Add support for Mips32r6 and Mips64r6.
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2016 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_data_la25_stub;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_mips_stubs;
71
72 template<int size>
73 class Mips_symbol;
74
75 template<int size, bool big_endian>
76 class Mips_got_info;
77
78 template<int size, bool big_endian>
79 class Mips_relobj;
80
81 class Mips16_stub_section_base;
82
83 template<int size, bool big_endian>
84 class Mips16_stub_section;
85
86 // The ABI says that every symbol used by dynamic relocations must have
87 // a global GOT entry. Among other things, this provides the dynamic
88 // linker with a free, directly-indexed cache. The GOT can therefore
89 // contain symbols that are not referenced by GOT relocations themselves
90 // (in other words, it may have symbols that are not referenced by things
91 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
92
93 // GOT relocations are less likely to overflow if we put the associated
94 // GOT entries towards the beginning. We therefore divide the global
95 // GOT entries into two areas: "normal" and "reloc-only". Entries in
96 // the first area can be used for both dynamic relocations and GP-relative
97 // accesses, while those in the "reloc-only" area are for dynamic
98 // relocations only.
99
100 // These GGA_* ("Global GOT Area") values are organised so that lower
101 // values are more general than higher values. Also, non-GGA_NONE
102 // values are ordered by the position of the area in the GOT.
103
104 enum Global_got_area
105 {
106 GGA_NORMAL = 0,
107 GGA_RELOC_ONLY = 1,
108 GGA_NONE = 2
109 };
110
111 // The types of GOT entries needed for this platform.
112 // These values are exposed to the ABI in an incremental link.
113 // Do not renumber existing values without changing the version
114 // number of the .gnu_incremental_inputs section.
115 enum Got_type
116 {
117 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
118 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
119 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
120
121 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
122 GOT_TYPE_STANDARD_MULTIGOT = 3,
123 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
124 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
125 };
126
127 // TLS type of GOT entry.
128 enum Got_tls_type
129 {
130 GOT_TLS_NONE = 0,
131 GOT_TLS_GD = 1,
132 GOT_TLS_LDM = 2,
133 GOT_TLS_IE = 4
134 };
135
136 // Values found in the r_ssym field of a relocation entry.
137 enum Special_relocation_symbol
138 {
139 RSS_UNDEF = 0, // None - value is zero.
140 RSS_GP = 1, // Value of GP.
141 RSS_GP0 = 2, // Value of GP in object being relocated.
142 RSS_LOC = 3 // Address of location being relocated.
143 };
144
145 // Whether the section is readonly.
146 static inline bool
147 is_readonly_section(Output_section* output_section)
148 {
149 elfcpp::Elf_Xword section_flags = output_section->flags();
150 elfcpp::Elf_Word section_type = output_section->type();
151
152 if (section_type == elfcpp::SHT_NOBITS)
153 return false;
154
155 if (section_flags & elfcpp::SHF_WRITE)
156 return false;
157
158 return true;
159 }
160
161 // Return TRUE if a relocation of type R_TYPE from OBJECT might
162 // require an la25 stub. See also local_pic_function, which determines
163 // whether the destination function ever requires a stub.
164 template<int size, bool big_endian>
165 static inline bool
166 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
167 unsigned int r_type, bool target_is_16_bit_code)
168 {
169 // We specifically ignore branches and jumps from EF_PIC objects,
170 // where the onus is on the compiler or programmer to perform any
171 // necessary initialization of $25. Sometimes such initialization
172 // is unnecessary; for example, -mno-shared functions do not use
173 // the incoming value of $25, and may therefore be called directly.
174 if (object->is_pic())
175 return false;
176
177 switch (r_type)
178 {
179 case elfcpp::R_MIPS_26:
180 case elfcpp::R_MIPS_PC16:
181 case elfcpp::R_MIPS_PC21_S2:
182 case elfcpp::R_MIPS_PC26_S2:
183 case elfcpp::R_MICROMIPS_26_S1:
184 case elfcpp::R_MICROMIPS_PC7_S1:
185 case elfcpp::R_MICROMIPS_PC10_S1:
186 case elfcpp::R_MICROMIPS_PC16_S1:
187 case elfcpp::R_MICROMIPS_PC23_S2:
188 return true;
189
190 case elfcpp::R_MIPS16_26:
191 return !target_is_16_bit_code;
192
193 default:
194 return false;
195 }
196 }
197
198 // Return true if SYM is a locally-defined PIC function, in the sense
199 // that it or its fn_stub might need $25 to be valid on entry.
200 // Note that MIPS16 functions set up $gp using PC-relative instructions,
201 // so they themselves never need $25 to be valid. Only non-MIPS16
202 // entry points are of interest here.
203 template<int size, bool big_endian>
204 static inline bool
205 local_pic_function(Mips_symbol<size>* sym)
206 {
207 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
208 && !sym->object()->is_dynamic()
209 && !sym->is_undefined());
210
211 if (sym->is_defined() && def_regular)
212 {
213 Mips_relobj<size, big_endian>* object =
214 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
215
216 if ((object->is_pic() || sym->is_pic())
217 && (!sym->is_mips16()
218 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
219 return true;
220 }
221 return false;
222 }
223
224 static inline bool
225 hi16_reloc(int r_type)
226 {
227 return (r_type == elfcpp::R_MIPS_HI16
228 || r_type == elfcpp::R_MIPS16_HI16
229 || r_type == elfcpp::R_MICROMIPS_HI16
230 || r_type == elfcpp::R_MIPS_PCHI16);
231 }
232
233 static inline bool
234 lo16_reloc(int r_type)
235 {
236 return (r_type == elfcpp::R_MIPS_LO16
237 || r_type == elfcpp::R_MIPS16_LO16
238 || r_type == elfcpp::R_MICROMIPS_LO16
239 || r_type == elfcpp::R_MIPS_PCLO16);
240 }
241
242 static inline bool
243 got16_reloc(unsigned int r_type)
244 {
245 return (r_type == elfcpp::R_MIPS_GOT16
246 || r_type == elfcpp::R_MIPS16_GOT16
247 || r_type == elfcpp::R_MICROMIPS_GOT16);
248 }
249
250 static inline bool
251 call_lo16_reloc(unsigned int r_type)
252 {
253 return (r_type == elfcpp::R_MIPS_CALL_LO16
254 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
255 }
256
257 static inline bool
258 got_lo16_reloc(unsigned int r_type)
259 {
260 return (r_type == elfcpp::R_MIPS_GOT_LO16
261 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
262 }
263
264 static inline bool
265 eh_reloc(unsigned int r_type)
266 {
267 return (r_type == elfcpp::R_MIPS_EH);
268 }
269
270 static inline bool
271 got_disp_reloc(unsigned int r_type)
272 {
273 return (r_type == elfcpp::R_MIPS_GOT_DISP
274 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
275 }
276
277 static inline bool
278 got_page_reloc(unsigned int r_type)
279 {
280 return (r_type == elfcpp::R_MIPS_GOT_PAGE
281 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
282 }
283
284 static inline bool
285 tls_gd_reloc(unsigned int r_type)
286 {
287 return (r_type == elfcpp::R_MIPS_TLS_GD
288 || r_type == elfcpp::R_MIPS16_TLS_GD
289 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
290 }
291
292 static inline bool
293 tls_gottprel_reloc(unsigned int r_type)
294 {
295 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
296 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
297 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
298 }
299
300 static inline bool
301 tls_ldm_reloc(unsigned int r_type)
302 {
303 return (r_type == elfcpp::R_MIPS_TLS_LDM
304 || r_type == elfcpp::R_MIPS16_TLS_LDM
305 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
306 }
307
308 static inline bool
309 mips16_call_reloc(unsigned int r_type)
310 {
311 return (r_type == elfcpp::R_MIPS16_26
312 || r_type == elfcpp::R_MIPS16_CALL16);
313 }
314
315 static inline bool
316 jal_reloc(unsigned int r_type)
317 {
318 return (r_type == elfcpp::R_MIPS_26
319 || r_type == elfcpp::R_MIPS16_26
320 || r_type == elfcpp::R_MICROMIPS_26_S1);
321 }
322
323 static inline bool
324 micromips_branch_reloc(unsigned int r_type)
325 {
326 return (r_type == elfcpp::R_MICROMIPS_26_S1
327 || r_type == elfcpp::R_MICROMIPS_PC16_S1
328 || r_type == elfcpp::R_MICROMIPS_PC10_S1
329 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
330 }
331
332 // Check if R_TYPE is a MIPS16 reloc.
333 static inline bool
334 mips16_reloc(unsigned int r_type)
335 {
336 switch (r_type)
337 {
338 case elfcpp::R_MIPS16_26:
339 case elfcpp::R_MIPS16_GPREL:
340 case elfcpp::R_MIPS16_GOT16:
341 case elfcpp::R_MIPS16_CALL16:
342 case elfcpp::R_MIPS16_HI16:
343 case elfcpp::R_MIPS16_LO16:
344 case elfcpp::R_MIPS16_TLS_GD:
345 case elfcpp::R_MIPS16_TLS_LDM:
346 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
347 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
348 case elfcpp::R_MIPS16_TLS_GOTTPREL:
349 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
351 return true;
352
353 default:
354 return false;
355 }
356 }
357
358 // Check if R_TYPE is a microMIPS reloc.
359 static inline bool
360 micromips_reloc(unsigned int r_type)
361 {
362 switch (r_type)
363 {
364 case elfcpp::R_MICROMIPS_26_S1:
365 case elfcpp::R_MICROMIPS_HI16:
366 case elfcpp::R_MICROMIPS_LO16:
367 case elfcpp::R_MICROMIPS_GPREL16:
368 case elfcpp::R_MICROMIPS_LITERAL:
369 case elfcpp::R_MICROMIPS_GOT16:
370 case elfcpp::R_MICROMIPS_PC7_S1:
371 case elfcpp::R_MICROMIPS_PC10_S1:
372 case elfcpp::R_MICROMIPS_PC16_S1:
373 case elfcpp::R_MICROMIPS_CALL16:
374 case elfcpp::R_MICROMIPS_GOT_DISP:
375 case elfcpp::R_MICROMIPS_GOT_PAGE:
376 case elfcpp::R_MICROMIPS_GOT_OFST:
377 case elfcpp::R_MICROMIPS_GOT_HI16:
378 case elfcpp::R_MICROMIPS_GOT_LO16:
379 case elfcpp::R_MICROMIPS_SUB:
380 case elfcpp::R_MICROMIPS_HIGHER:
381 case elfcpp::R_MICROMIPS_HIGHEST:
382 case elfcpp::R_MICROMIPS_CALL_HI16:
383 case elfcpp::R_MICROMIPS_CALL_LO16:
384 case elfcpp::R_MICROMIPS_SCN_DISP:
385 case elfcpp::R_MICROMIPS_JALR:
386 case elfcpp::R_MICROMIPS_HI0_LO16:
387 case elfcpp::R_MICROMIPS_TLS_GD:
388 case elfcpp::R_MICROMIPS_TLS_LDM:
389 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
390 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
391 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
392 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
394 case elfcpp::R_MICROMIPS_GPREL7_S2:
395 case elfcpp::R_MICROMIPS_PC23_S2:
396 return true;
397
398 default:
399 return false;
400 }
401 }
402
403 static inline bool
404 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
405 {
406 switch (high_reloc)
407 {
408 case elfcpp::R_MIPS_HI16:
409 case elfcpp::R_MIPS_GOT16:
410 return lo16_reloc == elfcpp::R_MIPS_LO16;
411 case elfcpp::R_MIPS_PCHI16:
412 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
413 case elfcpp::R_MIPS16_HI16:
414 case elfcpp::R_MIPS16_GOT16:
415 return lo16_reloc == elfcpp::R_MIPS16_LO16;
416 case elfcpp::R_MICROMIPS_HI16:
417 case elfcpp::R_MICROMIPS_GOT16:
418 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
419 default:
420 return false;
421 }
422 }
423
424 // This class is used to hold information about one GOT entry.
425 // There are three types of entry:
426 //
427 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
428 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
429 // (2) a SYMBOL address, where SYMBOL is not local to an input object
430 // (sym != NULL, symndx == -1)
431 // (3) a TLS LDM slot (there's only one of these per GOT.)
432 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
433
434 template<int size, bool big_endian>
435 class Mips_got_entry
436 {
437 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
438
439 public:
440 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
441 Mips_address addend, unsigned char tls_type,
442 unsigned int shndx, bool is_section_symbol)
443 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
444 is_section_symbol_(is_section_symbol), shndx_(shndx)
445 { this->d.object = object; }
446
447 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
448 : addend_(0), symndx_(-1U), tls_type_(tls_type),
449 is_section_symbol_(false), shndx_(-1U)
450 { this->d.sym = sym; }
451
452 // Return whether this entry is for a local symbol.
453 bool
454 is_for_local_symbol() const
455 { return this->symndx_ != -1U; }
456
457 // Return whether this entry is for a global symbol.
458 bool
459 is_for_global_symbol() const
460 { return this->symndx_ == -1U; }
461
462 // Return the hash of this entry.
463 size_t
464 hash() const
465 {
466 if (this->tls_type_ == GOT_TLS_LDM)
467 return this->symndx_ + (1 << 18);
468
469 size_t name_hash_value = gold::string_hash<char>(
470 (this->symndx_ != -1U)
471 ? this->d.object->name().c_str()
472 : this->d.sym->name());
473 size_t addend = this->addend_;
474 return name_hash_value ^ this->symndx_ ^ addend;
475 }
476
477 // Return whether this entry is equal to OTHER.
478 bool
479 equals(Mips_got_entry<size, big_endian>* other) const
480 {
481 if (this->tls_type_ == GOT_TLS_LDM)
482 return true;
483
484 return ((this->tls_type_ == other->tls_type_)
485 && (this->symndx_ == other->symndx_)
486 && ((this->symndx_ != -1U)
487 ? (this->d.object == other->d.object)
488 : (this->d.sym == other->d.sym))
489 && (this->addend_ == other->addend_));
490 }
491
492 // Return input object that needs this GOT entry.
493 Mips_relobj<size, big_endian>*
494 object() const
495 {
496 gold_assert(this->symndx_ != -1U);
497 return this->d.object;
498 }
499
500 // Return local symbol index for local GOT entries.
501 unsigned int
502 symndx() const
503 {
504 gold_assert(this->symndx_ != -1U);
505 return this->symndx_;
506 }
507
508 // Return the relocation addend for local GOT entries.
509 Mips_address
510 addend() const
511 { return this->addend_; }
512
513 // Return global symbol for global GOT entries.
514 Mips_symbol<size>*
515 sym() const
516 {
517 gold_assert(this->symndx_ == -1U);
518 return this->d.sym;
519 }
520
521 // Return whether this is a TLS GOT entry.
522 bool
523 is_tls_entry() const
524 { return this->tls_type_ != GOT_TLS_NONE; }
525
526 // Return TLS type of this GOT entry.
527 unsigned char
528 tls_type() const
529 { return this->tls_type_; }
530
531 // Return section index of the local symbol for local GOT entries.
532 unsigned int
533 shndx() const
534 { return this->shndx_; }
535
536 // Return whether this is a STT_SECTION symbol.
537 bool
538 is_section_symbol() const
539 { return this->is_section_symbol_; }
540
541 private:
542 // The addend.
543 Mips_address addend_;
544
545 // The index of the symbol if we have a local symbol; -1 otherwise.
546 unsigned int symndx_;
547
548 union
549 {
550 // The input object for local symbols that needs the GOT entry.
551 Mips_relobj<size, big_endian>* object;
552 // If symndx == -1, the global symbol corresponding to this GOT entry. The
553 // symbol's entry is in the local area if mips_sym->global_got_area is
554 // GGA_NONE, otherwise it is in the global area.
555 Mips_symbol<size>* sym;
556 } d;
557
558 // The TLS type of this GOT entry. An LDM GOT entry will be a local
559 // symbol entry with r_symndx == 0.
560 unsigned char tls_type_;
561
562 // Whether this is a STT_SECTION symbol.
563 bool is_section_symbol_;
564
565 // For local GOT entries, section index of the local symbol.
566 unsigned int shndx_;
567 };
568
569 // Hash for Mips_got_entry.
570
571 template<int size, bool big_endian>
572 class Mips_got_entry_hash
573 {
574 public:
575 size_t
576 operator()(Mips_got_entry<size, big_endian>* entry) const
577 { return entry->hash(); }
578 };
579
580 // Equality for Mips_got_entry.
581
582 template<int size, bool big_endian>
583 class Mips_got_entry_eq
584 {
585 public:
586 bool
587 operator()(Mips_got_entry<size, big_endian>* e1,
588 Mips_got_entry<size, big_endian>* e2) const
589 { return e1->equals(e2); }
590 };
591
592 // Hash for Mips_symbol.
593
594 template<int size>
595 class Mips_symbol_hash
596 {
597 public:
598 size_t
599 operator()(Mips_symbol<size>* sym) const
600 { return sym->hash(); }
601 };
602
603 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
604 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
605 // increasing MIN_ADDEND.
606
607 struct Got_page_range
608 {
609 Got_page_range()
610 : next(NULL), min_addend(0), max_addend(0)
611 { }
612
613 Got_page_range* next;
614 int min_addend;
615 int max_addend;
616
617 // Return the maximum number of GOT page entries required.
618 int
619 get_max_pages()
620 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
621 };
622
623 // Got_page_entry. This class describes the range of addends that are applied
624 // to page relocations against a given symbol.
625
626 struct Got_page_entry
627 {
628 Got_page_entry()
629 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
630 { }
631
632 Got_page_entry(Object* object_, unsigned int symndx_)
633 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
634 { }
635
636 // The input object that needs the GOT page entry.
637 Object* object;
638 // The index of the symbol, as stored in the relocation r_info.
639 unsigned int symndx;
640 // The ranges for this page entry.
641 Got_page_range* ranges;
642 // The maximum number of page entries needed for RANGES.
643 unsigned int num_pages;
644 };
645
646 // Hash for Got_page_entry.
647
648 struct Got_page_entry_hash
649 {
650 size_t
651 operator()(Got_page_entry* entry) const
652 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
653 };
654
655 // Equality for Got_page_entry.
656
657 struct Got_page_entry_eq
658 {
659 bool
660 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
661 {
662 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
663 }
664 };
665
666 // This class is used to hold .got information when linking.
667
668 template<int size, bool big_endian>
669 class Mips_got_info
670 {
671 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
672 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
673 Reloc_section;
674 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
675
676 // Unordered set of GOT entries.
677 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
678 Mips_got_entry_hash<size, big_endian>,
679 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
680
681 // Unordered set of GOT page entries.
682 typedef Unordered_set<Got_page_entry*,
683 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
684
685 // Unordered set of global GOT entries.
686 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
687 Global_got_entry_set;
688
689 public:
690 Mips_got_info()
691 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
692 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
693 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
694 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
695 offset_(0)
696 { }
697
698 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
699 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
700 void
701 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
702 unsigned int symndx, Mips_address addend,
703 unsigned int r_type, unsigned int shndx,
704 bool is_section_symbol);
705
706 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
707 // in OBJECT. FOR_CALL is true if the caller is only interested in
708 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
709 // relocation.
710 void
711 record_global_got_symbol(Mips_symbol<size>* mips_sym,
712 Mips_relobj<size, big_endian>* object,
713 unsigned int r_type, bool dyn_reloc, bool for_call);
714
715 // Add ENTRY to master GOT and to OBJECT's GOT.
716 void
717 record_got_entry(Mips_got_entry<size, big_endian>* entry,
718 Mips_relobj<size, big_endian>* object);
719
720 // Record that OBJECT has a page relocation against symbol SYMNDX and
721 // that ADDEND is the addend for that relocation.
722 void
723 record_got_page_entry(Mips_relobj<size, big_endian>* object,
724 unsigned int symndx, int addend);
725
726 // Create all entries that should be in the local part of the GOT.
727 void
728 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
729
730 // Create GOT page entries.
731 void
732 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
733
734 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
735 void
736 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
737 unsigned int non_reloc_only_global_gotno);
738
739 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
740 void
741 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
742
743 // Create TLS GOT entries.
744 void
745 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
746
747 // Decide whether the symbol needs an entry in the global part of the primary
748 // GOT, setting global_got_area accordingly. Count the number of global
749 // symbols that are in the primary GOT only because they have dynamic
750 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
751 void
752 count_got_symbols(Symbol_table* symtab);
753
754 // Return the offset of GOT page entry for VALUE.
755 unsigned int
756 get_got_page_offset(Mips_address value,
757 Mips_output_data_got<size, big_endian>* got);
758
759 // Count the number of GOT entries required.
760 void
761 count_got_entries();
762
763 // Count the number of GOT entries required by ENTRY. Accumulate the result.
764 void
765 count_got_entry(Mips_got_entry<size, big_endian>* entry);
766
767 // Add FROM's GOT entries.
768 void
769 add_got_entries(Mips_got_info<size, big_endian>* from);
770
771 // Add FROM's GOT page entries.
772 void
773 add_got_page_entries(Mips_got_info<size, big_endian>* from);
774
775 // Return GOT size.
776 unsigned int
777 got_size() const
778 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
779 + this->tls_gotno_) * size/8);
780 }
781
782 // Return the number of local GOT entries.
783 unsigned int
784 local_gotno() const
785 { return this->local_gotno_; }
786
787 // Return the maximum number of page GOT entries needed.
788 unsigned int
789 page_gotno() const
790 { return this->page_gotno_; }
791
792 // Return the number of global GOT entries.
793 unsigned int
794 global_gotno() const
795 { return this->global_gotno_; }
796
797 // Set the number of global GOT entries.
798 void
799 set_global_gotno(unsigned int global_gotno)
800 { this->global_gotno_ = global_gotno; }
801
802 // Return the number of GGA_RELOC_ONLY global GOT entries.
803 unsigned int
804 reloc_only_gotno() const
805 { return this->reloc_only_gotno_; }
806
807 // Return the number of TLS GOT entries.
808 unsigned int
809 tls_gotno() const
810 { return this->tls_gotno_; }
811
812 // Return the GOT type for this GOT. Used for multi-GOT links only.
813 unsigned int
814 multigot_got_type(unsigned int got_type) const
815 {
816 switch (got_type)
817 {
818 case GOT_TYPE_STANDARD:
819 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
820 case GOT_TYPE_TLS_OFFSET:
821 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
822 case GOT_TYPE_TLS_PAIR:
823 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
824 default:
825 gold_unreachable();
826 }
827 }
828
829 // Remove lazy-binding stubs for global symbols in this GOT.
830 void
831 remove_lazy_stubs(Target_mips<size, big_endian>* target);
832
833 // Return offset of this GOT from the start of .got section.
834 unsigned int
835 offset() const
836 { return this->offset_; }
837
838 // Set offset of this GOT from the start of .got section.
839 void
840 set_offset(unsigned int offset)
841 { this->offset_ = offset; }
842
843 // Set index of this GOT in multi-GOT links.
844 void
845 set_index(unsigned int index)
846 { this->index_ = index; }
847
848 // Return next GOT in multi-GOT links.
849 Mips_got_info<size, big_endian>*
850 next() const
851 { return this->next_; }
852
853 // Set next GOT in multi-GOT links.
854 void
855 set_next(Mips_got_info<size, big_endian>* next)
856 { this->next_ = next; }
857
858 // Return the offset of TLS LDM entry for this GOT.
859 unsigned int
860 tls_ldm_offset() const
861 { return this->tls_ldm_offset_; }
862
863 // Set the offset of TLS LDM entry for this GOT.
864 void
865 set_tls_ldm_offset(unsigned int tls_ldm_offset)
866 { this->tls_ldm_offset_ = tls_ldm_offset; }
867
868 Global_got_entry_set&
869 global_got_symbols()
870 { return this->global_got_symbols_; }
871
872 // Return the GOT_TLS_* type required by relocation type R_TYPE.
873 static int
874 mips_elf_reloc_tls_type(unsigned int r_type)
875 {
876 if (tls_gd_reloc(r_type))
877 return GOT_TLS_GD;
878
879 if (tls_ldm_reloc(r_type))
880 return GOT_TLS_LDM;
881
882 if (tls_gottprel_reloc(r_type))
883 return GOT_TLS_IE;
884
885 return GOT_TLS_NONE;
886 }
887
888 // Return the number of GOT slots needed for GOT TLS type TYPE.
889 static int
890 mips_tls_got_entries(unsigned int type)
891 {
892 switch (type)
893 {
894 case GOT_TLS_GD:
895 case GOT_TLS_LDM:
896 return 2;
897
898 case GOT_TLS_IE:
899 return 1;
900
901 case GOT_TLS_NONE:
902 return 0;
903
904 default:
905 gold_unreachable();
906 }
907 }
908
909 private:
910 // The number of local GOT entries.
911 unsigned int local_gotno_;
912 // The maximum number of page GOT entries needed.
913 unsigned int page_gotno_;
914 // The number of global GOT entries.
915 unsigned int global_gotno_;
916 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
917 unsigned int reloc_only_gotno_;
918 // The number of TLS GOT entries.
919 unsigned int tls_gotno_;
920 // The offset of TLS LDM entry for this GOT.
921 unsigned int tls_ldm_offset_;
922 // All symbols that have global GOT entry.
923 Global_got_entry_set global_got_symbols_;
924 // A hash table holding GOT entries.
925 Got_entry_set got_entries_;
926 // A hash table of GOT page entries.
927 Got_page_entry_set got_page_entries_;
928 // The offset of first GOT page entry for this GOT.
929 unsigned int got_page_offset_start_;
930 // The offset of next available GOT page entry for this GOT.
931 unsigned int got_page_offset_next_;
932 // A hash table that maps GOT page entry value to the GOT offset where
933 // the entry is located.
934 Got_page_offsets got_page_offsets_;
935 // In multi-GOT links, a pointer to the next GOT.
936 Mips_got_info<size, big_endian>* next_;
937 // Index of this GOT in multi-GOT links.
938 unsigned int index_;
939 // The offset of this GOT in multi-GOT links.
940 unsigned int offset_;
941 };
942
943 // This is a helper class used during relocation scan. It records GOT16 addend.
944
945 template<int size, bool big_endian>
946 struct got16_addend
947 {
948 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
949
950 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
951 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
952 Mips_address _addend)
953 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
954 addend(_addend)
955 { }
956
957 const Sized_relobj_file<size, big_endian>* object;
958 unsigned int shndx;
959 unsigned int r_type;
960 unsigned int r_sym;
961 Mips_address addend;
962 };
963
964 // .MIPS.abiflags section content
965
966 template<bool big_endian>
967 struct Mips_abiflags
968 {
969 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
970 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
971 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
972
973 Mips_abiflags()
974 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
975 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
976 { }
977
978 // Version of flags structure.
979 Valtype16 version;
980 // The level of the ISA: 1-5, 32, 64.
981 Valtype8 isa_level;
982 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
983 Valtype8 isa_rev;
984 // The size of general purpose registers.
985 Valtype8 gpr_size;
986 // The size of co-processor 1 registers.
987 Valtype8 cpr1_size;
988 // The size of co-processor 2 registers.
989 Valtype8 cpr2_size;
990 // The floating-point ABI.
991 Valtype8 fp_abi;
992 // Processor-specific extension.
993 Valtype32 isa_ext;
994 // Mask of ASEs used.
995 Valtype32 ases;
996 // Mask of general flags.
997 Valtype32 flags1;
998 Valtype32 flags2;
999 };
1000
1001 // Mips_symbol class. Holds additional symbol information needed for Mips.
1002
1003 template<int size>
1004 class Mips_symbol : public Sized_symbol<size>
1005 {
1006 public:
1007 Mips_symbol()
1008 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1009 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1010 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1011 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1012 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1013 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1014 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1015 { }
1016
1017 // Return whether this is a MIPS16 symbol.
1018 bool
1019 is_mips16() const
1020 {
1021 // (st_other & STO_MIPS16) == STO_MIPS16
1022 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1023 == elfcpp::STO_MIPS16 >> 2);
1024 }
1025
1026 // Return whether this is a microMIPS symbol.
1027 bool
1028 is_micromips() const
1029 {
1030 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1031 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1032 == elfcpp::STO_MICROMIPS >> 2);
1033 }
1034
1035 // Return whether the symbol needs MIPS16 fn_stub.
1036 bool
1037 need_fn_stub() const
1038 { return this->need_fn_stub_; }
1039
1040 // Set that the symbol needs MIPS16 fn_stub.
1041 void
1042 set_need_fn_stub()
1043 { this->need_fn_stub_ = true; }
1044
1045 // Return whether this symbol is referenced by branch relocations from
1046 // any non-PIC input file.
1047 bool
1048 has_nonpic_branches() const
1049 { return this->has_nonpic_branches_; }
1050
1051 // Set that this symbol is referenced by branch relocations from
1052 // any non-PIC input file.
1053 void
1054 set_has_nonpic_branches()
1055 { this->has_nonpic_branches_ = true; }
1056
1057 // Return the offset of the la25 stub for this symbol from the start of the
1058 // la25 stub section.
1059 unsigned int
1060 la25_stub_offset() const
1061 { return this->la25_stub_offset_; }
1062
1063 // Set the offset of the la25 stub for this symbol from the start of the
1064 // la25 stub section.
1065 void
1066 set_la25_stub_offset(unsigned int offset)
1067 { this->la25_stub_offset_ = offset; }
1068
1069 // Return whether the symbol has la25 stub. This is true if this symbol is
1070 // for a PIC function, and there are non-PIC branches and jumps to it.
1071 bool
1072 has_la25_stub() const
1073 { return this->la25_stub_offset_ != -1U; }
1074
1075 // Return whether there is a relocation against this symbol that must be
1076 // resolved by the static linker (that is, the relocation cannot possibly
1077 // be made dynamic).
1078 bool
1079 has_static_relocs() const
1080 { return this->has_static_relocs_; }
1081
1082 // Set that there is a relocation against this symbol that must be resolved
1083 // by the static linker (that is, the relocation cannot possibly be made
1084 // dynamic).
1085 void
1086 set_has_static_relocs()
1087 { this->has_static_relocs_ = true; }
1088
1089 // Return whether we must not create a lazy-binding stub for this symbol.
1090 bool
1091 no_lazy_stub() const
1092 { return this->no_lazy_stub_; }
1093
1094 // Set that we must not create a lazy-binding stub for this symbol.
1095 void
1096 set_no_lazy_stub()
1097 { this->no_lazy_stub_ = true; }
1098
1099 // Return the offset of the lazy-binding stub for this symbol from the start
1100 // of .MIPS.stubs section.
1101 unsigned int
1102 lazy_stub_offset() const
1103 { return this->lazy_stub_offset_; }
1104
1105 // Set the offset of the lazy-binding stub for this symbol from the start
1106 // of .MIPS.stubs section.
1107 void
1108 set_lazy_stub_offset(unsigned int offset)
1109 { this->lazy_stub_offset_ = offset; }
1110
1111 // Return whether there are any relocations for this symbol where
1112 // pointer equality matters.
1113 bool
1114 pointer_equality_needed() const
1115 { return this->pointer_equality_needed_; }
1116
1117 // Set that there are relocations for this symbol where pointer equality
1118 // matters.
1119 void
1120 set_pointer_equality_needed()
1121 { this->pointer_equality_needed_ = true; }
1122
1123 // Return global GOT area where this symbol in located.
1124 Global_got_area
1125 global_got_area() const
1126 { return this->global_got_area_; }
1127
1128 // Set global GOT area where this symbol in located.
1129 void
1130 set_global_got_area(Global_got_area global_got_area)
1131 { this->global_got_area_ = global_got_area; }
1132
1133 // Return the global GOT offset for this symbol. For multi-GOT links, this
1134 // returns the offset from the start of .got section to the first GOT entry
1135 // for the symbol. Note that in multi-GOT links the symbol can have entry
1136 // in more than one GOT.
1137 unsigned int
1138 global_gotoffset() const
1139 { return this->global_gotoffset_; }
1140
1141 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1142 // the symbol can have entry in more than one GOT. This method will set
1143 // the offset only if it is less than current offset.
1144 void
1145 set_global_gotoffset(unsigned int offset)
1146 {
1147 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1148 this->global_gotoffset_ = offset;
1149 }
1150
1151 // Return whether all GOT relocations for this symbol are for calls.
1152 bool
1153 got_only_for_calls() const
1154 { return this->got_only_for_calls_; }
1155
1156 // Set that there is a GOT relocation for this symbol that is not for call.
1157 void
1158 set_got_not_only_for_calls()
1159 { this->got_only_for_calls_ = false; }
1160
1161 // Return whether this is a PIC symbol.
1162 bool
1163 is_pic() const
1164 {
1165 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1166 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1167 == (elfcpp::STO_MIPS_PIC >> 2));
1168 }
1169
1170 // Set the flag in st_other field that marks this symbol as PIC.
1171 void
1172 set_pic()
1173 {
1174 if (this->is_mips16())
1175 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1176 this->set_nonvis((this->nonvis()
1177 & ~((elfcpp::STO_MIPS16 >> 2)
1178 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1179 | (elfcpp::STO_MIPS_PIC >> 2));
1180 else
1181 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1182 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1183 | (elfcpp::STO_MIPS_PIC >> 2));
1184 }
1185
1186 // Set the flag in st_other field that marks this symbol as PLT.
1187 void
1188 set_mips_plt()
1189 {
1190 if (this->is_mips16())
1191 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1192 this->set_nonvis((this->nonvis()
1193 & ((elfcpp::STO_MIPS16 >> 2)
1194 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1195 | (elfcpp::STO_MIPS_PLT >> 2));
1196
1197 else
1198 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1199 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1200 | (elfcpp::STO_MIPS_PLT >> 2));
1201 }
1202
1203 // Downcast a base pointer to a Mips_symbol pointer.
1204 static Mips_symbol<size>*
1205 as_mips_sym(Symbol* sym)
1206 { return static_cast<Mips_symbol<size>*>(sym); }
1207
1208 // Downcast a base pointer to a Mips_symbol pointer.
1209 static const Mips_symbol<size>*
1210 as_mips_sym(const Symbol* sym)
1211 { return static_cast<const Mips_symbol<size>*>(sym); }
1212
1213 // Return whether the symbol has lazy-binding stub.
1214 bool
1215 has_lazy_stub() const
1216 { return this->has_lazy_stub_; }
1217
1218 // Set whether the symbol has lazy-binding stub.
1219 void
1220 set_has_lazy_stub(bool has_lazy_stub)
1221 { this->has_lazy_stub_ = has_lazy_stub; }
1222
1223 // Return whether the symbol needs a standard PLT entry.
1224 bool
1225 needs_mips_plt() const
1226 { return this->needs_mips_plt_; }
1227
1228 // Set whether the symbol needs a standard PLT entry.
1229 void
1230 set_needs_mips_plt(bool needs_mips_plt)
1231 { this->needs_mips_plt_ = needs_mips_plt; }
1232
1233 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1234 // entry.
1235 bool
1236 needs_comp_plt() const
1237 { return this->needs_comp_plt_; }
1238
1239 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1240 void
1241 set_needs_comp_plt(bool needs_comp_plt)
1242 { this->needs_comp_plt_ = needs_comp_plt; }
1243
1244 // Return standard PLT entry offset, or -1 if none.
1245 unsigned int
1246 mips_plt_offset() const
1247 { return this->mips_plt_offset_; }
1248
1249 // Set standard PLT entry offset.
1250 void
1251 set_mips_plt_offset(unsigned int mips_plt_offset)
1252 { this->mips_plt_offset_ = mips_plt_offset; }
1253
1254 // Return whether the symbol has standard PLT entry.
1255 bool
1256 has_mips_plt_offset() const
1257 { return this->mips_plt_offset_ != -1U; }
1258
1259 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1260 unsigned int
1261 comp_plt_offset() const
1262 { return this->comp_plt_offset_; }
1263
1264 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1265 void
1266 set_comp_plt_offset(unsigned int comp_plt_offset)
1267 { this->comp_plt_offset_ = comp_plt_offset; }
1268
1269 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1270 bool
1271 has_comp_plt_offset() const
1272 { return this->comp_plt_offset_ != -1U; }
1273
1274 // Return MIPS16 fn stub for a symbol.
1275 template<bool big_endian>
1276 Mips16_stub_section<size, big_endian>*
1277 get_mips16_fn_stub() const
1278 {
1279 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1280 }
1281
1282 // Set MIPS16 fn stub for a symbol.
1283 void
1284 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1285 { this->mips16_fn_stub_ = stub; }
1286
1287 // Return whether symbol has MIPS16 fn stub.
1288 bool
1289 has_mips16_fn_stub() const
1290 { return this->mips16_fn_stub_ != NULL; }
1291
1292 // Return MIPS16 call stub for a symbol.
1293 template<bool big_endian>
1294 Mips16_stub_section<size, big_endian>*
1295 get_mips16_call_stub() const
1296 {
1297 return static_cast<Mips16_stub_section<size, big_endian>*>(
1298 mips16_call_stub_);
1299 }
1300
1301 // Set MIPS16 call stub for a symbol.
1302 void
1303 set_mips16_call_stub(Mips16_stub_section_base* stub)
1304 { this->mips16_call_stub_ = stub; }
1305
1306 // Return whether symbol has MIPS16 call stub.
1307 bool
1308 has_mips16_call_stub() const
1309 { return this->mips16_call_stub_ != NULL; }
1310
1311 // Return MIPS16 call_fp stub for a symbol.
1312 template<bool big_endian>
1313 Mips16_stub_section<size, big_endian>*
1314 get_mips16_call_fp_stub() const
1315 {
1316 return static_cast<Mips16_stub_section<size, big_endian>*>(
1317 mips16_call_fp_stub_);
1318 }
1319
1320 // Set MIPS16 call_fp stub for a symbol.
1321 void
1322 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1323 { this->mips16_call_fp_stub_ = stub; }
1324
1325 // Return whether symbol has MIPS16 call_fp stub.
1326 bool
1327 has_mips16_call_fp_stub() const
1328 { return this->mips16_call_fp_stub_ != NULL; }
1329
1330 bool
1331 get_applied_secondary_got_fixup() const
1332 { return applied_secondary_got_fixup_; }
1333
1334 void
1335 set_applied_secondary_got_fixup()
1336 { this->applied_secondary_got_fixup_ = true; }
1337
1338 // Return the hash of this symbol.
1339 size_t
1340 hash() const
1341 {
1342 return gold::string_hash<char>(this->name());
1343 }
1344
1345 private:
1346 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1347 // appears in any relocs other than a 16 bit call.
1348 bool need_fn_stub_;
1349
1350 // True if this symbol is referenced by branch relocations from
1351 // any non-PIC input file. This is used to determine whether an
1352 // la25 stub is required.
1353 bool has_nonpic_branches_;
1354
1355 // The offset of the la25 stub for this symbol from the start of the
1356 // la25 stub section.
1357 unsigned int la25_stub_offset_;
1358
1359 // True if there is a relocation against this symbol that must be
1360 // resolved by the static linker (that is, the relocation cannot
1361 // possibly be made dynamic).
1362 bool has_static_relocs_;
1363
1364 // Whether we must not create a lazy-binding stub for this symbol.
1365 // This is true if the symbol has relocations related to taking the
1366 // function's address.
1367 bool no_lazy_stub_;
1368
1369 // The offset of the lazy-binding stub for this symbol from the start of
1370 // .MIPS.stubs section.
1371 unsigned int lazy_stub_offset_;
1372
1373 // True if there are any relocations for this symbol where pointer equality
1374 // matters.
1375 bool pointer_equality_needed_;
1376
1377 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1378 // in the global part of the GOT.
1379 Global_got_area global_got_area_;
1380
1381 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1382 // from the start of .got section to the first GOT entry for the symbol.
1383 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1384 unsigned int global_gotoffset_;
1385
1386 // Whether all GOT relocations for this symbol are for calls.
1387 bool got_only_for_calls_;
1388 // Whether the symbol has lazy-binding stub.
1389 bool has_lazy_stub_;
1390 // Whether the symbol needs a standard PLT entry.
1391 bool needs_mips_plt_;
1392 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1393 bool needs_comp_plt_;
1394 // Standard PLT entry offset, or -1 if none.
1395 unsigned int mips_plt_offset_;
1396 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1397 unsigned int comp_plt_offset_;
1398 // MIPS16 fn stub for a symbol.
1399 Mips16_stub_section_base* mips16_fn_stub_;
1400 // MIPS16 call stub for a symbol.
1401 Mips16_stub_section_base* mips16_call_stub_;
1402 // MIPS16 call_fp stub for a symbol.
1403 Mips16_stub_section_base* mips16_call_fp_stub_;
1404
1405 bool applied_secondary_got_fixup_;
1406 };
1407
1408 // Mips16_stub_section class.
1409
1410 // The mips16 compiler uses a couple of special sections to handle
1411 // floating point arguments.
1412
1413 // Section names that look like .mips16.fn.FNNAME contain stubs that
1414 // copy floating point arguments from the fp regs to the gp regs and
1415 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1416 // call should be redirected to the stub instead. If no 32 bit
1417 // function calls FNNAME, the stub should be discarded. We need to
1418 // consider any reference to the function, not just a call, because
1419 // if the address of the function is taken we will need the stub,
1420 // since the address might be passed to a 32 bit function.
1421
1422 // Section names that look like .mips16.call.FNNAME contain stubs
1423 // that copy floating point arguments from the gp regs to the fp
1424 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1425 // then any 16 bit function that calls FNNAME should be redirected
1426 // to the stub instead. If FNNAME is not a 32 bit function, the
1427 // stub should be discarded.
1428
1429 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1430 // which call FNNAME and then copy the return value from the fp regs
1431 // to the gp regs. These stubs store the return address in $18 while
1432 // calling FNNAME; any function which might call one of these stubs
1433 // must arrange to save $18 around the call. (This case is not
1434 // needed for 32 bit functions that call 16 bit functions, because
1435 // 16 bit functions always return floating point values in both
1436 // $f0/$f1 and $2/$3.)
1437
1438 // Note that in all cases FNNAME might be defined statically.
1439 // Therefore, FNNAME is not used literally. Instead, the relocation
1440 // information will indicate which symbol the section is for.
1441
1442 // We record any stubs that we find in the symbol table.
1443
1444 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1445
1446 class Mips16_stub_section_base { };
1447
1448 template<int size, bool big_endian>
1449 class Mips16_stub_section : public Mips16_stub_section_base
1450 {
1451 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1452
1453 public:
1454 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1455 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1456 found_r_mips_none_(false)
1457 {
1458 gold_assert(object->is_mips16_fn_stub_section(shndx)
1459 || object->is_mips16_call_stub_section(shndx)
1460 || object->is_mips16_call_fp_stub_section(shndx));
1461 }
1462
1463 // Return the object of this stub section.
1464 Mips_relobj<size, big_endian>*
1465 object() const
1466 { return this->object_; }
1467
1468 // Return the size of a section.
1469 uint64_t
1470 section_size() const
1471 { return this->object_->section_size(this->shndx_); }
1472
1473 // Return section index of this stub section.
1474 unsigned int
1475 shndx() const
1476 { return this->shndx_; }
1477
1478 // Return symbol index, if stub is for a local function.
1479 unsigned int
1480 r_sym() const
1481 { return this->r_sym_; }
1482
1483 // Return symbol, if stub is for a global function.
1484 Mips_symbol<size>*
1485 gsym() const
1486 { return this->gsym_; }
1487
1488 // Return whether stub is for a local function.
1489 bool
1490 is_for_local_function() const
1491 { return this->gsym_ == NULL; }
1492
1493 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1494 // is found in the stub section. Try to find stub target.
1495 void
1496 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1497 {
1498 // To find target symbol for this stub, trust the first R_MIPS_NONE
1499 // relocation, if any. Otherwise trust the first relocation, whatever
1500 // its kind.
1501 if (this->found_r_mips_none_)
1502 return;
1503 if (r_type == elfcpp::R_MIPS_NONE)
1504 {
1505 this->r_sym_ = r_sym;
1506 this->gsym_ = NULL;
1507 this->found_r_mips_none_ = true;
1508 }
1509 else if (!is_target_found())
1510 this->r_sym_ = r_sym;
1511 }
1512
1513 // This method is called when a new relocation R_TYPE for global symbol GSYM
1514 // is found in the stub section. Try to find stub target.
1515 void
1516 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1517 {
1518 // To find target symbol for this stub, trust the first R_MIPS_NONE
1519 // relocation, if any. Otherwise trust the first relocation, whatever
1520 // its kind.
1521 if (this->found_r_mips_none_)
1522 return;
1523 if (r_type == elfcpp::R_MIPS_NONE)
1524 {
1525 this->gsym_ = gsym;
1526 this->r_sym_ = 0;
1527 this->found_r_mips_none_ = true;
1528 }
1529 else if (!is_target_found())
1530 this->gsym_ = gsym;
1531 }
1532
1533 // Return whether we found the stub target.
1534 bool
1535 is_target_found() const
1536 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1537
1538 // Return whether this is a fn stub.
1539 bool
1540 is_fn_stub() const
1541 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1542
1543 // Return whether this is a call stub.
1544 bool
1545 is_call_stub() const
1546 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1547
1548 // Return whether this is a call_fp stub.
1549 bool
1550 is_call_fp_stub() const
1551 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1552
1553 // Return the output address.
1554 Mips_address
1555 output_address() const
1556 {
1557 return (this->object_->output_section(this->shndx_)->address()
1558 + this->object_->output_section_offset(this->shndx_));
1559 }
1560
1561 private:
1562 // The object of this stub section.
1563 Mips_relobj<size, big_endian>* object_;
1564 // The section index of this stub section.
1565 unsigned int shndx_;
1566 // The symbol index, if stub is for a local function.
1567 unsigned int r_sym_;
1568 // The symbol, if stub is for a global function.
1569 Mips_symbol<size>* gsym_;
1570 // True if we found R_MIPS_NONE relocation in this stub.
1571 bool found_r_mips_none_;
1572 };
1573
1574 // Mips_relobj class.
1575
1576 template<int size, bool big_endian>
1577 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1578 {
1579 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1580 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1581 Mips16_stubs_int_map;
1582 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1583
1584 public:
1585 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1586 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1587 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1588 processor_specific_flags_(0), local_symbol_is_mips16_(),
1589 local_symbol_is_micromips_(), mips16_stub_sections_(),
1590 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1591 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1592 got_info_(NULL), section_is_mips16_fn_stub_(),
1593 section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1594 pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1595 gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1596 {
1597 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1598 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1599 }
1600
1601 ~Mips_relobj()
1602 { delete this->attributes_section_data_; }
1603
1604 // Downcast a base pointer to a Mips_relobj pointer. This is
1605 // not type-safe but we only use Mips_relobj not the base class.
1606 static Mips_relobj<size, big_endian>*
1607 as_mips_relobj(Relobj* relobj)
1608 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1609
1610 // Downcast a base pointer to a Mips_relobj pointer. This is
1611 // not type-safe but we only use Mips_relobj not the base class.
1612 static const Mips_relobj<size, big_endian>*
1613 as_mips_relobj(const Relobj* relobj)
1614 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1615
1616 // Processor-specific flags in ELF file header. This is valid only after
1617 // reading symbols.
1618 elfcpp::Elf_Word
1619 processor_specific_flags() const
1620 { return this->processor_specific_flags_; }
1621
1622 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1623 // index. This is only valid after do_count_local_symbol is called.
1624 bool
1625 local_symbol_is_mips16(unsigned int r_sym) const
1626 {
1627 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1628 return this->local_symbol_is_mips16_[r_sym];
1629 }
1630
1631 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1632 // index. This is only valid after do_count_local_symbol is called.
1633 bool
1634 local_symbol_is_micromips(unsigned int r_sym) const
1635 {
1636 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1637 return this->local_symbol_is_micromips_[r_sym];
1638 }
1639
1640 // Get or create MIPS16 stub section.
