12aa7de5abae306bb52723c62dd4511fc361087e
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2018 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_section_options;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_la25_stub;
71
72 template<int size, bool big_endian>
73 class Mips_output_data_mips_stubs;
74
75 template<int size>
76 class Mips_symbol;
77
78 template<int size, bool big_endian>
79 class Mips_got_info;
80
81 template<int size, bool big_endian>
82 class Mips_relobj;
83
84 class Mips16_stub_section_base;
85
86 template<int size, bool big_endian>
87 class Mips16_stub_section;
88
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry. Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache. The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
95
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning. We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only". Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
101 // relocations only.
102
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values. Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
106
107 enum Global_got_area
108 {
109 GGA_NORMAL = 0,
110 GGA_RELOC_ONLY = 1,
111 GGA_NONE = 2
112 };
113
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
118 enum Got_type
119 {
120 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
121 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
122 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
123
124 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125 GOT_TYPE_STANDARD_MULTIGOT = 3,
126 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
127 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
128 };
129
130 // TLS type of GOT entry.
131 enum Got_tls_type
132 {
133 GOT_TLS_NONE = 0,
134 GOT_TLS_GD = 1,
135 GOT_TLS_LDM = 2,
136 GOT_TLS_IE = 4
137 };
138
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
141 {
142 RSS_UNDEF = 0, // None - value is zero.
143 RSS_GP = 1, // Value of GP.
144 RSS_GP0 = 2, // Value of GP in object being relocated.
145 RSS_LOC = 3 // Address of location being relocated.
146 };
147
148 // Whether the section is readonly.
149 static inline bool
150 is_readonly_section(Output_section* output_section)
151 {
152 elfcpp::Elf_Xword section_flags = output_section->flags();
153 elfcpp::Elf_Word section_type = output_section->type();
154
155 if (section_type == elfcpp::SHT_NOBITS)
156 return false;
157
158 if (section_flags & elfcpp::SHF_WRITE)
159 return false;
160
161 return true;
162 }
163
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub. See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size, bool big_endian>
168 static inline bool
169 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
170 unsigned int r_type, bool target_is_16_bit_code)
171 {
172 // We specifically ignore branches and jumps from EF_PIC objects,
173 // where the onus is on the compiler or programmer to perform any
174 // necessary initialization of $25. Sometimes such initialization
175 // is unnecessary; for example, -mno-shared functions do not use
176 // the incoming value of $25, and may therefore be called directly.
177 if (object->is_pic())
178 return false;
179
180 switch (r_type)
181 {
182 case elfcpp::R_MIPS_26:
183 case elfcpp::R_MIPS_PC16:
184 case elfcpp::R_MIPS_PC21_S2:
185 case elfcpp::R_MIPS_PC26_S2:
186 case elfcpp::R_MICROMIPS_26_S1:
187 case elfcpp::R_MICROMIPS_PC7_S1:
188 case elfcpp::R_MICROMIPS_PC10_S1:
189 case elfcpp::R_MICROMIPS_PC16_S1:
190 case elfcpp::R_MICROMIPS_PC23_S2:
191 return true;
192
193 case elfcpp::R_MIPS16_26:
194 return !target_is_16_bit_code;
195
196 default:
197 return false;
198 }
199 }
200
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid. Only non-MIPS16
205 // entry points are of interest here.
206 template<int size, bool big_endian>
207 static inline bool
208 local_pic_function(Mips_symbol<size>* sym)
209 {
210 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
211 && !sym->object()->is_dynamic()
212 && !sym->is_undefined());
213
214 if (sym->is_defined() && def_regular)
215 {
216 Mips_relobj<size, big_endian>* object =
217 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
218
219 if ((object->is_pic() || sym->is_pic())
220 && (!sym->is_mips16()
221 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
222 return true;
223 }
224 return false;
225 }
226
227 static inline bool
228 hi16_reloc(int r_type)
229 {
230 return (r_type == elfcpp::R_MIPS_HI16
231 || r_type == elfcpp::R_MIPS16_HI16
232 || r_type == elfcpp::R_MICROMIPS_HI16
233 || r_type == elfcpp::R_MIPS_PCHI16);
234 }
235
236 static inline bool
237 lo16_reloc(int r_type)
238 {
239 return (r_type == elfcpp::R_MIPS_LO16
240 || r_type == elfcpp::R_MIPS16_LO16
241 || r_type == elfcpp::R_MICROMIPS_LO16
242 || r_type == elfcpp::R_MIPS_PCLO16);
243 }
244
245 static inline bool
246 got16_reloc(unsigned int r_type)
247 {
248 return (r_type == elfcpp::R_MIPS_GOT16
249 || r_type == elfcpp::R_MIPS16_GOT16
250 || r_type == elfcpp::R_MICROMIPS_GOT16);
251 }
252
253 static inline bool
254 call_lo16_reloc(unsigned int r_type)
255 {
256 return (r_type == elfcpp::R_MIPS_CALL_LO16
257 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
258 }
259
260 static inline bool
261 got_lo16_reloc(unsigned int r_type)
262 {
263 return (r_type == elfcpp::R_MIPS_GOT_LO16
264 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
265 }
266
267 static inline bool
268 eh_reloc(unsigned int r_type)
269 {
270 return (r_type == elfcpp::R_MIPS_EH);
271 }
272
273 static inline bool
274 got_disp_reloc(unsigned int r_type)
275 {
276 return (r_type == elfcpp::R_MIPS_GOT_DISP
277 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
278 }
279
280 static inline bool
281 got_page_reloc(unsigned int r_type)
282 {
283 return (r_type == elfcpp::R_MIPS_GOT_PAGE
284 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
285 }
286
287 static inline bool
288 tls_gd_reloc(unsigned int r_type)
289 {
290 return (r_type == elfcpp::R_MIPS_TLS_GD
291 || r_type == elfcpp::R_MIPS16_TLS_GD
292 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
293 }
294
295 static inline bool
296 tls_gottprel_reloc(unsigned int r_type)
297 {
298 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
299 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
300 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
301 }
302
303 static inline bool
304 tls_ldm_reloc(unsigned int r_type)
305 {
306 return (r_type == elfcpp::R_MIPS_TLS_LDM
307 || r_type == elfcpp::R_MIPS16_TLS_LDM
308 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
309 }
310
311 static inline bool
312 mips16_call_reloc(unsigned int r_type)
313 {
314 return (r_type == elfcpp::R_MIPS16_26
315 || r_type == elfcpp::R_MIPS16_CALL16);
316 }
317
318 static inline bool
319 jal_reloc(unsigned int r_type)
320 {
321 return (r_type == elfcpp::R_MIPS_26
322 || r_type == elfcpp::R_MIPS16_26
323 || r_type == elfcpp::R_MICROMIPS_26_S1);
324 }
325
326 static inline bool
327 micromips_branch_reloc(unsigned int r_type)
328 {
329 return (r_type == elfcpp::R_MICROMIPS_26_S1
330 || r_type == elfcpp::R_MICROMIPS_PC16_S1
331 || r_type == elfcpp::R_MICROMIPS_PC10_S1
332 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
333 }
334
335 // Check if R_TYPE is a MIPS16 reloc.
336 static inline bool
337 mips16_reloc(unsigned int r_type)
338 {
339 switch (r_type)
340 {
341 case elfcpp::R_MIPS16_26:
342 case elfcpp::R_MIPS16_GPREL:
343 case elfcpp::R_MIPS16_GOT16:
344 case elfcpp::R_MIPS16_CALL16:
345 case elfcpp::R_MIPS16_HI16:
346 case elfcpp::R_MIPS16_LO16:
347 case elfcpp::R_MIPS16_TLS_GD:
348 case elfcpp::R_MIPS16_TLS_LDM:
349 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
351 case elfcpp::R_MIPS16_TLS_GOTTPREL:
352 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
353 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
354 return true;
355
356 default:
357 return false;
358 }
359 }
360
361 // Check if R_TYPE is a microMIPS reloc.
362 static inline bool
363 micromips_reloc(unsigned int r_type)
364 {
365 switch (r_type)
366 {
367 case elfcpp::R_MICROMIPS_26_S1:
368 case elfcpp::R_MICROMIPS_HI16:
369 case elfcpp::R_MICROMIPS_LO16:
370 case elfcpp::R_MICROMIPS_GPREL16:
371 case elfcpp::R_MICROMIPS_LITERAL:
372 case elfcpp::R_MICROMIPS_GOT16:
373 case elfcpp::R_MICROMIPS_PC7_S1:
374 case elfcpp::R_MICROMIPS_PC10_S1:
375 case elfcpp::R_MICROMIPS_PC16_S1:
376 case elfcpp::R_MICROMIPS_CALL16:
377 case elfcpp::R_MICROMIPS_GOT_DISP:
378 case elfcpp::R_MICROMIPS_GOT_PAGE:
379 case elfcpp::R_MICROMIPS_GOT_OFST:
380 case elfcpp::R_MICROMIPS_GOT_HI16:
381 case elfcpp::R_MICROMIPS_GOT_LO16:
382 case elfcpp::R_MICROMIPS_SUB:
383 case elfcpp::R_MICROMIPS_HIGHER:
384 case elfcpp::R_MICROMIPS_HIGHEST:
385 case elfcpp::R_MICROMIPS_CALL_HI16:
386 case elfcpp::R_MICROMIPS_CALL_LO16:
387 case elfcpp::R_MICROMIPS_SCN_DISP:
388 case elfcpp::R_MICROMIPS_JALR:
389 case elfcpp::R_MICROMIPS_HI0_LO16:
390 case elfcpp::R_MICROMIPS_TLS_GD:
391 case elfcpp::R_MICROMIPS_TLS_LDM:
392 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
394 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
395 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
396 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
397 case elfcpp::R_MICROMIPS_GPREL7_S2:
398 case elfcpp::R_MICROMIPS_PC23_S2:
399 return true;
400
401 default:
402 return false;
403 }
404 }
405
406 static inline bool
407 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
408 {
409 switch (high_reloc)
410 {
411 case elfcpp::R_MIPS_HI16:
412 case elfcpp::R_MIPS_GOT16:
413 return lo16_reloc == elfcpp::R_MIPS_LO16;
414 case elfcpp::R_MIPS_PCHI16:
415 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
416 case elfcpp::R_MIPS16_HI16:
417 case elfcpp::R_MIPS16_GOT16:
418 return lo16_reloc == elfcpp::R_MIPS16_LO16;
419 case elfcpp::R_MICROMIPS_HI16:
420 case elfcpp::R_MICROMIPS_GOT16:
421 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
422 default:
423 return false;
424 }
425 }
426
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
429 //
430 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 // (2) a SYMBOL address, where SYMBOL is not local to an input object
433 // (sym != NULL, symndx == -1)
434 // (3) a TLS LDM slot (there's only one of these per GOT.)
435 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
436
437 template<int size, bool big_endian>
438 class Mips_got_entry
439 {
440 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
441
442 public:
443 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
444 Mips_address addend, unsigned char tls_type,
445 unsigned int shndx, bool is_section_symbol)
446 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
447 is_section_symbol_(is_section_symbol), shndx_(shndx)
448 { this->d.object = object; }
449
450 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
451 : addend_(0), symndx_(-1U), tls_type_(tls_type),
452 is_section_symbol_(false), shndx_(-1U)
453 { this->d.sym = sym; }
454
455 // Return whether this entry is for a local symbol.
456 bool
457 is_for_local_symbol() const
458 { return this->symndx_ != -1U; }
459
460 // Return whether this entry is for a global symbol.
461 bool
462 is_for_global_symbol() const
463 { return this->symndx_ == -1U; }
464
465 // Return the hash of this entry.
466 size_t
467 hash() const
468 {
469 if (this->tls_type_ == GOT_TLS_LDM)
470 return this->symndx_ + (1 << 18);
471
472 size_t name_hash_value = gold::string_hash<char>(
473 (this->symndx_ != -1U)
474 ? this->d.object->name().c_str()
475 : this->d.sym->name());
476 size_t addend = this->addend_;
477 return name_hash_value ^ this->symndx_ ^ (addend << 16);
478 }
479
480 // Return whether this entry is equal to OTHER.
481 bool
482 equals(Mips_got_entry<size, big_endian>* other) const
483 {
484 if (this->symndx_ != other->symndx_
485 || this->tls_type_ != other->tls_type_)
486 return false;
487
488 if (this->tls_type_ == GOT_TLS_LDM)
489 return true;
490
491 return (((this->symndx_ != -1U)
492 ? (this->d.object == other->d.object)
493 : (this->d.sym == other->d.sym))
494 && (this->addend_ == other->addend_));
495 }
496
497 // Return input object that needs this GOT entry.
498 Mips_relobj<size, big_endian>*
499 object() const
500 {
501 gold_assert(this->symndx_ != -1U);
502 return this->d.object;
503 }
504
505 // Return local symbol index for local GOT entries.
506 unsigned int
507 symndx() const
508 {
509 gold_assert(this->symndx_ != -1U);
510 return this->symndx_;
511 }
512
513 // Return the relocation addend for local GOT entries.
514 Mips_address
515 addend() const
516 { return this->addend_; }
517
518 // Return global symbol for global GOT entries.
519 Mips_symbol<size>*
520 sym() const
521 {
522 gold_assert(this->symndx_ == -1U);
523 return this->d.sym;
524 }
525
526 // Return whether this is a TLS GOT entry.
527 bool
528 is_tls_entry() const
529 { return this->tls_type_ != GOT_TLS_NONE; }
530
531 // Return TLS type of this GOT entry.
532 unsigned char
533 tls_type() const
534 { return this->tls_type_; }
535
536 // Return section index of the local symbol for local GOT entries.
537 unsigned int
538 shndx() const
539 { return this->shndx_; }
540
541 // Return whether this is a STT_SECTION symbol.
542 bool
543 is_section_symbol() const
544 { return this->is_section_symbol_; }
545
546 private:
547 // The addend.
548 Mips_address addend_;
549
550 // The index of the symbol if we have a local symbol; -1 otherwise.
551 unsigned int symndx_;
552
553 union
554 {
555 // The input object for local symbols that needs the GOT entry.
556 Mips_relobj<size, big_endian>* object;
557 // If symndx == -1, the global symbol corresponding to this GOT entry. The
558 // symbol's entry is in the local area if mips_sym->global_got_area is
559 // GGA_NONE, otherwise it is in the global area.
560 Mips_symbol<size>* sym;
561 } d;
562
563 // The TLS type of this GOT entry. An LDM GOT entry will be a local
564 // symbol entry with r_symndx == 0.
565 unsigned char tls_type_;
566
567 // Whether this is a STT_SECTION symbol.
568 bool is_section_symbol_;
569
570 // For local GOT entries, section index of the local symbol.
571 unsigned int shndx_;
572 };
573
574 // Hash for Mips_got_entry.
575
576 template<int size, bool big_endian>
577 class Mips_got_entry_hash
578 {
579 public:
580 size_t
581 operator()(Mips_got_entry<size, big_endian>* entry) const
582 { return entry->hash(); }
583 };
584
585 // Equality for Mips_got_entry.
586
587 template<int size, bool big_endian>
588 class Mips_got_entry_eq
589 {
590 public:
591 bool
592 operator()(Mips_got_entry<size, big_endian>* e1,
593 Mips_got_entry<size, big_endian>* e2) const
594 { return e1->equals(e2); }
595 };
596
597 // Hash for Mips_symbol.
598
599 template<int size>
600 class Mips_symbol_hash
601 {
602 public:
603 size_t
604 operator()(Mips_symbol<size>* sym) const
605 { return sym->hash(); }
606 };
607
608 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
609 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
610 // increasing MIN_ADDEND.
611
612 struct Got_page_range
613 {
614 Got_page_range()
615 : next(NULL), min_addend(0), max_addend(0)
616 { }
617
618 Got_page_range* next;
619 int min_addend;
620 int max_addend;
621
622 // Return the maximum number of GOT page entries required.
623 int
624 get_max_pages()
625 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
626 };
627
628 // Got_page_entry. This class describes the range of addends that are applied
629 // to page relocations against a given symbol.
630
631 struct Got_page_entry
632 {
633 Got_page_entry()
634 : object(NULL), symndx(-1U), ranges(NULL)
635 { }
636
637 Got_page_entry(Object* object_, unsigned int symndx_)
638 : object(object_), symndx(symndx_), ranges(NULL)
639 { }
640
641 // The input object that needs the GOT page entry.
642 Object* object;
643 // The index of the symbol, as stored in the relocation r_info.
644 unsigned int symndx;
645 // The ranges for this page entry.
646 Got_page_range* ranges;
647 };
648
649 // Hash for Got_page_entry.
650
651 struct Got_page_entry_hash
652 {
653 size_t
654 operator()(Got_page_entry* entry) const
655 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
656 };
657
658 // Equality for Got_page_entry.
659
660 struct Got_page_entry_eq
661 {
662 bool
663 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
664 {
665 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
666 }
667 };
668
669 // This class is used to hold .got information when linking.
670
671 template<int size, bool big_endian>
672 class Mips_got_info
673 {
674 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
675 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
676 Reloc_section;
677 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
678
679 // Unordered set of GOT entries.
680 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
681 Mips_got_entry_hash<size, big_endian>,
682 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
683
684 // Unordered set of GOT page entries.
685 typedef Unordered_set<Got_page_entry*,
686 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
687
688 // Unordered set of global GOT entries.
689 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
690 Global_got_entry_set;
691
692 public:
693 Mips_got_info()
694 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
695 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
696 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
697 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
698 offset_(0)
699 { }
700
701 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
702 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
703 void
704 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
705 unsigned int symndx, Mips_address addend,
706 unsigned int r_type, unsigned int shndx,
707 bool is_section_symbol);
708
709 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
710 // in OBJECT. FOR_CALL is true if the caller is only interested in
711 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
712 // relocation.
713 void
714 record_global_got_symbol(Mips_symbol<size>* mips_sym,
715 Mips_relobj<size, big_endian>* object,
716 unsigned int r_type, bool dyn_reloc, bool for_call);
717
718 // Add ENTRY to master GOT and to OBJECT's GOT.
719 void
720 record_got_entry(Mips_got_entry<size, big_endian>* entry,
721 Mips_relobj<size, big_endian>* object);
722
723 // Record that OBJECT has a page relocation against symbol SYMNDX and
724 // that ADDEND is the addend for that relocation.
725 void
726 record_got_page_entry(Mips_relobj<size, big_endian>* object,
727 unsigned int symndx, int addend);
728
729 // Create all entries that should be in the local part of the GOT.
730 void
731 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
732
733 // Create GOT page entries.
734 void
735 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
736
737 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
738 void
739 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
740 unsigned int non_reloc_only_global_gotno);
741
742 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
743 void
744 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
745
746 // Create TLS GOT entries.
747 void
748 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
749
750 // Decide whether the symbol needs an entry in the global part of the primary
751 // GOT, setting global_got_area accordingly. Count the number of global
752 // symbols that are in the primary GOT only because they have dynamic
753 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
754 void
755 count_got_symbols(Symbol_table* symtab);
756
757 // Return the offset of GOT page entry for VALUE.
758 unsigned int
759 get_got_page_offset(Mips_address value,
760 Mips_output_data_got<size, big_endian>* got);
761
762 // Count the number of GOT entries required.
763 void
764 count_got_entries();
765
766 // Count the number of GOT entries required by ENTRY. Accumulate the result.
767 void
768 count_got_entry(Mips_got_entry<size, big_endian>* entry);
769
770 // Add FROM's GOT entries.
771 void
772 add_got_entries(Mips_got_info<size, big_endian>* from);
773
774 // Add FROM's GOT page entries.
775 void
776 add_got_page_count(Mips_got_info<size, big_endian>* from);
777
778 // Return GOT size.
779 unsigned int
780 got_size() const
781 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
782 + this->tls_gotno_) * size/8);
783 }
784
785 // Return the number of local GOT entries.
786 unsigned int
787 local_gotno() const
788 { return this->local_gotno_; }
789
790 // Return the maximum number of page GOT entries needed.
791 unsigned int
792 page_gotno() const
793 { return this->page_gotno_; }
794
795 // Return the number of global GOT entries.
796 unsigned int
797 global_gotno() const
798 { return this->global_gotno_; }
799
800 // Set the number of global GOT entries.
801 void
802 set_global_gotno(unsigned int global_gotno)
803 { this->global_gotno_ = global_gotno; }
804
805 // Return the number of GGA_RELOC_ONLY global GOT entries.
806 unsigned int
807 reloc_only_gotno() const
808 { return this->reloc_only_gotno_; }
809
810 // Return the number of TLS GOT entries.
811 unsigned int
812 tls_gotno() const
813 { return this->tls_gotno_; }
814
815 // Return the GOT type for this GOT. Used for multi-GOT links only.
816 unsigned int
817 multigot_got_type(unsigned int got_type) const
818 {
819 switch (got_type)
820 {
821 case GOT_TYPE_STANDARD:
822 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
823 case GOT_TYPE_TLS_OFFSET:
824 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
825 case GOT_TYPE_TLS_PAIR:
826 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
827 default:
828 gold_unreachable();
829 }
830 }
831
832 // Remove lazy-binding stubs for global symbols in this GOT.
833 void
834 remove_lazy_stubs(Target_mips<size, big_endian>* target);
835
836 // Return offset of this GOT from the start of .got section.
837 unsigned int
838 offset() const
839 { return this->offset_; }
840
841 // Set offset of this GOT from the start of .got section.
842 void
843 set_offset(unsigned int offset)
844 { this->offset_ = offset; }
845
846 // Set index of this GOT in multi-GOT links.
847 void
848 set_index(unsigned int index)
849 { this->index_ = index; }
850
851 // Return next GOT in multi-GOT links.
852 Mips_got_info<size, big_endian>*
853 next() const
854 { return this->next_; }
855
856 // Set next GOT in multi-GOT links.
857 void
858 set_next(Mips_got_info<size, big_endian>* next)
859 { this->next_ = next; }
860
861 // Return the offset of TLS LDM entry for this GOT.
862 unsigned int
863 tls_ldm_offset() const
864 { return this->tls_ldm_offset_; }
865
866 // Set the offset of TLS LDM entry for this GOT.
867 void
868 set_tls_ldm_offset(unsigned int tls_ldm_offset)
869 { this->tls_ldm_offset_ = tls_ldm_offset; }
870
871 Global_got_entry_set&
872 global_got_symbols()
873 { return this->global_got_symbols_; }
874
875 // Return the GOT_TLS_* type required by relocation type R_TYPE.
876 static int
877 mips_elf_reloc_tls_type(unsigned int r_type)
878 {
879 if (tls_gd_reloc(r_type))
880 return GOT_TLS_GD;
881
882 if (tls_ldm_reloc(r_type))
883 return GOT_TLS_LDM;
884
885 if (tls_gottprel_reloc(r_type))
886 return GOT_TLS_IE;
887
888 return GOT_TLS_NONE;
889 }
890
891 // Return the number of GOT slots needed for GOT TLS type TYPE.
892 static int
893 mips_tls_got_entries(unsigned int type)
894 {
895 switch (type)
896 {
897 case GOT_TLS_GD:
898 case GOT_TLS_LDM:
899 return 2;
900
901 case GOT_TLS_IE:
902 return 1;
903
904 case GOT_TLS_NONE:
905 return 0;
906
907 default:
908 gold_unreachable();
909 }
910 }
911
912 private:
913 // The number of local GOT entries.
914 unsigned int local_gotno_;
915 // The maximum number of page GOT entries needed.
916 unsigned int page_gotno_;
917 // The number of global GOT entries.
918 unsigned int global_gotno_;
919 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
920 unsigned int reloc_only_gotno_;
921 // The number of TLS GOT entries.
922 unsigned int tls_gotno_;
923 // The offset of TLS LDM entry for this GOT.
924 unsigned int tls_ldm_offset_;
925 // All symbols that have global GOT entry.
926 Global_got_entry_set global_got_symbols_;
927 // A hash table holding GOT entries.
928 Got_entry_set got_entries_;
929 // A hash table of GOT page entries (only used in master GOT).
930 Got_page_entry_set got_page_entries_;
931 // The offset of first GOT page entry for this GOT.
932 unsigned int got_page_offset_start_;
933 // The offset of next available GOT page entry for this GOT.
934 unsigned int got_page_offset_next_;
935 // A hash table that maps GOT page entry value to the GOT offset where
936 // the entry is located.
937 Got_page_offsets got_page_offsets_;
938 // In multi-GOT links, a pointer to the next GOT.
939 Mips_got_info<size, big_endian>* next_;
940 // Index of this GOT in multi-GOT links.
941 unsigned int index_;
942 // The offset of this GOT in multi-GOT links.
943 unsigned int offset_;
944 };
945
946 // This is a helper class used during relocation scan. It records GOT16 addend.
947
948 template<int size, bool big_endian>
949 struct got16_addend
950 {
951 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
952
953 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
954 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
955 Mips_address _addend)
956 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
957 addend(_addend)
958 { }
959
960 const Sized_relobj_file<size, big_endian>* object;
961 unsigned int shndx;
962 unsigned int r_type;
963 unsigned int r_sym;
964 Mips_address addend;
965 };
966
967 // .MIPS.abiflags section content
968
969 template<bool big_endian>
970 struct Mips_abiflags
971 {
972 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
973 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
974 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
975
976 Mips_abiflags()
977 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
978 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
979 { }
980
981 // Version of flags structure.
982 Valtype16 version;
983 // The level of the ISA: 1-5, 32, 64.
984 Valtype8 isa_level;
985 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
986 Valtype8 isa_rev;
987 // The size of general purpose registers.
988 Valtype8 gpr_size;
989 // The size of co-processor 1 registers.
990 Valtype8 cpr1_size;
991 // The size of co-processor 2 registers.
992 Valtype8 cpr2_size;
993 // The floating-point ABI.
994 Valtype8 fp_abi;
995 // Processor-specific extension.
996 Valtype32 isa_ext;
997 // Mask of ASEs used.
998 Valtype32 ases;
999 // Mask of general flags.
1000 Valtype32 flags1;
1001 Valtype32 flags2;
1002 };
1003
1004 // Mips_symbol class. Holds additional symbol information needed for Mips.
1005
1006 template<int size>
1007 class Mips_symbol : public Sized_symbol<size>
1008 {
1009 public:
1010 Mips_symbol()
1011 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1012 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1013 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1014 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1015 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1016 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1017 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1018 { }
1019
1020 // Return whether this is a MIPS16 symbol.
1021 bool
1022 is_mips16() const
1023 {
1024 // (st_other & STO_MIPS16) == STO_MIPS16
1025 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1026 == elfcpp::STO_MIPS16 >> 2);
1027 }
1028
1029 // Return whether this is a microMIPS symbol.
1030 bool
1031 is_micromips() const
1032 {
1033 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1034 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1035 == elfcpp::STO_MICROMIPS >> 2);
1036 }
1037
1038 // Return whether the symbol needs MIPS16 fn_stub.
1039 bool
1040 need_fn_stub() const
1041 { return this->need_fn_stub_; }
1042
1043 // Set that the symbol needs MIPS16 fn_stub.
1044 void
1045 set_need_fn_stub()
1046 { this->need_fn_stub_ = true; }
1047
1048 // Return whether this symbol is referenced by branch relocations from
1049 // any non-PIC input file.
1050 bool
1051 has_nonpic_branches() const
1052 { return this->has_nonpic_branches_; }
1053
1054 // Set that this symbol is referenced by branch relocations from
1055 // any non-PIC input file.
1056 void
1057 set_has_nonpic_branches()
1058 { this->has_nonpic_branches_ = true; }
1059
1060 // Return the offset of the la25 stub for this symbol from the start of the
1061 // la25 stub section.
1062 unsigned int
1063 la25_stub_offset() const
1064 { return this->la25_stub_offset_; }
1065
1066 // Set the offset of the la25 stub for this symbol from the start of the
1067 // la25 stub section.
1068 void
1069 set_la25_stub_offset(unsigned int offset)
1070 { this->la25_stub_offset_ = offset; }
1071
1072 // Return whether the symbol has la25 stub. This is true if this symbol is
1073 // for a PIC function, and there are non-PIC branches and jumps to it.
1074 bool
1075 has_la25_stub() const
1076 { return this->la25_stub_offset_ != -1U; }
1077
1078 // Return whether there is a relocation against this symbol that must be
1079 // resolved by the static linker (that is, the relocation cannot possibly
1080 // be made dynamic).
1081 bool
1082 has_static_relocs() const
1083 { return this->has_static_relocs_; }
1084
1085 // Set that there is a relocation against this symbol that must be resolved
1086 // by the static linker (that is, the relocation cannot possibly be made
1087 // dynamic).
1088 void
1089 set_has_static_relocs()
1090 { this->has_static_relocs_ = true; }
1091
1092 // Return whether we must not create a lazy-binding stub for this symbol.
1093 bool
1094 no_lazy_stub() const
1095 { return this->no_lazy_stub_; }
1096
1097 // Set that we must not create a lazy-binding stub for this symbol.
1098 void
1099 set_no_lazy_stub()
1100 { this->no_lazy_stub_ = true; }
1101
1102 // Return the offset of the lazy-binding stub for this symbol from the start
1103 // of .MIPS.stubs section.
1104 unsigned int
1105 lazy_stub_offset() const
1106 { return this->lazy_stub_offset_; }
1107
1108 // Set the offset of the lazy-binding stub for this symbol from the start
1109 // of .MIPS.stubs section.
1110 void
1111 set_lazy_stub_offset(unsigned int offset)
1112 { this->lazy_stub_offset_ = offset; }
1113
1114 // Return whether there are any relocations for this symbol where
1115 // pointer equality matters.
1116 bool
1117 pointer_equality_needed() const
1118 { return this->pointer_equality_needed_; }
1119
1120 // Set that there are relocations for this symbol where pointer equality
1121 // matters.
1122 void
1123 set_pointer_equality_needed()
1124 { this->pointer_equality_needed_ = true; }
1125
1126 // Return global GOT area where this symbol in located.
1127 Global_got_area
1128 global_got_area() const
1129 { return this->global_got_area_; }
1130
1131 // Set global GOT area where this symbol in located.
1132 void
1133 set_global_got_area(Global_got_area global_got_area)
1134 { this->global_got_area_ = global_got_area; }
1135
1136 // Return the global GOT offset for this symbol. For multi-GOT links, this
1137 // returns the offset from the start of .got section to the first GOT entry
1138 // for the symbol. Note that in multi-GOT links the symbol can have entry
1139 // in more than one GOT.
1140 unsigned int
1141 global_gotoffset() const
1142 { return this->global_gotoffset_; }
1143
1144 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1145 // the symbol can have entry in more than one GOT. This method will set
1146 // the offset only if it is less than current offset.
1147 void
1148 set_global_gotoffset(unsigned int offset)
1149 {
1150 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1151 this->global_gotoffset_ = offset;
1152 }
1153
1154 // Return whether all GOT relocations for this symbol are for calls.
1155 bool
1156 got_only_for_calls() const
1157 { return this->got_only_for_calls_; }
1158
1159 // Set that there is a GOT relocation for this symbol that is not for call.
1160 void
1161 set_got_not_only_for_calls()
1162 { this->got_only_for_calls_ = false; }
1163
1164 // Return whether this is a PIC symbol.
1165 bool
1166 is_pic() const
1167 {
1168 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1169 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1170 == (elfcpp::STO_MIPS_PIC >> 2));
1171 }
1172
1173 // Set the flag in st_other field that marks this symbol as PIC.
1174 void
1175 set_pic()
1176 {
1177 if (this->is_mips16())
1178 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1179 this->set_nonvis((this->nonvis()
1180 & ~((elfcpp::STO_MIPS16 >> 2)
1181 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1182 | (elfcpp::STO_MIPS_PIC >> 2));
1183 else
1184 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1185 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1186 | (elfcpp::STO_MIPS_PIC >> 2));
1187 }
1188
1189 // Set the flag in st_other field that marks this symbol as PLT.
1190 void
1191 set_mips_plt()
1192 {
1193 if (this->is_mips16())
1194 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1195 this->set_nonvis((this->nonvis()
1196 & ((elfcpp::STO_MIPS16 >> 2)
1197 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1198 | (elfcpp::STO_MIPS_PLT >> 2));
1199
1200 else
1201 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1202 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1203 | (elfcpp::STO_MIPS_PLT >> 2));
1204 }
1205
1206 // Downcast a base pointer to a Mips_symbol pointer.
1207 static Mips_symbol<size>*
1208 as_mips_sym(Symbol* sym)
1209 { return static_cast<Mips_symbol<size>*>(sym); }
1210
1211 // Downcast a base pointer to a Mips_symbol pointer.
1212 static const Mips_symbol<size>*
1213 as_mips_sym(const Symbol* sym)
1214 { return static_cast<const Mips_symbol<size>*>(sym); }
1215
1216 // Return whether the symbol has lazy-binding stub.
1217 bool
1218 has_lazy_stub() const
1219 { return this->has_lazy_stub_; }
1220
1221 // Set whether the symbol has lazy-binding stub.
1222 void
1223 set_has_lazy_stub(bool has_lazy_stub)
1224 { this->has_lazy_stub_ = has_lazy_stub; }
1225
1226 // Return whether the symbol needs a standard PLT entry.
1227 bool
1228 needs_mips_plt() const
1229 { return this->needs_mips_plt_; }
1230
1231 // Set whether the symbol needs a standard PLT entry.
1232 void
1233 set_needs_mips_plt(bool needs_mips_plt)
1234 { this->needs_mips_plt_ = needs_mips_plt; }
1235
1236 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1237 // entry.
1238 bool
1239 needs_comp_plt() const
1240 { return this->needs_comp_plt_; }
1241
1242 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1243 void
1244 set_needs_comp_plt(bool needs_comp_plt)
1245 { this->needs_comp_plt_ = needs_comp_plt; }
1246
1247 // Return standard PLT entry offset, or -1 if none.
1248 unsigned int
1249 mips_plt_offset() const
1250 { return this->mips_plt_offset_; }
1251
1252 // Set standard PLT entry offset.
1253 void
1254 set_mips_plt_offset(unsigned int mips_plt_offset)
1255 { this->mips_plt_offset_ = mips_plt_offset; }
1256
1257 // Return whether the symbol has standard PLT entry.
1258 bool
1259 has_mips_plt_offset() const
1260 { return this->mips_plt_offset_ != -1U; }
1261
1262 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1263 unsigned int
1264 comp_plt_offset() const
1265 { return this->comp_plt_offset_; }
1266
1267 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1268 void
1269 set_comp_plt_offset(unsigned int comp_plt_offset)
1270 { this->comp_plt_offset_ = comp_plt_offset; }
1271
1272 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1273 bool
1274 has_comp_plt_offset() const
1275 { return this->comp_plt_offset_ != -1U; }
1276
1277 // Return MIPS16 fn stub for a symbol.
1278 template<bool big_endian>
1279 Mips16_stub_section<size, big_endian>*
1280 get_mips16_fn_stub() const
1281 {
1282 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1283 }
1284
1285 // Set MIPS16 fn stub for a symbol.
1286 void
1287 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1288 { this->mips16_fn_stub_ = stub; }
1289
1290 // Return whether symbol has MIPS16 fn stub.
1291 bool
1292 has_mips16_fn_stub() const
1293 { return this->mips16_fn_stub_ != NULL; }
1294
1295 // Return MIPS16 call stub for a symbol.
1296 template<bool big_endian>
1297 Mips16_stub_section<size, big_endian>*
1298 get_mips16_call_stub() const
1299 {
1300 return static_cast<Mips16_stub_section<size, big_endian>*>(
1301 mips16_call_stub_);
1302 }
1303
1304 // Set MIPS16 call stub for a symbol.
1305 void
1306 set_mips16_call_stub(Mips16_stub_section_base* stub)
1307 { this->mips16_call_stub_ = stub; }
1308
1309 // Return whether symbol has MIPS16 call stub.
1310 bool
1311 has_mips16_call_stub() const
1312 { return this->mips16_call_stub_ != NULL; }
1313
1314 // Return MIPS16 call_fp stub for a symbol.
1315 template<bool big_endian>
1316 Mips16_stub_section<size, big_endian>*
1317 get_mips16_call_fp_stub() const
1318 {
1319 return static_cast<Mips16_stub_section<size, big_endian>*>(
1320 mips16_call_fp_stub_);
1321 }
1322
1323 // Set MIPS16 call_fp stub for a symbol.
1324 void
1325 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1326 { this->mips16_call_fp_stub_ = stub; }
1327
1328 // Return whether symbol has MIPS16 call_fp stub.
1329 bool
1330 has_mips16_call_fp_stub() const
1331 { return this->mips16_call_fp_stub_ != NULL; }
1332
1333 bool
1334 get_applied_secondary_got_fixup() const
1335 { return applied_secondary_got_fixup_; }
1336
1337 void
1338 set_applied_secondary_got_fixup()
1339 { this->applied_secondary_got_fixup_ = true; }
1340
1341 // Return the hash of this symbol.
1342 size_t
1343 hash() const
1344 {
1345 return gold::string_hash<char>(this->name());
1346 }
1347
1348 private:
1349 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1350 // appears in any relocs other than a 16 bit call.
1351 bool need_fn_stub_;
1352
1353 // True if this symbol is referenced by branch relocations from
1354 // any non-PIC input file. This is used to determine whether an
1355 // la25 stub is required.
1356 bool has_nonpic_branches_;
1357
1358 // The offset of the la25 stub for this symbol from the start of the
1359 // la25 stub section.
1360 unsigned int la25_stub_offset_;
1361
1362 // True if there is a relocation against this symbol that must be
1363 // resolved by the static linker (that is, the relocation cannot
1364 // possibly be made dynamic).
1365 bool has_static_relocs_;
1366
1367 // Whether we must not create a lazy-binding stub for this symbol.
1368 // This is true if the symbol has relocations related to taking the
1369 // function's address.
1370 bool no_lazy_stub_;
1371
1372 // The offset of the lazy-binding stub for this symbol from the start of
1373 // .MIPS.stubs section.
1374 unsigned int lazy_stub_offset_;
1375
1376 // True if there are any relocations for this symbol where pointer equality
1377 // matters.
1378 bool pointer_equality_needed_;
1379
1380 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1381 // in the global part of the GOT.
1382 Global_got_area global_got_area_;
1383
1384 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1385 // from the start of .got section to the first GOT entry for the symbol.
1386 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1387 unsigned int global_gotoffset_;
1388
1389 // Whether all GOT relocations for this symbol are for calls.
1390 bool got_only_for_calls_;
1391 // Whether the symbol has lazy-binding stub.
1392 bool has_lazy_stub_;
1393 // Whether the symbol needs a standard PLT entry.
1394 bool needs_mips_plt_;
1395 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1396 bool needs_comp_plt_;
1397 // Standard PLT entry offset, or -1 if none.
1398 unsigned int mips_plt_offset_;
1399 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1400 unsigned int comp_plt_offset_;
1401 // MIPS16 fn stub for a symbol.
1402 Mips16_stub_section_base* mips16_fn_stub_;
1403 // MIPS16 call stub for a symbol.
1404 Mips16_stub_section_base* mips16_call_stub_;
1405 // MIPS16 call_fp stub for a symbol.
1406 Mips16_stub_section_base* mips16_call_fp_stub_;
1407
1408 bool applied_secondary_got_fixup_;
1409 };
1410
1411 // Mips16_stub_section class.
1412
1413 // The mips16 compiler uses a couple of special sections to handle
1414 // floating point arguments.
1415
1416 // Section names that look like .mips16.fn.FNNAME contain stubs that
1417 // copy floating point arguments from the fp regs to the gp regs and
1418 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1419 // call should be redirected to the stub instead. If no 32 bit
1420 // function calls FNNAME, the stub should be discarded. We need to
1421 // consider any reference to the function, not just a call, because
1422 // if the address of the function is taken we will need the stub,
1423 // since the address might be passed to a 32 bit function.
1424
1425 // Section names that look like .mips16.call.FNNAME contain stubs
1426 // that copy floating point arguments from the gp regs to the fp
1427 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1428 // then any 16 bit function that calls FNNAME should be redirected
1429 // to the stub instead. If FNNAME is not a 32 bit function, the
1430 // stub should be discarded.
1431
1432 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1433 // which call FNNAME and then copy the return value from the fp regs
1434 // to the gp regs. These stubs store the return address in $18 while
1435 // calling FNNAME; any function which might call one of these stubs
1436 // must arrange to save $18 around the call. (This case is not
1437 // needed for 32 bit functions that call 16 bit functions, because
1438 // 16 bit functions always return floating point values in both
1439 // $f0/$f1 and $2/$3.)
1440
1441 // Note that in all cases FNNAME might be defined statically.
1442 // Therefore, FNNAME is not used literally. Instead, the relocation
1443 // information will indicate which symbol the section is for.
1444
1445 // We record any stubs that we find in the symbol table.
1446
1447 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1448
1449 class Mips16_stub_section_base { };
1450
1451 template<int size, bool big_endian>
1452 class Mips16_stub_section : public Mips16_stub_section_base
1453 {
1454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1455
1456 public:
1457 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1458 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1459 found_r_mips_none_(false)
1460 {
1461 gold_assert(object->is_mips16_fn_stub_section(shndx)
1462 || object->is_mips16_call_stub_section(shndx)
1463 || object->is_mips16_call_fp_stub_section(shndx));
1464 }
1465
1466 // Return the object of this stub section.
1467 Mips_relobj<size, big_endian>*
1468 object() const
1469 { return this->object_; }
1470
1471 // Return the size of a section.
1472 uint64_t
1473 section_size() const
1474 { return this->object_->section_size(this->shndx_); }
1475
1476 // Return section index of this stub section.
1477 unsigned int
1478 shndx() const
1479 { return this->shndx_; }
1480
1481 // Return symbol index, if stub is for a local function.
1482 unsigned int
1483 r_sym() const
1484 { return this->r_sym_; }
1485
1486 // Return symbol, if stub is for a global function.
1487 Mips_symbol<size>*
1488 gsym() const
1489 { return this->gsym_; }
1490
1491 // Return whether stub is for a local function.
1492 bool
1493 is_for_local_function() const
1494 { return this->gsym_ == NULL; }
1495
1496 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1497 // is found in the stub section. Try to find stub target.
1498 void
1499 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1500 {
1501 // To find target symbol for this stub, trust the first R_MIPS_NONE
1502 // relocation, if any. Otherwise trust the first relocation, whatever
1503 // its kind.
1504 if (this->found_r_mips_none_)
1505 return;
1506 if (r_type == elfcpp::R_MIPS_NONE)
1507 {
1508 this->r_sym_ = r_sym;
1509 this->gsym_ = NULL;
1510 this->found_r_mips_none_ = true;
1511 }
1512 else if (!is_target_found())
1513 this->r_sym_ = r_sym;
1514 }
1515
1516 // This method is called when a new relocation R_TYPE for global symbol GSYM
1517 // is found in the stub section. Try to find stub target.
1518 void
1519 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1520 {
1521 // To find target symbol for this stub, trust the first R_MIPS_NONE
1522 // relocation, if any. Otherwise trust the first relocation, whatever
1523 // its kind.
1524 if (this->found_r_mips_none_)
1525 return;
1526 if (r_type == elfcpp::R_MIPS_NONE)
1527 {
1528 this->gsym_ = gsym;
1529 this->r_sym_ = 0;
1530 this->found_r_mips_none_ = true;
1531 }
1532 else if (!is_target_found())
1533 this->gsym_ = gsym;
1534 }
1535
1536 // Return whether we found the stub target.
1537 bool
1538 is_target_found() const
1539 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1540
1541 // Return whether this is a fn stub.
1542 bool
1543 is_fn_stub() const
1544 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1545
1546 // Return whether this is a call stub.
1547 bool
1548 is_call_stub() const
1549 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1550
1551 // Return whether this is a call_fp stub.
1552 bool
1553 is_call_fp_stub() const
1554 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1555
1556 // Return the output address.
1557 Mips_address
1558 output_address() const
1559 {
1560 return (this->object_->output_section(this->shndx_)->address()
1561 + this->object_->output_section_offset(this->shndx_));
1562 }
1563
1564 private:
1565 // The object of this stub section.
1566 Mips_relobj<size, big_endian>* object_;
1567 // The section index of this stub section.
1568 unsigned int shndx_;
1569 // The symbol index, if stub is for a local function.
1570 unsigned int r_sym_;
1571 // The symbol, if stub is for a global function.
1572 Mips_symbol<size>* gsym_;
1573 // True if we found R_MIPS_NONE relocation in this stub.
1574 bool found_r_mips_none_;
1575 };
1576
1577 // Mips_relobj class.
1578
1579 template<int size, bool big_endian>
1580 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1581 {
1582 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1583 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1584 Mips16_stubs_int_map;
1585 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1586
1587 public:
1588 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1589 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1590 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1591 processor_specific_flags_(0), local_symbol_is_mips16_(),
1592 local_symbol_is_micromips_(), mips16_stub_sections_(),
1593 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1594 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1595 merge_processor_specific_data_(true), got_info_(NULL),
1596 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1597 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U),
1598 attributes_section_data_(NULL), abiflags_(NULL), gprmask_(0),
1599 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1600 {
1601 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1602 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1603 }
1604
1605 ~Mips_relobj()
1606 { delete this->attributes_section_data_; }
1607
1608 // Downcast a base pointer to a Mips_relobj pointer. This is
1609 // not type-safe but we only use Mips_relobj not the base class.
1610 static Mips_relobj<size, big_endian>*
1611 as_mips_relobj(Relobj* relobj)
1612 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1613
1614 // Downcast a base pointer to a Mips_relobj pointer. This is
1615 // not type-safe but we only use Mips_relobj not the base class.
1616 static const Mips_relobj<size, big_endian>*
1617 as_mips_relobj(const Relobj* relobj)
1618 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1619
1620 // Processor-specific flags in ELF file header. This is valid only after
1621 // reading symbols.
1622 elfcpp::Elf_Word
1623 processor_specific_flags() const
1624 { return this->processor_specific_flags_; }
1625
1626 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1627 // index. This is only valid after do_count_local_symbol is called.
1628 bool
1629 local_symbol_is_mips16(unsigned int r_sym) const
1630 {
1631 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1632 return this->local_symbol_is_mips16_[r_sym];
1633 }
1634
1635 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1636 // index. This is only valid after do_count_local_symbol is called.
1637 bool
1638 local_symbol_is_micromips(unsigned int r_sym) const
1639 {
1640 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1641 return this->local_symbol_is_micromips_[r_sym];
1642 }
1643
1644 // Get or create MIPS16 stub section.
1645 Mips16_stub_section<size, big_endian>*
1646 get_mips16_stub_section(unsigned int shndx)
1647 {
1648 typename Mips16_stubs_int_map::const_iterator it =
1649 this->mips16_stub_sections_.find(shndx);
1650 if (it != this->mips16_stub_sections_.end())
1651 return (*it).second;
1652
1653 Mips16_stub_section<size, big_endian>* stub_section =
1654 new Mips16_stub_section<size, big_endian>(this, shndx);
1655 this->mips16_stub_sections_.insert(
1656 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1657 stub_section->shndx(), stub_section));
1658 return stub_section;
1659 }
1660
1661 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1662 // object doesn't have fn stub for R_SYM.
1663 Mips16_stub_section<size, big_endian>*
1664 get_local_mips16_fn_stub(unsigned int r_sym) const
1665 {
1666 typename Mips16_stubs_int_map::const_iterator it =
1667 this->local_mips16_fn_stubs_.find(r_sym);
1668 if (it != this->local_mips16_fn_stubs_.end())
1669 return (*it).second;
1670 return NULL;
1671 }
1672
1673 // Record that this object has MIPS16 fn stub for local symbol. This method
1674 // is only called if we decided not to discard the stub.
1675 void
1676 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1677 {
1678 gold_assert(stub->is_for_local_function());
1679 unsigned int r_sym = stub->r_sym();
1680 this->local_mips16_fn_stubs_.insert(
1681 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1682 r_sym, stub));
1683 }
1684
1685 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1686 // object doesn't have call stub for R_SYM.
1687 Mips16_stub_section<size, big_endian>*
1688 get_local_mips16_call_stub(unsigned int r_sym) const
1689 {
1690 typename Mips16_stubs_int_map::const_iterator it =
1691 this->local_mips16_call_stubs_.find(r_sym);
1692 if (it != this->local_mips16_call_stubs_.end())
1693 return (*it).second;
1694 return NULL;
1695 }
1696
1697 // Record that this object has MIPS16 call stub for local symbol. This method
1698 // is only called if we decided not to discard the stub.
