Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / gold / layout.h
1 // layout.h -- lay out output file sections for gold -*- C++ -*-
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_LAYOUT_H
24 #define GOLD_LAYOUT_H
25
26 #include <cstring>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "script.h"
34 #include "workqueue.h"
35 #include "object.h"
36 #include "dynobj.h"
37 #include "stringpool.h"
38
39 namespace gold
40 {
41
42 class General_options;
43 class Incremental_inputs;
44 class Incremental_binary;
45 class Input_objects;
46 class Mapfile;
47 class Symbol_table;
48 class Output_section_data;
49 class Output_section;
50 class Output_section_headers;
51 class Output_segment_headers;
52 class Output_file_header;
53 class Output_segment;
54 class Output_data;
55 class Output_data_reloc_generic;
56 class Output_data_dynamic;
57 class Output_symtab_xindex;
58 class Output_reduced_debug_abbrev_section;
59 class Output_reduced_debug_info_section;
60 class Eh_frame;
61 class Gdb_index;
62 class Target;
63 struct Timespec;
64
65 // Return TRUE if SECNAME is the name of a compressed debug section.
66 extern bool
67 is_compressed_debug_section(const char* secname);
68
69 // Return the name of the corresponding uncompressed debug section.
70 extern std::string
71 corresponding_uncompressed_section_name(std::string secname);
72
73 // Maintain a list of free space within a section, segment, or file.
74 // Used for incremental update links.
75
76 class Free_list
77 {
78 public:
79 struct Free_list_node
80 {
81 Free_list_node(off_t start, off_t end)
82 : start_(start), end_(end)
83 { }
84 off_t start_;
85 off_t end_;
86 };
87 typedef std::list<Free_list_node>::const_iterator Const_iterator;
88
89 Free_list()
90 : list_(), last_remove_(list_.begin()), extend_(false), length_(0),
91 min_hole_(0)
92 { }
93
94 // Initialize the free list for a section of length LEN.
95 // If EXTEND is true, free space may be allocated past the end.
96 void
97 init(off_t len, bool extend);
98
99 // Set the minimum hole size that is allowed when allocating
100 // from the free list.
101 void
102 set_min_hole_size(off_t min_hole)
103 { this->min_hole_ = min_hole; }
104
105 // Remove a chunk from the free list.
106 void
107 remove(off_t start, off_t end);
108
109 // Allocate a chunk of space from the free list of length LEN,
110 // with alignment ALIGN, and minimum offset MINOFF.
111 off_t
112 allocate(off_t len, uint64_t align, off_t minoff);
113
114 // Return an iterator for the beginning of the free list.
115 Const_iterator
116 begin() const
117 { return this->list_.begin(); }
118
119 // Return an iterator for the end of the free list.
120 Const_iterator
121 end() const
122 { return this->list_.end(); }
123
124 // Dump the free list (for debugging).
125 void
126 dump();
127
128 // Print usage statistics.
129 static void
130 print_stats();
131
132 private:
133 typedef std::list<Free_list_node>::iterator Iterator;
134
135 // The free list.
136 std::list<Free_list_node> list_;
137
138 // The last node visited during a remove operation.
139 Iterator last_remove_;
140
141 // Whether we can extend past the original length.
142 bool extend_;
143
144 // The total length of the section, segment, or file.
145 off_t length_;
146
147 // The minimum hole size allowed. When allocating from the free list,
148 // we must not leave a hole smaller than this.
149 off_t min_hole_;
150
151 // Statistics:
152 // The total number of free lists used.
153 static unsigned int num_lists;
154 // The total number of free list nodes used.
155 static unsigned int num_nodes;
156 // The total number of calls to Free_list::remove.
157 static unsigned int num_removes;
158 // The total number of nodes visited during calls to Free_list::remove.
159 static unsigned int num_remove_visits;
160 // The total number of calls to Free_list::allocate.
161 static unsigned int num_allocates;
162 // The total number of nodes visited during calls to Free_list::allocate.
163 static unsigned int num_allocate_visits;
164 };
165
166 // This task function handles mapping the input sections to output
167 // sections and laying them out in memory.
168
169 class Layout_task_runner : public Task_function_runner
170 {
171 public:
172 // OPTIONS is the command line options, INPUT_OBJECTS is the list of
173 // input objects, SYMTAB is the symbol table, LAYOUT is the layout
174 // object.
175 Layout_task_runner(const General_options& options,
176 const Input_objects* input_objects,
177 Symbol_table* symtab,
178 Target* target,
179 Layout* layout,
180 Mapfile* mapfile)
181 : options_(options), input_objects_(input_objects), symtab_(symtab),
182 target_(target), layout_(layout), mapfile_(mapfile)
183 { }
184
185 // Run the operation.
186 void
187 run(Workqueue*, const Task*);
188
189 private:
190 Layout_task_runner(const Layout_task_runner&);
191 Layout_task_runner& operator=(const Layout_task_runner&);
192
193 const General_options& options_;
194 const Input_objects* input_objects_;
195 Symbol_table* symtab_;
196 Target* target_;
197 Layout* layout_;
198 Mapfile* mapfile_;
199 };
200
201 // This class holds information about the comdat group or
202 // .gnu.linkonce section that will be kept for a given signature.
203
204 class Kept_section
205 {
206 private:
207 // For a comdat group, we build a mapping from the name of each
208 // section in the group to the section index and the size in object.
209 // When we discard a group in some other object file, we use this
210 // map to figure out which kept section the discarded section is
211 // associated with. We then use that mapping when processing relocs
212 // against discarded sections.
213 struct Comdat_section_info
214 {
215 // The section index.
216 unsigned int shndx;
217 // The section size.
218 uint64_t size;
219
220 Comdat_section_info(unsigned int a_shndx, uint64_t a_size)
221 : shndx(a_shndx), size(a_size)
222 { }
223 };
224
225 // Most comdat groups have only one or two sections, so we use a
226 // std::map rather than an Unordered_map to optimize for that case
227 // without paying too heavily for groups with more sections.
228 typedef std::map<std::string, Comdat_section_info> Comdat_group;
229
230 public:
231 Kept_section()
232 : object_(NULL), shndx_(0), is_comdat_(false), is_group_name_(false)
233 { this->u_.linkonce_size = 0; }
234
235 // We need to support copies for the signature map in the Layout
236 // object, but we should never copy an object after it has been
237 // marked as a comdat section.
238 Kept_section(const Kept_section& k)
239 : object_(k.object_), shndx_(k.shndx_), is_comdat_(false),
240 is_group_name_(k.is_group_name_)
241 {
242 gold_assert(!k.is_comdat_);
243 this->u_.linkonce_size = 0;
244 }
245
246 ~Kept_section()
247 {
248 if (this->is_comdat_)
249 delete this->u_.group_sections;
250 }
251
252 // The object where this section lives.