1641 Mips16_stub_section<size, big_endian>*
1642 get_mips16_stub_section(unsigned int shndx)
1643 {
1644 typename Mips16_stubs_int_map::const_iterator it =
1645 this->mips16_stub_sections_.find(shndx);
1646 if (it != this->mips16_stub_sections_.end())
1647 return (*it).second;
1648
1649 Mips16_stub_section<size, big_endian>* stub_section =
1650 new Mips16_stub_section<size, big_endian>(this, shndx);
1651 this->mips16_stub_sections_.insert(
1652 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1653 stub_section->shndx(), stub_section));
1654 return stub_section;
1655 }
1656
1657 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1658 // object doesn't have fn stub for R_SYM.
1659 Mips16_stub_section<size, big_endian>*
1660 get_local_mips16_fn_stub(unsigned int r_sym) const
1661 {
1662 typename Mips16_stubs_int_map::const_iterator it =
1663 this->local_mips16_fn_stubs_.find(r_sym);
1664 if (it != this->local_mips16_fn_stubs_.end())
1665 return (*it).second;
1666 return NULL;
1667 }
1668
1669 // Record that this object has MIPS16 fn stub for local symbol. This method
1670 // is only called if we decided not to discard the stub.
1671 void
1672 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1673 {
1674 gold_assert(stub->is_for_local_function());
1675 unsigned int r_sym = stub->r_sym();
1676 this->local_mips16_fn_stubs_.insert(
1677 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1678 r_sym, stub));
1679 }
1680
1681 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1682 // object doesn't have call stub for R_SYM.
1683 Mips16_stub_section<size, big_endian>*
1684 get_local_mips16_call_stub(unsigned int r_sym) const
1685 {
1686 typename Mips16_stubs_int_map::const_iterator it =
1687 this->local_mips16_call_stubs_.find(r_sym);
1688 if (it != this->local_mips16_call_stubs_.end())
1689 return (*it).second;
1690 return NULL;
1691 }
1692
1693 // Record that this object has MIPS16 call stub for local symbol. This method
1694 // is only called if we decided not to discard the stub.
1695 void
1696 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1697 {
1698 gold_assert(stub->is_for_local_function());
1699 unsigned int r_sym = stub->r_sym();
1700 this->local_mips16_call_stubs_.insert(
1701 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1702 r_sym, stub));
1703 }
1704
1705 // Record that we found "non 16-bit" call relocation against local symbol
1706 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1707 // is one.
1708 void
1709 add_local_non_16bit_call(unsigned int symndx)
1710 { this->local_non_16bit_calls_.insert(symndx); }
1711
1712 // Return true if there is any "non 16-bit" call relocation against local
1713 // symbol SYMNDX in this object.
1714 bool
1715 has_local_non_16bit_call_relocs(unsigned int symndx)
1716 {
1717 return (this->local_non_16bit_calls_.find(symndx)
1718 != this->local_non_16bit_calls_.end());
1719 }
1720
1721 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1722 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1723 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1724 void
1725 add_local_16bit_call(unsigned int symndx)
1726 { this->local_16bit_calls_.insert(symndx); }
1727
1728 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1729 // symbol SYMNDX in this object.
1730 bool
1731 has_local_16bit_call_relocs(unsigned int symndx)
1732 {
1733 return (this->local_16bit_calls_.find(symndx)
1734 != this->local_16bit_calls_.end());
1735 }
1736
1737 // Get gp value that was used to create this object.
1738 Mips_address
1739 gp_value() const
1740 { return this->gp_; }
1741
1742 // Return whether the object is a PIC object.
1743 bool
1744 is_pic() const
1745 { return this->is_pic_; }
1746
1747 // Return whether the object uses N32 ABI.
1748 bool
1749 is_n32() const
1750 { return this->is_n32_; }
1751
1752 // Return whether the object uses N64 ABI.
1753 bool
1754 is_n64() const
1755 { return size == 64; }
1756
1757 // Return whether the object uses NewABI conventions.
1758 bool
1759 is_newabi() const
1760 { return this->is_n32() || this->is_n64(); }
1761
1762 // Return Mips_got_info for this object.
1763 Mips_got_info<size, big_endian>*
1764 get_got_info() const
1765 { return this->got_info_; }
1766
1767 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1768 Mips_got_info<size, big_endian>*
1769 get_or_create_got_info()
1770 {
1771 if (!this->got_info_)
1772 this->got_info_ = new Mips_got_info<size, big_endian>();
1773 return this->got_info_;
1774 }
1775
1776 // Set Mips_got_info for this object.
1777 void
1778 set_got_info(Mips_got_info<size, big_endian>* got_info)
1779 { this->got_info_ = got_info; }
1780
1781 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1782 // after do_read_symbols is called.
1783 bool
1784 is_mips16_stub_section(unsigned int shndx)
1785 {
1786 return (is_mips16_fn_stub_section(shndx)
1787 || is_mips16_call_stub_section(shndx)
1788 || is_mips16_call_fp_stub_section(shndx));
1789 }
1790
1791 // Return TRUE if relocations in section SHNDX can refer directly to a
1792 // MIPS16 function rather than to a hard-float stub. This is only valid
1793 // after do_read_symbols is called.
1794 bool
1795 section_allows_mips16_refs(unsigned int shndx)
1796 {
1797 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1798 }
1799
1800 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1801 // after do_read_symbols is called.
1802 bool
1803 is_mips16_fn_stub_section(unsigned int shndx)
1804 {
1805 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1806 return this->section_is_mips16_fn_stub_[shndx];
1807 }
1808
1809 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1810 // after do_read_symbols is called.
1811 bool
1812 is_mips16_call_stub_section(unsigned int shndx)
1813 {
1814 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1815 return this->section_is_mips16_call_stub_[shndx];
1816 }
1817
1818 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1819 // valid after do_read_symbols is called.
1820 bool
1821 is_mips16_call_fp_stub_section(unsigned int shndx)
1822 {
1823 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1824 return this->section_is_mips16_call_fp_stub_[shndx];
1825 }
1826
1827 // Discard MIPS16 stub secions that are not needed.
1828 void
1829 discard_mips16_stub_sections(Symbol_table* symtab);
1830
1831 // Return whether there is a .reginfo section.
1832 bool
1833 has_reginfo_section() const
1834 { return this->has_reginfo_section_; }
1835
1836 // Return gprmask from the .reginfo section of this object.
1837 Valtype
1838 gprmask() const
1839 { return this->gprmask_; }
1840
1841 // Return cprmask1 from the .reginfo section of this object.
1842 Valtype
1843 cprmask1() const
1844 { return this->cprmask1_; }
1845
1846 // Return cprmask2 from the .reginfo section of this object.
1847 Valtype
1848 cprmask2() const
1849 { return this->cprmask2_; }
1850
1851 // Return cprmask3 from the .reginfo section of this object.
1852 Valtype
1853 cprmask3() const
1854 { return this->cprmask3_; }
1855
1856 // Return cprmask4 from the .reginfo section of this object.
1857 Valtype
1858 cprmask4() const
1859 { return this->cprmask4_; }
1860
1861 // This is the contents of the .MIPS.abiflags section if there is one.
1862 Mips_abiflags<big_endian>*
1863 abiflags()
1864 { return this->abiflags_; }
1865
1866 // This is the contents of the .gnu.attribute section if there is one.
1867 const Attributes_section_data*
1868 attributes_section_data() const
1869 { return this->attributes_section_data_; }
1870
1871 protected:
1872 // Count the local symbols.
1873 void
1874 do_count_local_symbols(Stringpool_template<char>*,
1875 Stringpool_template<char>*);
1876
1877 // Read the symbol information.
1878 void
1879 do_read_symbols(Read_symbols_data* sd);
1880
1881 private:
1882 // The name of the options section.
1883 const char* mips_elf_options_section_name()
1884 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1885
1886 // processor-specific flags in ELF file header.
1887 elfcpp::Elf_Word processor_specific_flags_;
1888
1889 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1890 // This is only valid after do_count_local_symbol is called.
1891 std::vector<bool> local_symbol_is_mips16_;
1892
1893 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1894 // This is only valid after do_count_local_symbol is called.
1895 std::vector<bool> local_symbol_is_micromips_;
1896
1897 // Map from section index to the MIPS16 stub for that section. This contains
1898 // all stubs found in this object.
1899 Mips16_stubs_int_map mips16_stub_sections_;
1900
1901 // Local symbols that have "non 16-bit" call relocation. This relocation
1902 // would need to refer to a MIPS16 fn stub, if there is one.
1903 std::set<unsigned int> local_non_16bit_calls_;
1904
1905 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1906 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1907 // relocation that refers to the stub symbol.
1908 std::set<unsigned int> local_16bit_calls_;
1909
1910 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1911 // This contains only the stubs that we decided not to discard.
1912 Mips16_stubs_int_map local_mips16_fn_stubs_;
1913
1914 // Map from local symbol index to the MIPS16 call stub for that symbol.
1915 // This contains only the stubs that we decided not to discard.
1916 Mips16_stubs_int_map local_mips16_call_stubs_;
1917
1918 // gp value that was used to create this object.
1919 Mips_address gp_;
1920 // Whether the object is a PIC object.
1921 bool is_pic_ : 1;
1922 // Whether the object uses N32 ABI.
1923 bool is_n32_ : 1;
1924 // Whether the object contains a .reginfo section.
1925 bool has_reginfo_section_ : 1;
1926 // The Mips_got_info for this object.
1927 Mips_got_info<size, big_endian>* got_info_;
1928
1929 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1930 // This is only valid after do_read_symbols is called.
1931 std::vector<bool> section_is_mips16_fn_stub_;
1932
1933 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1934 // This is only valid after do_read_symbols is called.
1935 std::vector<bool> section_is_mips16_call_stub_;
1936
1937 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1938 // This is only valid after do_read_symbols is called.
1939 std::vector<bool> section_is_mips16_call_fp_stub_;
1940
1941 // .pdr section index.
1942 unsigned int pdr_shndx_;
1943
1944 // Object attributes if there is a .gnu.attributes section or NULL.
1945 Attributes_section_data* attributes_section_data_;
1946
1947 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1948 Mips_abiflags<big_endian>* abiflags_;
1949
1950 // gprmask from the .reginfo section of this object.
1951 Valtype gprmask_;
1952 // cprmask1 from the .reginfo section of this object.
1953 Valtype cprmask1_;
1954 // cprmask2 from the .reginfo section of this object.
1955 Valtype cprmask2_;
1956 // cprmask3 from the .reginfo section of this object.
1957 Valtype cprmask3_;
1958 // cprmask4 from the .reginfo section of this object.
1959 Valtype cprmask4_;
1960 };
1961
1962 // Mips_output_data_got class.
1963
1964 template<int size, bool big_endian>
1965 class Mips_output_data_got : public Output_data_got<size, big_endian>
1966 {
1967 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1968 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1969 Reloc_section;
1970 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1971
1972 public:
1973 Mips_output_data_got(Target_mips<size, big_endian>* target,
1974 Symbol_table* symtab, Layout* layout)
1975 : Output_data_got<size, big_endian>(), target_(target),
1976 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1977 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1978 secondary_got_relocs_()
1979 {
1980 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1981 this->set_addralign(16);
1982 }
1983
1984 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1985 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1986 void
1987 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1988 unsigned int symndx, Mips_address addend,
1989 unsigned int r_type, unsigned int shndx,
1990 bool is_section_symbol)
1991 {
1992 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1993 r_type, shndx,
1994 is_section_symbol);
1995 }
1996
1997 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1998 // in OBJECT. FOR_CALL is true if the caller is only interested in
1999 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2000 // relocation.
2001 void
2002 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2003 Mips_relobj<size, big_endian>* object,
2004 unsigned int r_type, bool dyn_reloc, bool for_call)
2005 {
2006 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2007 dyn_reloc, for_call);
2008 }
2009
2010 // Record that OBJECT has a page relocation against symbol SYMNDX and
2011 // that ADDEND is the addend for that relocation.
2012 void
2013 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2014 unsigned int symndx, int addend)
2015 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2016
2017 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2018 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2019 // applied in a static link.
2020 void
2021 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2022 Mips_symbol<size>* gsym)
2023 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2024
2025 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2026 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2027 // relocation that needs to be applied in a static link.
2028 void
2029 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2030 Sized_relobj_file<size, big_endian>* relobj,
2031 unsigned int index)
2032 {
2033 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2034 index));
2035 }
2036
2037 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2038 // secondary GOT at OFFSET.
2039 void
2040 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2041 Mips_symbol<size>* gsym)
2042 {
2043 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2044 r_type, gsym));
2045 }
2046
2047 // Update GOT entry at OFFSET with VALUE.
2048 void
2049 update_got_entry(unsigned int offset, Mips_address value)
2050 {
2051 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2052 }
2053
2054 // Return the number of entries in local part of the GOT. This includes
2055 // local entries, page entries and 2 reserved entries.
2056 unsigned int
2057 get_local_gotno() const
2058 {
2059 if (!this->multi_got())
2060 {
2061 return (2 + this->master_got_info_->local_gotno()
2062 + this->master_got_info_->page_gotno());
2063 }
2064 else
2065 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2066 }
2067
2068 // Return dynamic symbol table index of the first symbol with global GOT
2069 // entry.
2070 unsigned int
2071 first_global_got_dynsym_index() const
2072 { return this->first_global_got_dynsym_index_; }
2073
2074 // Set dynamic symbol table index of the first symbol with global GOT entry.
2075 void
2076 set_first_global_got_dynsym_index(unsigned int index)
2077 { this->first_global_got_dynsym_index_ = index; }
2078
2079 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2080 // larger than 64K, create multi-GOT.
2081 void
2082 lay_out_got(Layout* layout, Symbol_table* symtab,
2083 const Input_objects* input_objects);
2084
2085 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2086 void
2087 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2088
2089 // Attempt to merge GOTs of different input objects.
2090 void
2091 merge_gots(const Input_objects* input_objects);
2092
2093 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2094 // this would lead to overflow, true if they were merged successfully.
2095 bool
2096 merge_got_with(Mips_got_info<size, big_endian>* from,
2097 Mips_relobj<size, big_endian>* object,
2098 Mips_got_info<size, big_endian>* to);
2099
2100 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2101 // use OBJECT's GOT.
2102 unsigned int
2103 get_got_page_offset(Mips_address value,
2104 const Mips_relobj<size, big_endian>* object)
2105 {
2106 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2107 ? this->master_got_info_
2108 : object->get_got_info());
2109 gold_assert(g != NULL);
2110 return g->get_got_page_offset(value, this);
2111 }
2112
2113 // Return the GOT offset of type GOT_TYPE of the global symbol
2114 // GSYM. For multi-GOT links, use OBJECT's GOT.
2115 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2116 Mips_relobj<size, big_endian>* object) const
2117 {
2118 if (!this->multi_got())
2119 return gsym->got_offset(got_type);
2120 else
2121 {
2122 Mips_got_info<size, big_endian>* g = object->get_got_info();
2123 gold_assert(g != NULL);
2124 return gsym->got_offset(g->multigot_got_type(got_type));
2125 }
2126 }
2127
2128 // Return the GOT offset of type GOT_TYPE of the local symbol
2129 // SYMNDX.
2130 unsigned int
2131 got_offset(unsigned int symndx, unsigned int got_type,
2132 Sized_relobj_file<size, big_endian>* object,
2133 uint64_t addend) const
2134 { return object->local_got_offset(symndx, got_type, addend); }
2135
2136 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2137 unsigned int
2138 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2139 {
2140 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2141 ? this->master_got_info_
2142 : object->get_got_info());
2143 gold_assert(g != NULL);
2144 return g->tls_ldm_offset();
2145 }
2146
2147 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2148 void
2149 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2150 Mips_relobj<size, big_endian>* object)
2151 {
2152 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2153 ? this->master_got_info_
2154 : object->get_got_info());
2155 gold_assert(g != NULL);
2156 g->set_tls_ldm_offset(tls_ldm_offset);
2157 }
2158
2159 // Return true for multi-GOT links.
2160 bool
2161 multi_got() const
2162 { return this->primary_got_ != NULL; }
2163
2164 // Return the offset of OBJECT's GOT from the start of .got section.
2165 unsigned int
2166 get_got_offset(const Mips_relobj<size, big_endian>* object)
2167 {
2168 if (!this->multi_got())
2169 return 0;
2170 else
2171 {
2172 Mips_got_info<size, big_endian>* g = object->get_got_info();
2173 return g != NULL ? g->offset() : 0;
2174 }
2175 }
2176
2177 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2178 void
2179 add_reloc_only_entries()
2180 { this->master_got_info_->add_reloc_only_entries(this); }
2181
2182 // Return offset of the primary GOT's entry for global symbol.
2183 unsigned int
2184 get_primary_got_offset(const Mips_symbol<size>* sym) const
2185 {
2186 gold_assert(sym->global_got_area() != GGA_NONE);
2187 return (this->get_local_gotno() + sym->dynsym_index()
2188 - this->first_global_got_dynsym_index()) * size/8;
2189 }
2190
2191 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2192 // Input argument GOT_OFFSET is always global offset from the start of
2193 // .got section, for both single and multi-GOT links.
2194 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2195 // links, the return value is object_got_offset - 0x7FF0, where
2196 // object_got_offset is offset in the OBJECT's GOT.
2197 int
2198 gp_offset(unsigned int got_offset,
2199 const Mips_relobj<size, big_endian>* object) const
2200 {
2201 return (this->address() + got_offset
2202 - this->target_->adjusted_gp_value(object));
2203 }
2204
2205 protected:
2206 // Write out the GOT table.
2207 void
2208 do_write(Output_file*);
2209
2210 private:
2211
2212 // This class represent dynamic relocations that need to be applied by
2213 // gold because we are using TLS relocations in a static link.
2214 class Static_reloc
2215 {
2216 public:
2217 Static_reloc(unsigned int got_offset, unsigned int r_type,
2218 Mips_symbol<size>* gsym)
2219 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2220 { this->u_.global.symbol = gsym; }
2221
2222 Static_reloc(unsigned int got_offset, unsigned int r_type,
2223 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2224 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2225 {
2226 this->u_.local.relobj = relobj;
2227 this->u_.local.index = index;
2228 }
2229
2230 // Return the GOT offset.
2231 unsigned int
2232 got_offset() const
2233 { return this->got_offset_; }
2234
2235 // Relocation type.
2236 unsigned int
2237 r_type() const
2238 { return this->r_type_; }
2239
2240 // Whether the symbol is global or not.
2241 bool
2242 symbol_is_global() const
2243 { return this->symbol_is_global_; }
2244
2245 // For a relocation against a global symbol, the global symbol.
2246 Mips_symbol<size>*
2247 symbol() const
2248 {
2249 gold_assert(this->symbol_is_global_);
2250 return this->u_.global.symbol;
2251 }
2252
2253 // For a relocation against a local symbol, the defining object.
2254 Sized_relobj_file<size, big_endian>*
2255 relobj() const
2256 {
2257 gold_assert(!this->symbol_is_global_);
2258 return this->u_.local.relobj;
2259 }
2260
2261 // For a relocation against a local symbol, the local symbol index.
2262 unsigned int
2263 index() const
2264 {
2265 gold_assert(!this->symbol_is_global_);
2266 return this->u_.local.index;
2267 }
2268
2269 private:
2270 // GOT offset of the entry to which this relocation is applied.
2271 unsigned int got_offset_;
2272 // Type of relocation.
2273 unsigned int r_type_;
2274 // Whether this relocation is against a global symbol.
2275 bool symbol_is_global_;
2276 // A global or local symbol.
2277 union
2278 {
2279 struct
2280 {
2281 // For a global symbol, the symbol itself.
2282 Mips_symbol<size>* symbol;
2283 } global;
2284 struct
2285 {
2286 // For a local symbol, the object defining object.
2287 Sized_relobj_file<size, big_endian>* relobj;
2288 // For a local symbol, the symbol index.
2289 unsigned int index;
2290 } local;
2291 } u_;
2292 };
2293
2294 // The target.
2295 Target_mips<size, big_endian>* target_;
2296 // The symbol table.
2297 Symbol_table* symbol_table_;
2298 // The layout.
2299 Layout* layout_;
2300 // Static relocs to be applied to the GOT.
2301 std::vector<Static_reloc> static_relocs_;
2302 // .got section view.
2303 unsigned char* got_view_;
2304 // The dynamic symbol table index of the first symbol with global GOT entry.
2305 unsigned int first_global_got_dynsym_index_;
2306 // The master GOT information.
2307 Mips_got_info<size, big_endian>* master_got_info_;
2308 // The primary GOT information.
2309 Mips_got_info<size, big_endian>* primary_got_;
2310 // Secondary GOT fixups.
2311 std::vector<Static_reloc> secondary_got_relocs_;
2312 };
2313
2314 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2315 // two ways of creating these interfaces. The first is to add:
2316 //
2317 // lui $25,%hi(func)
2318 // j func
2319 // addiu $25,$25,%lo(func)
2320 //
2321 // to a separate trampoline section. The second is to add:
2322 //
2323 // lui $25,%hi(func)
2324 // addiu $25,$25,%lo(func)
2325 //
2326 // immediately before a PIC function "func", but only if a function is at the
2327 // beginning of the section, and the section is not too heavily aligned (i.e we
2328 // would need to add no more than 2 nops before the stub.)
2329 //
2330 // We only create stubs of the first type.
2331
2332 template<int size, bool big_endian>
2333 class Mips_output_data_la25_stub : public Output_section_data
2334 {
2335 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2336
2337 public:
2338 Mips_output_data_la25_stub()
2339 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2340 { }
2341
2342 // Create LA25 stub for a symbol.
2343 void
2344 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2345 Mips_symbol<size>* gsym);
2346
2347 // Return output address of a stub.
2348 Mips_address
2349 stub_address(const Mips_symbol<size>* sym) const
2350 {
2351 gold_assert(sym->has_la25_stub());
2352 return this->address() + sym->la25_stub_offset();
2353 }
2354
2355 protected:
2356 void
2357 do_adjust_output_section(Output_section* os)
2358 { os->set_entsize(0); }
2359
2360 private:
2361 // Template for standard LA25 stub.
2362 static const uint32_t la25_stub_entry[];
2363 // Template for microMIPS LA25 stub.
2364 static const uint32_t la25_stub_micromips_entry[];
2365
2366 // Set the final size.
2367 void
2368 set_final_data_size()
2369 { this->set_data_size(this->symbols_.size() * 16); }
2370
2371 // Create a symbol for SYM stub's value and size, to help make the
2372 // disassembly easier to read.
2373 void
2374 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2375 Target_mips<size, big_endian>* target, uint64_t symsize);
2376
2377 // Write to a map file.
2378 void
2379 do_print_to_mapfile(Mapfile* mapfile) const
2380 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2381
2382 // Write out the LA25 stub section.
2383 void
2384 do_write(Output_file*);
2385
2386 // Symbols that have LA25 stubs.
2387 std::vector<Mips_symbol<size>*> symbols_;
2388 };
2389
2390 // MIPS-specific relocation writer.
2391
2392 template<int sh_type, bool dynamic, int size, bool big_endian>
2393 struct Mips_output_reloc_writer;
2394
2395 template<int sh_type, bool dynamic, bool big_endian>
2396 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2397 {
2398 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2399 typedef std::vector<Output_reloc_type> Relocs;
2400
2401 static void
2402 write(typename Relocs::const_iterator p, unsigned char* pov)
2403 { p->write(pov); }
2404 };
2405
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2408 {
2409 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2410 typedef std::vector<Output_reloc_type> Relocs;
2411
2412 static void
2413 write(typename Relocs::const_iterator p, unsigned char* pov)
2414 {
2415 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2416 orel.put_r_offset(p->get_address());
2417 orel.put_r_sym(p->get_symbol_index());
2418 orel.put_r_ssym(RSS_UNDEF);
2419 orel.put_r_type(p->type());
2420 if (p->type() == elfcpp::R_MIPS_REL32)
2421 orel.put_r_type2(elfcpp::R_MIPS_64);
2422 else
2423 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2424 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2425 }
2426 };
2427
2428 template<int sh_type, bool dynamic, int size, bool big_endian>
2429 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2430 size, big_endian>
2431 {
2432 public:
2433 Mips_output_data_reloc(bool sort_relocs)
2434 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2435 { }
2436
2437 protected:
2438 // Write out the data.
2439 void
2440 do_write(Output_file* of)
2441 {
2442 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2443 big_endian> Writer;
2444 this->template do_write_generic<Writer>(of);
2445 }
2446 };
2447
2448
2449 // A class to handle the PLT data.
2450
2451 template<int size, bool big_endian>
2452 class Mips_output_data_plt : public Output_section_data
2453 {
2454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2455 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2456 size, big_endian> Reloc_section;
2457
2458 public:
2459 // Create the PLT section. The ordinary .got section is an argument,
2460 // since we need to refer to the start.
2461 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2462 Target_mips<size, big_endian>* target)
2463 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2464 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2465 target_(target)
2466 {
2467 this->rel_ = new Reloc_section(false);
2468 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2469 elfcpp::SHF_ALLOC, this->rel_,
2470 ORDER_DYNAMIC_PLT_RELOCS, false);
2471 }
2472
2473 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2474 void
2475 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2476
2477 // Return the .rel.plt section data.
2478 const Reloc_section*
2479 rel_plt() const
2480 { return this->rel_; }
2481
2482 // Return the number of PLT entries.
2483 unsigned int
2484 entry_count() const
2485 { return this->symbols_.size(); }
2486
2487 // Return the offset of the first non-reserved PLT entry.
2488 unsigned int
2489 first_plt_entry_offset() const
2490 { return sizeof(plt0_entry_o32); }
2491
2492 // Return the size of a PLT entry.
2493 unsigned int
2494 plt_entry_size() const
2495 { return sizeof(plt_entry); }
2496
2497 // Set final PLT offsets. For each symbol, determine whether standard or
2498 // compressed (MIPS16 or microMIPS) PLT entry is used.
2499 void
2500 set_plt_offsets();
2501
2502 // Return the offset of the first standard PLT entry.
2503 unsigned int
2504 first_mips_plt_offset() const
2505 { return this->plt_header_size_; }
2506
2507 // Return the offset of the first compressed PLT entry.
2508 unsigned int
2509 first_comp_plt_offset() const
2510 { return this->plt_header_size_ + this->plt_mips_offset_; }
2511
2512 // Return whether there are any standard PLT entries.
2513 bool
2514 has_standard_entries() const
2515 { return this->plt_mips_offset_ > 0; }
2516
2517 // Return the output address of standard PLT entry.
2518 Mips_address
2519 mips_entry_address(const Mips_symbol<size>* sym) const
2520 {
2521 gold_assert (sym->has_mips_plt_offset());
2522 return (this->address() + this->first_mips_plt_offset()
2523 + sym->mips_plt_offset());
2524 }
2525
2526 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2527 Mips_address
2528 comp_entry_address(const Mips_symbol<size>* sym) const
2529 {
2530 gold_assert (sym->has_comp_plt_offset());
2531 return (this->address() + this->first_comp_plt_offset()
2532 + sym->comp_plt_offset());
2533 }
2534
2535 protected:
2536 void
2537 do_adjust_output_section(Output_section* os)
2538 { os->set_entsize(0); }
2539
2540 // Write to a map file.
2541 void
2542 do_print_to_mapfile(Mapfile* mapfile) const
2543 { mapfile->print_output_data(this, _(".plt")); }
2544
2545 private:
2546 // Template for the first PLT entry.
2547 static const uint32_t plt0_entry_o32[];
2548 static const uint32_t plt0_entry_n32[];
2549 static const uint32_t plt0_entry_n64[];
2550 static const uint32_t plt0_entry_micromips_o32[];
2551 static const uint32_t plt0_entry_micromips32_o32[];
2552
2553 // Template for subsequent PLT entries.
2554 static const uint32_t plt_entry[];
2555 static const uint32_t plt_entry_r6[];
2556 static const uint32_t plt_entry_mips16_o32[];
2557 static const uint32_t plt_entry_micromips_o32[];
2558 static const uint32_t plt_entry_micromips32_o32[];
2559
2560 // Set the final size.
2561 void
2562 set_final_data_size()
2563 {
2564 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2565 + this->plt_comp_offset_);
2566 }
2567
2568 // Write out the PLT data.
2569 void
2570 do_write(Output_file*);
2571
2572 // Return whether the plt header contains microMIPS code. For the sake of
2573 // cache alignment always use a standard header whenever any standard entries
2574 // are present even if microMIPS entries are present as well. This also lets
2575 // the microMIPS header rely on the value of $v0 only set by microMIPS
2576 // entries, for a small size reduction.
2577 bool
2578 is_plt_header_compressed() const
2579 {
2580 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2581 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2582 }
2583
2584 // Return the size of the PLT header.
2585 unsigned int
2586 get_plt_header_size() const
2587 {
2588 if (this->target_->is_output_n64())
2589 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2590 else if (this->target_->is_output_n32())
2591 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2592 else if (!this->is_plt_header_compressed())
2593 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2594 else if (this->target_->use_32bit_micromips_instructions())
2595 return (2 * sizeof(plt0_entry_micromips32_o32)
2596 / sizeof(plt0_entry_micromips32_o32[0]));
2597 else
2598 return (2 * sizeof(plt0_entry_micromips_o32)
2599 / sizeof(plt0_entry_micromips_o32[0]));
2600 }
2601
2602 // Return the PLT header entry.
2603 const uint32_t*
2604 get_plt_header_entry() const
2605 {
2606 if (this->target_->is_output_n64())
2607 return plt0_entry_n64;
2608 else if (this->target_->is_output_n32())
2609 return plt0_entry_n32;
2610 else if (!this->is_plt_header_compressed())
2611 return plt0_entry_o32;
2612 else if (this->target_->use_32bit_micromips_instructions())
2613 return plt0_entry_micromips32_o32;
2614 else
2615 return plt0_entry_micromips_o32;
2616 }
2617
2618 // Return the size of the standard PLT entry.
2619 unsigned int
2620 standard_plt_entry_size() const
2621 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2622
2623 // Return the size of the compressed PLT entry.
2624 unsigned int
2625 compressed_plt_entry_size() const
2626 {
2627 gold_assert(!this->target_->is_output_newabi());
2628
2629 if (!this->target_->is_output_micromips())
2630 return (2 * sizeof(plt_entry_mips16_o32)
2631 / sizeof(plt_entry_mips16_o32[0]));
2632 else if (this->target_->use_32bit_micromips_instructions())
2633 return (2 * sizeof(plt_entry_micromips32_o32)
2634 / sizeof(plt_entry_micromips32_o32[0]));
2635 else
2636 return (2 * sizeof(plt_entry_micromips_o32)
2637 / sizeof(plt_entry_micromips_o32[0]));
2638 }
2639
2640 // The reloc section.
2641 Reloc_section* rel_;
2642 // The .got.plt section.
2643 Output_data_space* got_plt_;
2644 // Symbols that have PLT entry.
2645 std::vector<Mips_symbol<size>*> symbols_;
2646 // The offset of the next standard PLT entry to create.
2647 unsigned int plt_mips_offset_;
2648 // The offset of the next compressed PLT entry to create.
2649 unsigned int plt_comp_offset_;
2650 // The size of the PLT header in bytes.
2651 unsigned int plt_header_size_;
2652 // The target.
2653 Target_mips<size, big_endian>* target_;
2654 };
2655
2656 // A class to handle the .MIPS.stubs data.
2657
2658 template<int size, bool big_endian>
2659 class Mips_output_data_mips_stubs : public Output_section_data
2660 {
2661 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2662
2663 // Unordered set of .MIPS.stubs entries.
2664 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2665 Mips_stubs_entry_set;
2666
2667 public:
2668 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2669 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2670 stub_offsets_are_set_(false), target_(target)
2671 { }
2672
2673 // Create entry for a symbol.
2674 void
2675 make_entry(Mips_symbol<size>*);
2676
2677 // Remove entry for a symbol.
2678 void
2679 remove_entry(Mips_symbol<size>* gsym);
2680
2681 // Set stub offsets for symbols. This method expects that the number of
2682 // entries in dynamic symbol table is set.
2683 void
2684 set_lazy_stub_offsets();
2685
2686 void
2687 set_needs_dynsym_value();
2688
2689 // Set the number of entries in dynamic symbol table.
2690 void
2691 set_dynsym_count(unsigned int dynsym_count)
2692 { this->dynsym_count_ = dynsym_count; }
2693
2694 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2695 // count is greater than 0x10000. If the dynamic symbol count is less than
2696 // 0x10000, the stub will be 4 bytes smaller.
2697 // There's no disadvantage from using microMIPS code here, so for the sake of
2698 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2699 // output produced at all. This has a benefit of stubs being shorter by
2700 // 4 bytes each too, unless in the insn32 mode.
2701 unsigned int
2702 stub_max_size() const
2703 {
2704 if (!this->target_->is_output_micromips()
2705 || this->target_->use_32bit_micromips_instructions())
2706 return 20;
2707 else
2708 return 16;
2709 }
2710
2711 // Return the size of the stub. This method expects that the final dynsym
2712 // count is set.
2713 unsigned int
2714 stub_size() const
2715 {
2716 gold_assert(this->dynsym_count_ != -1U);
2717 if (this->dynsym_count_ > 0x10000)
2718 return this->stub_max_size();
2719 else
2720 return this->stub_max_size() - 4;
2721 }
2722
2723 // Return output address of a stub.
2724 Mips_address
2725 stub_address(const Mips_symbol<size>* sym) const
2726 {
2727 gold_assert(sym->has_lazy_stub());
2728 return this->address() + sym->lazy_stub_offset();
2729 }
2730
2731 protected:
2732 void
2733 do_adjust_output_section(Output_section* os)
2734 { os->set_entsize(0); }
2735
2736 // Write to a map file.
2737 void
2738 do_print_to_mapfile(Mapfile* mapfile) const
2739 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2740
2741 private:
2742 static const uint32_t lazy_stub_normal_1[];
2743 static const uint32_t lazy_stub_normal_1_n64[];
2744 static const uint32_t lazy_stub_normal_2[];
2745 static const uint32_t lazy_stub_normal_2_n64[];
2746 static const uint32_t lazy_stub_big[];
2747 static const uint32_t lazy_stub_big_n64[];
2748
2749 static const uint32_t lazy_stub_micromips_normal_1[];
2750 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2751 static const uint32_t lazy_stub_micromips_normal_2[];
2752 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2753 static const uint32_t lazy_stub_micromips_big[];
2754 static const uint32_t lazy_stub_micromips_big_n64[];
2755
2756 static const uint32_t lazy_stub_micromips32_normal_1[];
2757 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2758 static const uint32_t lazy_stub_micromips32_normal_2[];
2759 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2760 static const uint32_t lazy_stub_micromips32_big[];
2761 static const uint32_t lazy_stub_micromips32_big_n64[];
2762
2763 // Set the final size.
2764 void
2765 set_final_data_size()
2766 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2767
2768 // Write out the .MIPS.stubs data.
2769 void
2770 do_write(Output_file*);
2771
2772 // .MIPS.stubs symbols
2773 Mips_stubs_entry_set symbols_;
2774 // Number of entries in dynamic symbol table.
2775 unsigned int dynsym_count_;
2776 // Whether the stub offsets are set.
2777 bool stub_offsets_are_set_;
2778 // The target.
2779 Target_mips<size, big_endian>* target_;
2780 };
2781
2782 // This class handles Mips .reginfo output section.
2783
2784 template<int size, bool big_endian>
2785 class Mips_output_section_reginfo : public Output_section_data
2786 {
2787 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2788
2789 public:
2790 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2791 Valtype gprmask, Valtype cprmask1,
2792 Valtype cprmask2, Valtype cprmask3,
2793 Valtype cprmask4)
2794 : Output_section_data(24, 4, true), target_(target),
2795 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2796 cprmask3_(cprmask3), cprmask4_(cprmask4)
2797 { }
2798
2799 protected:
2800 // Write to a map file.
2801 void
2802 do_print_to_mapfile(Mapfile* mapfile) const
2803 { mapfile->print_output_data(this, _(".reginfo")); }
2804
2805 // Write out reginfo section.
2806 void
2807 do_write(Output_file* of);
2808
2809 private:
2810 Target_mips<size, big_endian>* target_;
2811
2812 // gprmask of the output .reginfo section.
2813 Valtype gprmask_;
2814 // cprmask1 of the output .reginfo section.
2815 Valtype cprmask1_;
2816 // cprmask2 of the output .reginfo section.
2817 Valtype cprmask2_;
2818 // cprmask3 of the output .reginfo section.
2819 Valtype cprmask3_;
2820 // cprmask4 of the output .reginfo section.
2821 Valtype cprmask4_;
2822 };
2823
2824 // This class handles .MIPS.abiflags output section.
2825
2826 template<int size, bool big_endian>
2827 class Mips_output_section_abiflags : public Output_section_data
2828 {
2829 public:
2830 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2831 : Output_section_data(24, 8, true), abiflags_(abiflags)
2832 { }
2833
2834 protected:
2835 // Write to a map file.
2836 void
2837 do_print_to_mapfile(Mapfile* mapfile) const
2838 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2839
2840 void
2841 do_write(Output_file* of);
2842
2843 private:
2844 const Mips_abiflags<big_endian>& abiflags_;
2845 };
2846
2847 // The MIPS target has relocation types which default handling of relocatable
2848 // relocation cannot process. So we have to extend the default code.
2849
2850 template<bool big_endian, typename Classify_reloc>
2851 class Mips_scan_relocatable_relocs :
2852 public Default_scan_relocatable_relocs<Classify_reloc>
2853 {
2854 public:
2855 // Return the strategy to use for a local symbol which is a section
2856 // symbol, given the relocation type.
2857 inline Relocatable_relocs::Reloc_strategy
2858 local_section_strategy(unsigned int r_type, Relobj* object)
2859 {
2860 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2861 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2862 else
2863 {
2864 switch (r_type)
2865 {
2866 case elfcpp::R_MIPS_26:
2867 return Relocatable_relocs::RELOC_SPECIAL;
2868
2869 default:
2870 return Default_scan_relocatable_relocs<Classify_reloc>::
2871 local_section_strategy(r_type, object);
2872 }
2873 }
2874 }
2875 };
2876
2877 // Mips_copy_relocs class. The only difference from the base class is the
2878 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2879 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2880 // cannot be made dynamic, a COPY reloc is emitted.
2881
2882 template<int sh_type, int size, bool big_endian>
2883 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2884 {
2885 public:
2886 Mips_copy_relocs()
2887 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2888 { }
2889
2890 // Emit any saved relocations which turn out to be needed. This is
2891 // called after all the relocs have been scanned.
2892 void
2893 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2894 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2895
2896 private:
2897 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2898 Copy_reloc_entry;
2899
2900 // Emit this reloc if appropriate. This is called after we have
2901 // scanned all the relocations, so we know whether we emitted a
2902 // COPY relocation for SYM_.
2903 void
2904 emit_entry(Copy_reloc_entry& entry,
2905 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2906 Symbol_table* symtab, Layout* layout,
2907 Target_mips<size, big_endian>* target);
2908 };
2909
2910
2911 // Return true if the symbol SYM should be considered to resolve local
2912 // to the current module, and false otherwise. The logic is taken from
2913 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2914 static bool
2915 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2916 bool local_protected)
2917 {
2918 // If it's a local sym, of course we resolve locally.
2919 if (sym == NULL)
2920 return true;
2921
2922 // STV_HIDDEN or STV_INTERNAL ones must be local.
2923 if (sym->visibility() == elfcpp::STV_HIDDEN
2924 || sym->visibility() == elfcpp::STV_INTERNAL)
2925 return true;
2926
2927 // If we don't have a definition in a regular file, then we can't
2928 // resolve locally. The sym is either undefined or dynamic.
2929 if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2930 || sym->is_undefined())
2931 return false;
2932
2933 // Forced local symbols resolve locally.
2934 if (sym->is_forced_local())
2935 return true;
2936
2937 // As do non-dynamic symbols.
2938 if (!has_dynsym_entry)
2939 return true;
2940
2941 // At this point, we know the symbol is defined and dynamic. In an
2942 // executable it must resolve locally, likewise when building symbolic
2943 // shared libraries.
2944 if (parameters->options().output_is_executable()
2945 || parameters->options().Bsymbolic())
2946 return true;
2947
2948 // Now deal with defined dynamic symbols in shared libraries. Ones
2949 // with default visibility might not resolve locally.
2950 if (sym->visibility() == elfcpp::STV_DEFAULT)
2951 return false;
2952
2953 // STV_PROTECTED non-function symbols are local.
2954 if (sym->type() != elfcpp::STT_FUNC)
2955 return true;
2956
2957 // Function pointer equality tests may require that STV_PROTECTED
2958 // symbols be treated as dynamic symbols. If the address of a
2959 // function not defined in an executable is set to that function's
2960 // plt entry in the executable, then the address of the function in
2961 // a shared library must also be the plt entry in the executable.
2962 return local_protected;
2963 }
2964
2965 // Return TRUE if references to this symbol always reference the symbol in this
2966 // object.
2967 static bool
2968 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2969 {
2970 return symbol_refs_local(sym, has_dynsym_entry, false);
2971 }
2972
2973 // Return TRUE if calls to this symbol always call the version in this object.
2974 static bool
2975 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2976 {
2977 return symbol_refs_local(sym, has_dynsym_entry, true);
2978 }
2979
2980 // Compare GOT offsets of two symbols.
2981
2982 template<int size, bool big_endian>
2983 static bool
2984 got_offset_compare(Symbol* sym1, Symbol* sym2)
2985 {
2986 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2987 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2988 unsigned int area1 = mips_sym1->global_got_area();
2989 unsigned int area2 = mips_sym2->global_got_area();
2990 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2991
2992 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2993 if (area1 != area2)
2994 return area1 < area2;
2995
2996 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2997 }
2998
2999 // This method divides dynamic symbols into symbols that have GOT entry, and
3000 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3001 // Mips ABI requires that symbols with the GOT entry must be at the end of
3002 // dynamic symbol table, and the order in dynamic symbol table must match the
3003 // order in GOT.
3004
3005 template<int size, bool big_endian>
3006 static void
3007 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3008 std::vector<Symbol*>* non_got_symbols,
3009 std::vector<Symbol*>* got_symbols)
3010 {
3011 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3012 p != dyn_symbols->end();
3013 ++p)
3014 {
3015 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3016 if (mips_sym->global_got_area() == GGA_NORMAL
3017 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3018 got_symbols->push_back(mips_sym);
3019 else
3020 non_got_symbols->push_back(mips_sym);
3021 }
3022
3023 std::sort(got_symbols->begin(), got_symbols->end(),
3024 got_offset_compare<size, big_endian>);
3025 }
3026
3027 // Functor class for processing the global symbol table.
3028
3029 template<int size, bool big_endian>
3030 class Symbol_visitor_check_symbols
3031 {
3032 public:
3033 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3034 Layout* layout, Symbol_table* symtab)
3035 : target_(target), layout_(layout), symtab_(symtab)
3036 { }
3037
3038 void
3039 operator()(Sized_symbol<size>* sym)
3040 {
3041 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3042 if (local_pic_function<size, big_endian>(mips_sym))
3043 {
3044 // SYM is a function that might need $25 to be valid on entry.
3045 // If we're creating a non-PIC relocatable object, mark SYM as
3046 // being PIC. If we're creating a non-relocatable object with
3047 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3048 // stub.
3049 if (parameters->options().relocatable())
3050 {
3051 if (!parameters->options().output_is_position_independent())
3052 mips_sym->set_pic();
3053 }
3054 else if (mips_sym->has_nonpic_branches())
3055 {
3056 this->target_->la25_stub_section(layout_)
3057 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3058 }
3059 }
3060 }
3061
3062 private:
3063 Target_mips<size, big_endian>* target_;
3064 Layout* layout_;
3065 Symbol_table* symtab_;
3066 };
3067
3068 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3069 // and endianness. The relocation format for MIPS-64 is non-standard.
3070
3071 template<int sh_type, int size, bool big_endian>
3072 struct Mips_reloc_types;
3073
3074 template<bool big_endian>
3075 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3076 {
3077 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3078 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3079
3080 static typename elfcpp::Elf_types<32>::Elf_Swxword
3081 get_r_addend(const Reloc*)
3082 { return 0; }
3083
3084 static inline void
3085 set_reloc_addend(Reloc_write*,
3086 typename elfcpp::Elf_types<32>::Elf_Swxword)
3087 { gold_unreachable(); }
3088 };
3089
3090 template<bool big_endian>
3091 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3092 {
3093 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3094 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3095
3096 static typename elfcpp::Elf_types<32>::Elf_Swxword
3097 get_r_addend(const Reloc* reloc)
3098 { return reloc->get_r_addend(); }
3099
3100 static inline void
3101 set_reloc_addend(Reloc_write* p,
3102 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3103 { p->put_r_addend(val); }
3104 };
3105
3106 template<bool big_endian>
3107 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3108 {
3109 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3110 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3111
3112 static typename elfcpp::Elf_types<64>::Elf_Swxword
3113 get_r_addend(const Reloc*)
3114 { return 0; }
3115
3116 static inline void
3117 set_reloc_addend(Reloc_write*,
3118 typename elfcpp::Elf_types<64>::Elf_Swxword)
3119 { gold_unreachable(); }
3120 };
3121
3122 template<bool big_endian>
3123 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3124 {
3125 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3126 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3127
3128 static typename elfcpp::Elf_types<64>::Elf_Swxword
3129 get_r_addend(const Reloc* reloc)
3130 { return reloc->get_r_addend(); }
3131
3132 static inline void
3133 set_reloc_addend(Reloc_write* p,
3134 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3135 { p->put_r_addend(val); }
3136 };
3137
3138 // Forward declaration.
3139 static unsigned int
3140 mips_get_size_for_reloc(unsigned int, Relobj*);
3141
3142 // A class for inquiring about properties of a relocation,
3143 // used while scanning relocs during a relocatable link and
3144 // garbage collection.
3145
3146 template<int sh_type_, int size, bool big_endian>
3147 class Mips_classify_reloc;
3148
3149 template<int sh_type_, bool big_endian>
3150 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3151 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3152 {
3153 public:
3154 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3155 Reltype;
3156 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3157 Reltype_write;
3158
3159 // Return the symbol referred to by the relocation.
3160 static inline unsigned int
3161 get_r_sym(const Reltype* reloc)
3162 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3163
3164 // Return the type of the relocation.
3165 static inline unsigned int
3166 get_r_type(const Reltype* reloc)
3167 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3168
3169 static inline unsigned int
3170 get_r_type2(const Reltype*)
3171 { return 0; }
3172
3173 static inline unsigned int
3174 get_r_type3(const Reltype*)
3175 { return 0; }
3176
3177 static inline unsigned int
3178 get_r_ssym(const Reltype*)
3179 { return 0; }
3180
3181 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3182 static inline unsigned int
3183 get_r_addend(const Reltype* reloc)
3184 {
3185 if (sh_type_ == elfcpp::SHT_REL)
3186 return 0;
3187 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3188 }
3189
3190 // Write the r_info field to a new reloc, using the r_info field from
3191 // the original reloc, replacing the r_sym field with R_SYM.
3192 static inline void
3193 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3194 {
3195 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3196 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3197 }
3198
3199 // Write the r_addend field to a new reloc.
3200 static inline void
3201 put_r_addend(Reltype_write* to,
3202 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3203 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3204
3205 // Return the size of the addend of the relocation (only used for SHT_REL).
3206 static unsigned int
3207 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3208 { return mips_get_size_for_reloc(r_type, obj); }
3209 };
3210
3211 template<int sh_type_, bool big_endian>
3212 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3213 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3214 {
3215 public:
3216 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3217 Reltype;
3218 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3219 Reltype_write;
3220
3221 // Return the symbol referred to by the relocation.