1699 void
1700 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1701 {
1702 gold_assert(stub->is_for_local_function());
1703 unsigned int r_sym = stub->r_sym();
1704 this->local_mips16_call_stubs_.insert(
1705 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1706 r_sym, stub));
1707 }
1708
1709 // Record that we found "non 16-bit" call relocation against local symbol
1710 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1711 // is one.
1712 void
1713 add_local_non_16bit_call(unsigned int symndx)
1714 { this->local_non_16bit_calls_.insert(symndx); }
1715
1716 // Return true if there is any "non 16-bit" call relocation against local
1717 // symbol SYMNDX in this object.
1718 bool
1719 has_local_non_16bit_call_relocs(unsigned int symndx)
1720 {
1721 return (this->local_non_16bit_calls_.find(symndx)
1722 != this->local_non_16bit_calls_.end());
1723 }
1724
1725 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1726 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1727 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1728 void
1729 add_local_16bit_call(unsigned int symndx)
1730 { this->local_16bit_calls_.insert(symndx); }
1731
1732 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1733 // symbol SYMNDX in this object.
1734 bool
1735 has_local_16bit_call_relocs(unsigned int symndx)
1736 {
1737 return (this->local_16bit_calls_.find(symndx)
1738 != this->local_16bit_calls_.end());
1739 }
1740
1741 // Get gp value that was used to create this object.
1742 Mips_address
1743 gp_value() const
1744 { return this->gp_; }
1745
1746 // Return whether the object is a PIC object.
1747 bool
1748 is_pic() const
1749 { return this->is_pic_; }
1750
1751 // Return whether the object uses N32 ABI.
1752 bool
1753 is_n32() const
1754 { return this->is_n32_; }
1755
1756 // Return whether the object uses N64 ABI.
1757 bool
1758 is_n64() const
1759 { return size == 64; }
1760
1761 // Return whether the object uses NewABI conventions.
1762 bool
1763 is_newabi() const
1764 { return this->is_n32() || this->is_n64(); }
1765
1766 // Return Mips_got_info for this object.
1767 Mips_got_info<size, big_endian>*
1768 get_got_info() const
1769 { return this->got_info_; }
1770
1771 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1772 Mips_got_info<size, big_endian>*
1773 get_or_create_got_info()
1774 {
1775 if (!this->got_info_)
1776 this->got_info_ = new Mips_got_info<size, big_endian>();
1777 return this->got_info_;
1778 }
1779
1780 // Set Mips_got_info for this object.
1781 void
1782 set_got_info(Mips_got_info<size, big_endian>* got_info)
1783 { this->got_info_ = got_info; }
1784
1785 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1786 // after do_read_symbols is called.
1787 bool
1788 is_mips16_stub_section(unsigned int shndx)
1789 {
1790 return (is_mips16_fn_stub_section(shndx)
1791 || is_mips16_call_stub_section(shndx)
1792 || is_mips16_call_fp_stub_section(shndx));
1793 }
1794
1795 // Return TRUE if relocations in section SHNDX can refer directly to a
1796 // MIPS16 function rather than to a hard-float stub. This is only valid
1797 // after do_read_symbols is called.
1798 bool
1799 section_allows_mips16_refs(unsigned int shndx)
1800 {
1801 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1802 }
1803
1804 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1805 // after do_read_symbols is called.
1806 bool
1807 is_mips16_fn_stub_section(unsigned int shndx)
1808 {
1809 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1810 return this->section_is_mips16_fn_stub_[shndx];
1811 }
1812
1813 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1814 // after do_read_symbols is called.
1815 bool
1816 is_mips16_call_stub_section(unsigned int shndx)
1817 {
1818 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1819 return this->section_is_mips16_call_stub_[shndx];
1820 }
1821
1822 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1823 // valid after do_read_symbols is called.
1824 bool
1825 is_mips16_call_fp_stub_section(unsigned int shndx)
1826 {
1827 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1828 return this->section_is_mips16_call_fp_stub_[shndx];
1829 }
1830
1831 // Discard MIPS16 stub secions that are not needed.
1832 void
1833 discard_mips16_stub_sections(Symbol_table* symtab);
1834
1835 // Return whether there is a .reginfo section.
1836 bool
1837 has_reginfo_section() const
1838 { return this->has_reginfo_section_; }
1839
1840 // Return whether we want to merge processor-specific data.
1841 bool
1842 merge_processor_specific_data() const
1843 { return this->merge_processor_specific_data_; }
1844
1845 // Return gprmask from the .reginfo section of this object.
1846 Valtype
1847 gprmask() const
1848 { return this->gprmask_; }
1849
1850 // Return cprmask1 from the .reginfo section of this object.
1851 Valtype
1852 cprmask1() const
1853 { return this->cprmask1_; }
1854
1855 // Return cprmask2 from the .reginfo section of this object.
1856 Valtype
1857 cprmask2() const
1858 { return this->cprmask2_; }
1859
1860 // Return cprmask3 from the .reginfo section of this object.
1861 Valtype
1862 cprmask3() const
1863 { return this->cprmask3_; }
1864
1865 // Return cprmask4 from the .reginfo section of this object.
1866 Valtype
1867 cprmask4() const
1868 { return this->cprmask4_; }
1869
1870 // This is the contents of the .MIPS.abiflags section if there is one.
1871 Mips_abiflags<big_endian>*
1872 abiflags()
1873 { return this->abiflags_; }
1874
1875 // This is the contents of the .gnu.attribute section if there is one.
1876 const Attributes_section_data*
1877 attributes_section_data() const
1878 { return this->attributes_section_data_; }
1879
1880 protected:
1881 // Count the local symbols.
1882 void
1883 do_count_local_symbols(Stringpool_template<char>*,
1884 Stringpool_template<char>*);
1885
1886 // Read the symbol information.
1887 void
1888 do_read_symbols(Read_symbols_data* sd);
1889
1890 private:
1891 // The name of the options section.
1892 const char* mips_elf_options_section_name()
1893 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1894
1895 // processor-specific flags in ELF file header.
1896 elfcpp::Elf_Word processor_specific_flags_;
1897
1898 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1899 // This is only valid after do_count_local_symbol is called.
1900 std::vector<bool> local_symbol_is_mips16_;
1901
1902 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1903 // This is only valid after do_count_local_symbol is called.
1904 std::vector<bool> local_symbol_is_micromips_;
1905
1906 // Map from section index to the MIPS16 stub for that section. This contains
1907 // all stubs found in this object.
1908 Mips16_stubs_int_map mips16_stub_sections_;
1909
1910 // Local symbols that have "non 16-bit" call relocation. This relocation
1911 // would need to refer to a MIPS16 fn stub, if there is one.
1912 std::set<unsigned int> local_non_16bit_calls_;
1913
1914 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1915 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1916 // relocation that refers to the stub symbol.
1917 std::set<unsigned int> local_16bit_calls_;
1918
1919 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1920 // This contains only the stubs that we decided not to discard.
1921 Mips16_stubs_int_map local_mips16_fn_stubs_;
1922
1923 // Map from local symbol index to the MIPS16 call stub for that symbol.
1924 // This contains only the stubs that we decided not to discard.
1925 Mips16_stubs_int_map local_mips16_call_stubs_;
1926
1927 // gp value that was used to create this object.
1928 Mips_address gp_;
1929 // Whether the object is a PIC object.
1930 bool is_pic_ : 1;
1931 // Whether the object uses N32 ABI.
1932 bool is_n32_ : 1;
1933 // Whether the object contains a .reginfo section.
1934 bool has_reginfo_section_ : 1;
1935 // Whether we merge processor-specific data of this object to output.
1936 bool merge_processor_specific_data_ : 1;
1937 // The Mips_got_info for this object.
1938 Mips_got_info<size, big_endian>* got_info_;
1939
1940 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1941 // This is only valid after do_read_symbols is called.
1942 std::vector<bool> section_is_mips16_fn_stub_;
1943
1944 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1945 // This is only valid after do_read_symbols is called.
1946 std::vector<bool> section_is_mips16_call_stub_;
1947
1948 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1949 // This is only valid after do_read_symbols is called.
1950 std::vector<bool> section_is_mips16_call_fp_stub_;
1951
1952 // .pdr section index.
1953 unsigned int pdr_shndx_;
1954
1955 // Object attributes if there is a .gnu.attributes section or NULL.
1956 Attributes_section_data* attributes_section_data_;
1957
1958 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1959 Mips_abiflags<big_endian>* abiflags_;
1960
1961 // gprmask from the .reginfo section of this object.
1962 Valtype gprmask_;
1963 // cprmask1 from the .reginfo section of this object.
1964 Valtype cprmask1_;
1965 // cprmask2 from the .reginfo section of this object.
1966 Valtype cprmask2_;
1967 // cprmask3 from the .reginfo section of this object.
1968 Valtype cprmask3_;
1969 // cprmask4 from the .reginfo section of this object.
1970 Valtype cprmask4_;
1971 };
1972
1973 // Mips_output_data_got class.
1974
1975 template<int size, bool big_endian>
1976 class Mips_output_data_got : public Output_data_got<size, big_endian>
1977 {
1978 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1979 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1980 Reloc_section;
1981 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1982
1983 public:
1984 Mips_output_data_got(Target_mips<size, big_endian>* target,
1985 Symbol_table* symtab, Layout* layout)
1986 : Output_data_got<size, big_endian>(), target_(target),
1987 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1988 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1989 secondary_got_relocs_()
1990 {
1991 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1992 this->set_addralign(16);
1993 }
1994
1995 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1996 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1997 void
1998 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1999 unsigned int symndx, Mips_address addend,
2000 unsigned int r_type, unsigned int shndx,
2001 bool is_section_symbol)
2002 {
2003 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
2004 r_type, shndx,
2005 is_section_symbol);
2006 }
2007
2008 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2009 // in OBJECT. FOR_CALL is true if the caller is only interested in
2010 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2011 // relocation.
2012 void
2013 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2014 Mips_relobj<size, big_endian>* object,
2015 unsigned int r_type, bool dyn_reloc, bool for_call)
2016 {
2017 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2018 dyn_reloc, for_call);
2019 }
2020
2021 // Record that OBJECT has a page relocation against symbol SYMNDX and
2022 // that ADDEND is the addend for that relocation.
2023 void
2024 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2025 unsigned int symndx, int addend)
2026 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2027
2028 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2029 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2030 // applied in a static link.
2031 void
2032 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2033 Mips_symbol<size>* gsym)
2034 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2035
2036 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2037 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2038 // relocation that needs to be applied in a static link.
2039 void
2040 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2041 Sized_relobj_file<size, big_endian>* relobj,
2042 unsigned int index)
2043 {
2044 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2045 index));
2046 }
2047
2048 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2049 // secondary GOT at OFFSET.
2050 void
2051 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2052 Mips_symbol<size>* gsym)
2053 {
2054 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2055 r_type, gsym));
2056 }
2057
2058 // Update GOT entry at OFFSET with VALUE.
2059 void
2060 update_got_entry(unsigned int offset, Mips_address value)
2061 {
2062 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2063 }
2064
2065 // Return the number of entries in local part of the GOT. This includes
2066 // local entries, page entries and 2 reserved entries.
2067 unsigned int
2068 get_local_gotno() const
2069 {
2070 if (!this->multi_got())
2071 {
2072 return (2 + this->master_got_info_->local_gotno()
2073 + this->master_got_info_->page_gotno());
2074 }
2075 else
2076 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2077 }
2078
2079 // Return dynamic symbol table index of the first symbol with global GOT
2080 // entry.
2081 unsigned int
2082 first_global_got_dynsym_index() const
2083 { return this->first_global_got_dynsym_index_; }
2084
2085 // Set dynamic symbol table index of the first symbol with global GOT entry.
2086 void
2087 set_first_global_got_dynsym_index(unsigned int index)
2088 { this->first_global_got_dynsym_index_ = index; }
2089
2090 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2091 // larger than 64K, create multi-GOT.
2092 void
2093 lay_out_got(Layout* layout, Symbol_table* symtab,
2094 const Input_objects* input_objects);
2095
2096 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2097 void
2098 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2099
2100 // Attempt to merge GOTs of different input objects.
2101 void
2102 merge_gots(const Input_objects* input_objects);
2103
2104 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2105 // this would lead to overflow, true if they were merged successfully.
2106 bool
2107 merge_got_with(Mips_got_info<size, big_endian>* from,
2108 Mips_relobj<size, big_endian>* object,
2109 Mips_got_info<size, big_endian>* to);
2110
2111 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2112 // use OBJECT's GOT.
2113 unsigned int
2114 get_got_page_offset(Mips_address value,
2115 const Mips_relobj<size, big_endian>* object)
2116 {
2117 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2118 ? this->master_got_info_
2119 : object->get_got_info());
2120 gold_assert(g != NULL);
2121 return g->get_got_page_offset(value, this);
2122 }
2123
2124 // Return the GOT offset of type GOT_TYPE of the global symbol
2125 // GSYM. For multi-GOT links, use OBJECT's GOT.
2126 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2127 Mips_relobj<size, big_endian>* object) const
2128 {
2129 if (!this->multi_got())
2130 return gsym->got_offset(got_type);
2131 else
2132 {
2133 Mips_got_info<size, big_endian>* g = object->get_got_info();
2134 gold_assert(g != NULL);
2135 return gsym->got_offset(g->multigot_got_type(got_type));
2136 }
2137 }
2138
2139 // Return the GOT offset of type GOT_TYPE of the local symbol
2140 // SYMNDX.
2141 unsigned int
2142 got_offset(unsigned int symndx, unsigned int got_type,
2143 Sized_relobj_file<size, big_endian>* object,
2144 uint64_t addend) const
2145 { return object->local_got_offset(symndx, got_type, addend); }
2146
2147 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2148 unsigned int
2149 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2150 {
2151 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2152 ? this->master_got_info_
2153 : object->get_got_info());
2154 gold_assert(g != NULL);
2155 return g->tls_ldm_offset();
2156 }
2157
2158 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2159 void
2160 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2161 Mips_relobj<size, big_endian>* object)
2162 {
2163 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2164 ? this->master_got_info_
2165 : object->get_got_info());
2166 gold_assert(g != NULL);
2167 g->set_tls_ldm_offset(tls_ldm_offset);
2168 }
2169
2170 // Return true for multi-GOT links.
2171 bool
2172 multi_got() const
2173 { return this->primary_got_ != NULL; }
2174
2175 // Return the offset of OBJECT's GOT from the start of .got section.
2176 unsigned int
2177 get_got_offset(const Mips_relobj<size, big_endian>* object)
2178 {
2179 if (!this->multi_got())
2180 return 0;
2181 else
2182 {
2183 Mips_got_info<size, big_endian>* g = object->get_got_info();
2184 return g != NULL ? g->offset() : 0;
2185 }
2186 }
2187
2188 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2189 void
2190 add_reloc_only_entries()
2191 { this->master_got_info_->add_reloc_only_entries(this); }
2192
2193 // Return offset of the primary GOT's entry for global symbol.
2194 unsigned int
2195 get_primary_got_offset(const Mips_symbol<size>* sym) const
2196 {
2197 gold_assert(sym->global_got_area() != GGA_NONE);
2198 return (this->get_local_gotno() + sym->dynsym_index()
2199 - this->first_global_got_dynsym_index()) * size/8;
2200 }
2201
2202 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2203 // Input argument GOT_OFFSET is always global offset from the start of
2204 // .got section, for both single and multi-GOT links.
2205 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2206 // links, the return value is object_got_offset - 0x7FF0, where
2207 // object_got_offset is offset in the OBJECT's GOT.
2208 int
2209 gp_offset(unsigned int got_offset,
2210 const Mips_relobj<size, big_endian>* object) const
2211 {
2212 return (this->address() + got_offset
2213 - this->target_->adjusted_gp_value(object));
2214 }
2215
2216 protected:
2217 // Write out the GOT table.
2218 void
2219 do_write(Output_file*);
2220
2221 private:
2222
2223 // This class represent dynamic relocations that need to be applied by
2224 // gold because we are using TLS relocations in a static link.
2225 class Static_reloc
2226 {
2227 public:
2228 Static_reloc(unsigned int got_offset, unsigned int r_type,
2229 Mips_symbol<size>* gsym)
2230 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2231 { this->u_.global.symbol = gsym; }
2232
2233 Static_reloc(unsigned int got_offset, unsigned int r_type,
2234 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2235 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2236 {
2237 this->u_.local.relobj = relobj;
2238 this->u_.local.index = index;
2239 }
2240
2241 // Return the GOT offset.
2242 unsigned int
2243 got_offset() const
2244 { return this->got_offset_; }
2245
2246 // Relocation type.
2247 unsigned int
2248 r_type() const
2249 { return this->r_type_; }
2250
2251 // Whether the symbol is global or not.
2252 bool
2253 symbol_is_global() const
2254 { return this->symbol_is_global_; }
2255
2256 // For a relocation against a global symbol, the global symbol.
2257 Mips_symbol<size>*
2258 symbol() const
2259 {
2260 gold_assert(this->symbol_is_global_);
2261 return this->u_.global.symbol;
2262 }
2263
2264 // For a relocation against a local symbol, the defining object.
2265 Sized_relobj_file<size, big_endian>*
2266 relobj() const
2267 {
2268 gold_assert(!this->symbol_is_global_);
2269 return this->u_.local.relobj;
2270 }
2271
2272 // For a relocation against a local symbol, the local symbol index.
2273 unsigned int
2274 index() const
2275 {
2276 gold_assert(!this->symbol_is_global_);
2277 return this->u_.local.index;
2278 }
2279
2280 private:
2281 // GOT offset of the entry to which this relocation is applied.
2282 unsigned int got_offset_;
2283 // Type of relocation.
2284 unsigned int r_type_;
2285 // Whether this relocation is against a global symbol.
2286 bool symbol_is_global_;
2287 // A global or local symbol.
2288 union
2289 {
2290 struct
2291 {
2292 // For a global symbol, the symbol itself.
2293 Mips_symbol<size>* symbol;
2294 } global;
2295 struct
2296 {
2297 // For a local symbol, the object defining object.
2298 Sized_relobj_file<size, big_endian>* relobj;
2299 // For a local symbol, the symbol index.
2300 unsigned int index;
2301 } local;
2302 } u_;
2303 };
2304
2305 // The target.
2306 Target_mips<size, big_endian>* target_;
2307 // The symbol table.
2308 Symbol_table* symbol_table_;
2309 // The layout.
2310 Layout* layout_;
2311 // Static relocs to be applied to the GOT.
2312 std::vector<Static_reloc> static_relocs_;
2313 // .got section view.
2314 unsigned char* got_view_;
2315 // The dynamic symbol table index of the first symbol with global GOT entry.
2316 unsigned int first_global_got_dynsym_index_;
2317 // The master GOT information.
2318 Mips_got_info<size, big_endian>* master_got_info_;
2319 // The primary GOT information.
2320 Mips_got_info<size, big_endian>* primary_got_;
2321 // Secondary GOT fixups.
2322 std::vector<Static_reloc> secondary_got_relocs_;
2323 };
2324
2325 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2326 // two ways of creating these interfaces. The first is to add:
2327 //
2328 // lui $25,%hi(func)
2329 // j func
2330 // addiu $25,$25,%lo(func)
2331 //
2332 // to a separate trampoline section. The second is to add:
2333 //
2334 // lui $25,%hi(func)
2335 // addiu $25,$25,%lo(func)
2336 //
2337 // immediately before a PIC function "func", but only if a function is at the
2338 // beginning of the section, and the section is not too heavily aligned (i.e we
2339 // would need to add no more than 2 nops before the stub.)
2340 //
2341 // We only create stubs of the first type.
2342
2343 template<int size, bool big_endian>
2344 class Mips_output_data_la25_stub : public Output_section_data
2345 {
2346 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2347
2348 public:
2349 Mips_output_data_la25_stub()
2350 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2351 { }
2352
2353 // Create LA25 stub for a symbol.
2354 void
2355 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2356 Mips_symbol<size>* gsym);
2357
2358 // Return output address of a stub.
2359 Mips_address
2360 stub_address(const Mips_symbol<size>* sym) const
2361 {
2362 gold_assert(sym->has_la25_stub());
2363 return this->address() + sym->la25_stub_offset();
2364 }
2365
2366 protected:
2367 void
2368 do_adjust_output_section(Output_section* os)
2369 { os->set_entsize(0); }
2370
2371 private:
2372 // Template for standard LA25 stub.
2373 static const uint32_t la25_stub_entry[];
2374 // Template for microMIPS LA25 stub.
2375 static const uint32_t la25_stub_micromips_entry[];
2376
2377 // Set the final size.
2378 void
2379 set_final_data_size()
2380 { this->set_data_size(this->symbols_.size() * 16); }
2381
2382 // Create a symbol for SYM stub's value and size, to help make the
2383 // disassembly easier to read.
2384 void
2385 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2386 Target_mips<size, big_endian>* target, uint64_t symsize);
2387
2388 // Write to a map file.
2389 void
2390 do_print_to_mapfile(Mapfile* mapfile) const
2391 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2392
2393 // Write out the LA25 stub section.
2394 void
2395 do_write(Output_file*);
2396
2397 // Symbols that have LA25 stubs.
2398 std::vector<Mips_symbol<size>*> symbols_;
2399 };
2400
2401 // MIPS-specific relocation writer.
2402
2403 template<int sh_type, bool dynamic, int size, bool big_endian>
2404 struct Mips_output_reloc_writer;
2405
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2408 {
2409 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2410 typedef std::vector<Output_reloc_type> Relocs;
2411
2412 static void
2413 write(typename Relocs::const_iterator p, unsigned char* pov)
2414 { p->write(pov); }
2415 };
2416
2417 template<int sh_type, bool dynamic, bool big_endian>
2418 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2419 {
2420 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2421 typedef std::vector<Output_reloc_type> Relocs;
2422
2423 static void
2424 write(typename Relocs::const_iterator p, unsigned char* pov)
2425 {
2426 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2427 orel.put_r_offset(p->get_address());
2428 orel.put_r_sym(p->get_symbol_index());
2429 orel.put_r_ssym(RSS_UNDEF);
2430 orel.put_r_type(p->type());
2431 if (p->type() == elfcpp::R_MIPS_REL32)
2432 orel.put_r_type2(elfcpp::R_MIPS_64);
2433 else
2434 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2435 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2436 }
2437 };
2438
2439 template<int sh_type, bool dynamic, int size, bool big_endian>
2440 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2441 size, big_endian>
2442 {
2443 public:
2444 Mips_output_data_reloc(bool sort_relocs)
2445 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2446 { }
2447
2448 protected:
2449 // Write out the data.
2450 void
2451 do_write(Output_file* of)
2452 {
2453 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2454 big_endian> Writer;
2455 this->template do_write_generic<Writer>(of);
2456 }
2457 };
2458
2459
2460 // A class to handle the PLT data.
2461
2462 template<int size, bool big_endian>
2463 class Mips_output_data_plt : public Output_section_data
2464 {
2465 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2466 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2467 size, big_endian> Reloc_section;
2468
2469 public:
2470 // Create the PLT section. The ordinary .got section is an argument,
2471 // since we need to refer to the start.
2472 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2473 Target_mips<size, big_endian>* target)
2474 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2475 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2476 target_(target)
2477 {
2478 this->rel_ = new Reloc_section(false);
2479 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2480 elfcpp::SHF_ALLOC, this->rel_,
2481 ORDER_DYNAMIC_PLT_RELOCS, false);
2482 }
2483
2484 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2485 void
2486 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2487
2488 // Return the .rel.plt section data.
2489 Reloc_section*
2490 rel_plt() const
2491 { return this->rel_; }
2492
2493 // Return the number of PLT entries.
2494 unsigned int
2495 entry_count() const
2496 { return this->symbols_.size(); }
2497
2498 // Return the offset of the first non-reserved PLT entry.
2499 unsigned int
2500 first_plt_entry_offset() const
2501 { return sizeof(plt0_entry_o32); }
2502
2503 // Return the size of a PLT entry.
2504 unsigned int
2505 plt_entry_size() const
2506 { return sizeof(plt_entry); }
2507
2508 // Set final PLT offsets. For each symbol, determine whether standard or
2509 // compressed (MIPS16 or microMIPS) PLT entry is used.
2510 void
2511 set_plt_offsets();
2512
2513 // Return the offset of the first standard PLT entry.
2514 unsigned int
2515 first_mips_plt_offset() const
2516 { return this->plt_header_size_; }
2517
2518 // Return the offset of the first compressed PLT entry.
2519 unsigned int
2520 first_comp_plt_offset() const
2521 { return this->plt_header_size_ + this->plt_mips_offset_; }
2522
2523 // Return whether there are any standard PLT entries.
2524 bool
2525 has_standard_entries() const
2526 { return this->plt_mips_offset_ > 0; }
2527
2528 // Return the output address of standard PLT entry.
2529 Mips_address
2530 mips_entry_address(const Mips_symbol<size>* sym) const
2531 {
2532 gold_assert (sym->has_mips_plt_offset());
2533 return (this->address() + this->first_mips_plt_offset()
2534 + sym->mips_plt_offset());
2535 }
2536
2537 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2538 Mips_address
2539 comp_entry_address(const Mips_symbol<size>* sym) const
2540 {
2541 gold_assert (sym->has_comp_plt_offset());
2542 return (this->address() + this->first_comp_plt_offset()
2543 + sym->comp_plt_offset());
2544 }
2545
2546 protected:
2547 void
2548 do_adjust_output_section(Output_section* os)
2549 { os->set_entsize(0); }
2550
2551 // Write to a map file.
2552 void
2553 do_print_to_mapfile(Mapfile* mapfile) const
2554 { mapfile->print_output_data(this, _(".plt")); }
2555
2556 private:
2557 // Template for the first PLT entry.
2558 static const uint32_t plt0_entry_o32[];
2559 static const uint32_t plt0_entry_n32[];
2560 static const uint32_t plt0_entry_n64[];
2561 static const uint32_t plt0_entry_micromips_o32[];
2562 static const uint32_t plt0_entry_micromips32_o32[];
2563
2564 // Template for subsequent PLT entries.
2565 static const uint32_t plt_entry[];
2566 static const uint32_t plt_entry_r6[];
2567 static const uint32_t plt_entry_mips16_o32[];
2568 static const uint32_t plt_entry_micromips_o32[];
2569 static const uint32_t plt_entry_micromips32_o32[];
2570
2571 // Set the final size.
2572 void
2573 set_final_data_size()
2574 {
2575 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2576 + this->plt_comp_offset_);
2577 }
2578
2579 // Write out the PLT data.
2580 void
2581 do_write(Output_file*);
2582
2583 // Return whether the plt header contains microMIPS code. For the sake of
2584 // cache alignment always use a standard header whenever any standard entries
2585 // are present even if microMIPS entries are present as well. This also lets
2586 // the microMIPS header rely on the value of $v0 only set by microMIPS
2587 // entries, for a small size reduction.
2588 bool
2589 is_plt_header_compressed() const
2590 {
2591 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2592 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2593 }
2594
2595 // Return the size of the PLT header.
2596 unsigned int
2597 get_plt_header_size() const
2598 {
2599 if (this->target_->is_output_n64())
2600 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2601 else if (this->target_->is_output_n32())
2602 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2603 else if (!this->is_plt_header_compressed())
2604 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2605 else if (this->target_->use_32bit_micromips_instructions())
2606 return (2 * sizeof(plt0_entry_micromips32_o32)
2607 / sizeof(plt0_entry_micromips32_o32[0]));
2608 else
2609 return (2 * sizeof(plt0_entry_micromips_o32)
2610 / sizeof(plt0_entry_micromips_o32[0]));
2611 }
2612
2613 // Return the PLT header entry.
2614 const uint32_t*
2615 get_plt_header_entry() const
2616 {
2617 if (this->target_->is_output_n64())
2618 return plt0_entry_n64;
2619 else if (this->target_->is_output_n32())
2620 return plt0_entry_n32;
2621 else if (!this->is_plt_header_compressed())
2622 return plt0_entry_o32;
2623 else if (this->target_->use_32bit_micromips_instructions())
2624 return plt0_entry_micromips32_o32;
2625 else
2626 return plt0_entry_micromips_o32;
2627 }
2628
2629 // Return the size of the standard PLT entry.
2630 unsigned int
2631 standard_plt_entry_size() const
2632 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2633
2634 // Return the size of the compressed PLT entry.
2635 unsigned int
2636 compressed_plt_entry_size() const
2637 {
2638 gold_assert(!this->target_->is_output_newabi());
2639
2640 if (!this->target_->is_output_micromips())
2641 return (2 * sizeof(plt_entry_mips16_o32)
2642 / sizeof(plt_entry_mips16_o32[0]));
2643 else if (this->target_->use_32bit_micromips_instructions())
2644 return (2 * sizeof(plt_entry_micromips32_o32)
2645 / sizeof(plt_entry_micromips32_o32[0]));
2646 else
2647 return (2 * sizeof(plt_entry_micromips_o32)
2648 / sizeof(plt_entry_micromips_o32[0]));
2649 }
2650
2651 // The reloc section.
2652 Reloc_section* rel_;
2653 // The .got.plt section.
2654 Output_data_space* got_plt_;
2655 // Symbols that have PLT entry.
2656 std::vector<Mips_symbol<size>*> symbols_;
2657 // The offset of the next standard PLT entry to create.
2658 unsigned int plt_mips_offset_;
2659 // The offset of the next compressed PLT entry to create.
2660 unsigned int plt_comp_offset_;
2661 // The size of the PLT header in bytes.
2662 unsigned int plt_header_size_;
2663 // The target.
2664 Target_mips<size, big_endian>* target_;
2665 };
2666
2667 // A class to handle the .MIPS.stubs data.
2668
2669 template<int size, bool big_endian>
2670 class Mips_output_data_mips_stubs : public Output_section_data
2671 {
2672 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2673
2674 // Unordered set of .MIPS.stubs entries.
2675 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2676 Mips_stubs_entry_set;
2677
2678 public:
2679 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2680 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2681 stub_offsets_are_set_(false), target_(target)
2682 { }
2683
2684 // Create entry for a symbol.
2685 void
2686 make_entry(Mips_symbol<size>*);
2687
2688 // Remove entry for a symbol.
2689 void
2690 remove_entry(Mips_symbol<size>* gsym);
2691
2692 // Set stub offsets for symbols. This method expects that the number of
2693 // entries in dynamic symbol table is set.
2694 void
2695 set_lazy_stub_offsets();
2696
2697 void
2698 set_needs_dynsym_value();
2699
2700 // Set the number of entries in dynamic symbol table.
2701 void
2702 set_dynsym_count(unsigned int dynsym_count)
2703 { this->dynsym_count_ = dynsym_count; }
2704
2705 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2706 // count is greater than 0x10000. If the dynamic symbol count is less than
2707 // 0x10000, the stub will be 4 bytes smaller.
2708 // There's no disadvantage from using microMIPS code here, so for the sake of
2709 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2710 // output produced at all. This has a benefit of stubs being shorter by
2711 // 4 bytes each too, unless in the insn32 mode.
2712 unsigned int
2713 stub_max_size() const
2714 {
2715 if (!this->target_->is_output_micromips()
2716 || this->target_->use_32bit_micromips_instructions())
2717 return 20;
2718 else
2719 return 16;
2720 }
2721
2722 // Return the size of the stub. This method expects that the final dynsym
2723 // count is set.
2724 unsigned int
2725 stub_size() const
2726 {
2727 gold_assert(this->dynsym_count_ != -1U);
2728 if (this->dynsym_count_ > 0x10000)
2729 return this->stub_max_size();
2730 else
2731 return this->stub_max_size() - 4;
2732 }
2733
2734 // Return output address of a stub.
2735 Mips_address
2736 stub_address(const Mips_symbol<size>* sym) const
2737 {
2738 gold_assert(sym->has_lazy_stub());
2739 return this->address() + sym->lazy_stub_offset();
2740 }
2741
2742 protected:
2743 void
2744 do_adjust_output_section(Output_section* os)
2745 { os->set_entsize(0); }
2746
2747 // Write to a map file.
2748 void
2749 do_print_to_mapfile(Mapfile* mapfile) const
2750 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2751
2752 private:
2753 static const uint32_t lazy_stub_normal_1[];
2754 static const uint32_t lazy_stub_normal_1_n64[];
2755 static const uint32_t lazy_stub_normal_2[];
2756 static const uint32_t lazy_stub_normal_2_n64[];
2757 static const uint32_t lazy_stub_big[];
2758 static const uint32_t lazy_stub_big_n64[];
2759
2760 static const uint32_t lazy_stub_micromips_normal_1[];
2761 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2762 static const uint32_t lazy_stub_micromips_normal_2[];
2763 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2764 static const uint32_t lazy_stub_micromips_big[];
2765 static const uint32_t lazy_stub_micromips_big_n64[];
2766
2767 static const uint32_t lazy_stub_micromips32_normal_1[];
2768 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2769 static const uint32_t lazy_stub_micromips32_normal_2[];
2770 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2771 static const uint32_t lazy_stub_micromips32_big[];
2772 static const uint32_t lazy_stub_micromips32_big_n64[];
2773
2774 // Set the final size.
2775 void
2776 set_final_data_size()
2777 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2778
2779 // Write out the .MIPS.stubs data.
2780 void
2781 do_write(Output_file*);
2782
2783 // .MIPS.stubs symbols
2784 Mips_stubs_entry_set symbols_;
2785 // Number of entries in dynamic symbol table.
2786 unsigned int dynsym_count_;
2787 // Whether the stub offsets are set.
2788 bool stub_offsets_are_set_;
2789 // The target.
2790 Target_mips<size, big_endian>* target_;
2791 };
2792
2793 // This class handles Mips .reginfo output section.
2794
2795 template<int size, bool big_endian>
2796 class Mips_output_section_reginfo : public Output_section_data
2797 {
2798 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2799
2800 public:
2801 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2802 Valtype gprmask, Valtype cprmask1,
2803 Valtype cprmask2, Valtype cprmask3,
2804 Valtype cprmask4)
2805 : Output_section_data(24, 4, true), target_(target),
2806 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2807 cprmask3_(cprmask3), cprmask4_(cprmask4)
2808 { }
2809
2810 protected:
2811 // Write to a map file.
2812 void
2813 do_print_to_mapfile(Mapfile* mapfile) const
2814 { mapfile->print_output_data(this, _(".reginfo")); }
2815
2816 // Write out reginfo section.
2817 void
2818 do_write(Output_file* of);
2819
2820 private:
2821 Target_mips<size, big_endian>* target_;
2822
2823 // gprmask of the output .reginfo section.
2824 Valtype gprmask_;
2825 // cprmask1 of the output .reginfo section.
2826 Valtype cprmask1_;
2827 // cprmask2 of the output .reginfo section.
2828 Valtype cprmask2_;
2829 // cprmask3 of the output .reginfo section.
2830 Valtype cprmask3_;
2831 // cprmask4 of the output .reginfo section.
2832 Valtype cprmask4_;
2833 };
2834
2835 // This class handles .MIPS.options output section.
2836
2837 template<int size, bool big_endian>
2838 class Mips_output_section_options : public Output_section
2839 {
2840 public:
2841 Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
2842 elfcpp::Elf_Xword flags,
2843 Target_mips<size, big_endian>* target)
2844 : Output_section(name, type, flags), target_(target)
2845 {
2846 // After the input sections are written, we only need to update
2847 // ri_gp_value field of ODK_REGINFO entries.
2848 this->set_after_input_sections();
2849 }
2850
2851 protected:
2852 // Write out option section.
2853 void
2854 do_write(Output_file* of);
2855
2856 private:
2857 Target_mips<size, big_endian>* target_;
2858 };
2859
2860 // This class handles .MIPS.abiflags output section.
2861
2862 template<int size, bool big_endian>
2863 class Mips_output_section_abiflags : public Output_section_data
2864 {
2865 public:
2866 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2867 : Output_section_data(24, 8, true), abiflags_(abiflags)
2868 { }
2869
2870 protected:
2871 // Write to a map file.
2872 void
2873 do_print_to_mapfile(Mapfile* mapfile) const
2874 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2875
2876 void
2877 do_write(Output_file* of);
2878
2879 private:
2880 const Mips_abiflags<big_endian>& abiflags_;
2881 };
2882
2883 // The MIPS target has relocation types which default handling of relocatable
2884 // relocation cannot process. So we have to extend the default code.
2885
2886 template<bool big_endian, typename Classify_reloc>
2887 class Mips_scan_relocatable_relocs :
2888 public Default_scan_relocatable_relocs<Classify_reloc>
2889 {
2890 public:
2891 // Return the strategy to use for a local symbol which is a section
2892 // symbol, given the relocation type.
2893 inline Relocatable_relocs::Reloc_strategy
2894 local_section_strategy(unsigned int r_type, Relobj* object)
2895 {
2896 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2897 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2898 else
2899 {
2900 switch (r_type)
2901 {
2902 case elfcpp::R_MIPS_26:
2903 return Relocatable_relocs::RELOC_SPECIAL;
2904
2905 default:
2906 return Default_scan_relocatable_relocs<Classify_reloc>::
2907 local_section_strategy(r_type, object);
2908 }
2909 }
2910 }
2911 };
2912
2913 // Mips_copy_relocs class. The only difference from the base class is the
2914 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2915 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2916 // cannot be made dynamic, a COPY reloc is emitted.
2917
2918 template<int sh_type, int size, bool big_endian>
2919 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2920 {
2921 public:
2922 Mips_copy_relocs()
2923 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2924 { }
2925
2926 // Emit any saved relocations which turn out to be needed. This is
2927 // called after all the relocs have been scanned.
2928 void
2929 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2930 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2931
2932 private:
2933 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2934 Copy_reloc_entry;
2935
2936 // Emit this reloc if appropriate. This is called after we have
2937 // scanned all the relocations, so we know whether we emitted a
2938 // COPY relocation for SYM_.
2939 void
2940 emit_entry(Copy_reloc_entry& entry,
2941 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2942 Symbol_table* symtab, Layout* layout,
2943 Target_mips<size, big_endian>* target);
2944 };
2945
2946
2947 // Return true if the symbol SYM should be considered to resolve local
2948 // to the current module, and false otherwise. The logic is taken from
2949 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2950 static bool
2951 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2952 bool local_protected)
2953 {
2954 // If it's a local sym, of course we resolve locally.
2955 if (sym == NULL)
2956 return true;
2957
2958 // STV_HIDDEN or STV_INTERNAL ones must be local.
2959 if (sym->visibility() == elfcpp::STV_HIDDEN
2960 || sym->visibility() == elfcpp::STV_INTERNAL)
2961 return true;
2962
2963 // If we don't have a definition in a regular file, then we can't
2964 // resolve locally. The sym is either undefined or dynamic.
2965 if (sym->is_from_dynobj() || sym->is_undefined())
2966 return false;
2967
2968 // Forced local symbols resolve locally.
2969 if (sym->is_forced_local())
2970 return true;
2971
2972 // As do non-dynamic symbols.
2973 if (!has_dynsym_entry)
2974 return true;
2975
2976 // At this point, we know the symbol is defined and dynamic. In an
2977 // executable it must resolve locally, likewise when building symbolic
2978 // shared libraries.
2979 if (parameters->options().output_is_executable()
2980 || parameters->options().Bsymbolic())
2981 return true;
2982
2983 // Now deal with defined dynamic symbols in shared libraries. Ones
2984 // with default visibility might not resolve locally.
2985 if (sym->visibility() == elfcpp::STV_DEFAULT)
2986 return false;
2987
2988 // STV_PROTECTED non-function symbols are local.
2989 if (sym->type() != elfcpp::STT_FUNC)
2990 return true;
2991
2992 // Function pointer equality tests may require that STV_PROTECTED
2993 // symbols be treated as dynamic symbols. If the address of a
2994 // function not defined in an executable is set to that function's
2995 // plt entry in the executable, then the address of the function in
2996 // a shared library must also be the plt entry in the executable.
2997 return local_protected;
2998 }
2999
3000 // Return TRUE if references to this symbol always reference the symbol in this
3001 // object.
3002 static bool
3003 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
3004 {
3005 return symbol_refs_local(sym, has_dynsym_entry, false);
3006 }
3007
3008 // Return TRUE if calls to this symbol always call the version in this object.
3009 static bool
3010 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
3011 {
3012 return symbol_refs_local(sym, has_dynsym_entry, true);
3013 }
3014
3015 // Compare GOT offsets of two symbols.
3016
3017 template<int size, bool big_endian>
3018 static bool
3019 got_offset_compare(Symbol* sym1, Symbol* sym2)
3020 {
3021 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
3022 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
3023 unsigned int area1 = mips_sym1->global_got_area();
3024 unsigned int area2 = mips_sym2->global_got_area();
3025 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
3026
3027 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3028 if (area1 != area2)
3029 return area1 < area2;
3030
3031 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
3032 }
3033
3034 // This method divides dynamic symbols into symbols that have GOT entry, and
3035 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3036 // Mips ABI requires that symbols with the GOT entry must be at the end of
3037 // dynamic symbol table, and the order in dynamic symbol table must match the
3038 // order in GOT.
3039
3040 template<int size, bool big_endian>
3041 static void
3042 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3043 std::vector<Symbol*>* non_got_symbols,
3044 std::vector<Symbol*>* got_symbols)
3045 {
3046 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3047 p != dyn_symbols->end();
3048 ++p)
3049 {
3050 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3051 if (mips_sym->global_got_area() == GGA_NORMAL
3052 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3053 got_symbols->push_back(mips_sym);
3054 else
3055 non_got_symbols->push_back(mips_sym);
3056 }
3057
3058 std::sort(got_symbols->begin(), got_symbols->end(),
3059 got_offset_compare<size, big_endian>);
3060 }
3061
3062 // Functor class for processing the global symbol table.
3063
3064 template<int size, bool big_endian>
3065 class Symbol_visitor_check_symbols
3066 {
3067 public:
3068 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3069 Layout* layout, Symbol_table* symtab)
3070 : target_(target), layout_(layout), symtab_(symtab)
3071 { }
3072
3073 void
3074 operator()(Sized_symbol<size>* sym)
3075 {
3076 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3077 if (local_pic_function<size, big_endian>(mips_sym))
3078 {
3079 // SYM is a function that might need $25 to be valid on entry.
3080 // If we're creating a non-PIC relocatable object, mark SYM as
3081 // being PIC. If we're creating a non-relocatable object with
3082 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3083 // stub.
3084 if (parameters->options().relocatable())
3085 {
3086 if (!parameters->options().output_is_position_independent())
3087 mips_sym->set_pic();
3088 }
3089 else if (mips_sym->has_nonpic_branches())
3090 {
3091 this->target_->la25_stub_section(layout_)
3092 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3093 }
3094 }
3095 }
3096
3097 private:
3098 Target_mips<size, big_endian>* target_;
3099 Layout* layout_;
3100 Symbol_table* symtab_;
3101 };
3102
3103 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3104 // and endianness. The relocation format for MIPS-64 is non-standard.
3105
3106 template<int sh_type, int size, bool big_endian>
3107 struct Mips_reloc_types;
3108
3109 template<bool big_endian>
3110 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3111 {
3112 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3113 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3114
3115 static typename elfcpp::Elf_types<32>::Elf_Swxword
3116 get_r_addend(const Reloc*)
3117 { return 0; }
3118
3119 static inline void
3120 set_reloc_addend(Reloc_write*,
3121 typename elfcpp::Elf_types<32>::Elf_Swxword)
3122 { gold_unreachable(); }
3123 };
3124
3125 template<bool big_endian>
3126 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3127 {
3128 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3129 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3130
3131 static typename elfcpp::Elf_types<32>::Elf_Swxword
3132 get_r_addend(const Reloc* reloc)
3133 { return reloc->get_r_addend(); }
3134
3135 static inline void
3136 set_reloc_addend(Reloc_write* p,
3137 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3138 { p->put_r_addend(val); }
3139 };
3140
3141 template<bool big_endian>
3142 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3143 {
3144 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3145 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3146
3147 static typename elfcpp::Elf_types<64>::Elf_Swxword
3148 get_r_addend(const Reloc*)
3149 { return 0; }
3150
3151 static inline void
3152 set_reloc_addend(Reloc_write*,
3153 typename elfcpp::Elf_types<64>::Elf_Swxword)
3154 { gold_unreachable(); }
3155 };
3156
3157 template<bool big_endian>
3158 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3159 {
3160 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3161 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3162
3163 static typename elfcpp::Elf_types<64>::Elf_Swxword
3164 get_r_addend(const Reloc* reloc)
3165 { return reloc->get_r_addend(); }
3166
3167 static inline void
3168 set_reloc_addend(Reloc_write* p,
3169 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3170 { p->put_r_addend(val); }
3171 };
3172
3173 // Forward declaration.
3174 static unsigned int
3175 mips_get_size_for_reloc(unsigned int, Relobj*);
3176
3177 // A class for inquiring about properties of a relocation,
3178 // used while scanning relocs during a relocatable link and
3179 // garbage collection.
3180
3181 template<int sh_type_, int size, bool big_endian>
3182 class Mips_classify_reloc;
3183
3184 template<int sh_type_, bool big_endian>
3185 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3186 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3187 {
3188 public:
3189 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3190 Reltype;
3191 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3192 Reltype_write;
3193
3194 // Return the symbol referred to by the relocation.
3195 static inline unsigned int
3196 get_r_sym(const Reltype* reloc)
3197 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3198
3199 // Return the type of the relocation.
3200 static inline unsigned int
3201 get_r_type(const Reltype* reloc)
3202 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3203
3204 static inline unsigned int
3205 get_r_type2(const Reltype*)
3206 { return 0; }
3207
3208 static inline unsigned int
3209 get_r_type3(const Reltype*)
3210 { return 0; }
3211
3212 static inline unsigned int
3213 get_r_ssym(const Reltype*)
3214 { return 0; }
3215
3216 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3217 static inline unsigned int
3218 get_r_addend(const Reltype* reloc)
3219 {
3220 if (sh_type_ == elfcpp::SHT_REL)
3221 return 0;
3222 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3223 }
3224
3225 // Write the r_info field to a new reloc, using the r_info field from
3226 // the original reloc, replacing the r_sym field with R_SYM.
3227 static inline void
3228 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3229 {
3230 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3231 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3232 }
3233
3234 // Write the r_addend field to a new reloc.
3235 static inline void
3236 put_r_addend(Reltype_write* to,
3237 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3238 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3239
3240 // Return the size of the addend of the relocation (only used for SHT_REL).
3241 static unsigned int
3242 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3243 { return mips_get_size_for_reloc(r_type, obj); }
3244 };
3245
3246 template<int sh_type_, bool big_endian>
3247 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3248 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3249 {
3250 public:
3251 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3252 Reltype;
3253 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3254 Reltype_write;
3255
3256 // Return the symbol referred to by the relocation.
3257 static inline unsigned int
3258 get_r_sym(const Reltype* reloc)
3259 { return reloc->get_r_sym(); }
3260
3261 // Return the r_type of the relocation.
3262 static inline unsigned int
3263 get_r_type(const Reltype* reloc)
3264 { return reloc->get_r_type(); }
3265
3266 // Return the r_type2 of the relocation.
3267 static inline unsigned int
3268 get_r_type2(const Reltype* reloc)
3269 { return reloc->get_r_type2(); }
3270
3271 // Return the r_type3 of the relocation.
3272 static inline unsigned int
3273 get_r_type3(const Reltype* reloc)
3274 { return reloc->get_r_type3(); }
3275
3276 // Return the special symbol of the relocation.
3277 static inline unsigned int
3278 get_r_ssym(const Reltype* reloc)
3279 { return reloc->get_r_ssym(); }
3280
3281 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3282 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3283 get_r_addend(const Reltype* reloc)
3284 {
3285 if (sh_type_ == elfcpp::SHT_REL)
3286 return 0;
3287 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3288 }
3289
3290 // Write the r_info field to a new reloc, using the r_info field from
3291 // the original reloc, replacing the r_sym field with R_SYM.
3292 static inline void
3293 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3294 {
3295 new_reloc->put_r_sym(r_sym);
3296 new_reloc->put_r_ssym(reloc->get_r_ssym());
3297 new_reloc->put_r_type3(reloc->get_r_type3());
3298 new_reloc->put_r_type2(reloc->get_r_type2());
3299 new_reloc->put_r_type(reloc->get_r_type());
3300 }
3301
3302 // Write the r_addend field to a new reloc.
3303 static inline void
3304 put_r_addend(Reltype_write* to,
3305 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3306 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3307
3308 // Return the size of the addend of the relocation (only used for SHT_REL).