253 Relobj*
254 object() const
255 { return this->object_; }
256
257 // Set the object.
258 void
259 set_object(Relobj* object)
260 {
261 gold_assert(this->object_ == NULL);
262 this->object_ = object;
263 }
264
265 // The section index.
266 unsigned int
267 shndx() const
268 { return this->shndx_; }
269
270 // Set the section index.
271 void
272 set_shndx(unsigned int shndx)
273 {
274 gold_assert(this->shndx_ == 0);
275 this->shndx_ = shndx;
276 }
277
278 // Whether this is a comdat group.
279 bool
280 is_comdat() const
281 { return this->is_comdat_; }
282
283 // Set that this is a comdat group.
284 void
285 set_is_comdat()
286 {
287 gold_assert(!this->is_comdat_);
288 this->is_comdat_ = true;
289 this->u_.group_sections = new Comdat_group();
290 }
291
292 // Whether this is associated with the name of a group or section
293 // rather than the symbol name derived from a linkonce section.
294 bool
295 is_group_name() const
296 { return this->is_group_name_; }
297
298 // Note that this represents a comdat group rather than a single
299 // linkonce section.
300 void
301 set_is_group_name()
302 { this->is_group_name_ = true; }
303
304 // Add a section to the group list.
305 void
306 add_comdat_section(const std::string& name, unsigned int shndx,
307 uint64_t size)
308 {
309 gold_assert(this->is_comdat_);
310 Comdat_section_info sinfo(shndx, size);
311 this->u_.group_sections->insert(std::make_pair(name, sinfo));
312 }
313
314 // Look for a section name in the group list, and return whether it
315 // was found. If found, returns the section index and size.
316 bool
317 find_comdat_section(const std::string& name, unsigned int* pshndx,
318 uint64_t* psize) const
319 {
320 gold_assert(this->is_comdat_);
321 Comdat_group::const_iterator p = this->u_.group_sections->find(name);
322 if (p == this->u_.group_sections->end())
323 return false;
324 *pshndx = p->second.shndx;
325 *psize = p->second.size;
326 return true;
327 }
328
329 // If there is only one section in the group list, return true, and
330 // return the section index and size.
331 bool
332 find_single_comdat_section(unsigned int* pshndx, uint64_t* psize) const
333 {
334 gold_assert(this->is_comdat_);
335 if (this->u_.group_sections->size() != 1)
336 return false;
337 Comdat_group::const_iterator p = this->u_.group_sections->begin();
338 *pshndx = p->second.shndx;
339 *psize = p->second.size;
340 return true;
341 }
342
343 // Return the size of a linkonce section.
344 uint64_t
345 linkonce_size() const
346 {
347 gold_assert(!this->is_comdat_);
348 return this->u_.linkonce_size;
349 }
350
351 // Set the size of a linkonce section.
352 void
353 set_linkonce_size(uint64_t size)
354 {
355 gold_assert(!this->is_comdat_);
356 this->u_.linkonce_size = size;
357 }
358
359 private:
360 // No assignment.
361 Kept_section& operator=(const Kept_section&);
362
363 // The object containing the comdat group or .gnu.linkonce section.
364 Relobj* object_;
365 // Index of the group section for comdats and the section itself for
366 // .gnu.linkonce.
367 unsigned int shndx_;
368 // True if this is for a comdat group rather than a .gnu.linkonce
369 // section.
370 bool is_comdat_;
371 // The Kept_sections are values of a mapping, that maps names to
372 // them. This field is true if this struct is associated with the
373 // name of a comdat or .gnu.linkonce, false if it is associated with
374 // the name of a symbol obtained from the .gnu.linkonce.* name
375 // through some heuristics.
376 bool is_group_name_;
377 union
378 {
379 // If the is_comdat_ field is true, this holds a map from names of
380 // the sections in the group to section indexes in object_ and to
381 // section sizes.
382 Comdat_group* group_sections;
383 // If the is_comdat_ field is false, this holds the size of the
384 // single section.
385 uint64_t linkonce_size;
386 } u_;
387 };
388
389 // The ordering for output sections. This controls how output
390 // sections are ordered within a PT_LOAD output segment.
391
392 enum Output_section_order
393 {
394 // Unspecified. Used for non-load segments. Also used for the file
395 // and segment headers.
396 ORDER_INVALID,
397
398 // The PT_INTERP section should come first, so that the dynamic
399 // linker can pick it up quickly.
400 ORDER_INTERP,
401
402 // Loadable read-only note sections come next so that the PT_NOTE
403 // segment is on the first page of the executable.
404 ORDER_RO_NOTE,
405
406 // Put read-only sections used by the dynamic linker early in the
407 // executable to minimize paging.
408 ORDER_DYNAMIC_LINKER,
409
410 // Put reloc sections used by the dynamic linker after other
411 // sections used by the dynamic linker; otherwise, objcopy and strip
412 // get confused.
413 ORDER_DYNAMIC_RELOCS,
414
415 // Put the PLT reloc section after the other dynamic relocs;
416 // otherwise, prelink gets confused.
417 ORDER_DYNAMIC_PLT_RELOCS,
418
419 // The .init section.
420 ORDER_INIT,
421
422 // The PLT.
423 ORDER_PLT,
424
425 // The regular text sections.
426 ORDER_TEXT,
427
428 // The .fini section.
429 ORDER_FINI,
430
431 // The read-only sections.
432 ORDER_READONLY,
433
434 // The exception frame sections.
435 ORDER_EHFRAME,
436
437 // The TLS sections come first in the data section.
438 ORDER_TLS_DATA,
439 ORDER_TLS_BSS,
440
441 // Local RELRO (read-only after relocation) sections come before
442 // non-local RELRO sections. This data will be fully resolved by
443 // the prelinker.
444 ORDER_RELRO_LOCAL,
445
446 // Non-local RELRO sections are grouped together after local RELRO
447 // sections. All RELRO sections must be adjacent so that they can
448 // all be put into a PT_GNU_RELRO segment.
449 ORDER_RELRO,
450
451 // We permit marking exactly one output section as the last RELRO
452 // section. We do this so that the read-only GOT can be adjacent to
453 // the writable GOT.
454 ORDER_RELRO_LAST,
455
456 // Similarly, we permit marking exactly one output section as the
457 // first non-RELRO section.
458 ORDER_NON_RELRO_FIRST,
459
460 // The regular data sections come after the RELRO sections.
461 ORDER_DATA,
462
463 // Large data sections normally go in large data segments.
464 ORDER_LARGE_DATA,
465
466 // Group writable notes so that we can have a single PT_NOTE
467 // segment.
468 ORDER_RW_NOTE,
469
470 // The small data sections must be at the end of the data sections,
471 // so that they can be adjacent to the small BSS sections.
