Mips: Add support for resolving multiple consecutive relocations.
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_section_options;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_la25_stub;
71
72 template<int size, bool big_endian>
73 class Mips_output_data_mips_stubs;
74
75 template<int size>
76 class Mips_symbol;
77
78 template<int size, bool big_endian>
79 class Mips_got_info;
80
81 template<int size, bool big_endian>
82 class Mips_relobj;
83
84 class Mips16_stub_section_base;
85
86 template<int size, bool big_endian>
87 class Mips16_stub_section;
88
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry. Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache. The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
95
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning. We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only". Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
101 // relocations only.
102
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values. Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
106
107 enum Global_got_area
108 {
109 GGA_NORMAL = 0,
110 GGA_RELOC_ONLY = 1,
111 GGA_NONE = 2
112 };
113
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
118 enum Got_type
119 {
120 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
121 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
122 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
123
124 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125 GOT_TYPE_STANDARD_MULTIGOT = 3,
126 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
127 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
128 };
129
130 // TLS type of GOT entry.
131 enum Got_tls_type
132 {
133 GOT_TLS_NONE = 0,
134 GOT_TLS_GD = 1,
135 GOT_TLS_LDM = 2,
136 GOT_TLS_IE = 4
137 };
138
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
141 {
142 RSS_UNDEF = 0, // None - value is zero.
143 RSS_GP = 1, // Value of GP.
144 RSS_GP0 = 2, // Value of GP in object being relocated.
145 RSS_LOC = 3 // Address of location being relocated.
146 };
147
148 // Whether the section is readonly.
149 static inline bool
150 is_readonly_section(Output_section* output_section)
151 {
152 elfcpp::Elf_Xword section_flags = output_section->flags();
153 elfcpp::Elf_Word section_type = output_section->type();
154
155 if (section_type == elfcpp::SHT_NOBITS)
156 return false;
157
158 if (section_flags & elfcpp::SHF_WRITE)
159 return false;
160
161 return true;
162 }
163
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub. See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size, bool big_endian>
168 static inline bool
169 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
170 unsigned int r_type, bool target_is_16_bit_code)
171 {
172 // We specifically ignore branches and jumps from EF_PIC objects,
173 // where the onus is on the compiler or programmer to perform any
174 // necessary initialization of $25. Sometimes such initialization
175 // is unnecessary; for example, -mno-shared functions do not use
176 // the incoming value of $25, and may therefore be called directly.
177 if (object->is_pic())
178 return false;
179
180 switch (r_type)
181 {
182 case elfcpp::R_MIPS_26:
183 case elfcpp::R_MIPS_PC16:
184 case elfcpp::R_MIPS_PC21_S2:
185 case elfcpp::R_MIPS_PC26_S2:
186 case elfcpp::R_MICROMIPS_26_S1:
187 case elfcpp::R_MICROMIPS_PC7_S1:
188 case elfcpp::R_MICROMIPS_PC10_S1:
189 case elfcpp::R_MICROMIPS_PC16_S1:
190 case elfcpp::R_MICROMIPS_PC23_S2:
191 return true;
192
193 case elfcpp::R_MIPS16_26:
194 return !target_is_16_bit_code;
195
196 default:
197 return false;
198 }
199 }
200
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid. Only non-MIPS16
205 // entry points are of interest here.
206 template<int size, bool big_endian>
207 static inline bool
208 local_pic_function(Mips_symbol<size>* sym)
209 {
210 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
211 && !sym->object()->is_dynamic()
212 && !sym->is_undefined());
213
214 if (sym->is_defined() && def_regular)
215 {
216 Mips_relobj<size, big_endian>* object =
217 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
218
219 if ((object->is_pic() || sym->is_pic())
220 && (!sym->is_mips16()
221 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
222 return true;
223 }
224 return false;
225 }
226
227 static inline bool
228 hi16_reloc(int r_type)
229 {
230 return (r_type == elfcpp::R_MIPS_HI16
231 || r_type == elfcpp::R_MIPS16_HI16
232 || r_type == elfcpp::R_MICROMIPS_HI16
233 || r_type == elfcpp::R_MIPS_PCHI16);
234 }
235
236 static inline bool
237 lo16_reloc(int r_type)
238 {
239 return (r_type == elfcpp::R_MIPS_LO16
240 || r_type == elfcpp::R_MIPS16_LO16
241 || r_type == elfcpp::R_MICROMIPS_LO16
242 || r_type == elfcpp::R_MIPS_PCLO16);
243 }
244
245 static inline bool
246 got16_reloc(unsigned int r_type)
247 {
248 return (r_type == elfcpp::R_MIPS_GOT16
249 || r_type == elfcpp::R_MIPS16_GOT16
250 || r_type == elfcpp::R_MICROMIPS_GOT16);
251 }
252
253 static inline bool
254 call_lo16_reloc(unsigned int r_type)
255 {
256 return (r_type == elfcpp::R_MIPS_CALL_LO16
257 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
258 }
259
260 static inline bool
261 got_lo16_reloc(unsigned int r_type)
262 {
263 return (r_type == elfcpp::R_MIPS_GOT_LO16
264 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
265 }
266
267 static inline bool
268 eh_reloc(unsigned int r_type)
269 {
270 return (r_type == elfcpp::R_MIPS_EH);
271 }
272
273 static inline bool
274 got_disp_reloc(unsigned int r_type)
275 {
276 return (r_type == elfcpp::R_MIPS_GOT_DISP
277 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
278 }
279
280 static inline bool
281 got_page_reloc(unsigned int r_type)
282 {
283 return (r_type == elfcpp::R_MIPS_GOT_PAGE
284 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
285 }
286
287 static inline bool
288 tls_gd_reloc(unsigned int r_type)
289 {
290 return (r_type == elfcpp::R_MIPS_TLS_GD
291 || r_type == elfcpp::R_MIPS16_TLS_GD
292 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
293 }
294
295 static inline bool
296 tls_gottprel_reloc(unsigned int r_type)
297 {
298 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
299 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
300 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
301 }
302
303 static inline bool
304 tls_ldm_reloc(unsigned int r_type)
305 {
306 return (r_type == elfcpp::R_MIPS_TLS_LDM
307 || r_type == elfcpp::R_MIPS16_TLS_LDM
308 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
309 }
310
311 static inline bool
312 mips16_call_reloc(unsigned int r_type)
313 {
314 return (r_type == elfcpp::R_MIPS16_26
315 || r_type == elfcpp::R_MIPS16_CALL16);
316 }
317
318 static inline bool
319 jal_reloc(unsigned int r_type)
320 {
321 return (r_type == elfcpp::R_MIPS_26
322 || r_type == elfcpp::R_MIPS16_26
323 || r_type == elfcpp::R_MICROMIPS_26_S1);
324 }
325
326 static inline bool
327 micromips_branch_reloc(unsigned int r_type)
328 {
329 return (r_type == elfcpp::R_MICROMIPS_26_S1
330 || r_type == elfcpp::R_MICROMIPS_PC16_S1
331 || r_type == elfcpp::R_MICROMIPS_PC10_S1
332 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
333 }
334
335 // Check if R_TYPE is a MIPS16 reloc.
336 static inline bool
337 mips16_reloc(unsigned int r_type)
338 {
339 switch (r_type)
340 {
341 case elfcpp::R_MIPS16_26:
342 case elfcpp::R_MIPS16_GPREL:
343 case elfcpp::R_MIPS16_GOT16:
344 case elfcpp::R_MIPS16_CALL16:
345 case elfcpp::R_MIPS16_HI16:
346 case elfcpp::R_MIPS16_LO16:
347 case elfcpp::R_MIPS16_TLS_GD:
348 case elfcpp::R_MIPS16_TLS_LDM:
349 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
351 case elfcpp::R_MIPS16_TLS_GOTTPREL:
352 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
353 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
354 return true;
355
356 default:
357 return false;
358 }
359 }
360
361 // Check if R_TYPE is a microMIPS reloc.
362 static inline bool
363 micromips_reloc(unsigned int r_type)
364 {
365 switch (r_type)
366 {
367 case elfcpp::R_MICROMIPS_26_S1:
368 case elfcpp::R_MICROMIPS_HI16:
369 case elfcpp::R_MICROMIPS_LO16:
370 case elfcpp::R_MICROMIPS_GPREL16:
371 case elfcpp::R_MICROMIPS_LITERAL:
372 case elfcpp::R_MICROMIPS_GOT16:
373 case elfcpp::R_MICROMIPS_PC7_S1:
374 case elfcpp::R_MICROMIPS_PC10_S1:
375 case elfcpp::R_MICROMIPS_PC16_S1:
376 case elfcpp::R_MICROMIPS_CALL16:
377 case elfcpp::R_MICROMIPS_GOT_DISP:
378 case elfcpp::R_MICROMIPS_GOT_PAGE:
379 case elfcpp::R_MICROMIPS_GOT_OFST:
380 case elfcpp::R_MICROMIPS_GOT_HI16:
381 case elfcpp::R_MICROMIPS_GOT_LO16:
382 case elfcpp::R_MICROMIPS_SUB:
383 case elfcpp::R_MICROMIPS_HIGHER:
384 case elfcpp::R_MICROMIPS_HIGHEST:
385 case elfcpp::R_MICROMIPS_CALL_HI16:
386 case elfcpp::R_MICROMIPS_CALL_LO16:
387 case elfcpp::R_MICROMIPS_SCN_DISP:
388 case elfcpp::R_MICROMIPS_JALR:
389 case elfcpp::R_MICROMIPS_HI0_LO16:
390 case elfcpp::R_MICROMIPS_TLS_GD:
391 case elfcpp::R_MICROMIPS_TLS_LDM:
392 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
394 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
395 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
396 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
397 case elfcpp::R_MICROMIPS_GPREL7_S2:
398 case elfcpp::R_MICROMIPS_PC23_S2:
399 return true;
400
401 default:
402 return false;
403 }
404 }
405
406 static inline bool
407 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
408 {
409 switch (high_reloc)
410 {
411 case elfcpp::R_MIPS_HI16:
412 case elfcpp::R_MIPS_GOT16:
413 return lo16_reloc == elfcpp::R_MIPS_LO16;
414 case elfcpp::R_MIPS_PCHI16:
415 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
416 case elfcpp::R_MIPS16_HI16:
417 case elfcpp::R_MIPS16_GOT16:
418 return lo16_reloc == elfcpp::R_MIPS16_LO16;
419 case elfcpp::R_MICROMIPS_HI16:
420 case elfcpp::R_MICROMIPS_GOT16:
421 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
422 default:
423 return false;
424 }
425 }
426
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
429 //
430 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 // (2) a SYMBOL address, where SYMBOL is not local to an input object
433 // (sym != NULL, symndx == -1)
434 // (3) a TLS LDM slot (there's only one of these per GOT.)
435 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
436
437 template<int size, bool big_endian>
438 class Mips_got_entry
439 {
440 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
441
442 public:
443 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
444 Mips_address addend, unsigned char tls_type,
445 unsigned int shndx, bool is_section_symbol)
446 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
447 is_section_symbol_(is_section_symbol), shndx_(shndx)
448 { this->d.object = object; }
449
450 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
451 : addend_(0), symndx_(-1U), tls_type_(tls_type),
452 is_section_symbol_(false), shndx_(-1U)
453 { this->d.sym = sym; }
454
455 // Return whether this entry is for a local symbol.
456 bool
457 is_for_local_symbol() const
458 { return this->symndx_ != -1U; }
459
460 // Return whether this entry is for a global symbol.
461 bool
462 is_for_global_symbol() const
463 { return this->symndx_ == -1U; }
464
465 // Return the hash of this entry.
466 size_t
467 hash() const
468 {
469 if (this->tls_type_ == GOT_TLS_LDM)
470 return this->symndx_ + (1 << 18);
471
472 size_t name_hash_value = gold::string_hash<char>(
473 (this->symndx_ != -1U)
474 ? this->d.object->name().c_str()
475 : this->d.sym->name());
476 size_t addend = this->addend_;
477 return name_hash_value ^ this->symndx_ ^ addend;
478 }
479
480 // Return whether this entry is equal to OTHER.