3309 static unsigned int
3310 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3311 { return mips_get_size_for_reloc(r_type, obj); }
3312 };
3313
3314 template<int size, bool big_endian>
3315 class Target_mips : public Sized_target<size, big_endian>
3316 {
3317 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3318 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3319 Reloc_section;
3320 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3321 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3322 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3323 Reltype;
3324 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3325 Relatype;
3326
3327 public:
3328 Target_mips(const Target::Target_info* info = &mips_info)
3329 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3330 got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3331 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3332 mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3333 mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3334 entry_symbol_is_compressed_(false), insn32_(false)
3335 {
3336 this->add_machine_extensions();
3337 }
3338
3339 // The offset of $gp from the beginning of the .got section.
3340 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3341
3342 // The maximum size of the GOT for it to be addressable using 16-bit
3343 // offsets from $gp.
3344 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3345
3346 // Make a new symbol table entry for the Mips target.
3347 Sized_symbol<size>*
3348 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3349 { return new Mips_symbol<size>(); }
3350
3351 // Process the relocations to determine unreferenced sections for
3352 // garbage collection.
3353 void
3354 gc_process_relocs(Symbol_table* symtab,
3355 Layout* layout,
3356 Sized_relobj_file<size, big_endian>* object,
3357 unsigned int data_shndx,
3358 unsigned int sh_type,
3359 const unsigned char* prelocs,
3360 size_t reloc_count,
3361 Output_section* output_section,
3362 bool needs_special_offset_handling,
3363 size_t local_symbol_count,
3364 const unsigned char* plocal_symbols);
3365
3366 // Scan the relocations to look for symbol adjustments.
3367 void
3368 scan_relocs(Symbol_table* symtab,
3369 Layout* layout,
3370 Sized_relobj_file<size, big_endian>* object,
3371 unsigned int data_shndx,
3372 unsigned int sh_type,
3373 const unsigned char* prelocs,
3374 size_t reloc_count,
3375 Output_section* output_section,
3376 bool needs_special_offset_handling,
3377 size_t local_symbol_count,
3378 const unsigned char* plocal_symbols);
3379
3380 // Finalize the sections.
3381 void
3382 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3383
3384 // Relocate a section.
3385 void
3386 relocate_section(const Relocate_info<size, big_endian>*,
3387 unsigned int sh_type,
3388 const unsigned char* prelocs,
3389 size_t reloc_count,
3390 Output_section* output_section,
3391 bool needs_special_offset_handling,
3392 unsigned char* view,
3393 Mips_address view_address,
3394 section_size_type view_size,
3395 const Reloc_symbol_changes*);
3396
3397 // Scan the relocs during a relocatable link.
3398 void
3399 scan_relocatable_relocs(Symbol_table* symtab,
3400 Layout* layout,
3401 Sized_relobj_file<size, big_endian>* object,
3402 unsigned int data_shndx,
3403 unsigned int sh_type,
3404 const unsigned char* prelocs,
3405 size_t reloc_count,
3406 Output_section* output_section,
3407 bool needs_special_offset_handling,
3408 size_t local_symbol_count,
3409 const unsigned char* plocal_symbols,
3410 Relocatable_relocs*);
3411
3412 // Scan the relocs for --emit-relocs.
3413 void
3414 emit_relocs_scan(Symbol_table* symtab,
3415 Layout* layout,
3416 Sized_relobj_file<size, big_endian>* object,
3417 unsigned int data_shndx,
3418 unsigned int sh_type,
3419 const unsigned char* prelocs,
3420 size_t reloc_count,
3421 Output_section* output_section,
3422 bool needs_special_offset_handling,
3423 size_t local_symbol_count,
3424 const unsigned char* plocal_syms,
3425 Relocatable_relocs* rr);
3426
3427 // Emit relocations for a section.
3428 void
3429 relocate_relocs(const Relocate_info<size, big_endian>*,
3430 unsigned int sh_type,
3431 const unsigned char* prelocs,
3432 size_t reloc_count,
3433 Output_section* output_section,
3434 typename elfcpp::Elf_types<size>::Elf_Off
3435 offset_in_output_section,
3436 unsigned char* view,
3437 Mips_address view_address,
3438 section_size_type view_size,
3439 unsigned char* reloc_view,
3440 section_size_type reloc_view_size);
3441
3442 // Perform target-specific processing in a relocatable link. This is
3443 // only used if we use the relocation strategy RELOC_SPECIAL.
3444 void
3445 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3446 unsigned int sh_type,
3447 const unsigned char* preloc_in,
3448 size_t relnum,
3449 Output_section* output_section,
3450 typename elfcpp::Elf_types<size>::Elf_Off
3451 offset_in_output_section,
3452 unsigned char* view,
3453 Mips_address view_address,
3454 section_size_type view_size,
3455 unsigned char* preloc_out);
3456
3457 // Return whether SYM is defined by the ABI.
3458 bool
3459 do_is_defined_by_abi(const Symbol* sym) const
3460 {
3461 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3462 || (strcmp(sym->name(), "_gp_disp") == 0)
3463 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3464 }
3465
3466 // Return the number of entries in the GOT.
3467 unsigned int
3468 got_entry_count() const
3469 {
3470 if (!this->has_got_section())
3471 return 0;
3472 return this->got_size() / (size/8);
3473 }
3474
3475 // Return the number of entries in the PLT.
3476 unsigned int
3477 plt_entry_count() const
3478 {
3479 if (this->plt_ == NULL)
3480 return 0;
3481 return this->plt_->entry_count();
3482 }
3483
3484 // Return the offset of the first non-reserved PLT entry.
3485 unsigned int
3486 first_plt_entry_offset() const
3487 { return this->plt_->first_plt_entry_offset(); }
3488
3489 // Return the size of each PLT entry.
3490 unsigned int
3491 plt_entry_size() const
3492 { return this->plt_->plt_entry_size(); }
3493
3494 // Get the GOT section, creating it if necessary.
3495 Mips_output_data_got<size, big_endian>*
3496 got_section(Symbol_table*, Layout*);
3497
3498 // Get the GOT section.
3499 Mips_output_data_got<size, big_endian>*
3500 got_section() const
3501 {
3502 gold_assert(this->got_ != NULL);
3503 return this->got_;
3504 }
3505
3506 // Get the .MIPS.stubs section, creating it if necessary.
3507 Mips_output_data_mips_stubs<size, big_endian>*
3508 mips_stubs_section(Layout* layout);
3509
3510 // Get the .MIPS.stubs section.
3511 Mips_output_data_mips_stubs<size, big_endian>*
3512 mips_stubs_section() const
3513 {
3514 gold_assert(this->mips_stubs_ != NULL);
3515 return this->mips_stubs_;
3516 }
3517
3518 // Get the LA25 stub section, creating it if necessary.
3519 Mips_output_data_la25_stub<size, big_endian>*
3520 la25_stub_section(Layout*);
3521
3522 // Get the LA25 stub section.
3523 Mips_output_data_la25_stub<size, big_endian>*
3524 la25_stub_section()
3525 {
3526 gold_assert(this->la25_stub_ != NULL);
3527 return this->la25_stub_;
3528 }
3529
3530 // Get gp value. It has the value of .got + 0x7FF0.
3531 Mips_address
3532 gp_value() const
3533 {
3534 if (this->gp_ != NULL)
3535 return this->gp_->value();
3536 return 0;
3537 }
3538
3539 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3540 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3541 Mips_address
3542 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3543 {
3544 if (this->gp_ == NULL)
3545 return 0;
3546
3547 bool multi_got = false;
3548 if (this->has_got_section())
3549 multi_got = this->got_section()->multi_got();
3550 if (!multi_got)
3551 return this->gp_->value();
3552 else
3553 return this->gp_->value() + this->got_section()->get_got_offset(object);
3554 }
3555
3556 // Get the dynamic reloc section, creating it if necessary.
3557 Reloc_section*
3558 rel_dyn_section(Layout*);
3559
3560 bool
3561 do_has_custom_set_dynsym_indexes() const
3562 { return true; }
3563
3564 // Don't emit input .reginfo/.MIPS.abiflags sections to
3565 // output .reginfo/.MIPS.abiflags.
3566 bool
3567 do_should_include_section(elfcpp::Elf_Word sh_type) const
3568 {
3569 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3570 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3571 }
3572
3573 // Set the dynamic symbol indexes. INDEX is the index of the first
3574 // global dynamic symbol. Pointers to the symbols are stored into the
3575 // vector SYMS. The names are added to DYNPOOL. This returns an
3576 // updated dynamic symbol index.
3577 unsigned int
3578 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3579 std::vector<Symbol*>* syms, Stringpool* dynpool,
3580 Versions* versions, Symbol_table* symtab) const;
3581
3582 // Remove .MIPS.stubs entry for a symbol.
3583 void
3584 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3585 {
3586 if (this->mips_stubs_ != NULL)
3587 this->mips_stubs_->remove_entry(sym);
3588 }
3589
3590 // The value to write into got[1] for SVR4 targets, to identify it is
3591 // a GNU object. The dynamic linker can then use got[1] to store the
3592 // module pointer.
3593 uint64_t
3594 mips_elf_gnu_got1_mask()
3595 {
3596 if (this->is_output_n64())
3597 return (uint64_t)1 << 63;
3598 else
3599 return 1 << 31;
3600 }
3601
3602 // Whether the output has microMIPS code. This is valid only after
3603 // merge_obj_e_flags() is called.
3604 bool
3605 is_output_micromips() const
3606 {
3607 gold_assert(this->are_processor_specific_flags_set());
3608 return elfcpp::is_micromips(this->processor_specific_flags());
3609 }
3610
3611 // Whether the output uses N32 ABI. This is valid only after
3612 // merge_obj_e_flags() is called.
3613 bool
3614 is_output_n32() const
3615 {
3616 gold_assert(this->are_processor_specific_flags_set());
3617 return elfcpp::abi_n32(this->processor_specific_flags());
3618 }
3619
3620 // Whether the output uses R6 ISA. This is valid only after
3621 // merge_obj_e_flags() is called.
3622 bool
3623 is_output_r6() const
3624 {
3625 gold_assert(this->are_processor_specific_flags_set());
3626 return elfcpp::r6_isa(this->processor_specific_flags());
3627 }
3628
3629 // Whether the output uses N64 ABI.
3630 bool
3631 is_output_n64() const
3632 { return size == 64; }
3633
3634 // Whether the output uses NEWABI. This is valid only after
3635 // merge_obj_e_flags() is called.
3636 bool
3637 is_output_newabi() const
3638 { return this->is_output_n32() || this->is_output_n64(); }
3639
3640 // Whether we can only use 32-bit microMIPS instructions.
3641 bool
3642 use_32bit_micromips_instructions() const
3643 { return this->insn32_; }
3644
3645 // Return the r_sym field from a relocation.
3646 unsigned int
3647 get_r_sym(const unsigned char* preloc) const
3648 {
3649 // Since REL and RELA relocs share the same structure through
3650 // the r_info field, we can just use REL here.
3651 Reltype rel(preloc);
3652 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3653 get_r_sym(&rel);
3654 }
3655
3656 protected:
3657 // Return the value to use for a dynamic symbol which requires special
3658 // treatment. This is how we support equality comparisons of function
3659 // pointers across shared library boundaries, as described in the
3660 // processor specific ABI supplement.
3661 uint64_t
3662 do_dynsym_value(const Symbol* gsym) const;
3663
3664 // Make an ELF object.
3665 Object*
3666 do_make_elf_object(const std::string&, Input_file*, off_t,
3667 const elfcpp::Ehdr<size, big_endian>& ehdr);
3668
3669 Object*
3670 do_make_elf_object(const std::string&, Input_file*, off_t,
3671 const elfcpp::Ehdr<size, !big_endian>&)
3672 { gold_unreachable(); }
3673
3674 // Make an output section.
3675 Output_section*
3676 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3677 elfcpp::Elf_Xword flags)
3678 {
3679 if (type == elfcpp::SHT_MIPS_OPTIONS)
3680 return new Mips_output_section_options<size, big_endian>(name, type,
3681 flags, this);
3682 else
3683 return new Output_section(name, type, flags);
3684 }
3685
3686 // Adjust ELF file header.
3687 void
3688 do_adjust_elf_header(unsigned char* view, int len);
3689
3690 // Get the custom dynamic tag value.
3691 unsigned int
3692 do_dynamic_tag_custom_value(elfcpp::DT) const;
3693
3694 // Adjust the value written to the dynamic symbol table.
3695 virtual void
3696 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3697 {
3698 elfcpp::Sym<size, big_endian> isym(view);
3699 elfcpp::Sym_write<size, big_endian> osym(view);
3700 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3701
3702 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3703 // to treat compressed symbols like any other.
3704 Mips_address value = isym.get_st_value();
3705 if (mips_sym->is_mips16() && value != 0)
3706 {
3707 if (!mips_sym->has_mips16_fn_stub())
3708 value |= 1;
3709 else
3710 {
3711 // If we have a MIPS16 function with a stub, the dynamic symbol
3712 // must refer to the stub, since only the stub uses the standard
3713 // calling conventions. Stub contains MIPS32 code, so don't add +1
3714 // in this case.
3715
3716 // There is a code which does this in the method
3717 // Target_mips::do_dynsym_value, but that code will only be
3718 // executed if the symbol is from dynobj.
3719 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3720 // table.
3721
3722 Mips16_stub_section<size, big_endian>* fn_stub =
3723 mips_sym->template get_mips16_fn_stub<big_endian>();
3724 value = fn_stub->output_address();
3725 osym.put_st_size(fn_stub->section_size());
3726 }
3727
3728 osym.put_st_value(value);
3729 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3730 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3731 }
3732 else if ((mips_sym->is_micromips()
3733 // Stubs are always microMIPS if there is any microMIPS code in
3734 // the output.
3735 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3736 && value != 0)
3737 {
3738 osym.put_st_value(value | 1);
3739 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3740 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3741 }
3742 }
3743
3744 private:
3745 // The class which scans relocations.
3746 class Scan
3747 {
3748 public:
3749 Scan()
3750 { }
3751
3752 static inline int
3753 get_reference_flags(unsigned int r_type);
3754
3755 inline void
3756 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3757 Sized_relobj_file<size, big_endian>* object,
3758 unsigned int data_shndx,
3759 Output_section* output_section,
3760 const Reltype& reloc, unsigned int r_type,
3761 const elfcpp::Sym<size, big_endian>& lsym,
3762 bool is_discarded);
3763
3764 inline void
3765 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3766 Sized_relobj_file<size, big_endian>* object,
3767 unsigned int data_shndx,
3768 Output_section* output_section,
3769 const Relatype& reloc, unsigned int r_type,
3770 const elfcpp::Sym<size, big_endian>& lsym,
3771 bool is_discarded);
3772
3773 inline void
3774 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3775 Sized_relobj_file<size, big_endian>* object,
3776 unsigned int data_shndx,
3777 Output_section* output_section,
3778 const Relatype* rela,
3779 const Reltype* rel,
3780 unsigned int rel_type,
3781 unsigned int r_type,
3782 const elfcpp::Sym<size, big_endian>& lsym,
3783 bool is_discarded);
3784
3785 inline void
3786 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3787 Sized_relobj_file<size, big_endian>* object,
3788 unsigned int data_shndx,
3789 Output_section* output_section,
3790 const Reltype& reloc, unsigned int r_type,
3791 Symbol* gsym);
3792
3793 inline void
3794 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3795 Sized_relobj_file<size, big_endian>* object,
3796 unsigned int data_shndx,
3797 Output_section* output_section,
3798 const Relatype& reloc, unsigned int r_type,
3799 Symbol* gsym);
3800
3801 inline void
3802 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3803 Sized_relobj_file<size, big_endian>* object,
3804 unsigned int data_shndx,
3805 Output_section* output_section,
3806 const Relatype* rela,
3807 const Reltype* rel,
3808 unsigned int rel_type,
3809 unsigned int r_type,
3810 Symbol* gsym);
3811
3812 inline bool
3813 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3814 Target_mips*,
3815 Sized_relobj_file<size, big_endian>*,
3816 unsigned int,
3817 Output_section*,
3818 const Reltype&,
3819 unsigned int,
3820 const elfcpp::Sym<size, big_endian>&)
3821 { return false; }
3822
3823 inline bool
3824 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3825 Target_mips*,
3826 Sized_relobj_file<size, big_endian>*,
3827 unsigned int,
3828 Output_section*,
3829 const Reltype&,
3830 unsigned int, Symbol*)
3831 { return false; }
3832
3833 inline bool
3834 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3835 Target_mips*,
3836 Sized_relobj_file<size, big_endian>*,
3837 unsigned int,
3838 Output_section*,
3839 const Relatype&,
3840 unsigned int,
3841 const elfcpp::Sym<size, big_endian>&)
3842 { return false; }
3843
3844 inline bool
3845 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3846 Target_mips*,
3847 Sized_relobj_file<size, big_endian>*,
3848 unsigned int,
3849 Output_section*,
3850 const Relatype&,
3851 unsigned int, Symbol*)
3852 { return false; }
3853 private:
3854 static void
3855 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3856 unsigned int r_type);
3857
3858 static void
3859 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3860 unsigned int r_type, Symbol*);
3861 };
3862
3863 // The class which implements relocation.
3864 class Relocate
3865 {
3866 public:
3867 Relocate()
3868 : calculated_value_(0), calculate_only_(false)
3869 { }
3870
3871 ~Relocate()
3872 { }
3873
3874 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3875 inline bool
3876 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3877 unsigned int r_type,
3878 Output_section* output_section,
3879 Target_mips* target);
3880
3881 // Do a relocation. Return false if the caller should not issue
3882 // any warnings about this relocation.
3883 inline bool
3884 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3885 Target_mips*, Output_section*, size_t, const unsigned char*,
3886 const Sized_symbol<size>*, const Symbol_value<size>*,
3887 unsigned char*, Mips_address, section_size_type);
3888
3889 private:
3890 // Result of the relocation.
3891 Valtype calculated_value_;
3892 // Whether we have to calculate relocation instead of applying it.
3893 bool calculate_only_;
3894 };
3895
3896 // This POD class holds the dynamic relocations that should be emitted instead
3897 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3898 // relocations if it turns out that the symbol does not have static
3899 // relocations.
3900 class Dyn_reloc
3901 {
3902 public:
3903 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3904 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3905 Output_section* output_section, Mips_address r_offset)
3906 : sym_(sym), r_type_(r_type), relobj_(relobj),
3907 shndx_(shndx), output_section_(output_section),
3908 r_offset_(r_offset)
3909 { }
3910
3911 // Emit this reloc if appropriate. This is called after we have
3912 // scanned all the relocations, so we know whether the symbol has
3913 // static relocations.
3914 void
3915 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3916 Symbol_table* symtab)
3917 {
3918 if (!this->sym_->has_static_relocs())
3919 {
3920 got->record_global_got_symbol(this->sym_, this->relobj_,
3921 this->r_type_, true, false);
3922 if (!symbol_references_local(this->sym_,
3923 this->sym_->should_add_dynsym_entry(symtab)))
3924 rel_dyn->add_global(this->sym_, this->r_type_,
3925 this->output_section_, this->relobj_,
3926 this->shndx_, this->r_offset_);
3927 else
3928 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3929 this->output_section_, this->relobj_,
3930 this->shndx_, this->r_offset_);
3931 }
3932 }
3933
3934 private:
3935 Mips_symbol<size>* sym_;
3936 unsigned int r_type_;
3937 Mips_relobj<size, big_endian>* relobj_;
3938 unsigned int shndx_;
3939 Output_section* output_section_;
3940 Mips_address r_offset_;
3941 };
3942
3943 // Adjust TLS relocation type based on the options and whether this
3944 // is a local symbol.
3945 static tls::Tls_optimization
3946 optimize_tls_reloc(bool is_final, int r_type);
3947
3948 // Return whether there is a GOT section.
3949 bool
3950 has_got_section() const
3951 { return this->got_ != NULL; }
3952
3953 // Check whether the given ELF header flags describe a 32-bit binary.
3954 bool
3955 mips_32bit_flags(elfcpp::Elf_Word);
3956
3957 enum Mips_mach {
3958 mach_mips3000 = 3000,
3959 mach_mips3900 = 3900,
3960 mach_mips4000 = 4000,
3961 mach_mips4010 = 4010,
3962 mach_mips4100 = 4100,
3963 mach_mips4111 = 4111,
3964 mach_mips4120 = 4120,
3965 mach_mips4300 = 4300,
3966 mach_mips4400 = 4400,
3967 mach_mips4600 = 4600,
3968 mach_mips4650 = 4650,
3969 mach_mips5000 = 5000,
3970 mach_mips5400 = 5400,
3971 mach_mips5500 = 5500,
3972 mach_mips5900 = 5900,
3973 mach_mips6000 = 6000,
3974 mach_mips7000 = 7000,
3975 mach_mips8000 = 8000,
3976 mach_mips9000 = 9000,
3977 mach_mips10000 = 10000,
3978 mach_mips12000 = 12000,
3979 mach_mips14000 = 14000,
3980 mach_mips16000 = 16000,
3981 mach_mips16 = 16,
3982 mach_mips5 = 5,
3983 mach_mips_loongson_2e = 3001,
3984 mach_mips_loongson_2f = 3002,
3985 mach_mips_gs464 = 3003,
3986 mach_mips_gs464e = 3004,
3987 mach_mips_sb1 = 12310201, // octal 'SB', 01
3988 mach_mips_octeon = 6501,
3989 mach_mips_octeonp = 6601,
3990 mach_mips_octeon2 = 6502,
3991 mach_mips_octeon3 = 6503,
3992 mach_mips_xlr = 887682, // decimal 'XLR'
3993 mach_mipsisa32 = 32,
3994 mach_mipsisa32r2 = 33,
3995 mach_mipsisa32r3 = 34,
3996 mach_mipsisa32r5 = 36,
3997 mach_mipsisa32r6 = 37,
3998 mach_mipsisa64 = 64,
3999 mach_mipsisa64r2 = 65,
4000 mach_mipsisa64r3 = 66,
4001 mach_mipsisa64r5 = 68,
4002 mach_mipsisa64r6 = 69,
4003 mach_mips_micromips = 96
4004 };
4005
4006 // Return the MACH for a MIPS e_flags value.
4007 unsigned int
4008 elf_mips_mach(elfcpp::Elf_Word);
4009
4010 // Return the MACH for each .MIPS.abiflags ISA Extension.
4011 unsigned int
4012 mips_isa_ext_mach(unsigned int);
4013
4014 // Return the .MIPS.abiflags value representing each ISA Extension.
4015 unsigned int
4016 mips_isa_ext(unsigned int);
4017
4018 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4019 void
4020 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
4021 Mips_abiflags<big_endian>*);
4022
4023 // Infer the content of the ABI flags based on the elf header.
4024 void
4025 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4026
4027 // Create abiflags from elf header or from .MIPS.abiflags section.
4028 void
4029 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4030
4031 // Return the meaning of fp_abi, or "unknown" if not known.
4032 const char*
4033 fp_abi_string(int);
4034
4035 // Select fp_abi.
4036 int
4037 select_fp_abi(const std::string&, int, int);
4038
4039 // Merge attributes from input object.
4040 void
4041 merge_obj_attributes(const std::string&, const Attributes_section_data*);
4042
4043 // Merge abiflags from input object.
4044 void
4045 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
4046
4047 // Check whether machine EXTENSION is an extension of machine BASE.
4048 bool
4049 mips_mach_extends(unsigned int, unsigned int);
4050
4051 // Merge file header flags from input object.
4052 void
4053 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4054
4055 // Encode ISA level and revision as a single value.
4056 int
4057 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4058 { return (isa_level << 3) | isa_rev; }
4059
4060 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4061 static inline bool
4062 jal_to_bal()
4063 { return false; }
4064
4065 // True if we are linking for CPUs that are faster if JALR is converted to
4066 // BAL. This should be safe for all architectures. We enable this predicate
4067 // for all CPUs.
4068 static inline bool
4069 jalr_to_bal()
4070 { return true; }
4071
4072 // True if we are linking for CPUs that are faster if JR is converted to B.
4073 // This should be safe for all architectures. We enable this predicate for
4074 // all CPUs.
4075 static inline bool
4076 jr_to_b()
4077 { return true; }
4078
4079 // Return the size of the GOT section.
4080 section_size_type
4081 got_size() const
4082 {
4083 gold_assert(this->got_ != NULL);
4084 return this->got_->data_size();
4085 }
4086
4087 // Create a PLT entry for a global symbol referenced by r_type relocation.
4088 void
4089 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4090 unsigned int r_type);
4091
4092 // Get the PLT section.
4093 Mips_output_data_plt<size, big_endian>*
4094 plt_section() const
4095 {
4096 gold_assert(this->plt_ != NULL);
4097 return this->plt_;
4098 }
4099
4100 // Get the GOT PLT section.
4101 const Mips_output_data_plt<size, big_endian>*
4102 got_plt_section() const
4103 {
4104 gold_assert(this->got_plt_ != NULL);
4105 return this->got_plt_;
4106 }
4107
4108 // Copy a relocation against a global symbol.
4109 void
4110 copy_reloc(Symbol_table* symtab, Layout* layout,
4111 Sized_relobj_file<size, big_endian>* object,
4112 unsigned int shndx, Output_section* output_section,
4113 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4114 {
4115 this->copy_relocs_.copy_reloc(symtab, layout,
4116 symtab->get_sized_symbol<size>(sym),
4117 object, shndx, output_section,
4118 r_type, r_offset, 0,
4119 this->rel_dyn_section(layout));
4120 }
4121
4122 void
4123 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4124 Mips_relobj<size, big_endian>* relobj,
4125 unsigned int shndx, Output_section* output_section,
4126 Mips_address r_offset)
4127 {
4128 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4129 output_section, r_offset));
4130 }
4131
4132 // Calculate value of _gp symbol.
4133 void
4134 set_gp(Layout*, Symbol_table*);
4135
4136 const char*
4137 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4138 const char*
4139 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4140
4141 // Adds entries that describe how machines relate to one another. The entries
4142 // are ordered topologically with MIPS I extensions listed last. First
4143 // element is extension, second element is base.
4144 void
4145 add_machine_extensions()
4146 {
4147 // MIPS64r2 extensions.
4148 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4149 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4150 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4151 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4152 this->add_extension(mach_mips_gs464e, mach_mips_gs464);
4153 this->add_extension(mach_mips_gs464, mach_mipsisa64r2);
4154
4155 // MIPS64 extensions.
4156 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4157 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4158 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4159
4160 // MIPS V extensions.
4161 this->add_extension(mach_mipsisa64, mach_mips5);
4162
4163 // R10000 extensions.
4164 this->add_extension(mach_mips12000, mach_mips10000);
4165 this->add_extension(mach_mips14000, mach_mips10000);
4166 this->add_extension(mach_mips16000, mach_mips10000);
4167
4168 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4169 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4170 // better to allow vr5400 and vr5500 code to be merged anyway, since
4171 // many libraries will just use the core ISA. Perhaps we could add
4172 // some sort of ASE flag if this ever proves a problem.
4173 this->add_extension(mach_mips5500, mach_mips5400);
4174 this->add_extension(mach_mips5400, mach_mips5000);
4175
4176 // MIPS IV extensions.
4177 this->add_extension(mach_mips5, mach_mips8000);
4178 this->add_extension(mach_mips10000, mach_mips8000);
4179 this->add_extension(mach_mips5000, mach_mips8000);
4180 this->add_extension(mach_mips7000, mach_mips8000);
4181 this->add_extension(mach_mips9000, mach_mips8000);
4182
4183 // VR4100 extensions.
4184 this->add_extension(mach_mips4120, mach_mips4100);
4185 this->add_extension(mach_mips4111, mach_mips4100);
4186
4187 // MIPS III extensions.
4188 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4189 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4190 this->add_extension(mach_mips8000, mach_mips4000);
4191 this->add_extension(mach_mips4650, mach_mips4000);
4192 this->add_extension(mach_mips4600, mach_mips4000);
4193 this->add_extension(mach_mips4400, mach_mips4000);
4194 this->add_extension(mach_mips4300, mach_mips4000);
4195 this->add_extension(mach_mips4100, mach_mips4000);
4196 this->add_extension(mach_mips4010, mach_mips4000);
4197 this->add_extension(mach_mips5900, mach_mips4000);
4198
4199 // MIPS32 extensions.
4200 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4201
4202 // MIPS II extensions.
4203 this->add_extension(mach_mips4000, mach_mips6000);
4204 this->add_extension(mach_mipsisa32, mach_mips6000);
4205
4206 // MIPS I extensions.
4207 this->add_extension(mach_mips6000, mach_mips3000);
4208 this->add_extension(mach_mips3900, mach_mips3000);
4209 }
4210
4211 // Add value to MIPS extenstions.
4212 void
4213 add_extension(unsigned int base, unsigned int extension)
4214 {
4215 std::pair<unsigned int, unsigned int> ext(base, extension);
4216 this->mips_mach_extensions_.push_back(ext);
4217 }
4218
4219 // Return the number of entries in the .dynsym section.
4220 unsigned int get_dt_mips_symtabno() const
4221 {
4222 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4223 / elfcpp::Elf_sizes<size>::sym_size));
4224 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4225 }
4226
4227 // Information about this specific target which we pass to the
4228 // general Target structure.
4229 static const Target::Target_info mips_info;
4230 // The GOT section.
4231 Mips_output_data_got<size, big_endian>* got_;
4232 // gp symbol. It has the value of .got + 0x7FF0.
4233 Sized_symbol<size>* gp_;
4234 // The PLT section.
4235 Mips_output_data_plt<size, big_endian>* plt_;
4236 // The GOT PLT section.
4237 Output_data_space* got_plt_;
4238 // The dynamic reloc section.
4239 Reloc_section* rel_dyn_;
4240 // The .rld_map section.
4241 Output_data_zero_fill* rld_map_;
4242 // Relocs saved to avoid a COPY reloc.
4243 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4244
4245 // A list of dyn relocs to be saved.
4246 std::vector<Dyn_reloc> dyn_relocs_;
4247
4248 // The LA25 stub section.
4249 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4250 // Architecture extensions.
4251 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4252 // .MIPS.stubs
4253 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4254
4255 // Attributes section data in output.
4256 Attributes_section_data* attributes_section_data_;
4257 // .MIPS.abiflags section data in output.
4258 Mips_abiflags<big_endian>* abiflags_;
4259
4260 unsigned int mach_;
4261 Layout* layout_;
4262
4263 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4264
4265 // Whether there is an input .MIPS.abiflags section.
4266 bool has_abiflags_section_;
4267
4268 // Whether the entry symbol is mips16 or micromips.
4269 bool entry_symbol_is_compressed_;
4270
4271 // Whether we can use only 32-bit microMIPS instructions.
4272 // TODO(sasa): This should be a linker option.
4273 bool insn32_;
4274 };
4275
4276 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4277 // It records high part of the relocation pair.
4278
4279 template<int size, bool big_endian>
4280 struct reloc_high
4281 {
4282 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4283
4284 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4285 const Symbol_value<size>* _psymval, Mips_address _addend,
4286 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4287 Mips_address _address = 0, bool _gp_disp = false)
4288 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4289 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4290 address(_address), gp_disp(_gp_disp)
4291 { }
4292
4293 unsigned char* view;
4294 const Mips_relobj<size, big_endian>* object;
4295 const Symbol_value<size>* psymval;
4296 Mips_address addend;
4297 unsigned int r_type;
4298 unsigned int r_sym;
4299 bool extract_addend;
4300 Mips_address address;
4301 bool gp_disp;
4302 };
4303
4304 template<int size, bool big_endian>
4305 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4306 {
4307 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4308 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4309 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4310 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4311 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4312
4313 public:
4314 typedef enum
4315 {
4316 STATUS_OKAY, // No error during relocation.
4317 STATUS_OVERFLOW, // Relocation overflow.
4318 STATUS_BAD_RELOC, // Relocation cannot be applied.
4319 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4320 } Status;
4321
4322 private:
4323 typedef Relocate_functions<size, big_endian> Base;
4324 typedef Mips_relocate_functions<size, big_endian> This;
4325
4326 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4327 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4328 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4329
4330 template<int valsize>
4331 static inline typename This::Status
4332 check_overflow(Valtype value)
4333 {
4334 if (size == 32)
4335 return (Bits<valsize>::has_overflow32(value)
4336 ? This::STATUS_OVERFLOW
4337 : This::STATUS_OKAY);
4338
4339 return (Bits<valsize>::has_overflow(value)
4340 ? This::STATUS_OVERFLOW
4341 : This::STATUS_OKAY);
4342 }
4343
4344 static inline bool
4345 should_shuffle_micromips_reloc(unsigned int r_type)
4346 {
4347 return (micromips_reloc(r_type)
4348 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4349 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4350 }
4351
4352 public:
4353 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4354 // Most mips16 instructions are 16 bits, but these instructions
4355 // are 32 bits.
4356 //
4357 // The format of these instructions is:
4358 //
4359 // +--------------+--------------------------------+
4360 // | JALX | X| Imm 20:16 | Imm 25:21 |
4361 // +--------------+--------------------------------+
4362 // | Immediate 15:0 |
4363 // +-----------------------------------------------+
4364 //
4365 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4366 // Note that the immediate value in the first word is swapped.
4367 //
4368 // When producing a relocatable object file, R_MIPS16_26 is
4369 // handled mostly like R_MIPS_26. In particular, the addend is
4370 // stored as a straight 26-bit value in a 32-bit instruction.
4371 // (gas makes life simpler for itself by never adjusting a
4372 // R_MIPS16_26 reloc to be against a section, so the addend is
4373 // always zero). However, the 32 bit instruction is stored as 2
4374 // 16-bit values, rather than a single 32-bit value. In a
4375 // big-endian file, the result is the same; in a little-endian
4376 // file, the two 16-bit halves of the 32 bit value are swapped.
4377 // This is so that a disassembler can recognize the jal
4378 // instruction.
4379 //
4380 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4381 // instruction stored as two 16-bit values. The addend A is the
4382 // contents of the targ26 field. The calculation is the same as
4383 // R_MIPS_26. When storing the calculated value, reorder the
4384 // immediate value as shown above, and don't forget to store the
4385 // value as two 16-bit values.
4386 //
4387 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4388 // defined as
4389 //
4390 // big-endian:
4391 // +--------+----------------------+
4392 // | | |
4393 // | | targ26-16 |
4394 // |31 26|25 0|
4395 // +--------+----------------------+
4396 //
4397 // little-endian:
4398 // +----------+------+-------------+
4399 // | | | |
4400 // | sub1 | | sub2 |
4401 // |0 9|10 15|16 31|
4402 // +----------+--------------------+
4403 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4404 // ((sub1 << 16) | sub2)).
4405 //
4406 // When producing a relocatable object file, the calculation is
4407 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4408 // When producing a fully linked file, the calculation is
4409 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4410 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4411 //
4412 // The table below lists the other MIPS16 instruction relocations.
4413 // Each one is calculated in the same way as the non-MIPS16 relocation
4414 // given on the right, but using the extended MIPS16 layout of 16-bit
4415 // immediate fields:
4416 //
4417 // R_MIPS16_GPREL R_MIPS_GPREL16
4418 // R_MIPS16_GOT16 R_MIPS_GOT16
4419 // R_MIPS16_CALL16 R_MIPS_CALL16
4420 // R_MIPS16_HI16 R_MIPS_HI16
4421 // R_MIPS16_LO16 R_MIPS_LO16
4422 //
4423 // A typical instruction will have a format like this:
4424 //
4425 // +--------------+--------------------------------+
4426 // | EXTEND | Imm 10:5 | Imm 15:11 |
4427 // +--------------+--------------------------------+
4428 // | Major | rx | ry | Imm 4:0 |
4429 // +--------------+--------------------------------+
4430 //
4431 // EXTEND is the five bit value 11110. Major is the instruction
4432 // opcode.
4433 //
4434 // All we need to do here is shuffle the bits appropriately.
4435 // As above, the two 16-bit halves must be swapped on a
4436 // little-endian system.
4437
4438 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4439 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4440 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4441
4442 static void
4443 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4444 bool jal_shuffle)
4445 {
4446 if (!mips16_reloc(r_type)
4447 && !should_shuffle_micromips_reloc(r_type))
4448 return;
4449
4450 // Pick up the first and second halfwords of the instruction.
4451 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4452 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4453 Valtype32 val;
4454
4455 if (micromips_reloc(r_type)
4456 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4457 val = first << 16 | second;
4458 else if (r_type != elfcpp::R_MIPS16_26)
4459 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4460 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4461 else
4462 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4463 | ((first & 0x1f) << 21) | second);
4464
4465 elfcpp::Swap<32, big_endian>::writeval(view, val);
4466 }
4467
4468 static void
4469 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4470 {
4471 if (!mips16_reloc(r_type)
4472 && !should_shuffle_micromips_reloc(r_type))
4473 return;
4474
4475 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4476 Valtype16 first, second;
4477
4478 if (micromips_reloc(r_type)
4479 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4480 {
4481 second = val & 0xffff;
4482 first = val >> 16;
4483 }
4484 else if (r_type != elfcpp::R_MIPS16_26)
4485 {
4486 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4487 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4488 }
4489 else
4490 {
4491 second = val & 0xffff;
4492 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4493 | ((val >> 21) & 0x1f);
4494 }
4495
4496 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4497 elfcpp::Swap<16, big_endian>::writeval(view, first);
4498 }
4499
4500 // R_MIPS_16: S + sign-extend(A)
4501 static inline typename This::Status
4502 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4503 const Symbol_value<size>* psymval, Mips_address addend_a,
4504 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4505 {
4506 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4507 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4508
4509 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4510 : addend_a);
4511
4512 Valtype x = psymval->value(object, addend);
4513 val = Bits<16>::bit_select32(val, x, 0xffffU);
4514
4515 if (calculate_only)
4516 {
4517 *calculated_value = x;
4518 return This::STATUS_OKAY;
4519 }
4520 else
4521 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4522
4523 return check_overflow<16>(x);
4524 }
4525
4526 // R_MIPS_32: S + A
4527 static inline typename This::Status
4528 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4529 const Symbol_value<size>* psymval, Mips_address addend_a,
4530 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4531 {
4532 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4533 Valtype addend = (extract_addend
4534 ? elfcpp::Swap<32, big_endian>::readval(wv)
4535 : addend_a);
4536 Valtype x = psymval->value(object, addend);
4537
4538 if (calculate_only)
4539 *calculated_value = x;
4540 else
4541 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4542
4543 return This::STATUS_OKAY;
4544 }
4545
4546 // R_MIPS_JALR, R_MICROMIPS_JALR
4547 static inline typename This::Status
4548 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4549 const Symbol_value<size>* psymval, Mips_address address,
4550 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4551 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4552 bool calculate_only, Valtype* calculated_value)
4553 {
4554 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4555 Valtype addend = extract_addend ? 0 : addend_a;
4556 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4557
4558 // Try converting J(AL)R to B(AL), if the target is in range.
4559 if (r_type == elfcpp::R_MIPS_JALR
4560 && !cross_mode_jump
4561 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4562 || (jr_to_b && val == 0x03200008))) // jr t9
4563 {
4564 int offset = psymval->value(object, addend) - (address + 4);
4565 if (!Bits<18>::has_overflow32(offset))
4566 {
4567 if (val == 0x03200008) // jr t9
4568 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4569 else
4570 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4571 }
4572 }
4573
4574 if (calculate_only)
4575 *calculated_value = val;
4576 else
4577 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4578
4579 return This::STATUS_OKAY;
4580 }
4581
4582 // R_MIPS_PC32: S + A - P
4583 static inline typename This::Status
4584 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4585 const Symbol_value<size>* psymval, Mips_address address,
4586 Mips_address addend_a, bool extract_addend, bool calculate_only,
4587 Valtype* calculated_value)
4588 {
4589 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4590 Valtype addend = (extract_addend
4591 ? elfcpp::Swap<32, big_endian>::readval(wv)
4592 : addend_a);
4593 Valtype x = psymval->value(object, addend) - address;
4594
4595 if (calculate_only)
4596 *calculated_value = x;
4597 else
4598 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4599
4600 return This::STATUS_OKAY;
4601 }
4602
4603 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4604 static inline typename This::Status
4605 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4606 const Symbol_value<size>* psymval, Mips_address address,
4607 bool local, Mips_address addend_a, bool extract_addend,
4608 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4609 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4610 {
4611 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4612 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4613
4614 Valtype addend;
4615 if (extract_addend)
4616 {
4617 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4618 addend = (val & 0x03ffffff) << 1;
4619 else
4620 addend = (val & 0x03ffffff) << 2;
4621 }
4622 else
4623 addend = addend_a;
4624
4625 // Make sure the target of JALX is word-aligned. Bit 0 must be
4626 // the correct ISA mode selector and bit 1 must be 0.
4627 if (!calculate_only && cross_mode_jump
4628 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4629 {
4630 gold_warning(_("JALX to a non-word-aligned address"));
4631 return This::STATUS_BAD_RELOC;
4632 }
4633
4634 // Shift is 2, unusually, for microMIPS JALX.
4635 unsigned int shift =
4636 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4637
4638 Valtype x;
4639 if (local)
4640 x = addend | ((address + 4) & (0xfc000000 << shift));
4641 else
4642 {
4643 if (shift == 1)
4644 x = Bits<27>::sign_extend32(addend);
4645 else
4646 x = Bits<28>::sign_extend32(addend);
4647 }
4648 x = psymval->value(object, x) >> shift;
4649
4650 if (!calculate_only && !local && !gsym->is_weak_undefined()
4651 && ((x >> 26) != ((address + 4) >> (26 + shift))))
4652 return This::STATUS_OVERFLOW;
4653
4654 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4655
4656 // If required, turn JAL into JALX.
4657 if (cross_mode_jump)
4658 {
4659 bool ok;
4660 Valtype32 opcode = val >> 26;
4661 Valtype32 jalx_opcode;
4662
4663 // Check to see if the opcode is already JAL or JALX.
4664 if (r_type == elfcpp::R_MIPS16_26)
4665 {
4666 ok = (opcode == 0x6) || (opcode == 0x7);
4667 jalx_opcode = 0x7;
4668 }
4669 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4670 {
4671 ok = (opcode == 0x3d) || (opcode == 0x3c);
4672 jalx_opcode = 0x3c;
4673 }
4674 else
4675 {
4676 ok = (opcode == 0x3) || (opcode == 0x1d);
4677 jalx_opcode = 0x1d;
4678 }
4679
4680 // If the opcode is not JAL or JALX, there's a problem. We cannot
4681 // convert J or JALS to JALX.
4682 if (!calculate_only && !ok)
4683 {
4684 gold_error(_("Unsupported jump between ISA modes; consider "
4685 "recompiling with interlinking enabled."));
4686 return This::STATUS_BAD_RELOC;
4687 }
4688
4689 // Make this the JALX opcode.
4690 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4691 }
4692
4693 // Try converting JAL to BAL, if the target is in range.
4694 if (!parameters->options().relocatable()
4695 && !cross_mode_jump
4696 && ((jal_to_bal
4697 && r_type == elfcpp::R_MIPS_26
4698 && (val >> 26) == 0x3))) // jal addr
4699 {
4700 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4701 int offset = dest - (address + 4);
4702 if (!Bits<18>::has_overflow32(offset))
4703 {
4704 if (val == 0x03200008) // jr t9
4705 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4706 else
4707 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4708 }
4709 }
4710
4711 if (calculate_only)
4712 *calculated_value = val;
4713 else
4714 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4715
4716 return This::STATUS_OKAY;
4717 }
4718
4719 // R_MIPS_PC16
4720 static inline typename This::Status
4721 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4722 const Symbol_value<size>* psymval, Mips_address address,
4723 Mips_address addend_a, bool extract_addend, bool calculate_only,
4724 Valtype* calculated_value)
4725 {
4726 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4727 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4728
4729 Valtype addend = (extract_addend
4730 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4731 : addend_a);
4732
4733 Valtype x = psymval->value(object, addend) - address;
4734 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4735
4736 if (calculate_only)
4737 {
4738 *calculated_value = x >> 2;
4739 return This::STATUS_OKAY;
4740 }
4741 else
4742 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4743
4744 if (psymval->value(object, addend) & 3)
4745 return This::STATUS_PCREL_UNALIGNED;
4746
4747 return check_overflow<18>(x);
4748 }
4749
4750 // R_MIPS_PC21_S2
4751 static inline typename This::Status
4752 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4753 const Symbol_value<size>* psymval, Mips_address address,
4754 Mips_address addend_a, bool extract_addend, bool calculate_only,
4755 Valtype* calculated_value)
4756 {
4757 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4758 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4759
4760 Valtype addend = (extract_addend
4761 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4762 : addend_a);
4763
4764 Valtype x = psymval->value(object, addend) - address;
4765 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4766
4767 if (calculate_only)
4768 {
4769 *calculated_value = x >> 2;
4770 return This::STATUS_OKAY;
4771 }
4772 else
4773 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4774
4775 if (psymval->value(object, addend) & 3)
4776 return This::STATUS_PCREL_UNALIGNED;
4777
4778 return check_overflow<23>(x);
4779 }
4780
4781 // R_MIPS_PC26_S2
4782 static inline typename This::Status
4783 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4784 const Symbol_value<size>* psymval, Mips_address address,
4785 Mips_address addend_a, bool extract_addend, bool calculate_only,
4786 Valtype* calculated_value)
4787 {
4788 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4789 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4790
4791 Valtype addend = (extract_addend
4792 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4793 : addend_a);
4794
4795 Valtype x = psymval->value(object, addend) - address;
4796 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4797
4798 if (calculate_only)
4799 {
4800 *calculated_value = x >> 2;
4801 return This::STATUS_OKAY;
4802 }
4803 else
4804 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4805
4806 if (psymval->value(object, addend) & 3)
4807 return This::STATUS_PCREL_UNALIGNED;
4808
4809 return check_overflow<28>(x);
4810 }
4811
4812 // R_MIPS_PC18_S3
4813 static inline typename This::Status
4814 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4815 const Symbol_value<size>* psymval, Mips_address address,
4816 Mips_address addend_a, bool extract_addend, bool calculate_only,
4817 Valtype* calculated_value)
4818 {
4819 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4820 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4821
4822 Valtype addend = (extract_addend
4823 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4824 : addend_a);
4825
4826 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4827 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4828
4829 if (calculate_only)
4830 {
4831 *calculated_value = x >> 3;
4832 return This::STATUS_OKAY;
4833 }
4834 else
4835 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4836
4837 if (psymval->value(object, addend) & 7)
4838 return This::STATUS_PCREL_UNALIGNED;
4839
4840 return check_overflow<21>(x);
4841 }
4842
4843 // R_MIPS_PC19_S2
4844 static inline typename This::Status
4845 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4846 const Symbol_value<size>* psymval, Mips_address address,
4847 Mips_address addend_a, bool extract_addend, bool calculate_only,
4848 Valtype* calculated_value)
4849 {
4850 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4851 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4852
4853 Valtype addend = (extract_addend
4854 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4855 : addend_a);
4856
4857 Valtype x = psymval->value(object, addend) - address;
4858 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4859
4860 if (calculate_only)
4861 {
4862 *calculated_value = x >> 2;
4863 return This::STATUS_OKAY;
4864 }
4865 else
4866 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4867
4868 if (psymval->value(object, addend) & 3)
4869 return This::STATUS_PCREL_UNALIGNED;
4870
4871 return check_overflow<21>(x);
4872 }
4873
4874 // R_MIPS_PCHI16
4875 static inline typename This::Status
4876 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4877 const Symbol_value<size>* psymval, Mips_address addend,
4878 Mips_address address, unsigned int r_sym, bool extract_addend)
4879 {
4880 // Record the relocation. It will be resolved when we find pclo16 part.
4881 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4882 addend, 0, r_sym, extract_addend, address));
4883 return This::STATUS_OKAY;
4884 }
4885
4886 // R_MIPS_PCHI16
4887 static inline typename This::Status
4888 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4889 const Symbol_value<size>* psymval, Mips_address addend_hi,
4890 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4891 bool calculate_only, Valtype* calculated_value)
4892 {
4893 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4894 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4895
4896 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4897 : addend_hi);
4898
4899 Valtype value = psymval->value(object, addend) - address;
4900 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4901 val = Bits<32>::bit_select32(val, x, 0xffff);
4902
4903 if (calculate_only)
4904 *calculated_value = x;
4905 else
4906 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4907
4908 return This::STATUS_OKAY;
4909 }
4910
4911 // R_MIPS_PCLO16
4912 static inline typename This::Status
4913 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4914 const Symbol_value<size>* psymval, Mips_address addend_a,
4915 bool extract_addend, Mips_address address, unsigned int r_sym,
4916 unsigned int rel_type, bool calculate_only,
4917 Valtype* calculated_value)
4918 {
4919 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4920 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4921
4922 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4923 : addend_a);
4924
4925 if (rel_type == elfcpp::SHT_REL)
4926 {
4927 // Resolve pending R_MIPS_PCHI16 relocations.