3222 static inline unsigned int
3223 get_r_sym(const Reltype* reloc)
3224 { return reloc->get_r_sym(); }
3225
3226 // Return the r_type of the relocation.
3227 static inline unsigned int
3228 get_r_type(const Reltype* reloc)
3229 { return reloc->get_r_type(); }
3230
3231 // Return the r_type2 of the relocation.
3232 static inline unsigned int
3233 get_r_type2(const Reltype* reloc)
3234 { return reloc->get_r_type2(); }
3235
3236 // Return the r_type3 of the relocation.
3237 static inline unsigned int
3238 get_r_type3(const Reltype* reloc)
3239 { return reloc->get_r_type3(); }
3240
3241 // Return the special symbol of the relocation.
3242 static inline unsigned int
3243 get_r_ssym(const Reltype* reloc)
3244 { return reloc->get_r_ssym(); }
3245
3246 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3247 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3248 get_r_addend(const Reltype* reloc)
3249 {
3250 if (sh_type_ == elfcpp::SHT_REL)
3251 return 0;
3252 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3253 }
3254
3255 // Write the r_info field to a new reloc, using the r_info field from
3256 // the original reloc, replacing the r_sym field with R_SYM.
3257 static inline void
3258 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3259 {
3260 new_reloc->put_r_sym(r_sym);
3261 new_reloc->put_r_ssym(reloc->get_r_ssym());
3262 new_reloc->put_r_type3(reloc->get_r_type3());
3263 new_reloc->put_r_type2(reloc->get_r_type2());
3264 new_reloc->put_r_type(reloc->get_r_type());
3265 }
3266
3267 // Write the r_addend field to a new reloc.
3268 static inline void
3269 put_r_addend(Reltype_write* to,
3270 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3271 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3272
3273 // Return the size of the addend of the relocation (only used for SHT_REL).
3274 static unsigned int
3275 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3276 { return mips_get_size_for_reloc(r_type, obj); }
3277 };
3278
3279 template<int size, bool big_endian>
3280 class Target_mips : public Sized_target<size, big_endian>
3281 {
3282 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3283 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3284 Reloc_section;
3285 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3286 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3287 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3288 Reltype;
3289 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3290 Relatype;
3291
3292 public:
3293 Target_mips(const Target::Target_info* info = &mips_info)
3294 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3295 got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(), dyn_relocs_(),
3296 la25_stub_(NULL), mips_mach_extensions_(), mips_stubs_(NULL),
3297 attributes_section_data_(NULL), abiflags_(NULL), mach_(0), layout_(NULL),
3298 got16_addends_(), has_abiflags_section_(false),
3299 entry_symbol_is_compressed_(false), insn32_(false)
3300 {
3301 this->add_machine_extensions();
3302 }
3303
3304 // The offset of $gp from the beginning of the .got section.
3305 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3306
3307 // The maximum size of the GOT for it to be addressable using 16-bit
3308 // offsets from $gp.
3309 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3310
3311 // Make a new symbol table entry for the Mips target.
3312 Sized_symbol<size>*
3313 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3314 { return new Mips_symbol<size>(); }
3315
3316 // Process the relocations to determine unreferenced sections for
3317 // garbage collection.
3318 void
3319 gc_process_relocs(Symbol_table* symtab,
3320 Layout* layout,
3321 Sized_relobj_file<size, big_endian>* object,
3322 unsigned int data_shndx,
3323 unsigned int sh_type,
3324 const unsigned char* prelocs,
3325 size_t reloc_count,
3326 Output_section* output_section,
3327 bool needs_special_offset_handling,
3328 size_t local_symbol_count,
3329 const unsigned char* plocal_symbols);
3330
3331 // Scan the relocations to look for symbol adjustments.
3332 void
3333 scan_relocs(Symbol_table* symtab,
3334 Layout* layout,
3335 Sized_relobj_file<size, big_endian>* object,
3336 unsigned int data_shndx,
3337 unsigned int sh_type,
3338 const unsigned char* prelocs,
3339 size_t reloc_count,
3340 Output_section* output_section,
3341 bool needs_special_offset_handling,
3342 size_t local_symbol_count,
3343 const unsigned char* plocal_symbols);
3344
3345 // Finalize the sections.
3346 void
3347 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3348
3349 // Relocate a section.
3350 void
3351 relocate_section(const Relocate_info<size, big_endian>*,
3352 unsigned int sh_type,
3353 const unsigned char* prelocs,
3354 size_t reloc_count,
3355 Output_section* output_section,
3356 bool needs_special_offset_handling,
3357 unsigned char* view,
3358 Mips_address view_address,
3359 section_size_type view_size,
3360 const Reloc_symbol_changes*);
3361
3362 // Scan the relocs during a relocatable link.
3363 void
3364 scan_relocatable_relocs(Symbol_table* symtab,
3365 Layout* layout,
3366 Sized_relobj_file<size, big_endian>* object,
3367 unsigned int data_shndx,
3368 unsigned int sh_type,
3369 const unsigned char* prelocs,
3370 size_t reloc_count,
3371 Output_section* output_section,
3372 bool needs_special_offset_handling,
3373 size_t local_symbol_count,
3374 const unsigned char* plocal_symbols,
3375 Relocatable_relocs*);
3376
3377 // Scan the relocs for --emit-relocs.
3378 void
3379 emit_relocs_scan(Symbol_table* symtab,
3380 Layout* layout,
3381 Sized_relobj_file<size, big_endian>* object,
3382 unsigned int data_shndx,
3383 unsigned int sh_type,
3384 const unsigned char* prelocs,
3385 size_t reloc_count,
3386 Output_section* output_section,
3387 bool needs_special_offset_handling,
3388 size_t local_symbol_count,
3389 const unsigned char* plocal_syms,
3390 Relocatable_relocs* rr);
3391
3392 // Emit relocations for a section.
3393 void
3394 relocate_relocs(const Relocate_info<size, big_endian>*,
3395 unsigned int sh_type,
3396 const unsigned char* prelocs,
3397 size_t reloc_count,
3398 Output_section* output_section,
3399 typename elfcpp::Elf_types<size>::Elf_Off
3400 offset_in_output_section,
3401 unsigned char* view,
3402 Mips_address view_address,
3403 section_size_type view_size,
3404 unsigned char* reloc_view,
3405 section_size_type reloc_view_size);
3406
3407 // Perform target-specific processing in a relocatable link. This is
3408 // only used if we use the relocation strategy RELOC_SPECIAL.
3409 void
3410 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3411 unsigned int sh_type,
3412 const unsigned char* preloc_in,
3413 size_t relnum,
3414 Output_section* output_section,
3415 typename elfcpp::Elf_types<size>::Elf_Off
3416 offset_in_output_section,
3417 unsigned char* view,
3418 Mips_address view_address,
3419 section_size_type view_size,
3420 unsigned char* preloc_out);
3421
3422 // Return whether SYM is defined by the ABI.
3423 bool
3424 do_is_defined_by_abi(const Symbol* sym) const
3425 {
3426 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3427 || (strcmp(sym->name(), "_gp_disp") == 0)
3428 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3429 }
3430
3431 // Return the number of entries in the GOT.
3432 unsigned int
3433 got_entry_count() const
3434 {
3435 if (!this->has_got_section())
3436 return 0;
3437 return this->got_size() / (size/8);
3438 }
3439
3440 // Return the number of entries in the PLT.
3441 unsigned int
3442 plt_entry_count() const
3443 {
3444 if (this->plt_ == NULL)
3445 return 0;
3446 return this->plt_->entry_count();
3447 }
3448
3449 // Return the offset of the first non-reserved PLT entry.
3450 unsigned int
3451 first_plt_entry_offset() const
3452 { return this->plt_->first_plt_entry_offset(); }
3453
3454 // Return the size of each PLT entry.
3455 unsigned int
3456 plt_entry_size() const
3457 { return this->plt_->plt_entry_size(); }
3458
3459 // Get the GOT section, creating it if necessary.
3460 Mips_output_data_got<size, big_endian>*
3461 got_section(Symbol_table*, Layout*);
3462
3463 // Get the GOT section.
3464 Mips_output_data_got<size, big_endian>*
3465 got_section() const
3466 {
3467 gold_assert(this->got_ != NULL);
3468 return this->got_;
3469 }
3470
3471 // Get the .MIPS.stubs section, creating it if necessary.
3472 Mips_output_data_mips_stubs<size, big_endian>*
3473 mips_stubs_section(Layout* layout);
3474
3475 // Get the .MIPS.stubs section.
3476 Mips_output_data_mips_stubs<size, big_endian>*
3477 mips_stubs_section() const
3478 {
3479 gold_assert(this->mips_stubs_ != NULL);
3480 return this->mips_stubs_;
3481 }
3482
3483 // Get the LA25 stub section, creating it if necessary.
3484 Mips_output_data_la25_stub<size, big_endian>*
3485 la25_stub_section(Layout*);
3486
3487 // Get the LA25 stub section.
3488 Mips_output_data_la25_stub<size, big_endian>*
3489 la25_stub_section()
3490 {
3491 gold_assert(this->la25_stub_ != NULL);
3492 return this->la25_stub_;
3493 }
3494
3495 // Get gp value. It has the value of .got + 0x7FF0.
3496 Mips_address
3497 gp_value() const
3498 {
3499 if (this->gp_ != NULL)
3500 return this->gp_->value();
3501 return 0;
3502 }
3503
3504 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3505 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3506 Mips_address
3507 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3508 {
3509 if (this->gp_ == NULL)
3510 return 0;
3511
3512 bool multi_got = false;
3513 if (this->has_got_section())
3514 multi_got = this->got_section()->multi_got();
3515 if (!multi_got)
3516 return this->gp_->value();
3517 else
3518 return this->gp_->value() + this->got_section()->get_got_offset(object);
3519 }
3520
3521 // Get the dynamic reloc section, creating it if necessary.
3522 Reloc_section*
3523 rel_dyn_section(Layout*);
3524
3525 bool
3526 do_has_custom_set_dynsym_indexes() const
3527 { return true; }
3528
3529 // Don't emit input .reginfo/.MIPS.abiflags sections to
3530 // output .reginfo/.MIPS.abiflags.
3531 bool
3532 do_should_include_section(elfcpp::Elf_Word sh_type) const
3533 {
3534 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3535 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3536 }
3537
3538 // Set the dynamic symbol indexes. INDEX is the index of the first
3539 // global dynamic symbol. Pointers to the symbols are stored into the
3540 // vector SYMS. The names are added to DYNPOOL. This returns an
3541 // updated dynamic symbol index.
3542 unsigned int
3543 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3544 std::vector<Symbol*>* syms, Stringpool* dynpool,
3545 Versions* versions, Symbol_table* symtab) const;
3546
3547 // Remove .MIPS.stubs entry for a symbol.
3548 void
3549 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3550 {
3551 if (this->mips_stubs_ != NULL)
3552 this->mips_stubs_->remove_entry(sym);
3553 }
3554
3555 // The value to write into got[1] for SVR4 targets, to identify it is
3556 // a GNU object. The dynamic linker can then use got[1] to store the
3557 // module pointer.
3558 uint64_t
3559 mips_elf_gnu_got1_mask()
3560 {
3561 if (this->is_output_n64())
3562 return (uint64_t)1 << 63;
3563 else
3564 return 1 << 31;
3565 }
3566
3567 // Whether the output has microMIPS code. This is valid only after
3568 // merge_obj_e_flags() is called.
3569 bool
3570 is_output_micromips() const
3571 {
3572 gold_assert(this->are_processor_specific_flags_set());
3573 return elfcpp::is_micromips(this->processor_specific_flags());
3574 }
3575
3576 // Whether the output uses N32 ABI. This is valid only after
3577 // merge_obj_e_flags() is called.
3578 bool
3579 is_output_n32() const
3580 {
3581 gold_assert(this->are_processor_specific_flags_set());
3582 return elfcpp::abi_n32(this->processor_specific_flags());
3583 }
3584
3585 // Whether the output uses R6 ISA. This is valid only after
3586 // merge_obj_e_flags() is called.
3587 bool
3588 is_output_r6() const
3589 {
3590 gold_assert(this->are_processor_specific_flags_set());
3591 return elfcpp::r6_isa(this->processor_specific_flags());
3592 }
3593
3594 // Whether the output uses N64 ABI.
3595 bool
3596 is_output_n64() const
3597 { return size == 64; }
3598
3599 // Whether the output uses NEWABI. This is valid only after
3600 // merge_obj_e_flags() is called.
3601 bool
3602 is_output_newabi() const
3603 { return this->is_output_n32() || this->is_output_n64(); }
3604
3605 // Whether we can only use 32-bit microMIPS instructions.
3606 bool
3607 use_32bit_micromips_instructions() const
3608 { return this->insn32_; }
3609
3610 // Return the r_sym field from a relocation.
3611 unsigned int
3612 get_r_sym(const unsigned char* preloc) const
3613 {
3614 // Since REL and RELA relocs share the same structure through
3615 // the r_info field, we can just use REL here.
3616 Reltype rel(preloc);
3617 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3618 get_r_sym(&rel);
3619 }
3620
3621 protected:
3622 // Return the value to use for a dynamic symbol which requires special
3623 // treatment. This is how we support equality comparisons of function
3624 // pointers across shared library boundaries, as described in the
3625 // processor specific ABI supplement.
3626 uint64_t
3627 do_dynsym_value(const Symbol* gsym) const;
3628
3629 // Make an ELF object.
3630 Object*
3631 do_make_elf_object(const std::string&, Input_file*, off_t,
3632 const elfcpp::Ehdr<size, big_endian>& ehdr);
3633
3634 Object*
3635 do_make_elf_object(const std::string&, Input_file*, off_t,
3636 const elfcpp::Ehdr<size, !big_endian>&)
3637 { gold_unreachable(); }
3638
3639 // Adjust ELF file header.
3640 void
3641 do_adjust_elf_header(unsigned char* view, int len);
3642
3643 // Get the custom dynamic tag value.
3644 unsigned int
3645 do_dynamic_tag_custom_value(elfcpp::DT) const;
3646
3647 // Adjust the value written to the dynamic symbol table.
3648 virtual void
3649 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3650 {
3651 elfcpp::Sym<size, big_endian> isym(view);
3652 elfcpp::Sym_write<size, big_endian> osym(view);
3653 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3654
3655 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3656 // to treat compressed symbols like any other.
3657 Mips_address value = isym.get_st_value();
3658 if (mips_sym->is_mips16() && value != 0)
3659 {
3660 if (!mips_sym->has_mips16_fn_stub())
3661 value |= 1;
3662 else
3663 {
3664 // If we have a MIPS16 function with a stub, the dynamic symbol
3665 // must refer to the stub, since only the stub uses the standard
3666 // calling conventions. Stub contains MIPS32 code, so don't add +1
3667 // in this case.
3668
3669 // There is a code which does this in the method
3670 // Target_mips::do_dynsym_value, but that code will only be
3671 // executed if the symbol is from dynobj.
3672 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3673 // table.
3674
3675 Mips16_stub_section<size, big_endian>* fn_stub =
3676 mips_sym->template get_mips16_fn_stub<big_endian>();
3677 value = fn_stub->output_address();
3678 osym.put_st_size(fn_stub->section_size());
3679 }
3680
3681 osym.put_st_value(value);
3682 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3683 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3684 }
3685 else if ((mips_sym->is_micromips()
3686 // Stubs are always microMIPS if there is any microMIPS code in
3687 // the output.
3688 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3689 && value != 0)
3690 {
3691 osym.put_st_value(value | 1);
3692 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3693 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3694 }
3695 }
3696
3697 private:
3698 // The class which scans relocations.
3699 class Scan
3700 {
3701 public:
3702 Scan()
3703 { }
3704
3705 static inline int
3706 get_reference_flags(unsigned int r_type);
3707
3708 inline void
3709 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3710 Sized_relobj_file<size, big_endian>* object,
3711 unsigned int data_shndx,
3712 Output_section* output_section,
3713 const Reltype& reloc, unsigned int r_type,
3714 const elfcpp::Sym<size, big_endian>& lsym,
3715 bool is_discarded);
3716
3717 inline void
3718 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3719 Sized_relobj_file<size, big_endian>* object,
3720 unsigned int data_shndx,
3721 Output_section* output_section,
3722 const Relatype& reloc, unsigned int r_type,
3723 const elfcpp::Sym<size, big_endian>& lsym,
3724 bool is_discarded);
3725
3726 inline void
3727 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3728 Sized_relobj_file<size, big_endian>* object,
3729 unsigned int data_shndx,
3730 Output_section* output_section,
3731 const Relatype* rela,
3732 const Reltype* rel,
3733 unsigned int rel_type,
3734 unsigned int r_type,
3735 const elfcpp::Sym<size, big_endian>& lsym,
3736 bool is_discarded);
3737
3738 inline void
3739 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3740 Sized_relobj_file<size, big_endian>* object,
3741 unsigned int data_shndx,
3742 Output_section* output_section,
3743 const Reltype& reloc, unsigned int r_type,
3744 Symbol* gsym);
3745
3746 inline void
3747 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3748 Sized_relobj_file<size, big_endian>* object,
3749 unsigned int data_shndx,
3750 Output_section* output_section,
3751 const Relatype& reloc, unsigned int r_type,
3752 Symbol* gsym);
3753
3754 inline void
3755 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3756 Sized_relobj_file<size, big_endian>* object,
3757 unsigned int data_shndx,
3758 Output_section* output_section,
3759 const Relatype* rela,
3760 const Reltype* rel,
3761 unsigned int rel_type,
3762 unsigned int r_type,
3763 Symbol* gsym);
3764
3765 inline bool
3766 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3767 Target_mips*,
3768 Sized_relobj_file<size, big_endian>*,
3769 unsigned int,
3770 Output_section*,
3771 const Reltype&,
3772 unsigned int,
3773 const elfcpp::Sym<size, big_endian>&)
3774 { return false; }
3775
3776 inline bool
3777 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3778 Target_mips*,
3779 Sized_relobj_file<size, big_endian>*,
3780 unsigned int,
3781 Output_section*,
3782 const Reltype&,
3783 unsigned int, Symbol*)
3784 { return false; }
3785
3786 inline bool
3787 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3788 Target_mips*,
3789 Sized_relobj_file<size, big_endian>*,
3790 unsigned int,
3791 Output_section*,
3792 const Relatype&,
3793 unsigned int,
3794 const elfcpp::Sym<size, big_endian>&)
3795 { return false; }
3796
3797 inline bool
3798 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3799 Target_mips*,
3800 Sized_relobj_file<size, big_endian>*,
3801 unsigned int,
3802 Output_section*,
3803 const Relatype&,
3804 unsigned int, Symbol*)
3805 { return false; }
3806 private:
3807 static void
3808 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3809 unsigned int r_type);
3810
3811 static void
3812 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3813 unsigned int r_type, Symbol*);
3814 };
3815
3816 // The class which implements relocation.
3817 class Relocate
3818 {
3819 public:
3820 Relocate()
3821 { }
3822
3823 ~Relocate()
3824 { }
3825
3826 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3827 inline bool
3828 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3829 unsigned int r_type,
3830 Output_section* output_section,
3831 Target_mips* target);
3832
3833 // Do a relocation. Return false if the caller should not issue
3834 // any warnings about this relocation.
3835 inline bool
3836 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3837 Target_mips*, Output_section*, size_t, const unsigned char*,
3838 const Sized_symbol<size>*, const Symbol_value<size>*,
3839 unsigned char*, Mips_address, section_size_type);
3840 };
3841
3842 // This POD class holds the dynamic relocations that should be emitted instead
3843 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3844 // relocations if it turns out that the symbol does not have static
3845 // relocations.
3846 class Dyn_reloc
3847 {
3848 public:
3849 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3850 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3851 Output_section* output_section, Mips_address r_offset)
3852 : sym_(sym), r_type_(r_type), relobj_(relobj),
3853 shndx_(shndx), output_section_(output_section),
3854 r_offset_(r_offset)
3855 { }
3856
3857 // Emit this reloc if appropriate. This is called after we have
3858 // scanned all the relocations, so we know whether the symbol has
3859 // static relocations.
3860 void
3861 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3862 Symbol_table* symtab)
3863 {
3864 if (!this->sym_->has_static_relocs())
3865 {
3866 got->record_global_got_symbol(this->sym_, this->relobj_,
3867 this->r_type_, true, false);
3868 if (!symbol_references_local(this->sym_,
3869 this->sym_->should_add_dynsym_entry(symtab)))
3870 rel_dyn->add_global(this->sym_, this->r_type_,
3871 this->output_section_, this->relobj_,
3872 this->shndx_, this->r_offset_);
3873 else
3874 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3875 this->output_section_, this->relobj_,
3876 this->shndx_, this->r_offset_);
3877 }
3878 }
3879
3880 private:
3881 Mips_symbol<size>* sym_;
3882 unsigned int r_type_;
3883 Mips_relobj<size, big_endian>* relobj_;
3884 unsigned int shndx_;
3885 Output_section* output_section_;
3886 Mips_address r_offset_;
3887 };
3888
3889 // Adjust TLS relocation type based on the options and whether this
3890 // is a local symbol.
3891 static tls::Tls_optimization
3892 optimize_tls_reloc(bool is_final, int r_type);
3893
3894 // Return whether there is a GOT section.
3895 bool
3896 has_got_section() const
3897 { return this->got_ != NULL; }
3898
3899 // Check whether the given ELF header flags describe a 32-bit binary.
3900 bool
3901 mips_32bit_flags(elfcpp::Elf_Word);
3902
3903 enum Mips_mach {
3904 mach_mips3000 = 3000,
3905 mach_mips3900 = 3900,
3906 mach_mips4000 = 4000,
3907 mach_mips4010 = 4010,
3908 mach_mips4100 = 4100,
3909 mach_mips4111 = 4111,
3910 mach_mips4120 = 4120,
3911 mach_mips4300 = 4300,
3912 mach_mips4400 = 4400,
3913 mach_mips4600 = 4600,
3914 mach_mips4650 = 4650,
3915 mach_mips5000 = 5000,
3916 mach_mips5400 = 5400,
3917 mach_mips5500 = 5500,
3918 mach_mips5900 = 5900,
3919 mach_mips6000 = 6000,
3920 mach_mips7000 = 7000,
3921 mach_mips8000 = 8000,
3922 mach_mips9000 = 9000,
3923 mach_mips10000 = 10000,
3924 mach_mips12000 = 12000,
3925 mach_mips14000 = 14000,
3926 mach_mips16000 = 16000,
3927 mach_mips16 = 16,
3928 mach_mips5 = 5,
3929 mach_mips_loongson_2e = 3001,
3930 mach_mips_loongson_2f = 3002,
3931 mach_mips_loongson_3a = 3003,
3932 mach_mips_sb1 = 12310201, // octal 'SB', 01
3933 mach_mips_octeon = 6501,
3934 mach_mips_octeonp = 6601,
3935 mach_mips_octeon2 = 6502,
3936 mach_mips_octeon3 = 6503,
3937 mach_mips_xlr = 887682, // decimal 'XLR'
3938 mach_mipsisa32 = 32,
3939 mach_mipsisa32r2 = 33,
3940 mach_mipsisa32r3 = 34,
3941 mach_mipsisa32r5 = 36,
3942 mach_mipsisa32r6 = 37,
3943 mach_mipsisa64 = 64,
3944 mach_mipsisa64r2 = 65,
3945 mach_mipsisa64r3 = 66,
3946 mach_mipsisa64r5 = 68,
3947 mach_mipsisa64r6 = 69,
3948 mach_mips_micromips = 96
3949 };
3950
3951 // Return the MACH for a MIPS e_flags value.
3952 unsigned int
3953 elf_mips_mach(elfcpp::Elf_Word);
3954
3955 // Return the MACH for each .MIPS.abiflags ISA Extension.
3956 unsigned int
3957 mips_isa_ext_mach(unsigned int);
3958
3959 // Return the .MIPS.abiflags value representing each ISA Extension.
3960 unsigned int
3961 mips_isa_ext(unsigned int);
3962
3963 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
3964 void
3965 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
3966 Mips_abiflags<big_endian>*);
3967
3968 // Infer the content of the ABI flags based on the elf header.
3969 void
3970 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3971
3972 // Create abiflags from elf header or from .MIPS.abiflags section.
3973 void
3974 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3975
3976 // Return the meaning of fp_abi, or "unknown" if not known.
3977 const char*
3978 fp_abi_string(int);
3979
3980 // Select fp_abi.
3981 int
3982 select_fp_abi(const std::string&, int, int);
3983
3984 // Merge attributes from input object.
3985 void
3986 merge_obj_attributes(const std::string&, const Attributes_section_data*);
3987
3988 // Merge abiflags from input object.
3989 void
3990 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
3991
3992 // Check whether machine EXTENSION is an extension of machine BASE.
3993 bool
3994 mips_mach_extends(unsigned int, unsigned int);
3995
3996 // Merge file header flags from input object.
3997 void
3998 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
3999
4000 // Encode ISA level and revision as a single value.
4001 int
4002 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4003 { return (isa_level << 3) | isa_rev; }
4004
4005 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4006 static inline bool
4007 jal_to_bal()
4008 { return false; }
4009
4010 // True if we are linking for CPUs that are faster if JALR is converted to
4011 // BAL. This should be safe for all architectures. We enable this predicate
4012 // for all CPUs.
4013 static inline bool
4014 jalr_to_bal()
4015 { return true; }
4016
4017 // True if we are linking for CPUs that are faster if JR is converted to B.
4018 // This should be safe for all architectures. We enable this predicate for
4019 // all CPUs.
4020 static inline bool
4021 jr_to_b()
4022 { return true; }
4023
4024 // Return the size of the GOT section.
4025 section_size_type
4026 got_size() const
4027 {
4028 gold_assert(this->got_ != NULL);
4029 return this->got_->data_size();
4030 }
4031
4032 // Create a PLT entry for a global symbol referenced by r_type relocation.
4033 void
4034 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4035 unsigned int r_type);
4036
4037 // Get the PLT section.
4038 Mips_output_data_plt<size, big_endian>*
4039 plt_section() const
4040 {
4041 gold_assert(this->plt_ != NULL);
4042 return this->plt_;
4043 }
4044
4045 // Get the GOT PLT section.
4046 const Mips_output_data_plt<size, big_endian>*
4047 got_plt_section() const
4048 {
4049 gold_assert(this->got_plt_ != NULL);
4050 return this->got_plt_;
4051 }
4052
4053 // Copy a relocation against a global symbol.
4054 void
4055 copy_reloc(Symbol_table* symtab, Layout* layout,
4056 Sized_relobj_file<size, big_endian>* object,
4057 unsigned int shndx, Output_section* output_section,
4058 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4059 {
4060 this->copy_relocs_.copy_reloc(symtab, layout,
4061 symtab->get_sized_symbol<size>(sym),
4062 object, shndx, output_section,
4063 r_type, r_offset, 0,
4064 this->rel_dyn_section(layout));
4065 }
4066
4067 void
4068 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4069 Mips_relobj<size, big_endian>* relobj,
4070 unsigned int shndx, Output_section* output_section,
4071 Mips_address r_offset)
4072 {
4073 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4074 output_section, r_offset));
4075 }
4076
4077 // Calculate value of _gp symbol.
4078 void
4079 set_gp(Layout*, Symbol_table*);
4080
4081 const char*
4082 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4083 const char*
4084 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4085
4086 // Adds entries that describe how machines relate to one another. The entries
4087 // are ordered topologically with MIPS I extensions listed last. First
4088 // element is extension, second element is base.
4089 void
4090 add_machine_extensions()
4091 {
4092 // MIPS64r2 extensions.
4093 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4094 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4095 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4096 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4097 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4098
4099 // MIPS64 extensions.
4100 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4101 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4102 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4103
4104 // MIPS V extensions.
4105 this->add_extension(mach_mipsisa64, mach_mips5);
4106
4107 // R10000 extensions.
4108 this->add_extension(mach_mips12000, mach_mips10000);
4109 this->add_extension(mach_mips14000, mach_mips10000);
4110 this->add_extension(mach_mips16000, mach_mips10000);
4111
4112 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4113 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4114 // better to allow vr5400 and vr5500 code to be merged anyway, since
4115 // many libraries will just use the core ISA. Perhaps we could add
4116 // some sort of ASE flag if this ever proves a problem.
4117 this->add_extension(mach_mips5500, mach_mips5400);
4118 this->add_extension(mach_mips5400, mach_mips5000);
4119
4120 // MIPS IV extensions.
4121 this->add_extension(mach_mips5, mach_mips8000);
4122 this->add_extension(mach_mips10000, mach_mips8000);
4123 this->add_extension(mach_mips5000, mach_mips8000);
4124 this->add_extension(mach_mips7000, mach_mips8000);
4125 this->add_extension(mach_mips9000, mach_mips8000);
4126
4127 // VR4100 extensions.
4128 this->add_extension(mach_mips4120, mach_mips4100);
4129 this->add_extension(mach_mips4111, mach_mips4100);
4130
4131 // MIPS III extensions.
4132 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4133 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4134 this->add_extension(mach_mips8000, mach_mips4000);
4135 this->add_extension(mach_mips4650, mach_mips4000);
4136 this->add_extension(mach_mips4600, mach_mips4000);
4137 this->add_extension(mach_mips4400, mach_mips4000);
4138 this->add_extension(mach_mips4300, mach_mips4000);
4139 this->add_extension(mach_mips4100, mach_mips4000);
4140 this->add_extension(mach_mips4010, mach_mips4000);
4141 this->add_extension(mach_mips5900, mach_mips4000);
4142
4143 // MIPS32 extensions.
4144 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4145
4146 // MIPS II extensions.
4147 this->add_extension(mach_mips4000, mach_mips6000);
4148 this->add_extension(mach_mipsisa32, mach_mips6000);
4149
4150 // MIPS I extensions.
4151 this->add_extension(mach_mips6000, mach_mips3000);
4152 this->add_extension(mach_mips3900, mach_mips3000);
4153 }
4154
4155 // Add value to MIPS extenstions.
4156 void
4157 add_extension(unsigned int base, unsigned int extension)
4158 {
4159 std::pair<unsigned int, unsigned int> ext(base, extension);
4160 this->mips_mach_extensions_.push_back(ext);
4161 }
4162
4163 // Return the number of entries in the .dynsym section.
4164 unsigned int get_dt_mips_symtabno() const
4165 {
4166 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4167 / elfcpp::Elf_sizes<size>::sym_size));
4168 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4169 }
4170
4171 // Information about this specific target which we pass to the
4172 // general Target structure.
4173 static const Target::Target_info mips_info;
4174 // The GOT section.
4175 Mips_output_data_got<size, big_endian>* got_;
4176 // gp symbol. It has the value of .got + 0x7FF0.
4177 Sized_symbol<size>* gp_;
4178 // The PLT section.
4179 Mips_output_data_plt<size, big_endian>* plt_;
4180 // The GOT PLT section.
4181 Output_data_space* got_plt_;
4182 // The dynamic reloc section.
4183 Reloc_section* rel_dyn_;
4184 // Relocs saved to avoid a COPY reloc.
4185 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4186
4187 // A list of dyn relocs to be saved.
4188 std::vector<Dyn_reloc> dyn_relocs_;
4189
4190 // The LA25 stub section.
4191 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4192 // Architecture extensions.
4193 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4194 // .MIPS.stubs
4195 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4196
4197 // Attributes section data in output.
4198 Attributes_section_data* attributes_section_data_;
4199 // .MIPS.abiflags section data in output.
4200 Mips_abiflags<big_endian>* abiflags_;
4201
4202 unsigned int mach_;
4203 Layout* layout_;
4204
4205 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4206
4207 // Whether there is an input .MIPS.abiflags section.
4208 bool has_abiflags_section_;
4209
4210 // Whether the entry symbol is mips16 or micromips.
4211 bool entry_symbol_is_compressed_;
4212
4213 // Whether we can use only 32-bit microMIPS instructions.
4214 // TODO(sasa): This should be a linker option.
4215 bool insn32_;
4216 };
4217
4218 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4219 // It records high part of the relocation pair.
4220
4221 template<int size, bool big_endian>
4222 struct reloc_high
4223 {
4224 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4225
4226 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4227 const Symbol_value<size>* _psymval, Mips_address _addend,
4228 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4229 Mips_address _address = 0, bool _gp_disp = false)
4230 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4231 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4232 address(_address), gp_disp(_gp_disp)
4233 { }
4234
4235 unsigned char* view;
4236 const Mips_relobj<size, big_endian>* object;
4237 const Symbol_value<size>* psymval;
4238 Mips_address addend;
4239 unsigned int r_type;
4240 unsigned int r_sym;
4241 bool extract_addend;
4242 Mips_address address;
4243 bool gp_disp;
4244 };
4245
4246 template<int size, bool big_endian>
4247 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4248 {
4249 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4250 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4251 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4252 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4253 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4254
4255 public:
4256 typedef enum
4257 {
4258 STATUS_OKAY, // No error during relocation.
4259 STATUS_OVERFLOW, // Relocation overflow.
4260 STATUS_BAD_RELOC, // Relocation cannot be applied.
4261 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4262 } Status;
4263
4264 private:
4265 typedef Relocate_functions<size, big_endian> Base;
4266 typedef Mips_relocate_functions<size, big_endian> This;
4267
4268 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4269 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4270 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4271
4272 template<int valsize>
4273 static inline typename This::Status
4274 check_overflow(Valtype value)
4275 {
4276 if (size == 32)
4277 return (Bits<valsize>::has_overflow32(value)
4278 ? This::STATUS_OVERFLOW
4279 : This::STATUS_OKAY);
4280
4281 return (Bits<valsize>::has_overflow(value)
4282 ? This::STATUS_OVERFLOW
4283 : This::STATUS_OKAY);
4284 }
4285
4286 static inline bool
4287 should_shuffle_micromips_reloc(unsigned int r_type)
4288 {
4289 return (micromips_reloc(r_type)
4290 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4291 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4292 }
4293
4294 public:
4295 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4296 // Most mips16 instructions are 16 bits, but these instructions
4297 // are 32 bits.
4298 //
4299 // The format of these instructions is:
4300 //
4301 // +--------------+--------------------------------+
4302 // | JALX | X| Imm 20:16 | Imm 25:21 |
4303 // +--------------+--------------------------------+
4304 // | Immediate 15:0 |
4305 // +-----------------------------------------------+
4306 //
4307 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4308 // Note that the immediate value in the first word is swapped.
4309 //
4310 // When producing a relocatable object file, R_MIPS16_26 is
4311 // handled mostly like R_MIPS_26. In particular, the addend is
4312 // stored as a straight 26-bit value in a 32-bit instruction.
4313 // (gas makes life simpler for itself by never adjusting a
4314 // R_MIPS16_26 reloc to be against a section, so the addend is
4315 // always zero). However, the 32 bit instruction is stored as 2
4316 // 16-bit values, rather than a single 32-bit value. In a
4317 // big-endian file, the result is the same; in a little-endian
4318 // file, the two 16-bit halves of the 32 bit value are swapped.
4319 // This is so that a disassembler can recognize the jal
4320 // instruction.
4321 //
4322 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4323 // instruction stored as two 16-bit values. The addend A is the
4324 // contents of the targ26 field. The calculation is the same as
4325 // R_MIPS_26. When storing the calculated value, reorder the
4326 // immediate value as shown above, and don't forget to store the
4327 // value as two 16-bit values.
4328 //
4329 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4330 // defined as
4331 //
4332 // big-endian:
4333 // +--------+----------------------+
4334 // | | |
4335 // | | targ26-16 |
4336 // |31 26|25 0|
4337 // +--------+----------------------+
4338 //
4339 // little-endian:
4340 // +----------+------+-------------+
4341 // | | | |
4342 // | sub1 | | sub2 |
4343 // |0 9|10 15|16 31|
4344 // +----------+--------------------+
4345 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4346 // ((sub1 << 16) | sub2)).
4347 //
4348 // When producing a relocatable object file, the calculation is
4349 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4350 // When producing a fully linked file, the calculation is
4351 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4352 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4353 //
4354 // The table below lists the other MIPS16 instruction relocations.
4355 // Each one is calculated in the same way as the non-MIPS16 relocation
4356 // given on the right, but using the extended MIPS16 layout of 16-bit
4357 // immediate fields:
4358 //
4359 // R_MIPS16_GPREL R_MIPS_GPREL16
4360 // R_MIPS16_GOT16 R_MIPS_GOT16
4361 // R_MIPS16_CALL16 R_MIPS_CALL16
4362 // R_MIPS16_HI16 R_MIPS_HI16
4363 // R_MIPS16_LO16 R_MIPS_LO16
4364 //
4365 // A typical instruction will have a format like this:
4366 //
4367 // +--------------+--------------------------------+
4368 // | EXTEND | Imm 10:5 | Imm 15:11 |
4369 // +--------------+--------------------------------+
4370 // | Major | rx | ry | Imm 4:0 |
4371 // +--------------+--------------------------------+
4372 //
4373 // EXTEND is the five bit value 11110. Major is the instruction
4374 // opcode.
4375 //
4376 // All we need to do here is shuffle the bits appropriately.
4377 // As above, the two 16-bit halves must be swapped on a
4378 // little-endian system.
4379
4380 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4381 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4382 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4383
4384 static void
4385 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4386 bool jal_shuffle)
4387 {
4388 if (!mips16_reloc(r_type)
4389 && !should_shuffle_micromips_reloc(r_type))
4390 return;
4391
4392 // Pick up the first and second halfwords of the instruction.
4393 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4394 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4395 Valtype32 val;
4396
4397 if (micromips_reloc(r_type)
4398 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4399 val = first << 16 | second;
4400 else if (r_type != elfcpp::R_MIPS16_26)
4401 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4402 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4403 else
4404 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4405 | ((first & 0x1f) << 21) | second);
4406
4407 elfcpp::Swap<32, big_endian>::writeval(view, val);
4408 }
4409
4410 static void
4411 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4412 {
4413 if (!mips16_reloc(r_type)
4414 && !should_shuffle_micromips_reloc(r_type))
4415 return;
4416
4417 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4418 Valtype16 first, second;
4419
4420 if (micromips_reloc(r_type)
4421 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4422 {
4423 second = val & 0xffff;
4424 first = val >> 16;
4425 }
4426 else if (r_type != elfcpp::R_MIPS16_26)
4427 {
4428 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4429 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4430 }
4431 else
4432 {
4433 second = val & 0xffff;
4434 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4435 | ((val >> 21) & 0x1f);
4436 }
4437
4438 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4439 elfcpp::Swap<16, big_endian>::writeval(view, first);
4440 }
4441
4442 // R_MIPS_16: S + sign-extend(A)
4443 static inline typename This::Status
4444 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4445 const Symbol_value<size>* psymval, Mips_address addend_a,
4446 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4447 {
4448 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4449 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4450
4451 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4452 : addend_a);
4453
4454 Valtype x = psymval->value(object, addend);
4455 val = Bits<16>::bit_select32(val, x, 0xffffU);
4456
4457 if (calculate_only)
4458 {
4459 *calculated_value = x;
4460 return This::STATUS_OKAY;
4461 }
4462 else
4463 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4464
4465 return check_overflow<16>(x);
4466 }
4467
4468 // R_MIPS_32: S + A
4469 static inline typename This::Status
4470 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4471 const Symbol_value<size>* psymval, Mips_address addend_a,
4472 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4473 {
4474 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4475 Valtype addend = (extract_addend
4476 ? elfcpp::Swap<32, big_endian>::readval(wv)
4477 : addend_a);
4478 Valtype x = psymval->value(object, addend);
4479
4480 if (calculate_only)
4481 *calculated_value = x;
4482 else
4483 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4484
4485 return This::STATUS_OKAY;
4486 }
4487
4488 // R_MIPS_JALR, R_MICROMIPS_JALR
4489 static inline typename This::Status
4490 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4491 const Symbol_value<size>* psymval, Mips_address address,
4492 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4493 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4494 bool calculate_only, Valtype* calculated_value)
4495 {
4496 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4497 Valtype addend = extract_addend ? 0 : addend_a;
4498 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4499
4500 // Try converting J(AL)R to B(AL), if the target is in range.
4501 if (!parameters->options().relocatable()
4502 && r_type == elfcpp::R_MIPS_JALR
4503 && !cross_mode_jump
4504 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4505 || (jr_to_b && val == 0x03200008))) // jr t9
4506 {
4507 int offset = psymval->value(object, addend) - (address + 4);
4508 if (!Bits<18>::has_overflow32(offset))
4509 {
4510 if (val == 0x03200008) // jr t9
4511 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4512 else
4513 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4514 }
4515 }
4516
4517 if (calculate_only)
4518 *calculated_value = val;
4519 else
4520 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4521
4522 return This::STATUS_OKAY;
4523 }
4524
4525 // R_MIPS_PC32: S + A - P
4526 static inline typename This::Status
4527 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4528 const Symbol_value<size>* psymval, Mips_address address,
4529 Mips_address addend_a, bool extract_addend, bool calculate_only,
4530 Valtype* calculated_value)
4531 {
4532 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4533 Valtype addend = (extract_addend
4534 ? elfcpp::Swap<32, big_endian>::readval(wv)
4535 : addend_a);
4536 Valtype x = psymval->value(object, addend) - address;
4537
4538 if (calculate_only)
4539 *calculated_value = x;
4540 else
4541 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4542
4543 return This::STATUS_OKAY;
4544 }
4545
4546 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4547 static inline typename This::Status
4548 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4549 const Symbol_value<size>* psymval, Mips_address address,
4550 bool local, Mips_address addend_a, bool extract_addend,
4551 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4552 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4553 {
4554 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4555 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4556
4557 Valtype addend;
4558 if (extract_addend)
4559 {
4560 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4561 addend = (val & 0x03ffffff) << 1;
4562 else
4563 addend = (val & 0x03ffffff) << 2;
4564 }
4565 else
4566 addend = addend_a;
4567
4568 // Make sure the target of JALX is word-aligned. Bit 0 must be
4569 // the correct ISA mode selector and bit 1 must be 0.
4570 if (!calculate_only && cross_mode_jump
4571 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4572 {
4573 gold_warning(_("JALX to a non-word-aligned address"));
4574 return This::STATUS_BAD_RELOC;
4575 }
4576
4577 // Shift is 2, unusually, for microMIPS JALX.
4578 unsigned int shift =
4579 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4580
4581 Valtype x;
4582 if (local)
4583 x = addend | ((address + 4) & (0xfc000000 << shift));
4584 else
4585 {
4586 if (shift == 1)
4587 x = Bits<27>::sign_extend32(addend);
4588 else
4589 x = Bits<28>::sign_extend32(addend);
4590 }
4591 x = psymval->value(object, x) >> shift;
4592
4593 if (!calculate_only && !local && !gsym->is_weak_undefined())
4594 {
4595 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4596 {
4597 gold_error(_("relocation truncated to fit: %u against '%s'"),
4598 r_type, gsym->name());
4599 return This::STATUS_OVERFLOW;
4600 }
4601 }
4602
4603 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4604
4605 // If required, turn JAL into JALX.
4606 if (cross_mode_jump)
4607 {
4608 bool ok;
4609 Valtype32 opcode = val >> 26;
4610 Valtype32 jalx_opcode;
4611
4612 // Check to see if the opcode is already JAL or JALX.
4613 if (r_type == elfcpp::R_MIPS16_26)
4614 {
4615 ok = (opcode == 0x6) || (opcode == 0x7);
4616 jalx_opcode = 0x7;
4617 }
4618 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4619 {
4620 ok = (opcode == 0x3d) || (opcode == 0x3c);
4621 jalx_opcode = 0x3c;
4622 }
4623 else
4624 {
4625 ok = (opcode == 0x3) || (opcode == 0x1d);
4626 jalx_opcode = 0x1d;
4627 }
4628
4629 // If the opcode is not JAL or JALX, there's a problem. We cannot
4630 // convert J or JALS to JALX.
4631 if (!calculate_only && !ok)
4632 {
4633 gold_error(_("Unsupported jump between ISA modes; consider "
4634 "recompiling with interlinking enabled."));
4635 return This::STATUS_BAD_RELOC;
4636 }
4637
4638 // Make this the JALX opcode.
4639 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4640 }
4641
4642 // Try converting JAL to BAL, if the target is in range.
4643 if (!parameters->options().relocatable()
4644 && !cross_mode_jump
4645 && ((jal_to_bal
4646 && r_type == elfcpp::R_MIPS_26
4647 && (val >> 26) == 0x3))) // jal addr
4648 {
4649 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4650 int offset = dest - (address + 4);
4651 if (!Bits<18>::has_overflow32(offset))
4652 {
4653 if (val == 0x03200008) // jr t9
4654 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4655 else
4656 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4657 }
4658 }
4659
4660 if (calculate_only)
4661 *calculated_value = val;
4662 else
4663 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4664
4665 return This::STATUS_OKAY;
4666 }
4667
4668 // R_MIPS_PC16
4669 static inline typename This::Status
4670 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4671 const Symbol_value<size>* psymval, Mips_address address,
4672 Mips_address addend_a, bool extract_addend, bool calculate_only,
4673 Valtype* calculated_value)
4674 {
4675 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4676 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4677
4678 Valtype addend = (extract_addend
4679 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4680 : addend_a);
4681
4682 Valtype x = psymval->value(object, addend) - address;
4683 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4684
4685 if (calculate_only)
4686 {
4687 *calculated_value = x >> 2;
4688 return This::STATUS_OKAY;
4689 }
4690 else
4691 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4692
4693 return check_overflow<18>(x);
4694 }
4695
4696 // R_MIPS_PC21_S2
4697 static inline typename This::Status
4698 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4699 const Symbol_value<size>* psymval, Mips_address address,
4700 Mips_address addend_a, bool extract_addend, bool calculate_only,
4701 Valtype* calculated_value)
4702 {
4703 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4704 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4705
4706 Valtype addend = (extract_addend
4707 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4708 : addend_a);
4709
4710 Valtype x = psymval->value(object, addend) - address;
4711 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4712
4713 if (calculate_only)
4714 {
4715 *calculated_value = x >> 2;
4716 return This::STATUS_OKAY;
4717 }
4718 else
4719 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4720
4721 if (psymval->value(object, addend) & 3)
4722 return This::STATUS_PCREL_UNALIGNED;
4723
4724 return check_overflow<23>(x);
4725 }
4726
4727 // R_MIPS_PC26_S2
4728 static inline typename This::Status
4729 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4730 const Symbol_value<size>* psymval, Mips_address address,
4731 Mips_address addend_a, bool extract_addend, bool calculate_only,
4732 Valtype* calculated_value)
4733 {
4734 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4735 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4736
4737 Valtype addend = (extract_addend
4738 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4739 : addend_a);
4740
4741 Valtype x = psymval->value(object, addend) - address;
4742 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4743
4744 if (calculate_only)
4745 {
4746 *calculated_value = x >> 2;
4747 return This::STATUS_OKAY;
4748 }
4749 else
4750 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4751
4752 if (psymval->value(object, addend) & 3)
4753 return This::STATUS_PCREL_UNALIGNED;
4754
4755 return check_overflow<28>(x);
4756 }
4757
4758 // R_MIPS_PC18_S3
4759 static inline typename This::Status
4760 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4761 const Symbol_value<size>* psymval, Mips_address address,
4762 Mips_address addend_a, bool extract_addend, bool calculate_only,
4763 Valtype* calculated_value)
4764 {
4765 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4766 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4767
4768 Valtype addend = (extract_addend
4769 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4770 : addend_a);
4771
4772 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4773 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4774
4775 if (calculate_only)
4776 {
4777 *calculated_value = x >> 3;
4778 return This::STATUS_OKAY;
4779 }
4780 else
4781 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4782
4783 if (psymval->value(object, addend) & 7)
4784 return This::STATUS_PCREL_UNALIGNED;
4785
4786 return check_overflow<21>(x);
4787 }
4788
4789 // R_MIPS_PC19_S2
4790 static inline typename This::Status
4791 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4792 const Symbol_value<size>* psymval, Mips_address address,
4793 Mips_address addend_a, bool extract_addend, bool calculate_only,
4794 Valtype* calculated_value)
4795 {
4796 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4797 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4798
4799 Valtype addend = (extract_addend
4800 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4801 : addend_a);
4802
4803 Valtype x = psymval->value(object, addend) - address;
4804 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4805
4806 if (calculate_only)
4807 {
4808 *calculated_value = x >> 2;
4809 return This::STATUS_OKAY;
4810 }
4811 else
4812 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4813
4814 if (psymval->value(object, addend) & 3)
4815 return This::STATUS_PCREL_UNALIGNED;
4816
4817 return check_overflow<21>(x);
4818 }
4819
4820 // R_MIPS_PCHI16
4821 static inline typename This::Status
4822 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4823 const Symbol_value<size>* psymval, Mips_address addend,
4824 Mips_address address, unsigned int r_sym, bool extract_addend)
4825 {
4826 // Record the relocation. It will be resolved when we find pclo16 part.