481 bool
482 equals(Mips_got_entry<size, big_endian>* other) const
483 {
484 if (this->tls_type_ == GOT_TLS_LDM)
485 return true;
486
487 return ((this->tls_type_ == other->tls_type_)
488 && (this->symndx_ == other->symndx_)
489 && ((this->symndx_ != -1U)
490 ? (this->d.object == other->d.object)
491 : (this->d.sym == other->d.sym))
492 && (this->addend_ == other->addend_));
493 }
494
495 // Return input object that needs this GOT entry.
496 Mips_relobj<size, big_endian>*
497 object() const
498 {
499 gold_assert(this->symndx_ != -1U);
500 return this->d.object;
501 }
502
503 // Return local symbol index for local GOT entries.
504 unsigned int
505 symndx() const
506 {
507 gold_assert(this->symndx_ != -1U);
508 return this->symndx_;
509 }
510
511 // Return the relocation addend for local GOT entries.
512 Mips_address
513 addend() const
514 { return this->addend_; }
515
516 // Return global symbol for global GOT entries.
517 Mips_symbol<size>*
518 sym() const
519 {
520 gold_assert(this->symndx_ == -1U);
521 return this->d.sym;
522 }
523
524 // Return whether this is a TLS GOT entry.
525 bool
526 is_tls_entry() const
527 { return this->tls_type_ != GOT_TLS_NONE; }
528
529 // Return TLS type of this GOT entry.
530 unsigned char
531 tls_type() const
532 { return this->tls_type_; }
533
534 // Return section index of the local symbol for local GOT entries.
535 unsigned int
536 shndx() const
537 { return this->shndx_; }
538
539 // Return whether this is a STT_SECTION symbol.
540 bool
541 is_section_symbol() const
542 { return this->is_section_symbol_; }
543
544 private:
545 // The addend.
546 Mips_address addend_;
547
548 // The index of the symbol if we have a local symbol; -1 otherwise.
549 unsigned int symndx_;
550
551 union
552 {
553 // The input object for local symbols that needs the GOT entry.
554 Mips_relobj<size, big_endian>* object;
555 // If symndx == -1, the global symbol corresponding to this GOT entry. The
556 // symbol's entry is in the local area if mips_sym->global_got_area is
557 // GGA_NONE, otherwise it is in the global area.
558 Mips_symbol<size>* sym;
559 } d;
560
561 // The TLS type of this GOT entry. An LDM GOT entry will be a local
562 // symbol entry with r_symndx == 0.
563 unsigned char tls_type_;
564
565 // Whether this is a STT_SECTION symbol.
566 bool is_section_symbol_;
567
568 // For local GOT entries, section index of the local symbol.
569 unsigned int shndx_;
570 };
571
572 // Hash for Mips_got_entry.
573
574 template<int size, bool big_endian>
575 class Mips_got_entry_hash
576 {
577 public:
578 size_t
579 operator()(Mips_got_entry<size, big_endian>* entry) const
580 { return entry->hash(); }
581 };
582
583 // Equality for Mips_got_entry.
584
585 template<int size, bool big_endian>
586 class Mips_got_entry_eq
587 {
588 public:
589 bool
590 operator()(Mips_got_entry<size, big_endian>* e1,
591 Mips_got_entry<size, big_endian>* e2) const
592 { return e1->equals(e2); }
593 };
594
595 // Hash for Mips_symbol.
596
597 template<int size>
598 class Mips_symbol_hash
599 {
600 public:
601 size_t
602 operator()(Mips_symbol<size>* sym) const
603 { return sym->hash(); }
604 };
605
606 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
607 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
608 // increasing MIN_ADDEND.
609
610 struct Got_page_range
611 {
612 Got_page_range()
613 : next(NULL), min_addend(0), max_addend(0)
614 { }
615
616 Got_page_range* next;
617 int min_addend;
618 int max_addend;
619
620 // Return the maximum number of GOT page entries required.
621 int
622 get_max_pages()
623 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
624 };
625
626 // Got_page_entry. This class describes the range of addends that are applied
627 // to page relocations against a given symbol.
628
629 struct Got_page_entry
630 {
631 Got_page_entry()
632 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
633 { }
634
635 Got_page_entry(Object* object_, unsigned int symndx_)
636 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
637 { }
638
639 // The input object that needs the GOT page entry.
640 Object* object;
641 // The index of the symbol, as stored in the relocation r_info.
642 unsigned int symndx;
643 // The ranges for this page entry.
644 Got_page_range* ranges;
645 // The maximum number of page entries needed for RANGES.
646 unsigned int num_pages;
647 };
648
649 // Hash for Got_page_entry.
650
651 struct Got_page_entry_hash
652 {
653 size_t
654 operator()(Got_page_entry* entry) const
655 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
656 };
657
658 // Equality for Got_page_entry.
659
660 struct Got_page_entry_eq
661 {
662 bool
663 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
664 {
665 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
666 }
667 };
668
669 // This class is used to hold .got information when linking.
670
671 template<int size, bool big_endian>
672 class Mips_got_info
673 {
674 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
675 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
676 Reloc_section;
677 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
678
679 // Unordered set of GOT entries.
680 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
681 Mips_got_entry_hash<size, big_endian>,
682 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
683
684 // Unordered set of GOT page entries.
685 typedef Unordered_set<Got_page_entry*,
686 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
687
688 // Unordered set of global GOT entries.
689 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
690 Global_got_entry_set;
691
692 public:
693 Mips_got_info()
694 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
695 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
696 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
697 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
698 offset_(0)
699 { }
700
701 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
702 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
703 void
704 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
705 unsigned int symndx, Mips_address addend,
706 unsigned int r_type, unsigned int shndx,
707 bool is_section_symbol);
708
709 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
710 // in OBJECT. FOR_CALL is true if the caller is only interested in
711 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
712 // relocation.
713 void
714 record_global_got_symbol(Mips_symbol<size>* mips_sym,
715 Mips_relobj<size, big_endian>* object,
716 unsigned int r_type, bool dyn_reloc, bool for_call);
717
718 // Add ENTRY to master GOT and to OBJECT's GOT.
719 void
720 record_got_entry(Mips_got_entry<size, big_endian>* entry,
721 Mips_relobj<size, big_endian>* object);
722
723 // Record that OBJECT has a page relocation against symbol SYMNDX and
724 // that ADDEND is the addend for that relocation.
725 void
726 record_got_page_entry(Mips_relobj<size, big_endian>* object,
727 unsigned int symndx, int addend);
728
729 // Create all entries that should be in the local part of the GOT.
730 void
731 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
732
733 // Create GOT page entries.
734 void
735 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
736
737 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
738 void
739 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
740 unsigned int non_reloc_only_global_gotno);
741
742 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
743 void
744 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
745
746 // Create TLS GOT entries.
747 void
748 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
749
750 // Decide whether the symbol needs an entry in the global part of the primary
751 // GOT, setting global_got_area accordingly. Count the number of global
752 // symbols that are in the primary GOT only because they have dynamic
753 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
754 void
755 count_got_symbols(Symbol_table* symtab);
756
757 // Return the offset of GOT page entry for VALUE.
758 unsigned int
759 get_got_page_offset(Mips_address value,
760 Mips_output_data_got<size, big_endian>* got);
761
762 // Count the number of GOT entries required.
763 void
764 count_got_entries();
765
766 // Count the number of GOT entries required by ENTRY. Accumulate the result.
767 void
768 count_got_entry(Mips_got_entry<size, big_endian>* entry);
769
770 // Add FROM's GOT entries.
771 void
772 add_got_entries(Mips_got_info<size, big_endian>* from);
773
774 // Add FROM's GOT page entries.
775 void
776 add_got_page_entries(Mips_got_info<size, big_endian>* from);
777
778 // Return GOT size.
779 unsigned int
780 got_size() const
781 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
782 + this->tls_gotno_) * size/8);
783 }
784
785 // Return the number of local GOT entries.
786 unsigned int
787 local_gotno() const
788 { return this->local_gotno_; }
789
790 // Return the maximum number of page GOT entries needed.
791 unsigned int
792 page_gotno() const
793 { return this->page_gotno_; }
794
795 // Return the number of global GOT entries.
796 unsigned int
797 global_gotno() const
798 { return this->global_gotno_; }
799
800 // Set the number of global GOT entries.
801 void
802 set_global_gotno(unsigned int global_gotno)
803 { this->global_gotno_ = global_gotno; }
804
805 // Return the number of GGA_RELOC_ONLY global GOT entries.
806 unsigned int
807 reloc_only_gotno() const
808 { return this->reloc_only_gotno_; }
809
810 // Return the number of TLS GOT entries.
811 unsigned int
812 tls_gotno() const
813 { return this->tls_gotno_; }
814
815 // Return the GOT type for this GOT. Used for multi-GOT links only.
816 unsigned int
817 multigot_got_type(unsigned int got_type) const
818 {
819 switch (got_type)
820 {
821 case GOT_TYPE_STANDARD:
822 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
823 case GOT_TYPE_TLS_OFFSET:
824 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
825 case GOT_TYPE_TLS_PAIR:
826 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
827 default:
828 gold_unreachable();
829 }
830 }
831
832 // Remove lazy-binding stubs for global symbols in this GOT.
833 void
834 remove_lazy_stubs(Target_mips<size, big_endian>* target);
835
836 // Return offset of this GOT from the start of .got section.
837 unsigned int
838 offset() const
839 { return this->offset_; }
840
841 // Set offset of this GOT from the start of .got section.
842 void
843 set_offset(unsigned int offset)
844 { this->offset_ = offset; }
845
846 // Set index of this GOT in multi-GOT links.
847 void
848 set_index(unsigned int index)
849 { this->index_ = index; }
850
851 // Return next GOT in multi-GOT links.
852 Mips_got_info<size, big_endian>*
853 next() const
854 { return this->next_; }
855
856 // Set next GOT in multi-GOT links.
857 void
858 set_next(Mips_got_info<size, big_endian>* next)
859 { this->next_ = next; }
860
861 // Return the offset of TLS LDM entry for this GOT.
862 unsigned int
863 tls_ldm_offset() const
864 { return this->tls_ldm_offset_; }
865
866 // Set the offset of TLS LDM entry for this GOT.
867 void
868 set_tls_ldm_offset(unsigned int tls_ldm_offset)
869 { this->tls_ldm_offset_ = tls_ldm_offset; }
870
871 Global_got_entry_set&
872 global_got_symbols()
873 { return this->global_got_symbols_; }
874
875 // Return the GOT_TLS_* type required by relocation type R_TYPE.
876 static int
877 mips_elf_reloc_tls_type(unsigned int r_type)
878 {
879 if (tls_gd_reloc(r_type))
880 return GOT_TLS_GD;
881
882 if (tls_ldm_reloc(r_type))
883 return GOT_TLS_LDM;
884
885 if (tls_gottprel_reloc(r_type))
886 return GOT_TLS_IE;
887
888 return GOT_TLS_NONE;
889 }
890
891 // Return the number of GOT slots needed for GOT TLS type TYPE.
892 static int
893 mips_tls_got_entries(unsigned int type)
894 {
895 switch (type)
896 {
897 case GOT_TLS_GD:
898 case GOT_TLS_LDM:
899 return 2;
900
901 case GOT_TLS_IE:
902 return 1;
903
904 case GOT_TLS_NONE:
905 return 0;
906
907 default:
908 gold_unreachable();
909 }
910 }
911
912 private:
913 // The number of local GOT entries.
914 unsigned int local_gotno_;
915 // The maximum number of page GOT entries needed.
916 unsigned int page_gotno_;
917 // The number of global GOT entries.
918 unsigned int global_gotno_;
919 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
920 unsigned int reloc_only_gotno_;
921 // The number of TLS GOT entries.
922 unsigned int tls_gotno_;
923 // The offset of TLS LDM entry for this GOT.
924 unsigned int tls_ldm_offset_;
925 // All symbols that have global GOT entry.
926 Global_got_entry_set global_got_symbols_;
927 // A hash table holding GOT entries.
928 Got_entry_set got_entries_;
929 // A hash table of GOT page entries.
930 Got_page_entry_set got_page_entries_;
931 // The offset of first GOT page entry for this GOT.
932 unsigned int got_page_offset_start_;
933 // The offset of next available GOT page entry for this GOT.
934 unsigned int got_page_offset_next_;
935 // A hash table that maps GOT page entry value to the GOT offset where
936 // the entry is located.
937 Got_page_offsets got_page_offsets_;
938 // In multi-GOT links, a pointer to the next GOT.
