224 fprintf(stderr, _("%s: total free lists: %u\n"),
225 program_name, Free_list::num_lists);
226 fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 program_name, Free_list::num_nodes);
228 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 program_name, Free_list::num_removes);
230 fprintf(stderr, _("%s: nodes visited: %u\n"),
231 program_name, Free_list::num_remove_visits);
232 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 program_name, Free_list::num_allocates);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239
240 class Hash_task : public Task
241 {
242 public:
243 Hash_task(Output_file* of,
244 size_t offset,
245 size_t size,
246 unsigned char* dst,
247 Task_token* final_blocker)
248 : of_(of), offset_(offset), size_(size), dst_(dst),
249 final_blocker_(final_blocker)
250 { }
251
252 void
253 run(Workqueue*)
254 {
255 const unsigned char* iv =
256 this->of_->get_input_view(this->offset_, this->size_);
257 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
258 this->of_->free_input_view(this->offset_, this->size_, iv);
259 }
260
261 Task_token*
262 is_runnable()
263 { return NULL; }
264
265 // Unblock FINAL_BLOCKER_ when done.
266 void
267 locks(Task_locker* tl)
268 { tl->add(this, this->final_blocker_); }
269
270 std::string
271 get_name() const
272 { return "Hash_task"; }
273
274 private:
275 Output_file* of_;
276 const size_t offset_;
277 const size_t size_;
278 unsigned char* const dst_;
279 Task_token* const final_blocker_;
280 };
281
282 // Layout::Relaxation_debug_check methods.
283
284 // Check that sections and special data are in reset states.
285 // We do not save states for Output_sections and special Output_data.
286 // So we check that they have not assigned any addresses or offsets.
287 // clean_up_after_relaxation simply resets their addresses and offsets.
288 void
289 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
290 const Layout::Section_list& sections,
291 const Layout::Data_list& special_outputs,
292 const Layout::Data_list& relax_outputs)
293 {
294 for(Layout::Section_list::const_iterator p = sections.begin();
295 p != sections.end();
296 ++p)
297 gold_assert((*p)->address_and_file_offset_have_reset_values());
298
299 for(Layout::Data_list::const_iterator p = special_outputs.begin();
300 p != special_outputs.end();
301 ++p)
302 gold_assert((*p)->address_and_file_offset_have_reset_values());
303
304 gold_assert(relax_outputs.empty());
305 }
306
307 // Save information of SECTIONS for checking later.
308
309 void
310 Layout::Relaxation_debug_check::read_sections(
311 const Layout::Section_list& sections)
312 {
313 for(Layout::Section_list::const_iterator p = sections.begin();
314 p != sections.end();
315 ++p)
316 {
317 Output_section* os = *p;
318 Section_info info;
319 info.output_section = os;
320 info.address = os->is_address_valid() ? os->address() : 0;
321 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
322 info.offset = os->is_offset_valid()? os->offset() : -1 ;
323 this->section_infos_.push_back(info);
324 }
325 }
326
327 // Verify SECTIONS using previously recorded information.
328
329 void
330 Layout::Relaxation_debug_check::verify_sections(
331 const Layout::Section_list& sections)
332 {
333 size_t i = 0;
334 for(Layout::Section_list::const_iterator p = sections.begin();
335 p != sections.end();
336 ++p, ++i)
337 {
338 Output_section* os = *p;
339 uint64_t address = os->is_address_valid() ? os->address() : 0;
340 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
341 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
342
343 if (i >= this->section_infos_.size())
344 {
345 gold_fatal("Section_info of %s missing.\n", os->name());
346 }
347 const Section_info& info = this->section_infos_[i];
348 if (os != info.output_section)
349 gold_fatal("Section order changed. Expecting %s but see %s\n",
350 info.output_section->name(), os->name());
351 if (address != info.address
352 || data_size != info.data_size
353 || offset != info.offset)
354 gold_fatal("Section %s changed.\n", os->name());
355 }
356 }
357
358 // Layout_task_runner methods.
359
360 // Lay out the sections. This is called after all the input objects
361 // have been read.
362
363 void
364 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
365 {
366 // See if any of the input definitions violate the One Definition Rule.
367 // TODO: if this is too slow, do this as a task, rather than inline.
368 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
369
370 Layout* layout = this->layout_;
371 off_t file_size = layout->finalize(this->input_objects_,
372 this->symtab_,
373 this->target_,
374 task);
375
376 // Now we know the final size of the output file and we know where
377 // each piece of information goes.
378
379 if (this->mapfile_ != NULL)
380 {
381 this->mapfile_->print_discarded_sections(this->input_objects_);
382 layout->print_to_mapfile(this->mapfile_);
383 }
384
385 Output_file* of;
386 if (layout->incremental_base() == NULL)
387 {
388 of = new Output_file(parameters->options().output_file_name());
389 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
390 of->set_is_temporary();
391 of->open(file_size);
392 }
393 else
394 {
395 of = layout->incremental_base()->output_file();
396
397 // Apply the incremental relocations for symbols whose values
398 // have changed. We do this before we resize the file and start
399 // writing anything else to it, so that we can read the old
400 // incremental information from the file before (possibly)
401 // overwriting it.
402 if (parameters->incremental_update())
403 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
404 this->layout_,
405 of);
406
407 of->resize(file_size);
408 }
409
410 // Queue up the final set of tasks.
411 gold::queue_final_tasks(this->options_, this->input_objects_,
412 this->symtab_, layout, workqueue, of);
413 }
414
415 // Layout methods.
416
417 Layout::Layout(int number_of_input_files, Script_options* script_options)
418 : number_of_input_files_(number_of_input_files),
419 script_options_(script_options),
420 namepool_(),
421 sympool_(),
422 dynpool_(),
423 signatures_(),
424 section_name_map_(),
425 segment_list_(),
426 section_list_(),
427 unattached_section_list_(),
428 special_output_list_(),
429 relax_output_list_(),
430 section_headers_(NULL),
431 tls_segment_(NULL),
432 relro_segment_(NULL),
433 interp_segment_(NULL),
434 increase_relro_(0),
435 symtab_section_(NULL),
436 symtab_xindex_(NULL),
437 dynsym_section_(NULL),
438 dynsym_xindex_(NULL),
439 dynamic_section_(NULL),
440 dynamic_symbol_(NULL),
441 dynamic_data_(NULL),
442 eh_frame_section_(NULL),
443 eh_frame_data_(NULL),
444 added_eh_frame_data_(false),
445 eh_frame_hdr_section_(NULL),
446 gdb_index_data_(NULL),
447 build_id_note_(NULL),
448 debug_abbrev_(NULL),
449 debug_info_(NULL),
450 group_signatures_(),
451 output_file_size_(-1),
452 have_added_input_section_(false),
453 sections_are_attached_(false),
454 input_requires_executable_stack_(false),
455 input_with_gnu_stack_note_(false),
456 input_without_gnu_stack_note_(false),
457 has_static_tls_(false),
458 any_postprocessing_sections_(false),
459 resized_signatures_(false),
460 have_stabstr_section_(false),
461 section_ordering_specified_(false),
462 unique_segment_for_sections_specified_(false),
463 incremental_inputs_(NULL),
464 record_output_section_data_from_script_(false),
465 script_output_section_data_list_(),
466 segment_states_(NULL),
467 relaxation_debug_check_(NULL),
468 section_order_map_(),
469 section_segment_map_(),
470 input_section_position_(),
471 input_section_glob_(),
472 incremental_base_(NULL),
473 free_list_()
474 {
475 // Make space for more than enough segments for a typical file.
476 // This is just for efficiency--it's OK if we wind up needing more.
477 this->segment_list_.reserve(12);
478
479 // We expect two unattached Output_data objects: the file header and
480 // the segment headers.
481 this->special_output_list_.reserve(2);
482
483 // Initialize structure needed for an incremental build.
484 if (parameters->incremental())
485 this->incremental_inputs_ = new Incremental_inputs;
486
487 // The section name pool is worth optimizing in all cases, because
488 // it is small, but there are often overlaps due to .rel sections.
489 this->namepool_.set_optimize();
490 }
491
492 // For incremental links, record the base file to be modified.
493
494 void
495 Layout::set_incremental_base(Incremental_binary* base)
496 {
497 this->incremental_base_ = base;
498 this->free_list_.init(base->output_file()->filesize(), true);
499 }
500
501 // Hash a key we use to look up an output section mapping.
502
503 size_t
504 Layout::Hash_key::operator()(const Layout::Key& k) const
505 {
506 return k.first + k.second.first + k.second.second;
507 }
508
509 // These are the debug sections that are actually used by gdb.
510 // Currently, we've checked versions of gdb up to and including 7.4.
511 // We only check the part of the name that follows ".debug_" or
512 // ".zdebug_".
513
514 static const char* gdb_sections[] =
515 {
516 "abbrev",
517 "addr", // Fission extension
518 // "aranges", // not used by gdb as of 7.4
519 "frame",
520 "gdb_scripts",
521 "info",
522 "types",
523 "line",
524 "loc",
525 "macinfo",
526 "macro",
527 // "pubnames", // not used by gdb as of 7.4
528 // "pubtypes", // not used by gdb as of 7.4
529 // "gnu_pubnames", // Fission extension
530 // "gnu_pubtypes", // Fission extension
531 "ranges",
532 "str",
533 "str_offsets",
534 };
535
536 // This is the minimum set of sections needed for line numbers.
537
538 static const char* lines_only_debug_sections[] =
539 {
540 "abbrev",
541 // "addr", // Fission extension
542 // "aranges", // not used by gdb as of 7.4
543 // "frame",
544 // "gdb_scripts",
545 "info",
546 // "types",
547 "line",
548 // "loc",
549 // "macinfo",
550 // "macro",
551 // "pubnames", // not used by gdb as of 7.4
552 // "pubtypes", // not used by gdb as of 7.4
553 // "gnu_pubnames", // Fission extension
554 // "gnu_pubtypes", // Fission extension
555 // "ranges",
556 "str",
557 "str_offsets", // Fission extension
558 };
559
560 // These sections are the DWARF fast-lookup tables, and are not needed
561 // when building a .gdb_index section.
562
563 static const char* gdb_fast_lookup_sections[] =
564 {
565 "aranges",
566 "pubnames",
567 "gnu_pubnames",
568 "pubtypes",
569 "gnu_pubtypes",
570 };
571
572 // Returns whether the given debug section is in the list of
573 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
574 // portion of the name following ".debug_" or ".zdebug_".
575
576 static inline bool
577 is_gdb_debug_section(const char* suffix)
578 {
579 // We can do this faster: binary search or a hashtable. But why bother?
580 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
581 if (strcmp(suffix, gdb_sections[i]) == 0)
582 return true;
583 return false;
584 }
585
586 // Returns whether the given section is needed for lines-only debugging.
587
588 static inline bool
589 is_lines_only_debug_section(const char* suffix)
590 {
591 // We can do this faster: binary search or a hashtable. But why bother?
592 for (size_t i = 0;
593 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
594 ++i)
595 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
596 return true;
597 return false;
598 }
599
600 // Returns whether the given section is a fast-lookup section that
601 // will not be needed when building a .gdb_index section.
602
603 static inline bool
604 is_gdb_fast_lookup_section(const char* suffix)
605 {
606 // We can do this faster: binary search or a hashtable. But why bother?
607 for (size_t i = 0;
608 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
609 ++i)
610 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
611 return true;
612 return false;
613 }
614
615 // Sometimes we compress sections. This is typically done for
616 // sections that are not part of normal program execution (such as
617 // .debug_* sections), and where the readers of these sections know
618 // how to deal with compressed sections. This routine doesn't say for
619 // certain whether we'll compress -- it depends on commandline options
620 // as well -- just whether this section is a candidate for compression.
621 // (The Output_compressed_section class decides whether to compress
622 // a given section, and picks the name of the compressed section.)
623
624 static bool
625 is_compressible_debug_section(const char* secname)
626 {
627 return (is_prefix_of(".debug", secname));
628 }
629
630 // We may see compressed debug sections in input files. Return TRUE
631 // if this is the name of a compressed debug section.
632
633 bool
634 is_compressed_debug_section(const char* secname)
635 {
636 return (is_prefix_of(".zdebug", secname));
637 }
638
639 std::string
640 corresponding_uncompressed_section_name(std::string secname)
641 {
642 gold_assert(secname[0] == '.' && secname[1] == 'z');
643 std::string ret(".");
644 ret.append(secname, 2, std::string::npos);
645 return ret;
646 }
647
648 // Whether to include this section in the link.
649
650 template<int size, bool big_endian>
651 bool
652 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
653 const elfcpp::Shdr<size, big_endian>& shdr)
654 {
655 if (!parameters->options().relocatable()
656 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
657 return false;
658
659 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
660
661 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
662 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
663 return parameters->target().should_include_section(sh_type);
664
665 switch (sh_type)
666 {
667 case elfcpp::SHT_NULL:
668 case elfcpp::SHT_SYMTAB:
669 case elfcpp::SHT_DYNSYM:
670 case elfcpp::SHT_HASH:
671 case elfcpp::SHT_DYNAMIC:
672 case elfcpp::SHT_SYMTAB_SHNDX:
673 return false;
674
675 case elfcpp::SHT_STRTAB:
676 // Discard the sections which have special meanings in the ELF
677 // ABI. Keep others (e.g., .stabstr). We could also do this by
678 // checking the sh_link fields of the appropriate sections.
679 return (strcmp(name, ".dynstr") != 0
680 && strcmp(name, ".strtab") != 0
681 && strcmp(name, ".shstrtab") != 0);
682
683 case elfcpp::SHT_RELA:
684 case elfcpp::SHT_REL:
685 case elfcpp::SHT_GROUP:
686 // If we are emitting relocations these should be handled
687 // elsewhere.
688 gold_assert(!parameters->options().relocatable());
689 return false;
690
691 case elfcpp::SHT_PROGBITS:
692 if (parameters->options().strip_debug()
693 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
694 {
695 if (is_debug_info_section(name))
696 return false;
697 }
698 if (parameters->options().strip_debug_non_line()
699 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700 {
701 // Debugging sections can only be recognized by name.
702 if (is_prefix_of(".debug_", name)
703 && !is_lines_only_debug_section(name + 7))
704 return false;
705 if (is_prefix_of(".zdebug_", name)
706 && !is_lines_only_debug_section(name + 8))
707 return false;
708 }
709 if (parameters->options().strip_debug_gdb()
710 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
711 {
712 // Debugging sections can only be recognized by name.
713 if (is_prefix_of(".debug_", name)
714 && !is_gdb_debug_section(name + 7))
715 return false;
716 if (is_prefix_of(".zdebug_", name)
717 && !is_gdb_debug_section(name + 8))
718 return false;
719 }
720 if (parameters->options().gdb_index()
721 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
722 {
723 // When building .gdb_index, we can strip .debug_pubnames,
724 // .debug_pubtypes, and .debug_aranges sections.
725 if (is_prefix_of(".debug_", name)
726 && is_gdb_fast_lookup_section(name + 7))
727 return false;
728 if (is_prefix_of(".zdebug_", name)
729 && is_gdb_fast_lookup_section(name + 8))
730 return false;
731 }
732 if (parameters->options().strip_lto_sections()
733 && !parameters->options().relocatable()
734 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735 {
736 // Ignore LTO sections containing intermediate code.
737 if (is_prefix_of(".gnu.lto_", name))
738 return false;
739 }
740 // The GNU linker strips .gnu_debuglink sections, so we do too.
741 // This is a feature used to keep debugging information in
742 // separate files.
743 if (strcmp(name, ".gnu_debuglink") == 0)
744 return false;
745 return true;
746
747 default:
748 return true;
749 }
750 }
751
752 // Return an output section named NAME, or NULL if there is none.
753
754 Output_section*
755 Layout::find_output_section(const char* name) const
756 {
757 for (Section_list::const_iterator p = this->section_list_.begin();
758 p != this->section_list_.end();
759 ++p)
760 if (strcmp((*p)->name(), name) == 0)
761 return *p;
762 return NULL;
763 }
764
765 // Return an output segment of type TYPE, with segment flags SET set
766 // and segment flags CLEAR clear. Return NULL if there is none.
767
768 Output_segment*
769 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
770 elfcpp::Elf_Word clear) const
771 {
772 for (Segment_list::const_iterator p = this->segment_list_.begin();
773 p != this->segment_list_.end();
774 ++p)
775 if (static_cast<elfcpp::PT>((*p)->type()) == type
776 && ((*p)->flags() & set) == set
777 && ((*p)->flags() & clear) == 0)
778 return *p;
779 return NULL;
780 }
781
782 // When we put a .ctors or .dtors section with more than one word into
783 // a .init_array or .fini_array section, we need to reverse the words
784 // in the .ctors/.dtors section. This is because .init_array executes
785 // constructors front to back, where .ctors executes them back to
786 // front, and vice-versa for .fini_array/.dtors. Although we do want
787 // to remap .ctors/.dtors into .init_array/.fini_array because it can
788 // be more efficient, we don't want to change the order in which
789 // constructors/destructors are run. This set just keeps track of
790 // these sections which need to be reversed. It is only changed by
791 // Layout::layout. It should be a private member of Layout, but that
792 // would require layout.h to #include object.h to get the definition
793 // of Section_id.
794 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
795
796 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
797 // .init_array/.fini_array section.
798
799 bool
800 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
801 {
802 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
803 != ctors_sections_in_init_array.end());
804 }
805
806 // Return the output section to use for section NAME with type TYPE
807 // and section flags FLAGS. NAME must be canonicalized in the string
808 // pool, and NAME_KEY is the key. ORDER is where this should appear
809 // in the output sections. IS_RELRO is true for a relro section.
810
811 Output_section*
812 Layout::get_output_section(const char* name, Stringpool::Key name_key,
813 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
814 Output_section_order order, bool is_relro)
815 {
816 elfcpp::Elf_Word lookup_type = type;
817
818 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
819 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
820 // .init_array, .fini_array, and .preinit_array sections by name
821 // whatever their type in the input file. We do this because the
822 // types are not always right in the input files.
823 if (lookup_type == elfcpp::SHT_INIT_ARRAY
824 || lookup_type == elfcpp::SHT_FINI_ARRAY
825 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
826 lookup_type = elfcpp::SHT_PROGBITS;
827
828 elfcpp::Elf_Xword lookup_flags = flags;
829
830 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
831 // read-write with read-only sections. Some other ELF linkers do
832 // not do this. FIXME: Perhaps there should be an option
833 // controlling this.
834 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
835
836 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
837 const std::pair<Key, Output_section*> v(key, NULL);
838 std::pair<Section_name_map::iterator, bool> ins(
839 this->section_name_map_.insert(v));
840
841 if (!ins.second)
842 return ins.first->second;
843 else
844 {
845 // This is the first time we've seen this name/type/flags
846 // combination. For compatibility with the GNU linker, we
847 // combine sections with contents and zero flags with sections
848 // with non-zero flags. This is a workaround for cases where
849 // assembler code forgets to set section flags. FIXME: Perhaps
850 // there should be an option to control this.
851 Output_section* os = NULL;
852
853 if (lookup_type == elfcpp::SHT_PROGBITS)
854 {
855 if (flags == 0)
856 {
857 Output_section* same_name = this->find_output_section(name);
858 if (same_name != NULL
859 && (same_name->type() == elfcpp::SHT_PROGBITS
860 || same_name->type() == elfcpp::SHT_INIT_ARRAY
861 || same_name->type() == elfcpp::SHT_FINI_ARRAY
862 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
863 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
864 os = same_name;
865 }
866 else if ((flags & elfcpp::SHF_TLS) == 0)
867 {
868 elfcpp::Elf_Xword zero_flags = 0;
869 const Key zero_key(name_key, std::make_pair(lookup_type,
870 zero_flags));
871 Section_name_map::iterator p =
872 this->section_name_map_.find(zero_key);
873 if (p != this->section_name_map_.end())
874 os = p->second;
875 }
876 }
877
878 if (os == NULL)
879 os = this->make_output_section(name, type, flags, order, is_relro);
880
881 ins.first->second = os;
882 return os;
883 }
884 }
885
886 // Returns TRUE iff NAME (an input section from RELOBJ) will
887 // be mapped to an output section that should be KEPT.
888
889 bool
890 Layout::keep_input_section(const Relobj* relobj, const char* name)
891 {
892 if (! this->script_options_->saw_sections_clause())
893 return false;
894
895 Script_sections* ss = this->script_options_->script_sections();
896 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
897 Output_section** output_section_slot;
898 Script_sections::Section_type script_section_type;
899 bool keep;
900
901 name = ss->output_section_name(file_name, name, &output_section_slot,
902 &script_section_type, &keep);
903 return name != NULL && keep;
904 }
905
906 // Clear the input section flags that should not be copied to the
907 // output section.
908
909 elfcpp::Elf_Xword
910 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
911 {
912 // Some flags in the input section should not be automatically
913 // copied to the output section.
914 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
915 | elfcpp::SHF_GROUP
916 | elfcpp::SHF_COMPRESSED
917 | elfcpp::SHF_MERGE
918 | elfcpp::SHF_STRINGS);
919
920 // We only clear the SHF_LINK_ORDER flag in for
921 // a non-relocatable link.
922 if (!parameters->options().relocatable())
923 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
924
925 return input_section_flags;
926 }
927
928 // Pick the output section to use for section NAME, in input file
929 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
930 // linker created section. IS_INPUT_SECTION is true if we are
931 // choosing an output section for an input section found in a input
932 // file. ORDER is where this section should appear in the output
933 // sections. IS_RELRO is true for a relro section. This will return
934 // NULL if the input section should be discarded.
935
936 Output_section*
937 Layout::choose_output_section(const Relobj* relobj, const char* name,
938 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
939 bool is_input_section, Output_section_order order,
940 bool is_relro)
941 {
942 // We should not see any input sections after we have attached
943 // sections to segments.
944 gold_assert(!is_input_section || !this->sections_are_attached_);
945
946 flags = this->get_output_section_flags(flags);
947
948 if (this->script_options_->saw_sections_clause())
949 {
950 // We are using a SECTIONS clause, so the output section is
951 // chosen based only on the name.
952
953 Script_sections* ss = this->script_options_->script_sections();
954 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
955 Output_section** output_section_slot;
956 Script_sections::Section_type script_section_type;
957 const char* orig_name = name;
958 bool keep;
959 name = ss->output_section_name(file_name, name, &output_section_slot,
960 &script_section_type, &keep);
961
962 if (name == NULL)
963 {
964 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
965 "because it is not allowed by the "
966 "SECTIONS clause of the linker script"),
967 orig_name);
968 // The SECTIONS clause says to discard this input section.
969 return NULL;
970 }
971
972 // We can only handle script section types ST_NONE and ST_NOLOAD.