4827 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4828 addend, 0, r_sym, extract_addend, address));
4829 return This::STATUS_OKAY;
4830 }
4831
4832 // R_MIPS_PCHI16
4833 static inline typename This::Status
4834 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4835 const Symbol_value<size>* psymval, Mips_address addend_hi,
4836 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4837 bool calculate_only, Valtype* calculated_value)
4838 {
4839 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4840 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4841
4842 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4843 : addend_hi);
4844
4845 Valtype value = psymval->value(object, addend) - address;
4846 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4847 val = Bits<32>::bit_select32(val, x, 0xffff);
4848
4849 if (calculate_only)
4850 *calculated_value = x;
4851 else
4852 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4853
4854 return This::STATUS_OKAY;
4855 }
4856
4857 // R_MIPS_PCLO16
4858 static inline typename This::Status
4859 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4860 const Symbol_value<size>* psymval, Mips_address addend_a,
4861 bool extract_addend, Mips_address address, unsigned int r_sym,
4862 unsigned int rel_type, bool calculate_only,
4863 Valtype* calculated_value)
4864 {
4865 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4866 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4867
4868 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4869 : addend_a);
4870
4871 if (rel_type == elfcpp::SHT_REL)
4872 {
4873 // Resolve pending R_MIPS_PCHI16 relocations.
4874 typename std::list<reloc_high<size, big_endian> >::iterator it =
4875 pchi16_relocs.begin();
4876 while (it != pchi16_relocs.end())
4877 {
4878 reloc_high<size, big_endian> pchi16 = *it;
4879 if (pchi16.r_sym == r_sym)
4880 {
4881 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4882 pchi16.addend, pchi16.address,
4883 pchi16.extract_addend, addend, calculate_only,
4884 calculated_value);
4885 it = pchi16_relocs.erase(it);
4886 }
4887 else
4888 ++it;
4889 }
4890 }
4891
4892 // Resolve R_MIPS_PCLO16 relocation.
4893 Valtype x = psymval->value(object, addend) - address;
4894 val = Bits<32>::bit_select32(val, x, 0xffff);
4895
4896 if (calculate_only)
4897 *calculated_value = x;
4898 else
4899 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4900
4901 return This::STATUS_OKAY;
4902 }
4903
4904 // R_MICROMIPS_PC7_S1
4905 static inline typename This::Status
4906 relmicromips_pc7_s1(unsigned char* view,
4907 const Mips_relobj<size, big_endian>* object,
4908 const Symbol_value<size>* psymval, Mips_address address,
4909 Mips_address addend_a, bool extract_addend,
4910 bool calculate_only, Valtype* calculated_value)
4911 {
4912 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4913 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4914
4915 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4916 : addend_a;
4917
4918 Valtype x = psymval->value(object, addend) - address;
4919 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4920
4921 if (calculate_only)
4922 {
4923 *calculated_value = x >> 1;
4924 return This::STATUS_OKAY;
4925 }
4926 else
4927 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4928
4929 return check_overflow<8>(x);
4930 }
4931
4932 // R_MICROMIPS_PC10_S1
4933 static inline typename This::Status
4934 relmicromips_pc10_s1(unsigned char* view,
4935 const Mips_relobj<size, big_endian>* object,
4936 const Symbol_value<size>* psymval, Mips_address address,
4937 Mips_address addend_a, bool extract_addend,
4938 bool calculate_only, Valtype* calculated_value)
4939 {
4940 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4941 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4942
4943 Valtype addend = (extract_addend
4944 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4945 : addend_a);
4946
4947 Valtype x = psymval->value(object, addend) - address;
4948 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4949
4950 if (calculate_only)
4951 {
4952 *calculated_value = x >> 1;
4953 return This::STATUS_OKAY;
4954 }
4955 else
4956 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4957
4958 return check_overflow<11>(x);
4959 }
4960
4961 // R_MICROMIPS_PC16_S1
4962 static inline typename This::Status
4963 relmicromips_pc16_s1(unsigned char* view,
4964 const Mips_relobj<size, big_endian>* object,
4965 const Symbol_value<size>* psymval, Mips_address address,
4966 Mips_address addend_a, bool extract_addend,
4967 bool calculate_only, Valtype* calculated_value)
4968 {
4969 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4970 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4971
4972 Valtype addend = (extract_addend
4973 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
4974 : addend_a);
4975
4976 Valtype x = psymval->value(object, addend) - address;
4977 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4978
4979 if (calculate_only)
4980 {
4981 *calculated_value = x >> 1;
4982 return This::STATUS_OKAY;
4983 }
4984 else
4985 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4986
4987 return check_overflow<17>(x);
4988 }
4989
4990 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4991 static inline typename This::Status
4992 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4993 const Symbol_value<size>* psymval, Mips_address addend,
4994 Mips_address address, bool gp_disp, unsigned int r_type,
4995 unsigned int r_sym, bool extract_addend)
4996 {
4997 // Record the relocation. It will be resolved when we find lo16 part.
4998 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4999 addend, r_type, r_sym, extract_addend, address,
5000 gp_disp));
5001 return This::STATUS_OKAY;
5002 }
5003
5004 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5005 static inline typename This::Status
5006 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5007 const Symbol_value<size>* psymval, Mips_address addend_hi,
5008 Mips_address address, bool is_gp_disp, unsigned int r_type,
5009 bool extract_addend, Valtype32 addend_lo,
5010 Target_mips<size, big_endian>* target, bool calculate_only,
5011 Valtype* calculated_value)
5012 {
5013 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5014 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5015
5016 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5017 : addend_hi);
5018
5019 Valtype32 value;
5020 if (!is_gp_disp)
5021 value = psymval->value(object, addend);
5022 else
5023 {
5024 // For MIPS16 ABI code we generate this sequence
5025 // 0: li $v0,%hi(_gp_disp)
5026 // 4: addiupc $v1,%lo(_gp_disp)
5027 // 8: sll $v0,16
5028 // 12: addu $v0,$v1
5029 // 14: move $gp,$v0
5030 // So the offsets of hi and lo relocs are the same, but the
5031 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5032 // ADDIUPC clears the low two bits of the instruction address,
5033 // so the base is ($t9 + 4) & ~3.
5034 Valtype32 gp_disp;
5035 if (r_type == elfcpp::R_MIPS16_HI16)
5036 gp_disp = (target->adjusted_gp_value(object)
5037 - ((address + 4) & ~0x3));
5038 // The microMIPS .cpload sequence uses the same assembly
5039 // instructions as the traditional psABI version, but the
5040 // incoming $t9 has the low bit set.
5041 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5042 gp_disp = target->adjusted_gp_value(object) - address - 1;
5043 else
5044 gp_disp = target->adjusted_gp_value(object) - address;
5045 value = gp_disp + addend;
5046 }
5047 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5048 val = Bits<32>::bit_select32(val, x, 0xffff);
5049
5050 if (calculate_only)
5051 {
5052 *calculated_value = x;
5053 return This::STATUS_OKAY;
5054 }
5055 else
5056 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5057
5058 return (is_gp_disp ? check_overflow<16>(x)
5059 : This::STATUS_OKAY);
5060 }
5061
5062 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5063 static inline typename This::Status
5064 relgot16_local(unsigned char* view,
5065 const Mips_relobj<size, big_endian>* object,
5066 const Symbol_value<size>* psymval, Mips_address addend_a,
5067 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5068 {
5069 // Record the relocation. It will be resolved when we find lo16 part.
5070 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5071 addend_a, r_type, r_sym, extract_addend));
5072 return This::STATUS_OKAY;
5073 }
5074
5075 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5076 static inline typename This::Status
5077 do_relgot16_local(unsigned char* view,
5078 const Mips_relobj<size, big_endian>* object,
5079 const Symbol_value<size>* psymval, Mips_address addend_hi,
5080 bool extract_addend, Valtype32 addend_lo,
5081 Target_mips<size, big_endian>* target, bool calculate_only,
5082 Valtype* calculated_value)
5083 {
5084 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5085 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5086
5087 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5088 : addend_hi);
5089
5090 // Find GOT page entry.
5091 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5092 & 0xffff;
5093 value <<= 16;
5094 unsigned int got_offset =
5095 target->got_section()->get_got_page_offset(value, object);
5096
5097 // Resolve the relocation.
5098 Valtype x = target->got_section()->gp_offset(got_offset, object);
5099 val = Bits<32>::bit_select32(val, x, 0xffff);
5100
5101 if (calculate_only)
5102 {
5103 *calculated_value = x;
5104 return This::STATUS_OKAY;
5105 }
5106 else
5107 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5108
5109 return check_overflow<16>(x);
5110 }
5111
5112 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5113 static inline typename This::Status
5114 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5115 const Mips_relobj<size, big_endian>* object,
5116 const Symbol_value<size>* psymval, Mips_address addend_a,
5117 bool extract_addend, Mips_address address, bool is_gp_disp,
5118 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5119 bool calculate_only, Valtype* calculated_value)
5120 {
5121 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5122 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5123
5124 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5125 : addend_a);
5126
5127 if (rel_type == elfcpp::SHT_REL)
5128 {
5129 typename This::Status reloc_status = This::STATUS_OKAY;
5130 // Resolve pending R_MIPS_HI16 relocations.
5131 typename std::list<reloc_high<size, big_endian> >::iterator it =
5132 hi16_relocs.begin();
5133 while (it != hi16_relocs.end())
5134 {
5135 reloc_high<size, big_endian> hi16 = *it;
5136 if (hi16.r_sym == r_sym
5137 && is_matching_lo16_reloc(hi16.r_type, r_type))
5138 {
5139 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5140 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5141 hi16.addend, hi16.address, hi16.gp_disp,
5142 hi16.r_type, hi16.extract_addend, addend,
5143 target, calculate_only, calculated_value);
5144 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5145 if (reloc_status == This::STATUS_OVERFLOW)
5146 return This::STATUS_OVERFLOW;
5147 it = hi16_relocs.erase(it);
5148 }
5149 else
5150 ++it;
5151 }
5152
5153 // Resolve pending local R_MIPS_GOT16 relocations.
5154 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5155 got16_relocs.begin();
5156 while (it2 != got16_relocs.end())
5157 {
5158 reloc_high<size, big_endian> got16 = *it2;
5159 if (got16.r_sym == r_sym
5160 && is_matching_lo16_reloc(got16.r_type, r_type))
5161 {
5162 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5163
5164 reloc_status = do_relgot16_local(got16.view, got16.object,
5165 got16.psymval, got16.addend,
5166 got16.extract_addend, addend, target,
5167 calculate_only, calculated_value);
5168
5169 mips_reloc_shuffle(got16.view, got16.r_type, false);
5170 if (reloc_status == This::STATUS_OVERFLOW)
5171 return This::STATUS_OVERFLOW;
5172 it2 = got16_relocs.erase(it2);
5173 }
5174 else
5175 ++it2;
5176 }
5177 }
5178
5179 // Resolve R_MIPS_LO16 relocation.
5180 Valtype x;
5181 if (!is_gp_disp)
5182 x = psymval->value(object, addend);
5183 else
5184 {
5185 // See the comment for R_MIPS16_HI16 above for the reason
5186 // for this conditional.
5187 Valtype32 gp_disp;
5188 if (r_type == elfcpp::R_MIPS16_LO16)
5189 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5190 else if (r_type == elfcpp::R_MICROMIPS_LO16
5191 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5192 gp_disp = target->adjusted_gp_value(object) - address + 3;
5193 else
5194 gp_disp = target->adjusted_gp_value(object) - address + 4;
5195 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5196 // for overflow. Relocations against _gp_disp are normally
5197 // generated from the .cpload pseudo-op. It generates code
5198 // that normally looks like this:
5199
5200 // lui $gp,%hi(_gp_disp)
5201 // addiu $gp,$gp,%lo(_gp_disp)
5202 // addu $gp,$gp,$t9
5203
5204 // Here $t9 holds the address of the function being called,
5205 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5206 // relocation can easily overflow in this situation, but the
5207 // R_MIPS_HI16 relocation will handle the overflow.
5208 // Therefore, we consider this a bug in the MIPS ABI, and do
5209 // not check for overflow here.
5210 x = gp_disp + addend;
5211 }
5212 val = Bits<32>::bit_select32(val, x, 0xffff);
5213
5214 if (calculate_only)
5215 *calculated_value = x;
5216 else
5217 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5218
5219 return This::STATUS_OKAY;
5220 }
5221
5222 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5223 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5224 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5225 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5226 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5227 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5228 static inline typename This::Status
5229 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5230 Valtype* calculated_value)
5231 {
5232 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5233 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5234 Valtype x = gp_offset;
5235 val = Bits<32>::bit_select32(val, x, 0xffff);
5236
5237 if (calculate_only)
5238 {
5239 *calculated_value = x;
5240 return This::STATUS_OKAY;
5241 }
5242 else
5243 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5244
5245 return check_overflow<16>(x);
5246 }
5247
5248 // R_MIPS_EH
5249 static inline typename This::Status
5250 releh(unsigned char* view, int gp_offset, bool calculate_only,
5251 Valtype* calculated_value)
5252 {
5253 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5254 Valtype x = gp_offset;
5255
5256 if (calculate_only)
5257 {
5258 *calculated_value = x;
5259 return This::STATUS_OKAY;
5260 }
5261 else
5262 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5263
5264 return check_overflow<32>(x);
5265 }
5266
5267 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5268 static inline typename This::Status
5269 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5270 const Mips_relobj<size, big_endian>* object,
5271 const Symbol_value<size>* psymval, Mips_address addend_a,
5272 bool extract_addend, bool calculate_only,
5273 Valtype* calculated_value)
5274 {
5275 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5276 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5277 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5278
5279 // Find a GOT page entry that points to within 32KB of symbol + addend.
5280 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5281 unsigned int got_offset =
5282 target->got_section()->get_got_page_offset(value, object);
5283
5284 Valtype x = target->got_section()->gp_offset(got_offset, object);
5285 val = Bits<32>::bit_select32(val, x, 0xffff);
5286
5287 if (calculate_only)
5288 {
5289 *calculated_value = x;
5290 return This::STATUS_OKAY;
5291 }
5292 else
5293 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5294
5295 return check_overflow<16>(x);
5296 }
5297
5298 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5299 static inline typename This::Status
5300 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5301 const Mips_relobj<size, big_endian>* object,
5302 const Symbol_value<size>* psymval, Mips_address addend_a,
5303 bool extract_addend, bool local, bool calculate_only,
5304 Valtype* calculated_value)
5305 {
5306 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5307 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5308 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5309
5310 // For a local symbol, find a GOT page entry that points to within 32KB of
5311 // symbol + addend. Relocation value is the offset of the GOT page entry's
5312 // value from symbol + addend.
5313 // For a global symbol, relocation value is addend.
5314 Valtype x;
5315 if (local)
5316 {
5317 // Find GOT page entry.
5318 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5319 & ~0xffff);
5320 target->got_section()->get_got_page_offset(value, object);
5321
5322 x = psymval->value(object, addend) - value;
5323 }
5324 else
5325 x = addend;
5326 val = Bits<32>::bit_select32(val, x, 0xffff);
5327
5328 if (calculate_only)
5329 {
5330 *calculated_value = x;
5331 return This::STATUS_OKAY;
5332 }
5333 else
5334 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5335
5336 return check_overflow<16>(x);
5337 }
5338
5339 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5340 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5341 static inline typename This::Status
5342 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5343 Valtype* calculated_value)
5344 {
5345 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5346 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5347 Valtype x = gp_offset;
5348 x = ((x + 0x8000) >> 16) & 0xffff;
5349 val = Bits<32>::bit_select32(val, x, 0xffff);
5350
5351 if (calculate_only)
5352 *calculated_value = x;
5353 else
5354 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5355
5356 return This::STATUS_OKAY;
5357 }
5358
5359 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5360 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5361 static inline typename This::Status
5362 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5363 Valtype* calculated_value)
5364 {
5365 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5366 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5367 Valtype x = gp_offset;
5368 val = Bits<32>::bit_select32(val, x, 0xffff);
5369
5370 if (calculate_only)
5371 *calculated_value = x;
5372 else
5373 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5374
5375 return This::STATUS_OKAY;
5376 }
5377
5378 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5379 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5380 static inline typename This::Status
5381 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5382 const Symbol_value<size>* psymval, Mips_address gp,
5383 Mips_address addend_a, bool extract_addend, bool local,
5384 unsigned int r_type, bool calculate_only,
5385 Valtype* calculated_value)
5386 {
5387 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5388 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5389
5390 Valtype addend;
5391 if (extract_addend)
5392 {
5393 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5394 addend = (val & 0x7f) << 2;
5395 else
5396 addend = val & 0xffff;
5397 // Only sign-extend the addend if it was extracted from the
5398 // instruction. If the addend was separate, leave it alone,
5399 // otherwise we may lose significant bits.
5400 addend = Bits<16>::sign_extend32(addend);
5401 }
5402 else
5403 addend = addend_a;
5404
5405 Valtype x = psymval->value(object, addend) - gp;
5406
5407 // If the symbol was local, any earlier relocatable links will
5408 // have adjusted its addend with the gp offset, so compensate
5409 // for that now. Don't do it for symbols forced local in this
5410 // link, though, since they won't have had the gp offset applied
5411 // to them before.
5412 if (local)
5413 x += object->gp_value();
5414
5415 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5416 val = Bits<32>::bit_select32(val, x, 0x7f);
5417 else
5418 val = Bits<32>::bit_select32(val, x, 0xffff);
5419
5420 if (calculate_only)
5421 {
5422 *calculated_value = x;
5423 return This::STATUS_OKAY;
5424 }
5425 else
5426 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5427
5428 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5429 {
5430 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5431 "limit (see option -G)"));
5432 return This::STATUS_OVERFLOW;
5433 }
5434 return This::STATUS_OKAY;
5435 }
5436
5437 // R_MIPS_GPREL32
5438 static inline typename This::Status
5439 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5440 const Symbol_value<size>* psymval, Mips_address gp,
5441 Mips_address addend_a, bool extract_addend, bool calculate_only,
5442 Valtype* calculated_value)
5443 {
5444 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5445 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5446 Valtype addend = extract_addend ? val : addend_a;
5447
5448 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5449 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5450
5451 if (calculate_only)
5452 *calculated_value = x;
5453 else
5454 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5455
5456 return This::STATUS_OKAY;
5457 }
5458
5459 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5460 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5461 // R_MICROMIPS_TLS_DTPREL_HI16
5462 static inline typename This::Status
5463 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5464 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5465 Mips_address addend_a, bool extract_addend, bool calculate_only,
5466 Valtype* calculated_value)
5467 {
5468 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5469 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5470 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5471
5472 // tls symbol values are relative to tls_segment()->vaddr()
5473 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5474 val = Bits<32>::bit_select32(val, x, 0xffff);
5475
5476 if (calculate_only)
5477 *calculated_value = x;
5478 else
5479 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5480
5481 return This::STATUS_OKAY;
5482 }
5483
5484 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5485 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5486 // R_MICROMIPS_TLS_DTPREL_LO16,
5487 static inline typename This::Status
5488 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5489 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5490 Mips_address addend_a, bool extract_addend, bool calculate_only,
5491 Valtype* calculated_value)
5492 {
5493 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5494 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5495 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5496
5497 // tls symbol values are relative to tls_segment()->vaddr()
5498 Valtype x = psymval->value(object, addend) - tp_offset;
5499 val = Bits<32>::bit_select32(val, x, 0xffff);
5500
5501 if (calculate_only)
5502 *calculated_value = x;
5503 else
5504 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5505
5506 return This::STATUS_OKAY;
5507 }
5508
5509 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5510 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5511 static inline typename This::Status
5512 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5513 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5514 Mips_address addend_a, bool extract_addend, bool calculate_only,
5515 Valtype* calculated_value)
5516 {
5517 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5518 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5519 Valtype addend = extract_addend ? val : addend_a;
5520
5521 // tls symbol values are relative to tls_segment()->vaddr()
5522 Valtype x = psymval->value(object, addend) - tp_offset;
5523
5524 if (calculate_only)
5525 *calculated_value = x;
5526 else
5527 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5528
5529 return This::STATUS_OKAY;
5530 }
5531
5532 // R_MIPS_SUB, R_MICROMIPS_SUB
5533 static inline typename This::Status
5534 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5535 const Symbol_value<size>* psymval, Mips_address addend_a,
5536 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5537 {
5538 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5539 Valtype64 addend = (extract_addend
5540 ? elfcpp::Swap<64, big_endian>::readval(wv)
5541 : addend_a);
5542
5543 Valtype64 x = psymval->value(object, -addend);
5544 if (calculate_only)
5545 *calculated_value = x;
5546 else
5547 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5548
5549 return This::STATUS_OKAY;
5550 }
5551
5552 // R_MIPS_64: S + A
5553 static inline typename This::Status
5554 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5555 const Symbol_value<size>* psymval, Mips_address addend_a,
5556 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5557 bool apply_addend_only)
5558 {
5559 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5560 Valtype64 addend = (extract_addend
5561 ? elfcpp::Swap<64, big_endian>::readval(wv)
5562 : addend_a);
5563
5564 Valtype64 x = psymval->value(object, addend);
5565 if (calculate_only)
5566 *calculated_value = x;
5567 else
5568 {
5569 if (apply_addend_only)
5570 x = addend;
5571 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5572 }
5573
5574 return This::STATUS_OKAY;
5575 }
5576
5577 };
5578
5579 template<int size, bool big_endian>
5580 typename std::list<reloc_high<size, big_endian> >
5581 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5582
5583 template<int size, bool big_endian>
5584 typename std::list<reloc_high<size, big_endian> >
5585 Mips_relocate_functions<size, big_endian>::got16_relocs;
5586
5587 template<int size, bool big_endian>
5588 typename std::list<reloc_high<size, big_endian> >
5589 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5590
5591 // Mips_got_info methods.
5592
5593 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5594 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5595
5596 template<int size, bool big_endian>
5597 void
5598 Mips_got_info<size, big_endian>::record_local_got_symbol(
5599 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5600 Mips_address addend, unsigned int r_type, unsigned int shndx,
5601 bool is_section_symbol)
5602 {
5603 Mips_got_entry<size, big_endian>* entry =
5604 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5605 mips_elf_reloc_tls_type(r_type),
5606 shndx, is_section_symbol);
5607 this->record_got_entry(entry, object);
5608 }
5609
5610 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5611 // in OBJECT. FOR_CALL is true if the caller is only interested in
5612 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5613 // relocation.
5614
5615 template<int size, bool big_endian>
5616 void
5617 Mips_got_info<size, big_endian>::record_global_got_symbol(
5618 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5619 unsigned int r_type, bool dyn_reloc, bool for_call)
5620 {
5621 if (!for_call)
5622 mips_sym->set_got_not_only_for_calls();
5623
5624 // A global symbol in the GOT must also be in the dynamic symbol table.
5625 if (!mips_sym->needs_dynsym_entry())
5626 {
5627 switch (mips_sym->visibility())
5628 {
5629 case elfcpp::STV_INTERNAL:
5630 case elfcpp::STV_HIDDEN:
5631 mips_sym->set_is_forced_local();
5632 break;
5633 default:
5634 mips_sym->set_needs_dynsym_entry();
5635 break;
5636 }
5637 }
5638
5639 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5640 if (tls_type == GOT_TLS_NONE)
5641 this->global_got_symbols_.insert(mips_sym);
5642
5643 if (dyn_reloc)
5644 {
5645 if (mips_sym->global_got_area() == GGA_NONE)
5646 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5647 return;
5648 }
5649
5650 Mips_got_entry<size, big_endian>* entry =
5651 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5652
5653 this->record_got_entry(entry, object);
5654 }
5655
5656 // Add ENTRY to master GOT and to OBJECT's GOT.
5657
5658 template<int size, bool big_endian>
5659 void
5660 Mips_got_info<size, big_endian>::record_got_entry(
5661 Mips_got_entry<size, big_endian>* entry,
5662 Mips_relobj<size, big_endian>* object)
5663 {
5664 this->got_entries_.insert(entry);
5665
5666 // Create the GOT entry for the OBJECT's GOT.
5667 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5668 Mips_got_entry<size, big_endian>* entry2 =
5669 new Mips_got_entry<size, big_endian>(*entry);
5670
5671 g->got_entries_.insert(entry2);
5672 }
5673
5674 // Record that OBJECT has a page relocation against symbol SYMNDX and
5675 // that ADDEND is the addend for that relocation.
5676 // This function creates an upper bound on the number of GOT slots
5677 // required; no attempt is made to combine references to non-overridable
5678 // global symbols across multiple input files.
5679
5680 template<int size, bool big_endian>
5681 void
5682 Mips_got_info<size, big_endian>::record_got_page_entry(
5683 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5684 {
5685 struct Got_page_range **range_ptr, *range;
5686 int old_pages, new_pages;
5687
5688 // Find the Got_page_entry for this symbol.
5689 Got_page_entry* entry = new Got_page_entry(object, symndx);
5690 typename Got_page_entry_set::iterator it =
5691 this->got_page_entries_.find(entry);
5692 if (it != this->got_page_entries_.end())
5693 entry = *it;
5694 else
5695 this->got_page_entries_.insert(entry);
5696
5697 // Add the same entry to the OBJECT's GOT.
5698 Got_page_entry* entry2 = NULL;
5699 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5700 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5701 {
5702 entry2 = new Got_page_entry(*entry);
5703 g2->got_page_entries_.insert(entry2);
5704 }
5705
5706 // Skip over ranges whose maximum extent cannot share a page entry
5707 // with ADDEND.
5708 range_ptr = &entry->ranges;
5709 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5710 range_ptr = &(*range_ptr)->next;
5711
5712 // If we scanned to the end of the list, or found a range whose
5713 // minimum extent cannot share a page entry with ADDEND, create
5714 // a new singleton range.
5715 range = *range_ptr;
5716 if (!range || addend < range->min_addend - 0xffff)
5717 {
5718 range = new Got_page_range();
5719 range->next = *range_ptr;
5720 range->min_addend = addend;
5721 range->max_addend = addend;
5722
5723 *range_ptr = range;
5724 ++entry->num_pages;
5725 if (entry2 != NULL)
5726 ++entry2->num_pages;
5727 ++this->page_gotno_;
5728 ++g2->page_gotno_;
5729 return;
5730 }
5731
5732 // Remember how many pages the old range contributed.
5733 old_pages = range->get_max_pages();
5734
5735 // Update the ranges.
5736 if (addend < range->min_addend)
5737 range->min_addend = addend;
5738 else if (addend > range->max_addend)
5739 {
5740 if (range->next && addend >= range->next->min_addend - 0xffff)
5741 {
5742 old_pages += range->next->get_max_pages();
5743 range->max_addend = range->next->max_addend;
5744 range->next = range->next->next;
5745 }
5746 else
5747 range->max_addend = addend;
5748 }
5749
5750 // Record any change in the total estimate.
5751 new_pages = range->get_max_pages();
5752 if (old_pages != new_pages)
5753 {
5754 entry->num_pages += new_pages - old_pages;
5755 if (entry2 != NULL)
5756 entry2->num_pages += new_pages - old_pages;
5757 this->page_gotno_ += new_pages - old_pages;
5758 g2->page_gotno_ += new_pages - old_pages;
5759 }
5760 }
5761
5762 // Create all entries that should be in the local part of the GOT.
5763
5764 template<int size, bool big_endian>
5765 void
5766 Mips_got_info<size, big_endian>::add_local_entries(
5767 Target_mips<size, big_endian>* target, Layout* layout)
5768 {
5769 Mips_output_data_got<size, big_endian>* got = target->got_section();
5770 // First two GOT entries are reserved. The first entry will be filled at
5771 // runtime. The second entry will be used by some runtime loaders.
5772 got->add_constant(0);
5773 got->add_constant(target->mips_elf_gnu_got1_mask());
5774
5775 for (typename Got_entry_set::iterator
5776 p = this->got_entries_.begin();
5777 p != this->got_entries_.end();
5778 ++p)
5779 {
5780 Mips_got_entry<size, big_endian>* entry = *p;
5781 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5782 {
5783 got->add_local(entry->object(), entry->symndx(),
5784 GOT_TYPE_STANDARD, entry->addend());
5785 unsigned int got_offset = entry->object()->local_got_offset(
5786 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5787 if (got->multi_got() && this->index_ > 0
5788 && parameters->options().output_is_position_independent())
5789 {
5790 if (!entry->is_section_symbol())
5791 target->rel_dyn_section(layout)->add_local(entry->object(),
5792 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5793 else
5794 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5795 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5796 got, got_offset);
5797 }
5798 }
5799 }
5800
5801 this->add_page_entries(target, layout);
5802
5803 // Add global entries that should be in the local area.
5804 for (typename Got_entry_set::iterator
5805 p = this->got_entries_.begin();
5806 p != this->got_entries_.end();
5807 ++p)
5808 {
5809 Mips_got_entry<size, big_endian>* entry = *p;
5810 if (!entry->is_for_global_symbol())
5811 continue;
5812
5813 Mips_symbol<size>* mips_sym = entry->sym();
5814 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5815 {
5816 unsigned int got_type;
5817 if (!got->multi_got())
5818 got_type = GOT_TYPE_STANDARD;
5819 else
5820 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5821 if (got->add_global(mips_sym, got_type))
5822 {
5823 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5824 if (got->multi_got() && this->index_ > 0
5825 && parameters->options().output_is_position_independent())
5826 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5827 mips_sym, elfcpp::R_MIPS_REL32, got,
5828 mips_sym->got_offset(got_type));
5829 }
5830 }
5831 }
5832 }
5833
5834 // Create GOT page entries.
5835
5836 template<int size, bool big_endian>
5837 void
5838 Mips_got_info<size, big_endian>::add_page_entries(
5839 Target_mips<size, big_endian>* target, Layout* layout)
5840 {
5841 if (this->page_gotno_ == 0)
5842 return;
5843
5844 Mips_output_data_got<size, big_endian>* got = target->got_section();
5845 this->got_page_offset_start_ = got->add_constant(0);
5846 if (got->multi_got() && this->index_ > 0
5847 && parameters->options().output_is_position_independent())
5848 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5849 this->got_page_offset_start_);
5850 int num_entries = this->page_gotno_;
5851 unsigned int prev_offset = this->got_page_offset_start_;
5852 while (--num_entries > 0)
5853 {
5854 unsigned int next_offset = got->add_constant(0);
5855 if (got->multi_got() && this->index_ > 0
5856 && parameters->options().output_is_position_independent())
5857 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5858 next_offset);
5859 gold_assert(next_offset == prev_offset + size/8);
5860 prev_offset = next_offset;
5861 }
5862 this->got_page_offset_next_ = this->got_page_offset_start_;
5863 }
5864
5865 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5866
5867 template<int size, bool big_endian>
5868 void
5869 Mips_got_info<size, big_endian>::add_global_entries(
5870 Target_mips<size, big_endian>* target, Layout* layout,
5871 unsigned int non_reloc_only_global_gotno)
5872 {
5873 Mips_output_data_got<size, big_endian>* got = target->got_section();
5874 // Add GGA_NORMAL entries.
5875 unsigned int count = 0;
5876 for (typename Got_entry_set::iterator
5877 p = this->got_entries_.begin();
5878 p != this->got_entries_.end();
5879 ++p)
5880 {
5881 Mips_got_entry<size, big_endian>* entry = *p;
5882 if (!entry->is_for_global_symbol())
5883 continue;
5884
5885 Mips_symbol<size>* mips_sym = entry->sym();
5886 if (mips_sym->global_got_area() != GGA_NORMAL)
5887 continue;
5888
5889 unsigned int got_type;
5890 if (!got->multi_got())
5891 got_type = GOT_TYPE_STANDARD;
5892 else
5893 // In multi-GOT links, global symbol can be in both primary and
5894 // secondary GOT(s). By creating custom GOT type
5895 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5896 // is added to secondary GOT(s).
5897 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5898 if (!got->add_global(mips_sym, got_type))
5899 continue;
5900
5901 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5902 if (got->multi_got() && this->index_ == 0)
5903 count++;
5904 if (got->multi_got() && this->index_ > 0)
5905 {
5906 if (parameters->options().output_is_position_independent()
5907 || (!parameters->doing_static_link()
5908 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5909 {
5910 target->rel_dyn_section(layout)->add_global(
5911 mips_sym, elfcpp::R_MIPS_REL32, got,
5912 mips_sym->got_offset(got_type));
5913 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5914 elfcpp::R_MIPS_REL32, mips_sym);
5915 }
5916 }
5917 }
5918
5919 if (!got->multi_got() || this->index_ == 0)
5920 {
5921 if (got->multi_got())
5922 {
5923 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5924 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5925 // entries correspond to dynamic symbol indexes.
5926 while (count < non_reloc_only_global_gotno)
5927 {
5928 got->add_constant(0);
5929 ++count;
5930 }
5931 }
5932
5933 // Add GGA_RELOC_ONLY entries.
5934 got->add_reloc_only_entries();
5935 }
5936 }
5937
5938 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5939
5940 template<int size, bool big_endian>
5941 void
5942 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5943 Mips_output_data_got<size, big_endian>* got)
5944 {
5945 for (typename Global_got_entry_set::iterator
5946 p = this->global_got_symbols_.begin();
5947 p != this->global_got_symbols_.end();
5948 ++p)
5949 {
5950 Mips_symbol<size>* mips_sym = *p;
5951 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5952 {
5953 unsigned int got_type;
5954 if (!got->multi_got())
5955 got_type = GOT_TYPE_STANDARD;
5956 else
5957 got_type = GOT_TYPE_STANDARD_MULTIGOT;
5958 if (got->add_global(mips_sym, got_type))
5959 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5960 }
5961 }
5962 }
5963
5964 // Create TLS GOT entries.
5965
5966 template<int size, bool big_endian>
5967 void
5968 Mips_got_info<size, big_endian>::add_tls_entries(
5969 Target_mips<size, big_endian>* target, Layout* layout)
5970 {
5971 Mips_output_data_got<size, big_endian>* got = target->got_section();
5972 // Add local tls entries.
5973 for (typename Got_entry_set::iterator
5974 p = this->got_entries_.begin();
5975 p != this->got_entries_.end();
5976 ++p)
5977 {
5978 Mips_got_entry<size, big_endian>* entry = *p;
5979 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5980 continue;
5981
5982 if (entry->tls_type() == GOT_TLS_GD)
5983 {
5984 unsigned int got_type = GOT_TYPE_TLS_PAIR;
5985 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5986 : elfcpp::R_MIPS_TLS_DTPMOD64);
5987 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5988 : elfcpp::R_MIPS_TLS_DTPREL64);
5989
5990 if (!parameters->doing_static_link())
5991 {
5992 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5993 entry->shndx(), got_type,
5994 target->rel_dyn_section(layout),
5995 r_type1, entry->addend());
5996 unsigned int got_offset =
5997 entry->object()->local_got_offset(entry->symndx(), got_type,
5998 entry->addend());
5999 got->add_static_reloc(got_offset + size/8, r_type2,
6000 entry->object(), entry->symndx());
6001 }
6002 else
6003 {
6004 // We are doing a static link. Mark it as belong to module 1,
6005 // the executable.
6006 unsigned int got_offset = got->add_constant(1);
6007 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6008 got_offset,
6009 entry->addend());
6010 got->add_constant(0);
6011 got->add_static_reloc(got_offset + size/8, r_type2,
6012 entry->object(), entry->symndx());
6013 }
6014 }
6015 else if (entry->tls_type() == GOT_TLS_IE)
6016 {
6017 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6018 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6019 : elfcpp::R_MIPS_TLS_TPREL64);
6020 if (!parameters->doing_static_link())
6021 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6022 target->rel_dyn_section(layout), r_type,
6023 entry->addend());
6024 else
6025 {
6026 got->add_local(entry->object(), entry->symndx(), got_type,
6027 entry->addend());
6028 unsigned int got_offset =
6029 entry->object()->local_got_offset(entry->symndx(), got_type,
6030 entry->addend());
6031 got->add_static_reloc(got_offset, r_type, entry->object(),
6032 entry->symndx());
6033 }
6034 }
6035 else if (entry->tls_type() == GOT_TLS_LDM)
6036 {
6037 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6038 : elfcpp::R_MIPS_TLS_DTPMOD64);
6039 unsigned int got_offset;
6040 if (!parameters->doing_static_link())
6041 {
6042 got_offset = got->add_constant(0);
6043 target->rel_dyn_section(layout)->add_local(
6044 entry->object(), 0, r_type, got, got_offset);
6045 }
6046 else
6047 // We are doing a static link. Just mark it as belong to module 1,
6048 // the executable.
6049 got_offset = got->add_constant(1);
6050
6051 got->add_constant(0);
6052 got->set_tls_ldm_offset(got_offset, entry->object());
6053 }
6054 else
6055 gold_unreachable();
6056 }
6057
6058 // Add global tls entries.
6059 for (typename Got_entry_set::iterator
6060 p = this->got_entries_.begin();
6061 p != this->got_entries_.end();
6062 ++p)
6063 {
6064 Mips_got_entry<size, big_endian>* entry = *p;
6065 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6066 continue;
6067
6068 Mips_symbol<size>* mips_sym = entry->sym();
6069 if (entry->tls_type() == GOT_TLS_GD)
6070 {
6071 unsigned int got_type;
6072 if (!got->multi_got())
6073 got_type = GOT_TYPE_TLS_PAIR;
6074 else
6075 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6076 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6077 : elfcpp::R_MIPS_TLS_DTPMOD64);
6078 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6079 : elfcpp::R_MIPS_TLS_DTPREL64);
6080 if (!parameters->doing_static_link())
6081 got->add_global_pair_with_rel(mips_sym, got_type,
6082 target->rel_dyn_section(layout), r_type1, r_type2);
6083 else
6084 {
6085 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6086 // GOT entries. The first one is initialized to be 1, which is the
6087 // module index for the main executable and the second one 0. A
6088 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6089 // the second GOT entry and will be applied by gold.
6090 unsigned int got_offset = got->add_constant(1);
6091 mips_sym->set_got_offset(got_type, got_offset);
6092 got->add_constant(0);
6093 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6094 }
6095 }
6096 else if (entry->tls_type() == GOT_TLS_IE)
6097 {
6098 unsigned int got_type;
6099 if (!got->multi_got())
6100 got_type = GOT_TYPE_TLS_OFFSET;
6101 else
6102 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6103 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6104 : elfcpp::R_MIPS_TLS_TPREL64);
6105 if (!parameters->doing_static_link())
6106 got->add_global_with_rel(mips_sym, got_type,
6107 target->rel_dyn_section(layout), r_type);
6108 else
6109 {
6110 got->add_global(mips_sym, got_type);
6111 unsigned int got_offset = mips_sym->got_offset(got_type);
6112 got->add_static_reloc(got_offset, r_type, mips_sym);
6113 }
6114 }
6115 else
6116 gold_unreachable();
6117 }
6118 }
6119
6120 // Decide whether the symbol needs an entry in the global part of the primary
6121 // GOT, setting global_got_area accordingly. Count the number of global
6122 // symbols that are in the primary GOT only because they have dynamic
6123 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6124
6125 template<int size, bool big_endian>
6126 void
6127 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6128 {
6129 for (typename Global_got_entry_set::iterator
6130 p = this->global_got_symbols_.begin();
6131 p != this->global_got_symbols_.end();
6132 ++p)
6133 {
6134 Mips_symbol<size>* sym = *p;
6135 // Make a final decision about whether the symbol belongs in the
6136 // local or global GOT. Symbols that bind locally can (and in the
6137 // case of forced-local symbols, must) live in the local GOT.
6138 // Those that are aren't in the dynamic symbol table must also
6139 // live in the local GOT.
6140
6141 if (!sym->should_add_dynsym_entry(symtab)
6142 || (sym->got_only_for_calls()
6143 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6144 : symbol_references_local(sym,
6145 sym->should_add_dynsym_entry(symtab))))
6146 // The symbol belongs in the local GOT. We no longer need this
6147 // entry if it was only used for relocations; those relocations
6148 // will be against the null or section symbol instead.
6149 sym->set_global_got_area(GGA_NONE);
6150 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6151 {
6152 ++this->reloc_only_gotno_;
6153 ++this->global_gotno_ ;
6154 }
6155 }
6156 }
6157
6158 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6159 // VALUE if it is not initialized.
6160
6161 template<int size, bool big_endian>
6162 unsigned int
6163 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6164 Mips_output_data_got<size, big_endian>* got)
6165 {
6166 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6167 if (it != this->got_page_offsets_.end())
6168 return it->second;
6169
6170 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6171 + (size/8) * this->page_gotno_);
6172
6173 unsigned int got_offset = this->got_page_offset_next_;
6174 this->got_page_offsets_[value] = got_offset;
6175 this->got_page_offset_next_ += size/8;
6176 got->update_got_entry(got_offset, value);
6177 return got_offset;
6178 }
6179
6180 // Remove lazy-binding stubs for global symbols in this GOT.
6181
6182 template<int size, bool big_endian>
6183 void
6184 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6185 Target_mips<size, big_endian>* target)
6186 {
6187 for (typename Got_entry_set::iterator
6188 p = this->got_entries_.begin();
6189 p != this->got_entries_.end();
6190 ++p)
6191 {
6192 Mips_got_entry<size, big_endian>* entry = *p;
6193 if (entry->is_for_global_symbol())
6194 target->remove_lazy_stub_entry(entry->sym());
6195 }
6196 }
6197
6198 // Count the number of GOT entries required.
6199
6200 template<int size, bool big_endian>
6201 void
6202 Mips_got_info<size, big_endian>::count_got_entries()
6203 {
6204 for (typename Got_entry_set::iterator
6205 p = this->got_entries_.begin();
6206 p != this->got_entries_.end();
6207 ++p)
6208 {
6209 this->count_got_entry(*p);
6210 }
6211 }
6212
6213 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6214
6215 template<int size, bool big_endian>
6216 void
6217 Mips_got_info<size, big_endian>::count_got_entry(
6218 Mips_got_entry<size, big_endian>* entry)
6219 {
6220 if (entry->is_tls_entry())
6221 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6222 else if (entry->is_for_local_symbol()
6223 || entry->sym()->global_got_area() == GGA_NONE)
6224 ++this->local_gotno_;
6225 else
6226 ++this->global_gotno_;
6227 }
6228
6229 // Add FROM's GOT entries.
6230
6231 template<int size, bool big_endian>
6232 void
6233 Mips_got_info<size, big_endian>::add_got_entries(
6234 Mips_got_info<size, big_endian>* from)
6235 {
6236 for (typename Got_entry_set::iterator
6237 p = from->got_entries_.begin();
6238 p != from->got_entries_.end();
6239 ++p)
6240 {
6241 Mips_got_entry<size, big_endian>* entry = *p;
6242 if (this->got_entries_.find(entry) == this->got_entries_.end())
6243 {
6244 Mips_got_entry<size, big_endian>* entry2 =
6245 new Mips_got_entry<size, big_endian>(*entry);
6246 this->got_entries_.insert(entry2);
6247 this->count_got_entry(entry);
6248 }
6249 }
6250 }
6251
6252 // Add FROM's GOT page entries.
6253
6254 template<int size, bool big_endian>
6255 void
6256 Mips_got_info<size, big_endian>::add_got_page_entries(
6257 Mips_got_info<size, big_endian>* from)
6258 {
6259 for (typename Got_page_entry_set::iterator
6260 p = from->got_page_entries_.begin();
6261 p != from->got_page_entries_.end();
6262 ++p)
6263 {
6264 Got_page_entry* entry = *p;
6265 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6266 {
6267 Got_page_entry* entry2 = new Got_page_entry(*entry);
6268 this->got_page_entries_.insert(entry2);
6269 this->page_gotno_ += entry->num_pages;
6270 }
6271 }
6272 }
6273
6274 // Mips_output_data_got methods.
6275
6276 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6277 // larger than 64K, create multi-GOT.
6278
6279 template<int size, bool big_endian>
6280 void
6281 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6282 Symbol_table* symtab, const Input_objects* input_objects)
6283 {
6284 // Decide which symbols need to go in the global part of the GOT and
6285 // count the number of reloc-only GOT symbols.
6286 this->master_got_info_->count_got_symbols(symtab);
6287
6288 // Count the number of GOT entries.
6289 this->master_got_info_->count_got_entries();
6290
6291 unsigned int got_size = this->master_got_info_->got_size();
6292 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6293 this->lay_out_multi_got(layout, input_objects);
6294 else
6295 {
6296 // Record that all objects use single GOT.
6297 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6298 p != input_objects->relobj_end();
6299 ++p)
6300 {
6301 Mips_relobj<size, big_endian>* object =
6302 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6303 if (object->get_got_info() != NULL)
6304 object->set_got_info(this->master_got_info_);
6305 }
6306
6307 this->master_got_info_->add_local_entries(this->target_, layout);
6308 this->master_got_info_->add_global_entries(this->target_, layout,
6309 /*not used*/-1U);
6310 this->master_got_info_->add_tls_entries(this->target_, layout);
6311 }
6312 }
6313
6314 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6315
6316 template<int size, bool big_endian>
6317 void
6318 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6319 const Input_objects* input_objects)
6320 {
6321 // Try to merge the GOTs of input objects together, as long as they
6322 // don't seem to exceed the maximum GOT size, choosing one of them
6323 // to be the primary GOT.
6324 this->merge_gots(input_objects);
6325
6326 // Every symbol that is referenced in a dynamic relocation must be
6327 // present in the primary GOT.
6328 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6329
6330 // Add GOT entries.
6331 unsigned int i = 0;
6332 unsigned int offset = 0;
6333 Mips_got_info<size, big_endian>* g = this->primary_got_;
6334 do
6335 {
6336 g->set_index(i);
6337 g->set_offset(offset);
6338
6339 g->add_local_entries(this->target_, layout);
6340 if (i == 0)
6341 g->add_global_entries(this->target_, layout,
6342 (this->master_got_info_->global_gotno()
6343 - this->master_got_info_->reloc_only_gotno()));
6344 else
6345 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6346 g->add_tls_entries(this->target_, layout);
6347
6348 // Forbid global symbols in every non-primary GOT from having
6349 // lazy-binding stubs.
6350 if (i > 0)
6351 g->remove_lazy_stubs(this->target_);
6352
6353 ++i;
6354 offset += g->got_size();
6355 g = g->next();
6356 }
6357 while (g);
6358 }
6359
6360 // Attempt to merge GOTs of different input objects. Try to use as much as
6361 // possible of the primary GOT, since it doesn't require explicit dynamic
6362 // relocations, but don't use objects that would reference global symbols
6363 // out of the addressable range. Failing the primary GOT, attempt to merge
6364 // with the current GOT, or finish the current GOT and then make make the new
6365 // GOT current.