939 Mips_got_info<size, big_endian>* next_;
940 // Index of this GOT in multi-GOT links.
941 unsigned int index_;
942 // The offset of this GOT in multi-GOT links.
943 unsigned int offset_;
944 };
945
946 // This is a helper class used during relocation scan. It records GOT16 addend.
947
948 template<int size, bool big_endian>
949 struct got16_addend
950 {
951 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
952
953 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
954 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
955 Mips_address _addend)
956 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
957 addend(_addend)
958 { }
959
960 const Sized_relobj_file<size, big_endian>* object;
961 unsigned int shndx;
962 unsigned int r_type;
963 unsigned int r_sym;
964 Mips_address addend;
965 };
966
967 // .MIPS.abiflags section content
968
969 template<bool big_endian>
970 struct Mips_abiflags
971 {
972 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
973 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
974 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
975
976 Mips_abiflags()
977 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
978 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
979 { }
980
981 // Version of flags structure.
982 Valtype16 version;
983 // The level of the ISA: 1-5, 32, 64.
984 Valtype8 isa_level;
985 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
986 Valtype8 isa_rev;
987 // The size of general purpose registers.
988 Valtype8 gpr_size;
989 // The size of co-processor 1 registers.
990 Valtype8 cpr1_size;
991 // The size of co-processor 2 registers.
992 Valtype8 cpr2_size;
993 // The floating-point ABI.
994 Valtype8 fp_abi;
995 // Processor-specific extension.
996 Valtype32 isa_ext;
997 // Mask of ASEs used.
998 Valtype32 ases;
999 // Mask of general flags.
1000 Valtype32 flags1;
1001 Valtype32 flags2;
1002 };
1003
1004 // Mips_symbol class. Holds additional symbol information needed for Mips.
1005
1006 template<int size>
1007 class Mips_symbol : public Sized_symbol<size>
1008 {
1009 public:
1010 Mips_symbol()
1011 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1012 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1013 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1014 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1015 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1016 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1017 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1018 { }
1019
1020 // Return whether this is a MIPS16 symbol.
1021 bool
1022 is_mips16() const
1023 {
1024 // (st_other & STO_MIPS16) == STO_MIPS16
1025 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1026 == elfcpp::STO_MIPS16 >> 2);
1027 }
1028
1029 // Return whether this is a microMIPS symbol.
1030 bool
1031 is_micromips() const
1032 {
1033 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1034 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1035 == elfcpp::STO_MICROMIPS >> 2);
1036 }
1037
1038 // Return whether the symbol needs MIPS16 fn_stub.
1039 bool
1040 need_fn_stub() const
1041 { return this->need_fn_stub_; }
1042
1043 // Set that the symbol needs MIPS16 fn_stub.
1044 void
1045 set_need_fn_stub()
1046 { this->need_fn_stub_ = true; }
1047
1048 // Return whether this symbol is referenced by branch relocations from
1049 // any non-PIC input file.
1050 bool
1051 has_nonpic_branches() const
1052 { return this->has_nonpic_branches_; }
1053
1054 // Set that this symbol is referenced by branch relocations from
1055 // any non-PIC input file.
1056 void
1057 set_has_nonpic_branches()
1058 { this->has_nonpic_branches_ = true; }
1059
1060 // Return the offset of the la25 stub for this symbol from the start of the
1061 // la25 stub section.
1062 unsigned int
1063 la25_stub_offset() const
1064 { return this->la25_stub_offset_; }
1065
1066 // Set the offset of the la25 stub for this symbol from the start of the
1067 // la25 stub section.
1068 void
1069 set_la25_stub_offset(unsigned int offset)
1070 { this->la25_stub_offset_ = offset; }
1071
1072 // Return whether the symbol has la25 stub. This is true if this symbol is
1073 // for a PIC function, and there are non-PIC branches and jumps to it.
1074 bool
1075 has_la25_stub() const
1076 { return this->la25_stub_offset_ != -1U; }
1077
1078 // Return whether there is a relocation against this symbol that must be
1079 // resolved by the static linker (that is, the relocation cannot possibly
1080 // be made dynamic).
1081 bool
1082 has_static_relocs() const
1083 { return this->has_static_relocs_; }
1084
1085 // Set that there is a relocation against this symbol that must be resolved
1086 // by the static linker (that is, the relocation cannot possibly be made
1087 // dynamic).
1088 void
1089 set_has_static_relocs()
1090 { this->has_static_relocs_ = true; }
1091
1092 // Return whether we must not create a lazy-binding stub for this symbol.
1093 bool
1094 no_lazy_stub() const
1095 { return this->no_lazy_stub_; }
1096
1097 // Set that we must not create a lazy-binding stub for this symbol.
1098 void
1099 set_no_lazy_stub()
1100 { this->no_lazy_stub_ = true; }
1101
1102 // Return the offset of the lazy-binding stub for this symbol from the start
1103 // of .MIPS.stubs section.
1104 unsigned int
1105 lazy_stub_offset() const
1106 { return this->lazy_stub_offset_; }
1107
1108 // Set the offset of the lazy-binding stub for this symbol from the start
1109 // of .MIPS.stubs section.
1110 void
1111 set_lazy_stub_offset(unsigned int offset)
1112 { this->lazy_stub_offset_ = offset; }
1113
1114 // Return whether there are any relocations for this symbol where
1115 // pointer equality matters.
1116 bool
1117 pointer_equality_needed() const
1118 { return this->pointer_equality_needed_; }
1119
1120 // Set that there are relocations for this symbol where pointer equality
1121 // matters.
1122 void
1123 set_pointer_equality_needed()
1124 { this->pointer_equality_needed_ = true; }
1125
1126 // Return global GOT area where this symbol in located.
1127 Global_got_area
1128 global_got_area() const
1129 { return this->global_got_area_; }
1130
1131 // Set global GOT area where this symbol in located.
1132 void
1133 set_global_got_area(Global_got_area global_got_area)
1134 { this->global_got_area_ = global_got_area; }
1135
1136 // Return the global GOT offset for this symbol. For multi-GOT links, this
1137 // returns the offset from the start of .got section to the first GOT entry
1138 // for the symbol. Note that in multi-GOT links the symbol can have entry
1139 // in more than one GOT.
1140 unsigned int
1141 global_gotoffset() const
1142 { return this->global_gotoffset_; }
1143
1144 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1145 // the symbol can have entry in more than one GOT. This method will set
1146 // the offset only if it is less than current offset.
1147 void
1148 set_global_gotoffset(unsigned int offset)
1149 {
1150 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1151 this->global_gotoffset_ = offset;
1152 }
1153
1154 // Return whether all GOT relocations for this symbol are for calls.
1155 bool
1156 got_only_for_calls() const
1157 { return this->got_only_for_calls_; }
1158
1159 // Set that there is a GOT relocation for this symbol that is not for call.
1160 void
1161 set_got_not_only_for_calls()
1162 { this->got_only_for_calls_ = false; }
1163
1164 // Return whether this is a PIC symbol.
1165 bool
1166 is_pic() const
1167 {
1168 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1169 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1170 == (elfcpp::STO_MIPS_PIC >> 2));
1171 }
1172
1173 // Set the flag in st_other field that marks this symbol as PIC.
1174 void
1175 set_pic()
1176 {
1177 if (this->is_mips16())
1178 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1179 this->set_nonvis((this->nonvis()
1180 & ~((elfcpp::STO_MIPS16 >> 2)
1181 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1182 | (elfcpp::STO_MIPS_PIC >> 2));
1183 else
1184 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1185 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1186 | (elfcpp::STO_MIPS_PIC >> 2));
1187 }
1188
1189 // Set the flag in st_other field that marks this symbol as PLT.
1190 void
1191 set_mips_plt()
1192 {
1193 if (this->is_mips16())
1194 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1195 this->set_nonvis((this->nonvis()
1196 & ((elfcpp::STO_MIPS16 >> 2)
1197 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1198 | (elfcpp::STO_MIPS_PLT >> 2));
1199
1200 else
1201 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1202 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1203 | (elfcpp::STO_MIPS_PLT >> 2));
1204 }
1205
1206 // Downcast a base pointer to a Mips_symbol pointer.
1207 static Mips_symbol<size>*
1208 as_mips_sym(Symbol* sym)
1209 { return static_cast<Mips_symbol<size>*>(sym); }
1210
1211 // Downcast a base pointer to a Mips_symbol pointer.
1212 static const Mips_symbol<size>*
1213 as_mips_sym(const Symbol* sym)
1214 { return static_cast<const Mips_symbol<size>*>(sym); }
1215
1216 // Return whether the symbol has lazy-binding stub.
1217 bool
1218 has_lazy_stub() const
1219 { return this->has_lazy_stub_; }
1220
1221 // Set whether the symbol has lazy-binding stub.
1222 void
1223 set_has_lazy_stub(bool has_lazy_stub)
1224 { this->has_lazy_stub_ = has_lazy_stub; }
1225
1226 // Return whether the symbol needs a standard PLT entry.
1227 bool
1228 needs_mips_plt() const
1229 { return this->needs_mips_plt_; }
1230
1231 // Set whether the symbol needs a standard PLT entry.
1232 void
1233 set_needs_mips_plt(bool needs_mips_plt)
1234 { this->needs_mips_plt_ = needs_mips_plt; }
1235
1236 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1237 // entry.
1238 bool
1239 needs_comp_plt() const
1240 { return this->needs_comp_plt_; }
1241
1242 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1243 void
1244 set_needs_comp_plt(bool needs_comp_plt)
1245 { this->needs_comp_plt_ = needs_comp_plt; }
1246
1247 // Return standard PLT entry offset, or -1 if none.
1248 unsigned int
1249 mips_plt_offset() const
1250 { return this->mips_plt_offset_; }
1251
1252 // Set standard PLT entry offset.
1253 void
1254 set_mips_plt_offset(unsigned int mips_plt_offset)
1255 { this->mips_plt_offset_ = mips_plt_offset; }
1256
1257 // Return whether the symbol has standard PLT entry.
1258 bool
1259 has_mips_plt_offset() const
1260 { return this->mips_plt_offset_ != -1U; }
1261
1262 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1263 unsigned int
1264 comp_plt_offset() const
1265 { return this->comp_plt_offset_; }
1266
1267 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1268 void
1269 set_comp_plt_offset(unsigned int comp_plt_offset)
1270 { this->comp_plt_offset_ = comp_plt_offset; }
1271
1272 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1273 bool
1274 has_comp_plt_offset() const
1275 { return this->comp_plt_offset_ != -1U; }
1276
1277 // Return MIPS16 fn stub for a symbol.
1278 template<bool big_endian>
1279 Mips16_stub_section<size, big_endian>*
1280 get_mips16_fn_stub() const
1281 {
1282 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1283 }
1284
1285 // Set MIPS16 fn stub for a symbol.
1286 void
1287 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1288 { this->mips16_fn_stub_ = stub; }
1289
1290 // Return whether symbol has MIPS16 fn stub.
1291 bool
1292 has_mips16_fn_stub() const
1293 { return this->mips16_fn_stub_ != NULL; }
1294
1295 // Return MIPS16 call stub for a symbol.
1296 template<bool big_endian>
1297 Mips16_stub_section<size, big_endian>*
1298 get_mips16_call_stub() const
1299 {
1300 return static_cast<Mips16_stub_section<size, big_endian>*>(
1301 mips16_call_stub_);
1302 }
1303
1304 // Set MIPS16 call stub for a symbol.
1305 void
1306 set_mips16_call_stub(Mips16_stub_section_base* stub)
1307 { this->mips16_call_stub_ = stub; }
1308
1309 // Return whether symbol has MIPS16 call stub.
1310 bool
1311 has_mips16_call_stub() const
1312 { return this->mips16_call_stub_ != NULL; }
1313
1314 // Return MIPS16 call_fp stub for a symbol.
1315 template<bool big_endian>
1316 Mips16_stub_section<size, big_endian>*
1317 get_mips16_call_fp_stub() const
1318 {
1319 return static_cast<Mips16_stub_section<size, big_endian>*>(
1320 mips16_call_fp_stub_);
1321 }
1322
1323 // Set MIPS16 call_fp stub for a symbol.
1324 void
1325 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1326 { this->mips16_call_fp_stub_ = stub; }
1327
1328 // Return whether symbol has MIPS16 call_fp stub.