973 switch (script_section_type)
974 {
975 case Script_sections::ST_NONE:
976 break;
977 case Script_sections::ST_NOLOAD:
978 flags &= elfcpp::SHF_ALLOC;
979 break;
980 default:
981 gold_unreachable();
982 }
983
984 // If this is an orphan section--one not mentioned in the linker
985 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
986 // default processing below.
987
988 if (output_section_slot != NULL)
989 {
990 if (*output_section_slot != NULL)
991 {
992 (*output_section_slot)->update_flags_for_input_section(flags);
993 return *output_section_slot;
994 }
995
996 // We don't put sections found in the linker script into
997 // SECTION_NAME_MAP_. That keeps us from getting confused
998 // if an orphan section is mapped to a section with the same
999 // name as one in the linker script.
1000
1001 name = this->namepool_.add(name, false, NULL);
1002
1003 Output_section* os = this->make_output_section(name, type, flags,
1004 order, is_relro);
1005
1006 os->set_found_in_sections_clause();
1007
1008 // Special handling for NOLOAD sections.
1009 if (script_section_type == Script_sections::ST_NOLOAD)
1010 {
1011 os->set_is_noload();
1012
1013 // The constructor of Output_section sets addresses of non-ALLOC
1014 // sections to 0 by default. We don't want that for NOLOAD
1015 // sections even if they have no SHF_ALLOC flag.
1016 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1017 && os->is_address_valid())
1018 {
1019 gold_assert(os->address() == 0
1020 && !os->is_offset_valid()
1021 && !os->is_data_size_valid());
1022 os->reset_address_and_file_offset();
1023 }
1024 }
1025
1026 *output_section_slot = os;
1027 return os;
1028 }
1029 }
1030
1031 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1032
1033 size_t len = strlen(name);
1034 std::string uncompressed_name;
1035
1036 // Compressed debug sections should be mapped to the corresponding
1037 // uncompressed section.
1038 if (is_compressed_debug_section(name))
1039 {
1040 uncompressed_name =
1041 corresponding_uncompressed_section_name(std::string(name, len));
1042 name = uncompressed_name.c_str();
1043 len = uncompressed_name.length();
1044 }
1045
1046 // Turn NAME from the name of the input section into the name of the
1047 // output section.
1048 if (is_input_section
1049 && !this->script_options_->saw_sections_clause()
1050 && !parameters->options().relocatable())
1051 {
1052 const char *orig_name = name;
1053 name = parameters->target().output_section_name(relobj, name, &len);
1054 if (name == NULL)
1055 name = Layout::output_section_name(relobj, orig_name, &len);
1056 }
1057
1058 Stringpool::Key name_key;
1059 name = this->namepool_.add_with_length(name, len, true, &name_key);
1060
1061 // Find or make the output section. The output section is selected
1062 // based on the section name, type, and flags.
1063 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1064 }
1065
1066 // For incremental links, record the initial fixed layout of a section
1067 // from the base file, and return a pointer to the Output_section.
1068
1069 template<int size, bool big_endian>
1070 Output_section*
1071 Layout::init_fixed_output_section(const char* name,
1072 elfcpp::Shdr<size, big_endian>& shdr)
1073 {
1074 unsigned int sh_type = shdr.get_sh_type();
1075
1076 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1077 // PRE_INIT_ARRAY, and NOTE sections.
1078 // All others will be created from scratch and reallocated.
1079 if (!can_incremental_update(sh_type))
1080 return NULL;
1081
1082 // If we're generating a .gdb_index section, we need to regenerate
1083 // it from scratch.
1084 if (parameters->options().gdb_index()
1085 && sh_type == elfcpp::SHT_PROGBITS
1086 && strcmp(name, ".gdb_index") == 0)
1087 return NULL;
1088
1089 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1090 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1091 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1092 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1093 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1094 shdr.get_sh_addralign();
1095
1096 // Make the output section.
1097 Stringpool::Key name_key;
1098 name = this->namepool_.add(name, true, &name_key);
1099 Output_section* os = this->get_output_section(name, name_key, sh_type,
1100 sh_flags, ORDER_INVALID, false);
1101 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1102 if (sh_type != elfcpp::SHT_NOBITS)
1103 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1104 return os;
1105 }
1106
1107 // Return the index by which an input section should be ordered. This
1108 // is used to sort some .text sections, for compatibility with GNU ld.
1109
1110 int
1111 Layout::special_ordering_of_input_section(const char* name)
1112 {
1113 // The GNU linker has some special handling for some sections that
1114 // wind up in the .text section. Sections that start with these
1115 // prefixes must appear first, and must appear in the order listed
1116 // here.
1117 static const char* const text_section_sort[] =
1118 {
1119 ".text.unlikely",
1120 ".text.exit",
1121 ".text.startup",
1122 ".text.hot"
1123 };
1124
1125 for (size_t i = 0;
1126 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1127 i++)
1128 if (is_prefix_of(text_section_sort[i], name))
1129 return i;
1130
1131 return -1;
1132 }
1133
1134 // Return the output section to use for input section SHNDX, with name
1135 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1136 // index of a relocation section which applies to this section, or 0
1137 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1138 // relocation section if there is one. Set *OFF to the offset of this
1139 // input section without the output section. Return NULL if the
1140 // section should be discarded. Set *OFF to -1 if the section
1141 // contents should not be written directly to the output file, but
1142 // will instead receive special handling.
1143
1144 template<int size, bool big_endian>
1145 Output_section*
1146 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1147 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1148 unsigned int reloc_shndx, unsigned int, off_t* off)
1149 {
1150 *off = 0;
1151
1152 if (!this->include_section(object, name, shdr))
1153 return NULL;
1154
1155 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1156
1157 // In a relocatable link a grouped section must not be combined with
1158 // any other sections.
1159 Output_section* os;
1160 if (parameters->options().relocatable()
1161 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1162 {
1163 // Some flags in the input section should not be automatically
1164 // copied to the output section.
1165 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1166 & ~ elfcpp::SHF_COMPRESSED);
1167 name = this->namepool_.add(name, true, NULL);
1168 os = this->make_output_section(name, sh_type, flags,
1169 ORDER_INVALID, false);
1170 }
1171 else
1172 {
1173 // Plugins can choose to place one or more subsets of sections in
1174 // unique segments and this is done by mapping these section subsets
1175 // to unique output sections. Check if this section needs to be
1176 // remapped to a unique output section.
1177 Section_segment_map::iterator it
1178 = this->section_segment_map_.find(Const_section_id(object, shndx));
1179 if (it == this->section_segment_map_.end())
1180 {
1181 os = this->choose_output_section(object, name, sh_type,
1182 shdr.get_sh_flags(), true,
1183 ORDER_INVALID, false);
1184 }
1185 else
1186 {
1187 // We know the name of the output section, directly call
1188 // get_output_section here by-passing choose_output_section.
1189 elfcpp::Elf_Xword flags
1190 = this->get_output_section_flags(shdr.get_sh_flags());
1191
1192 const char* os_name = it->second->name;
1193 Stringpool::Key name_key;
1194 os_name = this->namepool_.add(os_name, true, &name_key);
1195 os = this->get_output_section(os_name, name_key, sh_type, flags,
1196 ORDER_INVALID, false);
1197 if (!os->is_unique_segment())
1198 {
1199 os->set_is_unique_segment();
1200 os->set_extra_segment_flags(it->second->flags);
1201 os->set_segment_alignment(it->second->align);
1202 }
1203 }
1204 if (os == NULL)
1205 return NULL;
1206 }
1207
1208 // By default the GNU linker sorts input sections whose names match
1209 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1210 // sections are sorted by name. This is used to implement
1211 // constructor priority ordering. We are compatible. When we put
1212 // .ctor sections in .init_array and .dtor sections in .fini_array,
1213 // we must also sort plain .ctor and .dtor sections.
1214 if (!this->script_options_->saw_sections_clause()
1215 && !parameters->options().relocatable()
1216 && (is_prefix_of(".ctors.", name)
1217 || is_prefix_of(".dtors.", name)
1218 || is_prefix_of(".init_array.", name)
1219 || is_prefix_of(".fini_array.", name)
1220 || (parameters->options().ctors_in_init_array()
1221 && (strcmp(name, ".ctors") == 0
1222 || strcmp(name, ".dtors") == 0))))
1223 os->set_must_sort_attached_input_sections();
1224
1225 // By default the GNU linker sorts some special text sections ahead
1226 // of others. We are compatible.
1227 if (parameters->options().text_reorder()
1228 && !this->script_options_->saw_sections_clause()
1229 && !this->is_section_ordering_specified()
1230 && !parameters->options().relocatable()
1231 && Layout::special_ordering_of_input_section(name) >= 0)
1232 os->set_must_sort_attached_input_sections();
1233
1234 // If this is a .ctors or .ctors.* section being mapped to a
1235 // .init_array section, or a .dtors or .dtors.* section being mapped
1236 // to a .fini_array section, we will need to reverse the words if
1237 // there is more than one. Record this section for later. See
1238 // ctors_sections_in_init_array above.
1239 if (!this->script_options_->saw_sections_clause()
1240 && !parameters->options().relocatable()
1241 && shdr.get_sh_size() > size / 8
1242 && (((strcmp(name, ".ctors") == 0
1243 || is_prefix_of(".ctors.", name))
1244 && strcmp(os->name(), ".init_array") == 0)
1245 || ((strcmp(name, ".dtors") == 0
1246 || is_prefix_of(".dtors.", name))
1247 && strcmp(os->name(), ".fini_array") == 0)))
1248 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1249
1250 // FIXME: Handle SHF_LINK_ORDER somewhere.
1251
1252 elfcpp::Elf_Xword orig_flags = os->flags();
1253
1254 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1255 this->script_options_->saw_sections_clause());
1256
1257 // If the flags changed, we may have to change the order.
1258 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1259 {
1260 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1261 elfcpp::Elf_Xword new_flags =
1262 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1263 if (orig_flags != new_flags)
1264 os->set_order(this->default_section_order(os, false));
1265 }
1266
1267 this->have_added_input_section_ = true;
1268
1269 return os;
1270 }
1271
1272 // Maps section SECN to SEGMENT s.
1273 void
1274 Layout::insert_section_segment_map(Const_section_id secn,
1275 Unique_segment_info *s)
1276 {
1277 gold_assert(this->unique_segment_for_sections_specified_);
1278 this->section_segment_map_[secn] = s;
1279 }
1280
1281 // Handle a relocation section when doing a relocatable link.
1282
1283 template<int size, bool big_endian>
1284 Output_section*
1285 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1286 unsigned int,
1287 const elfcpp::Shdr<size, big_endian>& shdr,
1288 Output_section* data_section,
1289 Relocatable_relocs* rr)
1290 {
1291 gold_assert(parameters->options().relocatable()
1292 || parameters->options().emit_relocs());
1293
1294 int sh_type = shdr.get_sh_type();
1295
1296 std::string name;
1297 if (sh_type == elfcpp::SHT_REL)
1298 name = ".rel";
1299 else if (sh_type == elfcpp::SHT_RELA)
1300 name = ".rela";
1301 else
1302 gold_unreachable();
1303 name += data_section->name();
1304
1305 // In a relocatable link relocs for a grouped section must not be
1306 // combined with other reloc sections.
1307 Output_section* os;
1308 if (!parameters->options().relocatable()
1309 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1310 os = this->choose_output_section(object, name.c_str(), sh_type,
1311 shdr.get_sh_flags(), false,
1312 ORDER_INVALID, false);
1313 else
1314 {
1315 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1316 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1317 ORDER_INVALID, false);
1318 }
1319
1320 os->set_should_link_to_symtab();
1321 os->set_info_section(data_section);
1322
1323 Output_section_data* posd;
1324 if (sh_type == elfcpp::SHT_REL)
1325 {
1326 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1327 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1328 size,
1329 big_endian>(rr);
1330 }
1331 else if (sh_type == elfcpp::SHT_RELA)
1332 {
1333 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1334 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1335 size,
1336 big_endian>(rr);
1337 }
1338 else
1339 gold_unreachable();
1340
1341 os->add_output_section_data(posd);
1342 rr->set_output_data(posd);
1343
1344 return os;
1345 }
1346
1347 // Handle a group section when doing a relocatable link.
1348
1349 template<int size, bool big_endian>
1350 void
1351 Layout::layout_group(Symbol_table* symtab,
1352 Sized_relobj_file<size, big_endian>* object,
1353 unsigned int,
1354 const char* group_section_name,
1355 const char* signature,
1356 const elfcpp::Shdr<size, big_endian>& shdr,
1357 elfcpp::Elf_Word flags,
1358 std::vector<unsigned int>* shndxes)
1359 {
1360 gold_assert(parameters->options().relocatable());
1361 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1362 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1363 Output_section* os = this->make_output_section(group_section_name,
1364 elfcpp::SHT_GROUP,
1365 shdr.get_sh_flags(),
1366 ORDER_INVALID, false);
1367
1368 // We need to find a symbol with the signature in the symbol table.
1369 // If we don't find one now, we need to look again later.
1370 Symbol* sym = symtab->lookup(signature, NULL);
1371 if (sym != NULL)
1372 os->set_info_symndx(sym);
1373 else
1374 {
1375 // Reserve some space to minimize reallocations.
1376 if (this->group_signatures_.empty())
1377 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1378
1379 // We will wind up using a symbol whose name is the signature.
1380 // So just put the signature in the symbol name pool to save it.
1381 signature = symtab->canonicalize_name(signature);
1382 this->group_signatures_.push_back(Group_signature(os, signature));
1383 }
1384
1385 os->set_should_link_to_symtab();
1386 os->set_entsize(4);
1387
1388 section_size_type entry_count =
1389 convert_to_section_size_type(shdr.get_sh_size() / 4);
1390 Output_section_data* posd =
1391 new Output_data_group<size, big_endian>(object, entry_count, flags,
1392 shndxes);
1393 os->add_output_section_data(posd);
1394 }
1395
1396 // Special GNU handling of sections name .eh_frame. They will
1397 // normally hold exception frame data as defined by the C++ ABI
1398 // (http://codesourcery.com/cxx-abi/).
1399
1400 template<int size, bool big_endian>
1401 Output_section*
1402 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1403 const unsigned char* symbols,
1404 off_t symbols_size,
1405 const unsigned char* symbol_names,
1406 off_t symbol_names_size,
1407 unsigned int shndx,
1408 const elfcpp::Shdr<size, big_endian>& shdr,
1409 unsigned int reloc_shndx, unsigned int reloc_type,
1410 off_t* off)
1411 {
1412 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1413 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1414 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1415
1416 Output_section* os = this->make_eh_frame_section(object);
1417 if (os == NULL)
1418 return NULL;
1419
1420 gold_assert(this->eh_frame_section_ == os);
1421
1422 elfcpp::Elf_Xword orig_flags = os->flags();
1423
1424 Eh_frame::Eh_frame_section_disposition disp =
1425 Eh_frame::EH_UNRECOGNIZED_SECTION;
1426 if (!parameters->incremental())
1427 {
1428 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1429 symbols,
1430 symbols_size,
1431 symbol_names,
1432 symbol_names_size,
1433 shndx,
1434 reloc_shndx,
1435 reloc_type);
1436 }
1437
1438 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1439 {
1440 os->update_flags_for_input_section(shdr.get_sh_flags());
1441
1442 // A writable .eh_frame section is a RELRO section.
1443 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1444 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1445 {
1446 os->set_is_relro();
1447 os->set_order(ORDER_RELRO);
1448 }
1449
1450 *off = -1;
1451 return os;
1452 }
1453
1454 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1455 {
1456 // We found the end marker section, so now we can add the set of
1457 // optimized sections to the output section. We need to postpone
1458 // adding this until we've found a section we can optimize so that
1459 // the .eh_frame section in crtbeginT.o winds up at the start of
1460 // the output section.
1461 os->add_output_section_data(this->eh_frame_data_);
1462 this->added_eh_frame_data_ = true;
1463 }
1464
1465 // We couldn't handle this .eh_frame section for some reason.
1466 // Add it as a normal section.
1467 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1468 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1469 reloc_shndx, saw_sections_clause);
1470 this->have_added_input_section_ = true;
1471
1472 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1473 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1474 os->set_order(this->default_section_order(os, false));
1475
1476 return os;
1477 }
1478
1479 void
1480 Layout::finalize_eh_frame_section()
1481 {
1482 // If we never found an end marker section, we need to add the
1483 // optimized eh sections to the output section now.
1484 if (!parameters->incremental()
1485 && this->eh_frame_section_ != NULL
1486 && !this->added_eh_frame_data_)
1487 {
1488 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1489 this->added_eh_frame_data_ = true;
1490 }
1491 }
1492
1493 // Create and return the magic .eh_frame section. Create
1494 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1495 // input .eh_frame section; it may be NULL.
1496
1497 Output_section*
1498 Layout::make_eh_frame_section(const Relobj* object)
1499 {
1500 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1501 // SHT_PROGBITS.
1502 Output_section* os = this->choose_output_section(object, ".eh_frame",
1503 elfcpp::SHT_PROGBITS,
1504 elfcpp::SHF_ALLOC, false,
1505 ORDER_EHFRAME, false);
1506 if (os == NULL)
1507 return NULL;
1508
1509 if (this->eh_frame_section_ == NULL)
1510 {
1511 this->eh_frame_section_ = os;
1512 this->eh_frame_data_ = new Eh_frame();
1513
1514 // For incremental linking, we do not optimize .eh_frame sections
1515 // or create a .eh_frame_hdr section.
1516 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1517 {
1518 Output_section* hdr_os =
1519 this->choose_output_section(NULL, ".eh_frame_hdr",
1520 elfcpp::SHT_PROGBITS,
1521 elfcpp::SHF_ALLOC, false,
1522 ORDER_EHFRAME, false);
1523
1524 if (hdr_os != NULL)
1525 {
1526 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1527 this->eh_frame_data_);
1528 hdr_os->add_output_section_data(hdr_posd);
1529
1530 hdr_os->set_after_input_sections();
1531
1532 if (!this->script_options_->saw_phdrs_clause())
1533 {
1534 Output_segment* hdr_oseg;
1535 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1536 elfcpp::PF_R);
1537 hdr_oseg->add_output_section_to_nonload(hdr_os,
1538 elfcpp::PF_R);
1539 }
1540
1541 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1542 }
1543 }
1544 }
1545
1546 return os;
1547 }
1548
1549 // Add an exception frame for a PLT. This is called from target code.
1550
1551 void
1552 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1553 size_t cie_length, const unsigned char* fde_data,
1554 size_t fde_length)
1555 {
1556 if (parameters->incremental())
1557 {
1558 // FIXME: Maybe this could work some day....
1559 return;
1560 }
1561 Output_section* os = this->make_eh_frame_section(NULL);
1562 if (os == NULL)
1563 return;
1564 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1565 fde_data, fde_length);
1566 if (!this->added_eh_frame_data_)
1567 {
1568 os->add_output_section_data(this->eh_frame_data_);
1569 this->added_eh_frame_data_ = true;
1570 }
1571 }
1572
1573 // Scan a .debug_info or .debug_types section, and add summary
1574 // information to the .gdb_index section.
1575
1576 template<int size, bool big_endian>
1577 void
1578 Layout::add_to_gdb_index(bool is_type_unit,
1579 Sized_relobj<size, big_endian>* object,
1580 const unsigned char* symbols,
1581 off_t symbols_size,
1582 unsigned int shndx,
1583 unsigned int reloc_shndx,
1584 unsigned int reloc_type)
1585 {
1586 if (this->gdb_index_data_ == NULL)
1587 {
1588 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1589 elfcpp::SHT_PROGBITS, 0,
1590 false, ORDER_INVALID,
1591 false);
1592 if (os == NULL)
1593 return;
1594
1595 this->gdb_index_data_ = new Gdb_index(os);
1596 os->add_output_section_data(this->gdb_index_data_);
1597 os->set_after_input_sections();
1598 }
1599
1600 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1601 symbols_size, shndx, reloc_shndx,
1602 reloc_type);
1603 }
1604
1605 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1606 // the output section.
1607
1608 Output_section*
1609 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1610 elfcpp::Elf_Xword flags,
1611 Output_section_data* posd,
1612 Output_section_order order, bool is_relro)
1613 {
1614 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1615 false, order, is_relro);
1616 if (os != NULL)
1617 os->add_output_section_data(posd);
1618 return os;
1619 }
1620
1621 // Map section flags to segment flags.
1622
1623 elfcpp::Elf_Word
1624 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1625 {
1626 elfcpp::Elf_Word ret = elfcpp::PF_R;
1627 if ((flags & elfcpp::SHF_WRITE) != 0)
1628 ret |= elfcpp::PF_W;
1629 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1630 ret |= elfcpp::PF_X;
1631 return ret;
1632 }
1633
1634 // Make a new Output_section, and attach it to segments as
1635 // appropriate. ORDER is the order in which this section should
1636 // appear in the output segment. IS_RELRO is true if this is a relro
1637 // (read-only after relocations) section.
1638
1639 Output_section*
1640 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1641 elfcpp::Elf_Xword flags,
1642 Output_section_order order, bool is_relro)
1643 {
1644 Output_section* os;
1645 if ((flags & elfcpp::SHF_ALLOC) == 0
1646 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1647 && is_compressible_debug_section(name))
1648 os = new Output_compressed_section(&parameters->options(), name, type,
1649 flags);
1650 else if ((flags & elfcpp::SHF_ALLOC) == 0
1651 && parameters->options().strip_debug_non_line()
1652 && strcmp(".debug_abbrev", name) == 0)
1653 {
1654 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1655 name, type, flags);
1656 if (this->debug_info_)
1657 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1658 }
1659 else if ((flags & elfcpp::SHF_ALLOC) == 0
1660 && parameters->options().strip_debug_non_line()
1661 && strcmp(".debug_info", name) == 0)
1662 {
1663 os = this->debug_info_ = new Output_reduced_debug_info_section(
1664 name, type, flags);
1665 if (this->debug_abbrev_)
1666 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1667 }
1668 else
1669 {
1670 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1671 // not have correct section types. Force them here.
1672 if (type == elfcpp::SHT_PROGBITS)
1673 {
1674 if (is_prefix_of(".init_array", name))
1675 type = elfcpp::SHT_INIT_ARRAY;
1676 else if (is_prefix_of(".preinit_array", name))
1677 type = elfcpp::SHT_PREINIT_ARRAY;
1678 else if (is_prefix_of(".fini_array", name))
1679 type = elfcpp::SHT_FINI_ARRAY;
1680 }
1681
1682 // FIXME: const_cast is ugly.
1683 Target* target = const_cast<Target*>(&parameters->target());
1684 os = target->make_output_section(name, type, flags);
1685 }
1686
1687 // With -z relro, we have to recognize the special sections by name.
