2013-04-26 Geoff Pike <gpike@chromium.org>
[deliverable/binutils-gdb.git] / gold / layout.h
1 // layout.h -- lay out output file sections for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #ifndef GOLD_LAYOUT_H
25 #define GOLD_LAYOUT_H
26
27 #include <cstring>
28 #include <list>
29 #include <map>
30 #include <string>
31 #include <utility>
32 #include <vector>
33
34 #include "script.h"
35 #include "workqueue.h"
36 #include "object.h"
37 #include "dynobj.h"
38 #include "stringpool.h"
39
40 namespace gold
41 {
42
43 class General_options;
44 class Incremental_inputs;
45 class Incremental_binary;
46 class Input_objects;
47 class Mapfile;
48 class Symbol_table;
49 class Output_section_data;
50 class Output_section;
51 class Output_section_headers;
52 class Output_segment_headers;
53 class Output_file_header;
54 class Output_segment;
55 class Output_data;
56 class Output_data_reloc_generic;
57 class Output_data_dynamic;
58 class Output_symtab_xindex;
59 class Output_reduced_debug_abbrev_section;
60 class Output_reduced_debug_info_section;
61 class Eh_frame;
62 class Gdb_index;
63 class Target;
64 struct Timespec;
65
66 // Return TRUE if SECNAME is the name of a compressed debug section.
67 extern bool
68 is_compressed_debug_section(const char* secname);
69
70 // Maintain a list of free space within a section, segment, or file.
71 // Used for incremental update links.
72
73 class Free_list
74 {
75 public:
76 struct Free_list_node
77 {
78 Free_list_node(off_t start, off_t end)
79 : start_(start), end_(end)
80 { }
81 off_t start_;
82 off_t end_;
83 };
84 typedef std::list<Free_list_node>::const_iterator Const_iterator;
85
86 Free_list()
87 : list_(), last_remove_(list_.begin()), extend_(false), length_(0),
88 min_hole_(0)
89 { }
90
91 // Initialize the free list for a section of length LEN.
92 // If EXTEND is true, free space may be allocated past the end.
93 void
94 init(off_t len, bool extend);
95
96 // Set the minimum hole size that is allowed when allocating
97 // from the free list.
98 void
99 set_min_hole_size(off_t min_hole)
100 { this->min_hole_ = min_hole; }
101
102 // Remove a chunk from the free list.
103 void
104 remove(off_t start, off_t end);
105
106 // Allocate a chunk of space from the free list of length LEN,
107 // with alignment ALIGN, and minimum offset MINOFF.
108 off_t
109 allocate(off_t len, uint64_t align, off_t minoff);
110
111 // Return an iterator for the beginning of the free list.
112 Const_iterator
113 begin() const
114 { return this->list_.begin(); }
115
116 // Return an iterator for the end of the free list.
117 Const_iterator
118 end() const
119 { return this->list_.end(); }
120
121 // Dump the free list (for debugging).
122 void
123 dump();
124
125 // Print usage statistics.
126 static void
127 print_stats();
128
129 private:
130 typedef std::list<Free_list_node>::iterator Iterator;
131
132 // The free list.
133 std::list<Free_list_node> list_;
134
135 // The last node visited during a remove operation.
136 Iterator last_remove_;
137
138 // Whether we can extend past the original length.
139 bool extend_;
140
141 // The total length of the section, segment, or file.
142 off_t length_;
143
144 // The minimum hole size allowed. When allocating from the free list,
145 // we must not leave a hole smaller than this.
146 off_t min_hole_;
147
148 // Statistics:
149 // The total number of free lists used.
150 static unsigned int num_lists;
151 // The total number of free list nodes used.
152 static unsigned int num_nodes;
153 // The total number of calls to Free_list::remove.
154 static unsigned int num_removes;
155 // The total number of nodes visited during calls to Free_list::remove.
156 static unsigned int num_remove_visits;
157 // The total number of calls to Free_list::allocate.
158 static unsigned int num_allocates;
159 // The total number of nodes visited during calls to Free_list::allocate.
160 static unsigned int num_allocate_visits;
161 };
162
163 // This task function handles mapping the input sections to output
164 // sections and laying them out in memory.
165
166 class Layout_task_runner : public Task_function_runner
167 {
168 public:
169 // OPTIONS is the command line options, INPUT_OBJECTS is the list of
170 // input objects, SYMTAB is the symbol table, LAYOUT is the layout
171 // object.
172 Layout_task_runner(const General_options& options,
173 const Input_objects* input_objects,
174 Symbol_table* symtab,
175 Target* target,
176 Layout* layout,
177 Mapfile* mapfile)
178 : options_(options), input_objects_(input_objects), symtab_(symtab),
179 target_(target), layout_(layout), mapfile_(mapfile)
180 { }
181
182 // Run the operation.
183 void
184 run(Workqueue*, const Task*);
185
186 private:
187 Layout_task_runner(const Layout_task_runner&);
188 Layout_task_runner& operator=(const Layout_task_runner&);
189
190 const General_options& options_;
191 const Input_objects* input_objects_;
192 Symbol_table* symtab_;
193 Target* target_;
194 Layout* layout_;
195 Mapfile* mapfile_;
196 };
197
198 // This class holds information about the comdat group or
199 // .gnu.linkonce section that will be kept for a given signature.
200
201 class Kept_section
202 {
203 private:
204 // For a comdat group, we build a mapping from the name of each
205 // section in the group to the section index and the size in object.
206 // When we discard a group in some other object file, we use this
207 // map to figure out which kept section the discarded section is
208 // associated with. We then use that mapping when processing relocs
209 // against discarded sections.
210 struct Comdat_section_info
211 {
212 // The section index.
213 unsigned int shndx;
214 // The section size.
215 uint64_t size;
216
217 Comdat_section_info(unsigned int a_shndx, uint64_t a_size)
218 : shndx(a_shndx), size(a_size)
219 { }
220 };
221
222 // Most comdat groups have only one or two sections, so we use a
223 // std::map rather than an Unordered_map to optimize for that case
224 // without paying too heavily for groups with more sections.
225 typedef std::map<std::string, Comdat_section_info> Comdat_group;
226
227 public:
228 Kept_section()
229 : object_(NULL), shndx_(0), is_comdat_(false), is_group_name_(false)
230 { this->u_.linkonce_size = 0; }
231
232 // We need to support copies for the signature map in the Layout
233 // object, but we should never copy an object after it has been
234 // marked as a comdat section.