1329 bool
1330 has_mips16_call_fp_stub() const
1331 { return this->mips16_call_fp_stub_ != NULL; }
1332
1333 bool
1334 get_applied_secondary_got_fixup() const
1335 { return applied_secondary_got_fixup_; }
1336
1337 void
1338 set_applied_secondary_got_fixup()
1339 { this->applied_secondary_got_fixup_ = true; }
1340
1341 // Return the hash of this symbol.
1342 size_t
1343 hash() const
1344 {
1345 return gold::string_hash<char>(this->name());
1346 }
1347
1348 private:
1349 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1350 // appears in any relocs other than a 16 bit call.
1351 bool need_fn_stub_;
1352
1353 // True if this symbol is referenced by branch relocations from
1354 // any non-PIC input file. This is used to determine whether an
1355 // la25 stub is required.
1356 bool has_nonpic_branches_;
1357
1358 // The offset of the la25 stub for this symbol from the start of the
1359 // la25 stub section.
1360 unsigned int la25_stub_offset_;
1361
1362 // True if there is a relocation against this symbol that must be
1363 // resolved by the static linker (that is, the relocation cannot
1364 // possibly be made dynamic).
1365 bool has_static_relocs_;
1366
1367 // Whether we must not create a lazy-binding stub for this symbol.
1368 // This is true if the symbol has relocations related to taking the
1369 // function's address.
1370 bool no_lazy_stub_;
1371
1372 // The offset of the lazy-binding stub for this symbol from the start of
1373 // .MIPS.stubs section.
1374 unsigned int lazy_stub_offset_;
1375
1376 // True if there are any relocations for this symbol where pointer equality
1377 // matters.
1378 bool pointer_equality_needed_;
1379
1380 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1381 // in the global part of the GOT.
1382 Global_got_area global_got_area_;
1383
1384 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1385 // from the start of .got section to the first GOT entry for the symbol.
1386 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1387 unsigned int global_gotoffset_;
1388
1389 // Whether all GOT relocations for this symbol are for calls.
1390 bool got_only_for_calls_;
1391 // Whether the symbol has lazy-binding stub.
1392 bool has_lazy_stub_;
1393 // Whether the symbol needs a standard PLT entry.
1394 bool needs_mips_plt_;
1395 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1396 bool needs_comp_plt_;
1397 // Standard PLT entry offset, or -1 if none.
1398 unsigned int mips_plt_offset_;
1399 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1400 unsigned int comp_plt_offset_;
1401 // MIPS16 fn stub for a symbol.
1402 Mips16_stub_section_base* mips16_fn_stub_;
1403 // MIPS16 call stub for a symbol.
1404 Mips16_stub_section_base* mips16_call_stub_;
1405 // MIPS16 call_fp stub for a symbol.
1406 Mips16_stub_section_base* mips16_call_fp_stub_;
1407
1408 bool applied_secondary_got_fixup_;
1409 };
1410
1411 // Mips16_stub_section class.
1412
1413 // The mips16 compiler uses a couple of special sections to handle
1414 // floating point arguments.
1415
1416 // Section names that look like .mips16.fn.FNNAME contain stubs that
1417 // copy floating point arguments from the fp regs to the gp regs and
1418 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1419 // call should be redirected to the stub instead. If no 32 bit
1420 // function calls FNNAME, the stub should be discarded. We need to
1421 // consider any reference to the function, not just a call, because
1422 // if the address of the function is taken we will need the stub,
1423 // since the address might be passed to a 32 bit function.
1424
1425 // Section names that look like .mips16.call.FNNAME contain stubs
1426 // that copy floating point arguments from the gp regs to the fp
1427 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1428 // then any 16 bit function that calls FNNAME should be redirected
1429 // to the stub instead. If FNNAME is not a 32 bit function, the
1430 // stub should be discarded.
1431
1432 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1433 // which call FNNAME and then copy the return value from the fp regs
1434 // to the gp regs. These stubs store the return address in $18 while
1435 // calling FNNAME; any function which might call one of these stubs
1436 // must arrange to save $18 around the call. (This case is not
1437 // needed for 32 bit functions that call 16 bit functions, because
1438 // 16 bit functions always return floating point values in both
1439 // $f0/$f1 and $2/$3.)
1440
1441 // Note that in all cases FNNAME might be defined statically.
1442 // Therefore, FNNAME is not used literally. Instead, the relocation
1443 // information will indicate which symbol the section is for.
1444
1445 // We record any stubs that we find in the symbol table.
1446
1447 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1448
1449 class Mips16_stub_section_base { };
1450
1451 template<int size, bool big_endian>
1452 class Mips16_stub_section : public Mips16_stub_section_base
1453 {
1454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1455
1456 public:
1457 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1458 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1459 found_r_mips_none_(false)
1460 {
1461 gold_assert(object->is_mips16_fn_stub_section(shndx)
1462 || object->is_mips16_call_stub_section(shndx)
1463 || object->is_mips16_call_fp_stub_section(shndx));
1464 }
1465
1466 // Return the object of this stub section.
1467 Mips_relobj<size, big_endian>*
1468 object() const
1469 { return this->object_; }
1470
1471 // Return the size of a section.
1472 uint64_t
1473 section_size() const
1474 { return this->object_->section_size(this->shndx_); }
1475
1476 // Return section index of this stub section.
1477 unsigned int
1478 shndx() const
1479 { return this->shndx_; }
1480
1481 // Return symbol index, if stub is for a local function.
1482 unsigned int
1483 r_sym() const
1484 { return this->r_sym_; }
1485
1486 // Return symbol, if stub is for a global function.
1487 Mips_symbol<size>*
1488 gsym() const
1489 { return this->gsym_; }
1490
1491 // Return whether stub is for a local function.
1492 bool
1493 is_for_local_function() const
1494 { return this->gsym_ == NULL; }
1495
1496 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1497 // is found in the stub section. Try to find stub target.
1498 void
1499 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1500 {
1501 // To find target symbol for this stub, trust the first R_MIPS_NONE
1502 // relocation, if any. Otherwise trust the first relocation, whatever
1503 // its kind.
1504 if (this->found_r_mips_none_)
1505 return;
1506 if (r_type == elfcpp::R_MIPS_NONE)
1507 {
1508 this->r_sym_ = r_sym;
1509 this->gsym_ = NULL;
1510 this->found_r_mips_none_ = true;
1511 }
1512 else if (!is_target_found())
1513 this->r_sym_ = r_sym;
1514 }
1515
1516 // This method is called when a new relocation R_TYPE for global symbol GSYM
1517 // is found in the stub section. Try to find stub target.
1518 void
1519 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1520 {
1521 // To find target symbol for this stub, trust the first R_MIPS_NONE
1522 // relocation, if any. Otherwise trust the first relocation, whatever
1523 // its kind.
1524 if (this->found_r_mips_none_)
1525 return;
1526 if (r_type == elfcpp::R_MIPS_NONE)
1527 {
1528 this->gsym_ = gsym;
1529 this->r_sym_ = 0;
1530 this->found_r_mips_none_ = true;
1531 }
1532 else if (!is_target_found())
1533 this->gsym_ = gsym;
1534 }
1535
1536 // Return whether we found the stub target.
1537 bool
1538 is_target_found() const
1539 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1540
1541 // Return whether this is a fn stub.
1542 bool
1543 is_fn_stub() const
1544 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1545
1546 // Return whether this is a call stub.
1547 bool
1548 is_call_stub() const
1549 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1550
1551 // Return whether this is a call_fp stub.
1552 bool
1553 is_call_fp_stub() const
1554 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1555
1556 // Return the output address.
1557 Mips_address
1558 output_address() const
1559 {
1560 return (this->object_->output_section(this->shndx_)->address()
1561 + this->object_->output_section_offset(this->shndx_));
1562 }
1563
1564 private:
1565 // The object of this stub section.
1566 Mips_relobj<size, big_endian>* object_;
1567 // The section index of this stub section.
1568 unsigned int shndx_;
1569 // The symbol index, if stub is for a local function.
1570 unsigned int r_sym_;
1571 // The symbol, if stub is for a global function.
1572 Mips_symbol<size>* gsym_;
1573 // True if we found R_MIPS_NONE relocation in this stub.
1574 bool found_r_mips_none_;
1575 };
1576
1577 // Mips_relobj class.
1578
1579 template<int size, bool big_endian>
1580 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1581 {
1582 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1583 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1584 Mips16_stubs_int_map;
1585 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1586
1587 public:
1588 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1589 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1590 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1591 processor_specific_flags_(0), local_symbol_is_mips16_(),
1592 local_symbol_is_micromips_(), mips16_stub_sections_(),
1593 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1594 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1595 got_info_(NULL), section_is_mips16_fn_stub_(),
1596 section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1597 pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1598 gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1599 {
1600 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1601 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1602 }
1603
1604 ~Mips_relobj()
1605 { delete this->attributes_section_data_; }
1606
1607 // Downcast a base pointer to a Mips_relobj pointer. This is
1608 // not type-safe but we only use Mips_relobj not the base class.
1609 static Mips_relobj<size, big_endian>*
1610 as_mips_relobj(Relobj* relobj)
1611 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1612
1613 // Downcast a base pointer to a Mips_relobj pointer. This is
1614 // not type-safe but we only use Mips_relobj not the base class.
1615 static const Mips_relobj<size, big_endian>*
1616 as_mips_relobj(const Relobj* relobj)
1617 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1618
1619 // Processor-specific flags in ELF file header. This is valid only after
1620 // reading symbols.
1621 elfcpp::Elf_Word
1622 processor_specific_flags() const
1623 { return this->processor_specific_flags_; }
1624
1625 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1626 // index. This is only valid after do_count_local_symbol is called.
1627 bool
1628 local_symbol_is_mips16(unsigned int r_sym) const
1629 {
1630 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1631 return this->local_symbol_is_mips16_[r_sym];
1632 }
1633
1634 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1635 // index. This is only valid after do_count_local_symbol is called.
1636 bool
1637 local_symbol_is_micromips(unsigned int r_sym) const
1638 {
1639 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1640 return this->local_symbol_is_micromips_[r_sym];
1641 }
1642
1643 // Get or create MIPS16 stub section.
1644 Mips16_stub_section<size, big_endian>*
1645 get_mips16_stub_section(unsigned int shndx)
1646 {
1647 typename Mips16_stubs_int_map::const_iterator it =
1648 this->mips16_stub_sections_.find(shndx);
1649 if (it != this->mips16_stub_sections_.end())
1650 return (*it).second;
1651
1652 Mips16_stub_section<size, big_endian>* stub_section =
1653 new Mips16_stub_section<size, big_endian>(this, shndx);
1654 this->mips16_stub_sections_.insert(
1655 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1656 stub_section->shndx(), stub_section));
1657 return stub_section;
1658 }
1659
1660 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1661 // object doesn't have fn stub for R_SYM.
1662 Mips16_stub_section<size, big_endian>*
1663 get_local_mips16_fn_stub(unsigned int r_sym) const
1664 {
1665 typename Mips16_stubs_int_map::const_iterator it =
1666 this->local_mips16_fn_stubs_.find(r_sym);
1667 if (it != this->local_mips16_fn_stubs_.end())
1668 return (*it).second;
1669 return NULL;
1670 }
1671
1672 // Record that this object has MIPS16 fn stub for local symbol. This method
1673 // is only called if we decided not to discard the stub.
1674 void
1675 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1676 {
1677 gold_assert(stub->is_for_local_function());
1678 unsigned int r_sym = stub->r_sym();
1679 this->local_mips16_fn_stubs_.insert(
1680 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1681 r_sym, stub));
1682 }
1683
1684 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1685 // object doesn't have call stub for R_SYM.
1686 Mips16_stub_section<size, big_endian>*
1687 get_local_mips16_call_stub(unsigned int r_sym) const
1688 {
1689 typename Mips16_stubs_int_map::const_iterator it =
1690 this->local_mips16_call_stubs_.find(r_sym);
1691 if (it != this->local_mips16_call_stubs_.end())
1692 return (*it).second;
1693 return NULL;
1694 }
1695
1696 // Record that this object has MIPS16 call stub for local symbol. This method
1697 // is only called if we decided not to discard the stub.