4928 typename std::list<reloc_high<size, big_endian> >::iterator it =
4929 pchi16_relocs.begin();
4930 while (it != pchi16_relocs.end())
4931 {
4932 reloc_high<size, big_endian> pchi16 = *it;
4933 if (pchi16.r_sym == r_sym)
4934 {
4935 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4936 pchi16.addend, pchi16.address,
4937 pchi16.extract_addend, addend, calculate_only,
4938 calculated_value);
4939 it = pchi16_relocs.erase(it);
4940 }
4941 else
4942 ++it;
4943 }
4944 }
4945
4946 // Resolve R_MIPS_PCLO16 relocation.
4947 Valtype x = psymval->value(object, addend) - address;
4948 val = Bits<32>::bit_select32(val, x, 0xffff);
4949
4950 if (calculate_only)
4951 *calculated_value = x;
4952 else
4953 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4954
4955 return This::STATUS_OKAY;
4956 }
4957
4958 // R_MICROMIPS_PC7_S1
4959 static inline typename This::Status
4960 relmicromips_pc7_s1(unsigned char* view,
4961 const Mips_relobj<size, big_endian>* object,
4962 const Symbol_value<size>* psymval, Mips_address address,
4963 Mips_address addend_a, bool extract_addend,
4964 bool calculate_only, Valtype* calculated_value)
4965 {
4966 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4967 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4968
4969 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4970 : addend_a;
4971
4972 Valtype x = psymval->value(object, addend) - address;
4973 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4974
4975 if (calculate_only)
4976 {
4977 *calculated_value = x >> 1;
4978 return This::STATUS_OKAY;
4979 }
4980 else
4981 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4982
4983 return check_overflow<8>(x);
4984 }
4985
4986 // R_MICROMIPS_PC10_S1
4987 static inline typename This::Status
4988 relmicromips_pc10_s1(unsigned char* view,
4989 const Mips_relobj<size, big_endian>* object,
4990 const Symbol_value<size>* psymval, Mips_address address,
4991 Mips_address addend_a, bool extract_addend,
4992 bool calculate_only, Valtype* calculated_value)
4993 {
4994 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4995 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4996
4997 Valtype addend = (extract_addend
4998 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4999 : addend_a);
5000
5001 Valtype x = psymval->value(object, addend) - address;
5002 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
5003
5004 if (calculate_only)
5005 {
5006 *calculated_value = x >> 1;
5007 return This::STATUS_OKAY;
5008 }
5009 else
5010 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5011
5012 return check_overflow<11>(x);
5013 }
5014
5015 // R_MICROMIPS_PC16_S1
5016 static inline typename This::Status
5017 relmicromips_pc16_s1(unsigned char* view,
5018 const Mips_relobj<size, big_endian>* object,
5019 const Symbol_value<size>* psymval, Mips_address address,
5020 Mips_address addend_a, bool extract_addend,
5021 bool calculate_only, Valtype* calculated_value)
5022 {
5023 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5024 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5025
5026 Valtype addend = (extract_addend
5027 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
5028 : addend_a);
5029
5030 Valtype x = psymval->value(object, addend) - address;
5031 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
5032
5033 if (calculate_only)
5034 {
5035 *calculated_value = x >> 1;
5036 return This::STATUS_OKAY;
5037 }
5038 else
5039 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5040
5041 return check_overflow<17>(x);
5042 }
5043
5044 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5045 static inline typename This::Status
5046 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5047 const Symbol_value<size>* psymval, Mips_address addend,
5048 Mips_address address, bool gp_disp, unsigned int r_type,
5049 unsigned int r_sym, bool extract_addend)
5050 {
5051 // Record the relocation. It will be resolved when we find lo16 part.
5052 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5053 addend, r_type, r_sym, extract_addend, address,
5054 gp_disp));
5055 return This::STATUS_OKAY;
5056 }
5057
5058 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5059 static inline typename This::Status
5060 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5061 const Symbol_value<size>* psymval, Mips_address addend_hi,
5062 Mips_address address, bool is_gp_disp, unsigned int r_type,
5063 bool extract_addend, Valtype32 addend_lo,
5064 Target_mips<size, big_endian>* target, bool calculate_only,
5065 Valtype* calculated_value)
5066 {
5067 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5068 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5069
5070 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5071 : addend_hi);
5072
5073 Valtype32 value;
5074 if (!is_gp_disp)
5075 value = psymval->value(object, addend);
5076 else
5077 {
5078 // For MIPS16 ABI code we generate this sequence
5079 // 0: li $v0,%hi(_gp_disp)
5080 // 4: addiupc $v1,%lo(_gp_disp)
5081 // 8: sll $v0,16
5082 // 12: addu $v0,$v1
5083 // 14: move $gp,$v0
5084 // So the offsets of hi and lo relocs are the same, but the
5085 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5086 // ADDIUPC clears the low two bits of the instruction address,
5087 // so the base is ($t9 + 4) & ~3.
5088 Valtype32 gp_disp;
5089 if (r_type == elfcpp::R_MIPS16_HI16)
5090 gp_disp = (target->adjusted_gp_value(object)
5091 - ((address + 4) & ~0x3));
5092 // The microMIPS .cpload sequence uses the same assembly
5093 // instructions as the traditional psABI version, but the
5094 // incoming $t9 has the low bit set.
5095 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5096 gp_disp = target->adjusted_gp_value(object) - address - 1;
5097 else
5098 gp_disp = target->adjusted_gp_value(object) - address;
5099 value = gp_disp + addend;
5100 }
5101 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5102 val = Bits<32>::bit_select32(val, x, 0xffff);
5103
5104 if (calculate_only)
5105 {
5106 *calculated_value = x;
5107 return This::STATUS_OKAY;
5108 }
5109 else
5110 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5111
5112 return (is_gp_disp ? check_overflow<16>(x)
5113 : This::STATUS_OKAY);
5114 }
5115
5116 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5117 static inline typename This::Status
5118 relgot16_local(unsigned char* view,
5119 const Mips_relobj<size, big_endian>* object,
5120 const Symbol_value<size>* psymval, Mips_address addend_a,
5121 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5122 {
5123 // Record the relocation. It will be resolved when we find lo16 part.
5124 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5125 addend_a, r_type, r_sym, extract_addend));
5126 return This::STATUS_OKAY;
5127 }
5128
5129 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5130 static inline typename This::Status
5131 do_relgot16_local(unsigned char* view,
5132 const Mips_relobj<size, big_endian>* object,
5133 const Symbol_value<size>* psymval, Mips_address addend_hi,
5134 bool extract_addend, Valtype32 addend_lo,
5135 Target_mips<size, big_endian>* target, bool calculate_only,
5136 Valtype* calculated_value)
5137 {
5138 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5139 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5140
5141 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5142 : addend_hi);
5143
5144 // Find GOT page entry.
5145 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5146 & 0xffff;
5147 value <<= 16;
5148 unsigned int got_offset =
5149 target->got_section()->get_got_page_offset(value, object);
5150
5151 // Resolve the relocation.
5152 Valtype x = target->got_section()->gp_offset(got_offset, object);
5153 val = Bits<32>::bit_select32(val, x, 0xffff);
5154
5155 if (calculate_only)
5156 {
5157 *calculated_value = x;
5158 return This::STATUS_OKAY;
5159 }
5160 else
5161 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5162
5163 return check_overflow<16>(x);
5164 }
5165
5166 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5167 static inline typename This::Status
5168 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5169 const Mips_relobj<size, big_endian>* object,
5170 const Symbol_value<size>* psymval, Mips_address addend_a,
5171 bool extract_addend, Mips_address address, bool is_gp_disp,
5172 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5173 bool calculate_only, Valtype* calculated_value)
5174 {
5175 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5176 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5177
5178 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5179 : addend_a);
5180
5181 if (rel_type == elfcpp::SHT_REL)
5182 {
5183 typename This::Status reloc_status = This::STATUS_OKAY;
5184 // Resolve pending R_MIPS_HI16 relocations.
5185 typename std::list<reloc_high<size, big_endian> >::iterator it =
5186 hi16_relocs.begin();
5187 while (it != hi16_relocs.end())
5188 {
5189 reloc_high<size, big_endian> hi16 = *it;
5190 if (hi16.r_sym == r_sym
5191 && is_matching_lo16_reloc(hi16.r_type, r_type))
5192 {
5193 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5194 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5195 hi16.addend, hi16.address, hi16.gp_disp,
5196 hi16.r_type, hi16.extract_addend, addend,
5197 target, calculate_only, calculated_value);
5198 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5199 if (reloc_status == This::STATUS_OVERFLOW)
5200 return This::STATUS_OVERFLOW;
5201 it = hi16_relocs.erase(it);
5202 }
5203 else
5204 ++it;
5205 }
5206
5207 // Resolve pending local R_MIPS_GOT16 relocations.
5208 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5209 got16_relocs.begin();
5210 while (it2 != got16_relocs.end())
5211 {
5212 reloc_high<size, big_endian> got16 = *it2;
5213 if (got16.r_sym == r_sym
5214 && is_matching_lo16_reloc(got16.r_type, r_type))
5215 {
5216 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5217
5218 reloc_status = do_relgot16_local(got16.view, got16.object,
5219 got16.psymval, got16.addend,
5220 got16.extract_addend, addend, target,
5221 calculate_only, calculated_value);
5222
5223 mips_reloc_shuffle(got16.view, got16.r_type, false);
5224 if (reloc_status == This::STATUS_OVERFLOW)
5225 return This::STATUS_OVERFLOW;
5226 it2 = got16_relocs.erase(it2);
5227 }
5228 else
5229 ++it2;
5230 }
5231 }
5232
5233 // Resolve R_MIPS_LO16 relocation.
5234 Valtype x;
5235 if (!is_gp_disp)
5236 x = psymval->value(object, addend);
5237 else
5238 {
5239 // See the comment for R_MIPS16_HI16 above for the reason
5240 // for this conditional.
5241 Valtype32 gp_disp;
5242 if (r_type == elfcpp::R_MIPS16_LO16)
5243 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5244 else if (r_type == elfcpp::R_MICROMIPS_LO16
5245 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5246 gp_disp = target->adjusted_gp_value(object) - address + 3;
5247 else
5248 gp_disp = target->adjusted_gp_value(object) - address + 4;
5249 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5250 // for overflow. Relocations against _gp_disp are normally
5251 // generated from the .cpload pseudo-op. It generates code
5252 // that normally looks like this:
5253
5254 // lui $gp,%hi(_gp_disp)
5255 // addiu $gp,$gp,%lo(_gp_disp)
5256 // addu $gp,$gp,$t9
5257
5258 // Here $t9 holds the address of the function being called,
5259 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5260 // relocation can easily overflow in this situation, but the
5261 // R_MIPS_HI16 relocation will handle the overflow.
5262 // Therefore, we consider this a bug in the MIPS ABI, and do
5263 // not check for overflow here.
5264 x = gp_disp + addend;
5265 }
5266 val = Bits<32>::bit_select32(val, x, 0xffff);
5267
5268 if (calculate_only)
5269 *calculated_value = x;
5270 else
5271 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5272
5273 return This::STATUS_OKAY;
5274 }
5275
5276 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5277 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5278 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5279 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5280 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5281 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5282 static inline typename This::Status
5283 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5284 Valtype* calculated_value)
5285 {
5286 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5287 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5288 Valtype x = gp_offset;
5289 val = Bits<32>::bit_select32(val, x, 0xffff);
5290
5291 if (calculate_only)
5292 {
5293 *calculated_value = x;
5294 return This::STATUS_OKAY;
5295 }
5296 else
5297 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5298
5299 return check_overflow<16>(x);
5300 }
5301
5302 // R_MIPS_EH
5303 static inline typename This::Status
5304 releh(unsigned char* view, int gp_offset, bool calculate_only,
5305 Valtype* calculated_value)
5306 {
5307 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5308 Valtype x = gp_offset;
5309
5310 if (calculate_only)
5311 {
5312 *calculated_value = x;
5313 return This::STATUS_OKAY;
5314 }
5315 else
5316 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5317
5318 return check_overflow<32>(x);
5319 }
5320
5321 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5322 static inline typename This::Status
5323 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5324 const Mips_relobj<size, big_endian>* object,
5325 const Symbol_value<size>* psymval, Mips_address addend_a,
5326 bool extract_addend, bool calculate_only,
5327 Valtype* calculated_value)
5328 {
5329 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5330 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5331 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5332
5333 // Find a GOT page entry that points to within 32KB of symbol + addend.
5334 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5335 unsigned int got_offset =
5336 target->got_section()->get_got_page_offset(value, object);
5337
5338 Valtype x = target->got_section()->gp_offset(got_offset, object);
5339 val = Bits<32>::bit_select32(val, x, 0xffff);
5340
5341 if (calculate_only)
5342 {
5343 *calculated_value = x;
5344 return This::STATUS_OKAY;
5345 }
5346 else
5347 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5348
5349 return check_overflow<16>(x);
5350 }
5351
5352 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5353 static inline typename This::Status
5354 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5355 const Mips_relobj<size, big_endian>* object,
5356 const Symbol_value<size>* psymval, Mips_address addend_a,
5357 bool extract_addend, bool local, bool calculate_only,
5358 Valtype* calculated_value)
5359 {
5360 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5361 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5362 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5363
5364 // For a local symbol, find a GOT page entry that points to within 32KB of
5365 // symbol + addend. Relocation value is the offset of the GOT page entry's
5366 // value from symbol + addend.
5367 // For a global symbol, relocation value is addend.
5368 Valtype x;
5369 if (local)
5370 {
5371 // Find GOT page entry.
5372 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5373 & ~0xffff);
5374 target->got_section()->get_got_page_offset(value, object);
5375
5376 x = psymval->value(object, addend) - value;
5377 }
5378 else
5379 x = addend;
5380 val = Bits<32>::bit_select32(val, x, 0xffff);
5381
5382 if (calculate_only)
5383 {
5384 *calculated_value = x;
5385 return This::STATUS_OKAY;
5386 }
5387 else
5388 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5389
5390 return check_overflow<16>(x);
5391 }
5392
5393 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5394 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5395 static inline typename This::Status
5396 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5397 Valtype* calculated_value)
5398 {
5399 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5400 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5401 Valtype x = gp_offset;
5402 x = ((x + 0x8000) >> 16) & 0xffff;
5403 val = Bits<32>::bit_select32(val, x, 0xffff);
5404
5405 if (calculate_only)
5406 *calculated_value = x;
5407 else
5408 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5409
5410 return This::STATUS_OKAY;
5411 }
5412
5413 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5414 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5415 static inline typename This::Status
5416 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5417 Valtype* calculated_value)
5418 {
5419 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5420 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5421 Valtype x = gp_offset;
5422 val = Bits<32>::bit_select32(val, x, 0xffff);
5423
5424 if (calculate_only)
5425 *calculated_value = x;
5426 else
5427 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5428
5429 return This::STATUS_OKAY;
5430 }
5431
5432 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5433 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5434 static inline typename This::Status
5435 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5436 const Symbol_value<size>* psymval, Mips_address gp,
5437 Mips_address addend_a, bool extract_addend, bool local,
5438 unsigned int r_type, bool calculate_only,
5439 Valtype* calculated_value)
5440 {
5441 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5442 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5443
5444 Valtype addend;
5445 if (extract_addend)
5446 {
5447 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5448 addend = (val & 0x7f) << 2;
5449 else
5450 addend = val & 0xffff;
5451 // Only sign-extend the addend if it was extracted from the
5452 // instruction. If the addend was separate, leave it alone,
5453 // otherwise we may lose significant bits.
5454 addend = Bits<16>::sign_extend32(addend);
5455 }
5456 else
5457 addend = addend_a;
5458
5459 Valtype x = psymval->value(object, addend) - gp;
5460
5461 // If the symbol was local, any earlier relocatable links will
5462 // have adjusted its addend with the gp offset, so compensate
5463 // for that now. Don't do it for symbols forced local in this
5464 // link, though, since they won't have had the gp offset applied
5465 // to them before.
5466 if (local)
5467 x += object->gp_value();
5468
5469 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5470 val = Bits<32>::bit_select32(val, x, 0x7f);
5471 else
5472 val = Bits<32>::bit_select32(val, x, 0xffff);
5473
5474 if (calculate_only)
5475 {
5476 *calculated_value = x;
5477 return This::STATUS_OKAY;
5478 }
5479 else
5480 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5481
5482 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5483 {
5484 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5485 "limit (see option -G)"));
5486 return This::STATUS_OVERFLOW;
5487 }
5488 return This::STATUS_OKAY;
5489 }
5490
5491 // R_MIPS_GPREL32
5492 static inline typename This::Status
5493 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5494 const Symbol_value<size>* psymval, Mips_address gp,
5495 Mips_address addend_a, bool extract_addend, bool calculate_only,
5496 Valtype* calculated_value)
5497 {
5498 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5499 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5500 Valtype addend = extract_addend ? val : addend_a;
5501
5502 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5503 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5504
5505 if (calculate_only)
5506 *calculated_value = x;
5507 else
5508 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5509
5510 return This::STATUS_OKAY;
5511 }
5512
5513 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5514 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5515 // R_MICROMIPS_TLS_DTPREL_HI16
5516 static inline typename This::Status
5517 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5518 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5519 Mips_address addend_a, bool extract_addend, bool calculate_only,
5520 Valtype* calculated_value)
5521 {
5522 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5523 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5524 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5525
5526 // tls symbol values are relative to tls_segment()->vaddr()
5527 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5528 val = Bits<32>::bit_select32(val, x, 0xffff);
5529
5530 if (calculate_only)
5531 *calculated_value = x;
5532 else
5533 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5534
5535 return This::STATUS_OKAY;
5536 }
5537
5538 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5539 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5540 // R_MICROMIPS_TLS_DTPREL_LO16,
5541 static inline typename This::Status
5542 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5543 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5544 Mips_address addend_a, bool extract_addend, bool calculate_only,
5545 Valtype* calculated_value)
5546 {
5547 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5548 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5549 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5550
5551 // tls symbol values are relative to tls_segment()->vaddr()
5552 Valtype x = psymval->value(object, addend) - tp_offset;
5553 val = Bits<32>::bit_select32(val, x, 0xffff);
5554
5555 if (calculate_only)
5556 *calculated_value = x;
5557 else
5558 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5559
5560 return This::STATUS_OKAY;
5561 }
5562
5563 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5564 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5565 static inline typename This::Status
5566 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5567 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5568 Mips_address addend_a, bool extract_addend, bool calculate_only,
5569 Valtype* calculated_value)
5570 {
5571 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5572 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5573 Valtype addend = extract_addend ? val : addend_a;
5574
5575 // tls symbol values are relative to tls_segment()->vaddr()
5576 Valtype x = psymval->value(object, addend) - tp_offset;
5577
5578 if (calculate_only)
5579 *calculated_value = x;
5580 else
5581 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5582
5583 return This::STATUS_OKAY;
5584 }
5585
5586 // R_MIPS_SUB, R_MICROMIPS_SUB
5587 static inline typename This::Status
5588 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5589 const Symbol_value<size>* psymval, Mips_address addend_a,
5590 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5591 {
5592 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5593 Valtype64 addend = (extract_addend
5594 ? elfcpp::Swap<64, big_endian>::readval(wv)
5595 : addend_a);
5596
5597 Valtype64 x = psymval->value(object, -addend);
5598 if (calculate_only)
5599 *calculated_value = x;
5600 else
5601 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5602
5603 return This::STATUS_OKAY;
5604 }
5605
5606 // R_MIPS_64: S + A
5607 static inline typename This::Status
5608 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5609 const Symbol_value<size>* psymval, Mips_address addend_a,
5610 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5611 bool apply_addend_only)
5612 {
5613 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5614 Valtype64 addend = (extract_addend
5615 ? elfcpp::Swap<64, big_endian>::readval(wv)
5616 : addend_a);
5617
5618 Valtype64 x = psymval->value(object, addend);
5619 if (calculate_only)
5620 *calculated_value = x;
5621 else
5622 {
5623 if (apply_addend_only)
5624 x = addend;
5625 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5626 }
5627
5628 return This::STATUS_OKAY;
5629 }
5630
5631 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5632 static inline typename This::Status
5633 relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5634 const Symbol_value<size>* psymval, Mips_address addend_a,
5635 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5636 {
5637 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5638 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5639 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5640 : addend_a);
5641
5642 Valtype x = psymval->value(object, addend);
5643 x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5644 val = Bits<32>::bit_select32(val, x, 0xffff);
5645
5646 if (calculate_only)
5647 *calculated_value = x;
5648 else
5649 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5650
5651 return This::STATUS_OKAY;
5652 }
5653
5654 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5655 static inline typename This::Status
5656 relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5657 const Symbol_value<size>* psymval, Mips_address addend_a,
5658 bool extract_addend, bool calculate_only,
5659 Valtype* calculated_value)
5660 {
5661 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5662 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5663 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5664 : addend_a);
5665
5666 Valtype x = psymval->value(object, addend);
5667 x = ((x + (uint64_t) 0x800080008000llu) >> 48) & 0xffff;
5668 val = Bits<32>::bit_select32(val, x, 0xffff);
5669
5670 if (calculate_only)
5671 *calculated_value = x;
5672 else
5673 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5674
5675 return This::STATUS_OKAY;
5676 }
5677 };
5678
5679 template<int size, bool big_endian>
5680 typename std::list<reloc_high<size, big_endian> >
5681 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5682
5683 template<int size, bool big_endian>
5684 typename std::list<reloc_high<size, big_endian> >
5685 Mips_relocate_functions<size, big_endian>::got16_relocs;
5686
5687 template<int size, bool big_endian>
5688 typename std::list<reloc_high<size, big_endian> >
5689 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5690
5691 // Mips_got_info methods.
5692
5693 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5694 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5695
5696 template<int size, bool big_endian>
5697 void
5698 Mips_got_info<size, big_endian>::record_local_got_symbol(
5699 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5700 Mips_address addend, unsigned int r_type, unsigned int shndx,
5701 bool is_section_symbol)
5702 {
5703 Mips_got_entry<size, big_endian>* entry =
5704 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5705 mips_elf_reloc_tls_type(r_type),
5706 shndx, is_section_symbol);
5707 this->record_got_entry(entry, object);
5708 }
5709
5710 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5711 // in OBJECT. FOR_CALL is true if the caller is only interested in
5712 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5713 // relocation.
5714
5715 template<int size, bool big_endian>
5716 void
5717 Mips_got_info<size, big_endian>::record_global_got_symbol(
5718 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5719 unsigned int r_type, bool dyn_reloc, bool for_call)
5720 {
5721 if (!for_call)
5722 mips_sym->set_got_not_only_for_calls();
5723
5724 // A global symbol in the GOT must also be in the dynamic symbol table.
5725 if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5726 {
5727 switch (mips_sym->visibility())
5728 {
5729 case elfcpp::STV_INTERNAL:
5730 case elfcpp::STV_HIDDEN:
5731 mips_sym->set_is_forced_local();
5732 break;
5733 default:
5734 mips_sym->set_needs_dynsym_entry();
5735 break;
5736 }
5737 }
5738
5739 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5740 if (tls_type == GOT_TLS_NONE)
5741 this->global_got_symbols_.insert(mips_sym);
5742
5743 if (dyn_reloc)
5744 {
5745 if (mips_sym->global_got_area() == GGA_NONE)
5746 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5747 return;
5748 }
5749
5750 Mips_got_entry<size, big_endian>* entry =
5751 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5752
5753 this->record_got_entry(entry, object);
5754 }
5755
5756 // Add ENTRY to master GOT and to OBJECT's GOT.
5757
5758 template<int size, bool big_endian>
5759 void
5760 Mips_got_info<size, big_endian>::record_got_entry(
5761 Mips_got_entry<size, big_endian>* entry,
5762 Mips_relobj<size, big_endian>* object)
5763 {
5764 this->got_entries_.insert(entry);
5765
5766 // Create the GOT entry for the OBJECT's GOT.
5767 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5768 Mips_got_entry<size, big_endian>* entry2 =
5769 new Mips_got_entry<size, big_endian>(*entry);
5770
5771 g->got_entries_.insert(entry2);
5772 }
5773
5774 // Record that OBJECT has a page relocation against symbol SYMNDX and
5775 // that ADDEND is the addend for that relocation.
5776 // This function creates an upper bound on the number of GOT slots
5777 // required; no attempt is made to combine references to non-overridable
5778 // global symbols across multiple input files.
5779
5780 template<int size, bool big_endian>
5781 void
5782 Mips_got_info<size, big_endian>::record_got_page_entry(
5783 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5784 {
5785 struct Got_page_range **range_ptr, *range;
5786 int old_pages, new_pages;
5787
5788 // Find the Got_page_entry for this symbol.
5789 Got_page_entry* entry = new Got_page_entry(object, symndx);
5790 typename Got_page_entry_set::iterator it =
5791 this->got_page_entries_.find(entry);
5792 if (it != this->got_page_entries_.end())
5793 entry = *it;
5794 else
5795 this->got_page_entries_.insert(entry);
5796
5797 // Get the object's GOT, but we don't need to insert an entry here.
5798 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5799
5800 // Skip over ranges whose maximum extent cannot share a page entry
5801 // with ADDEND.
5802 range_ptr = &entry->ranges;
5803 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5804 range_ptr = &(*range_ptr)->next;
5805
5806 // If we scanned to the end of the list, or found a range whose
5807 // minimum extent cannot share a page entry with ADDEND, create
5808 // a new singleton range.
5809 range = *range_ptr;
5810 if (!range || addend < range->min_addend - 0xffff)
5811 {
5812 range = new Got_page_range();
5813 range->next = *range_ptr;
5814 range->min_addend = addend;
5815 range->max_addend = addend;
5816
5817 *range_ptr = range;
5818 ++this->page_gotno_;
5819 ++g2->page_gotno_;
5820 return;
5821 }
5822
5823 // Remember how many pages the old range contributed.
5824 old_pages = range->get_max_pages();
5825
5826 // Update the ranges.
5827 if (addend < range->min_addend)
5828 range->min_addend = addend;
5829 else if (addend > range->max_addend)
5830 {
5831 if (range->next && addend >= range->next->min_addend - 0xffff)
5832 {
5833 old_pages += range->next->get_max_pages();
5834 range->max_addend = range->next->max_addend;
5835 range->next = range->next->next;
5836 }
5837 else
5838 range->max_addend = addend;
5839 }
5840
5841 // Record any change in the total estimate.
5842 new_pages = range->get_max_pages();
5843 if (old_pages != new_pages)
5844 {
5845 this->page_gotno_ += new_pages - old_pages;
5846 g2->page_gotno_ += new_pages - old_pages;
5847 }
5848 }
5849
5850 // Create all entries that should be in the local part of the GOT.
5851
5852 template<int size, bool big_endian>
5853 void
5854 Mips_got_info<size, big_endian>::add_local_entries(
5855 Target_mips<size, big_endian>* target, Layout* layout)
5856 {
5857 Mips_output_data_got<size, big_endian>* got = target->got_section();
5858 // First two GOT entries are reserved. The first entry will be filled at
5859 // runtime. The second entry will be used by some runtime loaders.
5860 got->add_constant(0);
5861 got->add_constant(target->mips_elf_gnu_got1_mask());
5862
5863 for (typename Got_entry_set::iterator
5864 p = this->got_entries_.begin();
5865 p != this->got_entries_.end();
5866 ++p)
5867 {
5868 Mips_got_entry<size, big_endian>* entry = *p;
5869 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5870 {
5871 got->add_local(entry->object(), entry->symndx(),
5872 GOT_TYPE_STANDARD, entry->addend());
5873 unsigned int got_offset = entry->object()->local_got_offset(
5874 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5875 if (got->multi_got() && this->index_ > 0
5876 && parameters->options().output_is_position_independent())
5877 {
5878 if (!entry->is_section_symbol())
5879 target->rel_dyn_section(layout)->add_local(entry->object(),
5880 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5881 else
5882 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5883 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5884 got, got_offset);
5885 }
5886 }
5887 }
5888
5889 this->add_page_entries(target, layout);
5890
5891 // Add global entries that should be in the local area.
5892 for (typename Got_entry_set::iterator
5893 p = this->got_entries_.begin();
5894 p != this->got_entries_.end();
5895 ++p)
5896 {
5897 Mips_got_entry<size, big_endian>* entry = *p;
5898 if (!entry->is_for_global_symbol())
5899 continue;
5900
5901 Mips_symbol<size>* mips_sym = entry->sym();
5902 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5903 {
5904 unsigned int got_type;
5905 if (!got->multi_got())
5906 got_type = GOT_TYPE_STANDARD;
5907 else
5908 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5909 if (got->add_global(mips_sym, got_type))
5910 {
5911 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5912 if (got->multi_got() && this->index_ > 0
5913 && parameters->options().output_is_position_independent())
5914 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5915 mips_sym, elfcpp::R_MIPS_REL32, got,
5916 mips_sym->got_offset(got_type));
5917 }
5918 }
5919 }
5920 }
5921
5922 // Create GOT page entries.
5923
5924 template<int size, bool big_endian>
5925 void
5926 Mips_got_info<size, big_endian>::add_page_entries(
5927 Target_mips<size, big_endian>* target, Layout* layout)
5928 {
5929 if (this->page_gotno_ == 0)
5930 return;
5931
5932 Mips_output_data_got<size, big_endian>* got = target->got_section();
5933 this->got_page_offset_start_ = got->add_constant(0);
5934 if (got->multi_got() && this->index_ > 0
5935 && parameters->options().output_is_position_independent())
5936 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5937 this->got_page_offset_start_);
5938 int num_entries = this->page_gotno_;
5939 unsigned int prev_offset = this->got_page_offset_start_;
5940 while (--num_entries > 0)
5941 {
5942 unsigned int next_offset = got->add_constant(0);
5943 if (got->multi_got() && this->index_ > 0
5944 && parameters->options().output_is_position_independent())
5945 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5946 next_offset);
5947 gold_assert(next_offset == prev_offset + size/8);
5948 prev_offset = next_offset;
5949 }
5950 this->got_page_offset_next_ = this->got_page_offset_start_;
5951 }
5952
5953 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5954
5955 template<int size, bool big_endian>
5956 void
5957 Mips_got_info<size, big_endian>::add_global_entries(
5958 Target_mips<size, big_endian>* target, Layout* layout,
5959 unsigned int non_reloc_only_global_gotno)
5960 {
5961 Mips_output_data_got<size, big_endian>* got = target->got_section();
5962 // Add GGA_NORMAL entries.
5963 unsigned int count = 0;
5964 for (typename Got_entry_set::iterator
5965 p = this->got_entries_.begin();
5966 p != this->got_entries_.end();
5967 ++p)
5968 {
5969 Mips_got_entry<size, big_endian>* entry = *p;
5970 if (!entry->is_for_global_symbol())
5971 continue;
5972
5973 Mips_symbol<size>* mips_sym = entry->sym();
5974 if (mips_sym->global_got_area() != GGA_NORMAL)
5975 continue;
5976
5977 unsigned int got_type;
5978 if (!got->multi_got())
5979 got_type = GOT_TYPE_STANDARD;
5980 else
5981 // In multi-GOT links, global symbol can be in both primary and
5982 // secondary GOT(s). By creating custom GOT type
5983 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5984 // is added to secondary GOT(s).
5985 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5986 if (!got->add_global(mips_sym, got_type))
5987 continue;
5988
5989 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5990 if (got->multi_got() && this->index_ == 0)
5991 count++;
5992 if (got->multi_got() && this->index_ > 0)
5993 {
5994 if (parameters->options().output_is_position_independent()
5995 || (!parameters->doing_static_link()
5996 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5997 {
5998 target->rel_dyn_section(layout)->add_global(
5999 mips_sym, elfcpp::R_MIPS_REL32, got,
6000 mips_sym->got_offset(got_type));
6001 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
6002 elfcpp::R_MIPS_REL32, mips_sym);
6003 }
6004 }
6005 }
6006
6007 if (!got->multi_got() || this->index_ == 0)
6008 {
6009 if (got->multi_got())
6010 {
6011 // We need to allocate space in the primary GOT for GGA_NORMAL entries
6012 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6013 // entries correspond to dynamic symbol indexes.
6014 while (count < non_reloc_only_global_gotno)
6015 {
6016 got->add_constant(0);
6017 ++count;
6018 }
6019 }
6020
6021 // Add GGA_RELOC_ONLY entries.
6022 got->add_reloc_only_entries();
6023 }
6024 }
6025
6026 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6027
6028 template<int size, bool big_endian>
6029 void
6030 Mips_got_info<size, big_endian>::add_reloc_only_entries(
6031 Mips_output_data_got<size, big_endian>* got)
6032 {
6033 for (typename Global_got_entry_set::iterator
6034 p = this->global_got_symbols_.begin();
6035 p != this->global_got_symbols_.end();
6036 ++p)
6037 {
6038 Mips_symbol<size>* mips_sym = *p;
6039 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6040 {
6041 unsigned int got_type;
6042 if (!got->multi_got())
6043 got_type = GOT_TYPE_STANDARD;
6044 else
6045 got_type = GOT_TYPE_STANDARD_MULTIGOT;
6046 if (got->add_global(mips_sym, got_type))
6047 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6048 }
6049 }
6050 }
6051
6052 // Create TLS GOT entries.
6053
6054 template<int size, bool big_endian>
6055 void
6056 Mips_got_info<size, big_endian>::add_tls_entries(
6057 Target_mips<size, big_endian>* target, Layout* layout)
6058 {
6059 Mips_output_data_got<size, big_endian>* got = target->got_section();
6060 // Add local tls entries.
6061 for (typename Got_entry_set::iterator
6062 p = this->got_entries_.begin();
6063 p != this->got_entries_.end();
6064 ++p)
6065 {
6066 Mips_got_entry<size, big_endian>* entry = *p;
6067 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6068 continue;
6069
6070 if (entry->tls_type() == GOT_TLS_GD)
6071 {
6072 unsigned int got_type = GOT_TYPE_TLS_PAIR;
6073 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6074 : elfcpp::R_MIPS_TLS_DTPMOD64);
6075 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6076 : elfcpp::R_MIPS_TLS_DTPREL64);
6077
6078 if (!parameters->doing_static_link())
6079 {
6080 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6081 entry->shndx(), got_type,
6082 target->rel_dyn_section(layout),
6083 r_type1, entry->addend());
6084 unsigned int got_offset =
6085 entry->object()->local_got_offset(entry->symndx(), got_type,
6086 entry->addend());
6087 got->add_static_reloc(got_offset + size/8, r_type2,
6088 entry->object(), entry->symndx());
6089 }
6090 else
6091 {
6092 // We are doing a static link. Mark it as belong to module 1,
6093 // the executable.
6094 unsigned int got_offset = got->add_constant(1);
6095 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6096 got_offset,
6097 entry->addend());
6098 got->add_constant(0);
6099 got->add_static_reloc(got_offset + size/8, r_type2,
6100 entry->object(), entry->symndx());
6101 }
6102 }
6103 else if (entry->tls_type() == GOT_TLS_IE)
6104 {
6105 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6106 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6107 : elfcpp::R_MIPS_TLS_TPREL64);
6108 if (!parameters->doing_static_link())
6109 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6110 target->rel_dyn_section(layout), r_type,
6111 entry->addend());
6112 else
6113 {
6114 got->add_local(entry->object(), entry->symndx(), got_type,
6115 entry->addend());
6116 unsigned int got_offset =
6117 entry->object()->local_got_offset(entry->symndx(), got_type,
6118 entry->addend());
6119 got->add_static_reloc(got_offset, r_type, entry->object(),
6120 entry->symndx());
6121 }
6122 }
6123 else if (entry->tls_type() == GOT_TLS_LDM)
6124 {
6125 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6126 : elfcpp::R_MIPS_TLS_DTPMOD64);
6127 unsigned int got_offset;
6128 if (!parameters->doing_static_link())
6129 {
6130 got_offset = got->add_constant(0);
6131 target->rel_dyn_section(layout)->add_local(
6132 entry->object(), 0, r_type, got, got_offset);
6133 }
6134 else
6135 // We are doing a static link. Just mark it as belong to module 1,
6136 // the executable.
6137 got_offset = got->add_constant(1);
6138
6139 got->add_constant(0);
6140 got->set_tls_ldm_offset(got_offset, entry->object());
6141 }
6142 else
6143 gold_unreachable();
6144 }
6145
6146 // Add global tls entries.
6147 for (typename Got_entry_set::iterator
6148 p = this->got_entries_.begin();
6149 p != this->got_entries_.end();
6150 ++p)
6151 {
6152 Mips_got_entry<size, big_endian>* entry = *p;
6153 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6154 continue;
6155
6156 Mips_symbol<size>* mips_sym = entry->sym();
6157 if (entry->tls_type() == GOT_TLS_GD)
6158 {
6159 unsigned int got_type;
6160 if (!got->multi_got())
6161 got_type = GOT_TYPE_TLS_PAIR;
6162 else
6163 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6164 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6165 : elfcpp::R_MIPS_TLS_DTPMOD64);
6166 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6167 : elfcpp::R_MIPS_TLS_DTPREL64);
6168 if (!parameters->doing_static_link())
6169 got->add_global_pair_with_rel(mips_sym, got_type,
6170 target->rel_dyn_section(layout), r_type1, r_type2);
6171 else
6172 {
6173 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6174 // GOT entries. The first one is initialized to be 1, which is the
6175 // module index for the main executable and the second one 0. A
6176 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6177 // the second GOT entry and will be applied by gold.
6178 unsigned int got_offset = got->add_constant(1);
6179 mips_sym->set_got_offset(got_type, got_offset);
6180 got->add_constant(0);
6181 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6182 }
6183 }
6184 else if (entry->tls_type() == GOT_TLS_IE)
6185 {
6186 unsigned int got_type;
6187 if (!got->multi_got())
6188 got_type = GOT_TYPE_TLS_OFFSET;
6189 else
6190 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6191 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6192 : elfcpp::R_MIPS_TLS_TPREL64);
6193 if (!parameters->doing_static_link())
6194 got->add_global_with_rel(mips_sym, got_type,
6195 target->rel_dyn_section(layout), r_type);
6196 else
6197 {
6198 got->add_global(mips_sym, got_type);
6199 unsigned int got_offset = mips_sym->got_offset(got_type);
6200 got->add_static_reloc(got_offset, r_type, mips_sym);
6201 }
6202 }
6203 else
6204 gold_unreachable();
6205 }
6206 }
6207
6208 // Decide whether the symbol needs an entry in the global part of the primary
6209 // GOT, setting global_got_area accordingly. Count the number of global
6210 // symbols that are in the primary GOT only because they have dynamic
6211 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6212
6213 template<int size, bool big_endian>
6214 void
6215 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6216 {
6217 for (typename Global_got_entry_set::iterator
6218 p = this->global_got_symbols_.begin();
6219 p != this->global_got_symbols_.end();
6220 ++p)
6221 {
6222 Mips_symbol<size>* sym = *p;
6223 // Make a final decision about whether the symbol belongs in the
6224 // local or global GOT. Symbols that bind locally can (and in the
6225 // case of forced-local symbols, must) live in the local GOT.
6226 // Those that are aren't in the dynamic symbol table must also
6227 // live in the local GOT.
6228
6229 if (!sym->should_add_dynsym_entry(symtab)
6230 || (sym->got_only_for_calls()
6231 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6232 : symbol_references_local(sym,
6233 sym->should_add_dynsym_entry(symtab))))
6234 // The symbol belongs in the local GOT. We no longer need this
6235 // entry if it was only used for relocations; those relocations
6236 // will be against the null or section symbol instead.
6237 sym->set_global_got_area(GGA_NONE);
6238 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6239 {
6240 ++this->reloc_only_gotno_;
6241 ++this->global_gotno_ ;
6242 }
6243 }
6244 }
6245
6246 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6247 // VALUE if it is not initialized.
6248
6249 template<int size, bool big_endian>
6250 unsigned int
6251 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6252 Mips_output_data_got<size, big_endian>* got)
6253 {
6254 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6255 if (it != this->got_page_offsets_.end())
6256 return it->second;
6257
6258 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6259 + (size/8) * this->page_gotno_);
6260
6261 unsigned int got_offset = this->got_page_offset_next_;
6262 this->got_page_offsets_[value] = got_offset;
6263 this->got_page_offset_next_ += size/8;
6264 got->update_got_entry(got_offset, value);
6265 return got_offset;
6266 }
6267
6268 // Remove lazy-binding stubs for global symbols in this GOT.
6269
6270 template<int size, bool big_endian>
6271 void
6272 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6273 Target_mips<size, big_endian>* target)
6274 {
6275 for (typename Got_entry_set::iterator
6276 p = this->got_entries_.begin();
6277 p != this->got_entries_.end();
6278 ++p)
6279 {
6280 Mips_got_entry<size, big_endian>* entry = *p;
6281 if (entry->is_for_global_symbol())
6282 target->remove_lazy_stub_entry(entry->sym());
6283 }
6284 }
6285
6286 // Count the number of GOT entries required.
6287
6288 template<int size, bool big_endian>
6289 void
6290 Mips_got_info<size, big_endian>::count_got_entries()
6291 {
6292 for (typename Got_entry_set::iterator
6293 p = this->got_entries_.begin();
6294 p != this->got_entries_.end();
6295 ++p)
6296 {
6297 this->count_got_entry(*p);
6298 }
6299 }
6300
6301 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6302
6303 template<int size, bool big_endian>
6304 void
6305 Mips_got_info<size, big_endian>::count_got_entry(
6306 Mips_got_entry<size, big_endian>* entry)
6307 {
6308 if (entry->is_tls_entry())
6309 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6310 else if (entry->is_for_local_symbol()
6311 || entry->sym()->global_got_area() == GGA_NONE)
6312 ++this->local_gotno_;
6313 else
6314 ++this->global_gotno_;
6315 }
6316
6317 // Add FROM's GOT entries.
6318
6319 template<int size, bool big_endian>
6320 void
6321 Mips_got_info<size, big_endian>::add_got_entries(
6322 Mips_got_info<size, big_endian>* from)
6323 {
6324 for (typename Got_entry_set::iterator
6325 p = from->got_entries_.begin();
6326 p != from->got_entries_.end();
6327 ++p)
6328 {
6329 Mips_got_entry<size, big_endian>* entry = *p;
6330 if (this->got_entries_.find(entry) == this->got_entries_.end())
6331 {
6332 Mips_got_entry<size, big_endian>* entry2 =
6333 new Mips_got_entry<size, big_endian>(*entry);
6334 this->got_entries_.insert(entry2);
6335 this->count_got_entry(entry);
6336 }
6337 }
6338 }
6339
6340 // Add FROM's GOT page entries.
6341
6342 template<int size, bool big_endian>
6343 void
6344 Mips_got_info<size, big_endian>::add_got_page_count(
6345 Mips_got_info<size, big_endian>* from)
6346 {
6347 this->page_gotno_ += from->page_gotno_;
6348 }
6349
6350 // Mips_output_data_got methods.
6351
6352 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6353 // larger than 64K, create multi-GOT.
6354
6355 template<int size, bool big_endian>
6356 void
6357 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6358 Symbol_table* symtab, const Input_objects* input_objects)
6359 {
6360 // Decide which symbols need to go in the global part of the GOT and
6361 // count the number of reloc-only GOT symbols.
6362 this->master_got_info_->count_got_symbols(symtab);
6363
6364 // Count the number of GOT entries.
6365 this->master_got_info_->count_got_entries();
6366
6367 unsigned int got_size = this->master_got_info_->got_size();
6368 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6369 this->lay_out_multi_got(layout, input_objects);
6370 else
6371 {
6372 // Record that all objects use single GOT.
6373 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6374 p != input_objects->relobj_end();
6375 ++p)
6376 {
6377 Mips_relobj<size, big_endian>* object =
6378 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6379 if (object->get_got_info() != NULL)
6380 object->set_got_info(this->master_got_info_);
6381 }
6382
6383 this->master_got_info_->add_local_entries(this->target_, layout);
6384 this->master_got_info_->add_global_entries(this->target_, layout,
6385 /*not used*/-1U);
6386 this->master_got_info_->add_tls_entries(this->target_, layout);
6387 }
6388 }
6389
6390 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6391
6392 template<int size, bool big_endian>
6393 void
6394 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6395 const Input_objects* input_objects)
6396 {
6397 // Try to merge the GOTs of input objects together, as long as they
6398 // don't seem to exceed the maximum GOT size, choosing one of them
6399 // to be the primary GOT.
6400 this->merge_gots(input_objects);
6401
6402 // Every symbol that is referenced in a dynamic relocation must be
6403 // present in the primary GOT.
6404 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6405
6406 // Add GOT entries.
6407 unsigned int i = 0;
6408 unsigned int offset = 0;
6409 Mips_got_info<size, big_endian>* g = this->primary_got_;
6410 do
6411 {
6412 g->set_index(i);
6413 g->set_offset(offset);
6414
6415 g->add_local_entries(this->target_, layout);
6416 if (i == 0)
6417 g->add_global_entries(this->target_, layout,
6418 (this->master_got_info_->global_gotno()
6419 - this->master_got_info_->reloc_only_gotno()));
6420 else
6421 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6422 g->add_tls_entries(this->target_, layout);
6423
6424 // Forbid global symbols in every non-primary GOT from having
6425 // lazy-binding stubs.
6426 if (i > 0)
6427 g->remove_lazy_stubs(this->target_);
6428
6429 ++i;
6430 offset += g->got_size();
6431 g = g->next();
6432 }
6433 while (g);
6434 }
6435
6436 // Attempt to merge GOTs of different input objects. Try to use as much as
6437 // possible of the primary GOT, since it doesn't require explicit dynamic
6438 // relocations, but don't use objects that would reference global symbols
6439 // out of the addressable range. Failing the primary GOT, attempt to merge
6440 // with the current GOT, or finish the current GOT and then make make the new
6441 // GOT current.
6442
6443 template<int size, bool big_endian>
6444 void
6445 Mips_output_data_got<size, big_endian>::merge_gots(
6446 const Input_objects* input_objects)
6447 {
6448 gold_assert(this->primary_got_ == NULL);
6449 Mips_got_info<size, big_endian>* current = NULL;
6450
6451 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6452 p != input_objects->relobj_end();
6453 ++p)
6454 {
6455 Mips_relobj<size, big_endian>* object =
6456 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6457
6458 Mips_got_info<size, big_endian>* g = object->get_got_info();
6459 if (g == NULL)
6460 continue;
6461
6462 g->count_got_entries();
6463
6464 // Work out the number of page, local and TLS entries.
6465 unsigned int estimate = this->master_got_info_->page_gotno();
6466 if (estimate > g->page_gotno())
6467 estimate = g->page_gotno();
6468 estimate += g->local_gotno() + g->tls_gotno();
6469
6470 // We place TLS GOT entries after both locals and globals. The globals
6471 // for the primary GOT may overflow the normal GOT size limit, so be
6472 // sure not to merge a GOT which requires TLS with the primary GOT in that
6473 // case. This doesn't affect non-primary GOTs.
6474 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6475 : g->global_gotno());
6476
6477 unsigned int max_count =
6478 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6479 if (estimate <= max_count)
6480 {
6481 // If we don't have a primary GOT, use it as
6482 // a starting point for the primary GOT.
6483 if (!this->primary_got_)
6484 {
6485 this->primary_got_ = g;
6486 continue;
6487 }
6488
6489 // Try merging with the primary GOT.
6490 if (this->merge_got_with(g, object, this->primary_got_))
6491 continue;
6492 }
6493
6494 // If we can merge with the last-created GOT, do it.
6495 if (current && this->merge_got_with(g, object, current))
6496 continue;
6497
6498 // Well, we couldn't merge, so create a new GOT. Don't check if it
6499 // fits; if it turns out that it doesn't, we'll get relocation
6500 // overflows anyway.
6501 g->set_next(current);
6502 current = g;
6503 }
6504
6505 // If we do not find any suitable primary GOT, create an empty one.
6506 if (this->primary_got_ == NULL)
6507 this->primary_got_ = new Mips_got_info<size, big_endian>();
6508
6509 // Link primary GOT with secondary GOTs.
6510 this->primary_got_->set_next(current);
6511 }
6512
6513 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6514 // this would lead to overflow, true if they were merged successfully.