235 Kept_section(const Kept_section& k)
236 : object_(k.object_), shndx_(k.shndx_), is_comdat_(false),
237 is_group_name_(k.is_group_name_)
238 {
239 gold_assert(!k.is_comdat_);
240 this->u_.linkonce_size = 0;
241 }
242
243 ~Kept_section()
244 {
245 if (this->is_comdat_)
246 delete this->u_.group_sections;
247 }
248
249 // The object where this section lives.
250 Relobj*
251 object() const
252 { return this->object_; }
253
254 // Set the object.
255 void
256 set_object(Relobj* object)
257 {
258 gold_assert(this->object_ == NULL);
259 this->object_ = object;
260 }
261
262 // The section index.
263 unsigned int
264 shndx() const
265 { return this->shndx_; }
266
267 // Set the section index.
268 void
269 set_shndx(unsigned int shndx)
270 {
271 gold_assert(this->shndx_ == 0);
272 this->shndx_ = shndx;
273 }
274
275 // Whether this is a comdat group.
276 bool
277 is_comdat() const
278 { return this->is_comdat_; }
279
280 // Set that this is a comdat group.
281 void
282 set_is_comdat()
283 {
284 gold_assert(!this->is_comdat_);
285 this->is_comdat_ = true;
286 this->u_.group_sections = new Comdat_group();
287 }
288
289 // Whether this is associated with the name of a group or section
290 // rather than the symbol name derived from a linkonce section.
291 bool
292 is_group_name() const
293 { return this->is_group_name_; }
294
295 // Note that this represents a comdat group rather than a single
296 // linkonce section.
297 void
298 set_is_group_name()
299 { this->is_group_name_ = true; }
300
301 // Add a section to the group list.
302 void
303 add_comdat_section(const std::string& name, unsigned int shndx,
304 uint64_t size)
305 {
306 gold_assert(this->is_comdat_);
307 Comdat_section_info sinfo(shndx, size);
308 this->u_.group_sections->insert(std::make_pair(name, sinfo));
309 }
310
311 // Look for a section name in the group list, and return whether it
312 // was found. If found, returns the section index and size.
313 bool
314 find_comdat_section(const std::string& name, unsigned int* pshndx,
315 uint64_t* psize) const
316 {
317 gold_assert(this->is_comdat_);
318 Comdat_group::const_iterator p = this->u_.group_sections->find(name);
319 if (p == this->u_.group_sections->end())
320 return false;
321 *pshndx = p->second.shndx;
322 *psize = p->second.size;
323 return true;
324 }
325
326 // If there is only one section in the group list, return true, and
327 // return the section index and size.
328 bool
329 find_single_comdat_section(unsigned int* pshndx, uint64_t* psize) const
330 {
331 gold_assert(this->is_comdat_);
332 if (this->u_.group_sections->size() != 1)
333 return false;
334 Comdat_group::const_iterator p = this->u_.group_sections->begin();
335 *pshndx = p->second.shndx;
336 *psize = p->second.size;
337 return true;
338 }
339
340 // Return the size of a linkonce section.
341 uint64_t
342 linkonce_size() const
343 {
344 gold_assert(!this->is_comdat_);
345 return this->u_.linkonce_size;
346 }
347
348 // Set the size of a linkonce section.
349 void
350 set_linkonce_size(uint64_t size)
351 {
352 gold_assert(!this->is_comdat_);
353 this->u_.linkonce_size = size;
354 }
355
356 private:
357 // No assignment.
358 Kept_section& operator=(const Kept_section&);
359
360 // The object containing the comdat group or .gnu.linkonce section.
361 Relobj* object_;
362 // Index of the group section for comdats and the section itself for
363 // .gnu.linkonce.
364 unsigned int shndx_;
365 // True if this is for a comdat group rather than a .gnu.linkonce
366 // section.
367 bool is_comdat_;
368 // The Kept_sections are values of a mapping, that maps names to
369 // them. This field is true if this struct is associated with the
370 // name of a comdat or .gnu.linkonce, false if it is associated with
371 // the name of a symbol obtained from the .gnu.linkonce.* name
372 // through some heuristics.
373 bool is_group_name_;
374 union
375 {
376 // If the is_comdat_ field is true, this holds a map from names of
377 // the sections in the group to section indexes in object_ and to
378 // section sizes.
379 Comdat_group* group_sections;
380 // If the is_comdat_ field is false, this holds the size of the
381 // single section.
382 uint64_t linkonce_size;
383 } u_;
384 };
385
386 // The ordering for output sections. This controls how output
387 // sections are ordered within a PT_LOAD output segment.
388
389 enum Output_section_order
390 {
391 // Unspecified. Used for non-load segments. Also used for the file
392 // and segment headers.
393 ORDER_INVALID,
394
395 // The PT_INTERP section should come first, so that the dynamic
396 // linker can pick it up quickly.
397 ORDER_INTERP,
398
399 // Loadable read-only note sections come next so that the PT_NOTE
400 // segment is on the first page of the executable.
401 ORDER_RO_NOTE,
402
403 // Put read-only sections used by the dynamic linker early in the
404 // executable to minimize paging.
405 ORDER_DYNAMIC_LINKER,
406
407 // Put reloc sections used by the dynamic linker after other
408 // sections used by the dynamic linker; otherwise, objcopy and strip
409 // get confused.
410 ORDER_DYNAMIC_RELOCS,
411
412 // Put the PLT reloc section after the other dynamic relocs;
413 // otherwise, prelink gets confused.
414 ORDER_DYNAMIC_PLT_RELOCS,
415
416 // The .init section.
417 ORDER_INIT,
418
419 // The PLT.
420 ORDER_PLT,
421
422 // The regular text sections.
423 ORDER_TEXT,
424
425 // The .fini section.
426 ORDER_FINI,
427
428 // The read-only sections.
429 ORDER_READONLY,
430
431 // The exception frame sections.
432 ORDER_EHFRAME,
433
434 // The TLS sections come first in the data section.
435 ORDER_TLS_DATA,
436 ORDER_TLS_BSS,
437
438 // Local RELRO (read-only after relocation) sections come before
439 // non-local RELRO sections. This data will be fully resolved by
440 // the prelinker.
441 ORDER_RELRO_LOCAL,
442
443 // Non-local RELRO sections are grouped together after local RELRO
444 // sections. All RELRO sections must be adjacent so that they can
445 // all be put into a PT_GNU_RELRO segment.
446 ORDER_RELRO,
447
448 // We permit marking exactly one output section as the last RELRO
449 // section. We do this so that the read-only GOT can be adjacent to
450 // the writable GOT.