1688 // There is no other way.
1689 bool is_relro_local = false;
1690 if (!this->script_options_->saw_sections_clause()
1691 && parameters->options().relro()
1692 && (flags & elfcpp::SHF_ALLOC) != 0
1693 && (flags & elfcpp::SHF_WRITE) != 0)
1694 {
1695 if (type == elfcpp::SHT_PROGBITS)
1696 {
1697 if ((flags & elfcpp::SHF_TLS) != 0)
1698 is_relro = true;
1699 else if (strcmp(name, ".data.rel.ro") == 0)
1700 is_relro = true;
1701 else if (strcmp(name, ".data.rel.ro.local") == 0)
1702 {
1703 is_relro = true;
1704 is_relro_local = true;
1705 }
1706 else if (strcmp(name, ".ctors") == 0
1707 || strcmp(name, ".dtors") == 0
1708 || strcmp(name, ".jcr") == 0)
1709 is_relro = true;
1710 }
1711 else if (type == elfcpp::SHT_INIT_ARRAY
1712 || type == elfcpp::SHT_FINI_ARRAY
1713 || type == elfcpp::SHT_PREINIT_ARRAY)
1714 is_relro = true;
1715 }
1716
1717 if (is_relro)
1718 os->set_is_relro();
1719
1720 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1721 order = this->default_section_order(os, is_relro_local);
1722
1723 os->set_order(order);
1724
1725 parameters->target().new_output_section(os);
1726
1727 this->section_list_.push_back(os);
1728
1729 // The GNU linker by default sorts some sections by priority, so we
1730 // do the same. We need to know that this might happen before we
1731 // attach any input sections.
1732 if (!this->script_options_->saw_sections_clause()
1733 && !parameters->options().relocatable()
1734 && (strcmp(name, ".init_array") == 0
1735 || strcmp(name, ".fini_array") == 0
1736 || (!parameters->options().ctors_in_init_array()
1737 && (strcmp(name, ".ctors") == 0
1738 || strcmp(name, ".dtors") == 0))))
1739 os->set_may_sort_attached_input_sections();
1740
1741 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1742 // sections before other .text sections. We are compatible. We
1743 // need to know that this might happen before we attach any input
1744 // sections.
1745 if (parameters->options().text_reorder()
1746 && !this->script_options_->saw_sections_clause()
1747 && !this->is_section_ordering_specified()
1748 && !parameters->options().relocatable()
1749 && strcmp(name, ".text") == 0)
1750 os->set_may_sort_attached_input_sections();
1751
1752 // GNU linker sorts section by name with --sort-section=name.
1753 if (strcmp(parameters->options().sort_section(), "name") == 0)
1754 os->set_must_sort_attached_input_sections();
1755
1756 // Check for .stab*str sections, as .stab* sections need to link to
1757 // them.
1758 if (type == elfcpp::SHT_STRTAB
1759 && !this->have_stabstr_section_
1760 && strncmp(name, ".stab", 5) == 0
1761 && strcmp(name + strlen(name) - 3, "str") == 0)
1762 this->have_stabstr_section_ = true;
1763
1764 // During a full incremental link, we add patch space to most
1765 // PROGBITS and NOBITS sections. Flag those that may be
1766 // arbitrarily padded.
1767 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1768 && order != ORDER_INTERP
1769 && order != ORDER_INIT
1770 && order != ORDER_PLT
1771 && order != ORDER_FINI
1772 && order != ORDER_RELRO_LAST
1773 && order != ORDER_NON_RELRO_FIRST
1774 && strcmp(name, ".eh_frame") != 0
1775 && strcmp(name, ".ctors") != 0
1776 && strcmp(name, ".dtors") != 0
1777 && strcmp(name, ".jcr") != 0)
1778 {
1779 os->set_is_patch_space_allowed();
1780
1781 // Certain sections require "holes" to be filled with
1782 // specific fill patterns. These fill patterns may have
1783 // a minimum size, so we must prevent allocations from the
1784 // free list that leave a hole smaller than the minimum.
1785 if (strcmp(name, ".debug_info") == 0)
1786 os->set_free_space_fill(new Output_fill_debug_info(false));
1787 else if (strcmp(name, ".debug_types") == 0)
1788 os->set_free_space_fill(new Output_fill_debug_info(true));
1789 else if (strcmp(name, ".debug_line") == 0)
1790 os->set_free_space_fill(new Output_fill_debug_line());
1791 }
1792
1793 // If we have already attached the sections to segments, then we
1794 // need to attach this one now. This happens for sections created
1795 // directly by the linker.
1796 if (this->sections_are_attached_)
1797 this->attach_section_to_segment(&parameters->target(), os);
1798
1799 return os;
1800 }
1801
1802 // Return the default order in which a section should be placed in an
1803 // output segment. This function captures a lot of the ideas in
1804 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1805 // linker created section is normally set when the section is created;
1806 // this function is used for input sections.
1807
1808 Output_section_order
1809 Layout::default_section_order(Output_section* os, bool is_relro_local)
1810 {
1811 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1812 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1813 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1814 bool is_bss = false;
1815
1816 switch (os->type())
1817 {
1818 default:
1819 case elfcpp::SHT_PROGBITS:
1820 break;
1821 case elfcpp::SHT_NOBITS:
1822 is_bss = true;
1823 break;
1824 case elfcpp::SHT_RELA:
1825 case elfcpp::SHT_REL:
1826 if (!is_write)
1827 return ORDER_DYNAMIC_RELOCS;
1828 break;
1829 case elfcpp::SHT_HASH:
1830 case elfcpp::SHT_DYNAMIC:
1831 case elfcpp::SHT_SHLIB:
1832 case elfcpp::SHT_DYNSYM:
1833 case elfcpp::SHT_GNU_HASH:
1834 case elfcpp::SHT_GNU_verdef:
1835 case elfcpp::SHT_GNU_verneed:
1836 case elfcpp::SHT_GNU_versym:
1837 if (!is_write)
1838 return ORDER_DYNAMIC_LINKER;
1839 break;
1840 case elfcpp::SHT_NOTE:
1841 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1842 }
1843
1844 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1845 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1846
1847 if (!is_bss && !is_write)
1848 {
1849 if (is_execinstr)
1850 {
1851 if (strcmp(os->name(), ".init") == 0)
1852 return ORDER_INIT;
1853 else if (strcmp(os->name(), ".fini") == 0)
1854 return ORDER_FINI;
1855 }
1856 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1857 }
1858
1859 if (os->is_relro())
1860 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1861
1862 if (os->is_small_section())
1863 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1864 if (os->is_large_section())
1865 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1866
1867 return is_bss ? ORDER_BSS : ORDER_DATA;
1868 }
1869
1870 // Attach output sections to segments. This is called after we have
1871 // seen all the input sections.
1872
1873 void
1874 Layout::attach_sections_to_segments(const Target* target)
1875 {
1876 for (Section_list::iterator p = this->section_list_.begin();
1877 p != this->section_list_.end();
1878 ++p)
1879 this->attach_section_to_segment(target, *p);
1880
1881 this->sections_are_attached_ = true;
1882 }
1883
1884 // Attach an output section to a segment.
1885
1886 void
1887 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1888 {
1889 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1890 this->unattached_section_list_.push_back(os);
1891 else
1892 this->attach_allocated_section_to_segment(target, os);
1893 }
1894
1895 // Attach an allocated output section to a segment.
1896
1897 void
1898 Layout::attach_allocated_section_to_segment(const Target* target,
1899 Output_section* os)
1900 {
1901 elfcpp::Elf_Xword flags = os->flags();
1902 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1903
1904 if (parameters->options().relocatable())
1905 return;
1906
1907 // If we have a SECTIONS clause, we can't handle the attachment to
1908 // segments until after we've seen all the sections.
1909 if (this->script_options_->saw_sections_clause())
1910 return;
1911
1912 gold_assert(!this->script_options_->saw_phdrs_clause());
1913
1914 // This output section goes into a PT_LOAD segment.
1915
1916 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1917
1918 // If this output section's segment has extra flags that need to be set,
1919 // coming from a linker plugin, do that.
1920 seg_flags |= os->extra_segment_flags();
1921
1922 // Check for --section-start.
1923 uint64_t addr;
1924 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1925
1926 // In general the only thing we really care about for PT_LOAD
1927 // segments is whether or not they are writable or executable,
1928 // so that is how we search for them.
1929 // Large data sections also go into their own PT_LOAD segment.
1930 // People who need segments sorted on some other basis will
1931 // have to use a linker script.
1932
1933 Segment_list::const_iterator p;
1934 if (!os->is_unique_segment())
1935 {
1936 for (p = this->segment_list_.begin();
1937 p != this->segment_list_.end();
1938 ++p)
1939 {
1940 if ((*p)->type() != elfcpp::PT_LOAD)
1941 continue;
1942 if ((*p)->is_unique_segment())
1943 continue;
1944 if (!parameters->options().omagic()
1945 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1946 continue;
1947 if ((target->isolate_execinstr() || parameters->options().rosegment())
1948 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1949 continue;
1950 // If -Tbss was specified, we need to separate the data and BSS
1951 // segments.
1952 if (parameters->options().user_set_Tbss())
1953 {
1954 if ((os->type() == elfcpp::SHT_NOBITS)
1955 == (*p)->has_any_data_sections())
1956 continue;
1957 }
1958 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1959 continue;
1960
1961 if (is_address_set)
1962 {
1963 if ((*p)->are_addresses_set())
1964 continue;
1965
1966 (*p)->add_initial_output_data(os);
1967 (*p)->update_flags_for_output_section(seg_flags);
1968 (*p)->set_addresses(addr, addr);
1969 break;
1970 }
1971
1972 (*p)->add_output_section_to_load(this, os, seg_flags);
1973 break;
1974 }
1975 }
1976
1977 if (p == this->segment_list_.end()
1978 || os->is_unique_segment())
1979 {
1980 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1981 seg_flags);
1982 if (os->is_large_data_section())
1983 oseg->set_is_large_data_segment();
1984 oseg->add_output_section_to_load(this, os, seg_flags);
1985 if (is_address_set)
1986 oseg->set_addresses(addr, addr);
1987 // Check if segment should be marked unique. For segments marked
1988 // unique by linker plugins, set the new alignment if specified.
1989 if (os->is_unique_segment())
1990 {
1991 oseg->set_is_unique_segment();
1992 if (os->segment_alignment() != 0)
1993 oseg->set_minimum_p_align(os->segment_alignment());
1994 }
1995 }
1996
1997 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1998 // segment.
1999 if (os->type() == elfcpp::SHT_NOTE)
2000 {
2001 // See if we already have an equivalent PT_NOTE segment.
2002 for (p = this->segment_list_.begin();
2003 p != segment_list_.end();
2004 ++p)
2005 {
2006 if ((*p)->type() == elfcpp::PT_NOTE
2007 && (((*p)->flags() & elfcpp::PF_W)
2008 == (seg_flags & elfcpp::PF_W)))
2009 {
2010 (*p)->add_output_section_to_nonload(os, seg_flags);
2011 break;
2012 }
2013 }
2014
2015 if (p == this->segment_list_.end())
2016 {
2017 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2018 seg_flags);
2019 oseg->add_output_section_to_nonload(os, seg_flags);
2020 }
2021 }
2022
2023 // If we see a loadable SHF_TLS section, we create a PT_TLS
2024 // segment. There can only be one such segment.
2025 if ((flags & elfcpp::SHF_TLS) != 0)
2026 {
2027 if (this->tls_segment_ == NULL)
2028 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2029 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2030 }
2031
2032 // If -z relro is in effect, and we see a relro section, we create a
2033 // PT_GNU_RELRO segment. There can only be one such segment.
2034 if (os->is_relro() && parameters->options().relro())
2035 {
2036 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2037 if (this->relro_segment_ == NULL)
2038 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2039 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2040 }
2041
2042 // If we see a section named .interp, put it into a PT_INTERP
2043 // segment. This seems broken to me, but this is what GNU ld does,
2044 // and glibc expects it.
2045 if (strcmp(os->name(), ".interp") == 0
2046 && !this->script_options_->saw_phdrs_clause())
2047 {
2048 if (this->interp_segment_ == NULL)
2049 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2050 else
2051 gold_warning(_("multiple '.interp' sections in input files "
2052 "may cause confusing PT_INTERP segment"));
2053 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2054 }
2055 }
2056
2057 // Make an output section for a script.
2058
2059 Output_section*
2060 Layout::make_output_section_for_script(
2061 const char* name,
2062 Script_sections::Section_type section_type)
2063 {
2064 name = this->namepool_.add(name, false, NULL);
2065 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2066 if (section_type == Script_sections::ST_NOLOAD)
2067 sh_flags = 0;
2068 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2069 sh_flags, ORDER_INVALID,
2070 false);
2071 os->set_found_in_sections_clause();
2072 if (section_type == Script_sections::ST_NOLOAD)
2073 os->set_is_noload();
2074 return os;
2075 }
2076
2077 // Return the number of segments we expect to see.
2078
2079 size_t
2080 Layout::expected_segment_count() const
2081 {
2082 size_t ret = this->segment_list_.size();
2083
2084 // If we didn't see a SECTIONS clause in a linker script, we should
2085 // already have the complete list of segments. Otherwise we ask the
2086 // SECTIONS clause how many segments it expects, and add in the ones
2087 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2088
2089 if (!this->script_options_->saw_sections_clause())
2090 return ret;
2091 else
2092 {
2093 const Script_sections* ss = this->script_options_->script_sections();
2094 return ret + ss->expected_segment_count(this);
2095 }
2096 }
2097
2098 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2099 // is whether we saw a .note.GNU-stack section in the object file.
2100 // GNU_STACK_FLAGS is the section flags. The flags give the
2101 // protection required for stack memory. We record this in an
2102 // executable as a PT_GNU_STACK segment. If an object file does not
2103 // have a .note.GNU-stack segment, we must assume that it is an old
2104 // object. On some targets that will force an executable stack.
2105
2106 void
2107 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2108 const Object* obj)
2109 {
2110 if (!seen_gnu_stack)
2111 {
2112 this->input_without_gnu_stack_note_ = true;
2113 if (parameters->options().warn_execstack()
2114 && parameters->target().is_default_stack_executable())
2115 gold_warning(_("%s: missing .note.GNU-stack section"
2116 " implies executable stack"),
2117 obj->name().c_str());
2118 }
2119 else
2120 {
2121 this->input_with_gnu_stack_note_ = true;
2122 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2123 {
2124 this->input_requires_executable_stack_ = true;
2125 if (parameters->options().warn_execstack())
2126 gold_warning(_("%s: requires executable stack"),
2127 obj->name().c_str());
2128 }
2129 }
2130 }
2131
2132 // Create automatic note sections.
2133
2134 void
2135 Layout::create_notes()
2136 {
2137 this->create_gold_note();
2138 this->create_executable_stack_info();
2139 this->create_build_id();
2140 }
2141
2142 // Create the dynamic sections which are needed before we read the
2143 // relocs.
2144
2145 void
2146 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2147 {
2148 if (parameters->doing_static_link())
2149 return;
2150
2151 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2152 elfcpp::SHT_DYNAMIC,
2153 (elfcpp::SHF_ALLOC
2154 | elfcpp::SHF_WRITE),
2155 false, ORDER_RELRO,
2156 true);
2157
2158 // A linker script may discard .dynamic, so check for NULL.
2159 if (this->dynamic_section_ != NULL)
2160 {
2161 this->dynamic_symbol_ =
2162 symtab->define_in_output_data("_DYNAMIC", NULL,
2163 Symbol_table::PREDEFINED,
2164 this->dynamic_section_, 0, 0,
2165 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2166 elfcpp::STV_HIDDEN, 0, false, false);
2167
2168 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2169
2170 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2171 }
2172 }
2173
2174 // For each output section whose name can be represented as C symbol,
2175 // define __start and __stop symbols for the section. This is a GNU
2176 // extension.
2177
2178 void
2179 Layout::define_section_symbols(Symbol_table* symtab)
2180 {
2181 for (Section_list::const_iterator p = this->section_list_.begin();
2182 p != this->section_list_.end();
2183 ++p)
2184 {
2185 const char* const name = (*p)->name();
2186 if (is_cident(name))
2187 {
2188 const std::string name_string(name);
2189 const std::string start_name(cident_section_start_prefix
2190 + name_string);
2191 const std::string stop_name(cident_section_stop_prefix
2192 + name_string);
2193
2194 symtab->define_in_output_data(start_name.c_str(),
2195 NULL, // version
2196 Symbol_table::PREDEFINED,
2197 *p,
2198 0, // value
2199 0, // symsize
2200 elfcpp::STT_NOTYPE,
2201 elfcpp::STB_GLOBAL,
2202 elfcpp::STV_DEFAULT,
2203 0, // nonvis
2204 false, // offset_is_from_end
2205 true); // only_if_ref
2206
2207 symtab->define_in_output_data(stop_name.c_str(),
2208 NULL, // version
2209 Symbol_table::PREDEFINED,
2210 *p,
2211 0, // value
2212 0, // symsize
2213 elfcpp::STT_NOTYPE,
2214 elfcpp::STB_GLOBAL,
2215 elfcpp::STV_DEFAULT,
2216 0, // nonvis
2217 true, // offset_is_from_end
2218 true); // only_if_ref
2219 }
2220 }
2221 }
2222
2223 // Define symbols for group signatures.
2224
2225 void
2226 Layout::define_group_signatures(Symbol_table* symtab)
2227 {
2228 for (Group_signatures::iterator p = this->group_signatures_.begin();
2229 p != this->group_signatures_.end();
2230 ++p)
2231 {
2232 Symbol* sym = symtab->lookup(p->signature, NULL);
2233 if (sym != NULL)
2234 p->section->set_info_symndx(sym);
2235 else
2236 {
2237 // Force the name of the group section to the group
2238 // signature, and use the group's section symbol as the
2239 // signature symbol.
2240 if (strcmp(p->section->name(), p->signature) != 0)
2241 {
2242 const char* name = this->namepool_.add(p->signature,
2243 true, NULL);
2244 p->section->set_name(name);
2245 }
2246 p->section->set_needs_symtab_index();
2247 p->section->set_info_section_symndx(p->section);
2248 }
2249 }
2250
2251 this->group_signatures_.clear();
2252 }
2253
2254 // Find the first read-only PT_LOAD segment, creating one if
2255 // necessary.
2256
2257 Output_segment*
2258 Layout::find_first_load_seg(const Target* target)
2259 {
2260 Output_segment* best = NULL;
2261 for (Segment_list::const_iterator p = this->segment_list_.begin();
2262 p != this->segment_list_.end();
2263 ++p)
2264 {
2265 if ((*p)->type() == elfcpp::PT_LOAD
2266 && ((*p)->flags() & elfcpp::PF_R) != 0
2267 && (parameters->options().omagic()
2268 || ((*p)->flags() & elfcpp::PF_W) == 0)
2269 && (!target->isolate_execinstr()
2270 || ((*p)->flags() & elfcpp::PF_X) == 0))
2271 {
2272 if (best == NULL || this->segment_precedes(*p, best))
2273 best = *p;
2274 }
2275 }
2276 if (best != NULL)
2277 return best;
2278
2279 gold_assert(!this->script_options_->saw_phdrs_clause());
2280
2281 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2282 elfcpp::PF_R);
2283 return load_seg;
2284 }
2285
2286 // Save states of all current output segments. Store saved states
2287 // in SEGMENT_STATES.
2288
2289 void
2290 Layout::save_segments(Segment_states* segment_states)
2291 {
2292 for (Segment_list::const_iterator p = this->segment_list_.begin();
2293 p != this->segment_list_.end();
2294 ++p)
2295 {
2296 Output_segment* segment = *p;
2297 // Shallow copy.
2298 Output_segment* copy = new Output_segment(*segment);
2299 (*segment_states)[segment] = copy;
2300 }
2301 }
2302
2303 // Restore states of output segments and delete any segment not found in
2304 // SEGMENT_STATES.
2305
2306 void
2307 Layout::restore_segments(const Segment_states* segment_states)
2308 {
2309 // Go through the segment list and remove any segment added in the
2310 // relaxation loop.
2311 this->tls_segment_ = NULL;
2312 this->relro_segment_ = NULL;
2313 Segment_list::iterator list_iter = this->segment_list_.begin();
2314 while (list_iter != this->segment_list_.end())
2315 {
2316 Output_segment* segment = *list_iter;
2317 Segment_states::const_iterator states_iter =
2318 segment_states->find(segment);
2319 if (states_iter != segment_states->end())
2320 {
2321 const Output_segment* copy = states_iter->second;
2322 // Shallow copy to restore states.
2323 *segment = *copy;
2324
2325 // Also fix up TLS and RELRO segment pointers as appropriate.
2326 if (segment->type() == elfcpp::PT_TLS)
2327 this->tls_segment_ = segment;
2328 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2329 this->relro_segment_ = segment;
2330
2331 ++list_iter;
2332 }
2333 else
2334 {
2335 list_iter = this->segment_list_.erase(list_iter);
2336 // This is a segment created during section layout. It should be
2337 // safe to remove it since we should have removed all pointers to it.
2338 delete segment;
2339 }
2340 }
2341 }
2342
2343 // Clean up after relaxation so that sections can be laid out again.
2344
2345 void
2346 Layout::clean_up_after_relaxation()
2347 {
2348 // Restore the segments to point state just prior to the relaxation loop.
2349 Script_sections* script_section = this->script_options_->script_sections();
2350 script_section->release_segments();
2351 this->restore_segments(this->segment_states_);
2352
2353 // Reset section addresses and file offsets
2354 for (Section_list::iterator p = this->section_list_.begin();
2355 p != this->section_list_.end();
2356 ++p)
2357 {
2358 (*p)->restore_states();
2359
2360 // If an input section changes size because of relaxation,
2361 // we need to adjust the section offsets of all input sections.
2362 // after such a section.
2363 if ((*p)->section_offsets_need_adjustment())
2364 (*p)->adjust_section_offsets();
2365
2366 (*p)->reset_address_and_file_offset();
2367 }
2368
2369 // Reset special output object address and file offsets.
2370 for (Data_list::iterator p = this->special_output_list_.begin();
2371 p != this->special_output_list_.end();
2372 ++p)
2373 (*p)->reset_address_and_file_offset();
2374
2375 // A linker script may have created some output section data objects.
2376 // They are useless now.
2377 for (Output_section_data_list::const_iterator p =
2378 this->script_output_section_data_list_.begin();
2379 p != this->script_output_section_data_list_.end();
2380 ++p)
2381 delete *p;
2382 this->script_output_section_data_list_.clear();
2383
2384 // Special-case fill output objects are recreated each time through
2385 // the relaxation loop.