472 ORDER_SMALL_DATA,
473
474 // The BSS sections start here.
475
476 // The small BSS sections must be at the start of the BSS sections,
477 // so that they can be adjacent to the small data sections.
478 ORDER_SMALL_BSS,
479
480 // The regular BSS sections.
481 ORDER_BSS,
482
483 // The large BSS sections come after the other BSS sections.
484 ORDER_LARGE_BSS,
485
486 // Maximum value.
487 ORDER_MAX
488 };
489
490 // This class handles the details of laying out input sections.
491
492 class Layout
493 {
494 public:
495 Layout(int number_of_input_files, Script_options*);
496
497 ~Layout()
498 {
499 delete this->relaxation_debug_check_;
500 delete this->segment_states_;
501 }
502
503 // For incremental links, record the base file to be modified.
504 void
505 set_incremental_base(Incremental_binary* base);
506
507 Incremental_binary*
508 incremental_base()
509 { return this->incremental_base_; }
510
511 // For incremental links, record the initial fixed layout of a section
512 // from the base file, and return a pointer to the Output_section.
513 template<int size, bool big_endian>
514 Output_section*
515 init_fixed_output_section(const char*, elfcpp::Shdr<size, big_endian>&);
516
517 // Given an input section SHNDX, named NAME, with data in SHDR, from
518 // the object file OBJECT, return the output section where this
519 // input section should go. RELOC_SHNDX is the index of a
520 // relocation section which applies to this section, or 0 if none,
521 // or -1U if more than one. RELOC_TYPE is the type of the
522 // relocation section if there is one. Set *OFFSET to the offset
523 // within the output section.
524 template<int size, bool big_endian>
525 Output_section*
526 layout(Sized_relobj_file<size, big_endian> *object, unsigned int shndx,
527 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
528 unsigned int reloc_shndx, unsigned int reloc_type, off_t* offset);
529
530 std::map<Section_id, unsigned int>*
531 get_section_order_map()
532 { return &this->section_order_map_; }
533
534 // Struct to store segment info when mapping some input sections to
535 // unique segments using linker plugins. Mapping an input section to
536 // a unique segment is done by first placing such input sections in
537 // unique output sections and then mapping the output section to a
538 // unique segment. NAME is the name of the output section. FLAGS
539 // and ALIGN are the extra flags and alignment of the segment.
540 struct Unique_segment_info
541 {
542 // Identifier for the segment. ELF segments don't have names. This
543 // is used as the name of the output section mapped to the segment.
544 const char* name;
545 // Additional segment flags.
546 uint64_t flags;
547 // Segment alignment.
548 uint64_t align;
549 };
550
551 // Mapping from input section to segment.
552 typedef std::map<Const_section_id, Unique_segment_info*>
553 Section_segment_map;
554
555 // Maps section SECN to SEGMENT s.
556 void
557 insert_section_segment_map(Const_section_id secn, Unique_segment_info *s);
558
559 // Some input sections require special ordering, for compatibility
560 // with GNU ld. Given the name of an input section, return -1 if it
561 // does not require special ordering. Otherwise, return the index
562 // by which it should be ordered compared to other input sections
563 // that require special ordering.
564 static int
565 special_ordering_of_input_section(const char* name);
566
567 bool
568 is_section_ordering_specified()
569 { return this->section_ordering_specified_; }
570
571 void
572 set_section_ordering_specified()
573 { this->section_ordering_specified_ = true; }
574
575 bool
576 is_unique_segment_for_sections_specified() const
577 { return this->unique_segment_for_sections_specified_; }
578
579 void
580 set_unique_segment_for_sections_specified()
581 { this->unique_segment_for_sections_specified_ = true; }
582
583 // For incremental updates, allocate a block of memory from the
584 // free list. Find a block starting at or after MINOFF.
585 off_t
586 allocate(off_t len, uint64_t align, off_t minoff)
587 { return this->free_list_.allocate(len, align, minoff); }
588
589 unsigned int
590 find_section_order_index(const std::string&);
591
592 // Read the sequence of input sections from the file specified with
593 // linker option --section-ordering-file.
594 void
595 read_layout_from_file();
596
597 // Layout an input reloc section when doing a relocatable link. The
598 // section is RELOC_SHNDX in OBJECT, with data in SHDR.
599 // DATA_SECTION is the reloc section to which it refers. RR is the
600 // relocatable information.
601 template<int size, bool big_endian>
602 Output_section*
603 layout_reloc(Sized_relobj_file<size, big_endian>* object,
604 unsigned int reloc_shndx,
605 const elfcpp::Shdr<size, big_endian>& shdr,
606 Output_section* data_section,
607 Relocatable_relocs* rr);
608
609 // Layout a group section when doing a relocatable link.
610 template<int size, bool big_endian>
611 void
612 layout_group(Symbol_table* symtab,
613 Sized_relobj_file<size, big_endian>* object,
614 unsigned int group_shndx,
615 const char* group_section_name,
616 const char* signature,
617 const elfcpp::Shdr<size, big_endian>& shdr,
618 elfcpp::Elf_Word flags,
619 std::vector<unsigned int>* shndxes);
620
621 // Like layout, only for exception frame sections. OBJECT is an
622 // object file. SYMBOLS is the contents of the symbol table
623 // section, with size SYMBOLS_SIZE. SYMBOL_NAMES is the contents of
624 // the symbol name section, with size SYMBOL_NAMES_SIZE. SHNDX is a
625 // .eh_frame section in OBJECT. SHDR is the section header.
626 // RELOC_SHNDX is the index of a relocation section which applies to
627 // this section, or 0 if none, or -1U if more than one. RELOC_TYPE
628 // is the type of the relocation section if there is one. This
629 // returns the output section, and sets *OFFSET to the offset.
630 template<int size, bool big_endian>
631 Output_section*
632 layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
633 const unsigned char* symbols,
634 off_t symbols_size,
635 const unsigned char* symbol_names,
636 off_t symbol_names_size,
637 unsigned int shndx,
638 const elfcpp::Shdr<size, big_endian>& shdr,
639 unsigned int reloc_shndx, unsigned int reloc_type,
640 off_t* offset);
641
642 // After processing all input files, we call this to make sure that
643 // the optimized .eh_frame sections have been added to the output
644 // section.
645 void
646 finalize_eh_frame_section();
647
648 // Add .eh_frame information for a PLT. The FDE must start with a
649 // 4-byte PC-relative reference to the start of the PLT, followed by
650 // a 4-byte size of PLT.
651 void
652 add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
653 size_t cie_length, const unsigned char* fde_data,
654 size_t fde_length);
655
656 // Remove .eh_frame information for a PLT. FDEs using the CIE must
657 // be removed in reverse order to the order they were added.