451 ORDER_RELRO_LAST,
452
453 // Similarly, we permit marking exactly one output section as the
454 // first non-RELRO section.
455 ORDER_NON_RELRO_FIRST,
456
457 // The regular data sections come after the RELRO sections.
458 ORDER_DATA,
459
460 // Large data sections normally go in large data segments.
461 ORDER_LARGE_DATA,
462
463 // Group writable notes so that we can have a single PT_NOTE
464 // segment.
465 ORDER_RW_NOTE,
466
467 // The small data sections must be at the end of the data sections,
468 // so that they can be adjacent to the small BSS sections.
469 ORDER_SMALL_DATA,
470
471 // The BSS sections start here.
472
473 // The small BSS sections must be at the start of the BSS sections,
474 // so that they can be adjacent to the small data sections.
475 ORDER_SMALL_BSS,
476
477 // The regular BSS sections.
478 ORDER_BSS,
479
480 // The large BSS sections come after the other BSS sections.
481 ORDER_LARGE_BSS,
482
483 // Maximum value.
484 ORDER_MAX
485 };
486
487 // This class handles the details of laying out input sections.
488
489 class Layout
490 {
491 public:
492 Layout(int number_of_input_files, Script_options*);
493
494 ~Layout()
495 {
496 delete this->relaxation_debug_check_;
497 delete this->segment_states_;
498 }
499
500 // For incremental links, record the base file to be modified.
501 void
502 set_incremental_base(Incremental_binary* base);
503
504 Incremental_binary*
505 incremental_base()
506 { return this->incremental_base_; }
507
508 // For incremental links, record the initial fixed layout of a section
509 // from the base file, and return a pointer to the Output_section.
510 template<int size, bool big_endian>
511 Output_section*
512 init_fixed_output_section(const char*, elfcpp::Shdr<size, big_endian>&);
513
514 // Given an input section SHNDX, named NAME, with data in SHDR, from
515 // the object file OBJECT, return the output section where this
516 // input section should go. RELOC_SHNDX is the index of a
517 // relocation section which applies to this section, or 0 if none,
518 // or -1U if more than one. RELOC_TYPE is the type of the
519 // relocation section if there is one. Set *OFFSET to the offset
520 // within the output section.
521 template<int size, bool big_endian>
522 Output_section*
523 layout(Sized_relobj_file<size, big_endian> *object, unsigned int shndx,
524 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
525 unsigned int reloc_shndx, unsigned int reloc_type, off_t* offset);
526
527 std::map<Section_id, unsigned int>*
528 get_section_order_map()
529 { return &this->section_order_map_; }
530
531 // Struct to store segment info when mapping some input sections to
532 // unique segments using linker plugins. Mapping an input section to
533 // a unique segment is done by first placing such input sections in
534 // unique output sections and then mapping the output section to a
535 // unique segment. NAME is the name of the output section. FLAGS
536 // and ALIGN are the extra flags and alignment of the segment.
537 struct Unique_segment_info
538 {
539 // Identifier for the segment. ELF segments dont have names. This
540 // is used as the name of the output section mapped to the segment.
541 const char* name;
542 // Additional segment flags.
543 uint64_t flags;
544 // Segment alignment.
545 uint64_t align;
546 };
547
548 // Mapping from input section to segment.
549 typedef std::map<Const_section_id, Unique_segment_info*>
550 Section_segment_map;
551
552 // Maps section SECN to SEGMENT s.
553 void
554 insert_section_segment_map(Const_section_id secn, Unique_segment_info *s);
555
556 // Some input sections require special ordering, for compatibility
557 // with GNU ld. Given the name of an input section, return -1 if it
558 // does not require special ordering. Otherwise, return the index
559 // by which it should be ordered compared to other input sections
560 // that require special ordering.
561 static int
562 special_ordering_of_input_section(const char* name);
563
564 bool
565 is_section_ordering_specified()
566 { return this->section_ordering_specified_; }
567
568 void
569 set_section_ordering_specified()
570 { this->section_ordering_specified_ = true; }
571
572 bool
573 is_unique_segment_for_sections_specified() const
574 { return this->unique_segment_for_sections_specified_; }
575
576 void
577 set_unique_segment_for_sections_specified()
578 { this->unique_segment_for_sections_specified_ = true; }
579
580 // For incremental updates, allocate a block of memory from the
581 // free list. Find a block starting at or after MINOFF.
582 off_t
583 allocate(off_t len, uint64_t align, off_t minoff)
584 { return this->free_list_.allocate(len, align, minoff); }
585
586 unsigned int
587 find_section_order_index(const std::string&);
588
589 // Read the sequence of input sections from the file specified with
590 // linker option --section-ordering-file.
591 void
592 read_layout_from_file();
593
594 // Layout an input reloc section when doing a relocatable link. The
595 // section is RELOC_SHNDX in OBJECT, with data in SHDR.
596 // DATA_SECTION is the reloc section to which it refers. RR is the
597 // relocatable information.
598 template<int size, bool big_endian>
599 Output_section*
600 layout_reloc(Sized_relobj_file<size, big_endian>* object,
601 unsigned int reloc_shndx,
602 const elfcpp::Shdr<size, big_endian>& shdr,
603 Output_section* data_section,
604 Relocatable_relocs* rr);
605
606 // Layout a group section when doing a relocatable link.
607 template<int size, bool big_endian>
608 void
609 layout_group(Symbol_table* symtab,
610 Sized_relobj_file<size, big_endian>* object,
611 unsigned int group_shndx,
612 const char* group_section_name,
613 const char* signature,
614 const elfcpp::Shdr<size, big_endian>& shdr,
615 elfcpp::Elf_Word flags,
616 std::vector<unsigned int>* shndxes);
617
618 // Like layout, only for exception frame sections. OBJECT is an
619 // object file. SYMBOLS is the contents of the symbol table
620 // section, with size SYMBOLS_SIZE. SYMBOL_NAMES is the contents of
621 // the symbol name section, with size SYMBOL_NAMES_SIZE. SHNDX is a
622 // .eh_frame section in OBJECT. SHDR is the section header.
623 // RELOC_SHNDX is the index of a relocation section which applies to
624 // this section, or 0 if none, or -1U if more than one. RELOC_TYPE
625 // is the type of the relocation section if there is one. This
626 // returns the output section, and sets *OFFSET to the offset.