2386 this->reset_relax_output();
2387 }
2388
2389 void
2390 Layout::reset_relax_output()
2391 {
2392 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2393 p != this->relax_output_list_.end();
2394 ++p)
2395 delete *p;
2396 this->relax_output_list_.clear();
2397 }
2398
2399 // Prepare for relaxation.
2400
2401 void
2402 Layout::prepare_for_relaxation()
2403 {
2404 // Create an relaxation debug check if in debugging mode.
2405 if (is_debugging_enabled(DEBUG_RELAXATION))
2406 this->relaxation_debug_check_ = new Relaxation_debug_check();
2407
2408 // Save segment states.
2409 this->segment_states_ = new Segment_states();
2410 this->save_segments(this->segment_states_);
2411
2412 for(Section_list::const_iterator p = this->section_list_.begin();
2413 p != this->section_list_.end();
2414 ++p)
2415 (*p)->save_states();
2416
2417 if (is_debugging_enabled(DEBUG_RELAXATION))
2418 this->relaxation_debug_check_->check_output_data_for_reset_values(
2419 this->section_list_, this->special_output_list_,
2420 this->relax_output_list_);
2421
2422 // Also enable recording of output section data from scripts.
2423 this->record_output_section_data_from_script_ = true;
2424 }
2425
2426 // If the user set the address of the text segment, that may not be
2427 // compatible with putting the segment headers and file headers into
2428 // that segment. For isolate_execinstr() targets, it's the rodata
2429 // segment rather than text where we might put the headers.
2430 static inline bool
2431 load_seg_unusable_for_headers(const Target* target)
2432 {
2433 const General_options& options = parameters->options();
2434 if (target->isolate_execinstr())
2435 return (options.user_set_Trodata_segment()
2436 && options.Trodata_segment() % target->abi_pagesize() != 0);
2437 else
2438 return (options.user_set_Ttext()
2439 && options.Ttext() % target->abi_pagesize() != 0);
2440 }
2441
2442 // Relaxation loop body: If target has no relaxation, this runs only once
2443 // Otherwise, the target relaxation hook is called at the end of
2444 // each iteration. If the hook returns true, it means re-layout of
2445 // section is required.
2446 //
2447 // The number of segments created by a linking script without a PHDRS
2448 // clause may be affected by section sizes and alignments. There is
2449 // a remote chance that relaxation causes different number of PT_LOAD
2450 // segments are created and sections are attached to different segments.
2451 // Therefore, we always throw away all segments created during section
2452 // layout. In order to be able to restart the section layout, we keep
2453 // a copy of the segment list right before the relaxation loop and use
2454 // that to restore the segments.
2455 //
2456 // PASS is the current relaxation pass number.
2457 // SYMTAB is a symbol table.
2458 // PLOAD_SEG is the address of a pointer for the load segment.
2459 // PHDR_SEG is a pointer to the PHDR segment.
2460 // SEGMENT_HEADERS points to the output segment header.
2461 // FILE_HEADER points to the output file header.
2462 // PSHNDX is the address to store the output section index.
2463
2464 off_t inline
2465 Layout::relaxation_loop_body(
2466 int pass,
2467 Target* target,
2468 Symbol_table* symtab,
2469 Output_segment** pload_seg,
2470 Output_segment* phdr_seg,
2471 Output_segment_headers* segment_headers,
2472 Output_file_header* file_header,
2473 unsigned int* pshndx)
2474 {
2475 // If this is not the first iteration, we need to clean up after
2476 // relaxation so that we can lay out the sections again.
2477 if (pass != 0)
2478 this->clean_up_after_relaxation();
2479
2480 // If there is a SECTIONS clause, put all the input sections into
2481 // the required order.
2482 Output_segment* load_seg;
2483 if (this->script_options_->saw_sections_clause())
2484 load_seg = this->set_section_addresses_from_script(symtab);
2485 else if (parameters->options().relocatable())
2486 load_seg = NULL;
2487 else
2488 load_seg = this->find_first_load_seg(target);
2489
2490 if (parameters->options().oformat_enum()
2491 != General_options::OBJECT_FORMAT_ELF)
2492 load_seg = NULL;
2493
2494 if (load_seg_unusable_for_headers(target))
2495 {
2496 load_seg = NULL;
2497 phdr_seg = NULL;
2498 }
2499
2500 gold_assert(phdr_seg == NULL
2501 || load_seg != NULL
2502 || this->script_options_->saw_sections_clause());
2503
2504 // If the address of the load segment we found has been set by
2505 // --section-start rather than by a script, then adjust the VMA and
2506 // LMA downward if possible to include the file and section headers.
2507 uint64_t header_gap = 0;
2508 if (load_seg != NULL
2509 && load_seg->are_addresses_set()
2510 && !this->script_options_->saw_sections_clause()
2511 && !parameters->options().relocatable())
2512 {
2513 file_header->finalize_data_size();
2514 segment_headers->finalize_data_size();
2515 size_t sizeof_headers = (file_header->data_size()
2516 + segment_headers->data_size());
2517 const uint64_t abi_pagesize = target->abi_pagesize();
2518 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2519 hdr_paddr &= ~(abi_pagesize - 1);
2520 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2521 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2522 load_seg = NULL;
2523 else
2524 {
2525 load_seg->set_addresses(load_seg->vaddr() - subtract,
2526 load_seg->paddr() - subtract);
2527 header_gap = subtract - sizeof_headers;
2528 }
2529 }
2530
2531 // Lay out the segment headers.
2532 if (!parameters->options().relocatable())
2533 {
2534 gold_assert(segment_headers != NULL);
2535 if (header_gap != 0 && load_seg != NULL)
2536 {
2537 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2538 load_seg->add_initial_output_data(z);
2539 }
2540 if (load_seg != NULL)
2541 load_seg->add_initial_output_data(segment_headers);
2542 if (phdr_seg != NULL)
2543 phdr_seg->add_initial_output_data(segment_headers);
2544 }
2545
2546 // Lay out the file header.
2547 if (load_seg != NULL)
2548 load_seg->add_initial_output_data(file_header);
2549
2550 if (this->script_options_->saw_phdrs_clause()
2551 && !parameters->options().relocatable())
2552 {
2553 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2554 // clause in a linker script.
2555 Script_sections* ss = this->script_options_->script_sections();
2556 ss->put_headers_in_phdrs(file_header, segment_headers);
2557 }
2558
2559 // We set the output section indexes in set_segment_offsets and
2560 // set_section_indexes.
2561 *pshndx = 1;
2562
2563 // Set the file offsets of all the segments, and all the sections
2564 // they contain.
2565 off_t off;
2566 if (!parameters->options().relocatable())
2567 off = this->set_segment_offsets(target, load_seg, pshndx);
2568 else
2569 off = this->set_relocatable_section_offsets(file_header, pshndx);
2570
2571 // Verify that the dummy relaxation does not change anything.
2572 if (is_debugging_enabled(DEBUG_RELAXATION))
2573 {
2574 if (pass == 0)
2575 this->relaxation_debug_check_->read_sections(this->section_list_);
2576 else
2577 this->relaxation_debug_check_->verify_sections(this->section_list_);
2578 }
2579
2580 *pload_seg = load_seg;
2581 return off;
2582 }
2583
2584 // Search the list of patterns and find the postion of the given section
2585 // name in the output section. If the section name matches a glob
2586 // pattern and a non-glob name, then the non-glob position takes
2587 // precedence. Return 0 if no match is found.
2588
2589 unsigned int
2590 Layout::find_section_order_index(const std::string& section_name)
2591 {
2592 Unordered_map<std::string, unsigned int>::iterator map_it;
2593 map_it = this->input_section_position_.find(section_name);
2594 if (map_it != this->input_section_position_.end())
2595 return map_it->second;
2596
2597 // Absolute match failed. Linear search the glob patterns.
2598 std::vector<std::string>::iterator it;
2599 for (it = this->input_section_glob_.begin();
2600 it != this->input_section_glob_.end();
2601 ++it)
2602 {
2603 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2604 {
2605 map_it = this->input_section_position_.find(*it);
2606 gold_assert(map_it != this->input_section_position_.end());
2607 return map_it->second;
2608 }
2609 }
2610 return 0;
2611 }
2612
2613 // Read the sequence of input sections from the file specified with
2614 // option --section-ordering-file.
2615
2616 void
2617 Layout::read_layout_from_file()
2618 {
2619 const char* filename = parameters->options().section_ordering_file();
2620 std::ifstream in;
2621 std::string line;
2622
2623 in.open(filename);
2624 if (!in)
2625 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2626 filename, strerror(errno));
2627
2628 std::getline(in, line); // this chops off the trailing \n, if any
2629 unsigned int position = 1;
2630 this->set_section_ordering_specified();
2631
2632 while (in)
2633 {
2634 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2635 line.resize(line.length() - 1);
2636 // Ignore comments, beginning with '#'
2637 if (line[0] == '#')
2638 {
2639 std::getline(in, line);
2640 continue;
2641 }
2642 this->input_section_position_[line] = position;
2643 // Store all glob patterns in a vector.
2644 if (is_wildcard_string(line.c_str()))
2645 this->input_section_glob_.push_back(line);
2646 position++;
2647 std::getline(in, line);
2648 }
2649 }
2650
2651 // Finalize the layout. When this is called, we have created all the
2652 // output sections and all the output segments which are based on
2653 // input sections. We have several things to do, and we have to do
2654 // them in the right order, so that we get the right results correctly
2655 // and efficiently.
2656
2657 // 1) Finalize the list of output segments and create the segment
2658 // table header.
2659
2660 // 2) Finalize the dynamic symbol table and associated sections.
2661
2662 // 3) Determine the final file offset of all the output segments.
2663
2664 // 4) Determine the final file offset of all the SHF_ALLOC output
2665 // sections.
2666
2667 // 5) Create the symbol table sections and the section name table
2668 // section.
2669
2670 // 6) Finalize the symbol table: set symbol values to their final
2671 // value and make a final determination of which symbols are going
2672 // into the output symbol table.
2673
2674 // 7) Create the section table header.
2675
2676 // 8) Determine the final file offset of all the output sections which
2677 // are not SHF_ALLOC, including the section table header.
2678
2679 // 9) Finalize the ELF file header.
2680
2681 // This function returns the size of the output file.
2682
2683 off_t
2684 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2685 Target* target, const Task* task)
2686 {
2687 target->finalize_sections(this, input_objects, symtab);
2688
2689 this->count_local_symbols(task, input_objects);
2690
2691 this->link_stabs_sections();
2692
2693 Output_segment* phdr_seg = NULL;
2694 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2695 {
2696 // There was a dynamic object in the link. We need to create
2697 // some information for the dynamic linker.
2698
2699 // Create the PT_PHDR segment which will hold the program
2700 // headers.
2701 if (!this->script_options_->saw_phdrs_clause())
2702 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2703
2704 // Create the dynamic symbol table, including the hash table.
2705 Output_section* dynstr;
2706 std::vector<Symbol*> dynamic_symbols;
2707 unsigned int local_dynamic_count;
2708 Versions versions(*this->script_options()->version_script_info(),
2709 &this->dynpool_);
2710 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2711 &local_dynamic_count, &dynamic_symbols,
2712 &versions);
2713
2714 // Create the .interp section to hold the name of the
2715 // interpreter, and put it in a PT_INTERP segment. Don't do it
2716 // if we saw a .interp section in an input file.
2717 if ((!parameters->options().shared()
2718 || parameters->options().dynamic_linker() != NULL)
2719 && this->interp_segment_ == NULL)
2720 this->create_interp(target);
2721
2722 // Finish the .dynamic section to hold the dynamic data, and put
2723 // it in a PT_DYNAMIC segment.
2724 this->finish_dynamic_section(input_objects, symtab);
2725
2726 // We should have added everything we need to the dynamic string
2727 // table.
2728 this->dynpool_.set_string_offsets();
2729
2730 // Create the version sections. We can't do this until the
2731 // dynamic string table is complete.
2732 this->create_version_sections(&versions, symtab, local_dynamic_count,
2733 dynamic_symbols, dynstr);
2734
2735 // Set the size of the _DYNAMIC symbol. We can't do this until
2736 // after we call create_version_sections.
2737 this->set_dynamic_symbol_size(symtab);
2738 }
2739
2740 // Create segment headers.
2741 Output_segment_headers* segment_headers =
2742 (parameters->options().relocatable()
2743 ? NULL
2744 : new Output_segment_headers(this->segment_list_));
2745
2746 // Lay out the file header.
2747 Output_file_header* file_header = new Output_file_header(target, symtab,
2748 segment_headers);
2749
2750 this->special_output_list_.push_back(file_header);
2751 if (segment_headers != NULL)
2752 this->special_output_list_.push_back(segment_headers);
2753
2754 // Find approriate places for orphan output sections if we are using
2755 // a linker script.
2756 if (this->script_options_->saw_sections_clause())
2757 this->place_orphan_sections_in_script();
2758
2759 Output_segment* load_seg;
2760 off_t off;
2761 unsigned int shndx;
2762 int pass = 0;
2763
2764 // Take a snapshot of the section layout as needed.
2765 if (target->may_relax())
2766 this->prepare_for_relaxation();
2767
2768 // Run the relaxation loop to lay out sections.
2769 do
2770 {
2771 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2772 phdr_seg, segment_headers, file_header,
2773 &shndx);
2774 pass++;
2775 }
2776 while (target->may_relax()
2777 && target->relax(pass, input_objects, symtab, this, task));
2778
2779 // If there is a load segment that contains the file and program headers,
2780 // provide a symbol __ehdr_start pointing there.
2781 // A program can use this to examine itself robustly.
2782 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2783 if (ehdr_start != NULL && ehdr_start->is_predefined())
2784 {
2785 if (load_seg != NULL)
2786 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2787 else
2788 ehdr_start->set_undefined();
2789 }
2790
2791 // Set the file offsets of all the non-data sections we've seen so
2792 // far which don't have to wait for the input sections. We need
2793 // this in order to finalize local symbols in non-allocated
2794 // sections.
2795 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2796
2797 // Set the section indexes of all unallocated sections seen so far,
2798 // in case any of them are somehow referenced by a symbol.
2799 shndx = this->set_section_indexes(shndx);
2800
2801 // Create the symbol table sections.
2802 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2803 if (!parameters->doing_static_link())
2804 this->assign_local_dynsym_offsets(input_objects);
2805
2806 // Process any symbol assignments from a linker script. This must
2807 // be called after the symbol table has been finalized.
2808 this->script_options_->finalize_symbols(symtab, this);
2809
2810 // Create the incremental inputs sections.
2811 if (this->incremental_inputs_)
2812 {
2813 this->incremental_inputs_->finalize();
2814 this->create_incremental_info_sections(symtab);
2815 }
2816
2817 // Create the .shstrtab section.
2818 Output_section* shstrtab_section = this->create_shstrtab();
2819
2820 // Set the file offsets of the rest of the non-data sections which
2821 // don't have to wait for the input sections.
2822 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2823
2824 // Now that all sections have been created, set the section indexes
2825 // for any sections which haven't been done yet.
2826 shndx = this->set_section_indexes(shndx);
2827
2828 // Create the section table header.
2829 this->create_shdrs(shstrtab_section, &off);
2830
2831 // If there are no sections which require postprocessing, we can
2832 // handle the section names now, and avoid a resize later.
2833 if (!this->any_postprocessing_sections_)
2834 {
2835 off = this->set_section_offsets(off,
2836 POSTPROCESSING_SECTIONS_PASS);
2837 off =
2838 this->set_section_offsets(off,
2839 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2840 }
2841
2842 file_header->set_section_info(this->section_headers_, shstrtab_section);
2843
2844 // Now we know exactly where everything goes in the output file
2845 // (except for non-allocated sections which require postprocessing).
2846 Output_data::layout_complete();
2847
2848 this->output_file_size_ = off;
2849
2850 return off;
2851 }
2852
2853 // Create a note header following the format defined in the ELF ABI.
2854 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2855 // of the section to create, DESCSZ is the size of the descriptor.
2856 // ALLOCATE is true if the section should be allocated in memory.
2857 // This returns the new note section. It sets *TRAILING_PADDING to
2858 // the number of trailing zero bytes required.
2859
2860 Output_section*
2861 Layout::create_note(const char* name, int note_type,
2862 const char* section_name, size_t descsz,
2863 bool allocate, size_t* trailing_padding)
2864 {
2865 // Authorities all agree that the values in a .note field should
2866 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2867 // they differ on what the alignment is for 64-bit binaries.
2868 // The GABI says unambiguously they take 8-byte alignment:
2869 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2870 // Other documentation says alignment should always be 4 bytes:
2871 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2872 // GNU ld and GNU readelf both support the latter (at least as of
2873 // version 2.16.91), and glibc always generates the latter for
2874 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2875 // here.
2876 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2877 const int size = parameters->target().get_size();
2878 #else
2879 const int size = 32;
2880 #endif
2881
2882 // The contents of the .note section.
2883 size_t namesz = strlen(name) + 1;
2884 size_t aligned_namesz = align_address(namesz, size / 8);
2885 size_t aligned_descsz = align_address(descsz, size / 8);
2886
2887 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2888
2889 unsigned char* buffer = new unsigned char[notehdrsz];
2890 memset(buffer, 0, notehdrsz);
2891
2892 bool is_big_endian = parameters->target().is_big_endian();
2893
2894 if (size == 32)
2895 {
2896 if (!is_big_endian)
2897 {
2898 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2899 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2900 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2901 }
2902 else
2903 {
2904 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2905 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2906 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2907 }
2908 }
2909 else if (size == 64)
2910 {
2911 if (!is_big_endian)
2912 {
2913 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2914 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2915 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2916 }
2917 else
2918 {
2919 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2920 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2921 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2922 }
2923 }
2924 else
2925 gold_unreachable();
2926
2927 memcpy(buffer + 3 * (size / 8), name, namesz);
2928
2929 elfcpp::Elf_Xword flags = 0;
2930 Output_section_order order = ORDER_INVALID;
2931 if (allocate)
2932 {
2933 flags = elfcpp::SHF_ALLOC;
2934 order = ORDER_RO_NOTE;
2935 }
2936 Output_section* os = this->choose_output_section(NULL, section_name,
2937 elfcpp::SHT_NOTE,
2938 flags, false, order, false);
2939 if (os == NULL)
2940 return NULL;
2941
2942 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2943 size / 8,
2944 "** note header");
2945 os->add_output_section_data(posd);
2946
2947 *trailing_padding = aligned_descsz - descsz;
2948
2949 return os;
2950 }
2951
2952 // For an executable or shared library, create a note to record the
2953 // version of gold used to create the binary.
2954
2955 void
2956 Layout::create_gold_note()
2957 {
2958 if (parameters->options().relocatable()
2959 || parameters->incremental_update())
2960 return;
2961
2962 std::string desc = std::string("gold ") + gold::get_version_string();
2963
2964 size_t trailing_padding;
2965 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2966 ".note.gnu.gold-version", desc.size(),
2967 false, &trailing_padding);
2968 if (os == NULL)
2969 return;
2970
2971 Output_section_data* posd = new Output_data_const(desc, 4);
2972 os->add_output_section_data(posd);
2973
2974 if (trailing_padding > 0)
2975 {
2976 posd = new Output_data_zero_fill(trailing_padding, 0);
2977 os->add_output_section_data(posd);
2978 }
2979 }
2980
2981 // Record whether the stack should be executable. This can be set
2982 // from the command line using the -z execstack or -z noexecstack
2983 // options. Otherwise, if any input file has a .note.GNU-stack
2984 // section with the SHF_EXECINSTR flag set, the stack should be
2985 // executable. Otherwise, if at least one input file a
2986 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2987 // section, we use the target default for whether the stack should be
2988 // executable. Otherwise, we don't generate a stack note. When
2989 // generating a object file, we create a .note.GNU-stack section with
2990 // the appropriate marking. When generating an executable or shared
2991 // library, we create a PT_GNU_STACK segment.
2992
2993 void
2994 Layout::create_executable_stack_info()
2995 {
2996 bool is_stack_executable;
2997 if (parameters->options().is_execstack_set())
2998 {
2999 is_stack_executable = parameters->options().is_stack_executable();
3000 if (!is_stack_executable
3001 && this->input_requires_executable_stack_
3002 && parameters->options().warn_execstack())
3003 gold_warning(_("one or more inputs require executable stack, "
3004 "but -z noexecstack was given"));
3005 }
3006 else if (!this->input_with_gnu_stack_note_)
3007 return;
3008 else
3009 {
3010 if (this->input_requires_executable_stack_)
3011 is_stack_executable = true;
3012 else if (this->input_without_gnu_stack_note_)
3013 is_stack_executable =
3014 parameters->target().is_default_stack_executable();
3015 else
3016 is_stack_executable = false;
3017 }
3018
3019 if (parameters->options().relocatable())
3020 {
3021 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3022 elfcpp::Elf_Xword flags = 0;
3023 if (is_stack_executable)
3024 flags |= elfcpp::SHF_EXECINSTR;
3025 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3026 ORDER_INVALID, false);
3027 }
3028 else
3029 {
3030 if (this->script_options_->saw_phdrs_clause())
3031 return;
3032 int flags = elfcpp::PF_R | elfcpp::PF_W;
3033 if (is_stack_executable)
3034 flags |= elfcpp::PF_X;
3035 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3036 }
3037 }
3038
3039 // If --build-id was used, set up the build ID note.
3040
3041 void
3042 Layout::create_build_id()
3043 {
3044 if (!parameters->options().user_set_build_id())
3045 return;
3046
3047 const char* style = parameters->options().build_id();
3048 if (strcmp(style, "none") == 0)
3049 return;
3050
3051 // Set DESCSZ to the size of the note descriptor. When possible,
3052 // set DESC to the note descriptor contents.
3053 size_t descsz;
3054 std::string desc;
3055 if (strcmp(style, "md5") == 0)
3056 descsz = 128 / 8;
3057 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3058 descsz = 160 / 8;
3059 else if (strcmp(style, "uuid") == 0)
3060 {
3061 const size_t uuidsz = 128 / 8;
3062
3063 char buffer[uuidsz];
3064 memset(buffer, 0, uuidsz);
3065
3066 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3067 if (descriptor < 0)
3068 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3069 strerror(errno));
3070 else
3071 {
3072 ssize_t got = ::read(descriptor, buffer, uuidsz);
3073 release_descriptor(descriptor, true);
3074 if (got < 0)
3075 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3076 else if (static_cast<size_t>(got) != uuidsz)
3077 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3078 uuidsz, got);
3079 }
3080
3081 desc.assign(buffer, uuidsz);
3082 descsz = uuidsz;
3083 }
3084 else if (strncmp(style, "0x", 2) == 0)
3085 {
3086 hex_init();
3087 const char* p = style + 2;
3088 while (*p != '\0')
3089 {
3090 if (hex_p(p[0]) && hex_p(p[1]))
3091 {
3092 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3093 desc += c;
3094 p += 2;
3095 }
3096 else if (*p == '-' || *p == ':')
3097 ++p;
3098 else
3099 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3100 style);
3101 }
3102 descsz = desc.size();
3103 }
3104 else
3105 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3106
3107 // Create the note.