658 void
659 remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
660 size_t cie_length, const unsigned char* fde_data,
661 size_t fde_length);
662
663 // Scan a .debug_info or .debug_types section, and add summary
664 // information to the .gdb_index section.
665 template<int size, bool big_endian>
666 void
667 add_to_gdb_index(bool is_type_unit,
668 Sized_relobj<size, big_endian>* object,
669 const unsigned char* symbols,
670 off_t symbols_size,
671 unsigned int shndx,
672 unsigned int reloc_shndx,
673 unsigned int reloc_type);
674
675 // Handle a GNU stack note. This is called once per input object
676 // file. SEEN_GNU_STACK is true if the object file has a
677 // .note.GNU-stack section. GNU_STACK_FLAGS is the section flags
678 // from that section if there was one.
679 void
680 layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
681 const Object*);
682
683 // Add an Output_section_data to the layout. This is used for
684 // special sections like the GOT section. ORDER is where the
685 // section should wind up in the output segment. IS_RELRO is true
686 // for relro sections.
687 Output_section*
688 add_output_section_data(const char* name, elfcpp::Elf_Word type,
689 elfcpp::Elf_Xword flags,
690 Output_section_data*, Output_section_order order,
691 bool is_relro);
692
693 // Increase the size of the relro segment by this much.
694 void
695 increase_relro(unsigned int s)
696 { this->increase_relro_ += s; }
697
698 // Create dynamic sections if necessary.
699 void
700 create_initial_dynamic_sections(Symbol_table*);
701
702 // Define __start and __stop symbols for output sections.
703 void
704 define_section_symbols(Symbol_table*);
705
706 // Create automatic note sections.
707 void
708 create_notes();
709
710 // Create sections for linker scripts.
711 void
712 create_script_sections()
713 { this->script_options_->create_script_sections(this); }
714
715 // Define symbols from any linker script.
716 void
717 define_script_symbols(Symbol_table* symtab)
718 { this->script_options_->add_symbols_to_table(symtab); }
719
720 // Define symbols for group signatures.
721 void
722 define_group_signatures(Symbol_table*);
723
724 // Return the Stringpool used for symbol names.
725 const Stringpool*
726 sympool() const
727 { return &this->sympool_; }
728
729 // Return the Stringpool used for dynamic symbol names and dynamic
730 // tags.
731 const Stringpool*
732 dynpool() const
733 { return &this->dynpool_; }
734
735 // Return the .dynamic output section. This is only valid after the
736 // layout has been finalized.
737 Output_section*
738 dynamic_section() const
739 { return this->dynamic_section_; }
740
741 // Return the symtab_xindex section used to hold large section
742 // indexes for the normal symbol table.
743 Output_symtab_xindex*
744 symtab_xindex() const
745 { return this->symtab_xindex_; }
746
747 // Return the dynsym_xindex section used to hold large section
748 // indexes for the dynamic symbol table.
749 Output_symtab_xindex*
750 dynsym_xindex() const
751 { return this->dynsym_xindex_; }
752
753 // Return whether a section is a .gnu.linkonce section, given the
754 // section name.
755 static inline bool
756 is_linkonce(const char* name)
757 { return strncmp(name, ".gnu.linkonce", sizeof(".gnu.linkonce") - 1) == 0; }
758
759 // Whether we have added an input section.
760 bool
761 have_added_input_section() const
762 { return this->have_added_input_section_; }
763
764 // Return true if a section is a debugging section.
765 static inline bool
766 is_debug_info_section(const char* name)
767 {
768 // Debugging sections can only be recognized by name.
769 return (strncmp(name, ".debug", sizeof(".debug") - 1) == 0
770 || strncmp(name, ".zdebug", sizeof(".zdebug") - 1) == 0
771 || strncmp(name, ".gnu.linkonce.wi.",
772 sizeof(".gnu.linkonce.wi.") - 1) == 0
773 || strncmp(name, ".line", sizeof(".line") - 1) == 0
774 || strncmp(name, ".stab", sizeof(".stab") - 1) == 0
775 || strncmp(name, ".pdr", sizeof(".pdr") - 1) == 0);
776 }
777
778 // Return true if RELOBJ is an input file whose base name matches
779 // FILE_NAME. The base name must have an extension of ".o", and
780 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
781 static bool
782 match_file_name(const Relobj* relobj, const char* file_name);
783
784 // Return whether section SHNDX in RELOBJ is a .ctors/.dtors section
785 // with more than one word being mapped to a .init_array/.fini_array
786 // section.
787 bool
788 is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const;
789
790 // Check if a comdat group or .gnu.linkonce section with the given
791 // NAME is selected for the link. If there is already a section,
792 // *KEPT_SECTION is set to point to the signature and the function
793 // returns false. Otherwise, OBJECT, SHNDX,IS_COMDAT, and
794 // IS_GROUP_NAME are recorded for this NAME in the layout object,
795 // *KEPT_SECTION is set to the internal copy and the function return
796 // false.
797 bool
798 find_or_add_kept_section(const std::string& name, Relobj* object,
799 unsigned int shndx, bool is_comdat,
800 bool is_group_name, Kept_section** kept_section);
801
802 // Finalize the layout after all the input sections have been added.
803 off_t
804 finalize(const Input_objects*, Symbol_table*, Target*, const Task*);
805
806 // Return whether any sections require postprocessing.
807 bool
808 any_postprocessing_sections() const
809 { return this->any_postprocessing_sections_; }
810
811 // Return the size of the output file.
812 off_t
813 output_file_size() const
814 { return this->output_file_size_; }
815
816 // Return the TLS segment. This will return NULL if there isn't
817 // one.
818 Output_segment*
819 tls_segment() const
820 { return this->tls_segment_; }
821
822 // Return the normal symbol table.
823 Output_section*
824 symtab_section() const
825 {
826 gold_assert(this->symtab_section_ != NULL);
827 return this->symtab_section_;
828 }
829
830 // Return the file offset of the normal symbol table.
831 off_t
832 symtab_section_offset() const;
833
834 // Return the section index of the normal symbol tabl.e
835 unsigned int
836 symtab_section_shndx() const;
837
838 // Return the dynamic symbol table.
839 Output_section*
840 dynsym_section() const
841 {
842 gold_assert(this->dynsym_section_ != NULL);
843 return this->dynsym_section_;
844 }
845
846 // Return the dynamic tags.
847 Output_data_dynamic*
848 dynamic_data() const
849 { return this->dynamic_data_; }
850
851 // Write out the output sections.
852 void
853 write_output_sections(Output_file* of) const;
854
855 // Write out data not associated with an input file or the symbol
856 // table.
857 void
858 write_data(const Symbol_table*, Output_file*) const;
859
860 // Write out output sections which can not be written until all the
861 // input sections are complete.