627 template<int size, bool big_endian>
628 Output_section*
629 layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
630 const unsigned char* symbols,
631 off_t symbols_size,
632 const unsigned char* symbol_names,
633 off_t symbol_names_size,
634 unsigned int shndx,
635 const elfcpp::Shdr<size, big_endian>& shdr,
636 unsigned int reloc_shndx, unsigned int reloc_type,
637 off_t* offset);
638
639 // Add .eh_frame information for a PLT. The FDE must start with a
640 // 4-byte PC-relative reference to the start of the PLT, followed by
641 // a 4-byte size of PLT.
642 void
643 add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
644 size_t cie_length, const unsigned char* fde_data,
645 size_t fde_length);
646
647 // Scan a .debug_info or .debug_types section, and add summary
648 // information to the .gdb_index section.
649 template<int size, bool big_endian>
650 void
651 add_to_gdb_index(bool is_type_unit,
652 Sized_relobj<size, big_endian>* object,
653 const unsigned char* symbols,
654 off_t symbols_size,
655 unsigned int shndx,
656 unsigned int reloc_shndx,
657 unsigned int reloc_type);
658
659 // Handle a GNU stack note. This is called once per input object
660 // file. SEEN_GNU_STACK is true if the object file has a
661 // .note.GNU-stack section. GNU_STACK_FLAGS is the section flags
662 // from that section if there was one.
663 void
664 layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
665 const Object*);
666
667 // Add an Output_section_data to the layout. This is used for
668 // special sections like the GOT section. ORDER is where the
669 // section should wind up in the output segment. IS_RELRO is true
670 // for relro sections.
671 Output_section*
672 add_output_section_data(const char* name, elfcpp::Elf_Word type,
673 elfcpp::Elf_Xword flags,
674 Output_section_data*, Output_section_order order,
675 bool is_relro);
676
677 // Increase the size of the relro segment by this much.
678 void
679 increase_relro(unsigned int s)
680 { this->increase_relro_ += s; }
681
682 // Create dynamic sections if necessary.
683 void
684 create_initial_dynamic_sections(Symbol_table*);
685
686 // Define __start and __stop symbols for output sections.
687 void
688 define_section_symbols(Symbol_table*);
689
690 // Create automatic note sections.
691 void
692 create_notes();
693
694 // Create sections for linker scripts.
695 void
696 create_script_sections()
697 { this->script_options_->create_script_sections(this); }
698
699 // Define symbols from any linker script.
700 void
701 define_script_symbols(Symbol_table* symtab)
702 { this->script_options_->add_symbols_to_table(symtab); }
703
704 // Define symbols for group signatures.
705 void
706 define_group_signatures(Symbol_table*);
707
708 // Return the Stringpool used for symbol names.
709 const Stringpool*
710 sympool() const
711 { return &this->sympool_; }
712
713 // Return the Stringpool used for dynamic symbol names and dynamic
714 // tags.
715 const Stringpool*
716 dynpool() const
717 { return &this->dynpool_; }
718
719 // Return the .dynamic output section. This is only valid after the
720 // layout has been finalized.
721 Output_section*
722 dynamic_section() const
723 { return this->dynamic_section_; }
724
725 // Return the symtab_xindex section used to hold large section
726 // indexes for the normal symbol table.
727 Output_symtab_xindex*
728 symtab_xindex() const
729 { return this->symtab_xindex_; }
730
731 // Return the dynsym_xindex section used to hold large section
732 // indexes for the dynamic symbol table.
733 Output_symtab_xindex*
734 dynsym_xindex() const
735 { return this->dynsym_xindex_; }
736
737 // Return whether a section is a .gnu.linkonce section, given the
738 // section name.
739 static inline bool
740 is_linkonce(const char* name)
741 { return strncmp(name, ".gnu.linkonce", sizeof(".gnu.linkonce") - 1) == 0; }
742
743 // Whether we have added an input section.
744 bool
745 have_added_input_section() const
746 { return this->have_added_input_section_; }
747
748 // Return true if a section is a debugging section.
749 static inline bool
750 is_debug_info_section(const char* name)
751 {
752 // Debugging sections can only be recognized by name.
753 return (strncmp(name, ".debug", sizeof(".debug") - 1) == 0
754 || strncmp(name, ".zdebug", sizeof(".zdebug") - 1) == 0
755 || strncmp(name, ".gnu.linkonce.wi.",
756 sizeof(".gnu.linkonce.wi.") - 1) == 0
757 || strncmp(name, ".line", sizeof(".line") - 1) == 0
758 || strncmp(name, ".stab", sizeof(".stab") - 1) == 0);
759 }
760
761 // Return true if RELOBJ is an input file whose base name matches
762 // FILE_NAME. The base name must have an extension of ".o", and
763 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
764 static bool
765 match_file_name(const Relobj* relobj, const char* file_name);
766
767 // Return whether section SHNDX in RELOBJ is a .ctors/.dtors section
768 // with more than one word being mapped to a .init_array/.fini_array
769 // section.
770 bool
771 is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const;
772
773 // Check if a comdat group or .gnu.linkonce section with the given
774 // NAME is selected for the link. If there is already a section,
775 // *KEPT_SECTION is set to point to the signature and the function
776 // returns false. Otherwise, OBJECT, SHNDX,IS_COMDAT, and
777 // IS_GROUP_NAME are recorded for this NAME in the layout object,
778 // *KEPT_SECTION is set to the internal copy and the function return
779 // false.
780 bool
781 find_or_add_kept_section(const std::string& name, Relobj* object,
782 unsigned int shndx, bool is_comdat,
783 bool is_group_name, Kept_section** kept_section);
784
785 // Finalize the layout after all the input sections have been added.
786 off_t
787 finalize(const Input_objects*, Symbol_table*, Target*, const Task*);
788
789 // Return whether any sections require postprocessing.
790 bool
791 any_postprocessing_sections() const
792 { return this->any_postprocessing_sections_; }
793
794 // Return the size of the output file.
795 off_t
796 output_file_size() const
797 { return this->output_file_size_; }
798
799 // Return the TLS segment. This will return NULL if there isn't
800 // one.
801 Output_segment*
802 tls_segment() const
803 { return this->tls_segment_; }
804
805 // Return the normal symbol table.
806 Output_section*
807 symtab_section() const
808 {
809 gold_assert(this->symtab_section_ != NULL);
810 return this->symtab_section_;
811 }
812
813 // Return the file offset of the normal symbol table.
814 off_t
815 symtab_section_offset() const;
816
817 // Return the section index of the normal symbol tabl.e
818 unsigned int
819 symtab_section_shndx() const;
820
821 // Return the dynamic symbol table.
822 Output_section*
823 dynsym_section() const
824 {
825 gold_assert(this->dynsym_section_ != NULL);
826 return this->dynsym_section_;
827 }
828
829 // Return the dynamic tags.