6515
6516 template<int size, bool big_endian>
6517 bool
6518 Mips_output_data_got<size, big_endian>::merge_got_with(
6519 Mips_got_info<size, big_endian>* from,
6520 Mips_relobj<size, big_endian>* object,
6521 Mips_got_info<size, big_endian>* to)
6522 {
6523 // Work out how many page entries we would need for the combined GOT.
6524 unsigned int estimate = this->master_got_info_->page_gotno();
6525 if (estimate >= from->page_gotno() + to->page_gotno())
6526 estimate = from->page_gotno() + to->page_gotno();
6527
6528 // Conservatively estimate how many local and TLS entries would be needed.
6529 estimate += from->local_gotno() + to->local_gotno();
6530 estimate += from->tls_gotno() + to->tls_gotno();
6531
6532 // If we're merging with the primary got, any TLS relocations will
6533 // come after the full set of global entries. Otherwise estimate those
6534 // conservatively as well.
6535 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6536 estimate += this->master_got_info_->global_gotno();
6537 else
6538 estimate += from->global_gotno() + to->global_gotno();
6539
6540 // Bail out if the combined GOT might be too big.
6541 unsigned int max_count =
6542 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6543 if (estimate > max_count)
6544 return false;
6545
6546 // Transfer the object's GOT information from FROM to TO.
6547 to->add_got_entries(from);
6548 to->add_got_page_count(from);
6549
6550 // Record that OBJECT should use output GOT TO.
6551 object->set_got_info(to);
6552
6553 return true;
6554 }
6555
6556 // Write out the GOT.
6557
6558 template<int size, bool big_endian>
6559 void
6560 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6561 {
6562 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6563 Mips_stubs_entry_set;
6564
6565 // Call parent to write out GOT.
6566 Output_data_got<size, big_endian>::do_write(of);
6567
6568 const off_t offset = this->offset();
6569 const section_size_type oview_size =
6570 convert_to_section_size_type(this->data_size());
6571 unsigned char* const oview = of->get_output_view(offset, oview_size);
6572
6573 // Needed for fixing values of .got section.
6574 this->got_view_ = oview;
6575
6576 // Write lazy stub addresses.
6577 for (typename Mips_stubs_entry_set::iterator
6578 p = this->master_got_info_->global_got_symbols().begin();
6579 p != this->master_got_info_->global_got_symbols().end();
6580 ++p)
6581 {
6582 Mips_symbol<size>* mips_sym = *p;
6583 if (mips_sym->has_lazy_stub())
6584 {
6585 Valtype* wv = reinterpret_cast<Valtype*>(
6586 oview + this->get_primary_got_offset(mips_sym));
6587 Valtype value =
6588 this->target_->mips_stubs_section()->stub_address(mips_sym);
6589 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6590 }
6591 }
6592
6593 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6594 for (typename Mips_stubs_entry_set::iterator
6595 p = this->master_got_info_->global_got_symbols().begin();
6596 p != this->master_got_info_->global_got_symbols().end();
6597 ++p)
6598 {
6599 Mips_symbol<size>* mips_sym = *p;
6600 if (!this->multi_got()
6601 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6602 && mips_sym->global_got_area() == GGA_NONE
6603 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6604 {
6605 Valtype* wv = reinterpret_cast<Valtype*>(
6606 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6607 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6608 if (value != 0)
6609 {
6610 value |= 1;
6611 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6612 }
6613 }
6614 }
6615
6616 if (!this->secondary_got_relocs_.empty())
6617 {
6618 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6619 // secondary GOT entries with non-zero initial value copy the value
6620 // to the corresponding primary GOT entry, and set the secondary GOT
6621 // entry to zero.
6622 // TODO(sasa): This is workaround. It needs to be investigated further.
6623
6624 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6625 {
6626 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6627 if (reloc.symbol_is_global())
6628 {
6629 Mips_symbol<size>* gsym = reloc.symbol();
6630 gold_assert(gsym != NULL);
6631
6632 unsigned got_offset = reloc.got_offset();
6633 gold_assert(got_offset < oview_size);
6634
6635 // Find primary GOT entry.
6636 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6637 oview + this->get_primary_got_offset(gsym));
6638
6639 // Find secondary GOT entry.
6640 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6641
6642 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6643 if (value != 0)
6644 {
6645 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6646 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6647 gsym->set_applied_secondary_got_fixup();
6648 }
6649 }
6650 }
6651
6652 of->write_output_view(offset, oview_size, oview);
6653 }
6654
6655 // We are done if there is no fix up.
6656 if (this->static_relocs_.empty())
6657 return;
6658
6659 Output_segment* tls_segment = this->layout_->tls_segment();
6660 gold_assert(tls_segment != NULL);
6661
6662 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6663 {
6664 Static_reloc& reloc(this->static_relocs_[i]);
6665
6666 Mips_address value;
6667 if (!reloc.symbol_is_global())
6668 {
6669 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6670 const Symbol_value<size>* psymval =
6671 object->local_symbol(reloc.index());
6672
6673 // We are doing static linking. Issue an error and skip this
6674 // relocation if the symbol is undefined or in a discarded_section.
6675 bool is_ordinary;
6676 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6677 if ((shndx == elfcpp::SHN_UNDEF)
6678 || (is_ordinary
6679 && shndx != elfcpp::SHN_UNDEF
6680 && !object->is_section_included(shndx)
6681 && !this->symbol_table_->is_section_folded(object, shndx)))
6682 {
6683 gold_error(_("undefined or discarded local symbol %u from "
6684 " object %s in GOT"),
6685 reloc.index(), reloc.relobj()->name().c_str());
6686 continue;
6687 }
6688
6689 value = psymval->value(object, 0);
6690 }
6691 else
6692 {
6693 const Mips_symbol<size>* gsym = reloc.symbol();
6694 gold_assert(gsym != NULL);
6695
6696 // We are doing static linking. Issue an error and skip this
6697 // relocation if the symbol is undefined or in a discarded_section
6698 // unless it is a weakly_undefined symbol.
6699 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6700 && !gsym->is_weak_undefined())
6701 {
6702 gold_error(_("undefined or discarded symbol %s in GOT"),
6703 gsym->name());
6704 continue;
6705 }
6706
6707 if (!gsym->is_weak_undefined())
6708 value = gsym->value();
6709 else
6710 value = 0;
6711 }
6712
6713 unsigned got_offset = reloc.got_offset();
6714 gold_assert(got_offset < oview_size);
6715
6716 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6717 Valtype x;
6718
6719 switch (reloc.r_type())
6720 {
6721 case elfcpp::R_MIPS_TLS_DTPMOD32:
6722 case elfcpp::R_MIPS_TLS_DTPMOD64:
6723 x = value;
6724 break;
6725 case elfcpp::R_MIPS_TLS_DTPREL32:
6726 case elfcpp::R_MIPS_TLS_DTPREL64:
6727 x = value - elfcpp::DTP_OFFSET;
6728 break;
6729 case elfcpp::R_MIPS_TLS_TPREL32:
6730 case elfcpp::R_MIPS_TLS_TPREL64:
6731 x = value - elfcpp::TP_OFFSET;
6732 break;
6733 default:
6734 gold_unreachable();
6735 break;
6736 }
6737
6738 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6739 }
6740
6741 of->write_output_view(offset, oview_size, oview);
6742 }
6743
6744 // Mips_relobj methods.
6745
6746 // Count the local symbols. The Mips backend needs to know if a symbol
6747 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6748 // because the Symbol object keeps the ELF symbol type and st_other field.
6749 // For local symbol it is harder because we cannot access this information.
6750 // So we override the do_count_local_symbol in parent and scan local symbols to
6751 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6752 // I do not want to slow down other ports by calling a per symbol target hook
6753 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6754
6755 template<int size, bool big_endian>
6756 void
6757 Mips_relobj<size, big_endian>::do_count_local_symbols(
6758 Stringpool_template<char>* pool,
6759 Stringpool_template<char>* dynpool)
6760 {
6761 // Ask parent to count the local symbols.
6762 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6763 const unsigned int loccount = this->local_symbol_count();
6764 if (loccount == 0)
6765 return;
6766
6767 // Initialize the mips16 and micromips function bit-vector.
6768 this->local_symbol_is_mips16_.resize(loccount, false);
6769 this->local_symbol_is_micromips_.resize(loccount, false);
6770
6771 // Read the symbol table section header.
6772 const unsigned int symtab_shndx = this->symtab_shndx();
6773 elfcpp::Shdr<size, big_endian>
6774 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6775 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6776
6777 // Read the local symbols.
6778 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6779 gold_assert(loccount == symtabshdr.get_sh_info());
6780 off_t locsize = loccount * sym_size;
6781 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6782 locsize, true, true);
6783
6784 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6785
6786 // Skip the first dummy symbol.
6787 psyms += sym_size;
6788 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6789 {
6790 elfcpp::Sym<size, big_endian> sym(psyms);
6791 unsigned char st_other = sym.get_st_other();
6792 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6793 this->local_symbol_is_micromips_[i] =
6794 elfcpp::elf_st_is_micromips(st_other);
6795 }
6796 }
6797
6798 // Read the symbol information.
6799
6800 template<int size, bool big_endian>
6801 void
6802 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6803 {
6804 // Call parent class to read symbol information.
6805 this->base_read_symbols(sd);
6806
6807 // If this input file is a binary file, it has no processor
6808 // specific data.
6809 Input_file::Format format = this->input_file()->format();
6810 if (format != Input_file::FORMAT_ELF)
6811 {
6812 gold_assert(format == Input_file::FORMAT_BINARY);
6813 this->merge_processor_specific_data_ = false;
6814 return;
6815 }
6816
6817 // Read processor-specific flags in ELF file header.
6818 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6819 elfcpp::Elf_sizes<size>::ehdr_size,
6820 true, false);
6821 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6822 this->processor_specific_flags_ = ehdr.get_e_flags();
6823
6824 // Get the section names.
6825 const unsigned char* pnamesu = sd->section_names->data();
6826 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6827
6828 // Initialize the mips16 stub section bit-vectors.
6829 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6830 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6831 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6832
6833 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6834 const unsigned char* pshdrs = sd->section_headers->data();
6835 const unsigned char* ps = pshdrs + shdr_size;
6836 bool must_merge_processor_specific_data = false;
6837 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6838 {
6839 elfcpp::Shdr<size, big_endian> shdr(ps);
6840
6841 // Sometimes an object has no contents except the section name string
6842 // table and an empty symbol table with the undefined symbol. We
6843 // don't want to merge processor-specific data from such an object.
6844 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6845 {
6846 // Symbol table is not empty.
6847 const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
6848 elfcpp::Elf_sizes<size>::sym_size;
6849 if (shdr.get_sh_size() > sym_size)
6850 must_merge_processor_specific_data = true;
6851 }
6852 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6853 // If this is neither an empty symbol table nor a string table,
6854 // be conservative.
6855 must_merge_processor_specific_data = true;
6856
6857 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6858 {
6859 this->has_reginfo_section_ = true;
6860 // Read the gp value that was used to create this object. We need the
6861 // gp value while processing relocs. The .reginfo section is not used
6862 // in the 64-bit MIPS ELF ABI.
6863 section_offset_type section_offset = shdr.get_sh_offset();
6864 section_size_type section_size =
6865 convert_to_section_size_type(shdr.get_sh_size());
6866 const unsigned char* view =
6867 this->get_view(section_offset, section_size, true, false);
6868
6869 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6870
6871 // Read the rest of .reginfo.
6872 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6873 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6874 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6875 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6876 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6877 }
6878
6879 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6880 {
6881 gold_assert(this->attributes_section_data_ == NULL);
6882 section_offset_type section_offset = shdr.get_sh_offset();
6883 section_size_type section_size =
6884 convert_to_section_size_type(shdr.get_sh_size());
6885 const unsigned char* view =
6886 this->get_view(section_offset, section_size, true, false);
6887 this->attributes_section_data_ =
6888 new Attributes_section_data(view, section_size);
6889 }
6890
6891 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6892 {
6893 gold_assert(this->abiflags_ == NULL);
6894 section_offset_type section_offset = shdr.get_sh_offset();
6895 section_size_type section_size =
6896 convert_to_section_size_type(shdr.get_sh_size());
6897 const unsigned char* view =
6898 this->get_view(section_offset, section_size, true, false);
6899 this->abiflags_ = new Mips_abiflags<big_endian>();
6900
6901 this->abiflags_->version =
6902 elfcpp::Swap<16, big_endian>::readval(view);
6903 if (this->abiflags_->version != 0)
6904 {
6905 gold_error(_("%s: .MIPS.abiflags section has "
6906 "unsupported version %u"),
6907 this->name().c_str(),
6908 this->abiflags_->version);
6909 break;
6910 }
6911 this->abiflags_->isa_level =
6912 elfcpp::Swap<8, big_endian>::readval(view + 2);
6913 this->abiflags_->isa_rev =
6914 elfcpp::Swap<8, big_endian>::readval(view + 3);
6915 this->abiflags_->gpr_size =
6916 elfcpp::Swap<8, big_endian>::readval(view + 4);
6917 this->abiflags_->cpr1_size =
6918 elfcpp::Swap<8, big_endian>::readval(view + 5);
6919 this->abiflags_->cpr2_size =
6920 elfcpp::Swap<8, big_endian>::readval(view + 6);
6921 this->abiflags_->fp_abi =
6922 elfcpp::Swap<8, big_endian>::readval(view + 7);
6923 this->abiflags_->isa_ext =
6924 elfcpp::Swap<32, big_endian>::readval(view + 8);
6925 this->abiflags_->ases =
6926 elfcpp::Swap<32, big_endian>::readval(view + 12);
6927 this->abiflags_->flags1 =
6928 elfcpp::Swap<32, big_endian>::readval(view + 16);
6929 this->abiflags_->flags2 =
6930 elfcpp::Swap<32, big_endian>::readval(view + 20);
6931 }
6932
6933 // In the 64-bit ABI, .MIPS.options section holds register information.
6934 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6935 // starts with this header:
6936 //
6937 // typedef struct
6938 // {
6939 // // Type of option.
6940 // unsigned char kind[1];
6941 // // Size of option descriptor, including header.
6942 // unsigned char size[1];
6943 // // Section index of affected section, or 0 for global option.
6944 // unsigned char section[2];
6945 // // Information specific to this kind of option.
6946 // unsigned char info[4];
6947 // };
6948 //
6949 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6950 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6951 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6952
6953 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6954 {
6955 section_offset_type section_offset = shdr.get_sh_offset();
6956 section_size_type section_size =
6957 convert_to_section_size_type(shdr.get_sh_size());
6958 const unsigned char* view =
6959 this->get_view(section_offset, section_size, true, false);
6960 const unsigned char* end = view + section_size;
6961
6962 while (view + 8 <= end)
6963 {
6964 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6965 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6966 if (sz < 8)
6967 {
6968 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6969 "than its header"),
6970 this->name().c_str(),
6971 this->mips_elf_options_section_name(), sz);
6972 break;
6973 }
6974
6975 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6976 {
6977 // In the 64 bit ABI, an ODK_REGINFO option is the following
6978 // structure. The info field of the options header is not
6979 // used.
6980 //
6981 // typedef struct
6982 // {
6983 // // Mask of general purpose registers used.
6984 // unsigned char ri_gprmask[4];
6985 // // Padding.
6986 // unsigned char ri_pad[4];
6987 // // Mask of co-processor registers used.
6988 // unsigned char ri_cprmask[4][4];
6989 // // GP register value for this object file.
6990 // unsigned char ri_gp_value[8];
6991 // };
6992
6993 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6994 + 32);
6995 }
6996 else if (kind == elfcpp::ODK_REGINFO)
6997 {
6998 // In the 32 bit ABI, an ODK_REGINFO option is the following
6999 // structure. The info field of the options header is not
7000 // used. The same structure is used in .reginfo section.
7001 //
7002 // typedef struct
7003 // {
7004 // unsigned char ri_gprmask[4];
7005 // unsigned char ri_cprmask[4][4];
7006 // unsigned char ri_gp_value[4];
7007 // };
7008
7009 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
7010 + 28);
7011 }
7012 view += sz;
7013 }
7014 }
7015
7016 const char* name = pnames + shdr.get_sh_name();
7017 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
7018 this->section_is_mips16_call_stub_[i] =
7019 is_prefix_of(".mips16.call.", name);
7020 this->section_is_mips16_call_fp_stub_[i] =
7021 is_prefix_of(".mips16.call.fp.", name);
7022
7023 if (strcmp(name, ".pdr") == 0)
7024 {
7025 gold_assert(this->pdr_shndx_ == -1U);
7026 this->pdr_shndx_ = i;
7027 }
7028 }
7029
7030 // This is rare.
7031 if (!must_merge_processor_specific_data)
7032 this->merge_processor_specific_data_ = false;
7033 }
7034
7035 // Discard MIPS16 stub secions that are not needed.
7036
7037 template<int size, bool big_endian>
7038 void
7039 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
7040 {
7041 for (typename Mips16_stubs_int_map::const_iterator
7042 it = this->mips16_stub_sections_.begin();
7043 it != this->mips16_stub_sections_.end(); ++it)
7044 {
7045 Mips16_stub_section<size, big_endian>* stub_section = it->second;
7046 if (!stub_section->is_target_found())
7047 {
7048 gold_error(_("no relocation found in mips16 stub section '%s'"),
7049 stub_section->object()
7050 ->section_name(stub_section->shndx()).c_str());
7051 }
7052
7053 bool discard = false;
7054 if (stub_section->is_for_local_function())
7055 {
7056 if (stub_section->is_fn_stub())
7057 {
7058 // This stub is for a local symbol. This stub will only
7059 // be needed if there is some relocation in this object,
7060 // other than a 16 bit function call, which refers to this
7061 // symbol.
7062 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7063 discard = true;
7064 else
7065 this->add_local_mips16_fn_stub(stub_section);
7066 }
7067 else
7068 {
7069 // This stub is for a local symbol. This stub will only
7070 // be needed if there is some relocation (R_MIPS16_26) in
7071 // this object that refers to this symbol.
7072 gold_assert(stub_section->is_call_stub()
7073 || stub_section->is_call_fp_stub());
7074 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7075 discard = true;
7076 else
7077 this->add_local_mips16_call_stub(stub_section);
7078 }
7079 }
7080 else
7081 {
7082 Mips_symbol<size>* gsym = stub_section->gsym();
7083 if (stub_section->is_fn_stub())
7084 {
7085 if (gsym->has_mips16_fn_stub())
7086 // We already have a stub for this function.
7087 discard = true;
7088 else
7089 {
7090 gsym->set_mips16_fn_stub(stub_section);
7091 if (gsym->should_add_dynsym_entry(symtab))
7092 {
7093 // If we have a MIPS16 function with a stub, the
7094 // dynamic symbol must refer to the stub, since only
7095 // the stub uses the standard calling conventions.
7096 gsym->set_need_fn_stub();
7097 if (gsym->is_from_dynobj())
7098 gsym->set_needs_dynsym_value();
7099 }
7100 }
7101 if (!gsym->need_fn_stub())
7102 discard = true;
7103 }
7104 else if (stub_section->is_call_stub())
7105 {
7106 if (gsym->is_mips16())
7107 // We don't need the call_stub; this is a 16 bit
7108 // function, so calls from other 16 bit functions are
7109 // OK.
7110 discard = true;
7111 else if (gsym->has_mips16_call_stub())
7112 // We already have a stub for this function.
7113 discard = true;
7114 else
7115 gsym->set_mips16_call_stub(stub_section);
7116 }
7117 else
7118 {
7119 gold_assert(stub_section->is_call_fp_stub());
7120 if (gsym->is_mips16())
7121 // We don't need the call_stub; this is a 16 bit
7122 // function, so calls from other 16 bit functions are
7123 // OK.
7124 discard = true;
7125 else if (gsym->has_mips16_call_fp_stub())
7126 // We already have a stub for this function.
7127 discard = true;
7128 else
7129 gsym->set_mips16_call_fp_stub(stub_section);
7130 }
7131 }
7132 if (discard)
7133 this->set_output_section(stub_section->shndx(), NULL);
7134 }
7135 }
7136
7137 // Mips_output_data_la25_stub methods.
7138
7139 // Template for standard LA25 stub.
7140 template<int size, bool big_endian>
7141 const uint32_t
7142 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7143 {
7144 0x3c190000, // lui $25,%hi(func)
7145 0x08000000, // j func
7146 0x27390000, // add $25,$25,%lo(func)
7147 0x00000000 // nop
7148 };
7149
7150 // Template for microMIPS LA25 stub.
7151 template<int size, bool big_endian>
7152 const uint32_t
7153 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7154 {
7155 0x41b9, 0x0000, // lui t9,%hi(func)
7156 0xd400, 0x0000, // j func
7157 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7158 0x0000, 0x0000 // nop
7159 };
7160
7161 // Create la25 stub for a symbol.
7162
7163 template<int size, bool big_endian>
7164 void
7165 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7166 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7167 Mips_symbol<size>* gsym)
7168 {
7169 if (!gsym->has_la25_stub())
7170 {
7171 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7172 this->symbols_.push_back(gsym);
7173 this->create_stub_symbol(gsym, symtab, target, 16);
7174 }
7175 }
7176
7177 // Create a symbol for SYM stub's value and size, to help make the disassembly
7178 // easier to read.
7179
7180 template<int size, bool big_endian>
7181 void
7182 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7183 Mips_symbol<size>* sym, Symbol_table* symtab,
7184 Target_mips<size, big_endian>* target, uint64_t symsize)
7185 {
7186 std::string name(".pic.");
7187 name += sym->name();
7188
7189 unsigned int offset = sym->la25_stub_offset();
7190 if (sym->is_micromips())
7191 offset |= 1;
7192
7193 // Make it a local function.
7194 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7195 Symbol_table::PREDEFINED,
7196 target->la25_stub_section(),
7197 offset, symsize, elfcpp::STT_FUNC,
7198 elfcpp::STB_LOCAL,
7199 elfcpp::STV_DEFAULT, 0,
7200 false, false);
7201 new_sym->set_is_forced_local();
7202 }
7203
7204 // Write out la25 stubs. This uses the hand-coded instructions above,
7205 // and adjusts them as needed.
7206
7207 template<int size, bool big_endian>
7208 void
7209 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7210 {
7211 const off_t offset = this->offset();
7212 const section_size_type oview_size =
7213 convert_to_section_size_type(this->data_size());
7214 unsigned char* const oview = of->get_output_view(offset, oview_size);
7215
7216 for (typename std::vector<Mips_symbol<size>*>::iterator
7217 p = this->symbols_.begin();
7218 p != this->symbols_.end();
7219 ++p)
7220 {
7221 Mips_symbol<size>* sym = *p;
7222 unsigned char* pov = oview + sym->la25_stub_offset();
7223
7224 Mips_address target = sym->value();
7225 if (!sym->is_micromips())
7226 {
7227 elfcpp::Swap<32, big_endian>::writeval(pov,
7228 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7229 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7230 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7231 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7232 la25_stub_entry[2] | (target & 0xffff));
7233 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7234 }
7235 else
7236 {
7237 target |= 1;
7238 // First stub instruction. Paste high 16-bits of the target.
7239 elfcpp::Swap<16, big_endian>::writeval(pov,
7240 la25_stub_micromips_entry[0]);
7241 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7242 ((target + 0x8000) >> 16) & 0xffff);
7243 // Second stub instruction. Paste low 26-bits of the target, shifted
7244 // right by 1.
7245 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7246 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7247 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7248 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7249 // Third stub instruction. Paste low 16-bits of the target.
7250 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7251 la25_stub_micromips_entry[4]);
7252 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7253 // Fourth stub instruction.
7254 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7255 la25_stub_micromips_entry[6]);
7256 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7257 la25_stub_micromips_entry[7]);
7258 }
7259 }
7260
7261 of->write_output_view(offset, oview_size, oview);
7262 }
7263
7264 // Mips_output_data_plt methods.
7265
7266 // The format of the first PLT entry in an O32 executable.
7267 template<int size, bool big_endian>
7268 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7269 {
7270 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7271 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7272 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7273 0x031cc023, // subu $24, $24, $28
7274 0x03e07825, // or $15, $31, zero
7275 0x0018c082, // srl $24, $24, 2
7276 0x0320f809, // jalr $25
7277 0x2718fffe // subu $24, $24, 2
7278 };
7279
7280 // The format of the first PLT entry in an N32 executable. Different
7281 // because gp ($28) is not available; we use t2 ($14) instead.
7282 template<int size, bool big_endian>
7283 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7284 {
7285 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7286 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7287 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7288 0x030ec023, // subu $24, $24, $14
7289 0x03e07825, // or $15, $31, zero
7290 0x0018c082, // srl $24, $24, 2
7291 0x0320f809, // jalr $25
7292 0x2718fffe // subu $24, $24, 2
7293 };
7294
7295 // The format of the first PLT entry in an N64 executable. Different
7296 // from N32 because of the increased size of GOT entries.
7297 template<int size, bool big_endian>
7298 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7299 {
7300 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7301 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7302 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7303 0x030ec023, // subu $24, $24, $14
7304 0x03e07825, // or $15, $31, zero
7305 0x0018c0c2, // srl $24, $24, 3
7306 0x0320f809, // jalr $25
7307 0x2718fffe // subu $24, $24, 2
7308 };
7309
7310 // The format of the microMIPS first PLT entry in an O32 executable.
7311 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7312 // of the GOTPLT entry handled, so this stub may only be used when
7313 // all the subsequent PLT entries are microMIPS code too.
7314 //
7315 // The trailing NOP is for alignment and correct disassembly only.
7316 template<int size, bool big_endian>
7317 const uint32_t Mips_output_data_plt<size, big_endian>::
7318 plt0_entry_micromips_o32[] =
7319 {
7320 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7321 0xff23, 0x0000, // lw $25, 0($3)
7322 0x0535, // subu $2, $2, $3
7323 0x2525, // srl $2, $2, 2
7324 0x3302, 0xfffe, // subu $24, $2, 2
7325 0x0dff, // move $15, $31
7326 0x45f9, // jalrs $25
7327 0x0f83, // move $28, $3
7328 0x0c00 // nop
7329 };
7330
7331 // The format of the microMIPS first PLT entry in an O32 executable
7332 // in the insn32 mode.
7333 template<int size, bool big_endian>
7334 const uint32_t Mips_output_data_plt<size, big_endian>::
7335 plt0_entry_micromips32_o32[] =
7336 {
7337 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7338 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7339 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7340 0x0398, 0xc1d0, // subu $24, $24, $28
7341 0x001f, 0x7a90, // or $15, $31, zero
7342 0x0318, 0x1040, // srl $24, $24, 2
7343 0x03f9, 0x0f3c, // jalr $25
7344 0x3318, 0xfffe // subu $24, $24, 2
7345 };
7346
7347 // The format of subsequent standard entries in the PLT.
7348 template<int size, bool big_endian>
7349 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7350 {
7351 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7352 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7353 0x03200008, // jr $25
7354 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7355 };
7356
7357 // The format of subsequent R6 PLT entries.
7358 template<int size, bool big_endian>
7359 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7360 {
7361 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7362 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7363 0x03200009, // jr $25
7364 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7365 };
7366
7367 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7368 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7369 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7370 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7371 // target function address in register v0.
7372 template<int size, bool big_endian>
7373 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7374 {
7375 0xb303, // lw $3, 12($pc)
7376 0x651b, // move $24, $3
7377 0x9b60, // lw $3, 0($3)
7378 0xeb00, // jr $3
7379 0x653b, // move $25, $3
7380 0x6500, // nop
7381 0x0000, 0x0000 // .word (.got.plt entry)
7382 };
7383
7384 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7385 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7386 template<int size, bool big_endian>
7387 const uint32_t Mips_output_data_plt<size, big_endian>::
7388 plt_entry_micromips_o32[] =
7389 {
7390 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7391 0xff22, 0x0000, // lw $25, 0($2)
7392 0x4599, // jr $25
7393 0x0f02 // move $24, $2
7394 };
7395
7396 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7397 template<int size, bool big_endian>
7398 const uint32_t Mips_output_data_plt<size, big_endian>::
7399 plt_entry_micromips32_o32[] =
7400 {
7401 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7402 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7403 0x0019, 0x0f3c, // jr $25
7404 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7405 };
7406
7407 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7408
7409 template<int size, bool big_endian>
7410 void
7411 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7412 unsigned int r_type)
7413 {
7414 gold_assert(!gsym->has_plt_offset());
7415
7416 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7417 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7418 + sizeof(plt0_entry_o32));
7419 this->symbols_.push_back(gsym);
7420
7421 // Record whether the relocation requires a standard MIPS
7422 // or a compressed code entry.
7423 if (jal_reloc(r_type))
7424 {
7425 if (r_type == elfcpp::R_MIPS_26)
7426 gsym->set_needs_mips_plt(true);
7427 else
7428 gsym->set_needs_comp_plt(true);
7429 }
7430
7431 section_offset_type got_offset = this->got_plt_->current_data_size();
7432
7433 // Every PLT entry needs a GOT entry which points back to the PLT
7434 // entry (this will be changed by the dynamic linker, normally
7435 // lazily when the function is called).
7436 this->got_plt_->set_current_data_size(got_offset + size/8);
7437
7438 gsym->set_needs_dynsym_entry();
7439 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7440 got_offset);
7441 }
7442
7443 // Set final PLT offsets. For each symbol, determine whether standard or
7444 // compressed (MIPS16 or microMIPS) PLT entry is used.
7445
7446 template<int size, bool big_endian>
7447 void
7448 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7449 {
7450 // The sizes of individual PLT entries.
7451 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7452 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7453 ? this->compressed_plt_entry_size() : 0);
7454
7455 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7456 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7457 {
7458 Mips_symbol<size>* mips_sym = *p;
7459
7460 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7461 // so always use a standard entry there.
7462 //
7463 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7464 // all MIPS16 calls will go via that stub, and there is no benefit
7465 // to having a MIPS16 entry. And in the case of call_stub a
7466 // standard entry actually has to be used as the stub ends with a J
7467 // instruction.
7468 if (this->target_->is_output_newabi()
7469 || mips_sym->has_mips16_call_stub()
7470 || mips_sym->has_mips16_call_fp_stub())
7471 {
7472 mips_sym->set_needs_mips_plt(true);
7473 mips_sym->set_needs_comp_plt(false);
7474 }
7475
7476 // Otherwise, if there are no direct calls to the function, we
7477 // have a free choice of whether to use standard or compressed
7478 // entries. Prefer microMIPS entries if the object is known to
7479 // contain microMIPS code, so that it becomes possible to create
7480 // pure microMIPS binaries. Prefer standard entries otherwise,
7481 // because MIPS16 ones are no smaller and are usually slower.
7482 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7483 {
7484 if (this->target_->is_output_micromips())
7485 mips_sym->set_needs_comp_plt(true);
7486 else
7487 mips_sym->set_needs_mips_plt(true);
7488 }
7489
7490 if (mips_sym->needs_mips_plt())
7491 {
7492 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7493 this->plt_mips_offset_ += plt_mips_entry_size;
7494 }
7495 if (mips_sym->needs_comp_plt())
7496 {
7497 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7498 this->plt_comp_offset_ += plt_comp_entry_size;
7499 }
7500 }
7501
7502 // Figure out the size of the PLT header if we know that we are using it.
7503 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7504 this->plt_header_size_ = this->get_plt_header_size();
7505 }
7506
7507 // Write out the PLT. This uses the hand-coded instructions above,
7508 // and adjusts them as needed.
7509
7510 template<int size, bool big_endian>
7511 void
7512 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7513 {
7514 const off_t offset = this->offset();
7515 const section_size_type oview_size =
7516 convert_to_section_size_type(this->data_size());
7517 unsigned char* const oview = of->get_output_view(offset, oview_size);
7518
7519 const off_t gotplt_file_offset = this->got_plt_->offset();
7520 const section_size_type gotplt_size =
7521 convert_to_section_size_type(this->got_plt_->data_size());
7522 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7523 gotplt_size);
7524 unsigned char* pov = oview;
7525
7526 Mips_address plt_address = this->address();
7527
7528 // Calculate the address of .got.plt.
7529 Mips_address gotplt_addr = this->got_plt_->address();
7530 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7531 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7532
7533 // The PLT sequence is not safe for N64 if .got.plt's address can
7534 // not be loaded in two instructions.
7535 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7536 || ~(gotplt_addr | 0x7fffffff) == 0);
7537
7538 // Write the PLT header.
7539 const uint32_t* plt0_entry = this->get_plt_header_entry();
7540 if (plt0_entry == plt0_entry_micromips_o32)
7541 {
7542 // Write microMIPS PLT header.
7543 gold_assert(gotplt_addr % 4 == 0);
7544
7545 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7546
7547 // ADDIUPC has a span of +/-16MB, check we're in range.
7548 if (gotpc_offset + 0x1000000 >= 0x2000000)
7549 {
7550 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7551 "ADDIUPC"), (long)gotpc_offset);
7552 return;
7553 }
7554
7555 elfcpp::Swap<16, big_endian>::writeval(pov,
7556 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7557 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7558 (gotpc_offset >> 2) & 0xffff);
7559 pov += 4;
7560 for (unsigned int i = 2;
7561 i < (sizeof(plt0_entry_micromips_o32)
7562 / sizeof(plt0_entry_micromips_o32[0]));
7563 i++)
7564 {
7565 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7566 pov += 2;
7567 }
7568 }
7569 else if (plt0_entry == plt0_entry_micromips32_o32)
7570 {
7571 // Write microMIPS PLT header in insn32 mode.
7572 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7573 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7574 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7575 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7576 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7577 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7578 pov += 12;
7579 for (unsigned int i = 6;
7580 i < (sizeof(plt0_entry_micromips32_o32)
7581 / sizeof(plt0_entry_micromips32_o32[0]));
7582 i++)
7583 {
7584 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7585 pov += 2;
7586 }
7587 }
7588 else
7589 {
7590 // Write standard PLT header.
7591 elfcpp::Swap<32, big_endian>::writeval(pov,
7592 plt0_entry[0] | gotplt_addr_high);
7593 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7594 plt0_entry[1] | gotplt_addr_low);
7595 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7596 plt0_entry[2] | gotplt_addr_low);
7597 pov += 12;
7598 for (int i = 3; i < 8; i++)
7599 {
7600 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7601 pov += 4;
7602 }
7603 }
7604
7605
7606 unsigned char* gotplt_pov = gotplt_view;
7607 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7608
7609 // The first two entries in .got.plt are reserved.
7610 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7611 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7612
7613 unsigned int gotplt_offset = 2 * got_entry_size;
7614 gotplt_pov += 2 * got_entry_size;
7615
7616 // Calculate the address of the PLT header.
7617 Mips_address header_address = (plt_address
7618 + (this->is_plt_header_compressed() ? 1 : 0));
7619
7620 // Initialize compressed PLT area view.
7621 unsigned char* pov2 = pov + this->plt_mips_offset_;
7622
7623 // Write the PLT entries.
7624 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7625 p = this->symbols_.begin();
7626 p != this->symbols_.end();
7627 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7628 {
7629 Mips_symbol<size>* mips_sym = *p;
7630
7631 // Calculate the address of the .got.plt entry.
7632 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7633 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7634 & 0xffff);
7635 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7636
7637 // Initially point the .got.plt entry at the PLT header.
7638 if (this->target_->is_output_n64())
7639 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7640 else
7641 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7642
7643 // Now handle the PLT itself. First the standard entry.
7644 if (mips_sym->has_mips_plt_offset())
7645 {
7646 // Pick the load opcode (LW or LD).
7647 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7648 : 0x8c000000;
7649
7650 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7651 : plt_entry;
7652
7653 // Fill in the PLT entry itself.
7654 elfcpp::Swap<32, big_endian>::writeval(pov,
7655 entry[0] | gotplt_entry_addr_hi);
7656 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7657 entry[1] | gotplt_entry_addr_lo | load);
7658 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7659 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7660 entry[3] | gotplt_entry_addr_lo);
7661 pov += 16;
7662 }
7663
7664 // Now the compressed entry. They come after any standard ones.
7665 if (mips_sym->has_comp_plt_offset())
7666 {
7667 if (!this->target_->is_output_micromips())
7668 {
7669 // Write MIPS16 PLT entry.
7670 const uint32_t* plt_entry = plt_entry_mips16_o32;
7671
7672 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7673 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7674 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7675 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7676 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7677 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7678 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7679 gotplt_entry_addr);
7680 pov2 += 16;
7681 }
7682 else if (this->target_->use_32bit_micromips_instructions())
7683 {
7684 // Write microMIPS PLT entry in insn32 mode.
7685 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7686
7687 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7688 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7689 gotplt_entry_addr_hi);
7690 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7691 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7692 gotplt_entry_addr_lo);
7693 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7694 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7695 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7696 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7697 gotplt_entry_addr_lo);
7698 pov2 += 16;
7699 }
7700 else
7701 {
7702 // Write microMIPS PLT entry.
7703 const uint32_t* plt_entry = plt_entry_micromips_o32;
7704
7705 gold_assert(gotplt_entry_addr % 4 == 0);
7706
7707 Mips_address loc_address = plt_address + pov2 - oview;
7708 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7709
7710 // ADDIUPC has a span of +/-16MB, check we're in range.
7711 if (gotpc_offset + 0x1000000 >= 0x2000000)
7712 {
7713 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7714 "range of ADDIUPC"), (long)gotpc_offset);
7715 return;
7716 }
7717
7718 elfcpp::Swap<16, big_endian>::writeval(pov2,
7719 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7720 elfcpp::Swap<16, big_endian>::writeval(
7721 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7722 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7723 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7724 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7725 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7726 pov2 += 12;
7727 }
7728 }
7729 }
7730
7731 // Check the number of bytes written for standard entries.
7732 gold_assert(static_cast<section_size_type>(
7733 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7734 // Check the number of bytes written for compressed entries.
7735 gold_assert((static_cast<section_size_type>(pov2 - pov)
7736 == this->plt_comp_offset_));
7737 // Check the total number of bytes written.
7738 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7739
7740 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7741 == gotplt_size);
7742
7743 of->write_output_view(offset, oview_size, oview);
7744 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7745 }
7746
7747 // Mips_output_data_mips_stubs methods.
7748
7749 // The format of the lazy binding stub when dynamic symbol count is less than
7750 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7751 template<int size, bool big_endian>
7752 const uint32_t
7753 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7754 {
7755 0x8f998010, // lw t9,0x8010(gp)
7756 0x03e07825, // or t7,ra,zero
7757 0x0320f809, // jalr t9,ra
7758 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7759 };
7760
7761 // The format of the lazy binding stub when dynamic symbol count is less than
7762 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7763 template<int size, bool big_endian>
7764 const uint32_t
7765 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7766 {
7767 0xdf998010, // ld t9,0x8010(gp)
7768 0x03e07825, // or t7,ra,zero
7769 0x0320f809, // jalr t9,ra
7770 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7771 };
7772
7773 // The format of the lazy binding stub when dynamic symbol count is less than
7774 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7775 template<int size, bool big_endian>
7776 const uint32_t
7777 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7778 {
7779 0x8f998010, // lw t9,0x8010(gp)
7780 0x03e07825, // or t7,ra,zero
7781 0x0320f809, // jalr t9,ra
7782 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7783 };
7784
7785 // The format of the lazy binding stub when dynamic symbol count is less than
7786 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7787 template<int size, bool big_endian>
7788 const uint32_t
7789 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7790 {
7791 0xdf998010, // ld t9,0x8010(gp)
7792 0x03e07825, // or t7,ra,zero
7793 0x0320f809, // jalr t9,ra
7794 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7795 };
7796
7797 // The format of the lazy binding stub when dynamic symbol count is greater than
7798 // 64K, and ABI is not N64.
7799 template<int size, bool big_endian>
7800 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7801 {
7802 0x8f998010, // lw t9,0x8010(gp)
7803 0x03e07825, // or t7,ra,zero
7804 0x3c180000, // lui t8,DYN_INDEX
7805 0x0320f809, // jalr t9,ra
7806 0x37180000 // ori t8,t8,DYN_INDEX
7807 };
7808
7809 // The format of the lazy binding stub when dynamic symbol count is greater than
7810 // 64K, and ABI is N64.
7811 template<int size, bool big_endian>
7812 const uint32_t
7813 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7814 {
7815 0xdf998010, // ld t9,0x8010(gp)
7816 0x03e07825, // or t7,ra,zero
7817 0x3c180000, // lui t8,DYN_INDEX
7818 0x0320f809, // jalr t9,ra
7819 0x37180000 // ori t8,t8,DYN_INDEX
7820 };
7821
7822 // microMIPS stubs.
7823
7824 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7825 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7826 template<int size, bool big_endian>
7827 const uint32_t
7828 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7829 {
7830 0xff3c, 0x8010, // lw t9,0x8010(gp)
7831 0x0dff, // move t7,ra
7832 0x45d9, // jalr t9
7833 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7834 };
7835
7836 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7837 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7838 template<int size, bool big_endian>
7839 const uint32_t
7840 Mips_output_data_mips_stubs<size, big_endian>::
7841 lazy_stub_micromips_normal_1_n64[] =
7842 {
7843 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7844 0x0dff, // move t7,ra
7845 0x45d9, // jalr t9
7846 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7847 };
7848
7849 // The format of the microMIPS lazy binding stub when dynamic symbol
7850 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7851 // and ABI is not N64.
7852 template<int size, bool big_endian>
7853 const uint32_t
7854 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7855 {
7856 0xff3c, 0x8010, // lw t9,0x8010(gp)
7857 0x0dff, // move t7,ra
7858 0x45d9, // jalr t9
7859 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7860 };
7861
7862 // The format of the microMIPS lazy binding stub when dynamic symbol
7863 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7864 // and ABI is N64.
7865 template<int size, bool big_endian>
7866 const uint32_t
7867 Mips_output_data_mips_stubs<size, big_endian>::
7868 lazy_stub_micromips_normal_2_n64[] =
7869 {
7870 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7871 0x0dff, // move t7,ra
7872 0x45d9, // jalr t9
7873 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7874 };
7875
7876 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7877 // greater than 64K, and ABI is not N64.
7878 template<int size, bool big_endian>
7879 const uint32_t
7880 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7881 {
7882 0xff3c, 0x8010, // lw t9,0x8010(gp)
7883 0x0dff, // move t7,ra
7884 0x41b8, 0x0000, // lui t8,DYN_INDEX
7885 0x45d9, // jalr t9
7886 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7887 };
7888
7889 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7890 // greater than 64K, and ABI is N64.
7891 template<int size, bool big_endian>
7892 const uint32_t
7893 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7894 {
7895 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7896 0x0dff, // move t7,ra
7897 0x41b8, 0x0000, // lui t8,DYN_INDEX
7898 0x45d9, // jalr t9
7899 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7900 };
7901
7902 // 32-bit microMIPS stubs.
7903
7904 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7905 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7906 // can use only 32-bit instructions.
7907 template<int size, bool big_endian>
7908 const uint32_t
7909 Mips_output_data_mips_stubs<size, big_endian>::
7910 lazy_stub_micromips32_normal_1[] =
7911 {
7912 0xff3c, 0x8010, // lw t9,0x8010(gp)
7913 0x001f, 0x7a90, // or t7,ra,zero
7914 0x03f9, 0x0f3c, // jalr ra,t9
7915 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7916 };
7917
7918 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7919 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7920 // use only 32-bit instructions.
7921 template<int size, bool big_endian>
7922 const uint32_t
7923 Mips_output_data_mips_stubs<size, big_endian>::
7924 lazy_stub_micromips32_normal_1_n64[] =
7925 {
7926 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7927 0x001f, 0x7a90, // or t7,ra,zero
7928 0x03f9, 0x0f3c, // jalr ra,t9
7929 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7930 };
7931
7932 // The format of the microMIPS lazy binding stub when dynamic symbol
7933 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7934 // ABI is not N64, and we can use only 32-bit instructions.
7935 template<int size, bool big_endian>
7936 const uint32_t
7937 Mips_output_data_mips_stubs<size, big_endian>::
7938 lazy_stub_micromips32_normal_2[] =
7939 {
7940 0xff3c, 0x8010, // lw t9,0x8010(gp)
7941 0x001f, 0x7a90, // or t7,ra,zero
7942 0x03f9, 0x0f3c, // jalr ra,t9
7943 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7944 };
7945
7946 // The format of the microMIPS lazy binding stub when dynamic symbol
7947 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7948 // ABI is N64, and we can use only 32-bit instructions.
7949 template<int size, bool big_endian>
7950 const uint32_t
7951 Mips_output_data_mips_stubs<size, big_endian>::
7952 lazy_stub_micromips32_normal_2_n64[] =
7953 {
7954 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7955 0x001f, 0x7a90, // or t7,ra,zero
7956 0x03f9, 0x0f3c, // jalr ra,t9
7957 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7958 };
7959
7960 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7961 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7962 template<int size, bool big_endian>
7963 const uint32_t
7964 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7965 {
7966 0xff3c, 0x8010, // lw t9,0x8010(gp)
7967 0x001f, 0x7a90, // or t7,ra,zero
7968 0x41b8, 0x0000, // lui t8,DYN_INDEX
7969 0x03f9, 0x0f3c, // jalr ra,t9
7970 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7971 };
7972
7973 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7974 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7975 template<int size, bool big_endian>
7976 const uint32_t
7977 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7978 {
7979 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7980 0x001f, 0x7a90, // or t7,ra,zero
7981 0x41b8, 0x0000, // lui t8,DYN_INDEX
7982 0x03f9, 0x0f3c, // jalr ra,t9
7983 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7984 };
7985
7986 // Create entry for a symbol.
7987
7988 template<int size, bool big_endian>
7989 void
7990 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7991 Mips_symbol<size>* gsym)
7992 {
7993 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7994 {
7995 this->symbols_.insert(gsym);
7996 gsym->set_has_lazy_stub(true);
7997 }
7998 }
7999
8000 // Remove entry for a symbol.
8001
8002 template<int size, bool big_endian>
8003 void
8004 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
8005 Mips_symbol<size>* gsym)
8006 {
8007 if (gsym->has_lazy_stub())
8008 {
8009 this->symbols_.erase(gsym);
8010 gsym->set_has_lazy_stub(false);
8011 }
8012 }
8013
8014 // Set stub offsets for symbols. This method expects that the number of
8015 // entries in dynamic symbol table is set.
8016
8017 template<int size, bool big_endian>
8018 void
8019 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
8020 {
8021 gold_assert(this->dynsym_count_ != -1U);
8022
8023 if (this->stub_offsets_are_set_)
8024 return;
8025
8026 unsigned int stub_size = this->stub_size();
8027 unsigned int offset = 0;
8028 for (typename Mips_stubs_entry_set::const_iterator
8029 p = this->symbols_.begin();
8030 p != this->symbols_.end();
8031 ++p, offset += stub_size)
8032 {
8033 Mips_symbol<size>* mips_sym = *p;
8034 mips_sym->set_lazy_stub_offset(offset);
8035 }
8036 this->stub_offsets_are_set_ = true;
8037 }
8038
8039 template<int size, bool big_endian>
8040 void
8041 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
8042 {
8043 for (typename Mips_stubs_entry_set::const_iterator
8044 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8045 {
8046 Mips_symbol<size>* sym = *p;
8047 if (sym->is_from_dynobj())
8048 sym->set_needs_dynsym_value();
8049 }
8050 }
8051
8052 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
8053 // adjusts them as needed.
8054
8055 template<int size, bool big_endian>
8056 void
8057 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8058 {
8059 const off_t offset = this->offset();
8060 const section_size_type oview_size =
8061 convert_to_section_size_type(this->data_size());
8062 unsigned char* const oview = of->get_output_view(offset, oview_size);
8063
8064 bool big_stub = this->dynsym_count_ > 0x10000;
8065
8066 unsigned char* pov = oview;
8067 for (typename Mips_stubs_entry_set::const_iterator
8068 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8069 {
8070 Mips_symbol<size>* sym = *p;
8071 const uint32_t* lazy_stub;
8072 bool n64 = this->target_->is_output_n64();
8073
8074 if (!this->target_->is_output_micromips())
8075 {
8076 // Write standard (non-microMIPS) stub.
8077 if (!big_stub)
8078 {
8079 if (sym->dynsym_index() & ~0x7fff)
8080 // Dynsym index is between 32K and 64K.
8081 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8082 else
8083 // Dynsym index is less than 32K.
8084 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8085 }
8086 else
8087 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8088
8089 unsigned int i = 0;
8090 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8091 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8092 pov += 8;
8093
8094 i += 2;
8095 if (big_stub)
8096 {
8097 // LUI instruction of the big stub. Paste high 16 bits of the
8098 // dynsym index.