3108 size_t trailing_padding;
3109 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3110 ".note.gnu.build-id", descsz, true,
3111 &trailing_padding);
3112 if (os == NULL)
3113 return;
3114
3115 if (!desc.empty())
3116 {
3117 // We know the value already, so we fill it in now.
3118 gold_assert(desc.size() == descsz);
3119
3120 Output_section_data* posd = new Output_data_const(desc, 4);
3121 os->add_output_section_data(posd);
3122
3123 if (trailing_padding != 0)
3124 {
3125 posd = new Output_data_zero_fill(trailing_padding, 0);
3126 os->add_output_section_data(posd);
3127 }
3128 }
3129 else
3130 {
3131 // We need to compute a checksum after we have completed the
3132 // link.
3133 gold_assert(trailing_padding == 0);
3134 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3135 os->add_output_section_data(this->build_id_note_);
3136 }
3137 }
3138
3139 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3140 // field of the former should point to the latter. I'm not sure who
3141 // started this, but the GNU linker does it, and some tools depend
3142 // upon it.
3143
3144 void
3145 Layout::link_stabs_sections()
3146 {
3147 if (!this->have_stabstr_section_)
3148 return;
3149
3150 for (Section_list::iterator p = this->section_list_.begin();
3151 p != this->section_list_.end();
3152 ++p)
3153 {
3154 if ((*p)->type() != elfcpp::SHT_STRTAB)
3155 continue;
3156
3157 const char* name = (*p)->name();
3158 if (strncmp(name, ".stab", 5) != 0)
3159 continue;
3160
3161 size_t len = strlen(name);
3162 if (strcmp(name + len - 3, "str") != 0)
3163 continue;
3164
3165 std::string stab_name(name, len - 3);
3166 Output_section* stab_sec;
3167 stab_sec = this->find_output_section(stab_name.c_str());
3168 if (stab_sec != NULL)
3169 stab_sec->set_link_section(*p);
3170 }
3171 }
3172
3173 // Create .gnu_incremental_inputs and related sections needed
3174 // for the next run of incremental linking to check what has changed.
3175
3176 void
3177 Layout::create_incremental_info_sections(Symbol_table* symtab)
3178 {
3179 Incremental_inputs* incr = this->incremental_inputs_;
3180
3181 gold_assert(incr != NULL);
3182
3183 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3184 incr->create_data_sections(symtab);
3185
3186 // Add the .gnu_incremental_inputs section.
3187 const char* incremental_inputs_name =
3188 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3189 Output_section* incremental_inputs_os =
3190 this->make_output_section(incremental_inputs_name,
3191 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3192 ORDER_INVALID, false);
3193 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3194
3195 // Add the .gnu_incremental_symtab section.
3196 const char* incremental_symtab_name =
3197 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3198 Output_section* incremental_symtab_os =
3199 this->make_output_section(incremental_symtab_name,
3200 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3201 ORDER_INVALID, false);
3202 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3203 incremental_symtab_os->set_entsize(4);
3204
3205 // Add the .gnu_incremental_relocs section.
3206 const char* incremental_relocs_name =
3207 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3208 Output_section* incremental_relocs_os =
3209 this->make_output_section(incremental_relocs_name,
3210 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3211 ORDER_INVALID, false);
3212 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3213 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3214
3215 // Add the .gnu_incremental_got_plt section.
3216 const char* incremental_got_plt_name =
3217 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3218 Output_section* incremental_got_plt_os =
3219 this->make_output_section(incremental_got_plt_name,
3220 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3221 ORDER_INVALID, false);
3222 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3223
3224 // Add the .gnu_incremental_strtab section.
3225 const char* incremental_strtab_name =
3226 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3227 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3228 elfcpp::SHT_STRTAB, 0,
3229 ORDER_INVALID, false);
3230 Output_data_strtab* strtab_data =
3231 new Output_data_strtab(incr->get_stringpool());
3232 incremental_strtab_os->add_output_section_data(strtab_data);
3233
3234 incremental_inputs_os->set_after_input_sections();
3235 incremental_symtab_os->set_after_input_sections();
3236 incremental_relocs_os->set_after_input_sections();
3237 incremental_got_plt_os->set_after_input_sections();
3238
3239 incremental_inputs_os->set_link_section(incremental_strtab_os);
3240 incremental_symtab_os->set_link_section(incremental_inputs_os);
3241 incremental_relocs_os->set_link_section(incremental_inputs_os);
3242 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3243 }
3244
3245 // Return whether SEG1 should be before SEG2 in the output file. This
3246 // is based entirely on the segment type and flags. When this is
3247 // called the segment addresses have normally not yet been set.
3248
3249 bool
3250 Layout::segment_precedes(const Output_segment* seg1,
3251 const Output_segment* seg2)
3252 {
3253 elfcpp::Elf_Word type1 = seg1->type();
3254 elfcpp::Elf_Word type2 = seg2->type();
3255
3256 // The single PT_PHDR segment is required to precede any loadable
3257 // segment. We simply make it always first.
3258 if (type1 == elfcpp::PT_PHDR)
3259 {
3260 gold_assert(type2 != elfcpp::PT_PHDR);
3261 return true;
3262 }
3263 if (type2 == elfcpp::PT_PHDR)
3264 return false;
3265
3266 // The single PT_INTERP segment is required to precede any loadable
3267 // segment. We simply make it always second.
3268 if (type1 == elfcpp::PT_INTERP)
3269 {
3270 gold_assert(type2 != elfcpp::PT_INTERP);
3271 return true;
3272 }
3273 if (type2 == elfcpp::PT_INTERP)
3274 return false;
3275
3276 // We then put PT_LOAD segments before any other segments.
3277 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3278 return true;
3279 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3280 return false;
3281
3282 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3283 // segment, because that is where the dynamic linker expects to find
3284 // it (this is just for efficiency; other positions would also work
3285 // correctly).
3286 if (type1 == elfcpp::PT_TLS
3287 && type2 != elfcpp::PT_TLS
3288 && type2 != elfcpp::PT_GNU_RELRO)
3289 return false;
3290 if (type2 == elfcpp::PT_TLS
3291 && type1 != elfcpp::PT_TLS
3292 && type1 != elfcpp::PT_GNU_RELRO)
3293 return true;
3294
3295 // We put the PT_GNU_RELRO segment last, because that is where the
3296 // dynamic linker expects to find it (as with PT_TLS, this is just
3297 // for efficiency).
3298 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3299 return false;
3300 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3301 return true;
3302
3303 const elfcpp::Elf_Word flags1 = seg1->flags();
3304 const elfcpp::Elf_Word flags2 = seg2->flags();
3305
3306 // The order of non-PT_LOAD segments is unimportant. We simply sort
3307 // by the numeric segment type and flags values. There should not
3308 // be more than one segment with the same type and flags, except
3309 // when a linker script specifies such.
3310 if (type1 != elfcpp::PT_LOAD)
3311 {
3312 if (type1 != type2)
3313 return type1 < type2;
3314 gold_assert(flags1 != flags2
3315 || this->script_options_->saw_phdrs_clause());
3316 return flags1 < flags2;
3317 }
3318
3319 // If the addresses are set already, sort by load address.
3320 if (seg1->are_addresses_set())
3321 {
3322 if (!seg2->are_addresses_set())
3323 return true;
3324
3325 unsigned int section_count1 = seg1->output_section_count();
3326 unsigned int section_count2 = seg2->output_section_count();
3327 if (section_count1 == 0 && section_count2 > 0)
3328 return true;
3329 if (section_count1 > 0 && section_count2 == 0)
3330 return false;
3331
3332 uint64_t paddr1 = (seg1->are_addresses_set()
3333 ? seg1->paddr()
3334 : seg1->first_section_load_address());
3335 uint64_t paddr2 = (seg2->are_addresses_set()
3336 ? seg2->paddr()
3337 : seg2->first_section_load_address());
3338
3339 if (paddr1 != paddr2)
3340 return paddr1 < paddr2;
3341 }
3342 else if (seg2->are_addresses_set())
3343 return false;
3344
3345 // A segment which holds large data comes after a segment which does
3346 // not hold large data.
3347 if (seg1->is_large_data_segment())
3348 {
3349 if (!seg2->is_large_data_segment())
3350 return false;
3351 }
3352 else if (seg2->is_large_data_segment())
3353 return true;
3354
3355 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3356 // segments come before writable segments. Then writable segments
3357 // with data come before writable segments without data. Then
3358 // executable segments come before non-executable segments. Then
3359 // the unlikely case of a non-readable segment comes before the
3360 // normal case of a readable segment. If there are multiple
3361 // segments with the same type and flags, we require that the
3362 // address be set, and we sort by virtual address and then physical
3363 // address.
3364 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3365 return (flags1 & elfcpp::PF_W) == 0;
3366 if ((flags1 & elfcpp::PF_W) != 0
3367 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3368 return seg1->has_any_data_sections();
3369 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3370 return (flags1 & elfcpp::PF_X) != 0;
3371 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3372 return (flags1 & elfcpp::PF_R) == 0;
3373
3374 // We shouldn't get here--we shouldn't create segments which we
3375 // can't distinguish. Unless of course we are using a weird linker
3376 // script or overlapping --section-start options. We could also get
3377 // here if plugins want unique segments for subsets of sections.
3378 gold_assert(this->script_options_->saw_phdrs_clause()
3379 || parameters->options().any_section_start()
3380 || this->is_unique_segment_for_sections_specified());
3381 return false;
3382 }
3383
3384 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3385
3386 static off_t
3387 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3388 {
3389 uint64_t unsigned_off = off;
3390 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3391 | (addr & (abi_pagesize - 1)));
3392 if (aligned_off < unsigned_off)
3393 aligned_off += abi_pagesize;
3394 return aligned_off;
3395 }
3396
3397 // On targets where the text segment contains only executable code,
3398 // a non-executable segment is never the text segment.
3399
3400 static inline bool
3401 is_text_segment(const Target* target, const Output_segment* seg)
3402 {
3403 elfcpp::Elf_Xword flags = seg->flags();
3404 if ((flags & elfcpp::PF_W) != 0)
3405 return false;
3406 if ((flags & elfcpp::PF_X) == 0)
3407 return !target->isolate_execinstr();
3408 return true;
3409 }
3410
3411 // Set the file offsets of all the segments, and all the sections they
3412 // contain. They have all been created. LOAD_SEG must be be laid out
3413 // first. Return the offset of the data to follow.
3414
3415 off_t
3416 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3417 unsigned int* pshndx)
3418 {
3419 // Sort them into the final order. We use a stable sort so that we
3420 // don't randomize the order of indistinguishable segments created
3421 // by linker scripts.
3422 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3423 Layout::Compare_segments(this));
3424
3425 // Find the PT_LOAD segments, and set their addresses and offsets
3426 // and their section's addresses and offsets.
3427 uint64_t start_addr;
3428 if (parameters->options().user_set_Ttext())
3429 start_addr = parameters->options().Ttext();
3430 else if (parameters->options().output_is_position_independent())
3431 start_addr = 0;
3432 else
3433 start_addr = target->default_text_segment_address();
3434
3435 uint64_t addr = start_addr;
3436 off_t off = 0;
3437
3438 // If LOAD_SEG is NULL, then the file header and segment headers
3439 // will not be loadable. But they still need to be at offset 0 in
3440 // the file. Set their offsets now.
3441 if (load_seg == NULL)
3442 {
3443 for (Data_list::iterator p = this->special_output_list_.begin();
3444 p != this->special_output_list_.end();
3445 ++p)
3446 {
3447 off = align_address(off, (*p)->addralign());
3448 (*p)->set_address_and_file_offset(0, off);
3449 off += (*p)->data_size();
3450 }
3451 }
3452
3453 unsigned int increase_relro = this->increase_relro_;
3454 if (this->script_options_->saw_sections_clause())
3455 increase_relro = 0;
3456
3457 const bool check_sections = parameters->options().check_sections();
3458 Output_segment* last_load_segment = NULL;
3459
3460 unsigned int shndx_begin = *pshndx;
3461 unsigned int shndx_load_seg = *pshndx;
3462
3463 for (Segment_list::iterator p = this->segment_list_.begin();
3464 p != this->segment_list_.end();
3465 ++p)
3466 {
3467 if ((*p)->type() == elfcpp::PT_LOAD)
3468 {
3469 if (target->isolate_execinstr())
3470 {
3471 // When we hit the segment that should contain the
3472 // file headers, reset the file offset so we place
3473 // it and subsequent segments appropriately.
3474 // We'll fix up the preceding segments below.
3475 if (load_seg == *p)
3476 {
3477 if (off == 0)
3478 load_seg = NULL;
3479 else
3480 {
3481 off = 0;
3482 shndx_load_seg = *pshndx;
3483 }
3484 }
3485 }
3486 else
3487 {
3488 // Verify that the file headers fall into the first segment.
3489 if (load_seg != NULL && load_seg != *p)
3490 gold_unreachable();
3491 load_seg = NULL;
3492 }
3493
3494 bool are_addresses_set = (*p)->are_addresses_set();
3495 if (are_addresses_set)
3496 {
3497 // When it comes to setting file offsets, we care about
3498 // the physical address.
3499 addr = (*p)->paddr();
3500 }
3501 else if (parameters->options().user_set_Ttext()
3502 && (parameters->options().omagic()
3503 || is_text_segment(target, *p)))
3504 {
3505 are_addresses_set = true;
3506 }
3507 else if (parameters->options().user_set_Trodata_segment()
3508 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3509 {
3510 addr = parameters->options().Trodata_segment();
3511 are_addresses_set = true;
3512 }
3513 else if (parameters->options().user_set_Tdata()
3514 && ((*p)->flags() & elfcpp::PF_W) != 0
3515 && (!parameters->options().user_set_Tbss()
3516 || (*p)->has_any_data_sections()))
3517 {
3518 addr = parameters->options().Tdata();
3519 are_addresses_set = true;
3520 }
3521 else if (parameters->options().user_set_Tbss()
3522 && ((*p)->flags() & elfcpp::PF_W) != 0
3523 && !(*p)->has_any_data_sections())
3524 {
3525 addr = parameters->options().Tbss();
3526 are_addresses_set = true;
3527 }
3528
3529 uint64_t orig_addr = addr;
3530 uint64_t orig_off = off;
3531
3532 uint64_t aligned_addr = 0;
3533 uint64_t abi_pagesize = target->abi_pagesize();
3534 uint64_t common_pagesize = target->common_pagesize();
3535
3536 if (!parameters->options().nmagic()
3537 && !parameters->options().omagic())
3538 (*p)->set_minimum_p_align(abi_pagesize);
3539
3540 if (!are_addresses_set)
3541 {
3542 // Skip the address forward one page, maintaining the same
3543 // position within the page. This lets us store both segments
3544 // overlapping on a single page in the file, but the loader will
3545 // put them on different pages in memory. We will revisit this
3546 // decision once we know the size of the segment.
3547
3548 uint64_t max_align = (*p)->maximum_alignment();
3549 if (max_align > abi_pagesize)
3550 addr = align_address(addr, max_align);
3551 aligned_addr = addr;
3552
3553 if (load_seg == *p)
3554 {
3555 // This is the segment that will contain the file
3556 // headers, so its offset will have to be exactly zero.
3557 gold_assert(orig_off == 0);
3558
3559 // If the target wants a fixed minimum distance from the
3560 // text segment to the read-only segment, move up now.
3561 uint64_t min_addr =
3562 start_addr + (parameters->options().user_set_rosegment_gap()
3563 ? parameters->options().rosegment_gap()
3564 : target->rosegment_gap());
3565 if (addr < min_addr)
3566 addr = min_addr;
3567
3568 // But this is not the first segment! To make its
3569 // address congruent with its offset, that address better
3570 // be aligned to the ABI-mandated page size.
3571 addr = align_address(addr, abi_pagesize);
3572 aligned_addr = addr;
3573 }
3574 else
3575 {
3576 if ((addr & (abi_pagesize - 1)) != 0)
3577 addr = addr + abi_pagesize;
3578
3579 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3580 }
3581 }
3582
3583 if (!parameters->options().nmagic()
3584 && !parameters->options().omagic())
3585 {
3586 // Here we are also taking care of the case when
3587 // the maximum segment alignment is larger than the page size.
3588 off = align_file_offset(off, addr,
3589 std::max(abi_pagesize,
3590 (*p)->maximum_alignment()));
3591 }
3592 else
3593 {
3594 // This is -N or -n with a section script which prevents
3595 // us from using a load segment. We need to ensure that
3596 // the file offset is aligned to the alignment of the
3597 // segment. This is because the linker script
3598 // implicitly assumed a zero offset. If we don't align
3599 // here, then the alignment of the sections in the
3600 // linker script may not match the alignment of the
3601 // sections in the set_section_addresses call below,
3602 // causing an error about dot moving backward.
3603 off = align_address(off, (*p)->maximum_alignment());
3604 }
3605
3606 unsigned int shndx_hold = *pshndx;
3607 bool has_relro = false;
3608 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3609 false, addr,
3610 &increase_relro,
3611 &has_relro,
3612 &off, pshndx);
3613
3614 // Now that we know the size of this segment, we may be able
3615 // to save a page in memory, at the cost of wasting some
3616 // file space, by instead aligning to the start of a new
3617 // page. Here we use the real machine page size rather than
3618 // the ABI mandated page size. If the segment has been
3619 // aligned so that the relro data ends at a page boundary,
3620 // we do not try to realign it.
3621
3622 if (!are_addresses_set
3623 && !has_relro
3624 && aligned_addr != addr
3625 && !parameters->incremental())
3626 {
3627 uint64_t first_off = (common_pagesize
3628 - (aligned_addr
3629 & (common_pagesize - 1)));
3630 uint64_t last_off = new_addr & (common_pagesize - 1);
3631 if (first_off > 0
3632 && last_off > 0
3633 && ((aligned_addr & ~ (common_pagesize - 1))
3634 != (new_addr & ~ (common_pagesize - 1)))
3635 && first_off + last_off <= common_pagesize)
3636 {
3637 *pshndx = shndx_hold;
3638 addr = align_address(aligned_addr, common_pagesize);
3639 addr = align_address(addr, (*p)->maximum_alignment());
3640 if ((addr & (abi_pagesize - 1)) != 0)
3641 addr = addr + abi_pagesize;
3642 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3643 off = align_file_offset(off, addr, abi_pagesize);
3644
3645 increase_relro = this->increase_relro_;
3646 if (this->script_options_->saw_sections_clause())
3647 increase_relro = 0;
3648 has_relro = false;
3649
3650 new_addr = (*p)->set_section_addresses(target, this,
3651 true, addr,
3652 &increase_relro,
3653 &has_relro,
3654 &off, pshndx);
3655 }
3656 }
3657
3658 addr = new_addr;
3659
3660 // Implement --check-sections. We know that the segments
3661 // are sorted by LMA.
3662 if (check_sections && last_load_segment != NULL)
3663 {
3664 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3665 if (last_load_segment->paddr() + last_load_segment->memsz()
3666 > (*p)->paddr())
3667 {
3668 unsigned long long lb1 = last_load_segment->paddr();
3669 unsigned long long le1 = lb1 + last_load_segment->memsz();
3670 unsigned long long lb2 = (*p)->paddr();
3671 unsigned long long le2 = lb2 + (*p)->memsz();
3672 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3673 "[0x%llx -> 0x%llx]"),
3674 lb1, le1, lb2, le2);
3675 }
3676 }
3677 last_load_segment = *p;
3678 }
3679 }
3680
3681 if (load_seg != NULL && target->isolate_execinstr())
3682 {
3683 // Process the early segments again, setting their file offsets
3684 // so they land after the segments starting at LOAD_SEG.
3685 off = align_file_offset(off, 0, target->abi_pagesize());
3686
3687 this->reset_relax_output();
3688
3689 for (Segment_list::iterator p = this->segment_list_.begin();
3690 *p != load_seg;
3691 ++p)
3692 {
3693 if ((*p)->type() == elfcpp::PT_LOAD)
3694 {
3695 // We repeat the whole job of assigning addresses and
3696 // offsets, but we really only want to change the offsets and
3697 // must ensure that the addresses all come out the same as
3698 // they did the first time through.
3699 bool has_relro = false;
3700 const uint64_t old_addr = (*p)->vaddr();
3701 const uint64_t old_end = old_addr + (*p)->memsz();
3702 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3703 true, old_addr,
3704 &increase_relro,
3705 &has_relro,
3706 &off,
3707 &shndx_begin);
3708 gold_assert(new_addr == old_end);
3709 }
3710 }
3711
3712 gold_assert(shndx_begin == shndx_load_seg);
3713 }
3714
3715 // Handle the non-PT_LOAD segments, setting their offsets from their
3716 // section's offsets.
3717 for (Segment_list::iterator p = this->segment_list_.begin();
3718 p != this->segment_list_.end();
3719 ++p)
3720 {
3721 if ((*p)->type() != elfcpp::PT_LOAD)
3722 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3723 ? increase_relro
3724 : 0);
3725 }
3726
3727 // Set the TLS offsets for each section in the PT_TLS segment.
3728 if (this->tls_segment_ != NULL)
3729 this->tls_segment_->set_tls_offsets();
3730
3731 return off;
3732 }
3733
3734 // Set the offsets of all the allocated sections when doing a
3735 // relocatable link. This does the same jobs as set_segment_offsets,
3736 // only for a relocatable link.
3737
3738 off_t
3739 Layout::set_relocatable_section_offsets(Output_data* file_header,
3740 unsigned int* pshndx)
3741 {
3742 off_t off = 0;
3743
3744 file_header->set_address_and_file_offset(0, 0);
3745 off += file_header->data_size();
3746
3747 for (Section_list::iterator p = this->section_list_.begin();
3748 p != this->section_list_.end();
3749 ++p)
3750 {
3751 // We skip unallocated sections here, except that group sections
3752 // have to come first.
3753 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3754 && (*p)->type() != elfcpp::SHT_GROUP)
3755 continue;
3756
3757 off = align_address(off, (*p)->addralign());
3758
3759 // The linker script might have set the address.