830 Output_data_dynamic*
831 dynamic_data() const
832 { return this->dynamic_data_; }
833
834 // Write out the output sections.
835 void
836 write_output_sections(Output_file* of) const;
837
838 // Write out data not associated with an input file or the symbol
839 // table.
840 void
841 write_data(const Symbol_table*, Output_file*) const;
842
843 // Write out output sections which can not be written until all the
844 // input sections are complete.
845 void
846 write_sections_after_input_sections(Output_file* of);
847
848 // Return an output section named NAME, or NULL if there is none.
849 Output_section*
850 find_output_section(const char* name) const;
851
852 // Return an output segment of type TYPE, with segment flags SET set
853 // and segment flags CLEAR clear. Return NULL if there is none.
854 Output_segment*
855 find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
856 elfcpp::Elf_Word clear) const;
857
858 // Return the number of segments we expect to produce.
859 size_t
860 expected_segment_count() const;
861
862 // Set a flag to indicate that an object file uses the static TLS model.
863 void
864 set_has_static_tls()
865 { this->has_static_tls_ = true; }
866
867 // Return true if any object file uses the static TLS model.
868 bool
869 has_static_tls() const
870 { return this->has_static_tls_; }
871
872 // Return the options which may be set by a linker script.
873 Script_options*
874 script_options()
875 { return this->script_options_; }
876
877 const Script_options*
878 script_options() const
879 { return this->script_options_; }
880
881 // Return the object managing inputs in incremental build. NULL in
882 // non-incremental builds.
883 Incremental_inputs*
884 incremental_inputs() const
885 { return this->incremental_inputs_; }
886
887 // For the target-specific code to add dynamic tags which are common
888 // to most targets.
889 void
890 add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
891 const Output_data* plt_rel,
892 const Output_data_reloc_generic* dyn_rel,
893 bool add_debug, bool dynrel_includes_plt);
894
895 // If a treehash is necessary to compute the build ID, then queue
896 // the necessary tasks and return a blocker that will unblock when
897 // they finish. Otherwise return BUILD_ID_BLOCKER.
898 Task_token*
899 queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
900 Output_file* of);
901
902 // Compute and write out the build ID if needed.
903 void
904 write_build_id(Output_file*) const;
905
906 // Rewrite output file in binary format.
907 void
908 write_binary(Output_file* in) const;
909
910 // Print output sections to the map file.
911 void
912 print_to_mapfile(Mapfile*) const;
913
914 // Dump statistical information to stderr.
915 void
916 print_stats() const;
917
918 // A list of segments.
919
920 typedef std::vector<Output_segment*> Segment_list;
921
922 // A list of sections.
923
924 typedef std::vector<Output_section*> Section_list;
925
926 // The list of information to write out which is not attached to
927 // either a section or a segment.
928 typedef std::vector<Output_data*> Data_list;
929
930 // Store the allocated sections into the section list. This is used
931 // by the linker script code.
932 void
933 get_allocated_sections(Section_list*) const;
934
935 // Store the executable sections into the section list.
936 void
937 get_executable_sections(Section_list*) const;
938
939 // Make a section for a linker script to hold data.
940 Output_section*
941 make_output_section_for_script(const char* name,
942 Script_sections::Section_type section_type);
943
944 // Make a segment. This is used by the linker script code.
945 Output_segment*
946 make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags);
947
948 // Return the number of segments.
949 size_t
950 segment_count() const
951 { return this->segment_list_.size(); }
952
953 // Map from section flags to segment flags.
954 static elfcpp::Elf_Word
955 section_flags_to_segment(elfcpp::Elf_Xword flags);
956
957 // Attach sections to segments.
958 void
959 attach_sections_to_segments(const Target*);
960
961 // For relaxation clean up, we need to know output section data created
962 // from a linker script.
963 void
964 new_output_section_data_from_script(Output_section_data* posd)
965 {
966 if (this->record_output_section_data_from_script_)
967 this->script_output_section_data_list_.push_back(posd);
968 }
969
970 // Return section list.
971 const Section_list&
972 section_list() const
973 { return this->section_list_; }
974
975 // Returns TRUE iff NAME (an input section from RELOBJ) will
976 // be mapped to an output section that should be KEPT.
977 bool
978 keep_input_section(const Relobj*, const char*);
979
980 private:
981 Layout(const Layout&);
982 Layout& operator=(const Layout&);
983
984 // Mapping from input section names to output section names.
985 struct Section_name_mapping
986 {
987 const char* from;
988 int fromlen;
989 const char* to;
990 int tolen;
991 };
992 static const Section_name_mapping section_name_mapping[];
993 static const int section_name_mapping_count;
994
995 // During a relocatable link, a list of group sections and
996 // signatures.
997 struct Group_signature
998 {
999 // The group section.
1000 Output_section* section;
1001 // The signature.
1002 const char* signature;
1003
1004 Group_signature()
1005 : section(NULL), signature(NULL)
1006 { }
1007
1008 Group_signature(Output_section* sectiona, const char* signaturea)
1009 : section(sectiona), signature(signaturea)
1010 { }
1011 };
1012 typedef std::vector<Group_signature> Group_signatures;
1013
1014 // Create a note section, filling in the header.
1015 Output_section*
1016 create_note(const char* name, int note_type, const char* section_name,
1017 size_t descsz, bool allocate, size_t* trailing_padding);
1018
1019 // Create a note section for gold version.
1020 void
1021 create_gold_note();
1022
1023 // Record whether the stack must be executable.
1024 void
1025 create_executable_stack_info();
1026
1027 // Create a build ID note if needed.
1028 void
1029 create_build_id();
1030
1031 // Link .stab and .stabstr sections.
1032 void
1033 link_stabs_sections();
1034
1035 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1036 // for the next run of incremental linking to check what has changed.
1037 void
1038 create_incremental_info_sections(Symbol_table*);
1039
1040 // Find the first read-only PT_LOAD segment, creating one if
1041 // necessary.
1042 Output_segment*
1043 find_first_load_seg(const Target*);
1044
1045 // Count the local symbols in the regular symbol table and the dynamic
1046 // symbol table, and build the respective string pools.
1047 void
1048 count_local_symbols(const Task*, const Input_objects*);
1049
1050 // Create the output sections for the symbol table.
1051 void
1052 create_symtab_sections(const Input_objects*, Symbol_table*,
1053 unsigned int, off_t*);
1054
1055 // Create the .shstrtab section.
1056 Output_section*
1057 create_shstrtab();
1058
1059 // Create the section header table.