8099 elfcpp::Swap<32, big_endian>::writeval(pov,
8100 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8101 pov += 4;
8102 i += 1;
8103 }
8104 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8105 // Last stub instruction. Paste low 16 bits of the dynsym index.
8106 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8107 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8108 pov += 8;
8109 }
8110 else if (this->target_->use_32bit_micromips_instructions())
8111 {
8112 // Write microMIPS stub in insn32 mode.
8113 if (!big_stub)
8114 {
8115 if (sym->dynsym_index() & ~0x7fff)
8116 // Dynsym index is between 32K and 64K.
8117 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8118 : lazy_stub_micromips32_normal_2;
8119 else
8120 // Dynsym index is less than 32K.
8121 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8122 : lazy_stub_micromips32_normal_1;
8123 }
8124 else
8125 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8126 : lazy_stub_micromips32_big;
8127
8128 unsigned int i = 0;
8129 // First stub instruction. We emit 32-bit microMIPS instructions by
8130 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8131 // the instruction where the opcode is must always come first, for
8132 // both little and big endian.
8133 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8134 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8135 // Second stub instruction.
8136 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8137 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8138 pov += 8;
8139 i += 4;
8140 if (big_stub)
8141 {
8142 // LUI instruction of the big stub. Paste high 16 bits of the
8143 // dynsym index.
8144 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8145 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8146 (sym->dynsym_index() >> 16) & 0x7fff);
8147 pov += 4;
8148 i += 2;
8149 }
8150 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8151 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8152 // Last stub instruction. Paste low 16 bits of the dynsym index.
8153 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8154 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8155 sym->dynsym_index() & 0xffff);
8156 pov += 8;
8157 }
8158 else
8159 {
8160 // Write microMIPS stub.
8161 if (!big_stub)
8162 {
8163 if (sym->dynsym_index() & ~0x7fff)
8164 // Dynsym index is between 32K and 64K.
8165 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8166 : lazy_stub_micromips_normal_2;
8167 else
8168 // Dynsym index is less than 32K.
8169 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8170 : lazy_stub_micromips_normal_1;
8171 }
8172 else
8173 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8174 : lazy_stub_micromips_big;
8175
8176 unsigned int i = 0;
8177 // First stub instruction. We emit 32-bit microMIPS instructions by
8178 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8179 // the instruction where the opcode is must always come first, for
8180 // both little and big endian.
8181 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8182 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8183 // Second stub instruction.
8184 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8185 pov += 6;
8186 i += 3;
8187 if (big_stub)
8188 {
8189 // LUI instruction of the big stub. Paste high 16 bits of the
8190 // dynsym index.
8191 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8192 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8193 (sym->dynsym_index() >> 16) & 0x7fff);
8194 pov += 4;
8195 i += 2;
8196 }
8197 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8198 // Last stub instruction. Paste low 16 bits of the dynsym index.
8199 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8200 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8201 sym->dynsym_index() & 0xffff);
8202 pov += 6;
8203 }
8204 }
8205
8206 // We always allocate 20 bytes for every stub, because final dynsym count is
8207 // not known in method do_finalize_sections. There are 4 unused bytes per
8208 // stub if final dynsym count is less than 0x10000.
8209 unsigned int used = pov - oview;
8210 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8211 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8212
8213 // Fill the unused space with zeroes.
8214 // TODO(sasa): Can we strip unused bytes during the relaxation?
8215 if (unused > 0)
8216 memset(pov, 0, unused);
8217
8218 of->write_output_view(offset, oview_size, oview);
8219 }
8220
8221 // Mips_output_section_reginfo methods.
8222
8223 template<int size, bool big_endian>
8224 void
8225 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8226 {
8227 off_t offset = this->offset();
8228 off_t data_size = this->data_size();
8229
8230 unsigned char* view = of->get_output_view(offset, data_size);
8231 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8232 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8233 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8234 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8235 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8236 // Write the gp value.
8237 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8238 this->target_->gp_value());
8239
8240 of->write_output_view(offset, data_size, view);
8241 }
8242
8243 // Mips_output_section_options methods.
8244
8245 template<int size, bool big_endian>
8246 void
8247 Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
8248 {
8249 off_t offset = this->offset();
8250 const section_size_type oview_size =
8251 convert_to_section_size_type(this->data_size());
8252 unsigned char* view = of->get_output_view(offset, oview_size);
8253 const unsigned char* end = view + oview_size;
8254
8255 while (view + 8 <= end)
8256 {
8257 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
8258 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
8259 if (sz < 8)
8260 {
8261 gold_error(_("Warning: bad `%s' option size %u smaller "
8262 "than its header in output section"),
8263 this->name(), sz);
8264 break;
8265 }
8266
8267 // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8268 if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
8269 elfcpp::Swap<size, big_endian>::writeval(view + 32,
8270 this->target_->gp_value());
8271 else if (kind == elfcpp::ODK_REGINFO)
8272 elfcpp::Swap<size, big_endian>::writeval(view + 28,
8273 this->target_->gp_value());
8274
8275 view += sz;
8276 }
8277
8278 of->write_output_view(offset, oview_size, view);
8279 }
8280
8281 // Mips_output_section_abiflags methods.
8282
8283 template<int size, bool big_endian>
8284 void
8285 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8286 {
8287 off_t offset = this->offset();
8288 off_t data_size = this->data_size();
8289
8290 unsigned char* view = of->get_output_view(offset, data_size);
8291 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8292 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8293 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8294 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8295 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8296 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8297 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8298 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8299 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8300 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8301 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8302
8303 of->write_output_view(offset, data_size, view);
8304 }
8305
8306 // Mips_copy_relocs methods.
8307
8308 // Emit any saved relocs.
8309
8310 template<int sh_type, int size, bool big_endian>
8311 void
8312 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8313 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8314 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8315 {
8316 for (typename Copy_relocs<sh_type, size, big_endian>::
8317 Copy_reloc_entries::iterator p = this->entries_.begin();
8318 p != this->entries_.end();
8319 ++p)
8320 emit_entry(*p, reloc_section, symtab, layout, target);
8321
8322 // We no longer need the saved information.
8323 this->entries_.clear();
8324 }
8325
8326 // Emit the reloc if appropriate.
8327
8328 template<int sh_type, int size, bool big_endian>
8329 void
8330 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8331 Copy_reloc_entry& entry,
8332 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8333 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8334 {
8335 // If the symbol is no longer defined in a dynamic object, then we
8336 // emitted a COPY relocation, and we do not want to emit this
8337 // dynamic relocation.
8338 if (!entry.sym_->is_from_dynobj())
8339 return;
8340
8341 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8342 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8343 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8344
8345 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8346 if (can_make_dynamic && !sym->has_static_relocs())
8347 {
8348 Mips_relobj<size, big_endian>* object =
8349 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8350 target->got_section(symtab, layout)->record_global_got_symbol(
8351 sym, object, entry.reloc_type_, true, false);
8352 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8353 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8354 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8355 else
8356 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8357 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8358 entry.shndx_, entry.address_);
8359 }
8360 else
8361 this->make_copy_reloc(symtab, layout,
8362 static_cast<Sized_symbol<size>*>(entry.sym_),
8363 entry.relobj_,
8364 reloc_section);
8365 }
8366
8367 // Target_mips methods.
8368
8369 // Return the value to use for a dynamic symbol which requires special
8370 // treatment. This is how we support equality comparisons of function
8371 // pointers across shared library boundaries, as described in the
8372 // processor specific ABI supplement.
8373
8374 template<int size, bool big_endian>
8375 uint64_t
8376 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8377 {
8378 uint64_t value = 0;
8379 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8380
8381 if (!mips_sym->has_lazy_stub())
8382 {
8383 if (mips_sym->has_plt_offset())
8384 {
8385 // We distinguish between PLT entries and lazy-binding stubs by
8386 // giving the former an st_other value of STO_MIPS_PLT. Set the
8387 // value to the stub address if there are any relocations in the
8388 // binary where pointer equality matters.
8389 if (mips_sym->pointer_equality_needed())
8390 {
8391 // Prefer a standard MIPS PLT entry.
8392 if (mips_sym->has_mips_plt_offset())
8393 value = this->plt_section()->mips_entry_address(mips_sym);
8394 else
8395 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8396 }
8397 else
8398 value = 0;
8399 }
8400 }
8401 else
8402 {
8403 // First, set stub offsets for symbols. This method expects that the
8404 // number of entries in dynamic symbol table is set.
8405 this->mips_stubs_section()->set_lazy_stub_offsets();
8406
8407 // The run-time linker uses the st_value field of the symbol
8408 // to reset the global offset table entry for this external
8409 // to its stub address when unlinking a shared object.
8410 value = this->mips_stubs_section()->stub_address(mips_sym);
8411 }
8412
8413 if (mips_sym->has_mips16_fn_stub())
8414 {
8415 // If we have a MIPS16 function with a stub, the dynamic symbol must
8416 // refer to the stub, since only the stub uses the standard calling
8417 // conventions.
8418 value = mips_sym->template
8419 get_mips16_fn_stub<big_endian>()->output_address();
8420 }
8421
8422 return value;
8423 }
8424
8425 // Get the dynamic reloc section, creating it if necessary. It's always
8426 // .rel.dyn, even for MIPS64.
8427
8428 template<int size, bool big_endian>
8429 typename Target_mips<size, big_endian>::Reloc_section*
8430 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8431 {
8432 if (this->rel_dyn_ == NULL)
8433 {
8434 gold_assert(layout != NULL);
8435 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8436 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8437 elfcpp::SHF_ALLOC, this->rel_dyn_,
8438 ORDER_DYNAMIC_RELOCS, false);
8439
8440 // First entry in .rel.dyn has to be null.
8441 // This is hack - we define dummy output data and set its address to 0,
8442 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8443 // This ensures that the entry is null.
8444 Output_data* od = new Output_data_zero_fill(0, 0);
8445 od->set_address(0);
8446 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8447 }
8448 return this->rel_dyn_;
8449 }
8450
8451 // Get the GOT section, creating it if necessary.
8452
8453 template<int size, bool big_endian>
8454 Mips_output_data_got<size, big_endian>*
8455 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8456 Layout* layout)
8457 {
8458 if (this->got_ == NULL)
8459 {
8460 gold_assert(symtab != NULL && layout != NULL);
8461
8462 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8463 layout);
8464 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8465 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8466 elfcpp::SHF_MIPS_GPREL),
8467 this->got_, ORDER_DATA, false);
8468
8469 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8470 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8471 Symbol_table::PREDEFINED,
8472 this->got_,
8473 0, 0, elfcpp::STT_OBJECT,
8474 elfcpp::STB_GLOBAL,
8475 elfcpp::STV_HIDDEN, 0,
8476 false, false);
8477 }
8478
8479 return this->got_;
8480 }
8481
8482 // Calculate value of _gp symbol.
8483
8484 template<int size, bool big_endian>
8485 void
8486 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8487 {
8488 gold_assert(this->gp_ == NULL);
8489
8490 Sized_symbol<size>* gp =
8491 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8492
8493 // Set _gp symbol if the linker script hasn't created it.
8494 if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8495 {
8496 // If there is no .got section, gp should be based on .sdata.
8497 Output_data* gp_section = (this->got_ != NULL
8498 ? this->got_->output_section()
8499 : layout->find_output_section(".sdata"));
8500
8501 if (gp_section != NULL)
8502 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8503 "_gp", NULL, Symbol_table::PREDEFINED,
8504 gp_section, MIPS_GP_OFFSET, 0,
8505 elfcpp::STT_NOTYPE,
8506 elfcpp::STB_LOCAL,
8507 elfcpp::STV_DEFAULT,
8508 0, false, false));
8509 }
8510
8511 this->gp_ = gp;
8512 }
8513
8514 // Set the dynamic symbol indexes. INDEX is the index of the first
8515 // global dynamic symbol. Pointers to the symbols are stored into the
8516 // vector SYMS. The names are added to DYNPOOL. This returns an
8517 // updated dynamic symbol index.
8518
8519 template<int size, bool big_endian>
8520 unsigned int
8521 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8522 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8523 std::vector<Symbol*>* syms, Stringpool* dynpool,
8524 Versions* versions, Symbol_table* symtab) const
8525 {
8526 std::vector<Symbol*> non_got_symbols;
8527 std::vector<Symbol*> got_symbols;
8528
8529 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8530 &got_symbols);
8531
8532 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8533 p != non_got_symbols.end();
8534 ++p)
8535 {
8536 Symbol* sym = *p;
8537
8538 // Note that SYM may already have a dynamic symbol index, since
8539 // some symbols appear more than once in the symbol table, with
8540 // and without a version.
8541
8542 if (!sym->has_dynsym_index())
8543 {
8544 sym->set_dynsym_index(index);
8545 ++index;
8546 syms->push_back(sym);
8547 dynpool->add(sym->name(), false, NULL);
8548
8549 // Record any version information.
8550 if (sym->version() != NULL)
8551 versions->record_version(symtab, dynpool, sym);
8552
8553 // If the symbol is defined in a dynamic object and is
8554 // referenced in a regular object, then mark the dynamic
8555 // object as needed. This is used to implement --as-needed.
8556 if (sym->is_from_dynobj() && sym->in_reg())
8557 sym->object()->set_is_needed();
8558 }
8559 }
8560
8561 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8562 p != got_symbols.end();
8563 ++p)
8564 {
8565 Symbol* sym = *p;
8566 if (!sym->has_dynsym_index())
8567 {
8568 // Record any version information.
8569 if (sym->version() != NULL)
8570 versions->record_version(symtab, dynpool, sym);
8571 }
8572 }
8573
8574 index = versions->finalize(symtab, index, syms);
8575
8576 int got_sym_count = 0;
8577 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8578 p != got_symbols.end();
8579 ++p)
8580 {
8581 Symbol* sym = *p;
8582
8583 if (!sym->has_dynsym_index())
8584 {
8585 ++got_sym_count;
8586 sym->set_dynsym_index(index);
8587 ++index;
8588 syms->push_back(sym);
8589 dynpool->add(sym->name(), false, NULL);
8590
8591 // If the symbol is defined in a dynamic object and is
8592 // referenced in a regular object, then mark the dynamic
8593 // object as needed. This is used to implement --as-needed.
8594 if (sym->is_from_dynobj() && sym->in_reg())
8595 sym->object()->set_is_needed();
8596 }
8597 }
8598
8599 // Set index of the first symbol that has .got entry.
8600 this->got_->set_first_global_got_dynsym_index(
8601 got_sym_count > 0 ? index - got_sym_count : -1U);
8602
8603 if (this->mips_stubs_ != NULL)
8604 this->mips_stubs_->set_dynsym_count(index);
8605
8606 return index;
8607 }
8608
8609 // Create a PLT entry for a global symbol referenced by r_type relocation.
8610
8611 template<int size, bool big_endian>
8612 void
8613 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8614 Layout* layout,
8615 Mips_symbol<size>* gsym,
8616 unsigned int r_type)
8617 {
8618 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8619 return;
8620
8621 if (this->plt_ == NULL)
8622 {
8623 // Create the GOT section first.
8624 this->got_section(symtab, layout);
8625
8626 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8627 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8628 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8629 this->got_plt_, ORDER_DATA, false);
8630
8631 // The first two entries are reserved.
8632 this->got_plt_->set_current_data_size(2 * size/8);
8633
8634 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8635 this->got_plt_,
8636 this);
8637 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8638 (elfcpp::SHF_ALLOC
8639 | elfcpp::SHF_EXECINSTR),
8640 this->plt_, ORDER_PLT, false);
8641
8642 // Make the sh_info field of .rel.plt point to .plt.
8643 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8644 rel_plt_os->set_info_section(this->plt_->output_section());
8645 }
8646
8647 this->plt_->add_entry(gsym, r_type);
8648 }
8649
8650
8651 // Get the .MIPS.stubs section, creating it if necessary.
8652
8653 template<int size, bool big_endian>
8654 Mips_output_data_mips_stubs<size, big_endian>*
8655 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8656 {
8657 if (this->mips_stubs_ == NULL)
8658 {
8659 this->mips_stubs_ =
8660 new Mips_output_data_mips_stubs<size, big_endian>(this);
8661 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8662 (elfcpp::SHF_ALLOC
8663 | elfcpp::SHF_EXECINSTR),
8664 this->mips_stubs_, ORDER_PLT, false);
8665 }
8666 return this->mips_stubs_;
8667 }
8668
8669 // Get the LA25 stub section, creating it if necessary.
8670
8671 template<int size, bool big_endian>
8672 Mips_output_data_la25_stub<size, big_endian>*
8673 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8674 {
8675 if (this->la25_stub_ == NULL)
8676 {
8677 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8678 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8679 (elfcpp::SHF_ALLOC
8680 | elfcpp::SHF_EXECINSTR),
8681 this->la25_stub_, ORDER_TEXT, false);
8682 }
8683 return this->la25_stub_;
8684 }
8685
8686 // Process the relocations to determine unreferenced sections for
8687 // garbage collection.
8688
8689 template<int size, bool big_endian>
8690 void
8691 Target_mips<size, big_endian>::gc_process_relocs(
8692 Symbol_table* symtab,
8693 Layout* layout,
8694 Sized_relobj_file<size, big_endian>* object,
8695 unsigned int data_shndx,
8696 unsigned int sh_type,
8697 const unsigned char* prelocs,
8698 size_t reloc_count,
8699 Output_section* output_section,
8700 bool needs_special_offset_handling,
8701 size_t local_symbol_count,
8702 const unsigned char* plocal_symbols)
8703 {
8704 typedef Target_mips<size, big_endian> Mips;
8705
8706 if (sh_type == elfcpp::SHT_REL)
8707 {
8708 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8709 Classify_reloc;
8710
8711 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8712 symtab,
8713 layout,
8714 this,
8715 object,
8716 data_shndx,
8717 prelocs,
8718 reloc_count,
8719 output_section,
8720 needs_special_offset_handling,
8721 local_symbol_count,
8722 plocal_symbols);
8723 }
8724 else if (sh_type == elfcpp::SHT_RELA)
8725 {
8726 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8727 Classify_reloc;
8728
8729 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8730 symtab,
8731 layout,
8732 this,
8733 object,
8734 data_shndx,
8735 prelocs,
8736 reloc_count,
8737 output_section,
8738 needs_special_offset_handling,
8739 local_symbol_count,
8740 plocal_symbols);
8741 }
8742 else
8743 gold_unreachable();
8744 }
8745
8746 // Scan relocations for a section.
8747
8748 template<int size, bool big_endian>
8749 void
8750 Target_mips<size, big_endian>::scan_relocs(
8751 Symbol_table* symtab,
8752 Layout* layout,
8753 Sized_relobj_file<size, big_endian>* object,
8754 unsigned int data_shndx,
8755 unsigned int sh_type,
8756 const unsigned char* prelocs,
8757 size_t reloc_count,
8758 Output_section* output_section,
8759 bool needs_special_offset_handling,
8760 size_t local_symbol_count,
8761 const unsigned char* plocal_symbols)
8762 {
8763 typedef Target_mips<size, big_endian> Mips;
8764
8765 if (sh_type == elfcpp::SHT_REL)
8766 {
8767 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8768 Classify_reloc;
8769
8770 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8771 symtab,
8772 layout,
8773 this,
8774 object,
8775 data_shndx,
8776 prelocs,
8777 reloc_count,
8778 output_section,
8779 needs_special_offset_handling,
8780 local_symbol_count,
8781 plocal_symbols);
8782 }
8783 else if (sh_type == elfcpp::SHT_RELA)
8784 {
8785 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8786 Classify_reloc;
8787
8788 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8789 symtab,
8790 layout,
8791 this,
8792 object,
8793 data_shndx,
8794 prelocs,
8795 reloc_count,
8796 output_section,
8797 needs_special_offset_handling,
8798 local_symbol_count,
8799 plocal_symbols);
8800 }
8801 }
8802
8803 template<int size, bool big_endian>
8804 bool
8805 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8806 {
8807 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8808 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8809 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8810 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8811 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8812 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8813 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8814 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8815 }
8816
8817 // Return the MACH for a MIPS e_flags value.
8818 template<int size, bool big_endian>
8819 unsigned int
8820 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8821 {
8822 switch (flags & elfcpp::EF_MIPS_MACH)
8823 {
8824 case elfcpp::E_MIPS_MACH_3900:
8825 return mach_mips3900;
8826
8827 case elfcpp::E_MIPS_MACH_4010:
8828 return mach_mips4010;
8829
8830 case elfcpp::E_MIPS_MACH_4100:
8831 return mach_mips4100;
8832
8833 case elfcpp::E_MIPS_MACH_4111:
8834 return mach_mips4111;
8835
8836 case elfcpp::E_MIPS_MACH_4120:
8837 return mach_mips4120;
8838
8839 case elfcpp::E_MIPS_MACH_4650:
8840 return mach_mips4650;
8841
8842 case elfcpp::E_MIPS_MACH_5400:
8843 return mach_mips5400;
8844
8845 case elfcpp::E_MIPS_MACH_5500:
8846 return mach_mips5500;
8847
8848 case elfcpp::E_MIPS_MACH_5900:
8849 return mach_mips5900;
8850
8851 case elfcpp::E_MIPS_MACH_9000:
8852 return mach_mips9000;
8853
8854 case elfcpp::E_MIPS_MACH_SB1:
8855 return mach_mips_sb1;
8856
8857 case elfcpp::E_MIPS_MACH_LS2E:
8858 return mach_mips_loongson_2e;
8859
8860 case elfcpp::E_MIPS_MACH_LS2F:
8861 return mach_mips_loongson_2f;
8862
8863 case elfcpp::E_MIPS_MACH_GS464:
8864 return mach_mips_gs464;
8865
8866 case elfcpp::E_MIPS_MACH_GS464E:
8867 return mach_mips_gs464e;
8868
8869 case elfcpp::E_MIPS_MACH_OCTEON3:
8870 return mach_mips_octeon3;
8871
8872 case elfcpp::E_MIPS_MACH_OCTEON2:
8873 return mach_mips_octeon2;
8874
8875 case elfcpp::E_MIPS_MACH_OCTEON:
8876 return mach_mips_octeon;
8877
8878 case elfcpp::E_MIPS_MACH_XLR:
8879 return mach_mips_xlr;
8880
8881 default:
8882 switch (flags & elfcpp::EF_MIPS_ARCH)
8883 {
8884 default:
8885 case elfcpp::E_MIPS_ARCH_1:
8886 return mach_mips3000;
8887
8888 case elfcpp::E_MIPS_ARCH_2:
8889 return mach_mips6000;
8890
8891 case elfcpp::E_MIPS_ARCH_3:
8892 return mach_mips4000;
8893
8894 case elfcpp::E_MIPS_ARCH_4:
8895 return mach_mips8000;
8896
8897 case elfcpp::E_MIPS_ARCH_5:
8898 return mach_mips5;
8899
8900 case elfcpp::E_MIPS_ARCH_32:
8901 return mach_mipsisa32;
8902
8903 case elfcpp::E_MIPS_ARCH_64:
8904 return mach_mipsisa64;
8905
8906 case elfcpp::E_MIPS_ARCH_32R2:
8907 return mach_mipsisa32r2;
8908
8909 case elfcpp::E_MIPS_ARCH_32R6:
8910 return mach_mipsisa32r6;
8911
8912 case elfcpp::E_MIPS_ARCH_64R2:
8913 return mach_mipsisa64r2;
8914
8915 case elfcpp::E_MIPS_ARCH_64R6:
8916 return mach_mipsisa64r6;
8917 }
8918 }
8919
8920 return 0;
8921 }
8922
8923 // Return the MACH for each .MIPS.abiflags ISA Extension.
8924
8925 template<int size, bool big_endian>
8926 unsigned int
8927 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8928 {
8929 switch (isa_ext)
8930 {
8931 case elfcpp::AFL_EXT_3900:
8932 return mach_mips3900;
8933
8934 case elfcpp::AFL_EXT_4010:
8935 return mach_mips4010;
8936
8937 case elfcpp::AFL_EXT_4100:
8938 return mach_mips4100;
8939
8940 case elfcpp::AFL_EXT_4111:
8941 return mach_mips4111;
8942
8943 case elfcpp::AFL_EXT_4120:
8944 return mach_mips4120;
8945
8946 case elfcpp::AFL_EXT_4650:
8947 return mach_mips4650;
8948
8949 case elfcpp::AFL_EXT_5400:
8950 return mach_mips5400;
8951
8952 case elfcpp::AFL_EXT_5500:
8953 return mach_mips5500;
8954
8955 case elfcpp::AFL_EXT_5900:
8956 return mach_mips5900;
8957
8958 case elfcpp::AFL_EXT_10000:
8959 return mach_mips10000;
8960
8961 case elfcpp::AFL_EXT_LOONGSON_2E:
8962 return mach_mips_loongson_2e;
8963
8964 case elfcpp::AFL_EXT_LOONGSON_2F:
8965 return mach_mips_loongson_2f;
8966
8967 case elfcpp::AFL_EXT_SB1:
8968 return mach_mips_sb1;
8969
8970 case elfcpp::AFL_EXT_OCTEON:
8971 return mach_mips_octeon;
8972
8973 case elfcpp::AFL_EXT_OCTEONP:
8974 return mach_mips_octeonp;
8975
8976 case elfcpp::AFL_EXT_OCTEON2:
8977 return mach_mips_octeon2;
8978
8979 case elfcpp::AFL_EXT_XLR:
8980 return mach_mips_xlr;
8981
8982 default:
8983 return mach_mips3000;
8984 }
8985 }
8986
8987 // Return the .MIPS.abiflags value representing each ISA Extension.
8988
8989 template<int size, bool big_endian>
8990 unsigned int
8991 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8992 {
8993 switch (mips_mach)
8994 {
8995 case mach_mips3900:
8996 return elfcpp::AFL_EXT_3900;
8997
8998 case mach_mips4010:
8999 return elfcpp::AFL_EXT_4010;
9000
9001 case mach_mips4100:
9002 return elfcpp::AFL_EXT_4100;
9003
9004 case mach_mips4111:
9005 return elfcpp::AFL_EXT_4111;
9006
9007 case mach_mips4120:
9008 return elfcpp::AFL_EXT_4120;
9009
9010 case mach_mips4650:
9011 return elfcpp::AFL_EXT_4650;
9012
9013 case mach_mips5400:
9014 return elfcpp::AFL_EXT_5400;
9015
9016 case mach_mips5500:
9017 return elfcpp::AFL_EXT_5500;
9018
9019 case mach_mips5900:
9020 return elfcpp::AFL_EXT_5900;
9021
9022 case mach_mips10000:
9023 return elfcpp::AFL_EXT_10000;
9024
9025 case mach_mips_loongson_2e:
9026 return elfcpp::AFL_EXT_LOONGSON_2E;
9027
9028 case mach_mips_loongson_2f:
9029 return elfcpp::AFL_EXT_LOONGSON_2F;
9030
9031 case mach_mips_sb1:
9032 return elfcpp::AFL_EXT_SB1;
9033
9034 case mach_mips_octeon:
9035 return elfcpp::AFL_EXT_OCTEON;
9036
9037 case mach_mips_octeonp:
9038 return elfcpp::AFL_EXT_OCTEONP;
9039
9040 case mach_mips_octeon3:
9041 return elfcpp::AFL_EXT_OCTEON3;
9042
9043 case mach_mips_octeon2:
9044 return elfcpp::AFL_EXT_OCTEON2;
9045
9046 case mach_mips_xlr:
9047 return elfcpp::AFL_EXT_XLR;
9048
9049 default:
9050 return 0;
9051 }
9052 }
9053
9054 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9055
9056 template<int size, bool big_endian>
9057 void
9058 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
9059 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
9060 {
9061 int new_isa = 0;
9062 switch (e_flags & elfcpp::EF_MIPS_ARCH)
9063 {
9064 case elfcpp::E_MIPS_ARCH_1:
9065 new_isa = this->level_rev(1, 0);
9066 break;
9067 case elfcpp::E_MIPS_ARCH_2:
9068 new_isa = this->level_rev(2, 0);
9069 break;
9070 case elfcpp::E_MIPS_ARCH_3:
9071 new_isa = this->level_rev(3, 0);
9072 break;
9073 case elfcpp::E_MIPS_ARCH_4:
9074 new_isa = this->level_rev(4, 0);
9075 break;
9076 case elfcpp::E_MIPS_ARCH_5:
9077 new_isa = this->level_rev(5, 0);
9078 break;
9079 case elfcpp::E_MIPS_ARCH_32:
9080 new_isa = this->level_rev(32, 1);
9081 break;
9082 case elfcpp::E_MIPS_ARCH_32R2:
9083 new_isa = this->level_rev(32, 2);
9084 break;
9085 case elfcpp::E_MIPS_ARCH_32R6:
9086 new_isa = this->level_rev(32, 6);
9087 break;
9088 case elfcpp::E_MIPS_ARCH_64:
9089 new_isa = this->level_rev(64, 1);
9090 break;
9091 case elfcpp::E_MIPS_ARCH_64R2:
9092 new_isa = this->level_rev(64, 2);
9093 break;
9094 case elfcpp::E_MIPS_ARCH_64R6:
9095 new_isa = this->level_rev(64, 6);
9096 break;
9097 default:
9098 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9099 this->elf_mips_mach_name(e_flags));
9100 }
9101
9102 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9103 {
9104 // Decode a single value into level and revision.
9105 abiflags->isa_level = new_isa >> 3;
9106 abiflags->isa_rev = new_isa & 0x7;
9107 }
9108
9109 // Update the isa_ext if needed.
9110 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9111 this->elf_mips_mach(e_flags)))
9112 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9113 }
9114
9115 // Infer the content of the ABI flags based on the elf header.
9116
9117 template<int size, bool big_endian>
9118 void
9119 Target_mips<size, big_endian>::infer_abiflags(
9120 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9121 {
9122 const Attributes_section_data* pasd = relobj->attributes_section_data();
9123 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9124 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9125
9126 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9127 if (pasd != NULL)
9128 {
9129 // Read fp_abi from the .gnu.attribute section.
9130 const Object_attribute* attr =
9131 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9132 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9133 }
9134
9135 abiflags->fp_abi = attr_fp_abi;
9136 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9137 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9138 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9139 : elfcpp::AFL_REG_64;
9140
9141 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9142 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9143 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9144 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9145 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9146 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9147 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9148 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9149 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9150
9151 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9152 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9153 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9154 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9155 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9156 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9157
9158 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9159 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9160 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9161 && abiflags->isa_level >= 32
9162 && abiflags->ases != elfcpp::AFL_ASE_LOONGSON_EXT)
9163 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9164 }
9165
9166 // Create abiflags from elf header or from .MIPS.abiflags section.
9167
9168 template<int size, bool big_endian>
9169 void
9170 Target_mips<size, big_endian>::create_abiflags(
9171 Mips_relobj<size, big_endian>* relobj,
9172 Mips_abiflags<big_endian>* abiflags)
9173 {
9174 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9175 Mips_abiflags<big_endian> header_abiflags;
9176
9177 this->infer_abiflags(relobj, &header_abiflags);
9178
9179 if (sec_abiflags == NULL)
9180 {
9181 // If there is no input .MIPS.abiflags section, use abiflags created
9182 // from elf header.
9183 *abiflags = header_abiflags;
9184 return;
9185 }
9186
9187 this->has_abiflags_section_ = true;
9188
9189 // It is not possible to infer the correct ISA revision for R3 or R5
9190 // so drop down to R2 for the checks.
9191 unsigned char isa_rev = sec_abiflags->isa_rev;
9192 if (isa_rev == 3 || isa_rev == 5)
9193 isa_rev = 2;
9194
9195 // Check compatibility between abiflags created from elf header
9196 // and abiflags from .MIPS.abiflags section in this object file.
9197 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9198 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9199 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9200 relobj->name().c_str());
9201 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9202 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9203 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9204 ".MIPS.abiflags"), relobj->name().c_str());
9205 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9206 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9207 relobj->name().c_str());
9208 // The isa_ext is allowed to be an extension of what can be inferred
9209 // from e_flags.
9210 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9211 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9212 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9213 ".MIPS.abiflags"), relobj->name().c_str());
9214 if (sec_abiflags->flags2 != 0)
9215 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9216 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9217 sec_abiflags->flags2);
9218 // Use abiflags from .MIPS.abiflags section.
9219 *abiflags = *sec_abiflags;
9220 }
9221
9222 // Return the meaning of fp_abi, or "unknown" if not known.
9223
9224 template<int size, bool big_endian>
9225 const char*
9226 Target_mips<size, big_endian>::fp_abi_string(int fp)
9227 {
9228 switch (fp)
9229 {
9230 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9231 return "-mdouble-float";
9232 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9233 return "-msingle-float";
9234 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9235 return "-msoft-float";
9236 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9237 return _("-mips32r2 -mfp64 (12 callee-saved)");
9238 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9239 return "-mfpxx";
9240 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9241 return "-mgp32 -mfp64";
9242 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9243 return "-mgp32 -mfp64 -mno-odd-spreg";
9244 default:
9245 return "unknown";
9246 }
9247 }
9248
9249 // Select fp_abi.
9250
9251 template<int size, bool big_endian>
9252 int
9253 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9254 int out_fp)
9255 {
9256 if (in_fp == out_fp)
9257 return out_fp;
9258
9259 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9260 return in_fp;
9261 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9262 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9263 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9264 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9265 return in_fp;
9266 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9267 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9268 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9269 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9270 return out_fp; // Keep the current setting.
9271 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9272 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9273 return in_fp;
9274 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9275 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9276 return out_fp; // Keep the current setting.
9277 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9278 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9279 fp_abi_string(in_fp), fp_abi_string(out_fp));
9280 return out_fp;
9281 }
9282
9283 // Merge attributes from input object.
9284
9285 template<int size, bool big_endian>
9286 void
9287 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9288 const Attributes_section_data* pasd)
9289 {
9290 // Return if there is no attributes section data.
9291 if (pasd == NULL)
9292 return;
9293
9294 // If output has no object attributes, just copy.
9295 if (this->attributes_section_data_ == NULL)
9296 {
9297 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9298 return;
9299 }
9300
9301 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9302 Object_attribute::OBJ_ATTR_GNU);
9303
9304 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9305 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9306
9307 // Merge Tag_compatibility attributes and any common GNU ones.
9308 this->attributes_section_data_->merge(name.c_str(), pasd);
9309 }
9310
9311 // Merge abiflags from input object.
9312
9313 template<int size, bool big_endian>
9314 void
9315 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9316 Mips_abiflags<big_endian>* in_abiflags)
9317 {
9318 // If output has no abiflags, just copy.
9319 if (this->abiflags_ == NULL)
9320 {
9321 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9322 return;
9323 }
9324
9325 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9326 this->abiflags_->fp_abi);
9327
9328 // Merge abiflags.
9329 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9330 in_abiflags->isa_level);
9331 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9332 in_abiflags->isa_rev);
9333 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9334 in_abiflags->gpr_size);
9335 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9336 in_abiflags->cpr1_size);
9337 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9338 in_abiflags->cpr2_size);
9339 this->abiflags_->ases |= in_abiflags->ases;
9340 this->abiflags_->flags1 |= in_abiflags->flags1;
9341 }
9342
9343 // Check whether machine EXTENSION is an extension of machine BASE.
9344 template<int size, bool big_endian>
9345 bool
9346 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9347 unsigned int extension)
9348 {
9349 if (extension == base)
9350 return true;
9351
9352 if ((base == mach_mipsisa32)
9353 && this->mips_mach_extends(mach_mipsisa64, extension))
9354 return true;
9355
9356 if ((base == mach_mipsisa32r2)
9357 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9358 return true;
9359
9360 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9361 if (extension == this->mips_mach_extensions_[i].first)
9362 {
9363 extension = this->mips_mach_extensions_[i].second;
9364 if (extension == base)
9365 return true;
9366 }
9367
9368 return false;
9369 }
9370
9371 // Merge file header flags from input object.
9372
9373 template<int size, bool big_endian>
9374 void
9375 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9376 elfcpp::Elf_Word in_flags)
9377 {
9378 // If flags are not set yet, just copy them.
9379 if (!this->are_processor_specific_flags_set())
9380 {
9381 this->set_processor_specific_flags(in_flags);
9382 this->mach_ = this->elf_mips_mach(in_flags);
9383 return;
9384 }
9385
9386 elfcpp::Elf_Word new_flags = in_flags;
9387 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9388 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9389 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9390
9391 // Check flag compatibility.
9392 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9393 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9394
9395 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9396 // doesn't seem to matter.
9397 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9398 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9399
9400 // MIPSpro generates ucode info in n64 objects. Again, we should
9401 // just be able to ignore this.
9402 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9403 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9404
9405 if (new_flags == old_flags)
9406 {
9407 this->set_processor_specific_flags(merged_flags);
9408 return;
9409 }
9410
9411 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9412 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9413 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9414 name.c_str());
9415
9416 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9417 merged_flags |= elfcpp::EF_MIPS_CPIC;
9418 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9419 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9420
9421 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9422 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9423
9424 // Compare the ISAs.
9425 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9426 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9427 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9428 {
9429 // Output ISA isn't the same as, or an extension of, input ISA.
9430 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9431 {
9432 // Copy the architecture info from input object to output. Also copy
9433 // the 32-bit flag (if set) so that we continue to recognise
9434 // output as a 32-bit binary.
9435 this->mach_ = this->elf_mips_mach(in_flags);
9436 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9437 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9438 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9439
9440 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9441 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9442
9443 // Copy across the ABI flags if output doesn't use them
9444 // and if that was what caused us to treat input object as 32-bit.
9445 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9446 && this->mips_32bit_flags(new_flags)
9447 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9448 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9449 }
9450 else
9451 // The ISAs aren't compatible.
9452 gold_error(_("%s: linking %s module with previous %s modules"),
9453 name.c_str(), this->elf_mips_mach_name(in_flags),
9454 this->elf_mips_mach_name(merged_flags));
9455 }
9456
9457 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9458 | elfcpp::EF_MIPS_32BITMODE));
9459 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9460 | elfcpp::EF_MIPS_32BITMODE));
9461
9462 // Compare ABIs.
9463 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9464 {
9465 // Only error if both are set (to different values).
9466 if ((new_flags & elfcpp::EF_MIPS_ABI)
9467 && (old_flags & elfcpp::EF_MIPS_ABI))
9468 gold_error(_("%s: ABI mismatch: linking %s module with "
9469 "previous %s modules"), name.c_str(),
9470 this->elf_mips_abi_name(in_flags),
9471 this->elf_mips_abi_name(merged_flags));
9472
9473 new_flags &= ~elfcpp::EF_MIPS_ABI;
9474 old_flags &= ~elfcpp::EF_MIPS_ABI;
9475 }
9476
9477 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9478 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9479 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9480 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9481 {
9482 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9483 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9484 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9485 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9486 int micro_mis = old_m16 && new_micro;
9487 int m16_mis = old_micro && new_m16;
9488
9489 if (m16_mis || micro_mis)
9490 gold_error(_("%s: ASE mismatch: linking %s module with "
9491 "previous %s modules"), name.c_str(),
9492 m16_mis ? "MIPS16" : "microMIPS",
9493 m16_mis ? "microMIPS" : "MIPS16");
9494
9495 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9496
9497 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9498 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9499 }
9500
9501 // Compare NaN encodings.
9502 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9503 {
9504 gold_error(_("%s: linking %s module with previous %s modules"),
9505 name.c_str(),
9506 (new_flags & elfcpp::EF_MIPS_NAN2008
9507 ? "-mnan=2008" : "-mnan=legacy"),
9508 (old_flags & elfcpp::EF_MIPS_NAN2008
9509 ? "-mnan=2008" : "-mnan=legacy"));
9510
9511 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9512 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9513 }
9514
9515 // Compare FP64 state.
9516 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9517 {
9518 gold_error(_("%s: linking %s module with previous %s modules"),
9519 name.c_str(),
9520 (new_flags & elfcpp::EF_MIPS_FP64
9521 ? "-mfp64" : "-mfp32"),
9522 (old_flags & elfcpp::EF_MIPS_FP64
9523 ? "-mfp64" : "-mfp32"));
9524
9525 new_flags &= ~elfcpp::EF_MIPS_FP64;
9526 old_flags &= ~elfcpp::EF_MIPS_FP64;
9527 }
9528
9529 // Warn about any other mismatches.
9530 if (new_flags != old_flags)
9531 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9532 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9533
9534 this->set_processor_specific_flags(merged_flags);
9535 }
9536
9537 // Adjust ELF file header.
9538
9539 template<int size, bool big_endian>
9540 void
9541 Target_mips<size, big_endian>::do_adjust_elf_header(
9542 unsigned char* view,
9543 int len)
9544 {
9545 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9546
9547 elfcpp::Ehdr<size, big_endian> ehdr(view);
9548 unsigned char e_ident[elfcpp::EI_NIDENT];
9549 elfcpp::Elf_Word flags = this->processor_specific_flags();
9550 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9551
9552 unsigned char ei_abiversion = 0;
9553 elfcpp::Elf_Half type = ehdr.get_e_type();
9554 if (type == elfcpp::ET_EXEC
9555 && parameters->options().copyreloc()
9556 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9557 == elfcpp::EF_MIPS_CPIC)
9558 ei_abiversion = 1;
9559
9560 if (this->abiflags_ != NULL
9561 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9562 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9563 ei_abiversion = 3;
9564
9565 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9566 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9567 oehdr.put_e_ident(e_ident);
9568
9569 if (this->entry_symbol_is_compressed_)
9570 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9571 }
9572
9573 // do_make_elf_object to override the same function in the base class.
9574 // We need to use a target-specific sub-class of
9575 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9576 // Hence we need to have our own ELF object creation.
9577
9578 template<int size, bool big_endian>
9579 Object*
9580 Target_mips<size, big_endian>::do_make_elf_object(
9581 const std::string& name,
9582 Input_file* input_file,
9583 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9584 {
9585 int et = ehdr.get_e_type();
9586 // ET_EXEC files are valid input for --just-symbols/-R,
9587 // and we treat them as relocatable objects.
9588 if (et == elfcpp::ET_REL
9589 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9590 {
9591 Mips_relobj<size, big_endian>* obj =
9592 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9593 obj->setup();
9594 return obj;
9595 }
9596 else if (et == elfcpp::ET_DYN)
9597 {
9598 // TODO(sasa): Should we create Mips_dynobj?
9599 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9600 }
9601 else
9602 {
9603 gold_error(_("%s: unsupported ELF file type %d"),
9604 name.c_str(), et);
9605 return NULL;
9606 }
9607 }
9608
9609 // Finalize the sections.
9610
9611 template <int size, bool big_endian>
9612 void
9613 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9614 const Input_objects* input_objects,
9615 Symbol_table* symtab)
9616 {
9617 const bool relocatable = parameters->options().relocatable();
9618
9619 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9620 // DT_FINI have correct values.
9621 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9622 symtab->lookup(parameters->options().init()));
9623 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9624 init->set_value(init->value() | 1);
9625 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9626 symtab->lookup(parameters->options().fini()));
9627 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9628 fini->set_value(fini->value() | 1);
9629
9630 // Check whether the entry symbol is mips16 or micromips. This is needed to
9631 // adjust entry address in ELF header.
9632 Mips_symbol<size>* entry =
9633 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9634 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9635 || entry->is_micromips()));
9636
9637 if (!parameters->doing_static_link()
9638 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9639 || strcmp(parameters->options().hash_style(), "both") == 0))
9640 {
9641 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9642 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9643 // MIPS ABI requires a mapping between the GOT and the symbol table.
9644 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9645 }
9646
9647 // Check whether the final section that was scanned has HI16 or GOT16
9648 // relocations without the corresponding LO16 part.
9649 if (this->got16_addends_.size() > 0)
9650 gold_error("Can't find matching LO16 reloc");
9651
9652 Valtype gprmask = 0;
9653 Valtype cprmask1 = 0;
9654 Valtype cprmask2 = 0;
9655 Valtype cprmask3 = 0;
9656 Valtype cprmask4 = 0;
9657 bool has_reginfo_section = false;
9658
9659 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9660 p != input_objects->relobj_end();
9661 ++p)
9662 {
9663 Mips_relobj<size, big_endian>* relobj =
9664 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9665
9666 // Check for any mips16 stub sections that we can discard.
9667 if (!relocatable)
9668 relobj->discard_mips16_stub_sections(symtab);
9669
9670 if (!relobj->merge_processor_specific_data())
9671 continue;
9672
9673 // Merge .reginfo contents of input objects.
9674 if (relobj->has_reginfo_section())
9675 {
9676 has_reginfo_section = true;
9677 gprmask |= relobj->gprmask();
9678 cprmask1 |= relobj->cprmask1();
9679 cprmask2 |= relobj->cprmask2();
9680 cprmask3 |= relobj->cprmask3();
9681 cprmask4 |= relobj->cprmask4();
9682 }
9683
9684 // Merge processor specific flags.
9685 Mips_abiflags<big_endian> in_abiflags;
9686
9687 this->create_abiflags(relobj, &in_abiflags);
9688 this->merge_obj_e_flags(relobj->name(),
9689 relobj->processor_specific_flags());
9690 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9691 this->merge_obj_attributes(relobj->name(),
9692 relobj->attributes_section_data());
9693 }
9694
9695 // Create a .gnu.attributes section if we have merged any attributes
9696 // from inputs.
9697 if (this->attributes_section_data_ != NULL)
9698 {
9699 Output_attributes_section_data* attributes_section =
9700 new Output_attributes_section_data(*this->attributes_section_data_);
9701 layout->add_output_section_data(".gnu.attributes",
9702 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9703 attributes_section, ORDER_INVALID, false);
9704 }
9705
9706 // Create .MIPS.abiflags output section if there is an input section.
9707 if (this->has_abiflags_section_)
9708 {
9709 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9710 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9711
9712 Output_section* os =
9713 layout->add_output_section_data(".MIPS.abiflags",
9714 elfcpp::SHT_MIPS_ABIFLAGS,
9715 elfcpp::SHF_ALLOC,
9716 abiflags_section, ORDER_INVALID, false);
9717
9718 if (!relocatable && os != NULL)
9719 {
9720 Output_segment* abiflags_segment =
9721 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9722 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9723 }
9724 }
9725
9726 if (has_reginfo_section && !parameters->options().gc_sections())
9727 {
9728 // Create .reginfo output section.
9729 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9730 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9731 cprmask1, cprmask2,
9732 cprmask3, cprmask4);
9733
9734 Output_section* os =
9735 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9736 elfcpp::SHF_ALLOC, reginfo_section,
9737 ORDER_INVALID, false);
9738
9739 if (!relocatable && os != NULL)
9740 {
9741 Output_segment* reginfo_segment =
9742 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9743 elfcpp::PF_R);
9744 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9745 }
9746 }
9747
9748 if (this->plt_ != NULL)
9749 {
9750 // Set final PLT offsets for symbols.
9751 this->plt_section()->set_plt_offsets();
9752
9753 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9754 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9755 // there are no standard PLT entries present.
9756 unsigned char nonvis = 0;
9757 if (this->is_output_micromips()
9758 && !this->plt_section()->has_standard_entries())
9759 nonvis = elfcpp::STO_MICROMIPS >> 2;
9760 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9761 Symbol_table::PREDEFINED,
9762 this->plt_,
9763 0, 0, elfcpp::STT_FUNC,
9764 elfcpp::STB_LOCAL,
9765 elfcpp::STV_DEFAULT, nonvis,
9766 false, false);
9767 }
9768
9769 if (this->mips_stubs_ != NULL)
9770 {
9771 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9772 unsigned char nonvis = 0;
9773 if (this->is_output_micromips())
9774 nonvis = elfcpp::STO_MICROMIPS >> 2;
9775 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9776 Symbol_table::PREDEFINED,
9777 this->mips_stubs_,
9778 0, 0, elfcpp::STT_FUNC,
9779 elfcpp::STB_LOCAL,
9780 elfcpp::STV_DEFAULT, nonvis,
9781 false, false);
9782 }
9783
9784 if (!relocatable && !parameters->doing_static_link())
9785 // In case there is no .got section, create one.
9786 this->got_section(symtab, layout);
9787
9788 // Emit any relocs we saved in an attempt to avoid generating COPY
9789 // relocs.
9790 if (this->copy_relocs_.any_saved_relocs())
9791 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9792 this);
9793
9794 // Set _gp value.
9795 this->set_gp(layout, symtab);
9796
9797 // Emit dynamic relocs.
9798 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9799 p != this->dyn_relocs_.end();
9800 ++p)
9801 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9802
9803 if (this->has_got_section())
9804 this->got_section()->lay_out_got(layout, symtab, input_objects);
9805
9806 if (this->mips_stubs_ != NULL)
9807 this->mips_stubs_->set_needs_dynsym_value();
9808
9809 // Check for functions that might need $25 to be valid on entry.