1698 void
1699 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1700 {
1701 gold_assert(stub->is_for_local_function());
1702 unsigned int r_sym = stub->r_sym();
1703 this->local_mips16_call_stubs_.insert(
1704 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1705 r_sym, stub));
1706 }
1707
1708 // Record that we found "non 16-bit" call relocation against local symbol
1709 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1710 // is one.
1711 void
1712 add_local_non_16bit_call(unsigned int symndx)
1713 { this->local_non_16bit_calls_.insert(symndx); }
1714
1715 // Return true if there is any "non 16-bit" call relocation against local
1716 // symbol SYMNDX in this object.
1717 bool
1718 has_local_non_16bit_call_relocs(unsigned int symndx)
1719 {
1720 return (this->local_non_16bit_calls_.find(symndx)
1721 != this->local_non_16bit_calls_.end());
1722 }
1723
1724 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1725 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1726 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1727 void
1728 add_local_16bit_call(unsigned int symndx)
1729 { this->local_16bit_calls_.insert(symndx); }
1730
1731 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1732 // symbol SYMNDX in this object.
1733 bool
1734 has_local_16bit_call_relocs(unsigned int symndx)
1735 {
1736 return (this->local_16bit_calls_.find(symndx)
1737 != this->local_16bit_calls_.end());
1738 }
1739
1740 // Get gp value that was used to create this object.
1741 Mips_address
1742 gp_value() const
1743 { return this->gp_; }
1744
1745 // Return whether the object is a PIC object.
1746 bool
1747 is_pic() const
1748 { return this->is_pic_; }
1749
1750 // Return whether the object uses N32 ABI.
1751 bool
1752 is_n32() const
1753 { return this->is_n32_; }
1754
1755 // Return whether the object uses N64 ABI.
1756 bool
1757 is_n64() const
1758 { return size == 64; }
1759
1760 // Return whether the object uses NewABI conventions.
1761 bool
1762 is_newabi() const
1763 { return this->is_n32() || this->is_n64(); }
1764
1765 // Return Mips_got_info for this object.
1766 Mips_got_info<size, big_endian>*
1767 get_got_info() const
1768 { return this->got_info_; }
1769
1770 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1771 Mips_got_info<size, big_endian>*
1772 get_or_create_got_info()
1773 {
1774 if (!this->got_info_)
1775 this->got_info_ = new Mips_got_info<size, big_endian>();
1776 return this->got_info_;
1777 }
1778
1779 // Set Mips_got_info for this object.
1780 void
1781 set_got_info(Mips_got_info<size, big_endian>* got_info)
1782 { this->got_info_ = got_info; }
1783
1784 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1785 // after do_read_symbols is called.
1786 bool
1787 is_mips16_stub_section(unsigned int shndx)
1788 {
1789 return (is_mips16_fn_stub_section(shndx)
1790 || is_mips16_call_stub_section(shndx)
1791 || is_mips16_call_fp_stub_section(shndx));
1792 }
1793
1794 // Return TRUE if relocations in section SHNDX can refer directly to a
1795 // MIPS16 function rather than to a hard-float stub. This is only valid
1796 // after do_read_symbols is called.
1797 bool
1798 section_allows_mips16_refs(unsigned int shndx)
1799 {
1800 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1801 }
1802
1803 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1804 // after do_read_symbols is called.
1805 bool
1806 is_mips16_fn_stub_section(unsigned int shndx)
1807 {
1808 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1809 return this->section_is_mips16_fn_stub_[shndx];
1810 }
1811
1812 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1813 // after do_read_symbols is called.
1814 bool
1815 is_mips16_call_stub_section(unsigned int shndx)
1816 {
1817 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1818 return this->section_is_mips16_call_stub_[shndx];
1819 }
1820
1821 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1822 // valid after do_read_symbols is called.
1823 bool
1824 is_mips16_call_fp_stub_section(unsigned int shndx)
1825 {
1826 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1827 return this->section_is_mips16_call_fp_stub_[shndx];
1828 }
1829
1830 // Discard MIPS16 stub secions that are not needed.
1831 void
1832 discard_mips16_stub_sections(Symbol_table* symtab);
1833
1834 // Return whether there is a .reginfo section.
1835 bool
1836 has_reginfo_section() const
1837 { return this->has_reginfo_section_; }
1838
1839 // Return gprmask from the .reginfo section of this object.
1840 Valtype
1841 gprmask() const
1842 { return this->gprmask_; }
1843
1844 // Return cprmask1 from the .reginfo section of this object.
1845 Valtype
1846 cprmask1() const
1847 { return this->cprmask1_; }
1848
1849 // Return cprmask2 from the .reginfo section of this object.
1850 Valtype
1851 cprmask2() const
1852 { return this->cprmask2_; }
1853
1854 // Return cprmask3 from the .reginfo section of this object.
1855 Valtype
1856 cprmask3() const
1857 { return this->cprmask3_; }
1858
1859 // Return cprmask4 from the .reginfo section of this object.
1860 Valtype
1861 cprmask4() const
1862 { return this->cprmask4_; }
1863
1864 // This is the contents of the .MIPS.abiflags section if there is one.
1865 Mips_abiflags<big_endian>*
1866 abiflags()
1867 { return this->abiflags_; }
1868
1869 // This is the contents of the .gnu.attribute section if there is one.
1870 const Attributes_section_data*
1871 attributes_section_data() const
1872 { return this->attributes_section_data_; }
1873
1874 protected:
1875 // Count the local symbols.
1876 void
1877 do_count_local_symbols(Stringpool_template<char>*,
1878 Stringpool_template<char>*);
1879
1880 // Read the symbol information.
1881 void
1882 do_read_symbols(Read_symbols_data* sd);
1883
1884 private:
1885 // The name of the options section.
1886 const char* mips_elf_options_section_name()
1887 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1888
1889 // processor-specific flags in ELF file header.
1890 elfcpp::Elf_Word processor_specific_flags_;
1891
1892 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1893 // This is only valid after do_count_local_symbol is called.
1894 std::vector<bool> local_symbol_is_mips16_;
1895
1896 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1897 // This is only valid after do_count_local_symbol is called.
1898 std::vector<bool> local_symbol_is_micromips_;
1899
1900 // Map from section index to the MIPS16 stub for that section. This contains
1901 // all stubs found in this object.
1902 Mips16_stubs_int_map mips16_stub_sections_;
1903
1904 // Local symbols that have "non 16-bit" call relocation. This relocation
1905 // would need to refer to a MIPS16 fn stub, if there is one.
1906 std::set<unsigned int> local_non_16bit_calls_;
1907
1908 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1909 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1910 // relocation that refers to the stub symbol.
1911 std::set<unsigned int> local_16bit_calls_;
1912
1913 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1914 // This contains only the stubs that we decided not to discard.
1915 Mips16_stubs_int_map local_mips16_fn_stubs_;
1916
1917 // Map from local symbol index to the MIPS16 call stub for that symbol.
1918 // This contains only the stubs that we decided not to discard.
1919 Mips16_stubs_int_map local_mips16_call_stubs_;
1920
1921 // gp value that was used to create this object.
1922 Mips_address gp_;
1923 // Whether the object is a PIC object.
1924 bool is_pic_ : 1;
1925 // Whether the object uses N32 ABI.
1926 bool is_n32_ : 1;
1927 // Whether the object contains a .reginfo section.
1928 bool has_reginfo_section_ : 1;
1929 // The Mips_got_info for this object.
1930 Mips_got_info<size, big_endian>* got_info_;
1931
1932 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1933 // This is only valid after do_read_symbols is called.
1934 std::vector<bool> section_is_mips16_fn_stub_;
1935
1936 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1937 // This is only valid after do_read_symbols is called.
1938 std::vector<bool> section_is_mips16_call_stub_;
1939
1940 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1941 // This is only valid after do_read_symbols is called.
1942 std::vector<bool> section_is_mips16_call_fp_stub_;
1943
1944 // .pdr section index.
1945 unsigned int pdr_shndx_;
1946
1947 // Object attributes if there is a .gnu.attributes section or NULL.
1948 Attributes_section_data* attributes_section_data_;
1949
1950 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1951 Mips_abiflags<big_endian>* abiflags_;
1952
1953 // gprmask from the .reginfo section of this object.
1954 Valtype gprmask_;
1955 // cprmask1 from the .reginfo section of this object.
1956 Valtype cprmask1_;
1957 // cprmask2 from the .reginfo section of this object.
1958 Valtype cprmask2_;
1959 // cprmask3 from the .reginfo section of this object.
1960 Valtype cprmask3_;
1961 // cprmask4 from the .reginfo section of this object.
1962 Valtype cprmask4_;
1963 };
1964
1965 // Mips_output_data_got class.
1966
1967 template<int size, bool big_endian>
1968 class Mips_output_data_got : public Output_data_got<size, big_endian>
1969 {
1970 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1971 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1972 Reloc_section;
1973 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1974
1975 public:
1976 Mips_output_data_got(Target_mips<size, big_endian>* target,
1977 Symbol_table* symtab, Layout* layout)
1978 : Output_data_got<size, big_endian>(), target_(target),
1979 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1980 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1981 secondary_got_relocs_()
1982 {
1983 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1984 this->set_addralign(16);
1985 }
1986
1987 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1988 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1989 void
1990 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1991 unsigned int symndx, Mips_address addend,
1992 unsigned int r_type, unsigned int shndx,
1993 bool is_section_symbol)
1994 {
1995 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1996 r_type, shndx,
1997 is_section_symbol);
1998 }
1999
2000 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2001 // in OBJECT. FOR_CALL is true if the caller is only interested in
2002 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2003 // relocation.
2004 void
2005 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2006 Mips_relobj<size, big_endian>* object,
2007 unsigned int r_type, bool dyn_reloc, bool for_call)
2008 {
2009 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2010 dyn_reloc, for_call);
2011 }
2012
2013 // Record that OBJECT has a page relocation against symbol SYMNDX and
2014 // that ADDEND is the addend for that relocation.
2015 void
2016 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2017 unsigned int symndx, int addend)
2018 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2019
2020 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2021 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2022 // applied in a static link.
2023 void
2024 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2025 Mips_symbol<size>* gsym)
2026 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2027
2028 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2029 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2030 // relocation that needs to be applied in a static link.
2031 void
2032 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2033 Sized_relobj_file<size, big_endian>* relobj,
2034 unsigned int index)
2035 {
2036 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2037 index));
2038 }
2039
2040 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2041 // secondary GOT at OFFSET.
2042 void
2043 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2044 Mips_symbol<size>* gsym)
2045 {
2046 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2047 r_type, gsym));
2048 }
2049
2050 // Update GOT entry at OFFSET with VALUE.
2051 void
2052 update_got_entry(unsigned int offset, Mips_address value)
2053 {
2054 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2055 }
2056
2057 // Return the number of entries in local part of the GOT. This includes
2058 // local entries, page entries and 2 reserved entries.
2059 unsigned int
2060 get_local_gotno() const
2061 {
2062 if (!this->multi_got())
2063 {
2064 return (2 + this->master_got_info_->local_gotno()
2065 + this->master_got_info_->page_gotno());
2066 }
2067 else
2068 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2069 }
2070
2071 // Return dynamic symbol table index of the first symbol with global GOT
2072 // entry.
2073 unsigned int
2074 first_global_got_dynsym_index() const
2075 { return this->first_global_got_dynsym_index_; }
2076
2077 // Set dynamic symbol table index of the first symbol with global GOT entry.
2078 void
2079 set_first_global_got_dynsym_index(unsigned int index)
2080 { this->first_global_got_dynsym_index_ = index; }
2081
2082 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2083 // larger than 64K, create multi-GOT.
2084 void
2085 lay_out_got(Layout* layout, Symbol_table* symtab,
2086 const Input_objects* input_objects);
2087
2088 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2089 void
2090 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2091
2092 // Attempt to merge GOTs of different input objects.
2093 void
2094 merge_gots(const Input_objects* input_objects);
2095
2096 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2097 // this would lead to overflow, true if they were merged successfully.
2098 bool
2099 merge_got_with(Mips_got_info<size, big_endian>* from,
2100 Mips_relobj<size, big_endian>* object,
2101 Mips_got_info<size, big_endian>* to);
2102
2103 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2104 // use OBJECT's GOT.