1060 void
1061 create_shdrs(const Output_section* shstrtab_section, off_t*);
1062
1063 // Create the dynamic symbol table.
1064 void
1065 create_dynamic_symtab(const Input_objects*, Symbol_table*,
1066 Output_section** pdynstr,
1067 unsigned int* plocal_dynamic_count,
1068 std::vector<Symbol*>* pdynamic_symbols,
1069 Versions* versions);
1070
1071 // Assign offsets to each local portion of the dynamic symbol table.
1072 void
1073 assign_local_dynsym_offsets(const Input_objects*);
1074
1075 // Finish the .dynamic section and PT_DYNAMIC segment.
1076 void
1077 finish_dynamic_section(const Input_objects*, const Symbol_table*);
1078
1079 // Set the size of the _DYNAMIC symbol.
1080 void
1081 set_dynamic_symbol_size(const Symbol_table*);
1082
1083 // Create the .interp section and PT_INTERP segment.
1084 void
1085 create_interp(const Target* target);
1086
1087 // Create the version sections.
1088 void
1089 create_version_sections(const Versions*,
1090 const Symbol_table*,
1091 unsigned int local_symcount,
1092 const std::vector<Symbol*>& dynamic_symbols,
1093 const Output_section* dynstr);
1094
1095 template<int size, bool big_endian>
1096 void
1097 sized_create_version_sections(const Versions* versions,
1098 const Symbol_table*,
1099 unsigned int local_symcount,
1100 const std::vector<Symbol*>& dynamic_symbols,
1101 const Output_section* dynstr);
1102
1103 // Return whether to include this section in the link.
1104 template<int size, bool big_endian>
1105 bool
1106 include_section(Sized_relobj_file<size, big_endian>* object, const char* name,
1107 const elfcpp::Shdr<size, big_endian>&);
1108
1109 // Return the output section name to use given an input section
1110 // name. Set *PLEN to the length of the name. *PLEN must be
1111 // initialized to the length of NAME.
1112 static const char*
1113 output_section_name(const Relobj*, const char* name, size_t* plen);
1114
1115 // Return the number of allocated output sections.
1116 size_t
1117 allocated_output_section_count() const;
1118
1119 // Return the output section for NAME, TYPE and FLAGS.
1120 Output_section*
1121 get_output_section(const char* name, Stringpool::Key name_key,
1122 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
1123 Output_section_order order, bool is_relro);
1124
1125 // Clear the input section flags that should not be copied to the
1126 // output section.
1127 elfcpp::Elf_Xword
1128 get_output_section_flags (elfcpp::Elf_Xword input_section_flags);
1129
1130 // Choose the output section for NAME in RELOBJ.
1131 Output_section*
1132 choose_output_section(const Relobj* relobj, const char* name,
1133 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
1134 bool is_input_section, Output_section_order order,
1135 bool is_relro);
1136
1137 // Create a new Output_section.
1138 Output_section*
1139 make_output_section(const char* name, elfcpp::Elf_Word type,
1140 elfcpp::Elf_Xword flags, Output_section_order order,
1141 bool is_relro);
1142
1143 // Attach a section to a segment.
1144 void
1145 attach_section_to_segment(const Target*, Output_section*);
1146
1147 // Get section order.
1148 Output_section_order
1149 default_section_order(Output_section*, bool is_relro_local);
1150
1151 // Attach an allocated section to a segment.
1152 void
1153 attach_allocated_section_to_segment(const Target*, Output_section*);
1154
1155 // Make the .eh_frame section.
1156 Output_section*
1157 make_eh_frame_section(const Relobj*);
1158
1159 // Set the final file offsets of all the segments.
1160 off_t
1161 set_segment_offsets(const Target*, Output_segment*, unsigned int* pshndx);
1162
1163 // Set the file offsets of the sections when doing a relocatable
1164 // link.
1165 off_t
1166 set_relocatable_section_offsets(Output_data*, unsigned int* pshndx);
1167
1168 // Set the final file offsets of all the sections not associated
1169 // with a segment. We set section offsets in three passes: the
1170 // first handles all allocated sections, the second sections that
1171 // require postprocessing, and the last the late-bound STRTAB
1172 // sections (probably only shstrtab, which is the one we care about
1173 // because it holds section names).
1174 enum Section_offset_pass
1175 {
1176 BEFORE_INPUT_SECTIONS_PASS,
1177 POSTPROCESSING_SECTIONS_PASS,
1178 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1179 };
1180 off_t
1181 set_section_offsets(off_t, Section_offset_pass pass);
1182
1183 // Set the final section indexes of all the sections not associated
1184 // with a segment. Returns the next unused index.
1185 unsigned int
1186 set_section_indexes(unsigned int pshndx);
1187
1188 // Set the section addresses when using a script.
1189 Output_segment*
1190 set_section_addresses_from_script(Symbol_table*);
1191
1192 // Find appropriate places or orphan sections in a script.
1193 void
1194 place_orphan_sections_in_script();
1195
1196 // Return whether SEG1 comes before SEG2 in the output file.
1197 bool
1198 segment_precedes(const Output_segment* seg1, const Output_segment* seg2);
1199
1200 // Use to save and restore segments during relaxation.
1201 typedef Unordered_map<const Output_segment*, const Output_segment*>
1202 Segment_states;
1203
1204 // Save states of current output segments.
1205 void
1206 save_segments(Segment_states*);
1207
1208 // Restore output segment states.
1209 void
1210 restore_segments(const Segment_states*);
1211
1212 // Clean up after relaxation so that it is possible to lay out the
1213 // sections and segments again.
1214 void
1215 clean_up_after_relaxation();
1216
1217 // Doing preparation work for relaxation. This is factored out to make
1218 // Layout::finalized a bit smaller and easier to read.
1219 void
1220 prepare_for_relaxation();
1221
1222 // Main body of the relaxation loop, which lays out the section.
1223 off_t
1224 relaxation_loop_body(int, Target*, Symbol_table*, Output_segment**,
1225 Output_segment*, Output_segment_headers*,
1226 Output_file_header*, unsigned int*);
1227
1228 // A mapping used for kept comdats/.gnu.linkonce group signatures.
1229 typedef Unordered_map<std::string, Kept_section> Signatures;
1230
1231 // Mapping from input section name/type/flags to output section. We
1232 // use canonicalized strings here.