3760 if (!(*p)->is_address_valid())
3761 (*p)->set_address(0);
3762 (*p)->set_file_offset(off);
3763 (*p)->finalize_data_size();
3764 if ((*p)->type() != elfcpp::SHT_NOBITS)
3765 off += (*p)->data_size();
3766
3767 (*p)->set_out_shndx(*pshndx);
3768 ++*pshndx;
3769 }
3770
3771 return off;
3772 }
3773
3774 // Set the file offset of all the sections not associated with a
3775 // segment.
3776
3777 off_t
3778 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3779 {
3780 off_t startoff = off;
3781 off_t maxoff = off;
3782
3783 for (Section_list::iterator p = this->unattached_section_list_.begin();
3784 p != this->unattached_section_list_.end();
3785 ++p)
3786 {
3787 // The symtab section is handled in create_symtab_sections.
3788 if (*p == this->symtab_section_)
3789 continue;
3790
3791 // If we've already set the data size, don't set it again.
3792 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3793 continue;
3794
3795 if (pass == BEFORE_INPUT_SECTIONS_PASS
3796 && (*p)->requires_postprocessing())
3797 {
3798 (*p)->create_postprocessing_buffer();
3799 this->any_postprocessing_sections_ = true;
3800 }
3801
3802 if (pass == BEFORE_INPUT_SECTIONS_PASS
3803 && (*p)->after_input_sections())
3804 continue;
3805 else if (pass == POSTPROCESSING_SECTIONS_PASS
3806 && (!(*p)->after_input_sections()
3807 || (*p)->type() == elfcpp::SHT_STRTAB))
3808 continue;
3809 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3810 && (!(*p)->after_input_sections()
3811 || (*p)->type() != elfcpp::SHT_STRTAB))
3812 continue;
3813
3814 if (!parameters->incremental_update())
3815 {
3816 off = align_address(off, (*p)->addralign());
3817 (*p)->set_file_offset(off);
3818 (*p)->finalize_data_size();
3819 }
3820 else
3821 {
3822 // Incremental update: allocate file space from free list.
3823 (*p)->pre_finalize_data_size();
3824 off_t current_size = (*p)->current_data_size();
3825 off = this->allocate(current_size, (*p)->addralign(), startoff);
3826 if (off == -1)
3827 {
3828 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3829 this->free_list_.dump();
3830 gold_assert((*p)->output_section() != NULL);
3831 gold_fallback(_("out of patch space for section %s; "
3832 "relink with --incremental-full"),
3833 (*p)->output_section()->name());
3834 }
3835 (*p)->set_file_offset(off);
3836 (*p)->finalize_data_size();
3837 if ((*p)->data_size() > current_size)
3838 {
3839 gold_assert((*p)->output_section() != NULL);
3840 gold_fallback(_("%s: section changed size; "
3841 "relink with --incremental-full"),
3842 (*p)->output_section()->name());
3843 }
3844 gold_debug(DEBUG_INCREMENTAL,
3845 "set_section_offsets: %08lx %08lx %s",
3846 static_cast<long>(off),
3847 static_cast<long>((*p)->data_size()),
3848 ((*p)->output_section() != NULL
3849 ? (*p)->output_section()->name() : "(special)"));
3850 }
3851
3852 off += (*p)->data_size();
3853 if (off > maxoff)
3854 maxoff = off;
3855
3856 // At this point the name must be set.
3857 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3858 this->namepool_.add((*p)->name(), false, NULL);
3859 }
3860 return maxoff;
3861 }
3862
3863 // Set the section indexes of all the sections not associated with a
3864 // segment.
3865
3866 unsigned int
3867 Layout::set_section_indexes(unsigned int shndx)
3868 {
3869 for (Section_list::iterator p = this->unattached_section_list_.begin();
3870 p != this->unattached_section_list_.end();
3871 ++p)
3872 {
3873 if (!(*p)->has_out_shndx())
3874 {
3875 (*p)->set_out_shndx(shndx);
3876 ++shndx;
3877 }
3878 }
3879 return shndx;
3880 }
3881
3882 // Set the section addresses according to the linker script. This is
3883 // only called when we see a SECTIONS clause. This returns the
3884 // program segment which should hold the file header and segment
3885 // headers, if any. It will return NULL if they should not be in a
3886 // segment.
3887
3888 Output_segment*
3889 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3890 {
3891 Script_sections* ss = this->script_options_->script_sections();
3892 gold_assert(ss->saw_sections_clause());
3893 return this->script_options_->set_section_addresses(symtab, this);
3894 }
3895
3896 // Place the orphan sections in the linker script.
3897
3898 void
3899 Layout::place_orphan_sections_in_script()
3900 {
3901 Script_sections* ss = this->script_options_->script_sections();
3902 gold_assert(ss->saw_sections_clause());
3903
3904 // Place each orphaned output section in the script.
3905 for (Section_list::iterator p = this->section_list_.begin();
3906 p != this->section_list_.end();
3907 ++p)
3908 {
3909 if (!(*p)->found_in_sections_clause())
3910 ss->place_orphan(*p);
3911 }
3912 }
3913
3914 // Count the local symbols in the regular symbol table and the dynamic
3915 // symbol table, and build the respective string pools.
3916
3917 void
3918 Layout::count_local_symbols(const Task* task,
3919 const Input_objects* input_objects)
3920 {
3921 // First, figure out an upper bound on the number of symbols we'll
3922 // be inserting into each pool. This helps us create the pools with
3923 // the right size, to avoid unnecessary hashtable resizing.
3924 unsigned int symbol_count = 0;
3925 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3926 p != input_objects->relobj_end();
3927 ++p)
3928 symbol_count += (*p)->local_symbol_count();
3929
3930 // Go from "upper bound" to "estimate." We overcount for two
3931 // reasons: we double-count symbols that occur in more than one
3932 // object file, and we count symbols that are dropped from the
3933 // output. Add it all together and assume we overcount by 100%.
3934 symbol_count /= 2;
3935
3936 // We assume all symbols will go into both the sympool and dynpool.
3937 this->sympool_.reserve(symbol_count);
3938 this->dynpool_.reserve(symbol_count);
3939
3940 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3941 p != input_objects->relobj_end();
3942 ++p)
3943 {
3944 Task_lock_obj<Object> tlo(task, *p);
3945 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3946 }
3947 }
3948
3949 // Create the symbol table sections. Here we also set the final
3950 // values of the symbols. At this point all the loadable sections are
3951 // fully laid out. SHNUM is the number of sections so far.
3952
3953 void
3954 Layout::create_symtab_sections(const Input_objects* input_objects,
3955 Symbol_table* symtab,
3956 unsigned int shnum,
3957 off_t* poff)
3958 {
3959 int symsize;
3960 unsigned int align;
3961 if (parameters->target().get_size() == 32)
3962 {
3963 symsize = elfcpp::Elf_sizes<32>::sym_size;
3964 align = 4;
3965 }
3966 else if (parameters->target().get_size() == 64)
3967 {
3968 symsize = elfcpp::Elf_sizes<64>::sym_size;
3969 align = 8;
3970 }
3971 else
3972 gold_unreachable();
3973
3974 // Compute file offsets relative to the start of the symtab section.
3975 off_t off = 0;
3976
3977 // Save space for the dummy symbol at the start of the section. We
3978 // never bother to write this out--it will just be left as zero.
3979 off += symsize;
3980 unsigned int local_symbol_index = 1;
3981
3982 // Add STT_SECTION symbols for each Output section which needs one.
3983 for (Section_list::iterator p = this->section_list_.begin();
3984 p != this->section_list_.end();
3985 ++p)
3986 {
3987 if (!(*p)->needs_symtab_index())
3988 (*p)->set_symtab_index(-1U);
3989 else
3990 {
3991 (*p)->set_symtab_index(local_symbol_index);
3992 ++local_symbol_index;
3993 off += symsize;
3994 }
3995 }
3996
3997 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3998 p != input_objects->relobj_end();
3999 ++p)
4000 {
4001 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4002 off, symtab);
4003 off += (index - local_symbol_index) * symsize;
4004 local_symbol_index = index;
4005 }
4006
4007 unsigned int local_symcount = local_symbol_index;
4008 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4009
4010 off_t dynoff;
4011 size_t dyn_global_index;
4012 size_t dyncount;
4013 if (this->dynsym_section_ == NULL)
4014 {
4015 dynoff = 0;
4016 dyn_global_index = 0;
4017 dyncount = 0;
4018 }
4019 else
4020 {
4021 dyn_global_index = this->dynsym_section_->info();
4022 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4023 dynoff = this->dynsym_section_->offset() + locsize;
4024 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4025 gold_assert(static_cast<off_t>(dyncount * symsize)
4026 == this->dynsym_section_->data_size() - locsize);
4027 }
4028
4029 off_t global_off = off;
4030 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4031 &this->sympool_, &local_symcount);
4032
4033 if (!parameters->options().strip_all())
4034 {
4035 this->sympool_.set_string_offsets();
4036
4037 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4038 Output_section* osymtab = this->make_output_section(symtab_name,
4039 elfcpp::SHT_SYMTAB,
4040 0, ORDER_INVALID,
4041 false);
4042 this->symtab_section_ = osymtab;
4043
4044 Output_section_data* pos = new Output_data_fixed_space(off, align,
4045 "** symtab");
4046 osymtab->add_output_section_data(pos);
4047
4048 // We generate a .symtab_shndx section if we have more than
4049 // SHN_LORESERVE sections. Technically it is possible that we
4050 // don't need one, because it is possible that there are no
4051 // symbols in any of sections with indexes larger than
4052 // SHN_LORESERVE. That is probably unusual, though, and it is
4053 // easier to always create one than to compute section indexes
4054 // twice (once here, once when writing out the symbols).
4055 if (shnum >= elfcpp::SHN_LORESERVE)
4056 {
4057 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4058 false, NULL);
4059 Output_section* osymtab_xindex =
4060 this->make_output_section(symtab_xindex_name,
4061 elfcpp::SHT_SYMTAB_SHNDX, 0,
4062 ORDER_INVALID, false);
4063
4064 size_t symcount = off / symsize;
4065 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4066
4067 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4068
4069 osymtab_xindex->set_link_section(osymtab);
4070 osymtab_xindex->set_addralign(4);
4071 osymtab_xindex->set_entsize(4);
4072
4073 osymtab_xindex->set_after_input_sections();
4074
4075 // This tells the driver code to wait until the symbol table
4076 // has written out before writing out the postprocessing
4077 // sections, including the .symtab_shndx section.
4078 this->any_postprocessing_sections_ = true;
4079 }
4080
4081 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4082 Output_section* ostrtab = this->make_output_section(strtab_name,
4083 elfcpp::SHT_STRTAB,
4084 0, ORDER_INVALID,
4085 false);
4086
4087 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4088 ostrtab->add_output_section_data(pstr);
4089
4090 off_t symtab_off;
4091 if (!parameters->incremental_update())
4092 symtab_off = align_address(*poff, align);
4093 else
4094 {
4095 symtab_off = this->allocate(off, align, *poff);
4096 if (off == -1)
4097 gold_fallback(_("out of patch space for symbol table; "
4098 "relink with --incremental-full"));
4099 gold_debug(DEBUG_INCREMENTAL,
4100 "create_symtab_sections: %08lx %08lx .symtab",
4101 static_cast<long>(symtab_off),
4102 static_cast<long>(off));
4103 }
4104
4105 symtab->set_file_offset(symtab_off + global_off);
4106 osymtab->set_file_offset(symtab_off);
4107 osymtab->finalize_data_size();
4108 osymtab->set_link_section(ostrtab);
4109 osymtab->set_info(local_symcount);
4110 osymtab->set_entsize(symsize);
4111
4112 if (symtab_off + off > *poff)
4113 *poff = symtab_off + off;
4114 }
4115 }
4116
4117 // Create the .shstrtab section, which holds the names of the
4118 // sections. At the time this is called, we have created all the
4119 // output sections except .shstrtab itself.
4120
4121 Output_section*
4122 Layout::create_shstrtab()
4123 {
4124 // FIXME: We don't need to create a .shstrtab section if we are
4125 // stripping everything.
4126
4127 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4128
4129 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4130 ORDER_INVALID, false);
4131
4132 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4133 {
4134 // We can't write out this section until we've set all the
4135 // section names, and we don't set the names of compressed
4136 // output sections until relocations are complete. FIXME: With
4137 // the current names we use, this is unnecessary.
4138 os->set_after_input_sections();
4139 }
4140
4141 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4142 os->add_output_section_data(posd);
4143
4144 return os;
4145 }
4146
4147 // Create the section headers. SIZE is 32 or 64. OFF is the file
4148 // offset.
4149
4150 void
4151 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4152 {
4153 Output_section_headers* oshdrs;
4154 oshdrs = new Output_section_headers(this,
4155 &this->segment_list_,
4156 &this->section_list_,
4157 &this->unattached_section_list_,
4158 &this->namepool_,
4159 shstrtab_section);
4160 off_t off;
4161 if (!parameters->incremental_update())
4162 off = align_address(*poff, oshdrs->addralign());
4163 else
4164 {
4165 oshdrs->pre_finalize_data_size();
4166 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4167 if (off == -1)
4168 gold_fallback(_("out of patch space for section header table; "
4169 "relink with --incremental-full"));
4170 gold_debug(DEBUG_INCREMENTAL,
4171 "create_shdrs: %08lx %08lx (section header table)",
4172 static_cast<long>(off),
4173 static_cast<long>(off + oshdrs->data_size()));
4174 }
4175 oshdrs->set_address_and_file_offset(0, off);
4176 off += oshdrs->data_size();
4177 if (off > *poff)
4178 *poff = off;
4179 this->section_headers_ = oshdrs;
4180 }
4181
4182 // Count the allocated sections.
4183
4184 size_t
4185 Layout::allocated_output_section_count() const
4186 {
4187 size_t section_count = 0;
4188 for (Segment_list::const_iterator p = this->segment_list_.begin();
4189 p != this->segment_list_.end();
4190 ++p)
4191 section_count += (*p)->output_section_count();
4192 return section_count;
4193 }
4194
4195 // Create the dynamic symbol table.
4196
4197 void
4198 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4199 Symbol_table* symtab,
4200 Output_section** pdynstr,
4201 unsigned int* plocal_dynamic_count,
4202 std::vector<Symbol*>* pdynamic_symbols,
4203 Versions* pversions)
4204 {
4205 // Count all the symbols in the dynamic symbol table, and set the
4206 // dynamic symbol indexes.
4207
4208 // Skip symbol 0, which is always all zeroes.
4209 unsigned int index = 1;
4210
4211 // Add STT_SECTION symbols for each Output section which needs one.
4212 for (Section_list::iterator p = this->section_list_.begin();
4213 p != this->section_list_.end();
4214 ++p)
4215 {
4216 if (!(*p)->needs_dynsym_index())
4217 (*p)->set_dynsym_index(-1U);
4218 else
4219 {
4220 (*p)->set_dynsym_index(index);
4221 ++index;
4222 }
4223 }
4224
4225 // Count the local symbols that need to go in the dynamic symbol table,
4226 // and set the dynamic symbol indexes.
4227 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4228 p != input_objects->relobj_end();
4229 ++p)
4230 {
4231 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4232 index = new_index;
4233 }
4234
4235 unsigned int local_symcount = index;
4236 *plocal_dynamic_count = local_symcount;
4237
4238 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4239 &this->dynpool_, pversions);
4240
4241 int symsize;
4242 unsigned int align;
4243 const int size = parameters->target().get_size();
4244 if (size == 32)
4245 {
4246 symsize = elfcpp::Elf_sizes<32>::sym_size;
4247 align = 4;
4248 }
4249 else if (size == 64)
4250 {
4251 symsize = elfcpp::Elf_sizes<64>::sym_size;
4252 align = 8;
4253 }
4254 else
4255 gold_unreachable();
4256
4257 // Create the dynamic symbol table section.
4258
4259 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4260 elfcpp::SHT_DYNSYM,
4261 elfcpp::SHF_ALLOC,
4262 false,
4263 ORDER_DYNAMIC_LINKER,
4264 false);
4265
4266 // Check for NULL as a linker script may discard .dynsym.
4267 if (dynsym != NULL)
4268 {
4269 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4270 align,
4271 "** dynsym");
4272 dynsym->add_output_section_data(odata);
4273
4274 dynsym->set_info(local_symcount);
4275 dynsym->set_entsize(symsize);
4276 dynsym->set_addralign(align);
4277
4278 this->dynsym_section_ = dynsym;
4279 }
4280
4281 Output_data_dynamic* const odyn = this->dynamic_data_;
4282 if (odyn != NULL)
4283 {
4284 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4285 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4286 }
4287
4288 // If there are more than SHN_LORESERVE allocated sections, we
4289 // create a .dynsym_shndx section. It is possible that we don't
4290 // need one, because it is possible that there are no dynamic
4291 // symbols in any of the sections with indexes larger than
4292 // SHN_LORESERVE. This is probably unusual, though, and at this
4293 // time we don't know the actual section indexes so it is
4294 // inconvenient to check.
4295 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4296 {
4297 Output_section* dynsym_xindex =
4298 this->choose_output_section(NULL, ".dynsym_shndx",
4299 elfcpp::SHT_SYMTAB_SHNDX,
4300 elfcpp::SHF_ALLOC,
4301 false, ORDER_DYNAMIC_LINKER, false);
4302
4303 if (dynsym_xindex != NULL)
4304 {
4305 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4306
4307 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4308
4309 dynsym_xindex->set_link_section(dynsym);
4310 dynsym_xindex->set_addralign(4);
4311 dynsym_xindex->set_entsize(4);
4312
4313 dynsym_xindex->set_after_input_sections();
4314
4315 // This tells the driver code to wait until the symbol table
4316 // has written out before writing out the postprocessing
4317 // sections, including the .dynsym_shndx section.
4318 this->any_postprocessing_sections_ = true;
4319 }
4320 }
4321
4322 // Create the dynamic string table section.
4323
4324 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4325 elfcpp::SHT_STRTAB,
4326 elfcpp::SHF_ALLOC,
4327 false,
4328 ORDER_DYNAMIC_LINKER,
4329 false);
4330 *pdynstr = dynstr;
4331 if (dynstr != NULL)
4332 {
4333 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4334 dynstr->add_output_section_data(strdata);
4335
4336 if (dynsym != NULL)
4337 dynsym->set_link_section(dynstr);
4338 if (this->dynamic_section_ != NULL)
4339 this->dynamic_section_->set_link_section(dynstr);
4340
4341 if (odyn != NULL)
4342 {
4343 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4344 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4345 }
4346 }
4347
4348 // Create the hash tables. The Gnu-style hash table must be
4349 // built first, because it changes the order of the symbols
4350 // in the dynamic symbol table.
4351
4352 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4353 || strcmp(parameters->options().hash_style(), "both") == 0)
4354 {
4355 unsigned char* phash;
4356 unsigned int hashlen;
4357 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4358 &phash, &hashlen);
4359
4360 Output_section* hashsec =
4361 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4362 elfcpp::SHF_ALLOC, false,
4363 ORDER_DYNAMIC_LINKER, false);
4364
4365 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4366 hashlen,
4367 align,
4368 "** hash");
4369 if (hashsec != NULL && hashdata != NULL)
4370 hashsec->add_output_section_data(hashdata);
4371
4372 if (hashsec != NULL)
4373 {
4374 if (dynsym != NULL)
4375 hashsec->set_link_section(dynsym);
4376
4377 // For a 64-bit target, the entries in .gnu.hash do not have
4378 // a uniform size, so we only set the entry size for a
4379 // 32-bit target.
4380 if (parameters->target().get_size() == 32)
4381 hashsec->set_entsize(4);
4382
4383 if (odyn != NULL)
4384 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4385 }
4386 }
4387
4388 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4389 || strcmp(parameters->options().hash_style(), "both") == 0)
4390 {
4391 unsigned char* phash;
4392 unsigned int hashlen;
4393 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4394 &phash, &hashlen);
4395
4396 Output_section* hashsec =
4397 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4398 elfcpp::SHF_ALLOC, false,
4399 ORDER_DYNAMIC_LINKER, false);
4400
4401 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4402 hashlen,
4403 align,
4404 "** hash");
4405 if (hashsec != NULL && hashdata != NULL)
4406 hashsec->add_output_section_data(hashdata);
4407
4408 if (hashsec != NULL)
4409 {
4410 if (dynsym != NULL)
4411 hashsec->set_link_section(dynsym);
4412 hashsec->set_entsize(4);
4413 }
4414
4415 if (odyn != NULL)
4416 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4417 }
4418 }
4419
4420 // Assign offsets to each local portion of the dynamic symbol table.
4421
4422 void
4423 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4424 {
4425 Output_section* dynsym = this->dynsym_section_;
4426 if (dynsym == NULL)
4427 return;
4428
4429 off_t off = dynsym->offset();
4430
4431 // Skip the dummy symbol at the start of the section.
4432 off += dynsym->entsize();
4433
4434 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4435 p != input_objects->relobj_end();
4436 ++p)
4437 {
4438 unsigned int count = (*p)->set_local_dynsym_offset(off);
4439 off += count * dynsym->entsize();
4440 }
4441 }
4442
4443 // Create the version sections.
4444
4445 void
4446 Layout::create_version_sections(const Versions* versions,
4447 const Symbol_table* symtab,
4448 unsigned int local_symcount,
4449 const std::vector<Symbol*>& dynamic_symbols,
4450 const Output_section* dynstr)
4451 {
4452 if (!versions->any_defs() && !versions->any_needs())
4453 return;
4454
4455 switch (parameters->size_and_endianness())
4456 {
4457 #ifdef HAVE_TARGET_32_LITTLE
4458 case Parameters::TARGET_32_LITTLE:
4459 this->sized_create_version_sections<32, false>(versions, symtab,
4460 local_symcount,
4461 dynamic_symbols, dynstr);
4462 break;
4463 #endif
4464 #ifdef HAVE_TARGET_32_BIG
4465 case Parameters::TARGET_32_BIG:
4466 this->sized_create_version_sections<32, true>(versions, symtab,
4467 local_symcount,
4468 dynamic_symbols, dynstr);
4469 break;
4470 #endif
4471 #ifdef HAVE_TARGET_64_LITTLE
4472 case Parameters::TARGET_64_LITTLE:
4473 this->sized_create_version_sections<64, false>(versions, symtab,
4474 local_symcount,
4475 dynamic_symbols, dynstr);
4476 break;
4477 #endif
4478 #ifdef HAVE_TARGET_64_BIG
4479 case Parameters::TARGET_64_BIG:
4480 this->sized_create_version_sections<64, true>(versions, symtab,
4481 local_symcount,
4482 dynamic_symbols, dynstr);
4483 break;
4484 #endif
4485 default:
4486 gold_unreachable();
4487 }
4488 }
4489
4490 // Create the version sections, sized version.