9810 // TODO(sasa): Can we do this without iterating over all symbols?
9811 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9812 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9813 symtab));
9814
9815 // Add NULL segment.
9816 if (!relocatable)
9817 layout->make_output_segment(elfcpp::PT_NULL, 0);
9818
9819 // Fill in some more dynamic tags.
9820 // TODO(sasa): Add more dynamic tags.
9821 const Reloc_section* rel_plt = (this->plt_ == NULL
9822 ? NULL : this->plt_->rel_plt());
9823 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9824 this->rel_dyn_, true, false);
9825
9826 Output_data_dynamic* const odyn = layout->dynamic_data();
9827 if (odyn != NULL
9828 && !relocatable
9829 && !parameters->doing_static_link())
9830 {
9831 unsigned int d_val;
9832 // This element holds a 32-bit version id for the Runtime
9833 // Linker Interface. This will start at integer value 1.
9834 d_val = 0x01;
9835 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9836
9837 // Dynamic flags
9838 d_val = elfcpp::RHF_NOTPOT;
9839 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9840
9841 // Save layout for using when emitting custom dynamic tags.
9842 this->layout_ = layout;
9843
9844 // This member holds the base address of the segment.
9845 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9846
9847 // This member holds the number of entries in the .dynsym section.
9848 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9849
9850 // This member holds the index of the first dynamic symbol
9851 // table entry that corresponds to an entry in the global offset table.
9852 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9853
9854 // This member holds the number of local GOT entries.
9855 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9856 this->got_->get_local_gotno());
9857
9858 if (this->plt_ != NULL)
9859 // DT_MIPS_PLTGOT dynamic tag
9860 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9861
9862 if (!parameters->options().shared())
9863 {
9864 this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9865
9866 layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9867 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9868 this->rld_map_, ORDER_INVALID, false);
9869
9870 // __RLD_MAP will be filled in by the runtime loader to contain
9871 // a pointer to the _r_debug structure.
9872 Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9873 Symbol_table::PREDEFINED,
9874 this->rld_map_,
9875 0, 0, elfcpp::STT_OBJECT,
9876 elfcpp::STB_GLOBAL,
9877 elfcpp::STV_DEFAULT, 0,
9878 false, false);
9879
9880 if (!rld_map->is_forced_local())
9881 rld_map->set_needs_dynsym_entry();
9882
9883 if (!parameters->options().pie())
9884 // This member holds the absolute address of the debug pointer.
9885 odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9886 else
9887 // This member holds the offset to the debug pointer,
9888 // relative to the address of the tag.
9889 odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9890 }
9891 }
9892 }
9893
9894 // Get the custom dynamic tag value.
9895 template<int size, bool big_endian>
9896 unsigned int
9897 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9898 {
9899 switch (tag)
9900 {
9901 case elfcpp::DT_MIPS_BASE_ADDRESS:
9902 {
9903 // The base address of the segment.
9904 // At this point, the segment list has been sorted into final order,
9905 // so just return vaddr of the first readable PT_LOAD segment.
9906 Output_segment* seg =
9907 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9908 gold_assert(seg != NULL);
9909 return seg->vaddr();
9910 }
9911
9912 case elfcpp::DT_MIPS_SYMTABNO:
9913 // The number of entries in the .dynsym section.
9914 return this->get_dt_mips_symtabno();
9915
9916 case elfcpp::DT_MIPS_GOTSYM:
9917 {
9918 // The index of the first dynamic symbol table entry that corresponds
9919 // to an entry in the GOT.
9920 if (this->got_->first_global_got_dynsym_index() != -1U)
9921 return this->got_->first_global_got_dynsym_index();
9922 else
9923 // In case if we don't have global GOT symbols we default to setting
9924 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9925 return this->get_dt_mips_symtabno();
9926 }
9927
9928 case elfcpp::DT_MIPS_RLD_MAP_REL:
9929 {
9930 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9931 // relative to the address of the tag.
9932 Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9933 unsigned int entry_offset =
9934 odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9935 gold_assert(entry_offset != -1U);
9936 return this->rld_map_->address() - (odyn->address() + entry_offset);
9937 }
9938 default:
9939 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9940 }
9941
9942 return (unsigned int)-1;
9943 }
9944
9945 // Relocate section data.
9946
9947 template<int size, bool big_endian>
9948 void
9949 Target_mips<size, big_endian>::relocate_section(
9950 const Relocate_info<size, big_endian>* relinfo,
9951 unsigned int sh_type,
9952 const unsigned char* prelocs,
9953 size_t reloc_count,
9954 Output_section* output_section,
9955 bool needs_special_offset_handling,
9956 unsigned char* view,
9957 Mips_address address,
9958 section_size_type view_size,
9959 const Reloc_symbol_changes* reloc_symbol_changes)
9960 {
9961 typedef Target_mips<size, big_endian> Mips;
9962 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9963
9964 if (sh_type == elfcpp::SHT_REL)
9965 {
9966 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9967 Classify_reloc;
9968
9969 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9970 gold::Default_comdat_behavior, Classify_reloc>(
9971 relinfo,
9972 this,
9973 prelocs,
9974 reloc_count,
9975 output_section,
9976 needs_special_offset_handling,
9977 view,
9978 address,
9979 view_size,
9980 reloc_symbol_changes);
9981 }
9982 else if (sh_type == elfcpp::SHT_RELA)
9983 {
9984 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9985 Classify_reloc;
9986
9987 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9988 gold::Default_comdat_behavior, Classify_reloc>(
9989 relinfo,
9990 this,
9991 prelocs,
9992 reloc_count,
9993 output_section,
9994 needs_special_offset_handling,
9995 view,
9996 address,
9997 view_size,
9998 reloc_symbol_changes);
9999 }
10000 }
10001
10002 // Return the size of a relocation while scanning during a relocatable
10003 // link.
10004
10005 unsigned int
10006 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
10007 {
10008 switch (r_type)
10009 {
10010 case elfcpp::R_MIPS_NONE:
10011 case elfcpp::R_MIPS_TLS_DTPMOD64:
10012 case elfcpp::R_MIPS_TLS_DTPREL64:
10013 case elfcpp::R_MIPS_TLS_TPREL64:
10014 return 0;
10015
10016 case elfcpp::R_MIPS_32:
10017 case elfcpp::R_MIPS_TLS_DTPMOD32:
10018 case elfcpp::R_MIPS_TLS_DTPREL32:
10019 case elfcpp::R_MIPS_TLS_TPREL32:
10020 case elfcpp::R_MIPS_REL32:
10021 case elfcpp::R_MIPS_PC32:
10022 case elfcpp::R_MIPS_GPREL32:
10023 case elfcpp::R_MIPS_JALR:
10024 case elfcpp::R_MIPS_EH:
10025 return 4;
10026
10027 case elfcpp::R_MIPS_16:
10028 case elfcpp::R_MIPS_HI16:
10029 case elfcpp::R_MIPS_LO16:
10030 case elfcpp::R_MIPS_HIGHER:
10031 case elfcpp::R_MIPS_HIGHEST:
10032 case elfcpp::R_MIPS_GPREL16:
10033 case elfcpp::R_MIPS16_HI16:
10034 case elfcpp::R_MIPS16_LO16:
10035 case elfcpp::R_MIPS_PC16:
10036 case elfcpp::R_MIPS_PCHI16:
10037 case elfcpp::R_MIPS_PCLO16:
10038 case elfcpp::R_MIPS_GOT16:
10039 case elfcpp::R_MIPS16_GOT16:
10040 case elfcpp::R_MIPS_CALL16:
10041 case elfcpp::R_MIPS16_CALL16:
10042 case elfcpp::R_MIPS_GOT_HI16:
10043 case elfcpp::R_MIPS_CALL_HI16:
10044 case elfcpp::R_MIPS_GOT_LO16:
10045 case elfcpp::R_MIPS_CALL_LO16:
10046 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10047 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10048 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10049 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10050 case elfcpp::R_MIPS16_GPREL:
10051 case elfcpp::R_MIPS_GOT_DISP:
10052 case elfcpp::R_MIPS_LITERAL:
10053 case elfcpp::R_MIPS_GOT_PAGE:
10054 case elfcpp::R_MIPS_GOT_OFST:
10055 case elfcpp::R_MIPS_TLS_GD:
10056 case elfcpp::R_MIPS_TLS_LDM:
10057 case elfcpp::R_MIPS_TLS_GOTTPREL:
10058 return 2;
10059
10060 // These relocations are not byte sized
10061 case elfcpp::R_MIPS_26:
10062 case elfcpp::R_MIPS16_26:
10063 case elfcpp::R_MIPS_PC21_S2:
10064 case elfcpp::R_MIPS_PC26_S2:
10065 case elfcpp::R_MIPS_PC18_S3:
10066 case elfcpp::R_MIPS_PC19_S2:
10067 return 4;
10068
10069 case elfcpp::R_MIPS_COPY:
10070 case elfcpp::R_MIPS_JUMP_SLOT:
10071 object->error(_("unexpected reloc %u in object file"), r_type);
10072 return 0;
10073
10074 default:
10075 object->error(_("unsupported reloc %u in object file"), r_type);
10076 return 0;
10077 }
10078 }
10079
10080 // Scan the relocs during a relocatable link.
10081
10082 template<int size, bool big_endian>
10083 void
10084 Target_mips<size, big_endian>::scan_relocatable_relocs(
10085 Symbol_table* symtab,
10086 Layout* layout,
10087 Sized_relobj_file<size, big_endian>* object,
10088 unsigned int data_shndx,
10089 unsigned int sh_type,
10090 const unsigned char* prelocs,
10091 size_t reloc_count,
10092 Output_section* output_section,
10093 bool needs_special_offset_handling,
10094 size_t local_symbol_count,
10095 const unsigned char* plocal_symbols,
10096 Relocatable_relocs* rr)
10097 {
10098 if (sh_type == elfcpp::SHT_REL)
10099 {
10100 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10101 Classify_reloc;
10102 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10103 Scan_relocatable_relocs;
10104
10105 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10106 symtab,
10107 layout,
10108 object,
10109 data_shndx,
10110 prelocs,
10111 reloc_count,
10112 output_section,
10113 needs_special_offset_handling,
10114 local_symbol_count,
10115 plocal_symbols,
10116 rr);
10117 }
10118 else if (sh_type == elfcpp::SHT_RELA)
10119 {
10120 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10121 Classify_reloc;
10122 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10123 Scan_relocatable_relocs;
10124
10125 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10126 symtab,
10127 layout,
10128 object,
10129 data_shndx,
10130 prelocs,
10131 reloc_count,
10132 output_section,
10133 needs_special_offset_handling,
10134 local_symbol_count,
10135 plocal_symbols,
10136 rr);
10137 }
10138 else
10139 gold_unreachable();
10140 }
10141
10142 // Scan the relocs for --emit-relocs.
10143
10144 template<int size, bool big_endian>
10145 void
10146 Target_mips<size, big_endian>::emit_relocs_scan(
10147 Symbol_table* symtab,
10148 Layout* layout,
10149 Sized_relobj_file<size, big_endian>* object,
10150 unsigned int data_shndx,
10151 unsigned int sh_type,
10152 const unsigned char* prelocs,
10153 size_t reloc_count,
10154 Output_section* output_section,
10155 bool needs_special_offset_handling,
10156 size_t local_symbol_count,
10157 const unsigned char* plocal_syms,
10158 Relocatable_relocs* rr)
10159 {
10160 if (sh_type == elfcpp::SHT_REL)
10161 {
10162 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10163 Classify_reloc;
10164 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10165 Emit_relocs_strategy;
10166
10167 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10168 symtab,
10169 layout,
10170 object,
10171 data_shndx,
10172 prelocs,
10173 reloc_count,
10174 output_section,
10175 needs_special_offset_handling,
10176 local_symbol_count,
10177 plocal_syms,
10178 rr);
10179 }
10180 else if (sh_type == elfcpp::SHT_RELA)
10181 {
10182 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10183 Classify_reloc;
10184 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10185 Emit_relocs_strategy;
10186
10187 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10188 symtab,
10189 layout,
10190 object,
10191 data_shndx,
10192 prelocs,
10193 reloc_count,
10194 output_section,
10195 needs_special_offset_handling,
10196 local_symbol_count,
10197 plocal_syms,
10198 rr);
10199 }
10200 else
10201 gold_unreachable();
10202 }
10203
10204 // Emit relocations for a section.
10205
10206 template<int size, bool big_endian>
10207 void
10208 Target_mips<size, big_endian>::relocate_relocs(
10209 const Relocate_info<size, big_endian>* relinfo,
10210 unsigned int sh_type,
10211 const unsigned char* prelocs,
10212 size_t reloc_count,
10213 Output_section* output_section,
10214 typename elfcpp::Elf_types<size>::Elf_Off
10215 offset_in_output_section,
10216 unsigned char* view,
10217 Mips_address view_address,
10218 section_size_type view_size,
10219 unsigned char* reloc_view,
10220 section_size_type reloc_view_size)
10221 {
10222 if (sh_type == elfcpp::SHT_REL)
10223 {
10224 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10225 Classify_reloc;
10226
10227 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10228 relinfo,
10229 prelocs,
10230 reloc_count,
10231 output_section,
10232 offset_in_output_section,
10233 view,
10234 view_address,
10235 view_size,
10236 reloc_view,
10237 reloc_view_size);
10238 }
10239 else if (sh_type == elfcpp::SHT_RELA)
10240 {
10241 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10242 Classify_reloc;
10243
10244 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10245 relinfo,
10246 prelocs,
10247 reloc_count,
10248 output_section,
10249 offset_in_output_section,
10250 view,
10251 view_address,
10252 view_size,
10253 reloc_view,
10254 reloc_view_size);
10255 }
10256 else
10257 gold_unreachable();
10258 }
10259
10260 // Perform target-specific processing in a relocatable link. This is
10261 // only used if we use the relocation strategy RELOC_SPECIAL.
10262
10263 template<int size, bool big_endian>
10264 void
10265 Target_mips<size, big_endian>::relocate_special_relocatable(
10266 const Relocate_info<size, big_endian>* relinfo,
10267 unsigned int sh_type,
10268 const unsigned char* preloc_in,
10269 size_t relnum,
10270 Output_section* output_section,
10271 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10272 unsigned char* view,
10273 Mips_address view_address,
10274 section_size_type,
10275 unsigned char* preloc_out)
10276 {
10277 // We can only handle REL type relocation sections.
10278 gold_assert(sh_type == elfcpp::SHT_REL);
10279
10280 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10281 Reltype;
10282 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10283 Reltype_write;
10284
10285 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10286
10287 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10288
10289 Mips_relobj<size, big_endian>* object =
10290 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10291 const unsigned int local_count = object->local_symbol_count();
10292
10293 Reltype reloc(preloc_in);
10294 Reltype_write reloc_write(preloc_out);
10295
10296 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10297 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10298 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10299
10300 // Get the new symbol index.
10301 // We only use RELOC_SPECIAL strategy in local relocations.
10302 gold_assert(r_sym < local_count);
10303
10304 // We are adjusting a section symbol. We need to find
10305 // the symbol table index of the section symbol for
10306 // the output section corresponding to input section
10307 // in which this symbol is defined.
10308 bool is_ordinary;
10309 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10310 gold_assert(is_ordinary);
10311 Output_section* os = object->output_section(shndx);
10312 gold_assert(os != NULL);
10313 gold_assert(os->needs_symtab_index());
10314 unsigned int new_symndx = os->symtab_index();
10315
10316 // Get the new offset--the location in the output section where
10317 // this relocation should be applied.
10318
10319 Mips_address offset = reloc.get_r_offset();
10320 Mips_address new_offset;
10321 if (offset_in_output_section != invalid_address)
10322 new_offset = offset + offset_in_output_section;
10323 else
10324 {
10325 section_offset_type sot_offset =
10326 convert_types<section_offset_type, Mips_address>(offset);
10327 section_offset_type new_sot_offset =
10328 output_section->output_offset(object, relinfo->data_shndx,
10329 sot_offset);
10330 gold_assert(new_sot_offset != -1);
10331 new_offset = new_sot_offset;
10332 }
10333
10334 // In an object file, r_offset is an offset within the section.
10335 // In an executable or dynamic object, generated by
10336 // --emit-relocs, r_offset is an absolute address.
10337 if (!parameters->options().relocatable())
10338 {
10339 new_offset += view_address;
10340 if (offset_in_output_section != invalid_address)
10341 new_offset -= offset_in_output_section;
10342 }
10343
10344 reloc_write.put_r_offset(new_offset);
10345 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10346
10347 // Handle the reloc addend.
10348 // The relocation uses a section symbol in the input file.
10349 // We are adjusting it to use a section symbol in the output
10350 // file. The input section symbol refers to some address in
10351 // the input section. We need the relocation in the output
10352 // file to refer to that same address. This adjustment to
10353 // the addend is the same calculation we use for a simple
10354 // absolute relocation for the input section symbol.
10355 Valtype calculated_value = 0;
10356 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10357
10358 unsigned char* paddend = view + offset;
10359 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10360 switch (r_type)
10361 {
10362 case elfcpp::R_MIPS_26:
10363 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10364 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10365 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10366 false, &calculated_value);
10367 break;
10368
10369 default:
10370 gold_unreachable();
10371 }
10372
10373 // Report any errors.
10374 switch (reloc_status)
10375 {
10376 case Reloc_funcs::STATUS_OKAY:
10377 break;
10378 case Reloc_funcs::STATUS_OVERFLOW:
10379 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10380 _("relocation overflow: "
10381 "%u against local symbol %u in %s"),
10382 r_type, r_sym, object->name().c_str());
10383 break;
10384 case Reloc_funcs::STATUS_BAD_RELOC:
10385 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10386 _("unexpected opcode while processing relocation"));
10387 break;
10388 default:
10389 gold_unreachable();
10390 }
10391 }
10392
10393 // Optimize the TLS relocation type based on what we know about the
10394 // symbol. IS_FINAL is true if the final address of this symbol is
10395 // known at link time.
10396
10397 template<int size, bool big_endian>
10398 tls::Tls_optimization
10399 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10400 {
10401 // FIXME: Currently we do not do any TLS optimization.
10402 return tls::TLSOPT_NONE;
10403 }
10404
10405 // Scan a relocation for a local symbol.
10406
10407 template<int size, bool big_endian>
10408 inline void
10409 Target_mips<size, big_endian>::Scan::local(
10410 Symbol_table* symtab,
10411 Layout* layout,
10412 Target_mips<size, big_endian>* target,
10413 Sized_relobj_file<size, big_endian>* object,
10414 unsigned int data_shndx,
10415 Output_section* output_section,
10416 const Relatype* rela,
10417 const Reltype* rel,
10418 unsigned int rel_type,
10419 unsigned int r_type,
10420 const elfcpp::Sym<size, big_endian>& lsym,
10421 bool is_discarded)
10422 {
10423 if (is_discarded)
10424 return;
10425
10426 Mips_address r_offset;
10427 unsigned int r_sym;
10428 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10429
10430 if (rel_type == elfcpp::SHT_RELA)
10431 {
10432 r_offset = rela->get_r_offset();
10433 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10434 get_r_sym(rela);
10435 r_addend = rela->get_r_addend();
10436 }
10437 else
10438 {
10439 r_offset = rel->get_r_offset();
10440 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10441 get_r_sym(rel);
10442 r_addend = 0;
10443 }
10444
10445 Mips_relobj<size, big_endian>* mips_obj =
10446 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10447
10448 if (mips_obj->is_mips16_stub_section(data_shndx))
10449 {
10450 mips_obj->get_mips16_stub_section(data_shndx)
10451 ->new_local_reloc_found(r_type, r_sym);
10452 }
10453
10454 if (r_type == elfcpp::R_MIPS_NONE)
10455 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10456 // mips16 stub.
10457 return;
10458
10459 if (!mips16_call_reloc(r_type)
10460 && !mips_obj->section_allows_mips16_refs(data_shndx))
10461 // This reloc would need to refer to a MIPS16 hard-float stub, if
10462 // there is one. We ignore MIPS16 stub sections and .pdr section when
10463 // looking for relocs that would need to refer to MIPS16 stubs.
10464 mips_obj->add_local_non_16bit_call(r_sym);
10465
10466 if (r_type == elfcpp::R_MIPS16_26
10467 && !mips_obj->section_allows_mips16_refs(data_shndx))
10468 mips_obj->add_local_16bit_call(r_sym);
10469
10470 switch (r_type)
10471 {
10472 case elfcpp::R_MIPS_GOT16:
10473 case elfcpp::R_MIPS_CALL16:
10474 case elfcpp::R_MIPS_CALL_HI16:
10475 case elfcpp::R_MIPS_CALL_LO16:
10476 case elfcpp::R_MIPS_GOT_HI16:
10477 case elfcpp::R_MIPS_GOT_LO16:
10478 case elfcpp::R_MIPS_GOT_PAGE:
10479 case elfcpp::R_MIPS_GOT_OFST:
10480 case elfcpp::R_MIPS_GOT_DISP:
10481 case elfcpp::R_MIPS_TLS_GOTTPREL:
10482 case elfcpp::R_MIPS_TLS_GD:
10483 case elfcpp::R_MIPS_TLS_LDM:
10484 case elfcpp::R_MIPS16_GOT16:
10485 case elfcpp::R_MIPS16_CALL16:
10486 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10487 case elfcpp::R_MIPS16_TLS_GD:
10488 case elfcpp::R_MIPS16_TLS_LDM:
10489 case elfcpp::R_MICROMIPS_GOT16:
10490 case elfcpp::R_MICROMIPS_CALL16:
10491 case elfcpp::R_MICROMIPS_CALL_HI16:
10492 case elfcpp::R_MICROMIPS_CALL_LO16:
10493 case elfcpp::R_MICROMIPS_GOT_HI16:
10494 case elfcpp::R_MICROMIPS_GOT_LO16:
10495 case elfcpp::R_MICROMIPS_GOT_PAGE:
10496 case elfcpp::R_MICROMIPS_GOT_OFST:
10497 case elfcpp::R_MICROMIPS_GOT_DISP:
10498 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10499 case elfcpp::R_MICROMIPS_TLS_GD:
10500 case elfcpp::R_MICROMIPS_TLS_LDM:
10501 case elfcpp::R_MIPS_EH:
10502 // We need a GOT section.
10503 target->got_section(symtab, layout);
10504 break;
10505
10506 default:
10507 break;
10508 }
10509
10510 if (call_lo16_reloc(r_type)
10511 || got_lo16_reloc(r_type)
10512 || got_disp_reloc(r_type)
10513 || eh_reloc(r_type))
10514 {
10515 // We may need a local GOT entry for this relocation. We
10516 // don't count R_MIPS_GOT_PAGE because we can estimate the
10517 // maximum number of pages needed by looking at the size of
10518 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10519 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10520 // R_MIPS_CALL_HI16 because these are always followed by an
10521 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10522 Mips_output_data_got<size, big_endian>* got =
10523 target->got_section(symtab, layout);
10524 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10525 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10526 is_section_symbol);
10527 }
10528
10529 switch (r_type)
10530 {
10531 case elfcpp::R_MIPS_CALL16:
10532 case elfcpp::R_MIPS16_CALL16:
10533 case elfcpp::R_MICROMIPS_CALL16:
10534 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10535 (unsigned long)r_offset);
10536 return;
10537
10538 case elfcpp::R_MIPS_GOT_PAGE:
10539 case elfcpp::R_MICROMIPS_GOT_PAGE:
10540 case elfcpp::R_MIPS16_GOT16:
10541 case elfcpp::R_MIPS_GOT16:
10542 case elfcpp::R_MIPS_GOT_HI16:
10543 case elfcpp::R_MIPS_GOT_LO16:
10544 case elfcpp::R_MICROMIPS_GOT16:
10545 case elfcpp::R_MICROMIPS_GOT_HI16:
10546 case elfcpp::R_MICROMIPS_GOT_LO16:
10547 {
10548 // This relocation needs a page entry in the GOT.
10549 // Get the section contents.
10550 section_size_type view_size = 0;
10551 const unsigned char* view = object->section_contents(data_shndx,
10552 &view_size, false);
10553 view += r_offset;
10554
10555 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10556 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10557 : r_addend);
10558
10559 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10560 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10561 object, data_shndx, r_type, r_sym, addend));
10562 else
10563 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10564 break;
10565 }
10566
10567 case elfcpp::R_MIPS_HI16:
10568 case elfcpp::R_MIPS_PCHI16:
10569 case elfcpp::R_MIPS16_HI16:
10570 case elfcpp::R_MICROMIPS_HI16:
10571 // Record the reloc so that we can check whether the corresponding LO16
10572 // part exists.
10573 if (rel_type == elfcpp::SHT_REL)
10574 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10575 object, data_shndx, r_type, r_sym, 0));
10576 break;
10577
10578 case elfcpp::R_MIPS_LO16:
10579 case elfcpp::R_MIPS_PCLO16:
10580 case elfcpp::R_MIPS16_LO16:
10581 case elfcpp::R_MICROMIPS_LO16:
10582 {
10583 if (rel_type != elfcpp::SHT_REL)
10584 break;
10585
10586 // Find corresponding GOT16/HI16 relocation.
10587
10588 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10589 // be immediately following. However, for the IRIX6 ABI, the next
10590 // relocation may be a composed relocation consisting of several
10591 // relocations for the same address. In that case, the R_MIPS_LO16
10592 // relocation may occur as one of these. We permit a similar
10593 // extension in general, as that is useful for GCC.
10594
10595 // In some cases GCC dead code elimination removes the LO16 but
10596 // keeps the corresponding HI16. This is strictly speaking a
10597 // violation of the ABI but not immediately harmful.
10598
10599 typename std::list<got16_addend<size, big_endian> >::iterator it =
10600 target->got16_addends_.begin();
10601 while (it != target->got16_addends_.end())
10602 {
10603 got16_addend<size, big_endian> _got16_addend = *it;
10604
10605 // TODO(sasa): Split got16_addends_ list into two lists - one for
10606 // GOT16 relocs and the other for HI16 relocs.
10607
10608 // Report an error if we find HI16 or GOT16 reloc from the
10609 // previous section without the matching LO16 part.
10610 if (_got16_addend.object != object
10611 || _got16_addend.shndx != data_shndx)
10612 {
10613 gold_error("Can't find matching LO16 reloc");
10614 break;
10615 }
10616
10617 if (_got16_addend.r_sym != r_sym
10618 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10619 {
10620 ++it;
10621 continue;
10622 }
10623
10624 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10625 // For GOT16, we need to calculate combined addend and record GOT page
10626 // entry.
10627 if (got16_reloc(_got16_addend.r_type))
10628 {
10629
10630 section_size_type view_size = 0;
10631 const unsigned char* view = object->section_contents(data_shndx,
10632 &view_size,
10633 false);
10634 view += r_offset;
10635
10636 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10637 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10638
10639 addend = (_got16_addend.addend << 16) + addend;
10640 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10641 addend);
10642 }
10643
10644 it = target->got16_addends_.erase(it);
10645 }
10646 break;
10647 }
10648 }
10649
10650 switch (r_type)
10651 {
10652 case elfcpp::R_MIPS_32:
10653 case elfcpp::R_MIPS_REL32:
10654 case elfcpp::R_MIPS_64:
10655 {
10656 if (parameters->options().output_is_position_independent())
10657 {
10658 // If building a shared library (or a position-independent
10659 // executable), we need to create a dynamic relocation for
10660 // this location.
10661 if (is_readonly_section(output_section))
10662 break;
10663 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10664 rel_dyn->add_symbolless_local_addend(object, r_sym,
10665 elfcpp::R_MIPS_REL32,
10666 output_section, data_shndx,
10667 r_offset);
10668 }
10669 break;
10670 }
10671
10672 case elfcpp::R_MIPS_TLS_GOTTPREL:
10673 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10674 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10675 case elfcpp::R_MIPS_TLS_LDM:
10676 case elfcpp::R_MIPS16_TLS_LDM:
10677 case elfcpp::R_MICROMIPS_TLS_LDM:
10678 case elfcpp::R_MIPS_TLS_GD:
10679 case elfcpp::R_MIPS16_TLS_GD:
10680 case elfcpp::R_MICROMIPS_TLS_GD:
10681 {
10682 bool output_is_shared = parameters->options().shared();
10683 const tls::Tls_optimization optimized_type
10684 = Target_mips<size, big_endian>::optimize_tls_reloc(
10685 !output_is_shared, r_type);
10686 switch (r_type)
10687 {
10688 case elfcpp::R_MIPS_TLS_GD:
10689 case elfcpp::R_MIPS16_TLS_GD:
10690 case elfcpp::R_MICROMIPS_TLS_GD:
10691 if (optimized_type == tls::TLSOPT_NONE)
10692 {
10693 // Create a pair of GOT entries for the module index and
10694 // dtv-relative offset.
10695 Mips_output_data_got<size, big_endian>* got =
10696 target->got_section(symtab, layout);
10697 unsigned int shndx = lsym.get_st_shndx();
10698 bool is_ordinary;
10699 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10700 if (!is_ordinary)
10701 {
10702 object->error(_("local symbol %u has bad shndx %u"),
10703 r_sym, shndx);
10704 break;
10705 }
10706 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10707 shndx, false);
10708 }
10709 else
10710 {
10711 // FIXME: TLS optimization not supported yet.
10712 gold_unreachable();
10713 }
10714 break;
10715
10716 case elfcpp::R_MIPS_TLS_LDM:
10717 case elfcpp::R_MIPS16_TLS_LDM:
10718 case elfcpp::R_MICROMIPS_TLS_LDM:
10719 if (optimized_type == tls::TLSOPT_NONE)
10720 {
10721 // We always record LDM symbols as local with index 0.
10722 target->got_section()->record_local_got_symbol(mips_obj, 0,
10723 r_addend, r_type,
10724 -1U, false);
10725 }
10726 else
10727 {
10728 // FIXME: TLS optimization not supported yet.
10729 gold_unreachable();
10730 }
10731 break;
10732 case elfcpp::R_MIPS_TLS_GOTTPREL:
10733 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10734 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10735 layout->set_has_static_tls();
10736 if (optimized_type == tls::TLSOPT_NONE)
10737 {
10738 // Create a GOT entry for the tp-relative offset.
10739 Mips_output_data_got<size, big_endian>* got =
10740 target->got_section(symtab, layout);
10741 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10742 -1U, false);
10743 }
10744 else
10745 {
10746 // FIXME: TLS optimization not supported yet.
10747 gold_unreachable();
10748 }
10749 break;
10750
10751 default:
10752 gold_unreachable();
10753 }
10754 }
10755 break;
10756
10757 default:
10758 break;
10759 }
10760
10761 // Refuse some position-dependent relocations when creating a
10762 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10763 // not PIC, but we can create dynamic relocations and the result
10764 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10765 // combined with R_MIPS_GOT16.
10766 if (parameters->options().shared())
10767 {
10768 switch (r_type)
10769 {
10770 case elfcpp::R_MIPS16_HI16:
10771 case elfcpp::R_MIPS_HI16:
10772 case elfcpp::R_MIPS_HIGHER:
10773 case elfcpp::R_MIPS_HIGHEST:
10774 case elfcpp::R_MICROMIPS_HI16:
10775 case elfcpp::R_MICROMIPS_HIGHER:
10776 case elfcpp::R_MICROMIPS_HIGHEST:
10777 // Don't refuse a high part relocation if it's against
10778 // no symbol (e.g. part of a compound relocation).
10779 if (r_sym == 0)
10780 break;
10781 // Fall through.
10782
10783 case elfcpp::R_MIPS16_26:
10784 case elfcpp::R_MIPS_26:
10785 case elfcpp::R_MICROMIPS_26_S1:
10786 gold_error(_("%s: relocation %u against `%s' can not be used when "
10787 "making a shared object; recompile with -fPIC"),
10788 object->name().c_str(), r_type, "a local symbol");
10789 default:
10790 break;
10791 }
10792 }
10793 }
10794
10795 template<int size, bool big_endian>
10796 inline void
10797 Target_mips<size, big_endian>::Scan::local(
10798 Symbol_table* symtab,
10799 Layout* layout,
10800 Target_mips<size, big_endian>* target,
10801 Sized_relobj_file<size, big_endian>* object,
10802 unsigned int data_shndx,
10803 Output_section* output_section,
10804 const Reltype& reloc,
10805 unsigned int r_type,
10806 const elfcpp::Sym<size, big_endian>& lsym,
10807 bool is_discarded)
10808 {
10809 if (is_discarded)
10810 return;
10811
10812 local(
10813 symtab,
10814 layout,
10815 target,
10816 object,
10817 data_shndx,
10818 output_section,
10819 (const Relatype*) NULL,
10820 &reloc,
10821 elfcpp::SHT_REL,
10822 r_type,
10823 lsym, is_discarded);
10824 }
10825
10826
10827 template<int size, bool big_endian>
10828 inline void
10829 Target_mips<size, big_endian>::Scan::local(
10830 Symbol_table* symtab,
10831 Layout* layout,
10832 Target_mips<size, big_endian>* target,
10833 Sized_relobj_file<size, big_endian>* object,
10834 unsigned int data_shndx,
10835 Output_section* output_section,
10836 const Relatype& reloc,
10837 unsigned int r_type,
10838 const elfcpp::Sym<size, big_endian>& lsym,
10839 bool is_discarded)
10840 {
10841 if (is_discarded)
10842 return;
10843
10844 local(
10845 symtab,
10846 layout,
10847 target,
10848 object,
10849 data_shndx,
10850 output_section,
10851 &reloc,
10852 (const Reltype*) NULL,
10853 elfcpp::SHT_RELA,
10854 r_type,
10855 lsym, is_discarded);
10856 }
10857
10858 // Scan a relocation for a global symbol.
10859
10860 template<int size, bool big_endian>
10861 inline void
10862 Target_mips<size, big_endian>::Scan::global(
10863 Symbol_table* symtab,
10864 Layout* layout,
10865 Target_mips<size, big_endian>* target,
10866 Sized_relobj_file<size, big_endian>* object,
10867 unsigned int data_shndx,
10868 Output_section* output_section,
10869 const Relatype* rela,
10870 const Reltype* rel,
10871 unsigned int rel_type,
10872 unsigned int r_type,
10873 Symbol* gsym)
10874 {
10875 Mips_address r_offset;
10876 unsigned int r_sym;
10877 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10878
10879 if (rel_type == elfcpp::SHT_RELA)
10880 {
10881 r_offset = rela->get_r_offset();
10882 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10883 get_r_sym(rela);
10884 r_addend = rela->get_r_addend();
10885 }
10886 else
10887 {
10888 r_offset = rel->get_r_offset();
10889 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10890 get_r_sym(rel);
10891 r_addend = 0;
10892 }
10893
10894 Mips_relobj<size, big_endian>* mips_obj =
10895 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10896 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10897
10898 if (mips_obj->is_mips16_stub_section(data_shndx))
10899 {
10900 mips_obj->get_mips16_stub_section(data_shndx)
10901 ->new_global_reloc_found(r_type, mips_sym);
10902 }
10903
10904 if (r_type == elfcpp::R_MIPS_NONE)
10905 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10906 // mips16 stub.
10907 return;
10908
10909 if (!mips16_call_reloc(r_type)
10910 && !mips_obj->section_allows_mips16_refs(data_shndx))
10911 // This reloc would need to refer to a MIPS16 hard-float stub, if
10912 // there is one. We ignore MIPS16 stub sections and .pdr section when
10913 // looking for relocs that would need to refer to MIPS16 stubs.
10914 mips_sym->set_need_fn_stub();
10915
10916 // We need PLT entries if there are static-only relocations against
10917 // an externally-defined function. This can technically occur for
10918 // shared libraries if there are branches to the symbol, although it
10919 // is unlikely that this will be used in practice due to the short
10920 // ranges involved. It can occur for any relative or absolute relocation
10921 // in executables; in that case, the PLT entry becomes the function's
10922 // canonical address.
10923 bool static_reloc = false;
10924
10925 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10926 // relocation into a dynamic one.
10927 bool can_make_dynamic = false;
10928 switch (r_type)
10929 {
10930 case elfcpp::R_MIPS_GOT16:
10931 case elfcpp::R_MIPS_CALL16:
10932 case elfcpp::R_MIPS_CALL_HI16:
10933 case elfcpp::R_MIPS_CALL_LO16:
10934 case elfcpp::R_MIPS_GOT_HI16:
10935 case elfcpp::R_MIPS_GOT_LO16:
10936 case elfcpp::R_MIPS_GOT_PAGE:
10937 case elfcpp::R_MIPS_GOT_OFST:
10938 case elfcpp::R_MIPS_GOT_DISP:
10939 case elfcpp::R_MIPS_TLS_GOTTPREL:
10940 case elfcpp::R_MIPS_TLS_GD:
10941 case elfcpp::R_MIPS_TLS_LDM:
10942 case elfcpp::R_MIPS16_GOT16:
10943 case elfcpp::R_MIPS16_CALL16:
10944 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10945 case elfcpp::R_MIPS16_TLS_GD:
10946 case elfcpp::R_MIPS16_TLS_LDM:
10947 case elfcpp::R_MICROMIPS_GOT16:
10948 case elfcpp::R_MICROMIPS_CALL16:
10949 case elfcpp::R_MICROMIPS_CALL_HI16:
10950 case elfcpp::R_MICROMIPS_CALL_LO16:
10951 case elfcpp::R_MICROMIPS_GOT_HI16:
10952 case elfcpp::R_MICROMIPS_GOT_LO16:
10953 case elfcpp::R_MICROMIPS_GOT_PAGE:
10954 case elfcpp::R_MICROMIPS_GOT_OFST:
10955 case elfcpp::R_MICROMIPS_GOT_DISP:
10956 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10957 case elfcpp::R_MICROMIPS_TLS_GD:
10958 case elfcpp::R_MICROMIPS_TLS_LDM:
10959 case elfcpp::R_MIPS_EH:
10960 // We need a GOT section.
10961 target->got_section(symtab, layout);
10962 break;
10963
10964 // This is just a hint; it can safely be ignored. Don't set
10965 // has_static_relocs for the corresponding symbol.
10966 case elfcpp::R_MIPS_JALR:
10967 case elfcpp::R_MICROMIPS_JALR:
10968 break;
10969
10970 case elfcpp::R_MIPS_GPREL16:
10971 case elfcpp::R_MIPS_GPREL32:
10972 case elfcpp::R_MIPS16_GPREL:
10973 case elfcpp::R_MICROMIPS_GPREL16:
10974 // TODO(sasa)
10975 // GP-relative relocations always resolve to a definition in a
10976 // regular input file, ignoring the one-definition rule. This is
10977 // important for the GP setup sequence in NewABI code, which
10978 // always resolves to a local function even if other relocations
10979 // against the symbol wouldn't.
10980 //constrain_symbol_p = FALSE;
10981 break;
10982
10983 case elfcpp::R_MIPS_32:
10984 case elfcpp::R_MIPS_REL32:
10985 case elfcpp::R_MIPS_64:
10986 if ((parameters->options().shared()
10987 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10988 && (!is_readonly_section(output_section)
10989 || mips_obj->is_pic())))
10990 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10991 {
10992 if (r_type != elfcpp::R_MIPS_REL32)
10993 mips_sym->set_pointer_equality_needed();
10994 can_make_dynamic = true;
10995 break;
10996 }
10997 // Fall through.
10998
10999 default:
11000 // Most static relocations require pointer equality, except
11001 // for branches.
11002 mips_sym->set_pointer_equality_needed();
11003 // Fall through.
11004
11005 case elfcpp::R_MIPS_26:
11006 case elfcpp::R_MIPS_PC16:
11007 case elfcpp::R_MIPS_PC21_S2:
11008 case elfcpp::R_MIPS_PC26_S2:
11009 case elfcpp::R_MIPS16_26:
11010 case elfcpp::R_MICROMIPS_26_S1:
11011 case elfcpp::R_MICROMIPS_PC7_S1:
11012 case elfcpp::R_MICROMIPS_PC10_S1:
11013 case elfcpp::R_MICROMIPS_PC16_S1:
11014 case elfcpp::R_MICROMIPS_PC23_S2:
11015 static_reloc = true;
11016 mips_sym->set_has_static_relocs();
11017 break;
11018 }
11019
11020 // If there are call relocations against an externally-defined symbol,
11021 // see whether we can create a MIPS lazy-binding stub for it. We can
11022 // only do this if all references to the function are through call
11023 // relocations, and in that case, the traditional lazy-binding stubs
11024 // are much more efficient than PLT entries.
11025 switch (r_type)
11026 {
11027 case elfcpp::R_MIPS16_CALL16:
11028 case elfcpp::R_MIPS_CALL16:
11029 case elfcpp::R_MIPS_CALL_HI16:
11030 case elfcpp::R_MIPS_CALL_LO16:
11031 case elfcpp::R_MIPS_JALR:
11032 case elfcpp::R_MICROMIPS_CALL16:
11033 case elfcpp::R_MICROMIPS_CALL_HI16:
11034 case elfcpp::R_MICROMIPS_CALL_LO16:
11035 case elfcpp::R_MICROMIPS_JALR:
11036 if (!mips_sym->no_lazy_stub())
11037 {
11038 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
11039 // Calls from shared objects to undefined symbols of type
11040 // STT_NOTYPE need lazy-binding stub.
11041 || (mips_sym->is_undefined() && parameters->options().shared()))
11042 target->mips_stubs_section(layout)->make_entry(mips_sym);
11043 }
11044 break;
11045 default:
11046 {
11047 // We must not create a stub for a symbol that has relocations
11048 // related to taking the function's address.
11049 mips_sym->set_no_lazy_stub();
11050 target->remove_lazy_stub_entry(mips_sym);
11051 break;
11052 }
11053 }
11054
11055 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11056 mips_sym->is_mips16()))
11057 mips_sym->set_has_nonpic_branches();
11058
11059 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11060 // and has a special meaning.
11061 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11062 && strcmp(gsym->name(), "_gp_disp") == 0
11063 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11064 if (static_reloc && gsym->needs_plt_entry())
11065 {
11066 target->make_plt_entry(symtab, layout, mips_sym, r_type);
11067
11068 // Since this is not a PC-relative relocation, we may be
11069 // taking the address of a function. In that case we need to
11070 // set the entry in the dynamic symbol table to the address of
11071 // the PLT entry.
11072 if (gsym->is_from_dynobj() && !parameters->options().shared())
11073 {
11074 gsym->set_needs_dynsym_value();
11075 // We distinguish between PLT entries and lazy-binding stubs by
11076 // giving the former an st_other value of STO_MIPS_PLT. Set the
11077 // flag if there are any relocations in the binary where pointer
11078 // equality matters.
11079 if (mips_sym->pointer_equality_needed())
11080 mips_sym->set_mips_plt();
11081 }
11082 }
11083 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11084 {
11085 // Absolute addressing relocations.
11086 // Make a dynamic relocation if necessary.
11087 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11088 {
11089 if (gsym->may_need_copy_reloc())
11090 {
11091 target->copy_reloc(symtab, layout, object, data_shndx,
11092 output_section, gsym, r_type, r_offset);
11093 }
11094 else if (can_make_dynamic)
11095 {
11096 // Create .rel.dyn section.
11097 target->rel_dyn_section(layout);
11098 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11099 data_shndx, output_section, r_offset);
11100 }
11101 else
11102 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11103 gsym->name());
11104 }
11105 }
11106
11107 bool for_call = false;
11108 switch (r_type)
11109 {
11110 case elfcpp::R_MIPS_CALL16:
11111 case elfcpp::R_MIPS16_CALL16:
11112 case elfcpp::R_MICROMIPS_CALL16:
11113 case elfcpp::R_MIPS_CALL_HI16:
11114 case elfcpp::R_MIPS_CALL_LO16:
11115 case elfcpp::R_MICROMIPS_CALL_HI16:
11116 case elfcpp::R_MICROMIPS_CALL_LO16:
11117 for_call = true;
11118 // Fall through.
11119
11120 case elfcpp::R_MIPS16_GOT16:
11121 case elfcpp::R_MIPS_GOT16:
11122 case elfcpp::R_MIPS_GOT_HI16:
11123 case elfcpp::R_MIPS_GOT_LO16:
11124 case elfcpp::R_MICROMIPS_GOT16:
11125 case elfcpp::R_MICROMIPS_GOT_HI16:
11126 case elfcpp::R_MICROMIPS_GOT_LO16:
11127 case elfcpp::R_MIPS_GOT_DISP:
11128 case elfcpp::R_MICROMIPS_GOT_DISP:
11129 case elfcpp::R_MIPS_EH:
11130 {
11131 // The symbol requires a GOT entry.
11132 Mips_output_data_got<size, big_endian>* got =
11133 target->got_section(symtab, layout);
11134 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11135 for_call);
11136 mips_sym->set_global_got_area(GGA_NORMAL);
11137 }
11138 break;
11139
11140 case elfcpp::R_MIPS_GOT_PAGE:
11141 case elfcpp::R_MICROMIPS_GOT_PAGE:
11142 {
11143 // This relocation needs a page entry in the GOT.
11144 // Get the section contents.
11145 section_size_type view_size = 0;
11146 const unsigned char* view =
11147 object->section_contents(data_shndx, &view_size, false);
11148 view += r_offset;
11149
11150 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11151 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11152 : r_addend);
11153 Mips_output_data_got<size, big_endian>* got =
11154 target->got_section(symtab, layout);
11155 got->record_got_page_entry(mips_obj, r_sym, addend);
11156
11157 // If this is a global, overridable symbol, GOT_PAGE will
11158 // decay to GOT_DISP, so we'll need a GOT entry for it.
11159 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11160 && !mips_sym->object()->is_dynamic()
11161 && !mips_sym->is_undefined());
11162 if (!def_regular
11163 || (parameters->options().output_is_position_independent()
11164 && !parameters->options().Bsymbolic()
11165 && !mips_sym->is_forced_local()))
11166 {
11167 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11168 for_call);
11169 mips_sym->set_global_got_area(GGA_NORMAL);
11170 }
11171 }
11172 break;
11173
11174 case elfcpp::R_MIPS_TLS_GOTTPREL:
11175 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11176 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11177 case elfcpp::R_MIPS_TLS_LDM:
11178 case elfcpp::R_MIPS16_TLS_LDM:
11179 case elfcpp::R_MICROMIPS_TLS_LDM:
11180 case elfcpp::R_MIPS_TLS_GD:
11181 case elfcpp::R_MIPS16_TLS_GD:
11182 case elfcpp::R_MICROMIPS_TLS_GD:
11183 {
11184 const bool is_final = gsym->final_value_is_known();
11185 const tls::Tls_optimization optimized_type =
11186 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11187
11188 switch (r_type)
11189 {
11190 case elfcpp::R_MIPS_TLS_GD:
11191 case elfcpp::R_MIPS16_TLS_GD:
11192 case elfcpp::R_MICROMIPS_TLS_GD:
11193 if (optimized_type == tls::TLSOPT_NONE)
11194 {
11195 // Create a pair of GOT entries for the module index and
11196 // dtv-relative offset.
11197 Mips_output_data_got<size, big_endian>* got =
11198 target->got_section(symtab, layout);
11199 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11200 false);
11201 }
11202 else
11203 {
11204 // FIXME: TLS optimization not supported yet.
11205 gold_unreachable();
11206 }
11207 break;
11208
11209 case elfcpp::R_MIPS_TLS_LDM:
11210 case elfcpp::R_MIPS16_TLS_LDM:
11211 case elfcpp::R_MICROMIPS_TLS_LDM:
11212 if (optimized_type == tls::TLSOPT_NONE)
11213 {
11214 // We always record LDM symbols as local with index 0.
11215 target->got_section()->record_local_got_symbol(mips_obj, 0,
11216 r_addend, r_type,
11217 -1U, false);
11218 }
11219 else
11220 {
11221 // FIXME: TLS optimization not supported yet.
11222 gold_unreachable();
11223 }
11224 break;
11225 case elfcpp::R_MIPS_TLS_GOTTPREL:
11226 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11227 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11228 layout->set_has_static_tls();
11229 if (optimized_type == tls::TLSOPT_NONE)
11230 {
11231 // Create a GOT entry for the tp-relative offset.
11232 Mips_output_data_got<size, big_endian>* got =
11233 target->got_section(symtab, layout);
11234 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11235 false);
11236 }
11237 else
11238 {
11239 // FIXME: TLS optimization not supported yet.