862 void
863 write_sections_after_input_sections(Output_file* of);
864
865 // Return an output section named NAME, or NULL if there is none.
866 Output_section*
867 find_output_section(const char* name) const;
868
869 // Return an output segment of type TYPE, with segment flags SET set
870 // and segment flags CLEAR clear. Return NULL if there is none.
871 Output_segment*
872 find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
873 elfcpp::Elf_Word clear) const;
874
875 // Return the number of segments we expect to produce.
876 size_t
877 expected_segment_count() const;
878
879 // Set a flag to indicate that an object file uses the static TLS model.
880 void
881 set_has_static_tls()
882 { this->has_static_tls_ = true; }
883
884 // Return true if any object file uses the static TLS model.
885 bool
886 has_static_tls() const
887 { return this->has_static_tls_; }
888
889 // Return the options which may be set by a linker script.
890 Script_options*
891 script_options()
892 { return this->script_options_; }
893
894 const Script_options*
895 script_options() const
896 { return this->script_options_; }
897
898 // Return the object managing inputs in incremental build. NULL in
899 // non-incremental builds.
900 Incremental_inputs*
901 incremental_inputs() const
902 { return this->incremental_inputs_; }
903
904 // For the target-specific code to add dynamic tags which are common
905 // to most targets.
906 void
907 add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
908 const Output_data* plt_rel,
909 const Output_data_reloc_generic* dyn_rel,
910 bool add_debug, bool dynrel_includes_plt);
911
912 // Add a target-specific dynamic tag with constant value.
913 void
914 add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val);
915
916 // Compute and write out the build ID if needed.
917 void
918 write_build_id(Output_file*, unsigned char*, size_t) const;
919
920 // Rewrite output file in binary format.
921 void
922 write_binary(Output_file* in) const;
923
924 // Print output sections to the map file.
925 void
926 print_to_mapfile(Mapfile*) const;
927
928 // Dump statistical information to stderr.
929 void
930 print_stats() const;
931
932 // A list of segments.
933
934 typedef std::vector<Output_segment*> Segment_list;
935
936 // A list of sections.
937
938 typedef std::vector<Output_section*> Section_list;
939
940 // The list of information to write out which is not attached to
941 // either a section or a segment.
942 typedef std::vector<Output_data*> Data_list;
943
944 // Store the allocated sections into the section list. This is used
945 // by the linker script code.
946 void
947 get_allocated_sections(Section_list*) const;
948
949 // Store the executable sections into the section list.
950 void
951 get_executable_sections(Section_list*) const;
952
953 // Make a section for a linker script to hold data.
954 Output_section*
955 make_output_section_for_script(const char* name,
956 Script_sections::Section_type section_type);
957
958 // Make a segment. This is used by the linker script code.
959 Output_segment*
960 make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags);
961
962 // Return the number of segments.
963 size_t
964 segment_count() const
965 { return this->segment_list_.size(); }
966
967 // Map from section flags to segment flags.
968 static elfcpp::Elf_Word
969 section_flags_to_segment(elfcpp::Elf_Xword flags);
970
971 // Attach sections to segments.
972 void
973 attach_sections_to_segments(const Target*);
974
975 // For relaxation clean up, we need to know output section data created
976 // from a linker script.
977 void
978 new_output_section_data_from_script(Output_section_data* posd)
979 {
980 if (this->record_output_section_data_from_script_)
981 this->script_output_section_data_list_.push_back(posd);
982 }
983
984 // Return section list.
985 const Section_list&
986 section_list() const
987 { return this->section_list_; }
988
989 // Returns TRUE iff NAME (an input section from RELOBJ) will
990 // be mapped to an output section that should be KEPT.
991 bool
992 keep_input_section(const Relobj*, const char*);
993
994 // Add a special output object that will be recreated afresh
995 // if there is another relaxation iteration.
996 void
997 add_relax_output(Output_data* data)
998 { this->relax_output_list_.push_back(data); }
999
1000 // Clear out (and free) everything added by add_relax_output.
1001 void
1002 reset_relax_output();
1003
1004 private:
1005 Layout(const Layout&);
1006 Layout& operator=(const Layout&);
1007
1008 // Mapping from input section names to output section names.
1009 struct Section_name_mapping
1010 {
1011 const char* from;
1012 int fromlen;
1013 const char* to;
1014 int tolen;
1015 };
1016 static const Section_name_mapping section_name_mapping[];
1017 static const int section_name_mapping_count;
1018
1019 // During a relocatable link, a list of group sections and
1020 // signatures.
1021 struct Group_signature
1022 {
1023 // The group section.
1024 Output_section* section;
1025 // The signature.
1026 const char* signature;
1027
1028 Group_signature()
1029 : section(NULL), signature(NULL)
1030 { }
1031
1032 Group_signature(Output_section* sectiona, const char* signaturea)
1033 : section(sectiona), signature(signaturea)
1034 { }
1035 };
1036 typedef std::vector<Group_signature> Group_signatures;
1037
1038 // Create a note section, filling in the header.
1039 Output_section*
1040 create_note(const char* name, int note_type, const char* section_name,
1041 size_t descsz, bool allocate, size_t* trailing_padding);
1042
1043 // Create a note section for gold version.
1044 void
1045 create_gold_note();
1046
1047 // Record whether the stack must be executable, and a user-supplied size.
1048 void
1049 create_stack_segment();
1050
1051 // Create a build ID note if needed.
1052 void
1053 create_build_id();
1054
1055 // Link .stab and .stabstr sections.
1056 void
1057 link_stabs_sections();
1058
1059 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1060 // for the next run of incremental linking to check what has changed.
1061 void
1062 create_incremental_info_sections(Symbol_table*);
1063
1064 // Find the first read-only PT_LOAD segment, creating one if
1065 // necessary.
1066 Output_segment*
1067 find_first_load_seg(const Target*);
1068
1069 // Count the local symbols in the regular symbol table and the dynamic
1070 // symbol table, and build the respective string pools.
1071 void
1072 count_local_symbols(const Task*, const Input_objects*);
1073
1074 // Create the output sections for the symbol table.
1075 void
1076 create_symtab_sections(const Input_objects*, Symbol_table*,
1077 unsigned int, off_t*, unsigned int);
1078
1079 // Create the .shstrtab section.
1080 Output_section*
1081 create_shstrtab();
1082
1083 // Create the section header table.
1084 void
1085 create_shdrs(const Output_section* shstrtab_section, off_t*);
1086
1087 // Create the dynamic symbol table.
1088 void
1089 create_dynamic_symtab(const Input_objects*, Symbol_table*,
1090 Output_section** pdynstr,
1091 unsigned int* plocal_dynamic_count,
1092 unsigned int* pforced_local_dynamic_count,
1093 std::vector<Symbol*>* pdynamic_symbols,
1094 Versions* versions);
1095
1096 // Assign offsets to each local portion of the dynamic symbol table.