6366
6367 template<int size, bool big_endian>
6368 void
6369 Mips_output_data_got<size, big_endian>::merge_gots(
6370 const Input_objects* input_objects)
6371 {
6372 gold_assert(this->primary_got_ == NULL);
6373 Mips_got_info<size, big_endian>* current = NULL;
6374
6375 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6376 p != input_objects->relobj_end();
6377 ++p)
6378 {
6379 Mips_relobj<size, big_endian>* object =
6380 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6381
6382 Mips_got_info<size, big_endian>* g = object->get_got_info();
6383 if (g == NULL)
6384 continue;
6385
6386 g->count_got_entries();
6387
6388 // Work out the number of page, local and TLS entries.
6389 unsigned int estimate = this->master_got_info_->page_gotno();
6390 if (estimate > g->page_gotno())
6391 estimate = g->page_gotno();
6392 estimate += g->local_gotno() + g->tls_gotno();
6393
6394 // We place TLS GOT entries after both locals and globals. The globals
6395 // for the primary GOT may overflow the normal GOT size limit, so be
6396 // sure not to merge a GOT which requires TLS with the primary GOT in that
6397 // case. This doesn't affect non-primary GOTs.
6398 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6399 : g->global_gotno());
6400
6401 unsigned int max_count =
6402 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6403 if (estimate <= max_count)
6404 {
6405 // If we don't have a primary GOT, use it as
6406 // a starting point for the primary GOT.
6407 if (!this->primary_got_)
6408 {
6409 this->primary_got_ = g;
6410 continue;
6411 }
6412
6413 // Try merging with the primary GOT.
6414 if (this->merge_got_with(g, object, this->primary_got_))
6415 continue;
6416 }
6417
6418 // If we can merge with the last-created GOT, do it.
6419 if (current && this->merge_got_with(g, object, current))
6420 continue;
6421
6422 // Well, we couldn't merge, so create a new GOT. Don't check if it
6423 // fits; if it turns out that it doesn't, we'll get relocation
6424 // overflows anyway.
6425 g->set_next(current);
6426 current = g;
6427 }
6428
6429 // If we do not find any suitable primary GOT, create an empty one.
6430 if (this->primary_got_ == NULL)
6431 this->primary_got_ = new Mips_got_info<size, big_endian>();
6432
6433 // Link primary GOT with secondary GOTs.
6434 this->primary_got_->set_next(current);
6435 }
6436
6437 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6438 // this would lead to overflow, true if they were merged successfully.
6439
6440 template<int size, bool big_endian>
6441 bool
6442 Mips_output_data_got<size, big_endian>::merge_got_with(
6443 Mips_got_info<size, big_endian>* from,
6444 Mips_relobj<size, big_endian>* object,
6445 Mips_got_info<size, big_endian>* to)
6446 {
6447 // Work out how many page entries we would need for the combined GOT.
6448 unsigned int estimate = this->master_got_info_->page_gotno();
6449 if (estimate >= from->page_gotno() + to->page_gotno())
6450 estimate = from->page_gotno() + to->page_gotno();
6451
6452 // Conservatively estimate how many local and TLS entries would be needed.
6453 estimate += from->local_gotno() + to->local_gotno();
6454 estimate += from->tls_gotno() + to->tls_gotno();
6455
6456 // If we're merging with the primary got, any TLS relocations will
6457 // come after the full set of global entries. Otherwise estimate those
6458 // conservatively as well.
6459 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6460 estimate += this->master_got_info_->global_gotno();
6461 else
6462 estimate += from->global_gotno() + to->global_gotno();
6463
6464 // Bail out if the combined GOT might be too big.
6465 unsigned int max_count =
6466 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6467 if (estimate > max_count)
6468 return false;
6469
6470 // Transfer the object's GOT information from FROM to TO.
6471 to->add_got_entries(from);
6472 to->add_got_page_entries(from);
6473
6474 // Record that OBJECT should use output GOT TO.
6475 object->set_got_info(to);
6476
6477 return true;
6478 }
6479
6480 // Write out the GOT.
6481
6482 template<int size, bool big_endian>
6483 void
6484 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6485 {
6486 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6487 Mips_stubs_entry_set;
6488
6489 // Call parent to write out GOT.
6490 Output_data_got<size, big_endian>::do_write(of);
6491
6492 const off_t offset = this->offset();
6493 const section_size_type oview_size =
6494 convert_to_section_size_type(this->data_size());
6495 unsigned char* const oview = of->get_output_view(offset, oview_size);
6496
6497 // Needed for fixing values of .got section.
6498 this->got_view_ = oview;
6499
6500 // Write lazy stub addresses.
6501 for (typename Mips_stubs_entry_set::iterator
6502 p = this->master_got_info_->global_got_symbols().begin();
6503 p != this->master_got_info_->global_got_symbols().end();
6504 ++p)
6505 {
6506 Mips_symbol<size>* mips_sym = *p;
6507 if (mips_sym->has_lazy_stub())
6508 {
6509 Valtype* wv = reinterpret_cast<Valtype*>(
6510 oview + this->get_primary_got_offset(mips_sym));
6511 Valtype value =
6512 this->target_->mips_stubs_section()->stub_address(mips_sym);
6513 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6514 }
6515 }
6516
6517 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6518 for (typename Mips_stubs_entry_set::iterator
6519 p = this->master_got_info_->global_got_symbols().begin();
6520 p != this->master_got_info_->global_got_symbols().end();
6521 ++p)
6522 {
6523 Mips_symbol<size>* mips_sym = *p;
6524 if (!this->multi_got()
6525 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6526 && mips_sym->global_got_area() == GGA_NONE
6527 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6528 {
6529 Valtype* wv = reinterpret_cast<Valtype*>(
6530 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6531 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6532 if (value != 0)
6533 {
6534 value |= 1;
6535 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6536 }
6537 }
6538 }
6539
6540 if (!this->secondary_got_relocs_.empty())
6541 {
6542 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6543 // secondary GOT entries with non-zero initial value copy the value
6544 // to the corresponding primary GOT entry, and set the secondary GOT
6545 // entry to zero.
6546 // TODO(sasa): This is workaround. It needs to be investigated further.
6547
6548 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6549 {
6550 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6551 if (reloc.symbol_is_global())
6552 {
6553 Mips_symbol<size>* gsym = reloc.symbol();
6554 gold_assert(gsym != NULL);
6555
6556 unsigned got_offset = reloc.got_offset();
6557 gold_assert(got_offset < oview_size);
6558
6559 // Find primary GOT entry.
6560 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6561 oview + this->get_primary_got_offset(gsym));
6562
6563 // Find secondary GOT entry.
6564 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6565
6566 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6567 if (value != 0)
6568 {
6569 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6570 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6571 gsym->set_applied_secondary_got_fixup();
6572 }
6573 }
6574 }
6575
6576 of->write_output_view(offset, oview_size, oview);
6577 }
6578
6579 // We are done if there is no fix up.
6580 if (this->static_relocs_.empty())
6581 return;
6582
6583 Output_segment* tls_segment = this->layout_->tls_segment();
6584 gold_assert(tls_segment != NULL);
6585
6586 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6587 {
6588 Static_reloc& reloc(this->static_relocs_[i]);
6589
6590 Mips_address value;
6591 if (!reloc.symbol_is_global())
6592 {
6593 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6594 const Symbol_value<size>* psymval =
6595 object->local_symbol(reloc.index());
6596
6597 // We are doing static linking. Issue an error and skip this
6598 // relocation if the symbol is undefined or in a discarded_section.
6599 bool is_ordinary;
6600 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6601 if ((shndx == elfcpp::SHN_UNDEF)
6602 || (is_ordinary
6603 && shndx != elfcpp::SHN_UNDEF
6604 && !object->is_section_included(shndx)
6605 && !this->symbol_table_->is_section_folded(object, shndx)))
6606 {
6607 gold_error(_("undefined or discarded local symbol %u from "
6608 " object %s in GOT"),
6609 reloc.index(), reloc.relobj()->name().c_str());
6610 continue;
6611 }
6612
6613 value = psymval->value(object, 0);
6614 }
6615 else
6616 {
6617 const Mips_symbol<size>* gsym = reloc.symbol();
6618 gold_assert(gsym != NULL);
6619
6620 // We are doing static linking. Issue an error and skip this
6621 // relocation if the symbol is undefined or in a discarded_section
6622 // unless it is a weakly_undefined symbol.
6623 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6624 && !gsym->is_weak_undefined())
6625 {
6626 gold_error(_("undefined or discarded symbol %s in GOT"),
6627 gsym->name());
6628 continue;
6629 }
6630
6631 if (!gsym->is_weak_undefined())
6632 value = gsym->value();
6633 else
6634 value = 0;
6635 }
6636
6637 unsigned got_offset = reloc.got_offset();
6638 gold_assert(got_offset < oview_size);
6639
6640 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6641 Valtype x;
6642
6643 switch (reloc.r_type())
6644 {
6645 case elfcpp::R_MIPS_TLS_DTPMOD32:
6646 case elfcpp::R_MIPS_TLS_DTPMOD64:
6647 x = value;
6648 break;
6649 case elfcpp::R_MIPS_TLS_DTPREL32:
6650 case elfcpp::R_MIPS_TLS_DTPREL64:
6651 x = value - elfcpp::DTP_OFFSET;
6652 break;
6653 case elfcpp::R_MIPS_TLS_TPREL32:
6654 case elfcpp::R_MIPS_TLS_TPREL64:
6655 x = value - elfcpp::TP_OFFSET;
6656 break;
6657 default:
6658 gold_unreachable();
6659 break;
6660 }
6661
6662 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6663 }
6664
6665 of->write_output_view(offset, oview_size, oview);
6666 }
6667
6668 // Mips_relobj methods.
6669
6670 // Count the local symbols. The Mips backend needs to know if a symbol
6671 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6672 // because the Symbol object keeps the ELF symbol type and st_other field.
6673 // For local symbol it is harder because we cannot access this information.
6674 // So we override the do_count_local_symbol in parent and scan local symbols to
6675 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6676 // I do not want to slow down other ports by calling a per symbol target hook
6677 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6678
6679 template<int size, bool big_endian>
6680 void
6681 Mips_relobj<size, big_endian>::do_count_local_symbols(
6682 Stringpool_template<char>* pool,
6683 Stringpool_template<char>* dynpool)
6684 {
6685 // Ask parent to count the local symbols.
6686 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6687 const unsigned int loccount = this->local_symbol_count();
6688 if (loccount == 0)
6689 return;
6690
6691 // Initialize the mips16 and micromips function bit-vector.
6692 this->local_symbol_is_mips16_.resize(loccount, false);
6693 this->local_symbol_is_micromips_.resize(loccount, false);
6694
6695 // Read the symbol table section header.
6696 const unsigned int symtab_shndx = this->symtab_shndx();
6697 elfcpp::Shdr<size, big_endian>
6698 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6699 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6700
6701 // Read the local symbols.
6702 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6703 gold_assert(loccount == symtabshdr.get_sh_info());
6704 off_t locsize = loccount * sym_size;
6705 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6706 locsize, true, true);
6707
6708 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6709
6710 // Skip the first dummy symbol.
6711 psyms += sym_size;
6712 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6713 {
6714 elfcpp::Sym<size, big_endian> sym(psyms);
6715 unsigned char st_other = sym.get_st_other();
6716 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6717 this->local_symbol_is_micromips_[i] =
6718 elfcpp::elf_st_is_micromips(st_other);
6719 }
6720 }
6721
6722 // Read the symbol information.
6723
6724 template<int size, bool big_endian>
6725 void
6726 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6727 {
6728 // Call parent class to read symbol information.
6729 this->base_read_symbols(sd);
6730
6731 // Read processor-specific flags in ELF file header.
6732 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6733 elfcpp::Elf_sizes<size>::ehdr_size,
6734 true, false);
6735 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6736 this->processor_specific_flags_ = ehdr.get_e_flags();
6737
6738 // Get the section names.
6739 const unsigned char* pnamesu = sd->section_names->data();
6740 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6741
6742 // Initialize the mips16 stub section bit-vectors.
6743 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6744 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6745 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6746
6747 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6748 const unsigned char* pshdrs = sd->section_headers->data();
6749 const unsigned char* ps = pshdrs + shdr_size;
6750 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6751 {
6752 elfcpp::Shdr<size, big_endian> shdr(ps);
6753
6754 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6755 {
6756 this->has_reginfo_section_ = true;
6757 // Read the gp value that was used to create this object. We need the
6758 // gp value while processing relocs. The .reginfo section is not used
6759 // in the 64-bit MIPS ELF ABI.
6760 section_offset_type section_offset = shdr.get_sh_offset();
6761 section_size_type section_size =
6762 convert_to_section_size_type(shdr.get_sh_size());
6763 const unsigned char* view =
6764 this->get_view(section_offset, section_size, true, false);
6765
6766 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6767
6768 // Read the rest of .reginfo.
6769 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6770 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6771 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6772 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6773 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6774 }
6775
6776 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6777 {
6778 gold_assert(this->attributes_section_data_ == NULL);
6779 section_offset_type section_offset = shdr.get_sh_offset();
6780 section_size_type section_size =
6781 convert_to_section_size_type(shdr.get_sh_size());
6782 const unsigned char* view =
6783 this->get_view(section_offset, section_size, true, false);
6784 this->attributes_section_data_ =
6785 new Attributes_section_data(view, section_size);
6786 }
6787
6788 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6789 {
6790 gold_assert(this->abiflags_ == NULL);
6791 section_offset_type section_offset = shdr.get_sh_offset();
6792 section_size_type section_size =
6793 convert_to_section_size_type(shdr.get_sh_size());
6794 const unsigned char* view =
6795 this->get_view(section_offset, section_size, true, false);
6796 this->abiflags_ = new Mips_abiflags<big_endian>();
6797
6798 this->abiflags_->version =
6799 elfcpp::Swap<16, big_endian>::readval(view);
6800 if (this->abiflags_->version != 0)
6801 {
6802 gold_error(_("%s: .MIPS.abiflags section has "
6803 "unsupported version %u"),
6804 this->name().c_str(),
6805 this->abiflags_->version);
6806 break;
6807 }
6808 this->abiflags_->isa_level =
6809 elfcpp::Swap<8, big_endian>::readval(view + 2);
6810 this->abiflags_->isa_rev =
6811 elfcpp::Swap<8, big_endian>::readval(view + 3);
6812 this->abiflags_->gpr_size =
6813 elfcpp::Swap<8, big_endian>::readval(view + 4);
6814 this->abiflags_->cpr1_size =
6815 elfcpp::Swap<8, big_endian>::readval(view + 5);
6816 this->abiflags_->cpr2_size =
6817 elfcpp::Swap<8, big_endian>::readval(view + 6);
6818 this->abiflags_->fp_abi =
6819 elfcpp::Swap<8, big_endian>::readval(view + 7);
6820 this->abiflags_->isa_ext =
6821 elfcpp::Swap<32, big_endian>::readval(view + 8);
6822 this->abiflags_->ases =
6823 elfcpp::Swap<32, big_endian>::readval(view + 12);
6824 this->abiflags_->flags1 =
6825 elfcpp::Swap<32, big_endian>::readval(view + 16);
6826 this->abiflags_->flags2 =
6827 elfcpp::Swap<32, big_endian>::readval(view + 20);
6828 }
6829
6830 // In the 64-bit ABI, .MIPS.options section holds register information.
6831 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6832 // starts with this header:
6833 //
6834 // typedef struct
6835 // {
6836 // // Type of option.
6837 // unsigned char kind[1];
6838 // // Size of option descriptor, including header.
6839 // unsigned char size[1];
6840 // // Section index of affected section, or 0 for global option.
6841 // unsigned char section[2];
6842 // // Information specific to this kind of option.
6843 // unsigned char info[4];
6844 // };
6845 //
6846 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6847 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6848 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6849
6850 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6851 {
6852 section_offset_type section_offset = shdr.get_sh_offset();
6853 section_size_type section_size =
6854 convert_to_section_size_type(shdr.get_sh_size());
6855 const unsigned char* view =
6856 this->get_view(section_offset, section_size, true, false);
6857 const unsigned char* end = view + section_size;
6858
6859 while (view + 8 <= end)
6860 {
6861 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6862 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6863 if (sz < 8)
6864 {
6865 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6866 "than its header"),
6867 this->name().c_str(),
6868 this->mips_elf_options_section_name(), sz);
6869 break;
6870 }
6871
6872 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6873 {
6874 // In the 64 bit ABI, an ODK_REGINFO option is the following
6875 // structure. The info field of the options header is not
6876 // used.
6877 //
6878 // typedef struct
6879 // {
6880 // // Mask of general purpose registers used.
6881 // unsigned char ri_gprmask[4];
6882 // // Padding.
6883 // unsigned char ri_pad[4];
6884 // // Mask of co-processor registers used.
6885 // unsigned char ri_cprmask[4][4];
6886 // // GP register value for this object file.
6887 // unsigned char ri_gp_value[8];
6888 // };
6889
6890 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6891 + 32);
6892 }
6893 else if (kind == elfcpp::ODK_REGINFO)
6894 {
6895 // In the 32 bit ABI, an ODK_REGINFO option is the following
6896 // structure. The info field of the options header is not
6897 // used. The same structure is used in .reginfo section.
6898 //
6899 // typedef struct
6900 // {
6901 // unsigned char ri_gprmask[4];
6902 // unsigned char ri_cprmask[4][4];
6903 // unsigned char ri_gp_value[4];
6904 // };
6905
6906 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6907 + 28);
6908 }
6909 view += sz;
6910 }
6911 }
6912
6913 const char* name = pnames + shdr.get_sh_name();
6914 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6915 this->section_is_mips16_call_stub_[i] =
6916 is_prefix_of(".mips16.call.", name);
6917 this->section_is_mips16_call_fp_stub_[i] =
6918 is_prefix_of(".mips16.call.fp.", name);
6919
6920 if (strcmp(name, ".pdr") == 0)
6921 {
6922 gold_assert(this->pdr_shndx_ == -1U);
6923 this->pdr_shndx_ = i;
6924 }
6925 }
6926 }
6927
6928 // Discard MIPS16 stub secions that are not needed.
6929
6930 template<int size, bool big_endian>
6931 void
6932 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6933 {
6934 for (typename Mips16_stubs_int_map::const_iterator
6935 it = this->mips16_stub_sections_.begin();
6936 it != this->mips16_stub_sections_.end(); ++it)
6937 {
6938 Mips16_stub_section<size, big_endian>* stub_section = it->second;
6939 if (!stub_section->is_target_found())
6940 {
6941 gold_error(_("no relocation found in mips16 stub section '%s'"),
6942 stub_section->object()
6943 ->section_name(stub_section->shndx()).c_str());
6944 }
6945
6946 bool discard = false;
6947 if (stub_section->is_for_local_function())
6948 {
6949 if (stub_section->is_fn_stub())
6950 {
6951 // This stub is for a local symbol. This stub will only
6952 // be needed if there is some relocation in this object,
6953 // other than a 16 bit function call, which refers to this
6954 // symbol.
6955 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
6956 discard = true;
6957 else
6958 this->add_local_mips16_fn_stub(stub_section);
6959 }
6960 else
6961 {
6962 // This stub is for a local symbol. This stub will only
6963 // be needed if there is some relocation (R_MIPS16_26) in
6964 // this object that refers to this symbol.
6965 gold_assert(stub_section->is_call_stub()
6966 || stub_section->is_call_fp_stub());
6967 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
6968 discard = true;
6969 else
6970 this->add_local_mips16_call_stub(stub_section);
6971 }
6972 }
6973 else
6974 {
6975 Mips_symbol<size>* gsym = stub_section->gsym();
6976 if (stub_section->is_fn_stub())
6977 {
6978 if (gsym->has_mips16_fn_stub())
6979 // We already have a stub for this function.
6980 discard = true;
6981 else
6982 {
6983 gsym->set_mips16_fn_stub(stub_section);
6984 if (gsym->should_add_dynsym_entry(symtab))
6985 {
6986 // If we have a MIPS16 function with a stub, the
6987 // dynamic symbol must refer to the stub, since only
6988 // the stub uses the standard calling conventions.
6989 gsym->set_need_fn_stub();
6990 if (gsym->is_from_dynobj())
6991 gsym->set_needs_dynsym_value();
6992 }
6993 }
6994 if (!gsym->need_fn_stub())
6995 discard = true;
6996 }
6997 else if (stub_section->is_call_stub())
6998 {
6999 if (gsym->is_mips16())
7000 // We don't need the call_stub; this is a 16 bit
7001 // function, so calls from other 16 bit functions are
7002 // OK.
7003 discard = true;
7004 else if (gsym->has_mips16_call_stub())
7005 // We already have a stub for this function.
7006 discard = true;
7007 else
7008 gsym->set_mips16_call_stub(stub_section);
7009 }
7010 else
7011 {
7012 gold_assert(stub_section->is_call_fp_stub());
7013 if (gsym->is_mips16())
7014 // We don't need the call_stub; this is a 16 bit
7015 // function, so calls from other 16 bit functions are
7016 // OK.
7017 discard = true;
7018 else if (gsym->has_mips16_call_fp_stub())
7019 // We already have a stub for this function.
7020 discard = true;
7021 else
7022 gsym->set_mips16_call_fp_stub(stub_section);
7023 }
7024 }
7025 if (discard)
7026 this->set_output_section(stub_section->shndx(), NULL);
7027 }
7028 }
7029
7030 // Mips_output_data_la25_stub methods.
7031
7032 // Template for standard LA25 stub.
7033 template<int size, bool big_endian>
7034 const uint32_t
7035 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7036 {
7037 0x3c190000, // lui $25,%hi(func)
7038 0x08000000, // j func
7039 0x27390000, // add $25,$25,%lo(func)
7040 0x00000000 // nop
7041 };
7042
7043 // Template for microMIPS LA25 stub.
7044 template<int size, bool big_endian>
7045 const uint32_t
7046 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7047 {
7048 0x41b9, 0x0000, // lui t9,%hi(func)
7049 0xd400, 0x0000, // j func
7050 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7051 0x0000, 0x0000 // nop
7052 };
7053
7054 // Create la25 stub for a symbol.
7055
7056 template<int size, bool big_endian>
7057 void
7058 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7059 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7060 Mips_symbol<size>* gsym)
7061 {
7062 if (!gsym->has_la25_stub())
7063 {
7064 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7065 this->symbols_.push_back(gsym);
7066 this->create_stub_symbol(gsym, symtab, target, 16);
7067 }
7068 }
7069
7070 // Create a symbol for SYM stub's value and size, to help make the disassembly
7071 // easier to read.
7072
7073 template<int size, bool big_endian>
7074 void
7075 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7076 Mips_symbol<size>* sym, Symbol_table* symtab,
7077 Target_mips<size, big_endian>* target, uint64_t symsize)
7078 {
7079 std::string name(".pic.");
7080 name += sym->name();
7081
7082 unsigned int offset = sym->la25_stub_offset();
7083 if (sym->is_micromips())
7084 offset |= 1;
7085
7086 // Make it a local function.
7087 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7088 Symbol_table::PREDEFINED,
7089 target->la25_stub_section(),
7090 offset, symsize, elfcpp::STT_FUNC,
7091 elfcpp::STB_LOCAL,
7092 elfcpp::STV_DEFAULT, 0,
7093 false, false);
7094 new_sym->set_is_forced_local();
7095 }
7096
7097 // Write out la25 stubs. This uses the hand-coded instructions above,
7098 // and adjusts them as needed.
7099
7100 template<int size, bool big_endian>
7101 void
7102 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7103 {
7104 const off_t offset = this->offset();
7105 const section_size_type oview_size =
7106 convert_to_section_size_type(this->data_size());
7107 unsigned char* const oview = of->get_output_view(offset, oview_size);
7108
7109 for (typename std::vector<Mips_symbol<size>*>::iterator
7110 p = this->symbols_.begin();
7111 p != this->symbols_.end();
7112 ++p)
7113 {
7114 Mips_symbol<size>* sym = *p;
7115 unsigned char* pov = oview + sym->la25_stub_offset();
7116
7117 Mips_address target = sym->value();
7118 if (!sym->is_micromips())
7119 {
7120 elfcpp::Swap<32, big_endian>::writeval(pov,
7121 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7122 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7123 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7124 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7125 la25_stub_entry[2] | (target & 0xffff));
7126 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7127 }
7128 else
7129 {
7130 target |= 1;
7131 // First stub instruction. Paste high 16-bits of the target.
7132 elfcpp::Swap<16, big_endian>::writeval(pov,
7133 la25_stub_micromips_entry[0]);
7134 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7135 ((target + 0x8000) >> 16) & 0xffff);
7136 // Second stub instruction. Paste low 26-bits of the target, shifted
7137 // right by 1.
7138 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7139 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7140 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7141 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7142 // Third stub instruction. Paste low 16-bits of the target.
7143 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7144 la25_stub_micromips_entry[4]);
7145 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7146 // Fourth stub instruction.
7147 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7148 la25_stub_micromips_entry[6]);
7149 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7150 la25_stub_micromips_entry[7]);
7151 }
7152 }
7153
7154 of->write_output_view(offset, oview_size, oview);
7155 }
7156
7157 // Mips_output_data_plt methods.
7158
7159 // The format of the first PLT entry in an O32 executable.
7160 template<int size, bool big_endian>
7161 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7162 {
7163 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7164 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7165 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7166 0x031cc023, // subu $24, $24, $28
7167 0x03e07825, // or $15, $31, zero
7168 0x0018c082, // srl $24, $24, 2
7169 0x0320f809, // jalr $25
7170 0x2718fffe // subu $24, $24, 2
7171 };
7172
7173 // The format of the first PLT entry in an N32 executable. Different
7174 // because gp ($28) is not available; we use t2 ($14) instead.
7175 template<int size, bool big_endian>
7176 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7177 {
7178 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7179 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7180 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7181 0x030ec023, // subu $24, $24, $14
7182 0x03e07825, // or $15, $31, zero
7183 0x0018c082, // srl $24, $24, 2
7184 0x0320f809, // jalr $25
7185 0x2718fffe // subu $24, $24, 2
7186 };
7187
7188 // The format of the first PLT entry in an N64 executable. Different
7189 // from N32 because of the increased size of GOT entries.
7190 template<int size, bool big_endian>
7191 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7192 {
7193 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7194 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7195 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7196 0x030ec023, // subu $24, $24, $14
7197 0x03e07825, // or $15, $31, zero
7198 0x0018c0c2, // srl $24, $24, 3
7199 0x0320f809, // jalr $25
7200 0x2718fffe // subu $24, $24, 2
7201 };
7202
7203 // The format of the microMIPS first PLT entry in an O32 executable.
7204 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7205 // of the GOTPLT entry handled, so this stub may only be used when
7206 // all the subsequent PLT entries are microMIPS code too.
7207 //
7208 // The trailing NOP is for alignment and correct disassembly only.
7209 template<int size, bool big_endian>
7210 const uint32_t Mips_output_data_plt<size, big_endian>::
7211 plt0_entry_micromips_o32[] =
7212 {
7213 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7214 0xff23, 0x0000, // lw $25, 0($3)
7215 0x0535, // subu $2, $2, $3
7216 0x2525, // srl $2, $2, 2
7217 0x3302, 0xfffe, // subu $24, $2, 2
7218 0x0dff, // move $15, $31
7219 0x45f9, // jalrs $25
7220 0x0f83, // move $28, $3
7221 0x0c00 // nop
7222 };
7223
7224 // The format of the microMIPS first PLT entry in an O32 executable
7225 // in the insn32 mode.
7226 template<int size, bool big_endian>
7227 const uint32_t Mips_output_data_plt<size, big_endian>::
7228 plt0_entry_micromips32_o32[] =
7229 {
7230 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7231 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7232 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7233 0x0398, 0xc1d0, // subu $24, $24, $28
7234 0x001f, 0x7a90, // or $15, $31, zero
7235 0x0318, 0x1040, // srl $24, $24, 2
7236 0x03f9, 0x0f3c, // jalr $25
7237 0x3318, 0xfffe // subu $24, $24, 2
7238 };
7239
7240 // The format of subsequent standard entries in the PLT.
7241 template<int size, bool big_endian>
7242 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7243 {
7244 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7245 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7246 0x03200008, // jr $25
7247 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7248 };
7249
7250 // The format of subsequent R6 PLT entries.
7251 template<int size, bool big_endian>
7252 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7253 {
7254 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7255 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7256 0x03200009, // jr $25
7257 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7258 };
7259
7260 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7261 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7262 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7263 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7264 // target function address in register v0.
7265 template<int size, bool big_endian>
7266 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7267 {
7268 0xb303, // lw $3, 12($pc)
7269 0x651b, // move $24, $3
7270 0x9b60, // lw $3, 0($3)
7271 0xeb00, // jr $3
7272 0x653b, // move $25, $3
7273 0x6500, // nop
7274 0x0000, 0x0000 // .word (.got.plt entry)
7275 };
7276
7277 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7278 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7279 template<int size, bool big_endian>
7280 const uint32_t Mips_output_data_plt<size, big_endian>::
7281 plt_entry_micromips_o32[] =
7282 {
7283 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7284 0xff22, 0x0000, // lw $25, 0($2)
7285 0x4599, // jr $25
7286 0x0f02 // move $24, $2
7287 };
7288
7289 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7290 template<int size, bool big_endian>
7291 const uint32_t Mips_output_data_plt<size, big_endian>::
7292 plt_entry_micromips32_o32[] =
7293 {
7294 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7295 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7296 0x0019, 0x0f3c, // jr $25
7297 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7298 };
7299
7300 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7301
7302 template<int size, bool big_endian>
7303 void
7304 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7305 unsigned int r_type)
7306 {
7307 gold_assert(!gsym->has_plt_offset());
7308
7309 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7310 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7311 + sizeof(plt0_entry_o32));
7312 this->symbols_.push_back(gsym);
7313
7314 // Record whether the relocation requires a standard MIPS
7315 // or a compressed code entry.
7316 if (jal_reloc(r_type))
7317 {
7318 if (r_type == elfcpp::R_MIPS_26)
7319 gsym->set_needs_mips_plt(true);
7320 else
7321 gsym->set_needs_comp_plt(true);
7322 }
7323
7324 section_offset_type got_offset = this->got_plt_->current_data_size();
7325
7326 // Every PLT entry needs a GOT entry which points back to the PLT
7327 // entry (this will be changed by the dynamic linker, normally
7328 // lazily when the function is called).
7329 this->got_plt_->set_current_data_size(got_offset + size/8);
7330
7331 gsym->set_needs_dynsym_entry();
7332 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7333 got_offset);
7334 }
7335
7336 // Set final PLT offsets. For each symbol, determine whether standard or
7337 // compressed (MIPS16 or microMIPS) PLT entry is used.
7338
7339 template<int size, bool big_endian>
7340 void
7341 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7342 {
7343 // The sizes of individual PLT entries.
7344 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7345 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7346 ? this->compressed_plt_entry_size() : 0);
7347
7348 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7349 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7350 {
7351 Mips_symbol<size>* mips_sym = *p;
7352
7353 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7354 // so always use a standard entry there.
7355 //
7356 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7357 // all MIPS16 calls will go via that stub, and there is no benefit
7358 // to having a MIPS16 entry. And in the case of call_stub a
7359 // standard entry actually has to be used as the stub ends with a J
7360 // instruction.
7361 if (this->target_->is_output_newabi()
7362 || mips_sym->has_mips16_call_stub()
7363 || mips_sym->has_mips16_call_fp_stub())
7364 {
7365 mips_sym->set_needs_mips_plt(true);
7366 mips_sym->set_needs_comp_plt(false);
7367 }
7368
7369 // Otherwise, if there are no direct calls to the function, we
7370 // have a free choice of whether to use standard or compressed
7371 // entries. Prefer microMIPS entries if the object is known to
7372 // contain microMIPS code, so that it becomes possible to create
7373 // pure microMIPS binaries. Prefer standard entries otherwise,
7374 // because MIPS16 ones are no smaller and are usually slower.
7375 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7376 {
7377 if (this->target_->is_output_micromips())
7378 mips_sym->set_needs_comp_plt(true);
7379 else
7380 mips_sym->set_needs_mips_plt(true);
7381 }
7382
7383 if (mips_sym->needs_mips_plt())
7384 {
7385 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7386 this->plt_mips_offset_ += plt_mips_entry_size;
7387 }
7388 if (mips_sym->needs_comp_plt())
7389 {
7390 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7391 this->plt_comp_offset_ += plt_comp_entry_size;
7392 }
7393 }
7394
7395 // Figure out the size of the PLT header if we know that we are using it.
7396 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7397 this->plt_header_size_ = this->get_plt_header_size();
7398 }
7399
7400 // Write out the PLT. This uses the hand-coded instructions above,
7401 // and adjusts them as needed.
7402
7403 template<int size, bool big_endian>
7404 void
7405 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7406 {
7407 const off_t offset = this->offset();
7408 const section_size_type oview_size =
7409 convert_to_section_size_type(this->data_size());
7410 unsigned char* const oview = of->get_output_view(offset, oview_size);
7411
7412 const off_t gotplt_file_offset = this->got_plt_->offset();
7413 const section_size_type gotplt_size =
7414 convert_to_section_size_type(this->got_plt_->data_size());
7415 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7416 gotplt_size);
7417 unsigned char* pov = oview;
7418
7419 Mips_address plt_address = this->address();
7420
7421 // Calculate the address of .got.plt.
7422 Mips_address gotplt_addr = this->got_plt_->address();
7423 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7424 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7425
7426 // The PLT sequence is not safe for N64 if .got.plt's address can
7427 // not be loaded in two instructions.
7428 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7429 || ~(gotplt_addr | 0x7fffffff) == 0);
7430
7431 // Write the PLT header.
7432 const uint32_t* plt0_entry = this->get_plt_header_entry();
7433 if (plt0_entry == plt0_entry_micromips_o32)
7434 {
7435 // Write microMIPS PLT header.
7436 gold_assert(gotplt_addr % 4 == 0);
7437
7438 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7439
7440 // ADDIUPC has a span of +/-16MB, check we're in range.
7441 if (gotpc_offset + 0x1000000 >= 0x2000000)
7442 {
7443 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7444 "ADDIUPC"), (long)gotpc_offset);
7445 return;
7446 }
7447
7448 elfcpp::Swap<16, big_endian>::writeval(pov,
7449 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7450 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7451 (gotpc_offset >> 2) & 0xffff);
7452 pov += 4;
7453 for (unsigned int i = 2;
7454 i < (sizeof(plt0_entry_micromips_o32)
7455 / sizeof(plt0_entry_micromips_o32[0]));
7456 i++)
7457 {
7458 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7459 pov += 2;
7460 }
7461 }
7462 else if (plt0_entry == plt0_entry_micromips32_o32)
7463 {
7464 // Write microMIPS PLT header in insn32 mode.
7465 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7466 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7467 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7468 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7469 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7470 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7471 pov += 12;
7472 for (unsigned int i = 6;
7473 i < (sizeof(plt0_entry_micromips32_o32)
7474 / sizeof(plt0_entry_micromips32_o32[0]));
7475 i++)
7476 {
7477 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7478 pov += 2;
7479 }
7480 }
7481 else
7482 {
7483 // Write standard PLT header.
7484 elfcpp::Swap<32, big_endian>::writeval(pov,
7485 plt0_entry[0] | gotplt_addr_high);
7486 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7487 plt0_entry[1] | gotplt_addr_low);
7488 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7489 plt0_entry[2] | gotplt_addr_low);
7490 pov += 12;
7491 for (int i = 3; i < 8; i++)
7492 {
7493 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7494 pov += 4;
7495 }
7496 }
7497
7498
7499 unsigned char* gotplt_pov = gotplt_view;
7500 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7501
7502 // The first two entries in .got.plt are reserved.
7503 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7504 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7505
7506 unsigned int gotplt_offset = 2 * got_entry_size;
7507 gotplt_pov += 2 * got_entry_size;
7508
7509 // Calculate the address of the PLT header.
7510 Mips_address header_address = (plt_address
7511 + (this->is_plt_header_compressed() ? 1 : 0));
7512
7513 // Initialize compressed PLT area view.
7514 unsigned char* pov2 = pov + this->plt_mips_offset_;
7515
7516 // Write the PLT entries.
7517 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7518 p = this->symbols_.begin();
7519 p != this->symbols_.end();
7520 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7521 {
7522 Mips_symbol<size>* mips_sym = *p;
7523
7524 // Calculate the address of the .got.plt entry.
7525 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7526 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7527 & 0xffff);
7528 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7529
7530 // Initially point the .got.plt entry at the PLT header.
7531 if (this->target_->is_output_n64())
7532 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7533 else
7534 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7535
7536 // Now handle the PLT itself. First the standard entry.
7537 if (mips_sym->has_mips_plt_offset())
7538 {
7539 // Pick the load opcode (LW or LD).
7540 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7541 : 0x8c000000;
7542
7543 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7544 : plt_entry;
7545
7546 // Fill in the PLT entry itself.
7547 elfcpp::Swap<32, big_endian>::writeval(pov,
7548 entry[0] | gotplt_entry_addr_hi);
7549 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7550 entry[1] | gotplt_entry_addr_lo | load);
7551 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7552 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7553 entry[3] | gotplt_entry_addr_lo);
7554 pov += 16;
7555 }
7556
7557 // Now the compressed entry. They come after any standard ones.
7558 if (mips_sym->has_comp_plt_offset())
7559 {
7560 if (!this->target_->is_output_micromips())
7561 {
7562 // Write MIPS16 PLT entry.
7563 const uint32_t* plt_entry = plt_entry_mips16_o32;
7564
7565 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7566 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7567 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7568 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7569 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7570 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7571 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7572 gotplt_entry_addr);
7573 pov2 += 16;
7574 }
7575 else if (this->target_->use_32bit_micromips_instructions())
7576 {
7577 // Write microMIPS PLT entry in insn32 mode.
7578 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7579
7580 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7581 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7582 gotplt_entry_addr_hi);
7583 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7584 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7585 gotplt_entry_addr_lo);
7586 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7587 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7588 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7589 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7590 gotplt_entry_addr_lo);
7591 pov2 += 16;
7592 }
7593 else
7594 {
7595 // Write microMIPS PLT entry.
7596 const uint32_t* plt_entry = plt_entry_micromips_o32;
7597
7598 gold_assert(gotplt_entry_addr % 4 == 0);
7599
7600 Mips_address loc_address = plt_address + pov2 - oview;
7601 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7602
7603 // ADDIUPC has a span of +/-16MB, check we're in range.
7604 if (gotpc_offset + 0x1000000 >= 0x2000000)
7605 {
7606 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7607 "range of ADDIUPC"), (long)gotpc_offset);
7608 return;
7609 }
7610
7611 elfcpp::Swap<16, big_endian>::writeval(pov2,
7612 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7613 elfcpp::Swap<16, big_endian>::writeval(
7614 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7615 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7616 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7617 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7618 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7619 pov2 += 12;
7620 }
7621 }
7622 }
7623
7624 // Check the number of bytes written for standard entries.
7625 gold_assert(static_cast<section_size_type>(
7626 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7627 // Check the number of bytes written for compressed entries.
7628 gold_assert((static_cast<section_size_type>(pov2 - pov)
7629 == this->plt_comp_offset_));
7630 // Check the total number of bytes written.
7631 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7632
7633 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7634 == gotplt_size);
7635
7636 of->write_output_view(offset, oview_size, oview);
7637 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7638 }
7639
7640 // Mips_output_data_mips_stubs methods.
7641
7642 // The format of the lazy binding stub when dynamic symbol count is less than
7643 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7644 template<int size, bool big_endian>
7645 const uint32_t
7646 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7647 {
7648 0x8f998010, // lw t9,0x8010(gp)
7649 0x03e07825, // or t7,ra,zero
7650 0x0320f809, // jalr t9,ra
7651 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7652 };
7653
7654 // The format of the lazy binding stub when dynamic symbol count is less than
7655 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7656 template<int size, bool big_endian>
7657 const uint32_t
7658 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7659 {
7660 0xdf998010, // ld t9,0x8010(gp)
7661 0x03e07825, // or t7,ra,zero
7662 0x0320f809, // jalr t9,ra
7663 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7664 };
7665
7666 // The format of the lazy binding stub when dynamic symbol count is less than
7667 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7668 template<int size, bool big_endian>
7669 const uint32_t
7670 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7671 {
7672 0x8f998010, // lw t9,0x8010(gp)
7673 0x03e07825, // or t7,ra,zero
7674 0x0320f809, // jalr t9,ra
7675 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7676 };
7677
7678 // The format of the lazy binding stub when dynamic symbol count is less than
7679 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7680 template<int size, bool big_endian>
7681 const uint32_t
7682 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7683 {
7684 0xdf998010, // ld t9,0x8010(gp)
7685 0x03e07825, // or t7,ra,zero
7686 0x0320f809, // jalr t9,ra
7687 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7688 };
7689
7690 // The format of the lazy binding stub when dynamic symbol count is greater than
7691 // 64K, and ABI is not N64.
7692 template<int size, bool big_endian>
7693 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7694 {
7695 0x8f998010, // lw t9,0x8010(gp)
7696 0x03e07825, // or t7,ra,zero
7697 0x3c180000, // lui t8,DYN_INDEX
7698 0x0320f809, // jalr t9,ra
7699 0x37180000 // ori t8,t8,DYN_INDEX
7700 };
7701
7702 // The format of the lazy binding stub when dynamic symbol count is greater than
7703 // 64K, and ABI is N64.
7704 template<int size, bool big_endian>
7705 const uint32_t
7706 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7707 {
7708 0xdf998010, // ld t9,0x8010(gp)
7709 0x03e07825, // or t7,ra,zero
7710 0x3c180000, // lui t8,DYN_INDEX
7711 0x0320f809, // jalr t9,ra
7712 0x37180000 // ori t8,t8,DYN_INDEX
7713 };
7714
7715 // microMIPS stubs.
7716
7717 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7718 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7719 template<int size, bool big_endian>
7720 const uint32_t
7721 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7722 {
7723 0xff3c, 0x8010, // lw t9,0x8010(gp)
7724 0x0dff, // move t7,ra
7725 0x45d9, // jalr t9
7726 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7727 };
7728
7729 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7730 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7731 template<int size, bool big_endian>
7732 const uint32_t
7733 Mips_output_data_mips_stubs<size, big_endian>::
7734 lazy_stub_micromips_normal_1_n64[] =
7735 {
7736 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7737 0x0dff, // move t7,ra
7738 0x45d9, // jalr t9
7739 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7740 };
7741
7742 // The format of the microMIPS lazy binding stub when dynamic symbol
7743 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7744 // and ABI is not N64.
7745 template<int size, bool big_endian>
7746 const uint32_t
7747 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7748 {
7749 0xff3c, 0x8010, // lw t9,0x8010(gp)
7750 0x0dff, // move t7,ra
7751 0x45d9, // jalr t9
7752 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7753 };
7754
7755 // The format of the microMIPS lazy binding stub when dynamic symbol
7756 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7757 // and ABI is N64.
7758 template<int size, bool big_endian>
7759 const uint32_t
7760 Mips_output_data_mips_stubs<size, big_endian>::
7761 lazy_stub_micromips_normal_2_n64[] =
7762 {
7763 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7764 0x0dff, // move t7,ra
7765 0x45d9, // jalr t9
7766 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7767 };
7768
7769 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7770 // greater than 64K, and ABI is not N64.
7771 template<int size, bool big_endian>
7772 const uint32_t
7773 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7774 {
7775 0xff3c, 0x8010, // lw t9,0x8010(gp)
7776 0x0dff, // move t7,ra
7777 0x41b8, 0x0000, // lui t8,DYN_INDEX
7778 0x45d9, // jalr t9
7779 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7780 };
7781
7782 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7783 // greater than 64K, and ABI is N64.
7784 template<int size, bool big_endian>
7785 const uint32_t
7786 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7787 {
7788 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7789 0x0dff, // move t7,ra
7790 0x41b8, 0x0000, // lui t8,DYN_INDEX
7791 0x45d9, // jalr t9
7792 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7793 };
7794
7795 // 32-bit microMIPS stubs.
7796
7797 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7798 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7799 // can use only 32-bit instructions.
7800 template<int size, bool big_endian>
7801 const uint32_t
7802 Mips_output_data_mips_stubs<size, big_endian>::
7803 lazy_stub_micromips32_normal_1[] =
7804 {
7805 0xff3c, 0x8010, // lw t9,0x8010(gp)
7806 0x001f, 0x7a90, // or t7,ra,zero
7807 0x03f9, 0x0f3c, // jalr ra,t9
7808 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7809 };
7810
7811 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7812 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7813 // use only 32-bit instructions.
7814 template<int size, bool big_endian>
7815 const uint32_t
7816 Mips_output_data_mips_stubs<size, big_endian>::
7817 lazy_stub_micromips32_normal_1_n64[] =
7818 {
7819 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7820 0x001f, 0x7a90, // or t7,ra,zero
7821 0x03f9, 0x0f3c, // jalr ra,t9
7822 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7823 };
7824
7825 // The format of the microMIPS lazy binding stub when dynamic symbol
7826 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7827 // ABI is not N64, and we can use only 32-bit instructions.
7828 template<int size, bool big_endian>
7829 const uint32_t
7830 Mips_output_data_mips_stubs<size, big_endian>::
7831 lazy_stub_micromips32_normal_2[] =
7832 {
7833 0xff3c, 0x8010, // lw t9,0x8010(gp)
7834 0x001f, 0x7a90, // or t7,ra,zero
7835 0x03f9, 0x0f3c, // jalr ra,t9
7836 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7837 };
7838
7839 // The format of the microMIPS lazy binding stub when dynamic symbol
7840 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7841 // ABI is N64, and we can use only 32-bit instructions.
7842 template<int size, bool big_endian>
7843 const uint32_t
7844 Mips_output_data_mips_stubs<size, big_endian>::
7845 lazy_stub_micromips32_normal_2_n64[] =
7846 {
7847 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7848 0x001f, 0x7a90, // or t7,ra,zero
7849 0x03f9, 0x0f3c, // jalr ra,t9
7850 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7851 };
7852
7853 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7854 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7855 template<int size, bool big_endian>
7856 const uint32_t
7857 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7858 {
7859 0xff3c, 0x8010, // lw t9,0x8010(gp)
7860 0x001f, 0x7a90, // or t7,ra,zero
7861 0x41b8, 0x0000, // lui t8,DYN_INDEX
7862 0x03f9, 0x0f3c, // jalr ra,t9
7863 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7864 };
7865
7866 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7867 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7868 template<int size, bool big_endian>
7869 const uint32_t
7870 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7871 {
7872 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7873 0x001f, 0x7a90, // or t7,ra,zero
7874 0x41b8, 0x0000, // lui t8,DYN_INDEX
7875 0x03f9, 0x0f3c, // jalr ra,t9
7876 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7877 };
7878
7879 // Create entry for a symbol.
7880
7881 template<int size, bool big_endian>
7882 void
7883 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7884 Mips_symbol<size>* gsym)
7885 {
7886 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7887 {
7888 this->symbols_.insert(gsym);
7889 gsym->set_has_lazy_stub(true);
7890 }
7891 }
7892
7893 // Remove entry for a symbol.
7894
7895 template<int size, bool big_endian>
7896 void
7897 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7898 Mips_symbol<size>* gsym)
7899 {
7900 if (gsym->has_lazy_stub())
7901 {
7902 this->symbols_.erase(gsym);
7903 gsym->set_has_lazy_stub(false);
7904 }
7905 }
7906
7907 // Set stub offsets for symbols. This method expects that the number of
7908 // entries in dynamic symbol table is set.