1233
1234 typedef std::pair<Stringpool::Key,
1235 std::pair<elfcpp::Elf_Word, elfcpp::Elf_Xword> > Key;
1236
1237 struct Hash_key
1238 {
1239 size_t
1240 operator()(const Key& k) const;
1241 };
1242
1243 typedef Unordered_map<Key, Output_section*, Hash_key> Section_name_map;
1244
1245 // A comparison class for segments.
1246
1247 class Compare_segments
1248 {
1249 public:
1250 Compare_segments(Layout* layout)
1251 : layout_(layout)
1252 { }
1253
1254 bool
1255 operator()(const Output_segment* seg1, const Output_segment* seg2)
1256 { return this->layout_->segment_precedes(seg1, seg2); }
1257
1258 private:
1259 Layout* layout_;
1260 };
1261
1262 typedef std::vector<Output_section_data*> Output_section_data_list;
1263
1264 // Debug checker class.
1265 class Relaxation_debug_check
1266 {
1267 public:
1268 Relaxation_debug_check()
1269 : section_infos_()
1270 { }
1271
1272 // Check that sections and special data are in reset states.
1273 void
1274 check_output_data_for_reset_values(const Layout::Section_list&,
1275 const Layout::Data_list&);
1276
1277 // Record information of a section list.
1278 void
1279 read_sections(const Layout::Section_list&);
1280
1281 // Verify a section list with recorded information.
1282 void
1283 verify_sections(const Layout::Section_list&);
1284
1285 private:
1286 // Information we care about a section.
1287 struct Section_info
1288 {
1289 // Output section described by this.
1290 Output_section* output_section;
1291 // Load address.
1292 uint64_t address;
1293 // Data size.
1294 off_t data_size;
1295 // File offset.
1296 off_t offset;
1297 };
1298
1299 // Section information.
1300 std::vector<Section_info> section_infos_;
1301 };
1302
1303 // The number of input files, for sizing tables.
1304 int number_of_input_files_;
1305 // Information set by scripts or by command line options.
1306 Script_options* script_options_;
1307 // The output section names.
1308 Stringpool namepool_;
1309 // The output symbol names.
1310 Stringpool sympool_;
1311 // The dynamic strings, if needed.
1312 Stringpool dynpool_;
1313 // The list of group sections and linkonce sections which we have seen.
1314 Signatures signatures_;
1315 // The mapping from input section name/type/flags to output sections.
1316 Section_name_map section_name_map_;
1317 // The list of output segments.
1318 Segment_list segment_list_;
1319 // The list of output sections.
1320 Section_list section_list_;
1321 // The list of output sections which are not attached to any output
1322 // segment.
1323 Section_list unattached_section_list_;
1324 // The list of unattached Output_data objects which require special
1325 // handling because they are not Output_sections.
1326 Data_list special_output_list_;
1327 // The section headers.
1328 Output_section_headers* section_headers_;
1329 // A pointer to the PT_TLS segment if there is one.
1330 Output_segment* tls_segment_;
1331 // A pointer to the PT_GNU_RELRO segment if there is one.
1332 Output_segment* relro_segment_;
1333 // A pointer to the PT_INTERP segment if there is one.
1334 Output_segment* interp_segment_;
1335 // A backend may increase the size of the PT_GNU_RELRO segment if
1336 // there is one. This is the amount to increase it by.
1337 unsigned int increase_relro_;
1338 // The SHT_SYMTAB output section.
1339 Output_section* symtab_section_;
1340 // The SHT_SYMTAB_SHNDX for the regular symbol table if there is one.
1341 Output_symtab_xindex* symtab_xindex_;
1342 // The SHT_DYNSYM output section if there is one.
1343 Output_section* dynsym_section_;
1344 // The SHT_SYMTAB_SHNDX for the dynamic symbol table if there is one.
1345 Output_symtab_xindex* dynsym_xindex_;
1346 // The SHT_DYNAMIC output section if there is one.
1347 Output_section* dynamic_section_;
1348 // The _DYNAMIC symbol if there is one.
1349 Symbol* dynamic_symbol_;
1350 // The dynamic data which goes into dynamic_section_.
1351 Output_data_dynamic* dynamic_data_;
1352 // The exception frame output section if there is one.
1353 Output_section* eh_frame_section_;
1354 // The exception frame data for eh_frame_section_.
1355 Eh_frame* eh_frame_data_;
1356 // Whether we have added eh_frame_data_ to the .eh_frame section.
1357 bool added_eh_frame_data_;
1358 // The exception frame header output section if there is one.
1359 Output_section* eh_frame_hdr_section_;
1360 // The data for the .gdb_index section.
1361 Gdb_index* gdb_index_data_;
1362 // The space for the build ID checksum if there is one.
1363 Output_section_data* build_id_note_;
1364 // Temporary storage for tree hash of build ID.
1365 unsigned char* array_of_hashes_;
1366 // Size of array_of_hashes_ (in bytes).
1367 size_t size_of_array_of_hashes_;
1368 // Input view for computing tree hash of build ID. Freed in write_build_id().
1369 const unsigned char* input_view_;
1370 // The output section containing dwarf abbreviations
1371 Output_reduced_debug_abbrev_section* debug_abbrev_;
1372 // The output section containing the dwarf debug info tree
1373 Output_reduced_debug_info_section* debug_info_;
1374 // A list of group sections and their signatures.
1375 Group_signatures group_signatures_;
1376 // The size of the output file.
1377 off_t output_file_size_;
1378 // Whether we have added an input section to an output section.
1379 bool have_added_input_section_;
1380 // Whether we have attached the sections to the segments.
1381 bool sections_are_attached_;
1382 // Whether we have seen an object file marked to require an
1383 // executable stack.
1384 bool input_requires_executable_stack_;
1385 // Whether we have seen at least one object file with an executable
1386 // stack marker.
1387 bool input_with_gnu_stack_note_;
1388 // Whether we have seen at least one object file without an
1389 // executable stack marker.
1390 bool input_without_gnu_stack_note_;
1391 // Whether we have seen an object file that uses the static TLS model.
1392 bool has_static_tls_;
1393 // Whether any sections require postprocessing.
1394 bool any_postprocessing_sections_;
1395 // Whether we have resized the signatures_ hash table.
1396 bool resized_signatures_;
1397 // Whether we have created a .stab*str output section.
1398 bool have_stabstr_section_;
1399 // True if the input sections in the output sections should be sorted
1400 // as specified in a section ordering file.
1401 bool section_ordering_specified_;
1402 // True if some input sections need to be mapped to a unique segment,
1403 // after being mapped to a unique Output_section.
1404 bool unique_segment_for_sections_specified_;
1405 // In incremental build, holds information check the inputs and build the
1406 // .gnu_incremental_inputs section.