1097 void
1098 assign_local_dynsym_offsets(const Input_objects*);
1099
1100 // Finish the .dynamic section and PT_DYNAMIC segment.
1101 void
1102 finish_dynamic_section(const Input_objects*, const Symbol_table*);
1103
1104 // Set the size of the _DYNAMIC symbol.
1105 void
1106 set_dynamic_symbol_size(const Symbol_table*);
1107
1108 // Create the .interp section and PT_INTERP segment.
1109 void
1110 create_interp(const Target* target);
1111
1112 // Create the version sections.
1113 void
1114 create_version_sections(const Versions*,
1115 const Symbol_table*,
1116 unsigned int local_symcount,
1117 const std::vector<Symbol*>& dynamic_symbols,
1118 const Output_section* dynstr);
1119
1120 template<int size, bool big_endian>
1121 void
1122 sized_create_version_sections(const Versions* versions,
1123 const Symbol_table*,
1124 unsigned int local_symcount,
1125 const std::vector<Symbol*>& dynamic_symbols,
1126 const Output_section* dynstr);
1127
1128 // Return whether to include this section in the link.
1129 template<int size, bool big_endian>
1130 bool
1131 include_section(Sized_relobj_file<size, big_endian>* object, const char* name,
1132 const elfcpp::Shdr<size, big_endian>&);
1133
1134 // Return the output section name to use given an input section
1135 // name. Set *PLEN to the length of the name. *PLEN must be
1136 // initialized to the length of NAME.
1137 static const char*
1138 output_section_name(const Relobj*, const char* name, size_t* plen);
1139
1140 // Return the number of allocated output sections.
1141 size_t
1142 allocated_output_section_count() const;
1143
1144 // Return the output section for NAME, TYPE and FLAGS.
1145 Output_section*
1146 get_output_section(const char* name, Stringpool::Key name_key,
1147 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
1148 Output_section_order order, bool is_relro);
1149
1150 // Clear the input section flags that should not be copied to the
1151 // output section.
1152 elfcpp::Elf_Xword
1153 get_output_section_flags (elfcpp::Elf_Xword input_section_flags);
1154
1155 // Choose the output section for NAME in RELOBJ.
1156 Output_section*
1157 choose_output_section(const Relobj* relobj, const char* name,
1158 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
1159 bool is_input_section, Output_section_order order,
1160 bool is_relro, bool is_reloc, bool match_input_spec);
1161
1162 // Create a new Output_section.
1163 Output_section*
1164 make_output_section(const char* name, elfcpp::Elf_Word type,
1165 elfcpp::Elf_Xword flags, Output_section_order order,
1166 bool is_relro);
1167
1168 // Attach a section to a segment.
1169 void
1170 attach_section_to_segment(const Target*, Output_section*);
1171
1172 // Get section order.
1173 Output_section_order
1174 default_section_order(Output_section*, bool is_relro_local);
1175
1176 // Attach an allocated section to a segment.
1177 void
1178 attach_allocated_section_to_segment(const Target*, Output_section*);
1179
1180 // Make the .eh_frame section.
1181 Output_section*
1182 make_eh_frame_section(const Relobj*);
1183
1184 // Set the final file offsets of all the segments.
1185 off_t
1186 set_segment_offsets(const Target*, Output_segment*, unsigned int* pshndx);
1187
1188 // Set the file offsets of the sections when doing a relocatable
1189 // link.
1190 off_t
1191 set_relocatable_section_offsets(Output_data*, unsigned int* pshndx);
1192
1193 // Set the final file offsets of all the sections not associated
1194 // with a segment. We set section offsets in three passes: the
1195 // first handles all allocated sections, the second sections that
1196 // require postprocessing, and the last the late-bound STRTAB
1197 // sections (probably only shstrtab, which is the one we care about
1198 // because it holds section names).
1199 enum Section_offset_pass
1200 {
1201 BEFORE_INPUT_SECTIONS_PASS,
1202 POSTPROCESSING_SECTIONS_PASS,
1203 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1204 };
1205 off_t
1206 set_section_offsets(off_t, Section_offset_pass pass);
1207
1208 // Set the final section indexes of all the sections not associated
1209 // with a segment. Returns the next unused index.
1210 unsigned int
1211 set_section_indexes(unsigned int pshndx);
1212
1213 // Set the section addresses when using a script.
1214 Output_segment*
1215 set_section_addresses_from_script(Symbol_table*);
1216
1217 // Find appropriate places or orphan sections in a script.
1218 void
1219 place_orphan_sections_in_script();
1220
1221 // Return whether SEG1 comes before SEG2 in the output file.
1222 bool
1223 segment_precedes(const Output_segment* seg1, const Output_segment* seg2);
1224
1225 // Use to save and restore segments during relaxation.
1226 typedef Unordered_map<const Output_segment*, const Output_segment*>
1227 Segment_states;
1228
1229 // Save states of current output segments.
1230 void
1231 save_segments(Segment_states*);
1232
1233 // Restore output segment states.
1234 void
1235 restore_segments(const Segment_states*);
1236
1237 // Clean up after relaxation so that it is possible to lay out the
1238 // sections and segments again.
1239 void
1240 clean_up_after_relaxation();
1241
1242 // Doing preparation work for relaxation. This is factored out to make
1243 // Layout::finalized a bit smaller and easier to read.
1244 void
1245 prepare_for_relaxation();
1246
1247 // Main body of the relaxation loop, which lays out the section.
1248 off_t
1249 relaxation_loop_body(int, Target*, Symbol_table*, Output_segment**,
1250 Output_segment*, Output_segment_headers*,
1251 Output_file_header*, unsigned int*);
1252
1253 // A mapping used for kept comdats/.gnu.linkonce group signatures.
1254 typedef Unordered_map<std::string, Kept_section> Signatures;
1255
1256 // Mapping from input section name/type/flags to output section. We
1257 // use canonicalized strings here.
1258
1259 typedef std::pair<Stringpool::Key,
1260 std::pair<elfcpp::Elf_Word, elfcpp::Elf_Xword> > Key;
1261
1262 struct Hash_key
1263 {
1264 size_t
1265 operator()(const Key& k) const;
1266 };
1267
1268 typedef Unordered_map<Key, Output_section*, Hash_key> Section_name_map;
1269
1270 // A comparison class for segments.
1271
1272 class Compare_segments
1273 {
1274 public:
1275 Compare_segments(Layout* layout)
1276 : layout_(layout)
1277 { }
1278
1279 bool
1280 operator()(const Output_segment* seg1, const Output_segment* seg2)
1281 { return this->layout_->segment_precedes(seg1, seg2); }
1282
1283 private:
1284 Layout* layout_;
1285 };
1286
1287 typedef std::vector<Output_section_data*> Output_section_data_list;
1288
1289 // Debug checker class.