11240 gold_unreachable();
11241 }
11242 break;
11243
11244 default:
11245 gold_unreachable();
11246 }
11247 }
11248 break;
11249 case elfcpp::R_MIPS_COPY:
11250 case elfcpp::R_MIPS_JUMP_SLOT:
11251 // These are relocations which should only be seen by the
11252 // dynamic linker, and should never be seen here.
11253 gold_error(_("%s: unexpected reloc %u in object file"),
11254 object->name().c_str(), r_type);
11255 break;
11256
11257 default:
11258 break;
11259 }
11260
11261 // Refuse some position-dependent relocations when creating a
11262 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11263 // not PIC, but we can create dynamic relocations and the result
11264 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11265 // combined with R_MIPS_GOT16.
11266 if (parameters->options().shared())
11267 {
11268 switch (r_type)
11269 {
11270 case elfcpp::R_MIPS16_HI16:
11271 case elfcpp::R_MIPS_HI16:
11272 case elfcpp::R_MIPS_HIGHER:
11273 case elfcpp::R_MIPS_HIGHEST:
11274 case elfcpp::R_MICROMIPS_HI16:
11275 case elfcpp::R_MICROMIPS_HIGHER:
11276 case elfcpp::R_MICROMIPS_HIGHEST:
11277 // Don't refuse a high part relocation if it's against
11278 // no symbol (e.g. part of a compound relocation).
11279 if (r_sym == 0)
11280 break;
11281
11282 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11283 // and has a special meaning.
11284 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11285 break;
11286 // Fall through.
11287
11288 case elfcpp::R_MIPS16_26:
11289 case elfcpp::R_MIPS_26:
11290 case elfcpp::R_MICROMIPS_26_S1:
11291 gold_error(_("%s: relocation %u against `%s' can not be used when "
11292 "making a shared object; recompile with -fPIC"),
11293 object->name().c_str(), r_type, gsym->name());
11294 default:
11295 break;
11296 }
11297 }
11298 }
11299
11300 template<int size, bool big_endian>
11301 inline void
11302 Target_mips<size, big_endian>::Scan::global(
11303 Symbol_table* symtab,
11304 Layout* layout,
11305 Target_mips<size, big_endian>* target,
11306 Sized_relobj_file<size, big_endian>* object,
11307 unsigned int data_shndx,
11308 Output_section* output_section,
11309 const Relatype& reloc,
11310 unsigned int r_type,
11311 Symbol* gsym)
11312 {
11313 global(
11314 symtab,
11315 layout,
11316 target,
11317 object,
11318 data_shndx,
11319 output_section,
11320 &reloc,
11321 (const Reltype*) NULL,
11322 elfcpp::SHT_RELA,
11323 r_type,
11324 gsym);
11325 }
11326
11327 template<int size, bool big_endian>
11328 inline void
11329 Target_mips<size, big_endian>::Scan::global(
11330 Symbol_table* symtab,
11331 Layout* layout,
11332 Target_mips<size, big_endian>* target,
11333 Sized_relobj_file<size, big_endian>* object,
11334 unsigned int data_shndx,
11335 Output_section* output_section,
11336 const Reltype& reloc,
11337 unsigned int r_type,
11338 Symbol* gsym)
11339 {
11340 global(
11341 symtab,
11342 layout,
11343 target,
11344 object,
11345 data_shndx,
11346 output_section,
11347 (const Relatype*) NULL,
11348 &reloc,
11349 elfcpp::SHT_REL,
11350 r_type,
11351 gsym);
11352 }
11353
11354 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11355 // In cases where Scan::local() or Scan::global() has created
11356 // a dynamic relocation, the addend of the relocation is carried
11357 // in the data, and we must not apply the static relocation.
11358
11359 template<int size, bool big_endian>
11360 inline bool
11361 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11362 const Mips_symbol<size>* gsym,
11363 unsigned int r_type,
11364 Output_section* output_section,
11365 Target_mips* target)
11366 {
11367 // If the output section is not allocated, then we didn't call
11368 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11369 // the reloc here.
11370 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11371 return true;
11372
11373 if (gsym == NULL)
11374 return true;
11375 else
11376 {
11377 // For global symbols, we use the same helper routines used in the
11378 // scan pass.
11379 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11380 && !gsym->may_need_copy_reloc())
11381 {
11382 // We have generated dynamic reloc (R_MIPS_REL32).
11383
11384 bool multi_got = false;
11385 if (target->has_got_section())
11386 multi_got = target->got_section()->multi_got();
11387 bool has_got_offset;
11388 if (!multi_got)
11389 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11390 else
11391 has_got_offset = gsym->global_gotoffset() != -1U;
11392 if (!has_got_offset)
11393 return true;
11394 else
11395 // Apply the relocation only if the symbol is in the local got.
11396 // Do not apply the relocation if the symbol is in the global
11397 // got.
11398 return symbol_references_local(gsym, gsym->has_dynsym_index());
11399 }
11400 else
11401 // We have not generated dynamic reloc.
11402 return true;
11403 }
11404 }
11405
11406 // Perform a relocation.
11407
11408 template<int size, bool big_endian>
11409 inline bool
11410 Target_mips<size, big_endian>::Relocate::relocate(
11411 const Relocate_info<size, big_endian>* relinfo,
11412 unsigned int rel_type,
11413 Target_mips* target,
11414 Output_section* output_section,
11415 size_t relnum,
11416 const unsigned char* preloc,
11417 const Sized_symbol<size>* gsym,
11418 const Symbol_value<size>* psymval,
11419 unsigned char* view,
11420 Mips_address address,
11421 section_size_type)
11422 {
11423 Mips_address r_offset;
11424 unsigned int r_sym;
11425 unsigned int r_type;
11426 unsigned int r_type2;
11427 unsigned int r_type3;
11428 unsigned char r_ssym;
11429 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11430 // r_offset and r_type of the next relocation is needed for resolving multiple
11431 // consecutive relocations with the same offset.
11432 Mips_address next_r_offset = static_cast<Mips_address>(0) - 1;
11433 unsigned int next_r_type = elfcpp::R_MIPS_NONE;
11434
11435 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11436 size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize();
11437
11438 if (rel_type == elfcpp::SHT_RELA)
11439 {
11440 const Relatype rela(preloc);
11441 r_offset = rela.get_r_offset();
11442 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11443 get_r_sym(&rela);
11444 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11445 get_r_type(&rela);
11446 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11447 get_r_type2(&rela);
11448 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11449 get_r_type3(&rela);
11450 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11451 get_r_ssym(&rela);
11452 r_addend = rela.get_r_addend();
11453 // If this is not last relocation, get r_offset and r_type of the next
11454 // relocation.
11455 if (relnum + 1 < reloc_count)
11456 {
11457 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11458 const Relatype next_rela(preloc + reloc_size);
11459 next_r_offset = next_rela.get_r_offset();
11460 next_r_type =
11461 Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11462 get_r_type(&next_rela);
11463 }
11464 }
11465 else
11466 {
11467 const Reltype rel(preloc);
11468 r_offset = rel.get_r_offset();
11469 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11470 get_r_sym(&rel);
11471 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11472 get_r_type(&rel);
11473 r_ssym = 0;
11474 r_type2 = elfcpp::R_MIPS_NONE;
11475 r_type3 = elfcpp::R_MIPS_NONE;
11476 r_addend = 0;
11477 // If this is not last relocation, get r_offset and r_type of the next
11478 // relocation.
11479 if (relnum + 1 < reloc_count)
11480 {
11481 const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
11482 const Reltype next_rel(preloc + reloc_size);
11483 next_r_offset = next_rel.get_r_offset();
11484 next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11485 get_r_type(&next_rel);
11486 }
11487 }
11488
11489 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11490 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11491
11492 Mips_relobj<size, big_endian>* object =
11493 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11494
11495 bool target_is_16_bit_code = false;
11496 bool target_is_micromips_code = false;
11497 bool cross_mode_jump;
11498
11499 Symbol_value<size> symval;
11500
11501 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11502
11503 bool changed_symbol_value = false;
11504 if (gsym == NULL)
11505 {
11506 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11507 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11508 if (target_is_16_bit_code || target_is_micromips_code)
11509 {
11510 // MIPS16/microMIPS text labels should be treated as odd.
11511 symval.set_output_value(psymval->value(object, 1));
11512 psymval = &symval;
11513 changed_symbol_value = true;
11514 }
11515 }
11516 else
11517 {
11518 target_is_16_bit_code = mips_sym->is_mips16();
11519 target_is_micromips_code = mips_sym->is_micromips();
11520
11521 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11522 // it odd. This will cause something like .word SYM to come up with
11523 // the right value when it is loaded into the PC.
11524
11525 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11526 && psymval->value(object, 0) != 0)
11527 {
11528 symval.set_output_value(psymval->value(object, 0) | 1);
11529 psymval = &symval;
11530 changed_symbol_value = true;
11531 }
11532
11533 // Pick the value to use for symbols defined in shared objects.
11534 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11535 || mips_sym->has_lazy_stub())
11536 {
11537 Mips_address value;
11538 if (!mips_sym->has_lazy_stub())
11539 {
11540 // Prefer a standard MIPS PLT entry.
11541 if (mips_sym->has_mips_plt_offset())
11542 {
11543 value = target->plt_section()->mips_entry_address(mips_sym);
11544 target_is_micromips_code = false;
11545 target_is_16_bit_code = false;
11546 }
11547 else
11548 {
11549 value = (target->plt_section()->comp_entry_address(mips_sym)
11550 + 1);
11551 if (target->is_output_micromips())
11552 target_is_micromips_code = true;
11553 else
11554 target_is_16_bit_code = true;
11555 }
11556 }
11557 else
11558 value = target->mips_stubs_section()->stub_address(mips_sym);
11559
11560 symval.set_output_value(value);
11561 psymval = &symval;
11562 }
11563 }
11564
11565 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11566 // Note that such a symbol must always be a global symbol.
11567 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11568 && !object->is_newabi());
11569
11570 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11571 // Note that such a symbol must always be a global symbol.
11572 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11573
11574
11575 if (gp_disp)
11576 {
11577 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11578 gold_error_at_location(relinfo, relnum, r_offset,
11579 _("relocations against _gp_disp are permitted only"
11580 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11581 }
11582 else if (gnu_local_gp)
11583 {
11584 // __gnu_local_gp is _gp symbol.
11585 symval.set_output_value(target->adjusted_gp_value(object));
11586 psymval = &symval;
11587 }
11588
11589 // If this is a reference to a 16-bit function with a stub, we need
11590 // to redirect the relocation to the stub unless:
11591 //
11592 // (a) the relocation is for a MIPS16 JAL;
11593 //
11594 // (b) the relocation is for a MIPS16 PIC call, and there are no
11595 // non-MIPS16 uses of the GOT slot; or
11596 //
11597 // (c) the section allows direct references to MIPS16 functions.
11598 if (r_type != elfcpp::R_MIPS16_26
11599 && ((mips_sym != NULL
11600 && mips_sym->has_mips16_fn_stub()
11601 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11602 || (mips_sym == NULL
11603 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11604 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11605 {
11606 // This is a 32- or 64-bit call to a 16-bit function. We should
11607 // have already noticed that we were going to need the
11608 // stub.
11609 Mips_address value;
11610 if (mips_sym == NULL)
11611 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11612 else
11613 {
11614 gold_assert(mips_sym->need_fn_stub());
11615 if (mips_sym->has_la25_stub())
11616 value = target->la25_stub_section()->stub_address(mips_sym);
11617 else
11618 {
11619 value = mips_sym->template
11620 get_mips16_fn_stub<big_endian>()->output_address();
11621 }
11622 }
11623 symval.set_output_value(value);
11624 psymval = &symval;
11625 changed_symbol_value = true;
11626
11627 // The target is 16-bit, but the stub isn't.
11628 target_is_16_bit_code = false;
11629 }
11630 // If this is a MIPS16 call with a stub, that is made through the PLT or
11631 // to a standard MIPS function, we need to redirect the call to the stub.
11632 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11633 // indirect calls should use an indirect stub instead.
11634 else if (r_type == elfcpp::R_MIPS16_26
11635 && ((mips_sym != NULL
11636 && (mips_sym->has_mips16_call_stub()
11637 || mips_sym->has_mips16_call_fp_stub()))
11638 || (mips_sym == NULL
11639 && object->get_local_mips16_call_stub(r_sym) != NULL))
11640 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11641 || !target_is_16_bit_code))
11642 {
11643 Mips16_stub_section<size, big_endian>* call_stub;
11644 if (mips_sym == NULL)
11645 call_stub = object->get_local_mips16_call_stub(r_sym);
11646 else
11647 {
11648 // If both call_stub and call_fp_stub are defined, we can figure
11649 // out which one to use by checking which one appears in the input
11650 // file.
11651 if (mips_sym->has_mips16_call_stub()
11652 && mips_sym->has_mips16_call_fp_stub())
11653 {
11654 call_stub = NULL;
11655 for (unsigned int i = 1; i < object->shnum(); ++i)
11656 {
11657 if (object->is_mips16_call_fp_stub_section(i))
11658 {
11659 call_stub = mips_sym->template
11660 get_mips16_call_fp_stub<big_endian>();
11661 break;
11662 }
11663
11664 }
11665 if (call_stub == NULL)
11666 call_stub =
11667 mips_sym->template get_mips16_call_stub<big_endian>();
11668 }
11669 else if (mips_sym->has_mips16_call_stub())
11670 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11671 else
11672 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11673 }
11674
11675 symval.set_output_value(call_stub->output_address());
11676 psymval = &symval;
11677 changed_symbol_value = true;
11678 }
11679 // If this is a direct call to a PIC function, redirect to the
11680 // non-PIC stub.
11681 else if (mips_sym != NULL
11682 && mips_sym->has_la25_stub()
11683 && relocation_needs_la25_stub<size, big_endian>(
11684 object, r_type, target_is_16_bit_code))
11685 {
11686 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11687 if (mips_sym->is_micromips())
11688 value += 1;
11689 symval.set_output_value(value);
11690 psymval = &symval;
11691 }
11692 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11693 // entry is used if a standard PLT entry has also been made.
11694 else if ((r_type == elfcpp::R_MIPS16_26
11695 || r_type == elfcpp::R_MICROMIPS_26_S1)
11696 && mips_sym != NULL
11697 && mips_sym->has_plt_offset()
11698 && mips_sym->has_comp_plt_offset()
11699 && mips_sym->has_mips_plt_offset())
11700 {
11701 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11702 + 1);
11703 symval.set_output_value(value);
11704 psymval = &symval;
11705
11706 target_is_16_bit_code = !target->is_output_micromips();
11707 target_is_micromips_code = target->is_output_micromips();
11708 }
11709
11710 // Make sure MIPS16 and microMIPS are not used together.
11711 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11712 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11713 {
11714 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11715 }
11716
11717 // Calls from 16-bit code to 32-bit code and vice versa require the
11718 // mode change. However, we can ignore calls to undefined weak symbols,
11719 // which should never be executed at runtime. This exception is important
11720 // because the assembly writer may have "known" that any definition of the
11721 // symbol would be 16-bit code, and that direct jumps were therefore
11722 // acceptable.
11723 cross_mode_jump =
11724 (!(gsym != NULL && gsym->is_weak_undefined())
11725 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11726 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11727 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11728 && (target_is_16_bit_code || target_is_micromips_code))));
11729
11730 bool local = (mips_sym == NULL
11731 || (mips_sym->got_only_for_calls()
11732 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11733 : symbol_references_local(mips_sym,
11734 mips_sym->has_dynsym_index())));
11735
11736 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11737 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11738 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11739 if (got_page_reloc(r_type) && !local)
11740 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11741 : elfcpp::R_MIPS_GOT_DISP);
11742
11743 unsigned int got_offset = 0;
11744 int gp_offset = 0;
11745
11746 // Whether we have to extract addend from instruction.
11747 bool extract_addend = rel_type == elfcpp::SHT_REL;
11748 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11749
11750 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11751
11752 // For Mips64 N64 ABI, there may be up to three operations specified per
11753 // record, by the fields r_type, r_type2, and r_type3. The first operation
11754 // takes its addend from the relocation record. Each subsequent operation
11755 // takes as its addend the result of the previous operation.
11756 // The first operation in a record which references a symbol uses the symbol
11757 // implied by r_sym. The next operation in a record which references a symbol
11758 // uses the special symbol value given by the r_ssym field. A third operation
11759 // in a record which references a symbol will assume a NULL symbol,
11760 // i.e. value zero.
11761
11762 // TODO(Vladimir)
11763 // Check if a record references to a symbol.
11764 for (unsigned int i = 0; i < 3; ++i)
11765 {
11766 if (r_types[i] == elfcpp::R_MIPS_NONE)
11767 break;
11768
11769 // If we didn't apply previous relocation, use its result as addend
11770 // for current.
11771 if (this->calculate_only_)
11772 {
11773 r_addend = this->calculated_value_;
11774 extract_addend = false;
11775 }
11776
11777 // In the N32 and 64-bit ABIs there may be multiple consecutive
11778 // relocations for the same offset. In that case we are
11779 // supposed to treat the output of each relocation as the addend
11780 // for the next. For N64 ABI, we are checking offsets only in a
11781 // third operation in a record (r_type3).
11782 this->calculate_only_ =
11783 (object->is_n64() && i < 2
11784 ? r_types[i+1] != elfcpp::R_MIPS_NONE
11785 : (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE));
11786
11787 if (object->is_n64())
11788 {
11789 if (i == 1)
11790 {
11791 // Handle special symbol for r_type2 relocation type.
11792 switch (r_ssym)
11793 {
11794 case RSS_UNDEF:
11795 symval.set_output_value(0);
11796 break;
11797 case RSS_GP:
11798 symval.set_output_value(target->gp_value());
11799 break;
11800 case RSS_GP0:
11801 symval.set_output_value(object->gp_value());
11802 break;
11803 case RSS_LOC:
11804 symval.set_output_value(address);
11805 break;
11806 default:
11807 gold_unreachable();
11808 }
11809 psymval = &symval;
11810 }
11811 else if (i == 2)
11812 {
11813 // For r_type3 symbol value is 0.
11814 symval.set_output_value(0);
11815 }
11816 }
11817
11818 bool update_got_entry = false;
11819 switch (r_types[i])
11820 {
11821 case elfcpp::R_MIPS_NONE:
11822 break;
11823 case elfcpp::R_MIPS_16:
11824 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11825 extract_addend,
11826 this->calculate_only_,
11827 &this->calculated_value_);
11828 break;
11829
11830 case elfcpp::R_MIPS_32:
11831 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11832 target))
11833 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11834 extract_addend,
11835 this->calculate_only_,
11836 &this->calculated_value_);
11837 if (mips_sym != NULL
11838 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11839 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11840 {
11841 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11842 // already updated by adding +1.
11843 if (mips_sym->has_mips16_fn_stub())
11844 {
11845 gold_assert(mips_sym->need_fn_stub());
11846 Mips16_stub_section<size, big_endian>* fn_stub =
11847 mips_sym->template get_mips16_fn_stub<big_endian>();
11848
11849 symval.set_output_value(fn_stub->output_address());
11850 psymval = &symval;
11851 }
11852 got_offset = mips_sym->global_gotoffset();
11853 update_got_entry = true;
11854 }
11855 break;
11856
11857 case elfcpp::R_MIPS_64:
11858 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11859 target))
11860 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11861 extract_addend,
11862 this->calculate_only_,
11863 &this->calculated_value_, false);
11864 else if (target->is_output_n64() && r_addend != 0)
11865 // Only apply the addend. The static relocation was RELA, but the
11866 // dynamic relocation is REL, so we need to apply the addend.
11867 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11868 extract_addend,
11869 this->calculate_only_,
11870 &this->calculated_value_, true);
11871 break;
11872 case elfcpp::R_MIPS_REL32:
11873 gold_unreachable();
11874
11875 case elfcpp::R_MIPS_PC32:
11876 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11877 r_addend, extract_addend,
11878 this->calculate_only_,
11879 &this->calculated_value_);
11880 break;
11881
11882 case elfcpp::R_MIPS16_26:
11883 // The calculation for R_MIPS16_26 is just the same as for an
11884 // R_MIPS_26. It's only the storage of the relocated field into
11885 // the output file that's different. So, we just fall through to the
11886 // R_MIPS_26 case here.
11887 case elfcpp::R_MIPS_26:
11888 case elfcpp::R_MICROMIPS_26_S1:
11889 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11890 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11891 r_types[i], target->jal_to_bal(), this->calculate_only_,
11892 &this->calculated_value_);
11893 break;
11894
11895 case elfcpp::R_MIPS_HI16:
11896 case elfcpp::R_MIPS16_HI16:
11897 case elfcpp::R_MICROMIPS_HI16:
11898 if (rel_type == elfcpp::SHT_RELA)
11899 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11900 r_addend, address,
11901 gp_disp, r_types[i],
11902 extract_addend, 0,
11903 target,
11904 this->calculate_only_,
11905 &this->calculated_value_);
11906 else if (rel_type == elfcpp::SHT_REL)
11907 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11908 address, gp_disp, r_types[i],
11909 r_sym, extract_addend);
11910 else
11911 gold_unreachable();
11912 break;
11913
11914 case elfcpp::R_MIPS_LO16:
11915 case elfcpp::R_MIPS16_LO16:
11916 case elfcpp::R_MICROMIPS_LO16:
11917 case elfcpp::R_MICROMIPS_HI0_LO16:
11918 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11919 r_addend, extract_addend, address,
11920 gp_disp, r_types[i], r_sym,
11921 rel_type, this->calculate_only_,
11922 &this->calculated_value_);
11923 break;
11924
11925 case elfcpp::R_MIPS_LITERAL:
11926 case elfcpp::R_MICROMIPS_LITERAL:
11927 // Because we don't merge literal sections, we can handle this
11928 // just like R_MIPS_GPREL16. In the long run, we should merge
11929 // shared literals, and then we will need to additional work
11930 // here.
11931
11932 // Fall through.
11933
11934 case elfcpp::R_MIPS_GPREL16:
11935 case elfcpp::R_MIPS16_GPREL:
11936 case elfcpp::R_MICROMIPS_GPREL7_S2:
11937 case elfcpp::R_MICROMIPS_GPREL16:
11938 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11939 target->adjusted_gp_value(object),
11940 r_addend, extract_addend,
11941 gsym == NULL, r_types[i],
11942 this->calculate_only_,
11943 &this->calculated_value_);
11944 break;
11945
11946 case elfcpp::R_MIPS_PC16:
11947 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11948 r_addend, extract_addend,
11949 this->calculate_only_,
11950 &this->calculated_value_);
11951 break;
11952
11953 case elfcpp::R_MIPS_PC21_S2:
11954 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11955 r_addend, extract_addend,
11956 this->calculate_only_,
11957 &this->calculated_value_);
11958 break;
11959
11960 case elfcpp::R_MIPS_PC26_S2:
11961 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11962 r_addend, extract_addend,
11963 this->calculate_only_,
11964 &this->calculated_value_);
11965 break;
11966
11967 case elfcpp::R_MIPS_PC18_S3:
11968 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11969 r_addend, extract_addend,
11970 this->calculate_only_,
11971 &this->calculated_value_);
11972 break;
11973
11974 case elfcpp::R_MIPS_PC19_S2:
11975 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11976 r_addend, extract_addend,
11977 this->calculate_only_,
11978 &this->calculated_value_);
11979 break;
11980
11981 case elfcpp::R_MIPS_PCHI16:
11982 if (rel_type == elfcpp::SHT_RELA)
11983 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11984 r_addend, address,
11985 extract_addend, 0,
11986 this->calculate_only_,
11987 &this->calculated_value_);
11988 else if (rel_type == elfcpp::SHT_REL)
11989 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11990 r_addend, address, r_sym,
11991 extract_addend);
11992 else
11993 gold_unreachable();
11994 break;
11995
11996 case elfcpp::R_MIPS_PCLO16:
11997 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11998 extract_addend, address, r_sym,
11999 rel_type, this->calculate_only_,
12000 &this->calculated_value_);
12001 break;
12002 case elfcpp::R_MICROMIPS_PC7_S1:
12003 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
12004 address, r_addend,
12005 extract_addend,
12006 this->calculate_only_,
12007 &this->calculated_value_);
12008 break;
12009 case elfcpp::R_MICROMIPS_PC10_S1:
12010 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
12011 psymval, address,
12012 r_addend, extract_addend,
12013 this->calculate_only_,
12014 &this->calculated_value_);
12015 break;
12016 case elfcpp::R_MICROMIPS_PC16_S1:
12017 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
12018 psymval, address,
12019 r_addend, extract_addend,
12020 this->calculate_only_,
12021 &this->calculated_value_);
12022 break;
12023 case elfcpp::R_MIPS_GPREL32:
12024 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
12025 target->adjusted_gp_value(object),
12026 r_addend, extract_addend,
12027 this->calculate_only_,
12028 &this->calculated_value_);
12029 break;
12030 case elfcpp::R_MIPS_GOT_HI16:
12031 case elfcpp::R_MIPS_CALL_HI16:
12032 case elfcpp::R_MICROMIPS_GOT_HI16:
12033 case elfcpp::R_MICROMIPS_CALL_HI16:
12034 if (gsym != NULL)
12035 got_offset = target->got_section()->got_offset(gsym,
12036 GOT_TYPE_STANDARD,
12037 object);
12038 else
12039 got_offset = target->got_section()->got_offset(r_sym,
12040 GOT_TYPE_STANDARD,
12041 object, r_addend);
12042 gp_offset = target->got_section()->gp_offset(got_offset, object);
12043 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
12044 this->calculate_only_,
12045 &this->calculated_value_);
12046 update_got_entry = changed_symbol_value;
12047 break;
12048
12049 case elfcpp::R_MIPS_GOT_LO16:
12050 case elfcpp::R_MIPS_CALL_LO16:
12051 case elfcpp::R_MICROMIPS_GOT_LO16:
12052 case elfcpp::R_MICROMIPS_CALL_LO16:
12053 if (gsym != NULL)
12054 got_offset = target->got_section()->got_offset(gsym,
12055 GOT_TYPE_STANDARD,
12056 object);
12057 else
12058 got_offset = target->got_section()->got_offset(r_sym,
12059 GOT_TYPE_STANDARD,
12060 object, r_addend);
12061 gp_offset = target->got_section()->gp_offset(got_offset, object);
12062 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
12063 this->calculate_only_,
12064 &this->calculated_value_);
12065 update_got_entry = changed_symbol_value;
12066 break;
12067
12068 case elfcpp::R_MIPS_GOT_DISP:
12069 case elfcpp::R_MICROMIPS_GOT_DISP:
12070 case elfcpp::R_MIPS_EH:
12071 if (gsym != NULL)
12072 got_offset = target->got_section()->got_offset(gsym,
12073 GOT_TYPE_STANDARD,
12074 object);
12075 else
12076 got_offset = target->got_section()->got_offset(r_sym,
12077 GOT_TYPE_STANDARD,
12078 object, r_addend);
12079 gp_offset = target->got_section()->gp_offset(got_offset, object);
12080 if (eh_reloc(r_types[i]))
12081 reloc_status = Reloc_funcs::releh(view, gp_offset,
12082 this->calculate_only_,
12083 &this->calculated_value_);
12084 else
12085 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12086 this->calculate_only_,
12087 &this->calculated_value_);
12088 break;
12089 case elfcpp::R_MIPS_CALL16:
12090 case elfcpp::R_MIPS16_CALL16:
12091 case elfcpp::R_MICROMIPS_CALL16:
12092 gold_assert(gsym != NULL);
12093 got_offset = target->got_section()->got_offset(gsym,
12094 GOT_TYPE_STANDARD,
12095 object);
12096 gp_offset = target->got_section()->gp_offset(got_offset, object);
12097 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12098 this->calculate_only_,
12099 &this->calculated_value_);
12100 // TODO(sasa): We should also initialize update_got_entry
12101 // in other place swhere relgot is called.
12102 update_got_entry = changed_symbol_value;
12103 break;
12104
12105 case elfcpp::R_MIPS_GOT16:
12106 case elfcpp::R_MIPS16_GOT16:
12107 case elfcpp::R_MICROMIPS_GOT16:
12108 if (gsym != NULL)
12109 {
12110 got_offset = target->got_section()->got_offset(gsym,
12111 GOT_TYPE_STANDARD,
12112 object);
12113 gp_offset = target->got_section()->gp_offset(got_offset, object);
12114 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12115 this->calculate_only_,
12116 &this->calculated_value_);
12117 }
12118 else
12119 {
12120 if (rel_type == elfcpp::SHT_RELA)
12121 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12122 psymval, r_addend,
12123 extract_addend, 0,
12124 target,
12125 this->calculate_only_,
12126 &this->calculated_value_);
12127 else if (rel_type == elfcpp::SHT_REL)
12128 reloc_status = Reloc_funcs::relgot16_local(view, object,
12129 psymval, r_addend,
12130 extract_addend,
12131 r_types[i], r_sym);
12132 else
12133 gold_unreachable();
12134 }
12135 update_got_entry = changed_symbol_value;
12136 break;
12137
12138 case elfcpp::R_MIPS_TLS_GD:
12139 case elfcpp::R_MIPS16_TLS_GD:
12140 case elfcpp::R_MICROMIPS_TLS_GD:
12141 if (gsym != NULL)
12142 got_offset = target->got_section()->got_offset(gsym,
12143 GOT_TYPE_TLS_PAIR,
12144 object);
12145 else
12146 got_offset = target->got_section()->got_offset(r_sym,
12147 GOT_TYPE_TLS_PAIR,
12148 object, r_addend);
12149 gp_offset = target->got_section()->gp_offset(got_offset, object);
12150 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12151 this->calculate_only_,
12152 &this->calculated_value_);
12153 break;
12154
12155 case elfcpp::R_MIPS_TLS_GOTTPREL:
12156 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12157 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12158 if (gsym != NULL)
12159 got_offset = target->got_section()->got_offset(gsym,
12160 GOT_TYPE_TLS_OFFSET,
12161 object);
12162 else
12163 got_offset = target->got_section()->got_offset(r_sym,
12164 GOT_TYPE_TLS_OFFSET,
12165 object, r_addend);
12166 gp_offset = target->got_section()->gp_offset(got_offset, object);
12167 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12168 this->calculate_only_,
12169 &this->calculated_value_);
12170 break;
12171
12172 case elfcpp::R_MIPS_TLS_LDM:
12173 case elfcpp::R_MIPS16_TLS_LDM:
12174 case elfcpp::R_MICROMIPS_TLS_LDM:
12175 // Relocate the field with the offset of the GOT entry for
12176 // the module index.
12177 got_offset = target->got_section()->tls_ldm_offset(object);
12178 gp_offset = target->got_section()->gp_offset(got_offset, object);
12179 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12180 this->calculate_only_,
12181 &this->calculated_value_);
12182 break;
12183
12184 case elfcpp::R_MIPS_GOT_PAGE:
12185 case elfcpp::R_MICROMIPS_GOT_PAGE:
12186 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12187 r_addend, extract_addend,
12188 this->calculate_only_,
12189 &this->calculated_value_);
12190 break;
12191
12192 case elfcpp::R_MIPS_GOT_OFST:
12193 case elfcpp::R_MICROMIPS_GOT_OFST:
12194 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12195 r_addend, extract_addend,
12196 local, this->calculate_only_,
12197 &this->calculated_value_);
12198 break;
12199
12200 case elfcpp::R_MIPS_JALR:
12201 case elfcpp::R_MICROMIPS_JALR:
12202 // This relocation is only a hint. In some cases, we optimize
12203 // it into a bal instruction. But we don't try to optimize
12204 // when the symbol does not resolve locally.
12205 if (gsym == NULL
12206 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12207 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12208 r_addend, extract_addend,
12209 cross_mode_jump, r_types[i],
12210 target->jalr_to_bal(),
12211 target->jr_to_b(),
12212 this->calculate_only_,
12213 &this->calculated_value_);
12214 break;
12215
12216 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12217 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12218 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12219 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12220 elfcpp::DTP_OFFSET, r_addend,
12221 extract_addend,
12222 this->calculate_only_,
12223 &this->calculated_value_);
12224 break;
12225 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12226 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12227 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12228 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12229 elfcpp::DTP_OFFSET, r_addend,
12230 extract_addend,
12231 this->calculate_only_,
12232 &this->calculated_value_);
12233 break;
12234 case elfcpp::R_MIPS_TLS_DTPREL32:
12235 case elfcpp::R_MIPS_TLS_DTPREL64:
12236 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12237 elfcpp::DTP_OFFSET, r_addend,
12238 extract_addend,
12239 this->calculate_only_,
12240 &this->calculated_value_);
12241 break;
12242 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12243 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12244 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12245 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12246 elfcpp::TP_OFFSET, r_addend,
12247 extract_addend,
12248 this->calculate_only_,
12249 &this->calculated_value_);
12250 break;
12251 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12252 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12253 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12254 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12255 elfcpp::TP_OFFSET, r_addend,
12256 extract_addend,
12257 this->calculate_only_,
12258 &this->calculated_value_);
12259 break;
12260 case elfcpp::R_MIPS_TLS_TPREL32:
12261 case elfcpp::R_MIPS_TLS_TPREL64:
12262 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12263 elfcpp::TP_OFFSET, r_addend,
12264 extract_addend,
12265 this->calculate_only_,
12266 &this->calculated_value_);
12267 break;
12268 case elfcpp::R_MIPS_SUB:
12269 case elfcpp::R_MICROMIPS_SUB:
12270 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12271 extract_addend,
12272 this->calculate_only_,
12273 &this->calculated_value_);
12274 break;
12275 case elfcpp::R_MIPS_HIGHER:
12276 case elfcpp::R_MICROMIPS_HIGHER:
12277 reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12278 extract_addend,
12279 this->calculate_only_,
12280 &this->calculated_value_);
12281 break;
12282 case elfcpp::R_MIPS_HIGHEST:
12283 case elfcpp::R_MICROMIPS_HIGHEST:
12284 reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12285 r_addend, extract_addend,
12286 this->calculate_only_,
12287 &this->calculated_value_);
12288 break;
12289 default:
12290 gold_error_at_location(relinfo, relnum, r_offset,
12291 _("unsupported reloc %u"), r_types[i]);
12292 break;
12293 }
12294
12295 if (update_got_entry)
12296 {
12297 Mips_output_data_got<size, big_endian>* got = target->got_section();
12298 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12299 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12300 psymval->value(object, 0));
12301 else
12302 got->update_got_entry(got_offset, psymval->value(object, 0));
12303 }
12304 }
12305
12306 bool jal_shuffle = jal_reloc(r_type);
12307 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12308
12309 // Report any errors.
12310 switch (reloc_status)
12311 {
12312 case Reloc_funcs::STATUS_OKAY:
12313 break;
12314 case Reloc_funcs::STATUS_OVERFLOW:
12315 if (gsym == NULL)
12316 gold_error_at_location(relinfo, relnum, r_offset,
12317 _("relocation overflow: "
12318 "%u against local symbol %u in %s"),
12319 r_type, r_sym, object->name().c_str());
12320 else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12321 gold_error_at_location(relinfo, relnum, r_offset,
12322 _("relocation overflow: "
12323 "%u against '%s' defined in %s"),
12324 r_type, gsym->demangled_name().c_str(),
12325 gsym->object()->name().c_str());
12326 else
12327 gold_error_at_location(relinfo, relnum, r_offset,
12328 _("relocation overflow: %u against '%s'"),
12329 r_type, gsym->demangled_name().c_str());
12330 break;
12331 case Reloc_funcs::STATUS_BAD_RELOC:
12332 gold_error_at_location(relinfo, relnum, r_offset,
12333 _("unexpected opcode while processing relocation"));
12334 break;
12335 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12336 gold_error_at_location(relinfo, relnum, r_offset,
12337 _("unaligned PC-relative relocation"));
12338 break;
12339 default:
12340 gold_unreachable();
12341 }
12342
12343 return true;
12344 }
12345
12346 // Get the Reference_flags for a particular relocation.
12347
12348 template<int size, bool big_endian>
12349 int
12350 Target_mips<size, big_endian>::Scan::get_reference_flags(
12351 unsigned int r_type)
12352 {
12353 switch (r_type)
12354 {
12355 case elfcpp::R_MIPS_NONE:
12356 // No symbol reference.
12357 return 0;
12358
12359 case elfcpp::R_MIPS_16:
12360 case elfcpp::R_MIPS_32:
12361 case elfcpp::R_MIPS_64:
12362 case elfcpp::R_MIPS_HI16:
12363 case elfcpp::R_MIPS_LO16:
12364 case elfcpp::R_MIPS_HIGHER:
12365 case elfcpp::R_MIPS_HIGHEST:
12366 case elfcpp::R_MIPS16_HI16:
12367 case elfcpp::R_MIPS16_LO16:
12368 case elfcpp::R_MICROMIPS_HI16:
12369 case elfcpp::R_MICROMIPS_LO16:
12370 case elfcpp::R_MICROMIPS_HIGHER:
12371 case elfcpp::R_MICROMIPS_HIGHEST:
12372 return Symbol::ABSOLUTE_REF;
12373
12374 case elfcpp::R_MIPS_26:
12375 case elfcpp::R_MIPS16_26:
12376 case elfcpp::R_MICROMIPS_26_S1:
12377 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12378
12379 case elfcpp::R_MIPS_PC18_S3:
12380 case elfcpp::R_MIPS_PC19_S2:
12381 case elfcpp::R_MIPS_PCHI16:
12382 case elfcpp::R_MIPS_PCLO16:
12383 case elfcpp::R_MIPS_GPREL32:
12384 case elfcpp::R_MIPS_GPREL16:
12385 case elfcpp::R_MIPS_REL32:
12386 case elfcpp::R_MIPS16_GPREL:
12387 return Symbol::RELATIVE_REF;
12388
12389 case elfcpp::R_MIPS_PC16:
12390 case elfcpp::R_MIPS_PC32:
12391 case elfcpp::R_MIPS_PC21_S2:
12392 case elfcpp::R_MIPS_PC26_S2:
12393 case elfcpp::R_MIPS_JALR:
12394 case elfcpp::R_MICROMIPS_JALR:
12395 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12396
12397 case elfcpp::R_MIPS_GOT16:
12398 case elfcpp::R_MIPS_CALL16:
12399 case elfcpp::R_MIPS_GOT_DISP:
12400 case elfcpp::R_MIPS_GOT_HI16:
12401 case elfcpp::R_MIPS_GOT_LO16:
12402 case elfcpp::R_MIPS_CALL_HI16:
12403 case elfcpp::R_MIPS_CALL_LO16:
12404 case elfcpp::R_MIPS_LITERAL:
12405 case elfcpp::R_MIPS_GOT_PAGE:
12406 case elfcpp::R_MIPS_GOT_OFST:
12407 case elfcpp::R_MIPS16_GOT16:
12408 case elfcpp::R_MIPS16_CALL16:
12409 case elfcpp::R_MICROMIPS_GOT16:
12410 case elfcpp::R_MICROMIPS_CALL16:
12411 case elfcpp::R_MICROMIPS_GOT_HI16:
12412 case elfcpp::R_MICROMIPS_GOT_LO16:
12413 case elfcpp::R_MICROMIPS_CALL_HI16:
12414 case elfcpp::R_MICROMIPS_CALL_LO16:
12415 case elfcpp::R_MIPS_EH:
12416 // Absolute in GOT.
12417 return Symbol::RELATIVE_REF;
12418
12419 case elfcpp::R_MIPS_TLS_DTPMOD32:
12420 case elfcpp::R_MIPS_TLS_DTPREL32:
12421 case elfcpp::R_MIPS_TLS_DTPMOD64:
12422 case elfcpp::R_MIPS_TLS_DTPREL64:
12423 case elfcpp::R_MIPS_TLS_GD:
12424 case elfcpp::R_MIPS_TLS_LDM:
12425 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12426 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12427 case elfcpp::R_MIPS_TLS_GOTTPREL:
12428 case elfcpp::R_MIPS_TLS_TPREL32:
12429 case elfcpp::R_MIPS_TLS_TPREL64:
12430 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12431 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12432 case elfcpp::R_MIPS16_TLS_GD:
12433 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12434 case elfcpp::R_MICROMIPS_TLS_GD:
12435 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12436 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12437 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12438 return Symbol::TLS_REF;
12439
12440 case elfcpp::R_MIPS_COPY:
12441 case elfcpp::R_MIPS_JUMP_SLOT:
12442 default:
12443 // Not expected. We will give an error later.
12444 return 0;
12445 }
12446 }
12447
12448 // Report an unsupported relocation against a local symbol.
12449
12450 template<int size, bool big_endian>
12451 void
12452 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12453 Sized_relobj_file<size, big_endian>* object,
12454 unsigned int r_type)
12455 {
12456 gold_error(_("%s: unsupported reloc %u against local symbol"),
12457 object->name().c_str(), r_type);
12458 }
12459
12460 // Report an unsupported relocation against a global symbol.
12461
12462 template<int size, bool big_endian>
12463 void
12464 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12465 Sized_relobj_file<size, big_endian>* object,
12466 unsigned int r_type,
12467 Symbol* gsym)
12468 {
12469 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12470 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12471 }
12472
12473 // Return printable name for ABI.
12474 template<int size, bool big_endian>
12475 const char*
12476 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12477 {
12478 switch (e_flags & elfcpp::EF_MIPS_ABI)
12479 {
12480 case 0:
12481 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12482 return "N32";
12483 else if (size == 64)
12484 return "64";
12485 else
12486 return "none";
12487 case elfcpp::E_MIPS_ABI_O32:
12488 return "O32";
12489 case elfcpp::E_MIPS_ABI_O64:
12490 return "O64";
12491 case elfcpp::E_MIPS_ABI_EABI32:
12492 return "EABI32";
12493 case elfcpp::E_MIPS_ABI_EABI64:
12494 return "EABI64";
12495 default:
12496 return "unknown abi";
12497 }
12498 }
12499
12500 template<int size, bool big_endian>
12501 const char*
12502 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12503 {
12504 switch (e_flags & elfcpp::EF_MIPS_MACH)
12505 {
12506 case elfcpp::E_MIPS_MACH_3900:
12507 return "mips:3900";
12508 case elfcpp::E_MIPS_MACH_4010:
12509 return "mips:4010";
12510 case elfcpp::E_MIPS_MACH_4100:
12511 return "mips:4100";
12512 case elfcpp::E_MIPS_MACH_4111:
12513 return "mips:4111";
12514 case elfcpp::E_MIPS_MACH_4120:
12515 return "mips:4120";
12516 case elfcpp::E_MIPS_MACH_4650:
12517 return "mips:4650";
12518 case elfcpp::E_MIPS_MACH_5400:
12519 return "mips:5400";
12520 case elfcpp::E_MIPS_MACH_5500:
12521 return "mips:5500";
12522 case elfcpp::E_MIPS_MACH_5900:
12523 return "mips:5900";
12524 case elfcpp::E_MIPS_MACH_SB1:
12525 return "mips:sb1";
12526 case elfcpp::E_MIPS_MACH_9000:
12527 return "mips:9000";
12528 case elfcpp::E_MIPS_MACH_LS2E:
12529 return "mips:loongson_2e";
12530 case elfcpp::E_MIPS_MACH_LS2F:
12531 return "mips:loongson_2f";
12532 case elfcpp::E_MIPS_MACH_GS464:
12533 return "mips:gs464";
12534 case elfcpp::E_MIPS_MACH_GS464E:
12535 return "mips:gs464e";
12536 case elfcpp::E_MIPS_MACH_OCTEON:
12537 return "mips:octeon";
12538 case elfcpp::E_MIPS_MACH_OCTEON2:
12539 return "mips:octeon2";
12540 case elfcpp::E_MIPS_MACH_OCTEON3:
12541 return "mips:octeon3";
12542 case elfcpp::E_MIPS_MACH_XLR:
12543 return "mips:xlr";
12544 default:
12545 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12546 {
12547 default:
12548 case elfcpp::E_MIPS_ARCH_1:
12549 return "mips:3000";
12550
12551 case elfcpp::E_MIPS_ARCH_2:
12552 return "mips:6000";
12553
12554 case elfcpp::E_MIPS_ARCH_3:
12555 return "mips:4000";
12556
12557 case elfcpp::E_MIPS_ARCH_4:
12558 return "mips:8000";
12559
12560 case elfcpp::E_MIPS_ARCH_5:
12561 return "mips:mips5";
12562
12563 case elfcpp::E_MIPS_ARCH_32:
12564 return "mips:isa32";
12565
12566 case elfcpp::E_MIPS_ARCH_64:
12567 return "mips:isa64";
12568
12569 case elfcpp::E_MIPS_ARCH_32R2:
12570 return "mips:isa32r2";
12571
12572 case elfcpp::E_MIPS_ARCH_32R6:
12573 return "mips:isa32r6";
12574
12575 case elfcpp::E_MIPS_ARCH_64R2:
12576 return "mips:isa64r2";
12577
12578 case elfcpp::E_MIPS_ARCH_64R6:
12579 return "mips:isa64r6";
12580 }
12581 }
12582 return "unknown CPU";
12583 }
12584
12585 template<int size, bool big_endian>
12586 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12587 {
12588 size, // size
12589 big_endian, // is_big_endian
12590 elfcpp::EM_MIPS, // machine_code
12591 true, // has_make_symbol
12592 false, // has_resolve
12593 false, // has_code_fill
12594 true, // is_default_stack_executable
12595 false, // can_icf_inline_merge_sections
12596 '\0', // wrap_char
12597 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12598 0x400000, // default_text_segment_address
12599 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12600 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12601 false, // isolate_execinstr
12602 0, // rosegment_gap
12603 elfcpp::SHN_UNDEF, // small_common_shndx
12604 elfcpp::SHN_UNDEF, // large_common_shndx
12605 0, // small_common_section_flags
12606 0, // large_common_section_flags
12607 NULL, // attributes_section
12608 NULL, // attributes_vendor
12609 "__start", // entry_symbol_name
12610 32, // hash_entry_size
12611 elfcpp::SHT_PROGBITS, // unwind_section_type
12612 };
12613
12614 template<int size, bool big_endian>
12615 class Target_mips_nacl : public Target_mips<size, big_endian>
12616 {
12617 public:
12618 Target_mips_nacl()
12619 : Target_mips<size, big_endian>(&mips_nacl_info)
12620 { }
12621
12622 private:
12623 static const Target::Target_info mips_nacl_info;
12624 };
12625
12626 template<int size, bool big_endian>
12627 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12628 {
12629 size, // size
12630 big_endian, // is_big_endian
12631 elfcpp::EM_MIPS, // machine_code
12632 true, // has_make_symbol
12633 false, // has_resolve
12634 false, // has_code_fill
12635 true, // is_default_stack_executable
12636 false, // can_icf_inline_merge_sections
12637 '\0', // wrap_char
12638 "/lib/ld.so.1", // dynamic_linker
12639 0x20000, // default_text_segment_address
12640 0x10000, // abi_pagesize (overridable by -z max-page-size)
12641 0x10000, // common_pagesize (overridable by -z common-page-size)
12642 true, // isolate_execinstr
12643 0x10000000, // rosegment_gap
12644 elfcpp::SHN_UNDEF, // small_common_shndx
12645 elfcpp::SHN_UNDEF, // large_common_shndx
12646 0, // small_common_section_flags
12647 0, // large_common_section_flags
12648 NULL, // attributes_section
12649 NULL, // attributes_vendor
12650 "_start", // entry_symbol_name
12651 32, // hash_entry_size
12652 elfcpp::SHT_PROGBITS, // unwind_section_type
12653 };
12654
12655 // Target selector for Mips. Note this is never instantiated directly.
12656 // It's only used in Target_selector_mips_nacl, below.
12657
12658 template<int size, bool big_endian>
12659 class Target_selector_mips : public Target_selector
12660 {
12661 public:
12662 Target_selector_mips()
12663 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12664 (size == 64 ?
12665 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12666 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12667 (size == 64 ?
12668 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12669 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12670 { }
12671
12672 Target* do_instantiate_target()
12673 { return new Target_mips<size, big_endian>(); }
12674 };
12675
12676 template<int size, bool big_endian>
12677 class Target_selector_mips_nacl
12678 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12679 Target_mips_nacl<size, big_endian> >
12680 {
12681 public:
12682 Target_selector_mips_nacl()
12683 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12684 Target_mips_nacl<size, big_endian> >(
12685 // NaCl currently supports only MIPS32 little-endian.
12686 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12687 { }
12688 };
12689
12690 Target_selector_mips_nacl<32, true> target_selector_mips32;
12691 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12692 Target_selector_mips_nacl<64, true> target_selector_mips64;
12693 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12694
12695 } // End anonymous namespace.
This page took 0.29981 seconds and 3 git commands to generate.