1407 Incremental_inputs* incremental_inputs_;
1408 // Whether we record output section data created in script
1409 bool record_output_section_data_from_script_;
1410 // List of output data that needs to be removed at relaxation clean up.
1411 Output_section_data_list script_output_section_data_list_;
1412 // Structure to save segment states before entering the relaxation loop.
1413 Segment_states* segment_states_;
1414 // A relaxation debug checker. We only create one when in debugging mode.
1415 Relaxation_debug_check* relaxation_debug_check_;
1416 // Plugins specify section_ordering using this map. This is set in
1417 // update_section_order in plugin.cc
1418 std::map<Section_id, unsigned int> section_order_map_;
1419 // This maps an input section to a unique segment. This is done by first
1420 // placing such input sections in unique output sections and then mapping
1421 // the output section to a unique segment. Unique_segment_info stores
1422 // any additional flags and alignment of the new segment.
1423 Section_segment_map section_segment_map_;
1424 // Hash a pattern to its position in the section ordering file.
1425 Unordered_map<std::string, unsigned int> input_section_position_;
1426 // Vector of glob only patterns in the section_ordering file.
1427 std::vector<std::string> input_section_glob_;
1428 // For incremental links, the base file to be modified.
1429 Incremental_binary* incremental_base_;
1430 // For incremental links, a list of free space within the file.
1431 Free_list free_list_;
1432 };
1433
1434 // This task handles writing out data in output sections which is not
1435 // part of an input section, or which requires special handling. When
1436 // this is done, it unblocks both output_sections_blocker and
1437 // final_blocker.
1438
1439 class Write_sections_task : public Task
1440 {
1441 public:
1442 Write_sections_task(const Layout* layout, Output_file* of,
1443 Task_token* output_sections_blocker,
1444 Task_token* final_blocker)
1445 : layout_(layout), of_(of),
1446 output_sections_blocker_(output_sections_blocker),
1447 final_blocker_(final_blocker)
1448 { }
1449
1450 // The standard Task methods.
1451
1452 Task_token*
1453 is_runnable();
1454
1455 void
1456 locks(Task_locker*);
1457
1458 void
1459 run(Workqueue*);
1460
1461 std::string
1462 get_name() const
1463 { return "Write_sections_task"; }
1464
1465 private:
1466 class Write_sections_locker;
1467
1468 const Layout* layout_;
1469 Output_file* of_;
1470 Task_token* output_sections_blocker_;
1471 Task_token* final_blocker_;
1472 };
1473
1474 // This task handles writing out data which is not part of a section
1475 // or segment.
1476
1477 class Write_data_task : public Task
1478 {
1479 public:
1480 Write_data_task(const Layout* layout, const Symbol_table* symtab,
1481 Output_file* of, Task_token* final_blocker)
1482 : layout_(layout), symtab_(symtab), of_(of), final_blocker_(final_blocker)
1483 { }
1484
1485 // The standard Task methods.
1486
1487 Task_token*
1488 is_runnable();
1489
1490 void
1491 locks(Task_locker*);
1492
1493 void
1494 run(Workqueue*);
1495
1496 std::string
1497 get_name() const
1498 { return "Write_data_task"; }
1499
1500 private:
1501 const Layout* layout_;
1502 const Symbol_table* symtab_;
1503 Output_file* of_;
1504 Task_token* final_blocker_;
1505 };
1506
1507 // This task handles writing out the global symbols.
1508
1509 class Write_symbols_task : public Task
1510 {
1511 public:
1512 Write_symbols_task(const Layout* layout, const Symbol_table* symtab,
1513 const Input_objects* input_objects,
1514 const Stringpool* sympool, const Stringpool* dynpool,
1515 Output_file* of, Task_token* final_blocker)
1516 : layout_(layout), symtab_(symtab), input_objects_(input_objects),
1517 sympool_(sympool), dynpool_(dynpool), of_(of),
1518 final_blocker_(final_blocker)
1519 { }
1520
1521 // The standard Task methods.
1522
1523 Task_token*
1524 is_runnable();
1525
1526 void
1527 locks(Task_locker*);
1528
1529 void
1530 run(Workqueue*);
1531
1532 std::string
1533 get_name() const
1534 { return "Write_symbols_task"; }
1535
1536 private:
1537 const Layout* layout_;
1538 const Symbol_table* symtab_;
1539 const Input_objects* input_objects_;
1540 const Stringpool* sympool_;
1541 const Stringpool* dynpool_;
1542 Output_file* of_;
1543 Task_token* final_blocker_;
1544 };
1545
1546 // This task handles writing out data in output sections which can't
1547 // be written out until all the input sections have been handled.
1548 // This is for sections whose contents is based on the contents of
1549 // other output sections.
1550
1551 class Write_after_input_sections_task : public Task
1552 {
1553 public:
1554 Write_after_input_sections_task(Layout* layout, Output_file* of,
1555 Task_token* input_sections_blocker,
1556 Task_token* final_blocker)
1557 : layout_(layout), of_(of),
1558 input_sections_blocker_(input_sections_blocker),
1559 final_blocker_(final_blocker)
1560 { }
1561
1562 // The standard Task methods.
1563
1564 Task_token*
1565 is_runnable();
1566
1567 void
1568 locks(Task_locker*);
1569
1570 void
1571 run(Workqueue*);
1572
1573 std::string
1574 get_name() const
1575 { return "Write_after_input_sections_task"; }
1576
1577 private:
1578 Layout* layout_;
1579 Output_file* of_;
1580 Task_token* input_sections_blocker_;
1581 Task_token* final_blocker_;
1582 };
1583
1584 // This task function handles closing the file.
1585
1586 class Close_task_runner : public Task_function_runner
1587 {
1588 public:
1589 Close_task_runner(const General_options* options, const Layout* layout,
1590 Output_file* of)
1591 : options_(options), layout_(layout), of_(of)
1592 { }
1593
1594 // Run the operation.
1595 void
1596 run(Workqueue*, const Task*);
1597
1598 private:
1599 const General_options* options_;
1600 const Layout* layout_;
1601 Output_file* of_;
1602 };
1603
1604 // A small helper function to align an address.
1605
1606 inline uint64_t
1607 align_address(uint64_t address, uint64_t addralign)
1608 {
1609 if (addralign != 0)
1610 address = (address + addralign - 1) &~ (addralign - 1);
1611 return address;
1612 }
1613
1614 } // End namespace gold.
1615
1616 #endif // !defined(GOLD_LAYOUT_H)
This page took 0.081084 seconds and 5 git commands to generate.