1290 class Relaxation_debug_check
1291 {
1292 public:
1293 Relaxation_debug_check()
1294 : section_infos_()
1295 { }
1296
1297 // Check that sections and special data are in reset states.
1298 void
1299 check_output_data_for_reset_values(const Layout::Section_list&,
1300 const Layout::Data_list& special_outputs,
1301 const Layout::Data_list& relax_outputs);
1302
1303 // Record information of a section list.
1304 void
1305 read_sections(const Layout::Section_list&);
1306
1307 // Verify a section list with recorded information.
1308 void
1309 verify_sections(const Layout::Section_list&);
1310
1311 private:
1312 // Information we care about a section.
1313 struct Section_info
1314 {
1315 // Output section described by this.
1316 Output_section* output_section;
1317 // Load address.
1318 uint64_t address;
1319 // Data size.
1320 off_t data_size;
1321 // File offset.
1322 off_t offset;
1323 };
1324
1325 // Section information.
1326 std::vector<Section_info> section_infos_;
1327 };
1328
1329 // The number of input files, for sizing tables.
1330 int number_of_input_files_;
1331 // Information set by scripts or by command line options.
1332 Script_options* script_options_;
1333 // The output section names.
1334 Stringpool namepool_;
1335 // The output symbol names.
1336 Stringpool sympool_;
1337 // The dynamic strings, if needed.
1338 Stringpool dynpool_;
1339 // The list of group sections and linkonce sections which we have seen.
1340 Signatures signatures_;
1341 // The mapping from input section name/type/flags to output sections.
1342 Section_name_map section_name_map_;
1343 // The list of output segments.
1344 Segment_list segment_list_;
1345 // The list of output sections.
1346 Section_list section_list_;
1347 // The list of output sections which are not attached to any output
1348 // segment.
1349 Section_list unattached_section_list_;
1350 // The list of unattached Output_data objects which require special
1351 // handling because they are not Output_sections.
1352 Data_list special_output_list_;
1353 // Like special_output_list_, but cleared and recreated on each
1354 // iteration of relaxation.
1355 Data_list relax_output_list_;
1356 // The section headers.
1357 Output_section_headers* section_headers_;
1358 // A pointer to the PT_TLS segment if there is one.
1359 Output_segment* tls_segment_;
1360 // A pointer to the PT_GNU_RELRO segment if there is one.
1361 Output_segment* relro_segment_;
1362 // A pointer to the PT_INTERP segment if there is one.
1363 Output_segment* interp_segment_;
1364 // A backend may increase the size of the PT_GNU_RELRO segment if
1365 // there is one. This is the amount to increase it by.
1366 unsigned int increase_relro_;
1367 // The SHT_SYMTAB output section.
1368 Output_section* symtab_section_;
1369 // The SHT_SYMTAB_SHNDX for the regular symbol table if there is one.
1370 Output_symtab_xindex* symtab_xindex_;
1371 // The SHT_DYNSYM output section if there is one.
1372 Output_section* dynsym_section_;
1373 // The SHT_SYMTAB_SHNDX for the dynamic symbol table if there is one.
1374 Output_symtab_xindex* dynsym_xindex_;
1375 // The SHT_DYNAMIC output section if there is one.
1376 Output_section* dynamic_section_;
1377 // The _DYNAMIC symbol if there is one.
1378 Symbol* dynamic_symbol_;
1379 // The dynamic data which goes into dynamic_section_.
1380 Output_data_dynamic* dynamic_data_;
1381 // The exception frame output section if there is one.
1382 Output_section* eh_frame_section_;
1383 // The exception frame data for eh_frame_section_.
1384 Eh_frame* eh_frame_data_;
1385 // Whether we have added eh_frame_data_ to the .eh_frame section.
1386 bool added_eh_frame_data_;
1387 // The exception frame header output section if there is one.
1388 Output_section* eh_frame_hdr_section_;
1389 // The data for the .gdb_index section.
1390 Gdb_index* gdb_index_data_;
1391 // The space for the build ID checksum if there is one.
1392 Output_section_data* build_id_note_;
1393 // The output section containing dwarf abbreviations
1394 Output_reduced_debug_abbrev_section* debug_abbrev_;
1395 // The output section containing the dwarf debug info tree
1396 Output_reduced_debug_info_section* debug_info_;
1397 // A list of group sections and their signatures.
1398 Group_signatures group_signatures_;
1399 // The size of the output file.
1400 off_t output_file_size_;
1401 // Whether we have added an input section to an output section.
1402 bool have_added_input_section_;
1403 // Whether we have attached the sections to the segments.
1404 bool sections_are_attached_;
1405 // Whether we have seen an object file marked to require an
1406 // executable stack.
1407 bool input_requires_executable_stack_;
1408 // Whether we have seen at least one object file with an executable
1409 // stack marker.
1410 bool input_with_gnu_stack_note_;
1411 // Whether we have seen at least one object file without an
1412 // executable stack marker.
1413 bool input_without_gnu_stack_note_;
1414 // Whether we have seen an object file that uses the static TLS model.
1415 bool has_static_tls_;
1416 // Whether any sections require postprocessing.
1417 bool any_postprocessing_sections_;
1418 // Whether we have resized the signatures_ hash table.
1419 bool resized_signatures_;
1420 // Whether we have created a .stab*str output section.
1421 bool have_stabstr_section_;
1422 // True if the input sections in the output sections should be sorted
1423 // as specified in a section ordering file.
1424 bool section_ordering_specified_;
1425 // True if some input sections need to be mapped to a unique segment,
1426 // after being mapped to a unique Output_section.
1427 bool unique_segment_for_sections_specified_;
1428 // In incremental build, holds information check the inputs and build the
1429 // .gnu_incremental_inputs section.
1430 Incremental_inputs* incremental_inputs_;
1431 // Whether we record output section data created in script
1432 bool record_output_section_data_from_script_;
1433 // List of output data that needs to be removed at relaxation clean up.
1434 Output_section_data_list script_output_section_data_list_;
1435 // Structure to save segment states before entering the relaxation loop.
1436 Segment_states* segment_states_;
1437 // A relaxation debug checker. We only create one when in debugging mode.
1438 Relaxation_debug_check* relaxation_debug_check_;
1439 // Plugins specify section_ordering using this map. This is set in
1440 // update_section_order in plugin.cc
1441 std::map<Section_id, unsigned int> section_order_map_;
1442 // This maps an input section to a unique segment. This is done by first
1443 // placing such input sections in unique output sections and then mapping
1444 // the output section to a unique segment. Unique_segment_info stores
1445 // any additional flags and alignment of the new segment.