2105 unsigned int
2106 get_got_page_offset(Mips_address value,
2107 const Mips_relobj<size, big_endian>* object)
2108 {
2109 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2110 ? this->master_got_info_
2111 : object->get_got_info());
2112 gold_assert(g != NULL);
2113 return g->get_got_page_offset(value, this);
2114 }
2115
2116 // Return the GOT offset of type GOT_TYPE of the global symbol
2117 // GSYM. For multi-GOT links, use OBJECT's GOT.
2118 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2119 Mips_relobj<size, big_endian>* object) const
2120 {
2121 if (!this->multi_got())
2122 return gsym->got_offset(got_type);
2123 else
2124 {
2125 Mips_got_info<size, big_endian>* g = object->get_got_info();
2126 gold_assert(g != NULL);
2127 return gsym->got_offset(g->multigot_got_type(got_type));
2128 }
2129 }
2130
2131 // Return the GOT offset of type GOT_TYPE of the local symbol
2132 // SYMNDX.
2133 unsigned int
2134 got_offset(unsigned int symndx, unsigned int got_type,
2135 Sized_relobj_file<size, big_endian>* object,
2136 uint64_t addend) const
2137 { return object->local_got_offset(symndx, got_type, addend); }
2138
2139 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2140 unsigned int
2141 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2142 {
2143 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2144 ? this->master_got_info_
2145 : object->get_got_info());
2146 gold_assert(g != NULL);
2147 return g->tls_ldm_offset();
2148 }
2149
2150 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2151 void
2152 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2153 Mips_relobj<size, big_endian>* object)
2154 {
2155 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2156 ? this->master_got_info_
2157 : object->get_got_info());
2158 gold_assert(g != NULL);
2159 g->set_tls_ldm_offset(tls_ldm_offset);
2160 }
2161
2162 // Return true for multi-GOT links.
2163 bool
2164 multi_got() const
2165 { return this->primary_got_ != NULL; }
2166
2167 // Return the offset of OBJECT's GOT from the start of .got section.
2168 unsigned int
2169 get_got_offset(const Mips_relobj<size, big_endian>* object)
2170 {
2171 if (!this->multi_got())
2172 return 0;
2173 else
2174 {
2175 Mips_got_info<size, big_endian>* g = object->get_got_info();
2176 return g != NULL ? g->offset() : 0;
2177 }
2178 }
2179
2180 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2181 void
2182 add_reloc_only_entries()
2183 { this->master_got_info_->add_reloc_only_entries(this); }
2184
2185 // Return offset of the primary GOT's entry for global symbol.
2186 unsigned int
2187 get_primary_got_offset(const Mips_symbol<size>* sym) const
2188 {
2189 gold_assert(sym->global_got_area() != GGA_NONE);
2190 return (this->get_local_gotno() + sym->dynsym_index()
2191 - this->first_global_got_dynsym_index()) * size/8;
2192 }
2193
2194 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2195 // Input argument GOT_OFFSET is always global offset from the start of
2196 // .got section, for both single and multi-GOT links.
2197 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2198 // links, the return value is object_got_offset - 0x7FF0, where
2199 // object_got_offset is offset in the OBJECT's GOT.
2200 int
2201 gp_offset(unsigned int got_offset,
2202 const Mips_relobj<size, big_endian>* object) const
2203 {
2204 return (this->address() + got_offset
2205 - this->target_->adjusted_gp_value(object));
2206 }
2207
2208 protected:
2209 // Write out the GOT table.
2210 void
2211 do_write(Output_file*);
2212
2213 private:
2214
2215 // This class represent dynamic relocations that need to be applied by
2216 // gold because we are using TLS relocations in a static link.
2217 class Static_reloc
2218 {
2219 public:
2220 Static_reloc(unsigned int got_offset, unsigned int r_type,
2221 Mips_symbol<size>* gsym)
2222 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2223 { this->u_.global.symbol = gsym; }
2224
2225 Static_reloc(unsigned int got_offset, unsigned int r_type,
2226 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2227 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2228 {
2229 this->u_.local.relobj = relobj;
2230 this->u_.local.index = index;
2231 }
2232
2233 // Return the GOT offset.
2234 unsigned int
2235 got_offset() const
2236 { return this->got_offset_; }
2237
2238 // Relocation type.
2239 unsigned int
2240 r_type() const
2241 { return this->r_type_; }
2242
2243 // Whether the symbol is global or not.
2244 bool
2245 symbol_is_global() const
2246 { return this->symbol_is_global_; }
2247
2248 // For a relocation against a global symbol, the global symbol.
2249 Mips_symbol<size>*
2250 symbol() const
2251 {
2252 gold_assert(this->symbol_is_global_);
2253 return this->u_.global.symbol;
2254 }
2255
2256 // For a relocation against a local symbol, the defining object.
2257 Sized_relobj_file<size, big_endian>*
2258 relobj() const
2259 {
2260 gold_assert(!this->symbol_is_global_);
2261 return this->u_.local.relobj;
2262 }
2263
2264 // For a relocation against a local symbol, the local symbol index.
2265 unsigned int
2266 index() const
2267 {
2268 gold_assert(!this->symbol_is_global_);
2269 return this->u_.local.index;
2270 }
2271
2272 private:
2273 // GOT offset of the entry to which this relocation is applied.
2274 unsigned int got_offset_;
2275 // Type of relocation.
2276 unsigned int r_type_;
2277 // Whether this relocation is against a global symbol.
2278 bool symbol_is_global_;
2279 // A global or local symbol.
2280 union
2281 {
2282 struct
2283 {
2284 // For a global symbol, the symbol itself.
2285 Mips_symbol<size>* symbol;
2286 } global;
2287 struct
2288 {
2289 // For a local symbol, the object defining object.
2290 Sized_relobj_file<size, big_endian>* relobj;
2291 // For a local symbol, the symbol index.
2292 unsigned int index;
2293 } local;
2294 } u_;
2295 };
2296
2297 // The target.
2298 Target_mips<size, big_endian>* target_;
2299 // The symbol table.
2300 Symbol_table* symbol_table_;
2301 // The layout.
2302 Layout* layout_;
2303 // Static relocs to be applied to the GOT.
2304 std::vector<Static_reloc> static_relocs_;
2305 // .got section view.
2306 unsigned char* got_view_;
2307 // The dynamic symbol table index of the first symbol with global GOT entry.
2308 unsigned int first_global_got_dynsym_index_;
2309 // The master GOT information.
2310 Mips_got_info<size, big_endian>* master_got_info_;
2311 // The primary GOT information.
2312 Mips_got_info<size, big_endian>* primary_got_;
2313 // Secondary GOT fixups.
2314 std::vector<Static_reloc> secondary_got_relocs_;
2315 };
2316
2317 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2318 // two ways of creating these interfaces. The first is to add:
2319 //
2320 // lui $25,%hi(func)
2321 // j func
2322 // addiu $25,$25,%lo(func)
2323 //
2324 // to a separate trampoline section. The second is to add:
2325 //
2326 // lui $25,%hi(func)
2327 // addiu $25,$25,%lo(func)
2328 //
2329 // immediately before a PIC function "func", but only if a function is at the
2330 // beginning of the section, and the section is not too heavily aligned (i.e we
2331 // would need to add no more than 2 nops before the stub.)
2332 //
2333 // We only create stubs of the first type.
2334
2335 template<int size, bool big_endian>
2336 class Mips_output_data_la25_stub : public Output_section_data
2337 {
2338 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2339
2340 public:
2341 Mips_output_data_la25_stub()
2342 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2343 { }
2344
2345 // Create LA25 stub for a symbol.
2346 void
2347 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2348 Mips_symbol<size>* gsym);
2349
2350 // Return output address of a stub.
2351 Mips_address
2352 stub_address(const Mips_symbol<size>* sym) const
2353 {
2354 gold_assert(sym->has_la25_stub());
2355 return this->address() + sym->la25_stub_offset();
2356 }
2357
2358 protected:
2359 void
2360 do_adjust_output_section(Output_section* os)
2361 { os->set_entsize(0); }
2362
2363 private:
2364 // Template for standard LA25 stub.
2365 static const uint32_t la25_stub_entry[];
2366 // Template for microMIPS LA25 stub.
2367 static const uint32_t la25_stub_micromips_entry[];
2368
2369 // Set the final size.
2370 void
2371 set_final_data_size()
2372 { this->set_data_size(this->symbols_.size() * 16); }
2373
2374 // Create a symbol for SYM stub's value and size, to help make the
2375 // disassembly easier to read.
2376 void
2377 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2378 Target_mips<size, big_endian>* target, uint64_t symsize);
2379
2380 // Write to a map file.
2381 void
2382 do_print_to_mapfile(Mapfile* mapfile) const
2383 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2384
2385 // Write out the LA25 stub section.
2386 void
2387 do_write(Output_file*);
2388
2389 // Symbols that have LA25 stubs.
2390 std::vector<Mips_symbol<size>*> symbols_;
2391 };
2392
2393 // MIPS-specific relocation writer.
2394
2395 template<int sh_type, bool dynamic, int size, bool big_endian>
2396 struct Mips_output_reloc_writer;
2397
2398 template<int sh_type, bool dynamic, bool big_endian>
2399 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2400 {
2401 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2402 typedef std::vector<Output_reloc_type> Relocs;
2403
2404 static void
2405 write(typename Relocs::const_iterator p, unsigned char* pov)
2406 { p->write(pov); }
2407 };
2408
2409 template<int sh_type, bool dynamic, bool big_endian>
2410 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2411 {
2412 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2413 typedef std::vector<Output_reloc_type> Relocs;
2414
2415 static void
2416 write(typename Relocs::const_iterator p, unsigned char* pov)
2417 {
2418 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2419 orel.put_r_offset(p->get_address());
2420 orel.put_r_sym(p->get_symbol_index());
2421 orel.put_r_ssym(RSS_UNDEF);
2422 orel.put_r_type(p->type());
2423 if (p->type() == elfcpp::R_MIPS_REL32)
2424 orel.put_r_type2(elfcpp::R_MIPS_64);
2425 else
2426 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2427 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2428 }
2429 };
2430
2431 template<int sh_type, bool dynamic, int size, bool big_endian>
2432 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2433 size, big_endian>
2434 {
2435 public:
2436 Mips_output_data_reloc(bool sort_relocs)
2437 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2438 { }
2439
2440 protected:
2441 // Write out the data.
2442 void
2443 do_write(Output_file* of)
2444 {
2445 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2446 big_endian> Writer;
2447 this->template do_write_generic<Writer>(of);
2448 }
2449 };
2450
2451
2452 // A class to handle the PLT data.
2453
2454 template<int size, bool big_endian>
2455 class Mips_output_data_plt : public Output_section_data
2456 {
2457 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2458 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2459 size, big_endian> Reloc_section;
2460
2461 public:
2462 // Create the PLT section. The ordinary .got section is an argument,
2463 // since we need to refer to the start.
2464 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2465 Target_mips<size, big_endian>* target)
2466 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2467 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2468 target_(target)
2469 {
2470 this->rel_ = new Reloc_section(false);
2471 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2472 elfcpp::SHF_ALLOC, this->rel_,
2473 ORDER_DYNAMIC_PLT_RELOCS, false);
2474 }
2475
2476 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2477 void
2478 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2479
2480 // Return the .rel.plt section data.
2481 Reloc_section*
2482 rel_plt() const
2483 { return this->rel_; }
2484
2485 // Return the number of PLT entries.
2486 unsigned int
2487 entry_count() const
2488 { return this->symbols_.size(); }
2489
2490 // Return the offset of the first non-reserved PLT entry.
2491 unsigned int
2492 first_plt_entry_offset() const
2493 { return sizeof(plt0_entry_o32); }
2494
2495 // Return the size of a PLT entry.
2496 unsigned int
2497 plt_entry_size() const
2498 { return sizeof(plt_entry); }
2499
2500 // Set final PLT offsets. For each symbol, determine whether standard or
2501 // compressed (MIPS16 or microMIPS) PLT entry is used.
2502 void
2503 set_plt_offsets();
2504
2505 // Return the offset of the first standard PLT entry.
2506 unsigned int
2507 first_mips_plt_offset() const
2508 { return this->plt_header_size_; }
2509
2510 // Return the offset of the first compressed PLT entry.
2511 unsigned int
2512 first_comp_plt_offset() const
2513 { return this->plt_header_size_ + this->plt_mips_offset_; }
2514
2515 // Return whether there are any standard PLT entries.