4491
4492 template<int size, bool big_endian>
4493 void
4494 Layout::sized_create_version_sections(
4495 const Versions* versions,
4496 const Symbol_table* symtab,
4497 unsigned int local_symcount,
4498 const std::vector<Symbol*>& dynamic_symbols,
4499 const Output_section* dynstr)
4500 {
4501 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4502 elfcpp::SHT_GNU_versym,
4503 elfcpp::SHF_ALLOC,
4504 false,
4505 ORDER_DYNAMIC_LINKER,
4506 false);
4507
4508 // Check for NULL since a linker script may discard this section.
4509 if (vsec != NULL)
4510 {
4511 unsigned char* vbuf;
4512 unsigned int vsize;
4513 versions->symbol_section_contents<size, big_endian>(symtab,
4514 &this->dynpool_,
4515 local_symcount,
4516 dynamic_symbols,
4517 &vbuf, &vsize);
4518
4519 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4520 "** versions");
4521
4522 vsec->add_output_section_data(vdata);
4523 vsec->set_entsize(2);
4524 vsec->set_link_section(this->dynsym_section_);
4525 }
4526
4527 Output_data_dynamic* const odyn = this->dynamic_data_;
4528 if (odyn != NULL && vsec != NULL)
4529 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4530
4531 if (versions->any_defs())
4532 {
4533 Output_section* vdsec;
4534 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4535 elfcpp::SHT_GNU_verdef,
4536 elfcpp::SHF_ALLOC,
4537 false, ORDER_DYNAMIC_LINKER, false);
4538
4539 if (vdsec != NULL)
4540 {
4541 unsigned char* vdbuf;
4542 unsigned int vdsize;
4543 unsigned int vdentries;
4544 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4545 &vdbuf, &vdsize,
4546 &vdentries);
4547
4548 Output_section_data* vddata =
4549 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4550
4551 vdsec->add_output_section_data(vddata);
4552 vdsec->set_link_section(dynstr);
4553 vdsec->set_info(vdentries);
4554
4555 if (odyn != NULL)
4556 {
4557 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4558 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4559 }
4560 }
4561 }
4562
4563 if (versions->any_needs())
4564 {
4565 Output_section* vnsec;
4566 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4567 elfcpp::SHT_GNU_verneed,
4568 elfcpp::SHF_ALLOC,
4569 false, ORDER_DYNAMIC_LINKER, false);
4570
4571 if (vnsec != NULL)
4572 {
4573 unsigned char* vnbuf;
4574 unsigned int vnsize;
4575 unsigned int vnentries;
4576 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4577 &vnbuf, &vnsize,
4578 &vnentries);
4579
4580 Output_section_data* vndata =
4581 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4582
4583 vnsec->add_output_section_data(vndata);
4584 vnsec->set_link_section(dynstr);
4585 vnsec->set_info(vnentries);
4586
4587 if (odyn != NULL)
4588 {
4589 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4590 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4591 }
4592 }
4593 }
4594 }
4595
4596 // Create the .interp section and PT_INTERP segment.
4597
4598 void
4599 Layout::create_interp(const Target* target)
4600 {
4601 gold_assert(this->interp_segment_ == NULL);
4602
4603 const char* interp = parameters->options().dynamic_linker();
4604 if (interp == NULL)
4605 {
4606 interp = target->dynamic_linker();
4607 gold_assert(interp != NULL);
4608 }
4609
4610 size_t len = strlen(interp) + 1;
4611
4612 Output_section_data* odata = new Output_data_const(interp, len, 1);
4613
4614 Output_section* osec = this->choose_output_section(NULL, ".interp",
4615 elfcpp::SHT_PROGBITS,
4616 elfcpp::SHF_ALLOC,
4617 false, ORDER_INTERP,
4618 false);
4619 if (osec != NULL)
4620 osec->add_output_section_data(odata);
4621 }
4622
4623 // Add dynamic tags for the PLT and the dynamic relocs. This is
4624 // called by the target-specific code. This does nothing if not doing
4625 // a dynamic link.
4626
4627 // USE_REL is true for REL relocs rather than RELA relocs.
4628
4629 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4630
4631 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4632 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4633 // some targets have multiple reloc sections in PLT_REL.
4634
4635 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4636 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4637 // section.
4638
4639 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4640 // executable.
4641
4642 void
4643 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4644 const Output_data* plt_rel,
4645 const Output_data_reloc_generic* dyn_rel,
4646 bool add_debug, bool dynrel_includes_plt)
4647 {
4648 Output_data_dynamic* odyn = this->dynamic_data_;
4649 if (odyn == NULL)
4650 return;
4651
4652 if (plt_got != NULL && plt_got->output_section() != NULL)
4653 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4654
4655 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4656 {
4657 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4658 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4659 odyn->add_constant(elfcpp::DT_PLTREL,
4660 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4661 }
4662
4663 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4664 || (dynrel_includes_plt
4665 && plt_rel != NULL
4666 && plt_rel->output_section() != NULL))
4667 {
4668 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4669 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4670 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4671 (have_dyn_rel
4672 ? dyn_rel->output_section()
4673 : plt_rel->output_section()));
4674 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4675 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4676 odyn->add_section_size(size_tag,
4677 dyn_rel->output_section(),
4678 plt_rel->output_section());
4679 else if (have_dyn_rel)
4680 odyn->add_section_size(size_tag, dyn_rel->output_section());
4681 else
4682 odyn->add_section_size(size_tag, plt_rel->output_section());
4683 const int size = parameters->target().get_size();
4684 elfcpp::DT rel_tag;
4685 int rel_size;
4686 if (use_rel)
4687 {
4688 rel_tag = elfcpp::DT_RELENT;
4689 if (size == 32)
4690 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4691 else if (size == 64)
4692 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4693 else
4694 gold_unreachable();
4695 }
4696 else
4697 {
4698 rel_tag = elfcpp::DT_RELAENT;
4699 if (size == 32)
4700 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4701 else if (size == 64)
4702 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4703 else
4704 gold_unreachable();
4705 }
4706 odyn->add_constant(rel_tag, rel_size);
4707
4708 if (parameters->options().combreloc() && have_dyn_rel)
4709 {
4710 size_t c = dyn_rel->relative_reloc_count();
4711 if (c > 0)
4712 odyn->add_constant((use_rel
4713 ? elfcpp::DT_RELCOUNT
4714 : elfcpp::DT_RELACOUNT),
4715 c);
4716 }
4717 }
4718
4719 if (add_debug && !parameters->options().shared())
4720 {
4721 // The value of the DT_DEBUG tag is filled in by the dynamic
4722 // linker at run time, and used by the debugger.
4723 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4724 }
4725 }
4726
4727 // Finish the .dynamic section and PT_DYNAMIC segment.
4728
4729 void
4730 Layout::finish_dynamic_section(const Input_objects* input_objects,
4731 const Symbol_table* symtab)
4732 {
4733 if (!this->script_options_->saw_phdrs_clause()
4734 && this->dynamic_section_ != NULL)
4735 {
4736 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4737 (elfcpp::PF_R
4738 | elfcpp::PF_W));
4739 oseg->add_output_section_to_nonload(this->dynamic_section_,
4740 elfcpp::PF_R | elfcpp::PF_W);
4741 }
4742
4743 Output_data_dynamic* const odyn = this->dynamic_data_;
4744 if (odyn == NULL)
4745 return;
4746
4747 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4748 p != input_objects->dynobj_end();
4749 ++p)
4750 {
4751 if (!(*p)->is_needed() && (*p)->as_needed())
4752 {
4753 // This dynamic object was linked with --as-needed, but it
4754 // is not needed.
4755 continue;
4756 }
4757
4758 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4759 }
4760
4761 if (parameters->options().shared())
4762 {
4763 const char* soname = parameters->options().soname();
4764 if (soname != NULL)
4765 odyn->add_string(elfcpp::DT_SONAME, soname);
4766 }
4767
4768 Symbol* sym = symtab->lookup(parameters->options().init());
4769 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4770 odyn->add_symbol(elfcpp::DT_INIT, sym);
4771
4772 sym = symtab->lookup(parameters->options().fini());
4773 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4774 odyn->add_symbol(elfcpp::DT_FINI, sym);
4775
4776 // Look for .init_array, .preinit_array and .fini_array by checking
4777 // section types.
4778 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4779 p != this->section_list_.end();
4780 ++p)
4781 switch((*p)->type())
4782 {
4783 case elfcpp::SHT_FINI_ARRAY:
4784 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4785 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4786 break;
4787 case elfcpp::SHT_INIT_ARRAY:
4788 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4789 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4790 break;
4791 case elfcpp::SHT_PREINIT_ARRAY:
4792 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4793 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4794 break;
4795 default:
4796 break;
4797 }
4798
4799 // Add a DT_RPATH entry if needed.
4800 const General_options::Dir_list& rpath(parameters->options().rpath());
4801 if (!rpath.empty())
4802 {
4803 std::string rpath_val;
4804 for (General_options::Dir_list::const_iterator p = rpath.begin();
4805 p != rpath.end();
4806 ++p)
4807 {
4808 if (rpath_val.empty())
4809 rpath_val = p->name();
4810 else
4811 {
4812 // Eliminate duplicates.
4813 General_options::Dir_list::const_iterator q;
4814 for (q = rpath.begin(); q != p; ++q)
4815 if (q->name() == p->name())
4816 break;
4817 if (q == p)
4818 {
4819 rpath_val += ':';
4820 rpath_val += p->name();
4821 }
4822 }
4823 }
4824
4825 if (!parameters->options().enable_new_dtags())
4826 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4827 else
4828 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4829 }
4830
4831 // Look for text segments that have dynamic relocations.
4832 bool have_textrel = false;
4833 if (!this->script_options_->saw_sections_clause())
4834 {
4835 for (Segment_list::const_iterator p = this->segment_list_.begin();
4836 p != this->segment_list_.end();
4837 ++p)
4838 {
4839 if ((*p)->type() == elfcpp::PT_LOAD
4840 && ((*p)->flags() & elfcpp::PF_W) == 0
4841 && (*p)->has_dynamic_reloc())
4842 {
4843 have_textrel = true;
4844 break;
4845 }
4846 }
4847 }
4848 else
4849 {
4850 // We don't know the section -> segment mapping, so we are
4851 // conservative and just look for readonly sections with
4852 // relocations. If those sections wind up in writable segments,
4853 // then we have created an unnecessary DT_TEXTREL entry.
4854 for (Section_list::const_iterator p = this->section_list_.begin();
4855 p != this->section_list_.end();
4856 ++p)
4857 {
4858 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4859 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4860 && (*p)->has_dynamic_reloc())
4861 {
4862 have_textrel = true;
4863 break;
4864 }
4865 }
4866 }
4867
4868 if (parameters->options().filter() != NULL)
4869 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4870 if (parameters->options().any_auxiliary())
4871 {
4872 for (options::String_set::const_iterator p =
4873 parameters->options().auxiliary_begin();
4874 p != parameters->options().auxiliary_end();
4875 ++p)
4876 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4877 }
4878
4879 // Add a DT_FLAGS entry if necessary.
4880 unsigned int flags = 0;
4881 if (have_textrel)
4882 {
4883 // Add a DT_TEXTREL for compatibility with older loaders.
4884 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4885 flags |= elfcpp::DF_TEXTREL;
4886
4887 if (parameters->options().text())
4888 gold_error(_("read-only segment has dynamic relocations"));
4889 else if (parameters->options().warn_shared_textrel()
4890 && parameters->options().shared())
4891 gold_warning(_("shared library text segment is not shareable"));
4892 }
4893 if (parameters->options().shared() && this->has_static_tls())
4894 flags |= elfcpp::DF_STATIC_TLS;
4895 if (parameters->options().origin())
4896 flags |= elfcpp::DF_ORIGIN;
4897 if (parameters->options().Bsymbolic()
4898 && !parameters->options().have_dynamic_list())
4899 {
4900 flags |= elfcpp::DF_SYMBOLIC;
4901 // Add DT_SYMBOLIC for compatibility with older loaders.
4902 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4903 }
4904 if (parameters->options().now())
4905 flags |= elfcpp::DF_BIND_NOW;
4906 if (flags != 0)
4907 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4908
4909 flags = 0;
4910 if (parameters->options().global())
4911 flags |= elfcpp::DF_1_GLOBAL;
4912 if (parameters->options().initfirst())
4913 flags |= elfcpp::DF_1_INITFIRST;
4914 if (parameters->options().interpose())
4915 flags |= elfcpp::DF_1_INTERPOSE;
4916 if (parameters->options().loadfltr())
4917 flags |= elfcpp::DF_1_LOADFLTR;
4918 if (parameters->options().nodefaultlib())
4919 flags |= elfcpp::DF_1_NODEFLIB;
4920 if (parameters->options().nodelete())
4921 flags |= elfcpp::DF_1_NODELETE;
4922 if (parameters->options().nodlopen())
4923 flags |= elfcpp::DF_1_NOOPEN;
4924 if (parameters->options().nodump())
4925 flags |= elfcpp::DF_1_NODUMP;
4926 if (!parameters->options().shared())
4927 flags &= ~(elfcpp::DF_1_INITFIRST
4928 | elfcpp::DF_1_NODELETE
4929 | elfcpp::DF_1_NOOPEN);
4930 if (parameters->options().origin())
4931 flags |= elfcpp::DF_1_ORIGIN;
4932 if (parameters->options().now())
4933 flags |= elfcpp::DF_1_NOW;
4934 if (parameters->options().Bgroup())
4935 flags |= elfcpp::DF_1_GROUP;
4936 if (flags != 0)
4937 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4938 }
4939
4940 // Set the size of the _DYNAMIC symbol table to be the size of the
4941 // dynamic data.
4942
4943 void
4944 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4945 {
4946 Output_data_dynamic* const odyn = this->dynamic_data_;
4947 if (odyn == NULL)
4948 return;
4949 odyn->finalize_data_size();
4950 if (this->dynamic_symbol_ == NULL)
4951 return;
4952 off_t data_size = odyn->data_size();
4953 const int size = parameters->target().get_size();
4954 if (size == 32)
4955 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4956 else if (size == 64)
4957 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4958 else
4959 gold_unreachable();
4960 }
4961
4962 // The mapping of input section name prefixes to output section names.
4963 // In some cases one prefix is itself a prefix of another prefix; in
4964 // such a case the longer prefix must come first. These prefixes are
4965 // based on the GNU linker default ELF linker script.
4966
4967 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4968 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4969 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4970 {
4971 MAPPING_INIT(".text.", ".text"),
4972 MAPPING_INIT(".rodata.", ".rodata"),
4973 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4974 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4975 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4976 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4977 MAPPING_INIT(".data.", ".data"),
4978 MAPPING_INIT(".bss.", ".bss"),
4979 MAPPING_INIT(".tdata.", ".tdata"),
4980 MAPPING_INIT(".tbss.", ".tbss"),
4981 MAPPING_INIT(".init_array.", ".init_array"),
4982 MAPPING_INIT(".fini_array.", ".fini_array"),
4983 MAPPING_INIT(".sdata.", ".sdata"),
4984 MAPPING_INIT(".sbss.", ".sbss"),
4985 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4986 // differently depending on whether it is creating a shared library.
4987 MAPPING_INIT(".sdata2.", ".sdata"),
4988 MAPPING_INIT(".sbss2.", ".sbss"),
4989 MAPPING_INIT(".lrodata.", ".lrodata"),
4990 MAPPING_INIT(".ldata.", ".ldata"),
4991 MAPPING_INIT(".lbss.", ".lbss"),
4992 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4993 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4994 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4995 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4996 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4997 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4998 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4999 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5000 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5001 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5002 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5003 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5004 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5005 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5006 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5007 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5008 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5009 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5010 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5011 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5012 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5013 };
5014 #undef MAPPING_INIT
5015 #undef MAPPING_INIT_EXACT
5016
5017 const int Layout::section_name_mapping_count =
5018 (sizeof(Layout::section_name_mapping)
5019 / sizeof(Layout::section_name_mapping[0]));
5020
5021 // Choose the output section name to use given an input section name.
5022 // Set *PLEN to the length of the name. *PLEN is initialized to the
5023 // length of NAME.
5024
5025 const char*
5026 Layout::output_section_name(const Relobj* relobj, const char* name,
5027 size_t* plen)
5028 {
5029 // gcc 4.3 generates the following sorts of section names when it
5030 // needs a section name specific to a function:
5031 // .text.FN
5032 // .rodata.FN
5033 // .sdata2.FN
5034 // .data.FN
5035 // .data.rel.FN
5036 // .data.rel.local.FN
5037 // .data.rel.ro.FN
5038 // .data.rel.ro.local.FN
5039 // .sdata.FN
5040 // .bss.FN
5041 // .sbss.FN
5042 // .tdata.FN
5043 // .tbss.FN
5044
5045 // The GNU linker maps all of those to the part before the .FN,
5046 // except that .data.rel.local.FN is mapped to .data, and
5047 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5048 // beginning with .data.rel.ro.local are grouped together.
5049
5050 // For an anonymous namespace, the string FN can contain a '.'.
5051
5052 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5053 // GNU linker maps to .rodata.
5054
5055 // The .data.rel.ro sections are used with -z relro. The sections
5056 // are recognized by name. We use the same names that the GNU
5057 // linker does for these sections.
5058
5059 // It is hard to handle this in a principled way, so we don't even
5060 // try. We use a table of mappings. If the input section name is
5061 // not found in the table, we simply use it as the output section
5062 // name.
5063
5064 const Section_name_mapping* psnm = section_name_mapping;
5065 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5066 {
5067 if (psnm->fromlen > 0)
5068 {
5069 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5070 {
5071 *plen = psnm->tolen;
5072 return psnm->to;
5073 }
5074 }
5075 else
5076 {
5077 if (strcmp(name, psnm->from) == 0)
5078 {
5079 *plen = psnm->tolen;
5080 return psnm->to;
5081 }
5082 }
5083 }
5084
5085 // As an additional complication, .ctors sections are output in
5086 // either .ctors or .init_array sections, and .dtors sections are
5087 // output in either .dtors or .fini_array sections.
5088 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5089 {
5090 if (parameters->options().ctors_in_init_array())
5091 {
5092 *plen = 11;
5093 return name[1] == 'c' ? ".init_array" : ".fini_array";
5094 }
5095 else
5096 {
5097 *plen = 6;
5098 return name[1] == 'c' ? ".ctors" : ".dtors";
5099 }
5100 }
5101 if (parameters->options().ctors_in_init_array()
5102 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5103 {
5104 // To make .init_array/.fini_array work with gcc we must exclude
5105 // .ctors and .dtors sections from the crtbegin and crtend
5106 // files.
5107 if (relobj == NULL
5108 || (!Layout::match_file_name(relobj, "crtbegin")
5109 && !Layout::match_file_name(relobj, "crtend")))
5110 {
5111 *plen = 11;
5112 return name[1] == 'c' ? ".init_array" : ".fini_array";
5113 }
5114 }
5115
5116 return name;
5117 }
5118
5119 // Return true if RELOBJ is an input file whose base name matches
5120 // FILE_NAME. The base name must have an extension of ".o", and must
5121 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5122 // to match crtbegin.o as well as crtbeginS.o without getting confused
5123 // by other possibilities. Overall matching the file name this way is
5124 // a dreadful hack, but the GNU linker does it in order to better
5125 // support gcc, and we need to be compatible.
5126
5127 bool
5128 Layout::match_file_name(const Relobj* relobj, const char* match)
5129 {
5130 const std::string& file_name(relobj->name());
5131 const char* base_name = lbasename(file_name.c_str());
5132 size_t match_len = strlen(match);
5133 if (strncmp(base_name, match, match_len) != 0)
5134 return false;
5135 size_t base_len = strlen(base_name);
5136 if (base_len != match_len + 2 && base_len != match_len + 3)
5137 return false;
5138 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5139 }
5140
5141 // Check if a comdat group or .gnu.linkonce section with the given
5142 // NAME is selected for the link. If there is already a section,
5143 // *KEPT_SECTION is set to point to the existing section and the
5144 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5145 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5146 // *KEPT_SECTION is set to the internal copy and the function returns
5147 // true.
5148
5149 bool
5150 Layout::find_or_add_kept_section(const std::string& name,
5151 Relobj* object,
5152 unsigned int shndx,
5153 bool is_comdat,
5154 bool is_group_name,
5155 Kept_section** kept_section)
5156 {
5157 // It's normal to see a couple of entries here, for the x86 thunk
5158 // sections. If we see more than a few, we're linking a C++
5159 // program, and we resize to get more space to minimize rehashing.
5160 if (this->signatures_.size() > 4
5161 && !this->resized_signatures_)
5162 {
5163 reserve_unordered_map(&this->signatures_,
5164 this->number_of_input_files_ * 64);
5165 this->resized_signatures_ = true;
5166 }
5167
5168 Kept_section candidate;
5169 std::pair<Signatures::iterator, bool> ins =
5170 this->signatures_.insert(std::make_pair(name, candidate));
5171
5172 if (kept_section != NULL)
5173 *kept_section = &ins.first->second;
5174 if (ins.second)
5175 {
5176 // This is the first time we've seen this signature.
5177 ins.first->second.set_object(object);
5178 ins.first->second.set_shndx(shndx);
5179 if (is_comdat)
5180 ins.first->second.set_is_comdat();
5181 if (is_group_name)
5182 ins.first->second.set_is_group_name();
5183 return true;
5184 }
5185
5186 // We have already seen this signature.
5187
5188 if (ins.first->second.is_group_name())
5189 {
5190 // We've already seen a real section group with this signature.
5191 // If the kept group is from a plugin object, and we're in the
5192 // replacement phase, accept the new one as a replacement.
5193 if (ins.first->second.object() == NULL
5194 && parameters->options().plugins()->in_replacement_phase())
5195 {
5196 ins.first->second.set_object(object);
5197 ins.first->second.set_shndx(shndx);
5198 return true;
5199 }
5200 return false;
5201 }
5202 else if (is_group_name)
5203 {
5204 // This is a real section group, and we've already seen a
5205 // linkonce section with this signature. Record that we've seen
5206 // a section group, and don't include this section group.
5207 ins.first->second.set_is_group_name();
5208 return false;
5209 }
5210 else
5211 {
5212 // We've already seen a linkonce section and this is a linkonce
5213 // section. These don't block each other--this may be the same
5214 // symbol name with different section types.
5215 return true;
5216 }
5217 }
5218
5219 // Store the allocated sections into the section list.
5220
5221 void
5222 Layout::get_allocated_sections(Section_list* section_list) const
5223 {
5224 for (Section_list::const_iterator p = this->section_list_.begin();
5225 p != this->section_list_.end();
5226 ++p)
5227 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5228 section_list->push_back(*p);
5229 }
5230
5231 // Store the executable sections into the section list.