1446 Section_segment_map section_segment_map_;
1447 // Hash a pattern to its position in the section ordering file.
1448 Unordered_map<std::string, unsigned int> input_section_position_;
1449 // Vector of glob only patterns in the section_ordering file.
1450 std::vector<std::string> input_section_glob_;
1451 // For incremental links, the base file to be modified.
1452 Incremental_binary* incremental_base_;
1453 // For incremental links, a list of free space within the file.
1454 Free_list free_list_;
1455 };
1456
1457 // This task handles writing out data in output sections which is not
1458 // part of an input section, or which requires special handling. When
1459 // this is done, it unblocks both output_sections_blocker and
1460 // final_blocker.
1461
1462 class Write_sections_task : public Task
1463 {
1464 public:
1465 Write_sections_task(const Layout* layout, Output_file* of,
1466 Task_token* output_sections_blocker,
1467 Task_token* input_sections_blocker,
1468 Task_token* final_blocker)
1469 : layout_(layout), of_(of),
1470 output_sections_blocker_(output_sections_blocker),
1471 input_sections_blocker_(input_sections_blocker),
1472 final_blocker_(final_blocker)
1473 { }
1474
1475 // The standard Task methods.
1476
1477 Task_token*
1478 is_runnable();
1479
1480 void
1481 locks(Task_locker*);
1482
1483 void
1484 run(Workqueue*);
1485
1486 std::string
1487 get_name() const
1488 { return "Write_sections_task"; }
1489
1490 private:
1491 class Write_sections_locker;
1492
1493 const Layout* layout_;
1494 Output_file* of_;
1495 Task_token* output_sections_blocker_;
1496 Task_token* input_sections_blocker_;
1497 Task_token* final_blocker_;
1498 };
1499
1500 // This task handles writing out data which is not part of a section
1501 // or segment.
1502
1503 class Write_data_task : public Task
1504 {
1505 public:
1506 Write_data_task(const Layout* layout, const Symbol_table* symtab,
1507 Output_file* of, Task_token* final_blocker)
1508 : layout_(layout), symtab_(symtab), of_(of), final_blocker_(final_blocker)
1509 { }
1510
1511 // The standard Task methods.
1512
1513 Task_token*
1514 is_runnable();
1515
1516 void
1517 locks(Task_locker*);
1518
1519 void
1520 run(Workqueue*);
1521
1522 std::string
1523 get_name() const
1524 { return "Write_data_task"; }
1525
1526 private:
1527 const Layout* layout_;
1528 const Symbol_table* symtab_;
1529 Output_file* of_;
1530 Task_token* final_blocker_;
1531 };
1532
1533 // This task handles writing out the global symbols.
1534
1535 class Write_symbols_task : public Task
1536 {
1537 public:
1538 Write_symbols_task(const Layout* layout, const Symbol_table* symtab,
1539 const Input_objects* /*input_objects*/,
1540 const Stringpool* sympool, const Stringpool* dynpool,
1541 Output_file* of, Task_token* final_blocker)
1542 : layout_(layout), symtab_(symtab),
1543 sympool_(sympool), dynpool_(dynpool), of_(of),
1544 final_blocker_(final_blocker)
1545 { }
1546
1547 // The standard Task methods.
1548
1549 Task_token*
1550 is_runnable();
1551
1552 void
1553 locks(Task_locker*);
1554
1555 void
1556 run(Workqueue*);
1557
1558 std::string
1559 get_name() const
1560 { return "Write_symbols_task"; }
1561
1562 private:
1563 const Layout* layout_;
1564 const Symbol_table* symtab_;
1565 const Stringpool* sympool_;
1566 const Stringpool* dynpool_;
1567 Output_file* of_;
1568 Task_token* final_blocker_;
1569 };
1570
1571 // This task handles writing out data in output sections which can't
1572 // be written out until all the input sections have been handled.
1573 // This is for sections whose contents is based on the contents of
1574 // other output sections.
1575
1576 class Write_after_input_sections_task : public Task
1577 {
1578 public:
1579 Write_after_input_sections_task(Layout* layout, Output_file* of,
1580 Task_token* input_sections_blocker,
1581 Task_token* final_blocker)
1582 : layout_(layout), of_(of),
1583 input_sections_blocker_(input_sections_blocker),
1584 final_blocker_(final_blocker)
1585 { }
1586
1587 // The standard Task methods.
1588
1589 Task_token*
1590 is_runnable();
1591
1592 void
1593 locks(Task_locker*);
1594
1595 void
1596 run(Workqueue*);
1597
1598 std::string
1599 get_name() const
1600 { return "Write_after_input_sections_task"; }
1601
1602 private:
1603 Layout* layout_;
1604 Output_file* of_;
1605 Task_token* input_sections_blocker_;
1606 Task_token* final_blocker_;
1607 };
1608
1609 // This task function handles computation of the build id.
1610 // When using --build-id=tree, it schedules the tasks that
1611 // compute the hashes for each chunk of the file. This task
1612 // cannot run until we have finalized the size of the output
1613 // file, after the completion of Write_after_input_sections_task.
1614
1615 class Build_id_task_runner : public Task_function_runner
1616 {
1617 public:
1618 Build_id_task_runner(const General_options* options, const Layout* layout,
1619 Output_file* of)
1620 : options_(options), layout_(layout), of_(of)
1621 { }
1622
1623 // Run the operation.
1624 void
1625 run(Workqueue*, const Task*);
1626
1627 private:
1628 const General_options* options_;
1629 const Layout* layout_;
1630 Output_file* of_;
1631 };
1632
1633 // This task function handles closing the file.
1634
1635 class Close_task_runner : public Task_function_runner
1636 {
1637 public:
1638 Close_task_runner(const General_options* options, const Layout* layout,
1639 Output_file* of, unsigned char* array_of_hashes,
1640 size_t size_of_hashes)
1641 : options_(options), layout_(layout), of_(of),
1642 array_of_hashes_(array_of_hashes), size_of_hashes_(size_of_hashes)
1643 { }
1644
1645 // Run the operation.
1646 void
1647 run(Workqueue*, const Task*);
1648
1649 private:
1650 const General_options* options_;
1651 const Layout* layout_;
1652 Output_file* of_;
1653 unsigned char* const array_of_hashes_;
1654 const size_t size_of_hashes_;
1655 };
1656
1657 // A small helper function to align an address.
1658
1659 inline uint64_t
1660 align_address(uint64_t address, uint64_t addralign)
1661 {
1662 if (addralign != 0)
1663 address = (address + addralign - 1) &~ (addralign - 1);
1664 return address;
1665 }
1666
1667 } // End namespace gold.
1668
1669 #endif // !defined(GOLD_LAYOUT_H)
This page took 0.075375 seconds and 5 git commands to generate.