2516 bool
2517 has_standard_entries() const
2518 { return this->plt_mips_offset_ > 0; }
2519
2520 // Return the output address of standard PLT entry.
2521 Mips_address
2522 mips_entry_address(const Mips_symbol<size>* sym) const
2523 {
2524 gold_assert (sym->has_mips_plt_offset());
2525 return (this->address() + this->first_mips_plt_offset()
2526 + sym->mips_plt_offset());
2527 }
2528
2529 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2530 Mips_address
2531 comp_entry_address(const Mips_symbol<size>* sym) const
2532 {
2533 gold_assert (sym->has_comp_plt_offset());
2534 return (this->address() + this->first_comp_plt_offset()
2535 + sym->comp_plt_offset());
2536 }
2537
2538 protected:
2539 void
2540 do_adjust_output_section(Output_section* os)
2541 { os->set_entsize(0); }
2542
2543 // Write to a map file.
2544 void
2545 do_print_to_mapfile(Mapfile* mapfile) const
2546 { mapfile->print_output_data(this, _(".plt")); }
2547
2548 private:
2549 // Template for the first PLT entry.
2550 static const uint32_t plt0_entry_o32[];
2551 static const uint32_t plt0_entry_n32[];
2552 static const uint32_t plt0_entry_n64[];
2553 static const uint32_t plt0_entry_micromips_o32[];
2554 static const uint32_t plt0_entry_micromips32_o32[];
2555
2556 // Template for subsequent PLT entries.
2557 static const uint32_t plt_entry[];
2558 static const uint32_t plt_entry_r6[];
2559 static const uint32_t plt_entry_mips16_o32[];
2560 static const uint32_t plt_entry_micromips_o32[];
2561 static const uint32_t plt_entry_micromips32_o32[];
2562
2563 // Set the final size.
2564 void
2565 set_final_data_size()
2566 {
2567 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2568 + this->plt_comp_offset_);
2569 }
2570
2571 // Write out the PLT data.
2572 void
2573 do_write(Output_file*);
2574
2575 // Return whether the plt header contains microMIPS code. For the sake of
2576 // cache alignment always use a standard header whenever any standard entries
2577 // are present even if microMIPS entries are present as well. This also lets
2578 // the microMIPS header rely on the value of $v0 only set by microMIPS
2579 // entries, for a small size reduction.
2580 bool
2581 is_plt_header_compressed() const
2582 {
2583 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2584 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2585 }
2586
2587 // Return the size of the PLT header.
2588 unsigned int
2589 get_plt_header_size() const
2590 {
2591 if (this->target_->is_output_n64())
2592 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2593 else if (this->target_->is_output_n32())
2594 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2595 else if (!this->is_plt_header_compressed())
2596 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2597 else if (this->target_->use_32bit_micromips_instructions())
2598 return (2 * sizeof(plt0_entry_micromips32_o32)
2599 / sizeof(plt0_entry_micromips32_o32[0]));
2600 else
2601 return (2 * sizeof(plt0_entry_micromips_o32)
2602 / sizeof(plt0_entry_micromips_o32[0]));
2603 }
2604
2605 // Return the PLT header entry.
2606 const uint32_t*
2607 get_plt_header_entry() const
2608 {
2609 if (this->target_->is_output_n64())
2610 return plt0_entry_n64;
2611 else if (this->target_->is_output_n32())
2612 return plt0_entry_n32;
2613 else if (!this->is_plt_header_compressed())
2614 return plt0_entry_o32;
2615 else if (this->target_->use_32bit_micromips_instructions())
2616 return plt0_entry_micromips32_o32;
2617 else
2618 return plt0_entry_micromips_o32;
2619 }
2620
2621 // Return the size of the standard PLT entry.
2622 unsigned int
2623 standard_plt_entry_size() const
2624 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2625
2626 // Return the size of the compressed PLT entry.
2627 unsigned int
2628 compressed_plt_entry_size() const
2629 {
2630 gold_assert(!this->target_->is_output_newabi());
2631
2632 if (!this->target_->is_output_micromips())
2633 return (2 * sizeof(plt_entry_mips16_o32)
2634 / sizeof(plt_entry_mips16_o32[0]));
2635 else if (this->target_->use_32bit_micromips_instructions())
2636 return (2 * sizeof(plt_entry_micromips32_o32)
2637 / sizeof(plt_entry_micromips32_o32[0]));
2638 else
2639 return (2 * sizeof(plt_entry_micromips_o32)
2640 / sizeof(plt_entry_micromips_o32[0]));
2641 }
2642
2643 // The reloc section.
2644 Reloc_section* rel_;
2645 // The .got.plt section.
2646 Output_data_space* got_plt_;
2647 // Symbols that have PLT entry.
2648 std::vector<Mips_symbol<size>*> symbols_;
2649 // The offset of the next standard PLT entry to create.
2650 unsigned int plt_mips_offset_;
2651 // The offset of the next compressed PLT entry to create.
2652 unsigned int plt_comp_offset_;
2653 // The size of the PLT header in bytes.
2654 unsigned int plt_header_size_;
2655 // The target.
2656 Target_mips<size, big_endian>* target_;
2657 };
2658
2659 // A class to handle the .MIPS.stubs data.
2660
2661 template<int size, bool big_endian>
2662 class Mips_output_data_mips_stubs : public Output_section_data
2663 {
2664 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2665
2666 // Unordered set of .MIPS.stubs entries.
2667 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2668 Mips_stubs_entry_set;
2669
2670 public:
2671 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2672 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2673 stub_offsets_are_set_(false), target_(target)
2674 { }
2675
2676 // Create entry for a symbol.
2677 void
2678 make_entry(Mips_symbol<size>*);
2679
2680 // Remove entry for a symbol.
2681 void
2682 remove_entry(Mips_symbol<size>* gsym);
2683
2684 // Set stub offsets for symbols. This method expects that the number of
2685 // entries in dynamic symbol table is set.
2686 void
2687 set_lazy_stub_offsets();
2688
2689 void
2690 set_needs_dynsym_value();
2691
2692 // Set the number of entries in dynamic symbol table.
2693 void
2694 set_dynsym_count(unsigned int dynsym_count)
2695 { this->dynsym_count_ = dynsym_count; }
2696
2697 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2698 // count is greater than 0x10000. If the dynamic symbol count is less than
2699 // 0x10000, the stub will be 4 bytes smaller.
2700 // There's no disadvantage from using microMIPS code here, so for the sake of
2701 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2702 // output produced at all. This has a benefit of stubs being shorter by
2703 // 4 bytes each too, unless in the insn32 mode.
2704 unsigned int
2705 stub_max_size() const
2706 {
2707 if (!this->target_->is_output_micromips()
2708 || this->target_->use_32bit_micromips_instructions())
2709 return 20;
2710 else
2711 return 16;
2712 }
2713
2714 // Return the size of the stub. This method expects that the final dynsym
2715 // count is set.
2716 unsigned int
2717 stub_size() const
2718 {
2719 gold_assert(this->dynsym_count_ != -1U);
2720 if (this->dynsym_count_ > 0x10000)
2721 return this->stub_max_size();
2722 else
2723 return this->stub_max_size() - 4;
2724 }
2725
2726 // Return output address of a stub.
2727 Mips_address
2728 stub_address(const Mips_symbol<size>* sym) const
2729 {
2730 gold_assert(sym->has_lazy_stub());
2731 return this->address() + sym->lazy_stub_offset();
2732 }
2733
2734 protected:
2735 void
2736 do_adjust_output_section(Output_section* os)
2737 { os->set_entsize(0); }
2738
2739 // Write to a map file.
2740 void
2741 do_print_to_mapfile(Mapfile* mapfile) const
2742 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2743
2744 private:
2745 static const uint32_t lazy_stub_normal_1[];
2746 static const uint32_t lazy_stub_normal_1_n64[];
2747 static const uint32_t lazy_stub_normal_2[];
2748 static const uint32_t lazy_stub_normal_2_n64[];
2749 static const uint32_t lazy_stub_big[];
2750 static const uint32_t lazy_stub_big_n64[];
2751
2752 static const uint32_t lazy_stub_micromips_normal_1[];
2753 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2754 static const uint32_t lazy_stub_micromips_normal_2[];
2755 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2756 static const uint32_t lazy_stub_micromips_big[];
2757 static const uint32_t lazy_stub_micromips_big_n64[];
2758
2759 static const uint32_t lazy_stub_micromips32_normal_1[];
2760 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2761 static const uint32_t lazy_stub_micromips32_normal_2[];
2762 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2763 static const uint32_t lazy_stub_micromips32_big[];
2764 static const uint32_t lazy_stub_micromips32_big_n64[];
2765
2766 // Set the final size.
2767 void
2768 set_final_data_size()
2769 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2770
2771 // Write out the .MIPS.stubs data.
2772 void
2773 do_write(Output_file*);
2774
2775 // .MIPS.stubs symbols
2776 Mips_stubs_entry_set symbols_;
2777 // Number of entries in dynamic symbol table.
2778 unsigned int dynsym_count_;
2779 // Whether the stub offsets are set.
2780 bool stub_offsets_are_set_;
2781 // The target.
2782 Target_mips<size, big_endian>* target_;
2783 };
2784
2785 // This class handles Mips .reginfo output section.
2786
2787 template<int size, bool big_endian>
2788 class Mips_output_section_reginfo : public Output_section_data
2789 {
2790 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2791
2792 public:
2793 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2794 Valtype gprmask, Valtype cprmask1,
2795 Valtype cprmask2, Valtype cprmask3,
2796 Valtype cprmask4)
2797 : Output_section_data(24, 4, true), target_(target),
2798 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2799 cprmask3_(cprmask3), cprmask4_(cprmask4)
2800 { }
2801
2802 protected:
2803 // Write to a map file.
2804 void
2805 do_print_to_mapfile(Mapfile* mapfile) const
2806 { mapfile->print_output_data(this, _(".reginfo")); }
2807
2808 // Write out reginfo section.
2809 void
2810 do_write(Output_file* of);
2811
2812 private:
2813 Target_mips<size, big_endian>* target_;
2814
2815 // gprmask of the output .reginfo section.
2816 Valtype gprmask_;
2817 // cprmask1 of the output .reginfo section.
2818 Valtype cprmask1_;
2819 // cprmask2 of the output .reginfo section.
2820 Valtype cprmask2_;
2821 // cprmask3 of the output .reginfo section.
2822 Valtype cprmask3_;
2823 // cprmask4 of the output .reginfo section.
2824 Valtype cprmask4_;
2825 };
2826
2827 // This class handles .MIPS.options output section.
2828
2829 template<int size, bool big_endian>
2830 class Mips_output_section_options : public Output_section
2831 {
2832 public:
2833 Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
2834 elfcpp::Elf_Xword flags,
2835 Target_mips<size, big_endian>* target)
2836 : Output_section(name, type, flags), target_(target)
2837 {
2838 // After the input sections are written, we only need to update
2839 // ri_gp_value field of ODK_REGINFO entries.
2840 this->set_after_input_sections();
2841 }
2842
2843 protected:
2844 // Write out option section.
2845 void
2846 do_write(Output_file* of);
2847
2848 private:
2849 Target_mips<size, big_endian>* target_;
2850 };
2851
2852 // This class handles .MIPS.abiflags output section.
2853
2854 template<int size, bool big_endian>
2855 class Mips_output_section_abiflags : public Output_section_data
2856 {
2857 public:
2858 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2859 : Output_section_data(24, 8, true), abiflags_(abiflags)
2860 { }
2861
2862 protected:
2863 // Write to a map file.
2864 void
2865 do_print_to_mapfile(Mapfile* mapfile) const
2866 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2867
2868 void
2869 do_write(Output_file* of);
2870
2871 private:
2872 const Mips_abiflags<big_endian>& abiflags_;
2873 };
2874
2875 // The MIPS target has relocation types which default handling of relocatable
2876 // relocation cannot process. So we have to extend the default code.
2877
2878 template<bool big_endian, typename Classify_reloc>
2879 class Mips_scan_relocatable_relocs :
2880 public Default_scan_relocatable_relocs<Classify_reloc>
2881 {
2882 public:
2883 // Return the strategy to use for a local symbol which is a section
2884 // symbol, given the relocation type.