5232
5233 void
5234 Layout::get_executable_sections(Section_list* section_list) const
5235 {
5236 for (Section_list::const_iterator p = this->section_list_.begin();
5237 p != this->section_list_.end();
5238 ++p)
5239 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5240 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5241 section_list->push_back(*p);
5242 }
5243
5244 // Create an output segment.
5245
5246 Output_segment*
5247 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5248 {
5249 gold_assert(!parameters->options().relocatable());
5250 Output_segment* oseg = new Output_segment(type, flags);
5251 this->segment_list_.push_back(oseg);
5252
5253 if (type == elfcpp::PT_TLS)
5254 this->tls_segment_ = oseg;
5255 else if (type == elfcpp::PT_GNU_RELRO)
5256 this->relro_segment_ = oseg;
5257 else if (type == elfcpp::PT_INTERP)
5258 this->interp_segment_ = oseg;
5259
5260 return oseg;
5261 }
5262
5263 // Return the file offset of the normal symbol table.
5264
5265 off_t
5266 Layout::symtab_section_offset() const
5267 {
5268 if (this->symtab_section_ != NULL)
5269 return this->symtab_section_->offset();
5270 return 0;
5271 }
5272
5273 // Return the section index of the normal symbol table. It may have
5274 // been stripped by the -s/--strip-all option.
5275
5276 unsigned int
5277 Layout::symtab_section_shndx() const
5278 {
5279 if (this->symtab_section_ != NULL)
5280 return this->symtab_section_->out_shndx();
5281 return 0;
5282 }
5283
5284 // Write out the Output_sections. Most won't have anything to write,
5285 // since most of the data will come from input sections which are
5286 // handled elsewhere. But some Output_sections do have Output_data.
5287
5288 void
5289 Layout::write_output_sections(Output_file* of) const
5290 {
5291 for (Section_list::const_iterator p = this->section_list_.begin();
5292 p != this->section_list_.end();
5293 ++p)
5294 {
5295 if (!(*p)->after_input_sections())
5296 (*p)->write(of);
5297 }
5298 }
5299
5300 // Write out data not associated with a section or the symbol table.
5301
5302 void
5303 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5304 {
5305 if (!parameters->options().strip_all())
5306 {
5307 const Output_section* symtab_section = this->symtab_section_;
5308 for (Section_list::const_iterator p = this->section_list_.begin();
5309 p != this->section_list_.end();
5310 ++p)
5311 {
5312 if ((*p)->needs_symtab_index())
5313 {
5314 gold_assert(symtab_section != NULL);
5315 unsigned int index = (*p)->symtab_index();
5316 gold_assert(index > 0 && index != -1U);
5317 off_t off = (symtab_section->offset()
5318 + index * symtab_section->entsize());
5319 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5320 }
5321 }
5322 }
5323
5324 const Output_section* dynsym_section = this->dynsym_section_;
5325 for (Section_list::const_iterator p = this->section_list_.begin();
5326 p != this->section_list_.end();
5327 ++p)
5328 {
5329 if ((*p)->needs_dynsym_index())
5330 {
5331 gold_assert(dynsym_section != NULL);
5332 unsigned int index = (*p)->dynsym_index();
5333 gold_assert(index > 0 && index != -1U);
5334 off_t off = (dynsym_section->offset()
5335 + index * dynsym_section->entsize());
5336 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5337 }
5338 }
5339
5340 // Write out the Output_data which are not in an Output_section.
5341 for (Data_list::const_iterator p = this->special_output_list_.begin();
5342 p != this->special_output_list_.end();
5343 ++p)
5344 (*p)->write(of);
5345
5346 // Write out the Output_data which are not in an Output_section
5347 // and are regenerated in each iteration of relaxation.
5348 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5349 p != this->relax_output_list_.end();
5350 ++p)
5351 (*p)->write(of);
5352 }
5353
5354 // Write out the Output_sections which can only be written after the
5355 // input sections are complete.
5356
5357 void
5358 Layout::write_sections_after_input_sections(Output_file* of)
5359 {
5360 // Determine the final section offsets, and thus the final output
5361 // file size. Note we finalize the .shstrab last, to allow the
5362 // after_input_section sections to modify their section-names before
5363 // writing.
5364 if (this->any_postprocessing_sections_)
5365 {
5366 off_t off = this->output_file_size_;
5367 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5368
5369 // Now that we've finalized the names, we can finalize the shstrab.
5370 off =
5371 this->set_section_offsets(off,
5372 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5373
5374 if (off > this->output_file_size_)
5375 {
5376 of->resize(off);
5377 this->output_file_size_ = off;
5378 }
5379 }
5380
5381 for (Section_list::const_iterator p = this->section_list_.begin();
5382 p != this->section_list_.end();
5383 ++p)
5384 {
5385 if ((*p)->after_input_sections())
5386 (*p)->write(of);
5387 }
5388
5389 this->section_headers_->write(of);
5390 }
5391
5392 // If a tree-style build ID was requested, the parallel part of that computation
5393 // is already done, and the final hash-of-hashes is computed here. For other
5394 // types of build IDs, all the work is done here.
5395
5396 void
5397 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5398 size_t size_of_hashes) const
5399 {
5400 if (this->build_id_note_ == NULL)
5401 return;
5402
5403 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5404 this->build_id_note_->data_size());
5405
5406 if (array_of_hashes == NULL)
5407 {
5408 const size_t output_file_size = this->output_file_size();
5409 const unsigned char* iv = of->get_input_view(0, output_file_size);
5410 const char* style = parameters->options().build_id();
5411
5412 // If we get here with style == "tree" then the output must be
5413 // too small for chunking, and we use SHA-1 in that case.
5414 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5415 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5416 else if (strcmp(style, "md5") == 0)
5417 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5418 else
5419 gold_unreachable();
5420
5421 of->free_input_view(0, output_file_size, iv);
5422 }
5423 else
5424 {
5425 // Non-overlapping substrings of the output file have been hashed.
5426 // Compute SHA-1 hash of the hashes.
5427 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5428 size_of_hashes, ov);
5429 delete[] array_of_hashes;
5430 }
5431
5432 of->write_output_view(this->build_id_note_->offset(),
5433 this->build_id_note_->data_size(),
5434 ov);
5435 }
5436
5437 // Write out a binary file. This is called after the link is
5438 // complete. IN is the temporary output file we used to generate the
5439 // ELF code. We simply walk through the segments, read them from
5440 // their file offset in IN, and write them to their load address in
5441 // the output file. FIXME: with a bit more work, we could support
5442 // S-records and/or Intel hex format here.
5443
5444 void
5445 Layout::write_binary(Output_file* in) const
5446 {
5447 gold_assert(parameters->options().oformat_enum()
5448 == General_options::OBJECT_FORMAT_BINARY);
5449
5450 // Get the size of the binary file.
5451 uint64_t max_load_address = 0;
5452 for (Segment_list::const_iterator p = this->segment_list_.begin();
5453 p != this->segment_list_.end();
5454 ++p)
5455 {
5456 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5457 {
5458 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5459 if (max_paddr > max_load_address)
5460 max_load_address = max_paddr;
5461 }
5462 }
5463
5464 Output_file out(parameters->options().output_file_name());
5465 out.open(max_load_address);
5466
5467 for (Segment_list::const_iterator p = this->segment_list_.begin();
5468 p != this->segment_list_.end();
5469 ++p)
5470 {
5471 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5472 {
5473 const unsigned char* vin = in->get_input_view((*p)->offset(),
5474 (*p)->filesz());
5475 unsigned char* vout = out.get_output_view((*p)->paddr(),
5476 (*p)->filesz());
5477 memcpy(vout, vin, (*p)->filesz());
5478 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5479 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5480 }
5481 }
5482
5483 out.close();
5484 }
5485
5486 // Print the output sections to the map file.
5487
5488 void
5489 Layout::print_to_mapfile(Mapfile* mapfile) const
5490 {
5491 for (Segment_list::const_iterator p = this->segment_list_.begin();
5492 p != this->segment_list_.end();
5493 ++p)
5494 (*p)->print_sections_to_mapfile(mapfile);
5495 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5496 p != this->unattached_section_list_.end();
5497 ++p)
5498 (*p)->print_to_mapfile(mapfile);
5499 }
5500
5501 // Print statistical information to stderr. This is used for --stats.
5502
5503 void
5504 Layout::print_stats() const
5505 {
5506 this->namepool_.print_stats("section name pool");
5507 this->sympool_.print_stats("output symbol name pool");
5508 this->dynpool_.print_stats("dynamic name pool");
5509
5510 for (Section_list::const_iterator p = this->section_list_.begin();
5511 p != this->section_list_.end();
5512 ++p)
5513 (*p)->print_merge_stats();
5514 }
5515
5516 // Write_sections_task methods.
5517
5518 // We can always run this task.
5519
5520 Task_token*
5521 Write_sections_task::is_runnable()
5522 {
5523 return NULL;
5524 }
5525
5526 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5527 // when finished.
5528
5529 void
5530 Write_sections_task::locks(Task_locker* tl)
5531 {
5532 tl->add(this, this->output_sections_blocker_);
5533 if (this->input_sections_blocker_ != NULL)
5534 tl->add(this, this->input_sections_blocker_);
5535 tl->add(this, this->final_blocker_);
5536 }
5537
5538 // Run the task--write out the data.
5539
5540 void
5541 Write_sections_task::run(Workqueue*)
5542 {
5543 this->layout_->write_output_sections(this->of_);
5544 }
5545
5546 // Write_data_task methods.
5547
5548 // We can always run this task.
5549
5550 Task_token*
5551 Write_data_task::is_runnable()
5552 {
5553 return NULL;
5554 }
5555
5556 // We need to unlock FINAL_BLOCKER when finished.
5557
5558 void
5559 Write_data_task::locks(Task_locker* tl)
5560 {
5561 tl->add(this, this->final_blocker_);
5562 }
5563
5564 // Run the task--write out the data.
5565
5566 void
5567 Write_data_task::run(Workqueue*)
5568 {
5569 this->layout_->write_data(this->symtab_, this->of_);
5570 }
5571
5572 // Write_symbols_task methods.
5573
5574 // We can always run this task.
5575
5576 Task_token*
5577 Write_symbols_task::is_runnable()
5578 {
5579 return NULL;
5580 }
5581
5582 // We need to unlock FINAL_BLOCKER when finished.
5583
5584 void
5585 Write_symbols_task::locks(Task_locker* tl)
5586 {
5587 tl->add(this, this->final_blocker_);
5588 }
5589
5590 // Run the task--write out the symbols.
5591
5592 void
5593 Write_symbols_task::run(Workqueue*)
5594 {
5595 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5596 this->layout_->symtab_xindex(),
5597 this->layout_->dynsym_xindex(), this->of_);
5598 }
5599
5600 // Write_after_input_sections_task methods.
5601
5602 // We can only run this task after the input sections have completed.
5603
5604 Task_token*
5605 Write_after_input_sections_task::is_runnable()
5606 {
5607 if (this->input_sections_blocker_->is_blocked())
5608 return this->input_sections_blocker_;
5609 return NULL;
5610 }
5611
5612 // We need to unlock FINAL_BLOCKER when finished.
5613
5614 void
5615 Write_after_input_sections_task::locks(Task_locker* tl)
5616 {
5617 tl->add(this, this->final_blocker_);
5618 }
5619
5620 // Run the task.
5621
5622 void
5623 Write_after_input_sections_task::run(Workqueue*)
5624 {
5625 this->layout_->write_sections_after_input_sections(this->of_);
5626 }
5627
5628 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5629 // or as a "tree" where each chunk of the string is hashed and then those
5630 // hashes are put into a (much smaller) string which is hashed with sha1.
5631 // We compute a checksum over the entire file because that is simplest.
5632
5633 void
5634 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5635 {
5636 Task_token* post_hash_tasks_blocker = new Task_token(true);
5637 const Layout* layout = this->layout_;
5638 Output_file* of = this->of_;
5639 const size_t filesize = (layout->output_file_size() <= 0 ? 0
5640 : static_cast<size_t>(layout->output_file_size()));
5641 unsigned char* array_of_hashes = NULL;
5642 size_t size_of_hashes = 0;
5643
5644 if (strcmp(this->options_->build_id(), "tree") == 0
5645 && this->options_->build_id_chunk_size_for_treehash() > 0
5646 && filesize > 0
5647 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5648 {
5649 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5650 const size_t chunk_size =
5651 this->options_->build_id_chunk_size_for_treehash();
5652 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5653 post_hash_tasks_blocker->add_blockers(num_hashes);
5654 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5655 array_of_hashes = new unsigned char[size_of_hashes];
5656 unsigned char *dst = array_of_hashes;
5657 for (size_t i = 0, src_offset = 0; i < num_hashes;
5658 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5659 {
5660 size_t size = std::min(chunk_size, filesize - src_offset);
5661 workqueue->queue(new Hash_task(of,
5662 src_offset,
5663 size,
5664 dst,
5665 post_hash_tasks_blocker));
5666 }
5667 }
5668
5669 // Queue the final task to write the build id and close the output file.
5670 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5671 layout,
5672 of,
5673 array_of_hashes,
5674 size_of_hashes),
5675 post_hash_tasks_blocker,
5676 "Task_function Close_task_runner"));
5677 }
5678
5679 // Close_task_runner methods.
5680
5681 // Finish up the build ID computation, if necessary, and write a binary file,
5682 // if necessary. Then close the output file.
5683
5684 void
5685 Close_task_runner::run(Workqueue*, const Task*)
5686 {
5687 // At this point the multi-threaded part of the build ID computation,
5688 // if any, is done. See Build_id_task_runner.
5689 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5690 this->size_of_hashes_);
5691
5692 // If we've been asked to create a binary file, we do so here.
5693 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5694 this->layout_->write_binary(this->of_);
5695
5696 this->of_->close();
5697 }
5698
5699 // Instantiate the templates we need. We could use the configure
5700 // script to restrict this to only the ones for implemented targets.
5701
5702 #ifdef HAVE_TARGET_32_LITTLE
5703 template
5704 Output_section*
5705 Layout::init_fixed_output_section<32, false>(
5706 const char* name,
5707 elfcpp::Shdr<32, false>& shdr);
5708 #endif
5709
5710 #ifdef HAVE_TARGET_32_BIG
5711 template
5712 Output_section*
5713 Layout::init_fixed_output_section<32, true>(
5714 const char* name,
5715 elfcpp::Shdr<32, true>& shdr);
5716 #endif
5717
5718 #ifdef HAVE_TARGET_64_LITTLE
5719 template
5720 Output_section*
5721 Layout::init_fixed_output_section<64, false>(
5722 const char* name,
5723 elfcpp::Shdr<64, false>& shdr);
5724 #endif
5725
5726 #ifdef HAVE_TARGET_64_BIG
5727 template
5728 Output_section*
5729 Layout::init_fixed_output_section<64, true>(
5730 const char* name,
5731 elfcpp::Shdr<64, true>& shdr);
5732 #endif
5733
5734 #ifdef HAVE_TARGET_32_LITTLE
5735 template
5736 Output_section*
5737 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5738 unsigned int shndx,
5739 const char* name,
5740 const elfcpp::Shdr<32, false>& shdr,
5741 unsigned int, unsigned int, off_t*);
5742 #endif
5743
5744 #ifdef HAVE_TARGET_32_BIG
5745 template
5746 Output_section*
5747 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5748 unsigned int shndx,
5749 const char* name,
5750 const elfcpp::Shdr<32, true>& shdr,
5751 unsigned int, unsigned int, off_t*);
5752 #endif
5753
5754 #ifdef HAVE_TARGET_64_LITTLE
5755 template
5756 Output_section*
5757 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5758 unsigned int shndx,
5759 const char* name,
5760 const elfcpp::Shdr<64, false>& shdr,
5761 unsigned int, unsigned int, off_t*);
5762 #endif
5763
5764 #ifdef HAVE_TARGET_64_BIG
5765 template
5766 Output_section*
5767 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5768 unsigned int shndx,
5769 const char* name,
5770 const elfcpp::Shdr<64, true>& shdr,
5771 unsigned int, unsigned int, off_t*);
5772 #endif
5773
5774 #ifdef HAVE_TARGET_32_LITTLE
5775 template
5776 Output_section*
5777 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5778 unsigned int reloc_shndx,
5779 const elfcpp::Shdr<32, false>& shdr,
5780 Output_section* data_section,
5781 Relocatable_relocs* rr);
5782 #endif
5783
5784 #ifdef HAVE_TARGET_32_BIG
5785 template
5786 Output_section*
5787 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5788 unsigned int reloc_shndx,
5789 const elfcpp::Shdr<32, true>& shdr,
5790 Output_section* data_section,
5791 Relocatable_relocs* rr);
5792 #endif
5793
5794 #ifdef HAVE_TARGET_64_LITTLE
5795 template
5796 Output_section*
5797 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5798 unsigned int reloc_shndx,
5799 const elfcpp::Shdr<64, false>& shdr,
5800 Output_section* data_section,
5801 Relocatable_relocs* rr);
5802 #endif
5803
5804 #ifdef HAVE_TARGET_64_BIG
5805 template
5806 Output_section*
5807 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5808 unsigned int reloc_shndx,
5809 const elfcpp::Shdr<64, true>& shdr,
5810 Output_section* data_section,
5811 Relocatable_relocs* rr);
5812 #endif
5813
5814 #ifdef HAVE_TARGET_32_LITTLE
5815 template
5816 void
5817 Layout::layout_group<32, false>(Symbol_table* symtab,
5818 Sized_relobj_file<32, false>* object,
5819 unsigned int,
5820 const char* group_section_name,
5821 const char* signature,
5822 const elfcpp::Shdr<32, false>& shdr,
5823 elfcpp::Elf_Word flags,
5824 std::vector<unsigned int>* shndxes);
5825 #endif
5826
5827 #ifdef HAVE_TARGET_32_BIG
5828 template
5829 void
5830 Layout::layout_group<32, true>(Symbol_table* symtab,
5831 Sized_relobj_file<32, true>* object,
5832 unsigned int,
5833 const char* group_section_name,
5834 const char* signature,
5835 const elfcpp::Shdr<32, true>& shdr,
5836 elfcpp::Elf_Word flags,
5837 std::vector<unsigned int>* shndxes);
5838 #endif
5839
5840 #ifdef HAVE_TARGET_64_LITTLE
5841 template
5842 void
5843 Layout::layout_group<64, false>(Symbol_table* symtab,
5844 Sized_relobj_file<64, false>* object,
5845 unsigned int,
5846 const char* group_section_name,
5847 const char* signature,
5848 const elfcpp::Shdr<64, false>& shdr,
5849 elfcpp::Elf_Word flags,
5850 std::vector<unsigned int>* shndxes);
5851 #endif
5852
5853 #ifdef HAVE_TARGET_64_BIG
5854 template
5855 void
5856 Layout::layout_group<64, true>(Symbol_table* symtab,
5857 Sized_relobj_file<64, true>* object,
5858 unsigned int,
5859 const char* group_section_name,
5860 const char* signature,
5861 const elfcpp::Shdr<64, true>& shdr,
5862 elfcpp::Elf_Word flags,
5863 std::vector<unsigned int>* shndxes);
5864 #endif
5865
5866 #ifdef HAVE_TARGET_32_LITTLE
5867 template
5868 Output_section*
5869 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5870 const unsigned char* symbols,
5871 off_t symbols_size,
5872 const unsigned char* symbol_names,
5873 off_t symbol_names_size,
5874 unsigned int shndx,
5875 const elfcpp::Shdr<32, false>& shdr,
5876 unsigned int reloc_shndx,
5877 unsigned int reloc_type,
5878 off_t* off);
5879 #endif
5880
5881 #ifdef HAVE_TARGET_32_BIG
5882 template
5883 Output_section*
5884 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5885 const unsigned char* symbols,
5886 off_t symbols_size,
5887 const unsigned char* symbol_names,
5888 off_t symbol_names_size,
5889 unsigned int shndx,
5890 const elfcpp::Shdr<32, true>& shdr,
5891 unsigned int reloc_shndx,
5892 unsigned int reloc_type,
5893 off_t* off);
5894 #endif
5895
5896 #ifdef HAVE_TARGET_64_LITTLE
5897 template
5898 Output_section*
5899 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5900 const unsigned char* symbols,
5901 off_t symbols_size,
5902 const unsigned char* symbol_names,
5903 off_t symbol_names_size,
5904 unsigned int shndx,
5905 const elfcpp::Shdr<64, false>& shdr,
5906 unsigned int reloc_shndx,
5907 unsigned int reloc_type,
5908 off_t* off);
5909 #endif
5910
5911 #ifdef HAVE_TARGET_64_BIG
5912 template
5913 Output_section*
5914 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5915 const unsigned char* symbols,
5916 off_t symbols_size,
5917 const unsigned char* symbol_names,
5918 off_t symbol_names_size,
5919 unsigned int shndx,
5920 const elfcpp::Shdr<64, true>& shdr,
5921 unsigned int reloc_shndx,
5922 unsigned int reloc_type,
5923 off_t* off);
5924 #endif
5925
5926 #ifdef HAVE_TARGET_32_LITTLE
5927 template
5928 void
5929 Layout::add_to_gdb_index(bool is_type_unit,
5930 Sized_relobj<32, false>* object,
5931 const unsigned char* symbols,
5932 off_t symbols_size,
5933 unsigned int shndx,
5934 unsigned int reloc_shndx,
5935 unsigned int reloc_type);
5936 #endif
5937
5938 #ifdef HAVE_TARGET_32_BIG
5939 template
5940 void
5941 Layout::add_to_gdb_index(bool is_type_unit,
5942 Sized_relobj<32, true>* object,
5943 const unsigned char* symbols,
5944 off_t symbols_size,
5945 unsigned int shndx,
5946 unsigned int reloc_shndx,
5947 unsigned int reloc_type);
5948 #endif
5949
5950 #ifdef HAVE_TARGET_64_LITTLE
5951 template
5952 void
5953 Layout::add_to_gdb_index(bool is_type_unit,
5954 Sized_relobj<64, false>* object,
5955 const unsigned char* symbols,
5956 off_t symbols_size,
5957 unsigned int shndx,
5958 unsigned int reloc_shndx,
5959 unsigned int reloc_type);
5960 #endif
5961
5962 #ifdef HAVE_TARGET_64_BIG
5963 template
5964 void
5965 Layout::add_to_gdb_index(bool is_type_unit,
5966 Sized_relobj<64, true>* object,
5967 const unsigned char* symbols,
5968 off_t symbols_size,
5969 unsigned int shndx,
5970 unsigned int reloc_shndx,
5971 unsigned int reloc_type);
5972 #endif
5973
5974 } // End namespace gold.
This page took 0.615359 seconds and 5 git commands to generate.