7909
7910 template<int size, bool big_endian>
7911 void
7912 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7913 {
7914 gold_assert(this->dynsym_count_ != -1U);
7915
7916 if (this->stub_offsets_are_set_)
7917 return;
7918
7919 unsigned int stub_size = this->stub_size();
7920 unsigned int offset = 0;
7921 for (typename Mips_stubs_entry_set::const_iterator
7922 p = this->symbols_.begin();
7923 p != this->symbols_.end();
7924 ++p, offset += stub_size)
7925 {
7926 Mips_symbol<size>* mips_sym = *p;
7927 mips_sym->set_lazy_stub_offset(offset);
7928 }
7929 this->stub_offsets_are_set_ = true;
7930 }
7931
7932 template<int size, bool big_endian>
7933 void
7934 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7935 {
7936 for (typename Mips_stubs_entry_set::const_iterator
7937 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7938 {
7939 Mips_symbol<size>* sym = *p;
7940 if (sym->is_from_dynobj())
7941 sym->set_needs_dynsym_value();
7942 }
7943 }
7944
7945 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
7946 // adjusts them as needed.
7947
7948 template<int size, bool big_endian>
7949 void
7950 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
7951 {
7952 const off_t offset = this->offset();
7953 const section_size_type oview_size =
7954 convert_to_section_size_type(this->data_size());
7955 unsigned char* const oview = of->get_output_view(offset, oview_size);
7956
7957 bool big_stub = this->dynsym_count_ > 0x10000;
7958
7959 unsigned char* pov = oview;
7960 for (typename Mips_stubs_entry_set::const_iterator
7961 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7962 {
7963 Mips_symbol<size>* sym = *p;
7964 const uint32_t* lazy_stub;
7965 bool n64 = this->target_->is_output_n64();
7966
7967 if (!this->target_->is_output_micromips())
7968 {
7969 // Write standard (non-microMIPS) stub.
7970 if (!big_stub)
7971 {
7972 if (sym->dynsym_index() & ~0x7fff)
7973 // Dynsym index is between 32K and 64K.
7974 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
7975 else
7976 // Dynsym index is less than 32K.
7977 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
7978 }
7979 else
7980 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
7981
7982 unsigned int i = 0;
7983 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7984 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
7985 pov += 8;
7986
7987 i += 2;
7988 if (big_stub)
7989 {
7990 // LUI instruction of the big stub. Paste high 16 bits of the
7991 // dynsym index.
7992 elfcpp::Swap<32, big_endian>::writeval(pov,
7993 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
7994 pov += 4;
7995 i += 1;
7996 }
7997 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7998 // Last stub instruction. Paste low 16 bits of the dynsym index.
7999 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8000 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8001 pov += 8;
8002 }
8003 else if (this->target_->use_32bit_micromips_instructions())
8004 {
8005 // Write microMIPS stub in insn32 mode.
8006 if (!big_stub)
8007 {
8008 if (sym->dynsym_index() & ~0x7fff)
8009 // Dynsym index is between 32K and 64K.
8010 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8011 : lazy_stub_micromips32_normal_2;
8012 else
8013 // Dynsym index is less than 32K.
8014 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8015 : lazy_stub_micromips32_normal_1;
8016 }
8017 else
8018 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8019 : lazy_stub_micromips32_big;
8020
8021 unsigned int i = 0;
8022 // First stub instruction. We emit 32-bit microMIPS instructions by
8023 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8024 // the instruction where the opcode is must always come first, for
8025 // both little and big endian.
8026 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8027 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8028 // Second stub instruction.
8029 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8030 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8031 pov += 8;
8032 i += 4;
8033 if (big_stub)
8034 {
8035 // LUI instruction of the big stub. Paste high 16 bits of the
8036 // dynsym index.
8037 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8038 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8039 (sym->dynsym_index() >> 16) & 0x7fff);
8040 pov += 4;
8041 i += 2;
8042 }
8043 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8044 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8045 // Last stub instruction. Paste low 16 bits of the dynsym index.
8046 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8047 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8048 sym->dynsym_index() & 0xffff);
8049 pov += 8;
8050 }
8051 else
8052 {
8053 // Write microMIPS stub.
8054 if (!big_stub)
8055 {
8056 if (sym->dynsym_index() & ~0x7fff)
8057 // Dynsym index is between 32K and 64K.
8058 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8059 : lazy_stub_micromips_normal_2;
8060 else
8061 // Dynsym index is less than 32K.
8062 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8063 : lazy_stub_micromips_normal_1;
8064 }
8065 else
8066 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8067 : lazy_stub_micromips_big;
8068
8069 unsigned int i = 0;
8070 // First stub instruction. We emit 32-bit microMIPS instructions by
8071 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8072 // the instruction where the opcode is must always come first, for
8073 // both little and big endian.
8074 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8075 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8076 // Second stub instruction.
8077 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8078 pov += 6;
8079 i += 3;
8080 if (big_stub)
8081 {
8082 // LUI instruction of the big stub. Paste high 16 bits of the
8083 // dynsym index.
8084 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8085 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8086 (sym->dynsym_index() >> 16) & 0x7fff);
8087 pov += 4;
8088 i += 2;
8089 }
8090 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8091 // Last stub instruction. Paste low 16 bits of the dynsym index.
8092 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8093 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8094 sym->dynsym_index() & 0xffff);
8095 pov += 6;
8096 }
8097 }
8098
8099 // We always allocate 20 bytes for every stub, because final dynsym count is
8100 // not known in method do_finalize_sections. There are 4 unused bytes per
8101 // stub if final dynsym count is less than 0x10000.
8102 unsigned int used = pov - oview;
8103 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8104 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8105
8106 // Fill the unused space with zeroes.
8107 // TODO(sasa): Can we strip unused bytes during the relaxation?
8108 if (unused > 0)
8109 memset(pov, 0, unused);
8110
8111 of->write_output_view(offset, oview_size, oview);
8112 }
8113
8114 // Mips_output_section_reginfo methods.
8115
8116 template<int size, bool big_endian>
8117 void
8118 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8119 {
8120 off_t offset = this->offset();
8121 off_t data_size = this->data_size();
8122
8123 unsigned char* view = of->get_output_view(offset, data_size);
8124 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8125 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8126 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8127 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8128 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8129 // Write the gp value.
8130 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8131 this->target_->gp_value());
8132
8133 of->write_output_view(offset, data_size, view);
8134 }
8135
8136 // Mips_output_section_abiflags methods.
8137
8138 template<int size, bool big_endian>
8139 void
8140 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8141 {
8142 off_t offset = this->offset();
8143 off_t data_size = this->data_size();
8144
8145 unsigned char* view = of->get_output_view(offset, data_size);
8146 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8147 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8148 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8149 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8150 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8151 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8152 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8153 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8154 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8155 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8156 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8157
8158 of->write_output_view(offset, data_size, view);
8159 }
8160
8161 // Mips_copy_relocs methods.
8162
8163 // Emit any saved relocs.
8164
8165 template<int sh_type, int size, bool big_endian>
8166 void
8167 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8168 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8169 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8170 {
8171 for (typename Copy_relocs<sh_type, size, big_endian>::
8172 Copy_reloc_entries::iterator p = this->entries_.begin();
8173 p != this->entries_.end();
8174 ++p)
8175 emit_entry(*p, reloc_section, symtab, layout, target);
8176
8177 // We no longer need the saved information.
8178 this->entries_.clear();
8179 }
8180
8181 // Emit the reloc if appropriate.
8182
8183 template<int sh_type, int size, bool big_endian>
8184 void
8185 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8186 Copy_reloc_entry& entry,
8187 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8188 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8189 {
8190 // If the symbol is no longer defined in a dynamic object, then we
8191 // emitted a COPY relocation, and we do not want to emit this
8192 // dynamic relocation.
8193 if (!entry.sym_->is_from_dynobj())
8194 return;
8195
8196 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8197 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8198 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8199
8200 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8201 if (can_make_dynamic && !sym->has_static_relocs())
8202 {
8203 Mips_relobj<size, big_endian>* object =
8204 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8205 target->got_section(symtab, layout)->record_global_got_symbol(
8206 sym, object, entry.reloc_type_, true, false);
8207 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8208 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8209 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8210 else
8211 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8212 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8213 entry.shndx_, entry.address_);
8214 }
8215 else
8216 this->make_copy_reloc(symtab, layout,
8217 static_cast<Sized_symbol<size>*>(entry.sym_),
8218 entry.relobj_,
8219 reloc_section);
8220 }
8221
8222 // Target_mips methods.
8223
8224 // Return the value to use for a dynamic symbol which requires special
8225 // treatment. This is how we support equality comparisons of function
8226 // pointers across shared library boundaries, as described in the
8227 // processor specific ABI supplement.
8228
8229 template<int size, bool big_endian>
8230 uint64_t
8231 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8232 {
8233 uint64_t value = 0;
8234 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8235
8236 if (!mips_sym->has_lazy_stub())
8237 {
8238 if (mips_sym->has_plt_offset())
8239 {
8240 // We distinguish between PLT entries and lazy-binding stubs by
8241 // giving the former an st_other value of STO_MIPS_PLT. Set the
8242 // value to the stub address if there are any relocations in the
8243 // binary where pointer equality matters.
8244 if (mips_sym->pointer_equality_needed())
8245 {
8246 // Prefer a standard MIPS PLT entry.
8247 if (mips_sym->has_mips_plt_offset())
8248 value = this->plt_section()->mips_entry_address(mips_sym);
8249 else
8250 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8251 }
8252 else
8253 value = 0;
8254 }
8255 }
8256 else
8257 {
8258 // First, set stub offsets for symbols. This method expects that the
8259 // number of entries in dynamic symbol table is set.
8260 this->mips_stubs_section()->set_lazy_stub_offsets();
8261
8262 // The run-time linker uses the st_value field of the symbol
8263 // to reset the global offset table entry for this external
8264 // to its stub address when unlinking a shared object.
8265 value = this->mips_stubs_section()->stub_address(mips_sym);
8266 }
8267
8268 if (mips_sym->has_mips16_fn_stub())
8269 {
8270 // If we have a MIPS16 function with a stub, the dynamic symbol must
8271 // refer to the stub, since only the stub uses the standard calling
8272 // conventions.
8273 value = mips_sym->template
8274 get_mips16_fn_stub<big_endian>()->output_address();
8275 }
8276
8277 return value;
8278 }
8279
8280 // Get the dynamic reloc section, creating it if necessary. It's always
8281 // .rel.dyn, even for MIPS64.
8282
8283 template<int size, bool big_endian>
8284 typename Target_mips<size, big_endian>::Reloc_section*
8285 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8286 {
8287 if (this->rel_dyn_ == NULL)
8288 {
8289 gold_assert(layout != NULL);
8290 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8291 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8292 elfcpp::SHF_ALLOC, this->rel_dyn_,
8293 ORDER_DYNAMIC_RELOCS, false);
8294
8295 // First entry in .rel.dyn has to be null.
8296 // This is hack - we define dummy output data and set its address to 0,
8297 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8298 // This ensures that the entry is null.
8299 Output_data* od = new Output_data_zero_fill(0, 0);
8300 od->set_address(0);
8301 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8302 }
8303 return this->rel_dyn_;
8304 }
8305
8306 // Get the GOT section, creating it if necessary.
8307
8308 template<int size, bool big_endian>
8309 Mips_output_data_got<size, big_endian>*
8310 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8311 Layout* layout)
8312 {
8313 if (this->got_ == NULL)
8314 {
8315 gold_assert(symtab != NULL && layout != NULL);
8316
8317 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8318 layout);
8319 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8320 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8321 elfcpp::SHF_MIPS_GPREL),
8322 this->got_, ORDER_DATA, false);
8323
8324 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8325 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8326 Symbol_table::PREDEFINED,
8327 this->got_,
8328 0, 0, elfcpp::STT_OBJECT,
8329 elfcpp::STB_GLOBAL,
8330 elfcpp::STV_DEFAULT, 0,
8331 false, false);
8332 }
8333
8334 return this->got_;
8335 }
8336
8337 // Calculate value of _gp symbol.
8338
8339 template<int size, bool big_endian>
8340 void
8341 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8342 {
8343 if (this->gp_ != NULL)
8344 return;
8345
8346 Output_data* section = layout->find_output_section(".got");
8347 if (section == NULL)
8348 {
8349 // If there is no .got section, gp should be based on .sdata.
8350 // TODO(sasa): This is probably not needed. This was needed for older
8351 // MIPS architectures which accessed both GOT and .sdata section using
8352 // gp-relative addressing. Modern Mips Linux ELF architectures don't
8353 // access .sdata using gp-relative addressing.
8354 for (Layout::Section_list::const_iterator
8355 p = layout->section_list().begin();
8356 p != layout->section_list().end();
8357 ++p)
8358 {
8359 if (strcmp((*p)->name(), ".sdata") == 0)
8360 {
8361 section = *p;
8362 break;
8363 }
8364 }
8365 }
8366
8367 Sized_symbol<size>* gp =
8368 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8369 if (gp != NULL)
8370 {
8371 if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
8372 gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
8373 elfcpp::STT_OBJECT,
8374 elfcpp::STB_GLOBAL,
8375 elfcpp::STV_DEFAULT, 0,
8376 false, false);
8377 this->gp_ = gp;
8378 }
8379 else if (section != NULL)
8380 {
8381 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8382 "_gp", NULL, Symbol_table::PREDEFINED,
8383 section, MIPS_GP_OFFSET, 0,
8384 elfcpp::STT_OBJECT,
8385 elfcpp::STB_GLOBAL,
8386 elfcpp::STV_DEFAULT,
8387 0, false, false));
8388 this->gp_ = gp;
8389 }
8390 }
8391
8392 // Set the dynamic symbol indexes. INDEX is the index of the first
8393 // global dynamic symbol. Pointers to the symbols are stored into the
8394 // vector SYMS. The names are added to DYNPOOL. This returns an
8395 // updated dynamic symbol index.
8396
8397 template<int size, bool big_endian>
8398 unsigned int
8399 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8400 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8401 std::vector<Symbol*>* syms, Stringpool* dynpool,
8402 Versions* versions, Symbol_table* symtab) const
8403 {
8404 std::vector<Symbol*> non_got_symbols;
8405 std::vector<Symbol*> got_symbols;
8406
8407 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8408 &got_symbols);
8409
8410 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8411 p != non_got_symbols.end();
8412 ++p)
8413 {
8414 Symbol* sym = *p;
8415
8416 // Note that SYM may already have a dynamic symbol index, since
8417 // some symbols appear more than once in the symbol table, with
8418 // and without a version.
8419
8420 if (!sym->has_dynsym_index())
8421 {
8422 sym->set_dynsym_index(index);
8423 ++index;
8424 syms->push_back(sym);
8425 dynpool->add(sym->name(), false, NULL);
8426
8427 // Record any version information.
8428 if (sym->version() != NULL)
8429 versions->record_version(symtab, dynpool, sym);
8430
8431 // If the symbol is defined in a dynamic object and is
8432 // referenced in a regular object, then mark the dynamic
8433 // object as needed. This is used to implement --as-needed.
8434 if (sym->is_from_dynobj() && sym->in_reg())
8435 sym->object()->set_is_needed();
8436 }
8437 }
8438
8439 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8440 p != got_symbols.end();
8441 ++p)
8442 {
8443 Symbol* sym = *p;
8444 if (!sym->has_dynsym_index())
8445 {
8446 // Record any version information.
8447 if (sym->version() != NULL)
8448 versions->record_version(symtab, dynpool, sym);
8449 }
8450 }
8451
8452 index = versions->finalize(symtab, index, syms);
8453
8454 int got_sym_count = 0;
8455 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8456 p != got_symbols.end();
8457 ++p)
8458 {
8459 Symbol* sym = *p;
8460
8461 if (!sym->has_dynsym_index())
8462 {
8463 ++got_sym_count;
8464 sym->set_dynsym_index(index);
8465 ++index;
8466 syms->push_back(sym);
8467 dynpool->add(sym->name(), false, NULL);
8468
8469 // If the symbol is defined in a dynamic object and is
8470 // referenced in a regular object, then mark the dynamic
8471 // object as needed. This is used to implement --as-needed.
8472 if (sym->is_from_dynobj() && sym->in_reg())
8473 sym->object()->set_is_needed();
8474 }
8475 }
8476
8477 // Set index of the first symbol that has .got entry.
8478 this->got_->set_first_global_got_dynsym_index(
8479 got_sym_count > 0 ? index - got_sym_count : -1U);
8480
8481 if (this->mips_stubs_ != NULL)
8482 this->mips_stubs_->set_dynsym_count(index);
8483
8484 return index;
8485 }
8486
8487 // Create a PLT entry for a global symbol referenced by r_type relocation.
8488
8489 template<int size, bool big_endian>
8490 void
8491 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8492 Layout* layout,
8493 Mips_symbol<size>* gsym,
8494 unsigned int r_type)
8495 {
8496 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8497 return;
8498
8499 if (this->plt_ == NULL)
8500 {
8501 // Create the GOT section first.
8502 this->got_section(symtab, layout);
8503
8504 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8505 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8506 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8507 this->got_plt_, ORDER_DATA, false);
8508
8509 // The first two entries are reserved.
8510 this->got_plt_->set_current_data_size(2 * size/8);
8511
8512 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8513 this->got_plt_,
8514 this);
8515 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8516 (elfcpp::SHF_ALLOC
8517 | elfcpp::SHF_EXECINSTR),
8518 this->plt_, ORDER_PLT, false);
8519 }
8520
8521 this->plt_->add_entry(gsym, r_type);
8522 }
8523
8524
8525 // Get the .MIPS.stubs section, creating it if necessary.
8526
8527 template<int size, bool big_endian>
8528 Mips_output_data_mips_stubs<size, big_endian>*
8529 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8530 {
8531 if (this->mips_stubs_ == NULL)
8532 {
8533 this->mips_stubs_ =
8534 new Mips_output_data_mips_stubs<size, big_endian>(this);
8535 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8536 (elfcpp::SHF_ALLOC
8537 | elfcpp::SHF_EXECINSTR),
8538 this->mips_stubs_, ORDER_PLT, false);
8539 }
8540 return this->mips_stubs_;
8541 }
8542
8543 // Get the LA25 stub section, creating it if necessary.
8544
8545 template<int size, bool big_endian>
8546 Mips_output_data_la25_stub<size, big_endian>*
8547 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8548 {
8549 if (this->la25_stub_ == NULL)
8550 {
8551 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8552 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8553 (elfcpp::SHF_ALLOC
8554 | elfcpp::SHF_EXECINSTR),
8555 this->la25_stub_, ORDER_TEXT, false);
8556 }
8557 return this->la25_stub_;
8558 }
8559
8560 // Process the relocations to determine unreferenced sections for
8561 // garbage collection.
8562
8563 template<int size, bool big_endian>
8564 void
8565 Target_mips<size, big_endian>::gc_process_relocs(
8566 Symbol_table* symtab,
8567 Layout* layout,
8568 Sized_relobj_file<size, big_endian>* object,
8569 unsigned int data_shndx,
8570 unsigned int sh_type,
8571 const unsigned char* prelocs,
8572 size_t reloc_count,
8573 Output_section* output_section,
8574 bool needs_special_offset_handling,
8575 size_t local_symbol_count,
8576 const unsigned char* plocal_symbols)
8577 {
8578 typedef Target_mips<size, big_endian> Mips;
8579
8580 if (sh_type == elfcpp::SHT_REL)
8581 {
8582 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8583 Classify_reloc;
8584
8585 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8586 symtab,
8587 layout,
8588 this,
8589 object,
8590 data_shndx,
8591 prelocs,
8592 reloc_count,
8593 output_section,
8594 needs_special_offset_handling,
8595 local_symbol_count,
8596 plocal_symbols);
8597 }
8598 else if (sh_type == elfcpp::SHT_RELA)
8599 {
8600 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8601 Classify_reloc;
8602
8603 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8604 symtab,
8605 layout,
8606 this,
8607 object,
8608 data_shndx,
8609 prelocs,
8610 reloc_count,
8611 output_section,
8612 needs_special_offset_handling,
8613 local_symbol_count,
8614 plocal_symbols);
8615 }
8616 else
8617 gold_unreachable();
8618 }
8619
8620 // Scan relocations for a section.
8621
8622 template<int size, bool big_endian>
8623 void
8624 Target_mips<size, big_endian>::scan_relocs(
8625 Symbol_table* symtab,
8626 Layout* layout,
8627 Sized_relobj_file<size, big_endian>* object,
8628 unsigned int data_shndx,
8629 unsigned int sh_type,
8630 const unsigned char* prelocs,
8631 size_t reloc_count,
8632 Output_section* output_section,
8633 bool needs_special_offset_handling,
8634 size_t local_symbol_count,
8635 const unsigned char* plocal_symbols)
8636 {
8637 typedef Target_mips<size, big_endian> Mips;
8638
8639 if (sh_type == elfcpp::SHT_REL)
8640 {
8641 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8642 Classify_reloc;
8643
8644 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8645 symtab,
8646 layout,
8647 this,
8648 object,
8649 data_shndx,
8650 prelocs,
8651 reloc_count,
8652 output_section,
8653 needs_special_offset_handling,
8654 local_symbol_count,
8655 plocal_symbols);
8656 }
8657 else if (sh_type == elfcpp::SHT_RELA)
8658 {
8659 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8660 Classify_reloc;
8661
8662 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8663 symtab,
8664 layout,
8665 this,
8666 object,
8667 data_shndx,
8668 prelocs,
8669 reloc_count,
8670 output_section,
8671 needs_special_offset_handling,
8672 local_symbol_count,
8673 plocal_symbols);
8674 }
8675 }
8676
8677 template<int size, bool big_endian>
8678 bool
8679 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8680 {
8681 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8682 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8683 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8684 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8685 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8686 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8687 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8688 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8689 }
8690
8691 // Return the MACH for a MIPS e_flags value.
8692 template<int size, bool big_endian>
8693 unsigned int
8694 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8695 {
8696 switch (flags & elfcpp::EF_MIPS_MACH)
8697 {
8698 case elfcpp::E_MIPS_MACH_3900:
8699 return mach_mips3900;
8700
8701 case elfcpp::E_MIPS_MACH_4010:
8702 return mach_mips4010;
8703
8704 case elfcpp::E_MIPS_MACH_4100:
8705 return mach_mips4100;
8706
8707 case elfcpp::E_MIPS_MACH_4111:
8708 return mach_mips4111;
8709
8710 case elfcpp::E_MIPS_MACH_4120:
8711 return mach_mips4120;
8712
8713 case elfcpp::E_MIPS_MACH_4650:
8714 return mach_mips4650;
8715
8716 case elfcpp::E_MIPS_MACH_5400:
8717 return mach_mips5400;
8718
8719 case elfcpp::E_MIPS_MACH_5500:
8720 return mach_mips5500;
8721
8722 case elfcpp::E_MIPS_MACH_5900:
8723 return mach_mips5900;
8724
8725 case elfcpp::E_MIPS_MACH_9000:
8726 return mach_mips9000;
8727
8728 case elfcpp::E_MIPS_MACH_SB1:
8729 return mach_mips_sb1;
8730
8731 case elfcpp::E_MIPS_MACH_LS2E:
8732 return mach_mips_loongson_2e;
8733
8734 case elfcpp::E_MIPS_MACH_LS2F:
8735 return mach_mips_loongson_2f;
8736
8737 case elfcpp::E_MIPS_MACH_LS3A:
8738 return mach_mips_loongson_3a;
8739
8740 case elfcpp::E_MIPS_MACH_OCTEON3:
8741 return mach_mips_octeon3;
8742
8743 case elfcpp::E_MIPS_MACH_OCTEON2:
8744 return mach_mips_octeon2;
8745
8746 case elfcpp::E_MIPS_MACH_OCTEON:
8747 return mach_mips_octeon;
8748
8749 case elfcpp::E_MIPS_MACH_XLR:
8750 return mach_mips_xlr;
8751
8752 default:
8753 switch (flags & elfcpp::EF_MIPS_ARCH)
8754 {
8755 default:
8756 case elfcpp::E_MIPS_ARCH_1:
8757 return mach_mips3000;
8758
8759 case elfcpp::E_MIPS_ARCH_2:
8760 return mach_mips6000;
8761
8762 case elfcpp::E_MIPS_ARCH_3:
8763 return mach_mips4000;
8764
8765 case elfcpp::E_MIPS_ARCH_4:
8766 return mach_mips8000;
8767
8768 case elfcpp::E_MIPS_ARCH_5:
8769 return mach_mips5;
8770
8771 case elfcpp::E_MIPS_ARCH_32:
8772 return mach_mipsisa32;
8773
8774 case elfcpp::E_MIPS_ARCH_64:
8775 return mach_mipsisa64;
8776
8777 case elfcpp::E_MIPS_ARCH_32R2:
8778 return mach_mipsisa32r2;
8779
8780 case elfcpp::E_MIPS_ARCH_32R6:
8781 return mach_mipsisa32r6;
8782
8783 case elfcpp::E_MIPS_ARCH_64R2:
8784 return mach_mipsisa64r2;
8785
8786 case elfcpp::E_MIPS_ARCH_64R6:
8787 return mach_mipsisa64r6;
8788 }
8789 }
8790
8791 return 0;
8792 }
8793
8794 // Return the MACH for each .MIPS.abiflags ISA Extension.
8795
8796 template<int size, bool big_endian>
8797 unsigned int
8798 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8799 {
8800 switch (isa_ext)
8801 {
8802 case elfcpp::AFL_EXT_3900:
8803 return mach_mips3900;
8804
8805 case elfcpp::AFL_EXT_4010:
8806 return mach_mips4010;
8807
8808 case elfcpp::AFL_EXT_4100:
8809 return mach_mips4100;
8810
8811 case elfcpp::AFL_EXT_4111:
8812 return mach_mips4111;
8813
8814 case elfcpp::AFL_EXT_4120:
8815 return mach_mips4120;
8816
8817 case elfcpp::AFL_EXT_4650:
8818 return mach_mips4650;
8819
8820 case elfcpp::AFL_EXT_5400:
8821 return mach_mips5400;
8822
8823 case elfcpp::AFL_EXT_5500:
8824 return mach_mips5500;
8825
8826 case elfcpp::AFL_EXT_5900:
8827 return mach_mips5900;
8828
8829 case elfcpp::AFL_EXT_10000:
8830 return mach_mips10000;
8831
8832 case elfcpp::AFL_EXT_LOONGSON_2E:
8833 return mach_mips_loongson_2e;
8834
8835 case elfcpp::AFL_EXT_LOONGSON_2F:
8836 return mach_mips_loongson_2f;
8837
8838 case elfcpp::AFL_EXT_LOONGSON_3A:
8839 return mach_mips_loongson_3a;
8840
8841 case elfcpp::AFL_EXT_SB1:
8842 return mach_mips_sb1;
8843
8844 case elfcpp::AFL_EXT_OCTEON:
8845 return mach_mips_octeon;
8846
8847 case elfcpp::AFL_EXT_OCTEONP:
8848 return mach_mips_octeonp;
8849
8850 case elfcpp::AFL_EXT_OCTEON2:
8851 return mach_mips_octeon2;
8852
8853 case elfcpp::AFL_EXT_XLR:
8854 return mach_mips_xlr;
8855
8856 default:
8857 return mach_mips3000;
8858 }
8859 }
8860
8861 // Return the .MIPS.abiflags value representing each ISA Extension.
8862
8863 template<int size, bool big_endian>
8864 unsigned int
8865 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8866 {
8867 switch (mips_mach)
8868 {
8869 case mach_mips3900:
8870 return elfcpp::AFL_EXT_3900;
8871
8872 case mach_mips4010:
8873 return elfcpp::AFL_EXT_4010;
8874
8875 case mach_mips4100:
8876 return elfcpp::AFL_EXT_4100;
8877
8878 case mach_mips4111:
8879 return elfcpp::AFL_EXT_4111;
8880
8881 case mach_mips4120:
8882 return elfcpp::AFL_EXT_4120;
8883
8884 case mach_mips4650:
8885 return elfcpp::AFL_EXT_4650;
8886
8887 case mach_mips5400:
8888 return elfcpp::AFL_EXT_5400;
8889
8890 case mach_mips5500:
8891 return elfcpp::AFL_EXT_5500;
8892
8893 case mach_mips5900:
8894 return elfcpp::AFL_EXT_5900;
8895
8896 case mach_mips10000:
8897 return elfcpp::AFL_EXT_10000;
8898
8899 case mach_mips_loongson_2e:
8900 return elfcpp::AFL_EXT_LOONGSON_2E;
8901
8902 case mach_mips_loongson_2f:
8903 return elfcpp::AFL_EXT_LOONGSON_2F;
8904
8905 case mach_mips_loongson_3a:
8906 return elfcpp::AFL_EXT_LOONGSON_3A;
8907
8908 case mach_mips_sb1:
8909 return elfcpp::AFL_EXT_SB1;
8910
8911 case mach_mips_octeon:
8912 return elfcpp::AFL_EXT_OCTEON;
8913
8914 case mach_mips_octeonp:
8915 return elfcpp::AFL_EXT_OCTEONP;
8916
8917 case mach_mips_octeon3:
8918 return elfcpp::AFL_EXT_OCTEON3;
8919
8920 case mach_mips_octeon2:
8921 return elfcpp::AFL_EXT_OCTEON2;
8922
8923 case mach_mips_xlr:
8924 return elfcpp::AFL_EXT_XLR;
8925
8926 default:
8927 return 0;
8928 }
8929 }
8930
8931 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
8932
8933 template<int size, bool big_endian>
8934 void
8935 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
8936 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
8937 {
8938 int new_isa = 0;
8939 switch (e_flags & elfcpp::EF_MIPS_ARCH)
8940 {
8941 case elfcpp::E_MIPS_ARCH_1:
8942 new_isa = this->level_rev(1, 0);
8943 break;
8944 case elfcpp::E_MIPS_ARCH_2:
8945 new_isa = this->level_rev(2, 0);
8946 break;
8947 case elfcpp::E_MIPS_ARCH_3:
8948 new_isa = this->level_rev(3, 0);
8949 break;
8950 case elfcpp::E_MIPS_ARCH_4:
8951 new_isa = this->level_rev(4, 0);
8952 break;
8953 case elfcpp::E_MIPS_ARCH_5:
8954 new_isa = this->level_rev(5, 0);
8955 break;
8956 case elfcpp::E_MIPS_ARCH_32:
8957 new_isa = this->level_rev(32, 1);
8958 break;
8959 case elfcpp::E_MIPS_ARCH_32R2:
8960 new_isa = this->level_rev(32, 2);
8961 break;
8962 case elfcpp::E_MIPS_ARCH_32R6:
8963 new_isa = this->level_rev(32, 6);
8964 break;
8965 case elfcpp::E_MIPS_ARCH_64:
8966 new_isa = this->level_rev(64, 1);
8967 break;
8968 case elfcpp::E_MIPS_ARCH_64R2:
8969 new_isa = this->level_rev(64, 2);
8970 break;
8971 case elfcpp::E_MIPS_ARCH_64R6:
8972 new_isa = this->level_rev(64, 6);
8973 break;
8974 default:
8975 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
8976 this->elf_mips_mach_name(e_flags));
8977 }
8978
8979 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
8980 {
8981 // Decode a single value into level and revision.
8982 abiflags->isa_level = new_isa >> 3;
8983 abiflags->isa_rev = new_isa & 0x7;
8984 }
8985
8986 // Update the isa_ext if needed.
8987 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
8988 this->elf_mips_mach(e_flags)))
8989 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
8990 }
8991
8992 // Infer the content of the ABI flags based on the elf header.
8993
8994 template<int size, bool big_endian>
8995 void
8996 Target_mips<size, big_endian>::infer_abiflags(
8997 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
8998 {
8999 const Attributes_section_data* pasd = relobj->attributes_section_data();
9000 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9001 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9002
9003 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9004 if (pasd != NULL)
9005 {
9006 // Read fp_abi from the .gnu.attribute section.
9007 const Object_attribute* attr =
9008 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9009 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9010 }
9011
9012 abiflags->fp_abi = attr_fp_abi;
9013 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9014 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9015 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9016 : elfcpp::AFL_REG_64;
9017
9018 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9019 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9020 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9021 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9022 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9023 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9024 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9025 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9026 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9027
9028 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9029 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9030 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9031 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9032 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9033 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9034
9035 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9036 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9037 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9038 && abiflags->isa_level >= 32
9039 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9040 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9041 }
9042
9043 // Create abiflags from elf header or from .MIPS.abiflags section.
9044
9045 template<int size, bool big_endian>
9046 void
9047 Target_mips<size, big_endian>::create_abiflags(
9048 Mips_relobj<size, big_endian>* relobj,
9049 Mips_abiflags<big_endian>* abiflags)
9050 {
9051 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9052 Mips_abiflags<big_endian> header_abiflags;
9053
9054 this->infer_abiflags(relobj, &header_abiflags);
9055
9056 if (sec_abiflags == NULL)
9057 {
9058 // If there is no input .MIPS.abiflags section, use abiflags created
9059 // from elf header.
9060 *abiflags = header_abiflags;
9061 return;
9062 }
9063
9064 this->has_abiflags_section_ = true;
9065
9066 // It is not possible to infer the correct ISA revision for R3 or R5
9067 // so drop down to R2 for the checks.
9068 unsigned char isa_rev = sec_abiflags->isa_rev;
9069 if (isa_rev == 3 || isa_rev == 5)
9070 isa_rev = 2;
9071
9072 // Check compatibility between abiflags created from elf header
9073 // and abiflags from .MIPS.abiflags section in this object file.
9074 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9075 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9076 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9077 relobj->name().c_str());
9078 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9079 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9080 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9081 ".MIPS.abiflags"), relobj->name().c_str());
9082 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9083 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9084 relobj->name().c_str());
9085 // The isa_ext is allowed to be an extension of what can be inferred
9086 // from e_flags.
9087 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9088 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9089 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9090 ".MIPS.abiflags"), relobj->name().c_str());
9091 if (sec_abiflags->flags2 != 0)
9092 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9093 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9094 sec_abiflags->flags2);
9095 // Use abiflags from .MIPS.abiflags section.
9096 *abiflags = *sec_abiflags;
9097 }
9098
9099 // Return the meaning of fp_abi, or "unknown" if not known.
9100
9101 template<int size, bool big_endian>
9102 const char*
9103 Target_mips<size, big_endian>::fp_abi_string(int fp)
9104 {
9105 switch (fp)
9106 {
9107 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9108 return "-mdouble-float";
9109 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9110 return "-msingle-float";
9111 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9112 return "-msoft-float";
9113 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9114 return _("-mips32r2 -mfp64 (12 callee-saved)");
9115 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9116 return "-mfpxx";
9117 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9118 return "-mgp32 -mfp64";
9119 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9120 return "-mgp32 -mfp64 -mno-odd-spreg";
9121 default:
9122 return "unknown";
9123 }
9124 }
9125
9126 // Select fp_abi.
9127
9128 template<int size, bool big_endian>
9129 int
9130 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9131 int out_fp)
9132 {
9133 if (in_fp == out_fp)
9134 return out_fp;
9135
9136 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9137 return in_fp;
9138 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9139 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9140 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9141 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9142 return in_fp;
9143 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9144 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9145 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9146 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9147 return out_fp; // Keep the current setting.
9148 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9149 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9150 return in_fp;
9151 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9152 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9153 return out_fp; // Keep the current setting.
9154 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9155 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9156 fp_abi_string(in_fp), fp_abi_string(out_fp));
9157 return out_fp;
9158 }
9159
9160 // Merge attributes from input object.
9161
9162 template<int size, bool big_endian>
9163 void
9164 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9165 const Attributes_section_data* pasd)
9166 {
9167 // Return if there is no attributes section data.
9168 if (pasd == NULL)
9169 return;
9170
9171 // If output has no object attributes, just copy.
9172 if (this->attributes_section_data_ == NULL)
9173 {
9174 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9175 return;
9176 }
9177
9178 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9179 Object_attribute::OBJ_ATTR_GNU);
9180
9181 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9182 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9183
9184 // Merge Tag_compatibility attributes and any common GNU ones.
9185 this->attributes_section_data_->merge(name.c_str(), pasd);
9186 }
9187
9188 // Merge abiflags from input object.
9189
9190 template<int size, bool big_endian>
9191 void
9192 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9193 Mips_abiflags<big_endian>* in_abiflags)
9194 {
9195 // If output has no abiflags, just copy.
9196 if (this->abiflags_ == NULL)
9197 {
9198 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9199 return;
9200 }
9201
9202 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9203 this->abiflags_->fp_abi);
9204
9205 // Merge abiflags.
9206 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9207 in_abiflags->isa_level);
9208 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9209 in_abiflags->isa_rev);
9210 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9211 in_abiflags->gpr_size);
9212 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9213 in_abiflags->cpr1_size);
9214 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9215 in_abiflags->cpr2_size);
9216 this->abiflags_->ases |= in_abiflags->ases;
9217 this->abiflags_->flags1 |= in_abiflags->flags1;
9218 }
9219
9220 // Check whether machine EXTENSION is an extension of machine BASE.
9221 template<int size, bool big_endian>
9222 bool
9223 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9224 unsigned int extension)
9225 {
9226 if (extension == base)
9227 return true;
9228
9229 if ((base == mach_mipsisa32)
9230 && this->mips_mach_extends(mach_mipsisa64, extension))
9231 return true;
9232
9233 if ((base == mach_mipsisa32r2)
9234 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9235 return true;
9236
9237 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9238 if (extension == this->mips_mach_extensions_[i].first)
9239 {
9240 extension = this->mips_mach_extensions_[i].second;
9241 if (extension == base)
9242 return true;
9243 }
9244
9245 return false;
9246 }
9247
9248 // Merge file header flags from input object.
9249
9250 template<int size, bool big_endian>
9251 void
9252 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9253 elfcpp::Elf_Word in_flags)
9254 {
9255 // If flags are not set yet, just copy them.
9256 if (!this->are_processor_specific_flags_set())
9257 {
9258 this->set_processor_specific_flags(in_flags);
9259 this->mach_ = this->elf_mips_mach(in_flags);
9260 return;
9261 }
9262
9263 elfcpp::Elf_Word new_flags = in_flags;
9264 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9265 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9266 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9267
9268 // Check flag compatibility.
9269 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9270 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9271
9272 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9273 // doesn't seem to matter.
9274 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9275 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9276
9277 // MIPSpro generates ucode info in n64 objects. Again, we should
9278 // just be able to ignore this.
9279 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9280 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9281
9282 if (new_flags == old_flags)
9283 {
9284 this->set_processor_specific_flags(merged_flags);
9285 return;
9286 }
9287
9288 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9289 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9290 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9291 name.c_str());
9292
9293 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9294 merged_flags |= elfcpp::EF_MIPS_CPIC;
9295 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9296 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9297
9298 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9299 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9300
9301 // Compare the ISAs.
9302 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9303 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9304 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9305 {
9306 // Output ISA isn't the same as, or an extension of, input ISA.
9307 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9308 {
9309 // Copy the architecture info from input object to output. Also copy
9310 // the 32-bit flag (if set) so that we continue to recognise
9311 // output as a 32-bit binary.
9312 this->mach_ = this->elf_mips_mach(in_flags);
9313 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9314 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9315 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9316
9317 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9318 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9319
9320 // Copy across the ABI flags if output doesn't use them
9321 // and if that was what caused us to treat input object as 32-bit.
9322 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9323 && this->mips_32bit_flags(new_flags)
9324 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9325 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9326 }
9327 else
9328 // The ISAs aren't compatible.
9329 gold_error(_("%s: linking %s module with previous %s modules"),
9330 name.c_str(), this->elf_mips_mach_name(in_flags),
9331 this->elf_mips_mach_name(merged_flags));
9332 }
9333
9334 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9335 | elfcpp::EF_MIPS_32BITMODE));
9336 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9337 | elfcpp::EF_MIPS_32BITMODE));
9338
9339 // Compare ABIs.
9340 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9341 {
9342 // Only error if both are set (to different values).
9343 if ((new_flags & elfcpp::EF_MIPS_ABI)
9344 && (old_flags & elfcpp::EF_MIPS_ABI))
9345 gold_error(_("%s: ABI mismatch: linking %s module with "
9346 "previous %s modules"), name.c_str(),
9347 this->elf_mips_abi_name(in_flags),
9348 this->elf_mips_abi_name(merged_flags));
9349
9350 new_flags &= ~elfcpp::EF_MIPS_ABI;
9351 old_flags &= ~elfcpp::EF_MIPS_ABI;
9352 }
9353
9354 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9355 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9356 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9357 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9358 {
9359 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9360 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9361 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9362 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9363 int micro_mis = old_m16 && new_micro;
9364 int m16_mis = old_micro && new_m16;
9365
9366 if (m16_mis || micro_mis)
9367 gold_error(_("%s: ASE mismatch: linking %s module with "
9368 "previous %s modules"), name.c_str(),
9369 m16_mis ? "MIPS16" : "microMIPS",
9370 m16_mis ? "microMIPS" : "MIPS16");
9371
9372 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9373
9374 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9375 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9376 }
9377
9378 // Compare NaN encodings.
9379 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9380 {
9381 gold_error(_("%s: linking %s module with previous %s modules"),
9382 name.c_str(),
9383 (new_flags & elfcpp::EF_MIPS_NAN2008
9384 ? "-mnan=2008" : "-mnan=legacy"),
9385 (old_flags & elfcpp::EF_MIPS_NAN2008
9386 ? "-mnan=2008" : "-mnan=legacy"));
9387
9388 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9389 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9390 }
9391
9392 // Compare FP64 state.
9393 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9394 {
9395 gold_error(_("%s: linking %s module with previous %s modules"),
9396 name.c_str(),
9397 (new_flags & elfcpp::EF_MIPS_FP64
9398 ? "-mfp64" : "-mfp32"),
9399 (old_flags & elfcpp::EF_MIPS_FP64
9400 ? "-mfp64" : "-mfp32"));
9401
9402 new_flags &= ~elfcpp::EF_MIPS_FP64;
9403 old_flags &= ~elfcpp::EF_MIPS_FP64;
9404 }
9405
9406 // Warn about any other mismatches.
9407 if (new_flags != old_flags)
9408 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9409 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9410
9411 this->set_processor_specific_flags(merged_flags);
9412 }
9413
9414 // Adjust ELF file header.
9415
9416 template<int size, bool big_endian>
9417 void
9418 Target_mips<size, big_endian>::do_adjust_elf_header(
9419 unsigned char* view,
9420 int len)
9421 {
9422 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9423
9424 elfcpp::Ehdr<size, big_endian> ehdr(view);
9425 unsigned char e_ident[elfcpp::EI_NIDENT];
9426 elfcpp::Elf_Word flags = this->processor_specific_flags();
9427 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9428
9429 unsigned char ei_abiversion = 0;
9430 elfcpp::Elf_Half type = ehdr.get_e_type();
9431 if (type == elfcpp::ET_EXEC
9432 && parameters->options().copyreloc()
9433 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9434 == elfcpp::EF_MIPS_CPIC)
9435 ei_abiversion = 1;
9436
9437 if (this->abiflags_ != NULL
9438 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9439 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9440 ei_abiversion = 3;
9441
9442 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9443 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9444 oehdr.put_e_ident(e_ident);
9445
9446 if (this->entry_symbol_is_compressed_)
9447 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9448 }
9449
9450 // do_make_elf_object to override the same function in the base class.
9451 // We need to use a target-specific sub-class of
9452 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9453 // Hence we need to have our own ELF object creation.
9454
9455 template<int size, bool big_endian>
9456 Object*
9457 Target_mips<size, big_endian>::do_make_elf_object(
9458 const std::string& name,
9459 Input_file* input_file,
9460 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9461 {
9462 int et = ehdr.get_e_type();
9463 // ET_EXEC files are valid input for --just-symbols/-R,
9464 // and we treat them as relocatable objects.
9465 if (et == elfcpp::ET_REL
9466 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9467 {
9468 Mips_relobj<size, big_endian>* obj =
9469 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9470 obj->setup();
9471 return obj;
9472 }
9473 else if (et == elfcpp::ET_DYN)
9474 {
9475 // TODO(sasa): Should we create Mips_dynobj?
9476 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9477 }
9478 else
9479 {
9480 gold_error(_("%s: unsupported ELF file type %d"),
9481 name.c_str(), et);
9482 return NULL;
9483 }
9484 }
9485
9486 // Finalize the sections.
9487
9488 template <int size, bool big_endian>
9489 void
9490 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9491 const Input_objects* input_objects,
9492 Symbol_table* symtab)
9493 {
9494 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9495 // DT_FINI have correct values.
9496 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9497 symtab->lookup(parameters->options().init()));
9498 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9499 init->set_value(init->value() | 1);
9500 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9501 symtab->lookup(parameters->options().fini()));
9502 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9503 fini->set_value(fini->value() | 1);
9504
9505 // Check whether the entry symbol is mips16 or micromips. This is needed to
9506 // adjust entry address in ELF header.
9507 Mips_symbol<size>* entry =
9508 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9509 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9510 || entry->is_micromips()));
9511
9512 if (!parameters->doing_static_link()
9513 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9514 || strcmp(parameters->options().hash_style(), "both") == 0))
9515 {
9516 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9517 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9518 // MIPS ABI requires a mapping between the GOT and the symbol table.
9519 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9520 }
9521
9522 // Check whether the final section that was scanned has HI16 or GOT16
9523 // relocations without the corresponding LO16 part.
9524 if (this->got16_addends_.size() > 0)
9525 gold_error("Can't find matching LO16 reloc");
9526
9527 // Set _gp value.
9528 this->set_gp(layout, symtab);
9529
9530 // Check for any mips16 stub sections that we can discard.
9531 if (!parameters->options().relocatable())
9532 {
9533 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9534 p != input_objects->relobj_end();
9535 ++p)
9536 {
9537 Mips_relobj<size, big_endian>* object =
9538 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9539 object->discard_mips16_stub_sections(symtab);
9540 }
9541 }
9542
9543 Valtype gprmask = 0;
9544 Valtype cprmask1 = 0;
9545 Valtype cprmask2 = 0;
9546 Valtype cprmask3 = 0;
9547 Valtype cprmask4 = 0;
9548 bool has_reginfo_section = false;
9549
9550 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9551 p != input_objects->relobj_end();
9552 ++p)
9553 {
9554 Mips_relobj<size, big_endian>* relobj =
9555 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9556
9557 // Merge .reginfo contents of input objects.
9558 if (relobj->has_reginfo_section())
9559 {
9560 has_reginfo_section = true;
9561 gprmask |= relobj->gprmask();
9562 cprmask1 |= relobj->cprmask1();
9563 cprmask2 |= relobj->cprmask2();
9564 cprmask3 |= relobj->cprmask3();
9565 cprmask4 |= relobj->cprmask4();
9566 }
9567
9568 Input_file::Format format = relobj->input_file()->format();
9569 if (format != Input_file::FORMAT_ELF)
9570 continue;
9571
9572 // If all input sections will be discarded, don't use this object
9573 // file for merging processor specific flags.
9574 bool should_merge_processor_specific_flags = false;
9575
9576 for (unsigned int i = 1; i < relobj->shnum(); ++i)
9577 if (relobj->output_section(i) != NULL)
9578 {
9579 should_merge_processor_specific_flags = true;
9580 break;
9581 }
9582
9583 if (!should_merge_processor_specific_flags)
9584 continue;
9585
9586 // Merge processor specific flags.
9587 Mips_abiflags<big_endian> in_abiflags;
9588
9589 this->create_abiflags(relobj, &in_abiflags);
9590 this->merge_obj_e_flags(relobj->name(),
9591 relobj->processor_specific_flags());
9592 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9593 this->merge_obj_attributes(relobj->name(),
9594 relobj->attributes_section_data());
9595 }
9596
9597 // Create a .gnu.attributes section if we have merged any attributes
9598 // from inputs.
9599 if (this->attributes_section_data_ != NULL)
9600 {
9601 Output_attributes_section_data* attributes_section =
9602 new Output_attributes_section_data(*this->attributes_section_data_);
9603 layout->add_output_section_data(".gnu.attributes",
9604 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9605 attributes_section, ORDER_INVALID, false);
9606 }
9607
9608 // Create .MIPS.abiflags output section if there is an input section.
9609 if (this->has_abiflags_section_)
9610 {
9611 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9612 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9613
9614 Output_section* os =
9615 layout->add_output_section_data(".MIPS.abiflags",
9616 elfcpp::SHT_MIPS_ABIFLAGS,
9617 elfcpp::SHF_ALLOC,
9618 abiflags_section, ORDER_INVALID, false);
9619
9620 if (!parameters->options().relocatable() && os != NULL)
9621 {
9622 Output_segment* abiflags_segment =
9623 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9624 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9625 }
9626 }
9627
9628 if (has_reginfo_section && !parameters->options().gc_sections())
9629 {
9630 // Create .reginfo output section.
9631 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9632 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9633 cprmask1, cprmask2,
9634 cprmask3, cprmask4);
9635
9636 Output_section* os =
9637 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9638 elfcpp::SHF_ALLOC, reginfo_section,
9639 ORDER_INVALID, false);
9640
9641 if (!parameters->options().relocatable() && os != NULL)
9642 {
9643 Output_segment* reginfo_segment =
9644 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9645 elfcpp::PF_R);
9646 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9647 }
9648 }
9649
9650 if (this->plt_ != NULL)
9651 {
9652 // Set final PLT offsets for symbols.
9653 this->plt_section()->set_plt_offsets();
9654
9655 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9656 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9657 // there are no standard PLT entries present.
9658 unsigned char nonvis = 0;
9659 if (this->is_output_micromips()
9660 && !this->plt_section()->has_standard_entries())
9661 nonvis = elfcpp::STO_MICROMIPS >> 2;
9662 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9663 Symbol_table::PREDEFINED,
9664 this->plt_,
9665 0, 0, elfcpp::STT_FUNC,
9666 elfcpp::STB_LOCAL,
9667 elfcpp::STV_DEFAULT, nonvis,
9668 false, false);
9669 }
9670
9671 if (this->mips_stubs_ != NULL)
9672 {
9673 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9674 unsigned char nonvis = 0;
9675 if (this->is_output_micromips())
9676 nonvis = elfcpp::STO_MICROMIPS >> 2;
9677 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9678 Symbol_table::PREDEFINED,
9679 this->mips_stubs_,
9680 0, 0, elfcpp::STT_FUNC,
9681 elfcpp::STB_LOCAL,
9682 elfcpp::STV_DEFAULT, nonvis,
9683 false, false);
9684 }
9685
9686 if (!parameters->options().relocatable() && !parameters->doing_static_link())
9687 // In case there is no .got section, create one.
9688 this->got_section(symtab, layout);
9689
9690 // Emit any relocs we saved in an attempt to avoid generating COPY
9691 // relocs.
9692 if (this->copy_relocs_.any_saved_relocs())
9693 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9694 this);
9695
9696 // Emit dynamic relocs.
9697 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9698 p != this->dyn_relocs_.end();
9699 ++p)
9700 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9701
9702 if (this->has_got_section())
9703 this->got_section()->lay_out_got(layout, symtab, input_objects);
9704
9705 if (this->mips_stubs_ != NULL)
9706 this->mips_stubs_->set_needs_dynsym_value();
9707
9708 // Check for functions that might need $25 to be valid on entry.
9709 // TODO(sasa): Can we do this without iterating over all symbols?
9710 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9711 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9712 symtab));
9713
9714 // Add NULL segment.
9715 if (!parameters->options().relocatable())
9716 layout->make_output_segment(elfcpp::PT_NULL, 0);
9717
9718 // Fill in some more dynamic tags.
9719 // TODO(sasa): Add more dynamic tags.
9720 const Reloc_section* rel_plt = (this->plt_ == NULL
9721 ? NULL : this->plt_->rel_plt());
9722 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9723 this->rel_dyn_, true, false);
9724
9725 Output_data_dynamic* const odyn = layout->dynamic_data();
9726 if (odyn != NULL
9727 && !parameters->options().relocatable()
9728 && !parameters->doing_static_link())
9729 {
9730 unsigned int d_val;
9731 // This element holds a 32-bit version id for the Runtime
9732 // Linker Interface. This will start at integer value 1.
9733 d_val = 0x01;
9734 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9735
9736 // Dynamic flags
9737 d_val = elfcpp::RHF_NOTPOT;
9738 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9739
9740 // Save layout for using when emiting custom dynamic tags.
9741 this->layout_ = layout;
9742
9743 // This member holds the base address of the segment.
9744 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9745
9746 // This member holds the number of entries in the .dynsym section.
9747 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9748
9749 // This member holds the index of the first dynamic symbol
9750 // table entry that corresponds to an entry in the global offset table.
9751 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9752
9753 // This member holds the number of local GOT entries.
9754 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9755 this->got_->get_local_gotno());
9756
9757 if (this->plt_ != NULL)
9758 // DT_MIPS_PLTGOT dynamic tag
9759 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9760 }
9761 }
9762
9763 // Get the custom dynamic tag value.
9764 template<int size, bool big_endian>
9765 unsigned int
9766 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9767 {
9768 switch (tag)
9769 {
9770 case elfcpp::DT_MIPS_BASE_ADDRESS:
9771 {
9772 // The base address of the segment.
9773 // At this point, the segment list has been sorted into final order,
9774 // so just return vaddr of the first readable PT_LOAD segment.
9775 Output_segment* seg =
9776 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9777 gold_assert(seg != NULL);
9778 return seg->vaddr();
9779 }
9780
9781 case elfcpp::DT_MIPS_SYMTABNO:
9782 // The number of entries in the .dynsym section.
9783 return this->get_dt_mips_symtabno();
9784
9785 case elfcpp::DT_MIPS_GOTSYM:
9786 {
9787 // The index of the first dynamic symbol table entry that corresponds
9788 // to an entry in the GOT.
9789 if (this->got_->first_global_got_dynsym_index() != -1U)
9790 return this->got_->first_global_got_dynsym_index();
9791 else
9792 // In case if we don't have global GOT symbols we default to setting
9793 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9794 return this->get_dt_mips_symtabno();
9795 }
9796
9797 default:
9798 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9799 }
9800
9801 return (unsigned int)-1;
9802 }
9803
9804 // Relocate section data.
9805
9806 template<int size, bool big_endian>
9807 void
9808 Target_mips<size, big_endian>::relocate_section(
9809 const Relocate_info<size, big_endian>* relinfo,
9810 unsigned int sh_type,
9811 const unsigned char* prelocs,
9812 size_t reloc_count,
9813 Output_section* output_section,
9814 bool needs_special_offset_handling,
9815 unsigned char* view,
9816 Mips_address address,
9817 section_size_type view_size,
9818 const Reloc_symbol_changes* reloc_symbol_changes)
9819 {
9820 typedef Target_mips<size, big_endian> Mips;
9821 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9822
9823 if (sh_type == elfcpp::SHT_REL)
9824 {
9825 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9826 Classify_reloc;
9827
9828 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9829 gold::Default_comdat_behavior, Classify_reloc>(
9830 relinfo,
9831 this,
9832 prelocs,
9833 reloc_count,
9834 output_section,
9835 needs_special_offset_handling,
9836 view,
9837 address,
9838 view_size,
9839 reloc_symbol_changes);
9840 }
9841 else if (sh_type == elfcpp::SHT_RELA)
9842 {
9843 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9844 Classify_reloc;
9845
9846 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9847 gold::Default_comdat_behavior, Classify_reloc>(
9848 relinfo,
9849 this,
9850 prelocs,
9851 reloc_count,
9852 output_section,
9853 needs_special_offset_handling,
9854 view,
9855 address,
9856 view_size,
9857 reloc_symbol_changes);
9858 }
9859 }
9860
9861 // Return the size of a relocation while scanning during a relocatable
9862 // link.
9863
9864 unsigned int
9865 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
9866 {
9867 switch (r_type)
9868 {
9869 case elfcpp::R_MIPS_NONE:
9870 case elfcpp::R_MIPS_TLS_DTPMOD64:
9871 case elfcpp::R_MIPS_TLS_DTPREL64:
9872 case elfcpp::R_MIPS_TLS_TPREL64:
9873 return 0;
9874
9875 case elfcpp::R_MIPS_32:
9876 case elfcpp::R_MIPS_TLS_DTPMOD32:
9877 case elfcpp::R_MIPS_TLS_DTPREL32:
9878 case elfcpp::R_MIPS_TLS_TPREL32:
9879 case elfcpp::R_MIPS_REL32:
9880 case elfcpp::R_MIPS_PC32:
9881 case elfcpp::R_MIPS_GPREL32:
9882 case elfcpp::R_MIPS_JALR:
9883 case elfcpp::R_MIPS_EH:
9884 return 4;
9885
9886 case elfcpp::R_MIPS_16:
9887 case elfcpp::R_MIPS_HI16:
9888 case elfcpp::R_MIPS_LO16:
9889 case elfcpp::R_MIPS_GPREL16:
9890 case elfcpp::R_MIPS16_HI16:
9891 case elfcpp::R_MIPS16_LO16:
9892 case elfcpp::R_MIPS_PC16:
9893 case elfcpp::R_MIPS_PCHI16:
9894 case elfcpp::R_MIPS_PCLO16:
9895 case elfcpp::R_MIPS_GOT16:
9896 case elfcpp::R_MIPS16_GOT16:
9897 case elfcpp::R_MIPS_CALL16:
9898 case elfcpp::R_MIPS16_CALL16:
9899 case elfcpp::R_MIPS_GOT_HI16:
9900 case elfcpp::R_MIPS_CALL_HI16:
9901 case elfcpp::R_MIPS_GOT_LO16:
9902 case elfcpp::R_MIPS_CALL_LO16:
9903 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
9904 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
9905 case elfcpp::R_MIPS_TLS_TPREL_HI16:
9906 case elfcpp::R_MIPS_TLS_TPREL_LO16:
9907 case elfcpp::R_MIPS16_GPREL:
9908 case elfcpp::R_MIPS_GOT_DISP:
9909 case elfcpp::R_MIPS_LITERAL:
9910 case elfcpp::R_MIPS_GOT_PAGE:
9911 case elfcpp::R_MIPS_GOT_OFST:
9912 case elfcpp::R_MIPS_TLS_GD:
9913 case elfcpp::R_MIPS_TLS_LDM:
9914 case elfcpp::R_MIPS_TLS_GOTTPREL:
9915 return 2;
9916
9917 // These relocations are not byte sized
9918 case elfcpp::R_MIPS_26:
9919 case elfcpp::R_MIPS16_26:
9920 case elfcpp::R_MIPS_PC21_S2:
9921 case elfcpp::R_MIPS_PC26_S2:
9922 case elfcpp::R_MIPS_PC18_S3:
9923 case elfcpp::R_MIPS_PC19_S2:
9924 return 4;
9925
9926 case elfcpp::R_MIPS_COPY:
9927 case elfcpp::R_MIPS_JUMP_SLOT:
9928 object->error(_("unexpected reloc %u in object file"), r_type);
9929 return 0;
9930
9931 default:
9932 object->error(_("unsupported reloc %u in object file"), r_type);
9933 return 0;
9934 }
9935 }
9936
9937 // Scan the relocs during a relocatable link.
9938
9939 template<int size, bool big_endian>
9940 void
9941 Target_mips<size, big_endian>::scan_relocatable_relocs(
9942 Symbol_table* symtab,
9943 Layout* layout,
9944 Sized_relobj_file<size, big_endian>* object,
9945 unsigned int data_shndx,
9946 unsigned int sh_type,
9947 const unsigned char* prelocs,
9948 size_t reloc_count,
9949 Output_section* output_section,
9950 bool needs_special_offset_handling,
9951 size_t local_symbol_count,
9952 const unsigned char* plocal_symbols,
9953 Relocatable_relocs* rr)
9954 {
9955 if (sh_type == elfcpp::SHT_REL)
9956 {
9957 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9958 Classify_reloc;
9959 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
9960 Scan_relocatable_relocs;
9961
9962 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
9963 symtab,
9964 layout,
9965 object,
9966 data_shndx,
9967 prelocs,
9968 reloc_count,
9969 output_section,
9970 needs_special_offset_handling,
9971 local_symbol_count,
9972 plocal_symbols,
9973 rr);
9974 }
9975 else if (sh_type == elfcpp::SHT_RELA)
9976 {
9977 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9978 Classify_reloc;
9979 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
9980 Scan_relocatable_relocs;
9981
9982 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
9983 symtab,
9984 layout,
9985 object,
9986 data_shndx,
9987 prelocs,
9988 reloc_count,
9989 output_section,
9990 needs_special_offset_handling,
9991 local_symbol_count,
9992 plocal_symbols,
9993 rr);
9994 }
9995 else
9996 gold_unreachable();
9997 }
9998
9999 // Scan the relocs for --emit-relocs.
10000
10001 template<int size, bool big_endian>
10002 void
10003 Target_mips<size, big_endian>::emit_relocs_scan(
10004 Symbol_table* symtab,
10005 Layout* layout,
10006 Sized_relobj_file<size, big_endian>* object,
10007 unsigned int data_shndx,
10008 unsigned int sh_type,
10009 const unsigned char* prelocs,
10010 size_t reloc_count,
10011 Output_section* output_section,
10012 bool needs_special_offset_handling,
10013 size_t local_symbol_count,
10014 const unsigned char* plocal_syms,
10015 Relocatable_relocs* rr)
10016 {
10017 if (sh_type == elfcpp::SHT_REL)
10018 {
10019 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10020 Classify_reloc;
10021 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10022 Emit_relocs_strategy;
10023
10024 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10025 symtab,
10026 layout,
10027 object,
10028 data_shndx,
10029 prelocs,
10030 reloc_count,
10031 output_section,
10032 needs_special_offset_handling,
10033 local_symbol_count,
10034 plocal_syms,
10035 rr);
10036 }
10037 else if (sh_type == elfcpp::SHT_RELA)
10038 {
10039 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10040 Classify_reloc;
10041 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10042 Emit_relocs_strategy;
10043
10044 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10045 symtab,
10046 layout,
10047 object,
10048 data_shndx,
10049 prelocs,
10050 reloc_count,
10051 output_section,
10052 needs_special_offset_handling,
10053 local_symbol_count,
10054 plocal_syms,
10055 rr);
10056 }
10057 else
10058 gold_unreachable();
10059 }
10060
10061 // Emit relocations for a section.
10062
10063 template<int size, bool big_endian>
10064 void
10065 Target_mips<size, big_endian>::relocate_relocs(
10066 const Relocate_info<size, big_endian>* relinfo,
10067 unsigned int sh_type,
10068 const unsigned char* prelocs,
10069 size_t reloc_count,
10070 Output_section* output_section,
10071 typename elfcpp::Elf_types<size>::Elf_Off
10072 offset_in_output_section,
10073 unsigned char* view,
10074 Mips_address view_address,
10075 section_size_type view_size,
10076 unsigned char* reloc_view,
10077 section_size_type reloc_view_size)
10078 {
10079 if (sh_type == elfcpp::SHT_REL)
10080 {
10081 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10082 Classify_reloc;
10083
10084 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10085 relinfo,
10086 prelocs,
10087 reloc_count,
10088 output_section,
10089 offset_in_output_section,
10090 view,
10091 view_address,
10092 view_size,
10093 reloc_view,
10094 reloc_view_size);
10095 }
10096 else if (sh_type == elfcpp::SHT_RELA)
10097 {
10098 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10099 Classify_reloc;
10100
10101 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10102 relinfo,
10103 prelocs,
10104 reloc_count,
10105 output_section,
10106 offset_in_output_section,
10107 view,
10108 view_address,
10109 view_size,
10110 reloc_view,
10111 reloc_view_size);
10112 }
10113 else
10114 gold_unreachable();
10115 }
10116
10117 // Perform target-specific processing in a relocatable link. This is
10118 // only used if we use the relocation strategy RELOC_SPECIAL.
10119
10120 template<int size, bool big_endian>
10121 void
10122 Target_mips<size, big_endian>::relocate_special_relocatable(
10123 const Relocate_info<size, big_endian>* relinfo,
10124 unsigned int sh_type,
10125 const unsigned char* preloc_in,
10126 size_t relnum,
10127 Output_section* output_section,
10128 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10129 unsigned char* view,
10130 Mips_address view_address,
10131 section_size_type,
10132 unsigned char* preloc_out)
10133 {
10134 // We can only handle REL type relocation sections.
10135 gold_assert(sh_type == elfcpp::SHT_REL);
10136
10137 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10138 Reltype;
10139 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10140 Reltype_write;
10141
10142 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10143
10144 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10145
10146 Mips_relobj<size, big_endian>* object =
10147 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10148 const unsigned int local_count = object->local_symbol_count();
10149
10150 Reltype reloc(preloc_in);
10151 Reltype_write reloc_write(preloc_out);
10152
10153 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10154 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10155 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10156
10157 // Get the new symbol index.
10158 // We only use RELOC_SPECIAL strategy in local relocations.
10159 gold_assert(r_sym < local_count);
10160
10161 // We are adjusting a section symbol. We need to find
10162 // the symbol table index of the section symbol for
10163 // the output section corresponding to input section
10164 // in which this symbol is defined.
10165 bool is_ordinary;
10166 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10167 gold_assert(is_ordinary);
10168 Output_section* os = object->output_section(shndx);
10169 gold_assert(os != NULL);
10170 gold_assert(os->needs_symtab_index());
10171 unsigned int new_symndx = os->symtab_index();
10172
10173 // Get the new offset--the location in the output section where
10174 // this relocation should be applied.
10175
10176 Mips_address offset = reloc.get_r_offset();
10177 Mips_address new_offset;
10178 if (offset_in_output_section != invalid_address)
10179 new_offset = offset + offset_in_output_section;
10180 else
10181 {
10182 section_offset_type sot_offset =
10183 convert_types<section_offset_type, Mips_address>(offset);
10184 section_offset_type new_sot_offset =
10185 output_section->output_offset(object, relinfo->data_shndx,
10186 sot_offset);
10187 gold_assert(new_sot_offset != -1);
10188 new_offset = new_sot_offset;
10189 }
10190
10191 // In an object file, r_offset is an offset within the section.
10192 // In an executable or dynamic object, generated by
10193 // --emit-relocs, r_offset is an absolute address.
10194 if (!parameters->options().relocatable())
10195 {
10196 new_offset += view_address;
10197 if (offset_in_output_section != invalid_address)
10198 new_offset -= offset_in_output_section;
10199 }
10200
10201 reloc_write.put_r_offset(new_offset);
10202 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10203
10204 // Handle the reloc addend.
10205 // The relocation uses a section symbol in the input file.
10206 // We are adjusting it to use a section symbol in the output
10207 // file. The input section symbol refers to some address in
10208 // the input section. We need the relocation in the output
10209 // file to refer to that same address. This adjustment to
10210 // the addend is the same calculation we use for a simple
10211 // absolute relocation for the input section symbol.
10212 Valtype calculated_value = 0;
10213 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10214
10215 unsigned char* paddend = view + offset;
10216 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10217 switch (r_type)
10218 {
10219 case elfcpp::R_MIPS_26:
10220 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10221 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10222 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10223 false, &calculated_value);
10224 break;
10225
10226 default:
10227 gold_unreachable();
10228 }
10229
10230 // Report any errors.
10231 switch (reloc_status)
10232 {
10233 case Reloc_funcs::STATUS_OKAY:
10234 break;
10235 case Reloc_funcs::STATUS_OVERFLOW:
10236 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10237 _("relocation overflow"));
10238 break;
10239 case Reloc_funcs::STATUS_BAD_RELOC:
10240 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10241 _("unexpected opcode while processing relocation"));
10242 break;
10243 default:
10244 gold_unreachable();
10245 }
10246 }
10247
10248 // Optimize the TLS relocation type based on what we know about the
10249 // symbol. IS_FINAL is true if the final address of this symbol is
10250 // known at link time.
10251
10252 template<int size, bool big_endian>
10253 tls::Tls_optimization
10254 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10255 {
10256 // FIXME: Currently we do not do any TLS optimization.
10257 return tls::TLSOPT_NONE;
10258 }
10259
10260 // Scan a relocation for a local symbol.
10261
10262 template<int size, bool big_endian>
10263 inline void
10264 Target_mips<size, big_endian>::Scan::local(
10265 Symbol_table* symtab,
10266 Layout* layout,
10267 Target_mips<size, big_endian>* target,
10268 Sized_relobj_file<size, big_endian>* object,
10269 unsigned int data_shndx,
10270 Output_section* output_section,
10271 const Relatype* rela,
10272 const Reltype* rel,
10273 unsigned int rel_type,
10274 unsigned int r_type,
10275 const elfcpp::Sym<size, big_endian>& lsym,
10276 bool is_discarded)
10277 {
10278 if (is_discarded)
10279 return;
10280
10281 Mips_address r_offset;
10282 unsigned int r_sym;
10283 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10284
10285 if (rel_type == elfcpp::SHT_RELA)
10286 {
10287 r_offset = rela->get_r_offset();
10288 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10289 get_r_sym(rela);
10290 r_addend = rela->get_r_addend();
10291 }
10292 else
10293 {
10294 r_offset = rel->get_r_offset();
10295 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10296 get_r_sym(rel);
10297 r_addend = 0;
10298 }
10299
10300 Mips_relobj<size, big_endian>* mips_obj =
10301 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10302
10303 if (mips_obj->is_mips16_stub_section(data_shndx))
10304 {
10305 mips_obj->get_mips16_stub_section(data_shndx)
10306 ->new_local_reloc_found(r_type, r_sym);
10307 }
10308
10309 if (r_type == elfcpp::R_MIPS_NONE)
10310 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10311 // mips16 stub.
10312 return;
10313
10314 if (!mips16_call_reloc(r_type)
10315 && !mips_obj->section_allows_mips16_refs(data_shndx))
10316 // This reloc would need to refer to a MIPS16 hard-float stub, if
10317 // there is one. We ignore MIPS16 stub sections and .pdr section when
10318 // looking for relocs that would need to refer to MIPS16 stubs.
10319 mips_obj->add_local_non_16bit_call(r_sym);
10320
10321 if (r_type == elfcpp::R_MIPS16_26
10322 && !mips_obj->section_allows_mips16_refs(data_shndx))
10323 mips_obj->add_local_16bit_call(r_sym);
10324
10325 switch (r_type)
10326 {
10327 case elfcpp::R_MIPS_GOT16:
10328 case elfcpp::R_MIPS_CALL16:
10329 case elfcpp::R_MIPS_CALL_HI16:
10330 case elfcpp::R_MIPS_CALL_LO16:
10331 case elfcpp::R_MIPS_GOT_HI16:
10332 case elfcpp::R_MIPS_GOT_LO16:
10333 case elfcpp::R_MIPS_GOT_PAGE:
10334 case elfcpp::R_MIPS_GOT_OFST:
10335 case elfcpp::R_MIPS_GOT_DISP:
10336 case elfcpp::R_MIPS_TLS_GOTTPREL:
10337 case elfcpp::R_MIPS_TLS_GD:
10338 case elfcpp::R_MIPS_TLS_LDM:
10339 case elfcpp::R_MIPS16_GOT16:
10340 case elfcpp::R_MIPS16_CALL16:
10341 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10342 case elfcpp::R_MIPS16_TLS_GD:
10343 case elfcpp::R_MIPS16_TLS_LDM:
10344 case elfcpp::R_MICROMIPS_GOT16:
10345 case elfcpp::R_MICROMIPS_CALL16:
10346 case elfcpp::R_MICROMIPS_CALL_HI16:
10347 case elfcpp::R_MICROMIPS_CALL_LO16:
10348 case elfcpp::R_MICROMIPS_GOT_HI16:
10349 case elfcpp::R_MICROMIPS_GOT_LO16:
10350 case elfcpp::R_MICROMIPS_GOT_PAGE:
10351 case elfcpp::R_MICROMIPS_GOT_OFST:
10352 case elfcpp::R_MICROMIPS_GOT_DISP:
10353 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10354 case elfcpp::R_MICROMIPS_TLS_GD:
10355 case elfcpp::R_MICROMIPS_TLS_LDM:
10356 case elfcpp::R_MIPS_EH:
10357 // We need a GOT section.
10358 target->got_section(symtab, layout);
10359 break;
10360
10361 default:
10362 break;
10363 }
10364
10365 if (call_lo16_reloc(r_type)
10366 || got_lo16_reloc(r_type)
10367 || got_disp_reloc(r_type)
10368 || eh_reloc(r_type))
10369 {
10370 // We may need a local GOT entry for this relocation. We
10371 // don't count R_MIPS_GOT_PAGE because we can estimate the
10372 // maximum number of pages needed by looking at the size of
10373 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10374 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10375 // R_MIPS_CALL_HI16 because these are always followed by an
10376 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10377 Mips_output_data_got<size, big_endian>* got =
10378 target->got_section(symtab, layout);
10379 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10380 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10381 is_section_symbol);
10382 }
10383
10384 switch (r_type)
10385 {
10386 case elfcpp::R_MIPS_CALL16:
10387 case elfcpp::R_MIPS16_CALL16:
10388 case elfcpp::R_MICROMIPS_CALL16:
10389 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10390 (unsigned long)r_offset);
10391 return;
10392
10393 case elfcpp::R_MIPS_GOT_PAGE:
10394 case elfcpp::R_MICROMIPS_GOT_PAGE:
10395 case elfcpp::R_MIPS16_GOT16:
10396 case elfcpp::R_MIPS_GOT16:
10397 case elfcpp::R_MIPS_GOT_HI16:
10398 case elfcpp::R_MIPS_GOT_LO16:
10399 case elfcpp::R_MICROMIPS_GOT16:
10400 case elfcpp::R_MICROMIPS_GOT_HI16:
10401 case elfcpp::R_MICROMIPS_GOT_LO16:
10402 {
10403 // This relocation needs a page entry in the GOT.
10404 // Get the section contents.
10405 section_size_type view_size = 0;
10406 const unsigned char* view = object->section_contents(data_shndx,
10407 &view_size, false);
10408 view += r_offset;
10409
10410 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10411 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10412 : r_addend);
10413
10414 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10415 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10416 object, data_shndx, r_type, r_sym, addend));
10417 else
10418 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10419 break;
10420 }
10421
10422 case elfcpp::R_MIPS_HI16:
10423 case elfcpp::R_MIPS_PCHI16:
10424 case elfcpp::R_MIPS16_HI16:
10425 case elfcpp::R_MICROMIPS_HI16:
10426 // Record the reloc so that we can check whether the corresponding LO16
10427 // part exists.
10428 if (rel_type == elfcpp::SHT_REL)
10429 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10430 object, data_shndx, r_type, r_sym, 0));
10431 break;
10432
10433 case elfcpp::R_MIPS_LO16:
10434 case elfcpp::R_MIPS_PCLO16:
10435 case elfcpp::R_MIPS16_LO16:
10436 case elfcpp::R_MICROMIPS_LO16:
10437 {
10438 if (rel_type != elfcpp::SHT_REL)
10439 break;
10440
10441 // Find corresponding GOT16/HI16 relocation.
10442
10443 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10444 // be immediately following. However, for the IRIX6 ABI, the next
10445 // relocation may be a composed relocation consisting of several
10446 // relocations for the same address. In that case, the R_MIPS_LO16
10447 // relocation may occur as one of these. We permit a similar
10448 // extension in general, as that is useful for GCC.
10449
10450 // In some cases GCC dead code elimination removes the LO16 but
10451 // keeps the corresponding HI16. This is strictly speaking a
10452 // violation of the ABI but not immediately harmful.
10453
10454 typename std::list<got16_addend<size, big_endian> >::iterator it =
10455 target->got16_addends_.begin();
10456 while (it != target->got16_addends_.end())
10457 {
10458 got16_addend<size, big_endian> _got16_addend = *it;
10459
10460 // TODO(sasa): Split got16_addends_ list into two lists - one for
10461 // GOT16 relocs and the other for HI16 relocs.
10462
10463 // Report an error if we find HI16 or GOT16 reloc from the
10464 // previous section without the matching LO16 part.
10465 if (_got16_addend.object != object
10466 || _got16_addend.shndx != data_shndx)
10467 {
10468 gold_error("Can't find matching LO16 reloc");
10469 break;
10470 }
10471
10472 if (_got16_addend.r_sym != r_sym
10473 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10474 {
10475 ++it;
10476 continue;
10477 }
10478
10479 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10480 // For GOT16, we need to calculate combined addend and record GOT page
10481 // entry.
10482 if (got16_reloc(_got16_addend.r_type))
10483 {
10484
10485 section_size_type view_size = 0;
10486 const unsigned char* view = object->section_contents(data_shndx,
10487 &view_size,
10488 false);
10489 view += r_offset;
10490
10491 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10492 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10493
10494 addend = (_got16_addend.addend << 16) + addend;
10495 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10496 addend);
10497 }
10498
10499 it = target->got16_addends_.erase(it);
10500 }
10501 break;
10502 }
10503 }
10504
10505 switch (r_type)
10506 {
10507 case elfcpp::R_MIPS_32:
10508 case elfcpp::R_MIPS_REL32:
10509 case elfcpp::R_MIPS_64:
10510 {
10511 if (parameters->options().output_is_position_independent())
10512 {
10513 // If building a shared library (or a position-independent
10514 // executable), we need to create a dynamic relocation for
10515 // this location.
10516 if (is_readonly_section(output_section))
10517 break;
10518 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10519 rel_dyn->add_symbolless_local_addend(object, r_sym,
10520 elfcpp::R_MIPS_REL32,
10521 output_section, data_shndx,
10522 r_offset);
10523 }
10524 break;
10525 }
10526
10527 case elfcpp::R_MIPS_TLS_GOTTPREL:
10528 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10529 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10530 case elfcpp::R_MIPS_TLS_LDM:
10531 case elfcpp::R_MIPS16_TLS_LDM:
10532 case elfcpp::R_MICROMIPS_TLS_LDM:
10533 case elfcpp::R_MIPS_TLS_GD:
10534 case elfcpp::R_MIPS16_TLS_GD:
10535 case elfcpp::R_MICROMIPS_TLS_GD:
10536 {
10537 bool output_is_shared = parameters->options().shared();
10538 const tls::Tls_optimization optimized_type
10539 = Target_mips<size, big_endian>::optimize_tls_reloc(
10540 !output_is_shared, r_type);
10541 switch (r_type)
10542 {
10543 case elfcpp::R_MIPS_TLS_GD:
10544 case elfcpp::R_MIPS16_TLS_GD:
10545 case elfcpp::R_MICROMIPS_TLS_GD:
10546 if (optimized_type == tls::TLSOPT_NONE)
10547 {
10548 // Create a pair of GOT entries for the module index and
10549 // dtv-relative offset.
10550 Mips_output_data_got<size, big_endian>* got =
10551 target->got_section(symtab, layout);
10552 unsigned int shndx = lsym.get_st_shndx();
10553 bool is_ordinary;
10554 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10555 if (!is_ordinary)
10556 {
10557 object->error(_("local symbol %u has bad shndx %u"),
10558 r_sym, shndx);
10559 break;
10560 }
10561 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10562 shndx, false);
10563 }
10564 else
10565 {
10566 // FIXME: TLS optimization not supported yet.
10567 gold_unreachable();
10568 }
10569 break;
10570
10571 case elfcpp::R_MIPS_TLS_LDM:
10572 case elfcpp::R_MIPS16_TLS_LDM:
10573 case elfcpp::R_MICROMIPS_TLS_LDM:
10574 if (optimized_type == tls::TLSOPT_NONE)
10575 {
10576 // We always record LDM symbols as local with index 0.
10577 target->got_section()->record_local_got_symbol(mips_obj, 0,
10578 r_addend, r_type,
10579 -1U, false);
10580 }
10581 else
10582 {
10583 // FIXME: TLS optimization not supported yet.
10584 gold_unreachable();
10585 }
10586 break;
10587 case elfcpp::R_MIPS_TLS_GOTTPREL:
10588 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10589 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10590 layout->set_has_static_tls();
10591 if (optimized_type == tls::TLSOPT_NONE)
10592 {
10593 // Create a GOT entry for the tp-relative offset.
10594 Mips_output_data_got<size, big_endian>* got =
10595 target->got_section(symtab, layout);
10596 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10597 -1U, false);
10598 }
10599 else
10600 {
10601 // FIXME: TLS optimization not supported yet.
10602 gold_unreachable();
10603 }
10604 break;
10605
10606 default:
10607 gold_unreachable();
10608 }
10609 }
10610 break;
10611
10612 default:
10613 break;
10614 }
10615
10616 // Refuse some position-dependent relocations when creating a
10617 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10618 // not PIC, but we can create dynamic relocations and the result
10619 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10620 // combined with R_MIPS_GOT16.
10621 if (parameters->options().shared())
10622 {
10623 switch (r_type)
10624 {
10625 case elfcpp::R_MIPS16_HI16:
10626 case elfcpp::R_MIPS_HI16:
10627 case elfcpp::R_MICROMIPS_HI16:
10628 // Don't refuse a high part relocation if it's against
10629 // no symbol (e.g. part of a compound relocation).
10630 if (r_sym == 0)
10631 break;
10632
10633 // FALLTHROUGH
10634
10635 case elfcpp::R_MIPS16_26:
10636 case elfcpp::R_MIPS_26:
10637 case elfcpp::R_MICROMIPS_26_S1:
10638 gold_error(_("%s: relocation %u against `%s' can not be used when "
10639 "making a shared object; recompile with -fPIC"),
10640 object->name().c_str(), r_type, "a local symbol");
10641 default:
10642 break;
10643 }
10644 }
10645 }
10646
10647 template<int size, bool big_endian>
10648 inline void
10649 Target_mips<size, big_endian>::Scan::local(
10650 Symbol_table* symtab,
10651 Layout* layout,
10652 Target_mips<size, big_endian>* target,
10653 Sized_relobj_file<size, big_endian>* object,
10654 unsigned int data_shndx,
10655 Output_section* output_section,
10656 const Reltype& reloc,
10657 unsigned int r_type,
10658 const elfcpp::Sym<size, big_endian>& lsym,
10659 bool is_discarded)
10660 {
10661 if (is_discarded)
10662 return;
10663
10664 local(
10665 symtab,
10666 layout,
10667 target,
10668 object,
10669 data_shndx,
10670 output_section,
10671 (const Relatype*) NULL,
10672 &reloc,
10673 elfcpp::SHT_REL,
10674 r_type,
10675 lsym, is_discarded);
10676 }
10677
10678
10679 template<int size, bool big_endian>
10680 inline void
10681 Target_mips<size, big_endian>::Scan::local(
10682 Symbol_table* symtab,
10683 Layout* layout,
10684 Target_mips<size, big_endian>* target,
10685 Sized_relobj_file<size, big_endian>* object,
10686 unsigned int data_shndx,
10687 Output_section* output_section,
10688 const Relatype& reloc,
10689 unsigned int r_type,
10690 const elfcpp::Sym<size, big_endian>& lsym,
10691 bool is_discarded)
10692 {
10693 if (is_discarded)
10694 return;
10695
10696 local(
10697 symtab,
10698 layout,
10699 target,
10700 object,
10701 data_shndx,
10702 output_section,
10703 &reloc,
10704 (const Reltype*) NULL,
10705 elfcpp::SHT_RELA,
10706 r_type,
10707 lsym, is_discarded);
10708 }
10709
10710 // Scan a relocation for a global symbol.
10711
10712 template<int size, bool big_endian>
10713 inline void
10714 Target_mips<size, big_endian>::Scan::global(
10715 Symbol_table* symtab,
10716 Layout* layout,
10717 Target_mips<size, big_endian>* target,
10718 Sized_relobj_file<size, big_endian>* object,
10719 unsigned int data_shndx,
10720 Output_section* output_section,
10721 const Relatype* rela,
10722 const Reltype* rel,
10723 unsigned int rel_type,
10724 unsigned int r_type,
10725 Symbol* gsym)
10726 {
10727 Mips_address r_offset;
10728 unsigned int r_sym;
10729 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10730
10731 if (rel_type == elfcpp::SHT_RELA)
10732 {
10733 r_offset = rela->get_r_offset();
10734 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10735 get_r_sym(rela);
10736 r_addend = rela->get_r_addend();
10737 }
10738 else
10739 {
10740 r_offset = rel->get_r_offset();
10741 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10742 get_r_sym(rel);
10743 r_addend = 0;
10744 }
10745
10746 Mips_relobj<size, big_endian>* mips_obj =
10747 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10748 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10749
10750 if (mips_obj->is_mips16_stub_section(data_shndx))
10751 {
10752 mips_obj->get_mips16_stub_section(data_shndx)
10753 ->new_global_reloc_found(r_type, mips_sym);
10754 }
10755
10756 if (r_type == elfcpp::R_MIPS_NONE)
10757 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10758 // mips16 stub.
10759 return;
10760
10761 if (!mips16_call_reloc(r_type)
10762 && !mips_obj->section_allows_mips16_refs(data_shndx))
10763 // This reloc would need to refer to a MIPS16 hard-float stub, if
10764 // there is one. We ignore MIPS16 stub sections and .pdr section when
10765 // looking for relocs that would need to refer to MIPS16 stubs.
10766 mips_sym->set_need_fn_stub();
10767
10768 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
10769 // section. We check here to avoid creating a dynamic reloc against
10770 // _GLOBAL_OFFSET_TABLE_.
10771 if (!target->has_got_section()
10772 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
10773 target->got_section(symtab, layout);
10774
10775 // We need PLT entries if there are static-only relocations against
10776 // an externally-defined function. This can technically occur for
10777 // shared libraries if there are branches to the symbol, although it
10778 // is unlikely that this will be used in practice due to the short
10779 // ranges involved. It can occur for any relative or absolute relocation
10780 // in executables; in that case, the PLT entry becomes the function's
10781 // canonical address.
10782 bool static_reloc = false;
10783
10784 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10785 // relocation into a dynamic one.
10786 bool can_make_dynamic = false;
10787 switch (r_type)
10788 {
10789 case elfcpp::R_MIPS_GOT16:
10790 case elfcpp::R_MIPS_CALL16:
10791 case elfcpp::R_MIPS_CALL_HI16:
10792 case elfcpp::R_MIPS_CALL_LO16:
10793 case elfcpp::R_MIPS_GOT_HI16:
10794 case elfcpp::R_MIPS_GOT_LO16:
10795 case elfcpp::R_MIPS_GOT_PAGE:
10796 case elfcpp::R_MIPS_GOT_OFST:
10797 case elfcpp::R_MIPS_GOT_DISP:
10798 case elfcpp::R_MIPS_TLS_GOTTPREL:
10799 case elfcpp::R_MIPS_TLS_GD:
10800 case elfcpp::R_MIPS_TLS_LDM:
10801 case elfcpp::R_MIPS16_GOT16:
10802 case elfcpp::R_MIPS16_CALL16:
10803 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10804 case elfcpp::R_MIPS16_TLS_GD:
10805 case elfcpp::R_MIPS16_TLS_LDM:
10806 case elfcpp::R_MICROMIPS_GOT16:
10807 case elfcpp::R_MICROMIPS_CALL16:
10808 case elfcpp::R_MICROMIPS_CALL_HI16:
10809 case elfcpp::R_MICROMIPS_CALL_LO16:
10810 case elfcpp::R_MICROMIPS_GOT_HI16:
10811 case elfcpp::R_MICROMIPS_GOT_LO16:
10812 case elfcpp::R_MICROMIPS_GOT_PAGE:
10813 case elfcpp::R_MICROMIPS_GOT_OFST:
10814 case elfcpp::R_MICROMIPS_GOT_DISP:
10815 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10816 case elfcpp::R_MICROMIPS_TLS_GD:
10817 case elfcpp::R_MICROMIPS_TLS_LDM:
10818 case elfcpp::R_MIPS_EH:
10819 // We need a GOT section.
10820 target->got_section(symtab, layout);
10821 break;
10822
10823 // This is just a hint; it can safely be ignored. Don't set
10824 // has_static_relocs for the corresponding symbol.
10825 case elfcpp::R_MIPS_JALR:
10826 case elfcpp::R_MICROMIPS_JALR:
10827 break;
10828
10829 case elfcpp::R_MIPS_GPREL16:
10830 case elfcpp::R_MIPS_GPREL32:
10831 case elfcpp::R_MIPS16_GPREL:
10832 case elfcpp::R_MICROMIPS_GPREL16:
10833 // TODO(sasa)
10834 // GP-relative relocations always resolve to a definition in a
10835 // regular input file, ignoring the one-definition rule. This is
10836 // important for the GP setup sequence in NewABI code, which
10837 // always resolves to a local function even if other relocations
10838 // against the symbol wouldn't.
10839 //constrain_symbol_p = FALSE;
10840 break;
10841
10842 case elfcpp::R_MIPS_32:
10843 case elfcpp::R_MIPS_REL32:
10844 case elfcpp::R_MIPS_64:
10845 if ((parameters->options().shared()
10846 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10847 && (!is_readonly_section(output_section)
10848 || mips_obj->is_pic())))
10849 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10850 {
10851 if (r_type != elfcpp::R_MIPS_REL32)
10852 mips_sym->set_pointer_equality_needed();
10853 can_make_dynamic = true;
10854 break;
10855 }
10856 // Fall through.
10857
10858 default:
10859 // Most static relocations require pointer equality, except
10860 // for branches.
10861 mips_sym->set_pointer_equality_needed();
10862
10863 // Fall through.
10864
10865 case elfcpp::R_MIPS_26:
10866 case elfcpp::R_MIPS_PC16:
10867 case elfcpp::R_MIPS_PC21_S2:
10868 case elfcpp::R_MIPS_PC26_S2:
10869 case elfcpp::R_MIPS16_26:
10870 case elfcpp::R_MICROMIPS_26_S1:
10871 case elfcpp::R_MICROMIPS_PC7_S1:
10872 case elfcpp::R_MICROMIPS_PC10_S1:
10873 case elfcpp::R_MICROMIPS_PC16_S1:
10874 case elfcpp::R_MICROMIPS_PC23_S2:
10875 static_reloc = true;
10876 mips_sym->set_has_static_relocs();
10877 break;
10878 }
10879
10880 // If there are call relocations against an externally-defined symbol,
10881 // see whether we can create a MIPS lazy-binding stub for it. We can
10882 // only do this if all references to the function are through call
10883 // relocations, and in that case, the traditional lazy-binding stubs
10884 // are much more efficient than PLT entries.
10885 switch (r_type)
10886 {
10887 case elfcpp::R_MIPS16_CALL16:
10888 case elfcpp::R_MIPS_CALL16:
10889 case elfcpp::R_MIPS_CALL_HI16:
10890 case elfcpp::R_MIPS_CALL_LO16:
10891 case elfcpp::R_MIPS_JALR:
10892 case elfcpp::R_MICROMIPS_CALL16:
10893 case elfcpp::R_MICROMIPS_CALL_HI16:
10894 case elfcpp::R_MICROMIPS_CALL_LO16:
10895 case elfcpp::R_MICROMIPS_JALR:
10896 if (!mips_sym->no_lazy_stub())
10897 {
10898 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
10899 // Calls from shared objects to undefined symbols of type
10900 // STT_NOTYPE need lazy-binding stub.
10901 || (mips_sym->is_undefined() && parameters->options().shared()))
10902 target->mips_stubs_section(layout)->make_entry(mips_sym);
10903 }
10904 break;
10905 default:
10906 {
10907 // We must not create a stub for a symbol that has relocations
10908 // related to taking the function's address.
10909 mips_sym->set_no_lazy_stub();
10910 target->remove_lazy_stub_entry(mips_sym);
10911 break;
10912 }
10913 }
10914
10915 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
10916 mips_sym->is_mips16()))
10917 mips_sym->set_has_nonpic_branches();
10918
10919 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
10920 // and has a special meaning.
10921 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
10922 && strcmp(gsym->name(), "_gp_disp") == 0
10923 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
10924 if (static_reloc && gsym->needs_plt_entry())
10925 {
10926 target->make_plt_entry(symtab, layout, mips_sym, r_type);
10927
10928 // Since this is not a PC-relative relocation, we may be
10929 // taking the address of a function. In that case we need to
10930 // set the entry in the dynamic symbol table to the address of
10931 // the PLT entry.
10932 if (gsym->is_from_dynobj() && !parameters->options().shared())
10933 {
10934 gsym->set_needs_dynsym_value();
10935 // We distinguish between PLT entries and lazy-binding stubs by
10936 // giving the former an st_other value of STO_MIPS_PLT. Set the
10937 // flag if there are any relocations in the binary where pointer
10938 // equality matters.
10939 if (mips_sym->pointer_equality_needed())
10940 mips_sym->set_mips_plt();
10941 }
10942 }
10943 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
10944 {
10945 // Absolute addressing relocations.
10946 // Make a dynamic relocation if necessary.
10947 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
10948 {
10949 if (gsym->may_need_copy_reloc())
10950 {
10951 target->copy_reloc(symtab, layout, object, data_shndx,
10952 output_section, gsym, r_type, r_offset);
10953 }
10954 else if (can_make_dynamic)
10955 {
10956 // Create .rel.dyn section.
10957 target->rel_dyn_section(layout);
10958 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
10959 data_shndx, output_section, r_offset);
10960 }
10961 else
10962 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
10963 gsym->name());
10964 }
10965 }
10966
10967 bool for_call = false;
10968 switch (r_type)
10969 {
10970 case elfcpp::R_MIPS_CALL16:
10971 case elfcpp::R_MIPS16_CALL16:
10972 case elfcpp::R_MICROMIPS_CALL16:
10973 case elfcpp::R_MIPS_CALL_HI16:
10974 case elfcpp::R_MIPS_CALL_LO16:
10975 case elfcpp::R_MICROMIPS_CALL_HI16:
10976 case elfcpp::R_MICROMIPS_CALL_LO16:
10977 for_call = true;
10978 // Fall through.
10979
10980 case elfcpp::R_MIPS16_GOT16:
10981 case elfcpp::R_MIPS_GOT16:
10982 case elfcpp::R_MIPS_GOT_HI16:
10983 case elfcpp::R_MIPS_GOT_LO16:
10984 case elfcpp::R_MICROMIPS_GOT16:
10985 case elfcpp::R_MICROMIPS_GOT_HI16:
10986 case elfcpp::R_MICROMIPS_GOT_LO16:
10987 case elfcpp::R_MIPS_GOT_DISP:
10988 case elfcpp::R_MICROMIPS_GOT_DISP:
10989 case elfcpp::R_MIPS_EH:
10990 {
10991 // The symbol requires a GOT entry.
10992 Mips_output_data_got<size, big_endian>* got =
10993 target->got_section(symtab, layout);
10994 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
10995 for_call);
10996 mips_sym->set_global_got_area(GGA_NORMAL);
10997 }
10998 break;
10999
11000 case elfcpp::R_MIPS_GOT_PAGE:
11001 case elfcpp::R_MICROMIPS_GOT_PAGE:
11002 {
11003 // This relocation needs a page entry in the GOT.
11004 // Get the section contents.
11005 section_size_type view_size = 0;
11006 const unsigned char* view =
11007 object->section_contents(data_shndx, &view_size, false);
11008 view += r_offset;
11009
11010 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11011 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11012 : r_addend);
11013 Mips_output_data_got<size, big_endian>* got =
11014 target->got_section(symtab, layout);
11015 got->record_got_page_entry(mips_obj, r_sym, addend);
11016
11017 // If this is a global, overridable symbol, GOT_PAGE will
11018 // decay to GOT_DISP, so we'll need a GOT entry for it.
11019 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11020 && !mips_sym->object()->is_dynamic()
11021 && !mips_sym->is_undefined());
11022 if (!def_regular
11023 || (parameters->options().output_is_position_independent()
11024 && !parameters->options().Bsymbolic()
11025 && !mips_sym->is_forced_local()))
11026 {
11027 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11028 for_call);
11029 mips_sym->set_global_got_area(GGA_NORMAL);
11030 }
11031 }
11032 break;
11033
11034 case elfcpp::R_MIPS_TLS_GOTTPREL:
11035 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11036 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11037 case elfcpp::R_MIPS_TLS_LDM:
11038 case elfcpp::R_MIPS16_TLS_LDM:
11039 case elfcpp::R_MICROMIPS_TLS_LDM:
11040 case elfcpp::R_MIPS_TLS_GD:
11041 case elfcpp::R_MIPS16_TLS_GD:
11042 case elfcpp::R_MICROMIPS_TLS_GD:
11043 {
11044 const bool is_final = gsym->final_value_is_known();
11045 const tls::Tls_optimization optimized_type =
11046 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11047
11048 switch (r_type)
11049 {
11050 case elfcpp::R_MIPS_TLS_GD:
11051 case elfcpp::R_MIPS16_TLS_GD:
11052 case elfcpp::R_MICROMIPS_TLS_GD:
11053 if (optimized_type == tls::TLSOPT_NONE)
11054 {
11055 // Create a pair of GOT entries for the module index and
11056 // dtv-relative offset.
11057 Mips_output_data_got<size, big_endian>* got =
11058 target->got_section(symtab, layout);
11059 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11060 false);
11061 }
11062 else
11063 {
11064 // FIXME: TLS optimization not supported yet.
11065 gold_unreachable();
11066 }
11067 break;
11068
11069 case elfcpp::R_MIPS_TLS_LDM:
11070 case elfcpp::R_MIPS16_TLS_LDM:
11071 case elfcpp::R_MICROMIPS_TLS_LDM:
11072 if (optimized_type == tls::TLSOPT_NONE)
11073 {
11074 // We always record LDM symbols as local with index 0.
11075 target->got_section()->record_local_got_symbol(mips_obj, 0,
11076 r_addend, r_type,
11077 -1U, false);
11078 }
11079 else
11080 {
11081 // FIXME: TLS optimization not supported yet.
11082 gold_unreachable();
11083 }
11084 break;
11085 case elfcpp::R_MIPS_TLS_GOTTPREL:
11086 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11087 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11088 layout->set_has_static_tls();
11089 if (optimized_type == tls::TLSOPT_NONE)
11090 {
11091 // Create a GOT entry for the tp-relative offset.
11092 Mips_output_data_got<size, big_endian>* got =
11093 target->got_section(symtab, layout);
11094 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11095 false);
11096 }
11097 else
11098 {
11099 // FIXME: TLS optimization not supported yet.
11100 gold_unreachable();
11101 }
11102 break;
11103
11104 default:
11105 gold_unreachable();
11106 }
11107 }
11108 break;
11109 case elfcpp::R_MIPS_COPY:
11110 case elfcpp::R_MIPS_JUMP_SLOT:
11111 // These are relocations which should only be seen by the
11112 // dynamic linker, and should never be seen here.
11113 gold_error(_("%s: unexpected reloc %u in object file"),
11114 object->name().c_str(), r_type);
11115 break;
11116
11117 default:
11118 break;
11119 }
11120
11121 // Refuse some position-dependent relocations when creating a
11122 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11123 // not PIC, but we can create dynamic relocations and the result
11124 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11125 // combined with R_MIPS_GOT16.
11126 if (parameters->options().shared())
11127 {
11128 switch (r_type)
11129 {
11130 case elfcpp::R_MIPS16_HI16:
11131 case elfcpp::R_MIPS_HI16:
11132 case elfcpp::R_MICROMIPS_HI16:
11133 // Don't refuse a high part relocation if it's against
11134 // no symbol (e.g. part of a compound relocation).
11135 if (r_sym == 0)
11136 break;
11137
11138 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11139 // and has a special meaning.
11140 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11141 break;
11142
11143 // FALLTHROUGH
11144
11145 case elfcpp::R_MIPS16_26:
11146 case elfcpp::R_MIPS_26:
11147 case elfcpp::R_MICROMIPS_26_S1:
11148 gold_error(_("%s: relocation %u against `%s' can not be used when "
11149 "making a shared object; recompile with -fPIC"),
11150 object->name().c_str(), r_type, gsym->name());
11151 default:
11152 break;
11153 }
11154 }
11155 }
11156
11157 template<int size, bool big_endian>
11158 inline void
11159 Target_mips<size, big_endian>::Scan::global(
11160 Symbol_table* symtab,
11161 Layout* layout,
11162 Target_mips<size, big_endian>* target,
11163 Sized_relobj_file<size, big_endian>* object,
11164 unsigned int data_shndx,
11165 Output_section* output_section,
11166 const Relatype& reloc,
11167 unsigned int r_type,
11168 Symbol* gsym)
11169 {
11170 global(
11171 symtab,
11172 layout,
11173 target,
11174 object,
11175 data_shndx,
11176 output_section,
11177 &reloc,
11178 (const Reltype*) NULL,
11179 elfcpp::SHT_RELA,
11180 r_type,
11181 gsym);
11182 }
11183
11184 template<int size, bool big_endian>
11185 inline void
11186 Target_mips<size, big_endian>::Scan::global(
11187 Symbol_table* symtab,
11188 Layout* layout,
11189 Target_mips<size, big_endian>* target,
11190 Sized_relobj_file<size, big_endian>* object,
11191 unsigned int data_shndx,
11192 Output_section* output_section,
11193 const Reltype& reloc,
11194 unsigned int r_type,
11195 Symbol* gsym)
11196 {
11197 global(
11198 symtab,
11199 layout,
11200 target,
11201 object,
11202 data_shndx,
11203 output_section,
11204 (const Relatype*) NULL,
11205 &reloc,
11206 elfcpp::SHT_REL,
11207 r_type,
11208 gsym);
11209 }
11210
11211 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11212 // In cases where Scan::local() or Scan::global() has created
11213 // a dynamic relocation, the addend of the relocation is carried
11214 // in the data, and we must not apply the static relocation.
11215
11216 template<int size, bool big_endian>
11217 inline bool
11218 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11219 const Mips_symbol<size>* gsym,
11220 unsigned int r_type,
11221 Output_section* output_section,
11222 Target_mips* target)
11223 {
11224 // If the output section is not allocated, then we didn't call
11225 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11226 // the reloc here.
11227 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11228 return true;
11229
11230 if (gsym == NULL)
11231 return true;
11232 else
11233 {
11234 // For global symbols, we use the same helper routines used in the
11235 // scan pass.
11236 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11237 && !gsym->may_need_copy_reloc())
11238 {
11239 // We have generated dynamic reloc (R_MIPS_REL32).
11240
11241 bool multi_got = false;
11242 if (target->has_got_section())
11243 multi_got = target->got_section()->multi_got();
11244 bool has_got_offset;
11245 if (!multi_got)
11246 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11247 else
11248 has_got_offset = gsym->global_gotoffset() != -1U;
11249 if (!has_got_offset)
11250 return true;
11251 else
11252 // Apply the relocation only if the symbol is in the local got.
11253 // Do not apply the relocation if the symbol is in the global
11254 // got.
11255 return symbol_references_local(gsym, gsym->has_dynsym_index());
11256 }
11257 else
11258 // We have not generated dynamic reloc.
11259 return true;
11260 }
11261 }
11262
11263 // Perform a relocation.
11264
11265 template<int size, bool big_endian>
11266 inline bool
11267 Target_mips<size, big_endian>::Relocate::relocate(
11268 const Relocate_info<size, big_endian>* relinfo,
11269 unsigned int rel_type,
11270 Target_mips* target,
11271 Output_section* output_section,
11272 size_t relnum,
11273 const unsigned char* preloc,
11274 const Sized_symbol<size>* gsym,
11275 const Symbol_value<size>* psymval,
11276 unsigned char* view,
11277 Mips_address address,
11278 section_size_type)
11279 {
11280 Mips_address r_offset;
11281 unsigned int r_sym;
11282 unsigned int r_type;
11283 unsigned int r_type2;
11284 unsigned int r_type3;
11285 unsigned char r_ssym;
11286 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11287
11288 if (rel_type == elfcpp::SHT_RELA)
11289 {
11290 const Relatype rela(preloc);
11291 r_offset = rela.get_r_offset();
11292 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11293 get_r_sym(&rela);
11294 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11295 get_r_type(&rela);
11296 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11297 get_r_type2(&rela);
11298 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11299 get_r_type3(&rela);
11300 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11301 get_r_ssym(&rela);
11302 r_addend = rela.get_r_addend();
11303 }
11304 else
11305 {
11306 const Reltype rel(preloc);
11307 r_offset = rel.get_r_offset();
11308 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11309 get_r_sym(&rel);
11310 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11311 get_r_type(&rel);
11312 r_ssym = 0;
11313 r_type2 = 0;
11314 r_type3 = 0;
11315 r_addend = 0;
11316 }
11317
11318 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11319 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11320
11321 Mips_relobj<size, big_endian>* object =
11322 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11323
11324 bool target_is_16_bit_code = false;
11325 bool target_is_micromips_code = false;
11326 bool cross_mode_jump;
11327
11328 Symbol_value<size> symval;
11329
11330 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11331
11332 bool changed_symbol_value = false;
11333 if (gsym == NULL)
11334 {
11335 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11336 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11337 if (target_is_16_bit_code || target_is_micromips_code)
11338 {
11339 // MIPS16/microMIPS text labels should be treated as odd.
11340 symval.set_output_value(psymval->value(object, 1));
11341 psymval = &symval;
11342 changed_symbol_value = true;
11343 }
11344 }
11345 else
11346 {
11347 target_is_16_bit_code = mips_sym->is_mips16();
11348 target_is_micromips_code = mips_sym->is_micromips();
11349
11350 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11351 // it odd. This will cause something like .word SYM to come up with
11352 // the right value when it is loaded into the PC.
11353
11354 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11355 && psymval->value(object, 0) != 0)
11356 {
11357 symval.set_output_value(psymval->value(object, 0) | 1);
11358 psymval = &symval;
11359 changed_symbol_value = true;
11360 }
11361
11362 // Pick the value to use for symbols defined in shared objects.
11363 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11364 || mips_sym->has_lazy_stub())
11365 {
11366 Mips_address value;
11367 if (!mips_sym->has_lazy_stub())
11368 {
11369 // Prefer a standard MIPS PLT entry.
11370 if (mips_sym->has_mips_plt_offset())
11371 {
11372 value = target->plt_section()->mips_entry_address(mips_sym);
11373 target_is_micromips_code = false;
11374 target_is_16_bit_code = false;
11375 }
11376 else
11377 {
11378 value = (target->plt_section()->comp_entry_address(mips_sym)
11379 + 1);
11380 if (target->is_output_micromips())
11381 target_is_micromips_code = true;
11382 else
11383 target_is_16_bit_code = true;
11384 }
11385 }
11386 else
11387 value = target->mips_stubs_section()->stub_address(mips_sym);
11388
11389 symval.set_output_value(value);
11390 psymval = &symval;
11391 }
11392 }
11393
11394 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11395 // Note that such a symbol must always be a global symbol.
11396 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11397 && !object->is_newabi());
11398
11399 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11400 // Note that such a symbol must always be a global symbol.
11401 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11402
11403
11404 if (gp_disp)
11405 {
11406 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11407 gold_error_at_location(relinfo, relnum, r_offset,
11408 _("relocations against _gp_disp are permitted only"
11409 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11410 }
11411 else if (gnu_local_gp)
11412 {
11413 // __gnu_local_gp is _gp symbol.
11414 symval.set_output_value(target->adjusted_gp_value(object));
11415 psymval = &symval;
11416 }
11417
11418 // If this is a reference to a 16-bit function with a stub, we need
11419 // to redirect the relocation to the stub unless:
11420 //
11421 // (a) the relocation is for a MIPS16 JAL;
11422 //
11423 // (b) the relocation is for a MIPS16 PIC call, and there are no
11424 // non-MIPS16 uses of the GOT slot; or
11425 //
11426 // (c) the section allows direct references to MIPS16 functions.
11427 if (r_type != elfcpp::R_MIPS16_26
11428 && !parameters->options().relocatable()
11429 && ((mips_sym != NULL
11430 && mips_sym->has_mips16_fn_stub()
11431 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11432 || (mips_sym == NULL
11433 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11434 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11435 {
11436 // This is a 32- or 64-bit call to a 16-bit function. We should
11437 // have already noticed that we were going to need the
11438 // stub.
11439 Mips_address value;
11440 if (mips_sym == NULL)
11441 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11442 else
11443 {
11444 gold_assert(mips_sym->need_fn_stub());
11445 if (mips_sym->has_la25_stub())
11446 value = target->la25_stub_section()->stub_address(mips_sym);
11447 else
11448 {
11449 value = mips_sym->template
11450 get_mips16_fn_stub<big_endian>()->output_address();
11451 }
11452 }
11453 symval.set_output_value(value);
11454 psymval = &symval;
11455 changed_symbol_value = true;
11456
11457 // The target is 16-bit, but the stub isn't.
11458 target_is_16_bit_code = false;
11459 }
11460 // If this is a MIPS16 call with a stub, that is made through the PLT or
11461 // to a standard MIPS function, we need to redirect the call to the stub.
11462 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11463 // indirect calls should use an indirect stub instead.
11464 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
11465 && ((mips_sym != NULL
11466 && (mips_sym->has_mips16_call_stub()
11467 || mips_sym->has_mips16_call_fp_stub()))
11468 || (mips_sym == NULL
11469 && object->get_local_mips16_call_stub(r_sym) != NULL))
11470 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11471 || !target_is_16_bit_code))
11472 {
11473 Mips16_stub_section<size, big_endian>* call_stub;
11474 if (mips_sym == NULL)
11475 call_stub = object->get_local_mips16_call_stub(r_sym);
11476 else
11477 {
11478 // If both call_stub and call_fp_stub are defined, we can figure
11479 // out which one to use by checking which one appears in the input
11480 // file.
11481 if (mips_sym->has_mips16_call_stub()
11482 && mips_sym->has_mips16_call_fp_stub())
11483 {
11484 call_stub = NULL;
11485 for (unsigned int i = 1; i < object->shnum(); ++i)
11486 {
11487 if (object->is_mips16_call_fp_stub_section(i))
11488 {
11489 call_stub = mips_sym->template
11490 get_mips16_call_fp_stub<big_endian>();
11491 break;
11492 }
11493
11494 }
11495 if (call_stub == NULL)
11496 call_stub =
11497 mips_sym->template get_mips16_call_stub<big_endian>();
11498 }
11499 else if (mips_sym->has_mips16_call_stub())
11500 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11501 else
11502 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11503 }
11504
11505 symval.set_output_value(call_stub->output_address());
11506 psymval = &symval;
11507 changed_symbol_value = true;
11508 }
11509 // If this is a direct call to a PIC function, redirect to the
11510 // non-PIC stub.
11511 else if (mips_sym != NULL
11512 && mips_sym->has_la25_stub()
11513 && relocation_needs_la25_stub<size, big_endian>(
11514 object, r_type, target_is_16_bit_code))
11515 {
11516 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11517 if (mips_sym->is_micromips())
11518 value += 1;
11519 symval.set_output_value(value);
11520 psymval = &symval;
11521 }
11522 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11523 // entry is used if a standard PLT entry has also been made.
11524 else if ((r_type == elfcpp::R_MIPS16_26
11525 || r_type == elfcpp::R_MICROMIPS_26_S1)
11526 && !parameters->options().relocatable()
11527 && mips_sym != NULL
11528 && mips_sym->has_plt_offset()
11529 && mips_sym->has_comp_plt_offset()
11530 && mips_sym->has_mips_plt_offset())
11531 {
11532 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11533 + 1);
11534 symval.set_output_value(value);
11535 psymval = &symval;
11536
11537 target_is_16_bit_code = !target->is_output_micromips();
11538 target_is_micromips_code = target->is_output_micromips();
11539 }
11540
11541 // Make sure MIPS16 and microMIPS are not used together.
11542 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11543 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11544 {
11545 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11546 }
11547
11548 // Calls from 16-bit code to 32-bit code and vice versa require the
11549 // mode change. However, we can ignore calls to undefined weak symbols,
11550 // which should never be executed at runtime. This exception is important
11551 // because the assembly writer may have "known" that any definition of the
11552 // symbol would be 16-bit code, and that direct jumps were therefore
11553 // acceptable.
11554 cross_mode_jump =
11555 (!parameters->options().relocatable()
11556 && !(gsym != NULL && gsym->is_weak_undefined())
11557 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11558 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11559 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11560 && (target_is_16_bit_code || target_is_micromips_code))));
11561
11562 bool local = (mips_sym == NULL
11563 || (mips_sym->got_only_for_calls()
11564 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11565 : symbol_references_local(mips_sym,
11566 mips_sym->has_dynsym_index())));
11567
11568 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11569 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11570 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11571 if (got_page_reloc(r_type) && !local)
11572 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11573 : elfcpp::R_MIPS_GOT_DISP);
11574
11575 unsigned int got_offset = 0;
11576 int gp_offset = 0;
11577
11578 bool calculate_only = false;
11579 Valtype calculated_value = 0;
11580 bool extract_addend = rel_type == elfcpp::SHT_REL;
11581 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11582
11583 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11584
11585 // For Mips64 N64 ABI, there may be up to three operations specified per
11586 // record, by the fields r_type, r_type2, and r_type3. The first operation
11587 // takes its addend from the relocation record. Each subsequent operation
11588 // takes as its addend the result of the previous operation.
11589 // The first operation in a record which references a symbol uses the symbol
11590 // implied by r_sym. The next operation in a record which references a symbol
11591 // uses the special symbol value given by the r_ssym field. A third operation
11592 // in a record which references a symbol will assume a NULL symbol,
11593 // i.e. value zero.
11594
11595 // TODO(Vladimir)
11596 // Check if a record references to a symbol.
11597 for (unsigned int i = 0; i < 3; ++i)
11598 {
11599 if (r_types[i] == elfcpp::R_MIPS_NONE)
11600 break;
11601
11602 // TODO(Vladimir)
11603 // Check if the next relocation is for the same instruction.
11604 calculate_only = i == 2 ? false
11605 : r_types[i+1] != elfcpp::R_MIPS_NONE;
11606
11607 if (object->is_n64())
11608 {
11609 if (i == 1)
11610 {
11611 // Handle special symbol for r_type2 relocation type.
11612 switch (r_ssym)
11613 {
11614 case RSS_UNDEF:
11615 symval.set_output_value(0);
11616 break;
11617 case RSS_GP:
11618 symval.set_output_value(target->gp_value());
11619 break;
11620 case RSS_GP0:
11621 symval.set_output_value(object->gp_value());
11622 break;
11623 case RSS_LOC:
11624 symval.set_output_value(address);
11625 break;
11626 default:
11627 gold_unreachable();
11628 }
11629 psymval = &symval;
11630 }
11631 else if (i == 2)
11632 {
11633 // For r_type3 symbol value is 0.
11634 symval.set_output_value(0);
11635 }
11636 }
11637
11638 bool update_got_entry = false;
11639 switch (r_types[i])
11640 {
11641 case elfcpp::R_MIPS_NONE:
11642 break;
11643 case elfcpp::R_MIPS_16:
11644 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11645 extract_addend, calculate_only,
11646 &calculated_value);
11647 break;
11648
11649 case elfcpp::R_MIPS_32:
11650 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11651 target))
11652 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11653 extract_addend, calculate_only,
11654 &calculated_value);
11655 if (mips_sym != NULL
11656 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11657 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11658 {
11659 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11660 // already updated by adding +1.
11661 if (mips_sym->has_mips16_fn_stub())
11662 {
11663 gold_assert(mips_sym->need_fn_stub());
11664 Mips16_stub_section<size, big_endian>* fn_stub =
11665 mips_sym->template get_mips16_fn_stub<big_endian>();
11666
11667 symval.set_output_value(fn_stub->output_address());
11668 psymval = &symval;
11669 }
11670 got_offset = mips_sym->global_gotoffset();
11671 update_got_entry = true;
11672 }
11673 break;
11674
11675 case elfcpp::R_MIPS_64:
11676 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11677 target))
11678 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11679 extract_addend, calculate_only,
11680 &calculated_value, false);
11681 else if (target->is_output_n64() && r_addend != 0)
11682 // Only apply the addend. The static relocation was RELA, but the
11683 // dynamic relocation is REL, so we need to apply the addend.
11684 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11685 extract_addend, calculate_only,
11686 &calculated_value, true);
11687 break;
11688 case elfcpp::R_MIPS_REL32:
11689 gold_unreachable();
11690
11691 case elfcpp::R_MIPS_PC32:
11692 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11693 r_addend, extract_addend,
11694 calculate_only,
11695 &calculated_value);
11696 break;
11697
11698 case elfcpp::R_MIPS16_26:
11699 // The calculation for R_MIPS16_26 is just the same as for an
11700 // R_MIPS_26. It's only the storage of the relocated field into
11701 // the output file that's different. So, we just fall through to the
11702 // R_MIPS_26 case here.
11703 case elfcpp::R_MIPS_26:
11704 case elfcpp::R_MICROMIPS_26_S1:
11705 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11706 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11707 r_types[i], target->jal_to_bal(), calculate_only,
11708 &calculated_value);
11709 break;
11710
11711 case elfcpp::R_MIPS_HI16:
11712 case elfcpp::R_MIPS16_HI16:
11713 case elfcpp::R_MICROMIPS_HI16:
11714 if (rel_type == elfcpp::SHT_RELA)
11715 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11716 r_addend, address,
11717 gp_disp, r_types[i],
11718 extract_addend, 0,
11719 target, calculate_only,
11720 &calculated_value);
11721 else if (rel_type == elfcpp::SHT_REL)
11722 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11723 address, gp_disp, r_types[i],
11724 r_sym, extract_addend);
11725 else
11726 gold_unreachable();
11727 break;
11728
11729 case elfcpp::R_MIPS_LO16:
11730 case elfcpp::R_MIPS16_LO16:
11731 case elfcpp::R_MICROMIPS_LO16:
11732 case elfcpp::R_MICROMIPS_HI0_LO16:
11733 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11734 r_addend, extract_addend, address,
11735 gp_disp, r_types[i], r_sym,
11736 rel_type, calculate_only,
11737 &calculated_value);
11738 break;
11739
11740 case elfcpp::R_MIPS_LITERAL:
11741 case elfcpp::R_MICROMIPS_LITERAL:
11742 // Because we don't merge literal sections, we can handle this
11743 // just like R_MIPS_GPREL16. In the long run, we should merge
11744 // shared literals, and then we will need to additional work
11745 // here.
11746
11747 // Fall through.
11748
11749 case elfcpp::R_MIPS_GPREL16:
11750 case elfcpp::R_MIPS16_GPREL:
11751 case elfcpp::R_MICROMIPS_GPREL7_S2:
11752 case elfcpp::R_MICROMIPS_GPREL16:
11753 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11754 target->adjusted_gp_value(object),
11755 r_addend, extract_addend,
11756 gsym == NULL, r_types[i],
11757 calculate_only, &calculated_value);
11758 break;
11759
11760 case elfcpp::R_MIPS_PC16:
11761 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11762 r_addend, extract_addend,
11763 calculate_only,
11764 &calculated_value);
11765 break;
11766
11767 case elfcpp::R_MIPS_PC21_S2:
11768 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11769 r_addend, extract_addend,
11770 calculate_only,
11771 &calculated_value);
11772 break;
11773
11774 case elfcpp::R_MIPS_PC26_S2:
11775 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11776 r_addend, extract_addend,
11777 calculate_only,
11778 &calculated_value);
11779 break;
11780
11781 case elfcpp::R_MIPS_PC18_S3:
11782 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11783 r_addend, extract_addend,
11784 calculate_only,
11785 &calculated_value);
11786 break;
11787
11788 case elfcpp::R_MIPS_PC19_S2:
11789 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11790 r_addend, extract_addend,
11791 calculate_only,
11792 &calculated_value);
11793 break;
11794
11795 case elfcpp::R_MIPS_PCHI16:
11796 if (rel_type == elfcpp::SHT_RELA)
11797 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11798 r_addend, address,
11799 extract_addend, 0,
11800 calculate_only,
11801 &calculated_value);
11802 else if (rel_type == elfcpp::SHT_REL)
11803 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11804 r_addend, address, r_sym,
11805 extract_addend);
11806 else
11807 gold_unreachable();
11808 break;
11809
11810 case elfcpp::R_MIPS_PCLO16:
11811 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11812 extract_addend, address, r_sym,
11813 rel_type, calculate_only,
11814 &calculated_value);
11815 break;
11816 case elfcpp::R_MICROMIPS_PC7_S1:
11817 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11818 address, r_addend,
11819 extract_addend,
11820 calculate_only,
11821 &calculated_value);
11822 break;
11823 case elfcpp::R_MICROMIPS_PC10_S1:
11824 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11825 psymval, address,
11826 r_addend, extract_addend,
11827 calculate_only,
11828 &calculated_value);
11829 break;
11830 case elfcpp::R_MICROMIPS_PC16_S1:
11831 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11832 psymval, address,
11833 r_addend, extract_addend,
11834 calculate_only,
11835 &calculated_value);
11836 break;
11837 case elfcpp::R_MIPS_GPREL32:
11838 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11839 target->adjusted_gp_value(object),
11840 r_addend, extract_addend,
11841 calculate_only,
11842 &calculated_value);
11843 break;
11844 case elfcpp::R_MIPS_GOT_HI16:
11845 case elfcpp::R_MIPS_CALL_HI16:
11846 case elfcpp::R_MICROMIPS_GOT_HI16:
11847 case elfcpp::R_MICROMIPS_CALL_HI16:
11848 if (gsym != NULL)
11849 got_offset = target->got_section()->got_offset(gsym,
11850 GOT_TYPE_STANDARD,
11851 object);
11852 else
11853 got_offset = target->got_section()->got_offset(r_sym,
11854 GOT_TYPE_STANDARD,
11855 object, r_addend);
11856 gp_offset = target->got_section()->gp_offset(got_offset, object);
11857 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11858 calculate_only,
11859 &calculated_value);
11860 update_got_entry = changed_symbol_value;
11861 break;
11862
11863 case elfcpp::R_MIPS_GOT_LO16:
11864 case elfcpp::R_MIPS_CALL_LO16:
11865 case elfcpp::R_MICROMIPS_GOT_LO16:
11866 case elfcpp::R_MICROMIPS_CALL_LO16:
11867 if (gsym != NULL)
11868 got_offset = target->got_section()->got_offset(gsym,
11869 GOT_TYPE_STANDARD,
11870 object);
11871 else
11872 got_offset = target->got_section()->got_offset(r_sym,
11873 GOT_TYPE_STANDARD,
11874 object, r_addend);
11875 gp_offset = target->got_section()->gp_offset(got_offset, object);
11876 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
11877 calculate_only,
11878 &calculated_value);
11879 update_got_entry = changed_symbol_value;
11880 break;
11881
11882 case elfcpp::R_MIPS_GOT_DISP:
11883 case elfcpp::R_MICROMIPS_GOT_DISP:
11884 case elfcpp::R_MIPS_EH:
11885 if (gsym != NULL)
11886 got_offset = target->got_section()->got_offset(gsym,
11887 GOT_TYPE_STANDARD,
11888 object);
11889 else
11890 got_offset = target->got_section()->got_offset(r_sym,
11891 GOT_TYPE_STANDARD,
11892 object, r_addend);
11893 gp_offset = target->got_section()->gp_offset(got_offset, object);
11894 if (eh_reloc(r_types[i]))
11895 reloc_status = Reloc_funcs::releh(view, gp_offset,
11896 calculate_only,
11897 &calculated_value);
11898 else
11899 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11900 calculate_only,
11901 &calculated_value);
11902 break;
11903 case elfcpp::R_MIPS_CALL16:
11904 case elfcpp::R_MIPS16_CALL16:
11905 case elfcpp::R_MICROMIPS_CALL16:
11906 gold_assert(gsym != NULL);
11907 got_offset = target->got_section()->got_offset(gsym,
11908 GOT_TYPE_STANDARD,
11909 object);
11910 gp_offset = target->got_section()->gp_offset(got_offset, object);
11911 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11912 calculate_only, &calculated_value);
11913 // TODO(sasa): We should also initialize update_got_entry
11914 // in other place swhere relgot is called.
11915 update_got_entry = changed_symbol_value;
11916 break;
11917
11918 case elfcpp::R_MIPS_GOT16:
11919 case elfcpp::R_MIPS16_GOT16:
11920 case elfcpp::R_MICROMIPS_GOT16:
11921 if (gsym != NULL)
11922 {
11923 got_offset = target->got_section()->got_offset(gsym,
11924 GOT_TYPE_STANDARD,
11925 object);
11926 gp_offset = target->got_section()->gp_offset(got_offset, object);
11927 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11928 calculate_only,
11929 &calculated_value);
11930 }
11931 else
11932 {
11933 if (rel_type == elfcpp::SHT_RELA)
11934 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
11935 psymval, r_addend,
11936 extract_addend, 0,
11937 target,
11938 calculate_only,
11939 &calculated_value);
11940 else if (rel_type == elfcpp::SHT_REL)
11941 reloc_status = Reloc_funcs::relgot16_local(view, object,
11942 psymval, r_addend,
11943 extract_addend,
11944 r_types[i], r_sym);
11945 else
11946 gold_unreachable();
11947 }
11948 update_got_entry = changed_symbol_value;
11949 break;
11950
11951 case elfcpp::R_MIPS_TLS_GD:
11952 case elfcpp::R_MIPS16_TLS_GD:
11953 case elfcpp::R_MICROMIPS_TLS_GD:
11954 if (gsym != NULL)
11955 got_offset = target->got_section()->got_offset(gsym,
11956 GOT_TYPE_TLS_PAIR,
11957 object);
11958 else
11959 got_offset = target->got_section()->got_offset(r_sym,
11960 GOT_TYPE_TLS_PAIR,
11961 object, r_addend);
11962 gp_offset = target->got_section()->gp_offset(got_offset, object);
11963 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
11964 &calculated_value);
11965 break;
11966
11967 case elfcpp::R_MIPS_TLS_GOTTPREL:
11968 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11969 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11970 if (gsym != NULL)
11971 got_offset = target->got_section()->got_offset(gsym,
11972 GOT_TYPE_TLS_OFFSET,
11973 object);
11974 else
11975 got_offset = target->got_section()->got_offset(r_sym,
11976 GOT_TYPE_TLS_OFFSET,
11977 object, r_addend);
11978 gp_offset = target->got_section()->gp_offset(got_offset, object);
11979 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
11980 &calculated_value);
11981 break;
11982
11983 case elfcpp::R_MIPS_TLS_LDM:
11984 case elfcpp::R_MIPS16_TLS_LDM:
11985 case elfcpp::R_MICROMIPS_TLS_LDM:
11986 // Relocate the field with the offset of the GOT entry for
11987 // the module index.
11988 got_offset = target->got_section()->tls_ldm_offset(object);
11989 gp_offset = target->got_section()->gp_offset(got_offset, object);
11990 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
11991 &calculated_value);
11992 break;
11993
11994 case elfcpp::R_MIPS_GOT_PAGE:
11995 case elfcpp::R_MICROMIPS_GOT_PAGE:
11996 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
11997 r_addend, extract_addend,
11998 calculate_only,
11999 &calculated_value);
12000 break;
12001
12002 case elfcpp::R_MIPS_GOT_OFST:
12003 case elfcpp::R_MICROMIPS_GOT_OFST:
12004 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12005 r_addend, extract_addend,
12006 local, calculate_only,
12007 &calculated_value);
12008 break;
12009
12010 case elfcpp::R_MIPS_JALR:
12011 case elfcpp::R_MICROMIPS_JALR:
12012 // This relocation is only a hint. In some cases, we optimize
12013 // it into a bal instruction. But we don't try to optimize
12014 // when the symbol does not resolve locally.
12015 if (gsym == NULL
12016 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12017 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12018 r_addend, extract_addend,
12019 cross_mode_jump, r_types[i],
12020 target->jalr_to_bal(),
12021 target->jr_to_b(),
12022 calculate_only,
12023 &calculated_value);
12024 break;
12025
12026 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12027 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12028 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12029 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12030 elfcpp::DTP_OFFSET, r_addend,
12031 extract_addend, calculate_only,
12032 &calculated_value);
12033 break;
12034 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12035 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12036 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12037 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12038 elfcpp::DTP_OFFSET, r_addend,
12039 extract_addend, calculate_only,
12040 &calculated_value);
12041 break;
12042 case elfcpp::R_MIPS_TLS_DTPREL32:
12043 case elfcpp::R_MIPS_TLS_DTPREL64:
12044 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12045 elfcpp::DTP_OFFSET, r_addend,
12046 extract_addend, calculate_only,
12047 &calculated_value);
12048 break;
12049 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12050 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12051 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12052 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12053 elfcpp::TP_OFFSET, r_addend,
12054 extract_addend, calculate_only,
12055 &calculated_value);
12056 break;
12057 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12058 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12059 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12060 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12061 elfcpp::TP_OFFSET, r_addend,
12062 extract_addend, calculate_only,
12063 &calculated_value);
12064 break;
12065 case elfcpp::R_MIPS_TLS_TPREL32:
12066 case elfcpp::R_MIPS_TLS_TPREL64:
12067 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12068 elfcpp::TP_OFFSET, r_addend,
12069 extract_addend, calculate_only,
12070 &calculated_value);
12071 break;
12072 case elfcpp::R_MIPS_SUB:
12073 case elfcpp::R_MICROMIPS_SUB:
12074 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12075 extract_addend,
12076 calculate_only, &calculated_value);
12077 break;
12078 default:
12079 gold_error_at_location(relinfo, relnum, r_offset,
12080 _("unsupported reloc %u"), r_types[i]);
12081 break;
12082 }
12083
12084 if (update_got_entry)
12085 {
12086 Mips_output_data_got<size, big_endian>* got = target->got_section();
12087 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12088 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12089 psymval->value(object, 0));
12090 else
12091 got->update_got_entry(got_offset, psymval->value(object, 0));
12092 }
12093
12094 r_addend = calculated_value;
12095 }
12096
12097 bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable()
12098 : false;
12099 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12100
12101 // Report any errors.
12102 switch (reloc_status)
12103 {
12104 case Reloc_funcs::STATUS_OKAY:
12105 break;
12106 case Reloc_funcs::STATUS_OVERFLOW:
12107 gold_error_at_location(relinfo, relnum, r_offset,
12108 _("relocation overflow"));
12109 break;
12110 case Reloc_funcs::STATUS_BAD_RELOC:
12111 gold_error_at_location(relinfo, relnum, r_offset,
12112 _("unexpected opcode while processing relocation"));
12113 break;
12114 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12115 gold_error_at_location(relinfo, relnum, r_offset,
12116 _("unaligned PC-relative relocation"));
12117 break;
12118 default:
12119 gold_unreachable();
12120 }
12121
12122 return true;
12123 }
12124
12125 // Get the Reference_flags for a particular relocation.
12126
12127 template<int size, bool big_endian>
12128 int
12129 Target_mips<size, big_endian>::Scan::get_reference_flags(
12130 unsigned int r_type)
12131 {
12132 switch (r_type)
12133 {
12134 case elfcpp::R_MIPS_NONE:
12135 // No symbol reference.
12136 return 0;
12137
12138 case elfcpp::R_MIPS_16:
12139 case elfcpp::R_MIPS_32:
12140 case elfcpp::R_MIPS_64:
12141 case elfcpp::R_MIPS_HI16:
12142 case elfcpp::R_MIPS_LO16:
12143 case elfcpp::R_MIPS16_HI16:
12144 case elfcpp::R_MIPS16_LO16:
12145 case elfcpp::R_MICROMIPS_HI16:
12146 case elfcpp::R_MICROMIPS_LO16:
12147 return Symbol::ABSOLUTE_REF;
12148
12149 case elfcpp::R_MIPS_26:
12150 case elfcpp::R_MIPS16_26:
12151 case elfcpp::R_MICROMIPS_26_S1:
12152 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12153
12154 case elfcpp::R_MIPS_PC18_S3:
12155 case elfcpp::R_MIPS_PC19_S2:
12156 case elfcpp::R_MIPS_PCHI16:
12157 case elfcpp::R_MIPS_PCLO16:
12158 case elfcpp::R_MIPS_GPREL32:
12159 case elfcpp::R_MIPS_GPREL16:
12160 case elfcpp::R_MIPS_REL32:
12161 case elfcpp::R_MIPS16_GPREL:
12162 return Symbol::RELATIVE_REF;
12163
12164 case elfcpp::R_MIPS_PC16:
12165 case elfcpp::R_MIPS_PC32:
12166 case elfcpp::R_MIPS_PC21_S2:
12167 case elfcpp::R_MIPS_PC26_S2:
12168 case elfcpp::R_MIPS_JALR:
12169 case elfcpp::R_MICROMIPS_JALR:
12170 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12171
12172 case elfcpp::R_MIPS_GOT16:
12173 case elfcpp::R_MIPS_CALL16:
12174 case elfcpp::R_MIPS_GOT_DISP:
12175 case elfcpp::R_MIPS_GOT_HI16:
12176 case elfcpp::R_MIPS_GOT_LO16:
12177 case elfcpp::R_MIPS_CALL_HI16:
12178 case elfcpp::R_MIPS_CALL_LO16:
12179 case elfcpp::R_MIPS_LITERAL:
12180 case elfcpp::R_MIPS_GOT_PAGE:
12181 case elfcpp::R_MIPS_GOT_OFST:
12182 case elfcpp::R_MIPS16_GOT16:
12183 case elfcpp::R_MIPS16_CALL16:
12184 case elfcpp::R_MICROMIPS_GOT16:
12185 case elfcpp::R_MICROMIPS_CALL16:
12186 case elfcpp::R_MICROMIPS_GOT_HI16:
12187 case elfcpp::R_MICROMIPS_GOT_LO16:
12188 case elfcpp::R_MICROMIPS_CALL_HI16:
12189 case elfcpp::R_MICROMIPS_CALL_LO16:
12190 case elfcpp::R_MIPS_EH:
12191 // Absolute in GOT.
12192 return Symbol::RELATIVE_REF;
12193
12194 case elfcpp::R_MIPS_TLS_DTPMOD32:
12195 case elfcpp::R_MIPS_TLS_DTPREL32:
12196 case elfcpp::R_MIPS_TLS_DTPMOD64:
12197 case elfcpp::R_MIPS_TLS_DTPREL64:
12198 case elfcpp::R_MIPS_TLS_GD:
12199 case elfcpp::R_MIPS_TLS_LDM:
12200 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12201 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12202 case elfcpp::R_MIPS_TLS_GOTTPREL:
12203 case elfcpp::R_MIPS_TLS_TPREL32:
12204 case elfcpp::R_MIPS_TLS_TPREL64:
12205 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12206 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12207 case elfcpp::R_MIPS16_TLS_GD:
12208 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12209 case elfcpp::R_MICROMIPS_TLS_GD:
12210 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12211 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12212 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12213 return Symbol::TLS_REF;
12214
12215 case elfcpp::R_MIPS_COPY:
12216 case elfcpp::R_MIPS_JUMP_SLOT:
12217 default:
12218 gold_unreachable();
12219 // Not expected. We will give an error later.
12220 return 0;
12221 }
12222 }
12223
12224 // Report an unsupported relocation against a local symbol.
12225
12226 template<int size, bool big_endian>
12227 void
12228 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12229 Sized_relobj_file<size, big_endian>* object,
12230 unsigned int r_type)
12231 {
12232 gold_error(_("%s: unsupported reloc %u against local symbol"),
12233 object->name().c_str(), r_type);
12234 }
12235
12236 // Report an unsupported relocation against a global symbol.
12237
12238 template<int size, bool big_endian>
12239 void
12240 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12241 Sized_relobj_file<size, big_endian>* object,
12242 unsigned int r_type,
12243 Symbol* gsym)
12244 {
12245 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12246 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12247 }
12248
12249 // Return printable name for ABI.
12250 template<int size, bool big_endian>
12251 const char*
12252 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12253 {
12254 switch (e_flags & elfcpp::EF_MIPS_ABI)
12255 {
12256 case 0:
12257 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12258 return "N32";
12259 else if (size == 64)
12260 return "64";
12261 else
12262 return "none";
12263 case elfcpp::E_MIPS_ABI_O32:
12264 return "O32";
12265 case elfcpp::E_MIPS_ABI_O64:
12266 return "O64";
12267 case elfcpp::E_MIPS_ABI_EABI32:
12268 return "EABI32";
12269 case elfcpp::E_MIPS_ABI_EABI64:
12270 return "EABI64";
12271 default:
12272 return "unknown abi";
12273 }
12274 }
12275
12276 template<int size, bool big_endian>
12277 const char*
12278 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12279 {
12280 switch (e_flags & elfcpp::EF_MIPS_MACH)
12281 {
12282 case elfcpp::E_MIPS_MACH_3900:
12283 return "mips:3900";
12284 case elfcpp::E_MIPS_MACH_4010:
12285 return "mips:4010";
12286 case elfcpp::E_MIPS_MACH_4100:
12287 return "mips:4100";
12288 case elfcpp::E_MIPS_MACH_4111:
12289 return "mips:4111";
12290 case elfcpp::E_MIPS_MACH_4120:
12291 return "mips:4120";
12292 case elfcpp::E_MIPS_MACH_4650:
12293 return "mips:4650";
12294 case elfcpp::E_MIPS_MACH_5400:
12295 return "mips:5400";
12296 case elfcpp::E_MIPS_MACH_5500:
12297 return "mips:5500";
12298 case elfcpp::E_MIPS_MACH_5900:
12299 return "mips:5900";
12300 case elfcpp::E_MIPS_MACH_SB1:
12301 return "mips:sb1";
12302 case elfcpp::E_MIPS_MACH_9000:
12303 return "mips:9000";
12304 case elfcpp::E_MIPS_MACH_LS2E:
12305 return "mips:loongson_2e";
12306 case elfcpp::E_MIPS_MACH_LS2F:
12307 return "mips:loongson_2f";
12308 case elfcpp::E_MIPS_MACH_LS3A:
12309 return "mips:loongson_3a";
12310 case elfcpp::E_MIPS_MACH_OCTEON:
12311 return "mips:octeon";
12312 case elfcpp::E_MIPS_MACH_OCTEON2:
12313 return "mips:octeon2";
12314 case elfcpp::E_MIPS_MACH_OCTEON3:
12315 return "mips:octeon3";
12316 case elfcpp::E_MIPS_MACH_XLR:
12317 return "mips:xlr";
12318 default:
12319 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12320 {
12321 default:
12322 case elfcpp::E_MIPS_ARCH_1:
12323 return "mips:3000";
12324
12325 case elfcpp::E_MIPS_ARCH_2:
12326 return "mips:6000";
12327
12328 case elfcpp::E_MIPS_ARCH_3:
12329 return "mips:4000";
12330
12331 case elfcpp::E_MIPS_ARCH_4:
12332 return "mips:8000";
12333
12334 case elfcpp::E_MIPS_ARCH_5:
12335 return "mips:mips5";
12336
12337 case elfcpp::E_MIPS_ARCH_32:
12338 return "mips:isa32";
12339
12340 case elfcpp::E_MIPS_ARCH_64:
12341 return "mips:isa64";
12342
12343 case elfcpp::E_MIPS_ARCH_32R2:
12344 return "mips:isa32r2";
12345
12346 case elfcpp::E_MIPS_ARCH_32R6:
12347 return "mips:isa32r6";
12348
12349 case elfcpp::E_MIPS_ARCH_64R2:
12350 return "mips:isa64r2";
12351
12352 case elfcpp::E_MIPS_ARCH_64R6:
12353 return "mips:isa64r6";
12354 }
12355 }
12356 return "unknown CPU";
12357 }
12358
12359 template<int size, bool big_endian>
12360 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12361 {
12362 size, // size
12363 big_endian, // is_big_endian
12364 elfcpp::EM_MIPS, // machine_code
12365 true, // has_make_symbol
12366 false, // has_resolve
12367 false, // has_code_fill
12368 true, // is_default_stack_executable
12369 false, // can_icf_inline_merge_sections
12370 '\0', // wrap_char
12371 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12372 0x400000, // default_text_segment_address
12373 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12374 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12375 false, // isolate_execinstr
12376 0, // rosegment_gap
12377 elfcpp::SHN_UNDEF, // small_common_shndx
12378 elfcpp::SHN_UNDEF, // large_common_shndx
12379 0, // small_common_section_flags
12380 0, // large_common_section_flags
12381 NULL, // attributes_section
12382 NULL, // attributes_vendor
12383 "__start", // entry_symbol_name
12384 32, // hash_entry_size
12385 };
12386
12387 template<int size, bool big_endian>
12388 class Target_mips_nacl : public Target_mips<size, big_endian>
12389 {
12390 public:
12391 Target_mips_nacl()
12392 : Target_mips<size, big_endian>(&mips_nacl_info)
12393 { }
12394
12395 private:
12396 static const Target::Target_info mips_nacl_info;
12397 };
12398
12399 template<int size, bool big_endian>
12400 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12401 {
12402 size, // size
12403 big_endian, // is_big_endian
12404 elfcpp::EM_MIPS, // machine_code
12405 true, // has_make_symbol
12406 false, // has_resolve
12407 false, // has_code_fill
12408 true, // is_default_stack_executable
12409 false, // can_icf_inline_merge_sections
12410 '\0', // wrap_char
12411 "/lib/ld.so.1", // dynamic_linker
12412 0x20000, // default_text_segment_address
12413 0x10000, // abi_pagesize (overridable by -z max-page-size)
12414 0x10000, // common_pagesize (overridable by -z common-page-size)
12415 true, // isolate_execinstr
12416 0x10000000, // rosegment_gap
12417 elfcpp::SHN_UNDEF, // small_common_shndx
12418 elfcpp::SHN_UNDEF, // large_common_shndx
12419 0, // small_common_section_flags
12420 0, // large_common_section_flags
12421 NULL, // attributes_section
12422 NULL, // attributes_vendor
12423 "_start", // entry_symbol_name
12424 32, // hash_entry_size
12425 };
12426
12427 // Target selector for Mips. Note this is never instantiated directly.
12428 // It's only used in Target_selector_mips_nacl, below.
12429
12430 template<int size, bool big_endian>
12431 class Target_selector_mips : public Target_selector
12432 {
12433 public:
12434 Target_selector_mips()
12435 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12436 (size == 64 ?
12437 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12438 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12439 (size == 64 ?
12440 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12441 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12442 { }
12443
12444 Target* do_instantiate_target()
12445 { return new Target_mips<size, big_endian>(); }
12446 };
12447
12448 template<int size, bool big_endian>
12449 class Target_selector_mips_nacl
12450 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12451 Target_mips_nacl<size, big_endian> >
12452 {
12453 public:
12454 Target_selector_mips_nacl()
12455 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12456 Target_mips_nacl<size, big_endian> >(
12457 // NaCl currently supports only MIPS32 little-endian.
12458 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12459 { }
12460 };
12461
12462 Target_selector_mips_nacl<32, true> target_selector_mips32;
12463 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12464 Target_selector_mips_nacl<64, true> target_selector_mips64;
12465 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12466
12467 } // End anonymous namespace.
This page took 0.526061 seconds and 4 git commands to generate.