2885 inline Relocatable_relocs::Reloc_strategy
2886 local_section_strategy(unsigned int r_type, Relobj* object)
2887 {
2888 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2889 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2890 else
2891 {
2892 switch (r_type)
2893 {
2894 case elfcpp::R_MIPS_26:
2895 return Relocatable_relocs::RELOC_SPECIAL;
2896
2897 default:
2898 return Default_scan_relocatable_relocs<Classify_reloc>::
2899 local_section_strategy(r_type, object);
2900 }
2901 }
2902 }
2903 };
2904
2905 // Mips_copy_relocs class. The only difference from the base class is the
2906 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2907 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2908 // cannot be made dynamic, a COPY reloc is emitted.
2909
2910 template<int sh_type, int size, bool big_endian>
2911 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2912 {
2913 public:
2914 Mips_copy_relocs()
2915 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2916 { }
2917
2918 // Emit any saved relocations which turn out to be needed. This is
2919 // called after all the relocs have been scanned.
2920 void
2921 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2922 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2923
2924 private:
2925 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2926 Copy_reloc_entry;
2927
2928 // Emit this reloc if appropriate. This is called after we have
2929 // scanned all the relocations, so we know whether we emitted a
2930 // COPY relocation for SYM_.
2931 void
2932 emit_entry(Copy_reloc_entry& entry,
2933 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2934 Symbol_table* symtab, Layout* layout,
2935 Target_mips<size, big_endian>* target);
2936 };
2937
2938
2939 // Return true if the symbol SYM should be considered to resolve local
2940 // to the current module, and false otherwise. The logic is taken from
2941 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2942 static bool
2943 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2944 bool local_protected)
2945 {
2946 // If it's a local sym, of course we resolve locally.
2947 if (sym == NULL)
2948 return true;
2949
2950 // STV_HIDDEN or STV_INTERNAL ones must be local.
2951 if (sym->visibility() == elfcpp::STV_HIDDEN
2952 || sym->visibility() == elfcpp::STV_INTERNAL)
2953 return true;
2954
2955 // If we don't have a definition in a regular file, then we can't
2956 // resolve locally. The sym is either undefined or dynamic.
2957 if (sym->is_from_dynobj() || sym->is_undefined())
2958 return false;
2959
2960 // Forced local symbols resolve locally.
2961 if (sym->is_forced_local())
2962 return true;
2963
2964 // As do non-dynamic symbols.
2965 if (!has_dynsym_entry)
2966 return true;
2967
2968 // At this point, we know the symbol is defined and dynamic. In an
2969 // executable it must resolve locally, likewise when building symbolic
2970 // shared libraries.
2971 if (parameters->options().output_is_executable()
2972 || parameters->options().Bsymbolic())
2973 return true;
2974
2975 // Now deal with defined dynamic symbols in shared libraries. Ones
2976 // with default visibility might not resolve locally.
2977 if (sym->visibility() == elfcpp::STV_DEFAULT)
2978 return false;
2979
2980 // STV_PROTECTED non-function symbols are local.
2981 if (sym->type() != elfcpp::STT_FUNC)
2982 return true;
2983
2984 // Function pointer equality tests may require that STV_PROTECTED
2985 // symbols be treated as dynamic symbols. If the address of a
2986 // function not defined in an executable is set to that function's
2987 // plt entry in the executable, then the address of the function in
2988 // a shared library must also be the plt entry in the executable.
2989 return local_protected;
2990 }
2991
2992 // Return TRUE if references to this symbol always reference the symbol in this
2993 // object.
2994 static bool
2995 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2996 {
2997 return symbol_refs_local(sym, has_dynsym_entry, false);
2998 }
2999
3000 // Return TRUE if calls to this symbol always call the version in this object.
3001 static bool
3002 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
3003 {
3004 return symbol_refs_local(sym, has_dynsym_entry, true);
3005 }
3006
3007 // Compare GOT offsets of two symbols.
3008
3009 template<int size, bool big_endian>
3010 static bool
3011 got_offset_compare(Symbol* sym1, Symbol* sym2)
3012 {
3013 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
3014 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
3015 unsigned int area1 = mips_sym1->global_got_area();
3016 unsigned int area2 = mips_sym2->global_got_area();
3017 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
3018
3019 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3020 if (area1 != area2)
3021 return area1 < area2;
3022
3023 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
3024 }
3025
3026 // This method divides dynamic symbols into symbols that have GOT entry, and
3027 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3028 // Mips ABI requires that symbols with the GOT entry must be at the end of
3029 // dynamic symbol table, and the order in dynamic symbol table must match the
3030 // order in GOT.
3031
3032 template<int size, bool big_endian>
3033 static void
3034 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3035 std::vector<Symbol*>* non_got_symbols,
3036 std::vector<Symbol*>* got_symbols)
3037 {
3038 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3039 p != dyn_symbols->end();
3040 ++p)
3041 {
3042 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3043 if (mips_sym->global_got_area() == GGA_NORMAL
3044 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3045 got_symbols->push_back(mips_sym);
3046 else
3047 non_got_symbols->push_back(mips_sym);
3048 }
3049
3050 std::sort(got_symbols->begin(), got_symbols->end(),
3051 got_offset_compare<size, big_endian>);
3052 }
3053
3054 // Functor class for processing the global symbol table.
3055
3056 template<int size, bool big_endian>
3057 class Symbol_visitor_check_symbols
3058 {
3059 public:
3060 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3061 Layout* layout, Symbol_table* symtab)
3062 : target_(target), layout_(layout), symtab_(symtab)
3063 { }
3064
3065 void
3066 operator()(Sized_symbol<size>* sym)
3067 {
3068 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3069 if (local_pic_function<size, big_endian>(mips_sym))
3070 {
3071 // SYM is a function that might need $25 to be valid on entry.
3072 // If we're creating a non-PIC relocatable object, mark SYM as
3073 // being PIC. If we're creating a non-relocatable object with
3074 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3075 // stub.
3076 if (parameters->options().relocatable())
3077 {
3078 if (!parameters->options().output_is_position_independent())
3079 mips_sym->set_pic();
3080 }
3081 else if (mips_sym->has_nonpic_branches())
3082 {
3083 this->target_->la25_stub_section(layout_)
3084 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3085 }
3086 }
3087 }
3088
3089 private:
3090 Target_mips<size, big_endian>* target_;
3091 Layout* layout_;
3092 Symbol_table* symtab_;
3093 };
3094
3095 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3096 // and endianness. The relocation format for MIPS-64 is non-standard.
3097
3098 template<int sh_type, int size, bool big_endian>
3099 struct Mips_reloc_types;
3100
3101 template<bool big_endian>
3102 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3103 {
3104 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3105 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3106
3107 static typename elfcpp::Elf_types<32>::Elf_Swxword
3108 get_r_addend(const Reloc*)
3109 { return 0; }
3110
3111 static inline void
3112 set_reloc_addend(Reloc_write*,
3113 typename elfcpp::Elf_types<32>::Elf_Swxword)
3114 { gold_unreachable(); }
3115 };
3116
3117 template<bool big_endian>
3118 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3119 {
3120 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3121 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3122
3123 static typename elfcpp::Elf_types<32>::Elf_Swxword
3124 get_r_addend(const Reloc* reloc)
3125 { return reloc->get_r_addend(); }
3126
3127 static inline void
3128 set_reloc_addend(Reloc_write* p,
3129 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3130 { p->put_r_addend(val); }
3131 };
3132
3133 template<bool big_endian>
3134 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3135 {
3136 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3137 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3138
3139 static typename elfcpp::Elf_types<64>::Elf_Swxword
3140 get_r_addend(const Reloc*)
3141 { return 0; }
3142
3143 static inline void
3144 set_reloc_addend(Reloc_write*,
3145 typename elfcpp::Elf_types<64>::Elf_Swxword)
3146 { gold_unreachable(); }
3147 };
3148
3149 template<bool big_endian>
3150 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3151 {
3152 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3153 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3154
3155 static typename elfcpp::Elf_types<64>::Elf_Swxword
3156 get_r_addend(const Reloc* reloc)
3157 { return reloc->get_r_addend(); }
3158
3159 static inline void
3160 set_reloc_addend(Reloc_write* p,
3161 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3162 { p->put_r_addend(val); }
3163 };
3164
3165 // Forward declaration.
3166 static unsigned int
3167 mips_get_size_for_reloc(unsigned int, Relobj*);
3168
3169 // A class for inquiring about properties of a relocation,
3170 // used while scanning relocs during a relocatable link and
3171 // garbage collection.
3172
3173 template<int sh_type_, int size, bool big_endian>
3174 class Mips_classify_reloc;
3175
3176 template<int sh_type_, bool big_endian>
3177 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3178 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3179 {
3180 public:
3181 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3182 Reltype;
3183 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3184 Reltype_write;
3185
3186 // Return the symbol referred to by the relocation.
3187 static inline unsigned int
3188 get_r_sym(const Reltype* reloc)
3189 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3190
3191 // Return the type of the relocation.
3192 static inline unsigned int
3193 get_r_type(const Reltype* reloc)
3194 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3195
3196 static inline unsigned int
3197 get_r_type2(const Reltype*)
3198 { return 0; }
3199
3200 static inline unsigned int
3201 get_r_type3(const Reltype*)
3202 { return 0; }
3203
3204 static inline unsigned int
3205 get_r_ssym(const Reltype*)
3206 { return 0; }
3207
3208 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3209 static inline unsigned int
3210 get_r_addend(const Reltype* reloc)
3211 {
3212 if (sh_type_ == elfcpp::SHT_REL)
3213 return 0;
3214 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3215 }
3216
3217 // Write the r_info field to a new reloc, using the r_info field from
3218 // the original reloc, replacing the r_sym field with R_SYM.
3219 static inline void
3220 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3221 {
3222 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3223 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3224 }
3225
3226 // Write the r_addend field to a new reloc.
3227 static inline void
3228 put_r_addend(Reltype_write* to,
3229 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3230 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3231
3232 // Return the size of the addend of the relocation (only used for SHT_REL).
3233 static unsigned int
3234 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3235 { return mips_get_size_for_reloc(r_type, obj); }
3236 };
3237
3238 template<int sh_type_, bool big_endian>
3239 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3240 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3241 {
3242 public:
3243 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3244 Reltype;
3245 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3246 Reltype_write;
3247
3248 // Return the symbol referred to by the relocation.
3249 static inline unsigned int
3250 get_r_sym(const Reltype* reloc)
3251 { return reloc->get_r_sym(); }
3252
3253 // Return the r_type of the relocation.
3254 static inline unsigned int
3255 get_r_type(const Reltype* reloc)
3256 { return reloc->get_r_type(); }
3257
3258 // Return the r_type2 of the relocation.
3259 static inline unsigned int
3260 get_r_type2(const Reltype* reloc)
3261 { return reloc->get_r_type2(); }
3262
3263 // Return the r_type3 of the relocation.
3264 static inline unsigned int
3265 get_r_type3(const Reltype* reloc)
3266 { return reloc->get_r_type3(); }
3267
3268 // Return the special symbol of the relocation.
3269 static inline unsigned int
3270 get_r_ssym(const Reltype* reloc)
3271 { return reloc->get_r_ssym(); }
3272
3273 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3274 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3275 get_r_addend(const Reltype* reloc)
3276 {
3277 if (sh_type_ == elfcpp::SHT_REL)
3278 return 0;
3279 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3280 }
3281
3282 // Write the r_info field to a new reloc, using the r_info field from
3283 // the original reloc, replacing the r_sym field with R_SYM.
3284 static inline void
3285 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3286 {
3287 new_reloc->put_r_sym(r_sym);
3288 new_reloc->put_r_ssym(reloc->get_r_ssym());
3289 new_reloc->put_r_type3(reloc->get_r_type3());
3290 new_reloc->put_r_type2(reloc->get_r_type2());
3291 new_reloc->put_r_type(reloc->get_r_type());
3292 }
3293
3294 // Write the r_addend field to a new reloc.
3295 static inline void
3296 put_r_addend(Reltype_write* to,
3297 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3298 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3299
3300 // Return the size of the addend of the relocation (only used for SHT_REL).
3301 static unsigned int
3302 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3303 { return mips_get_size_for_reloc(r_type, obj); }
3304 };
3305
3306 template<int size, bool big_endian>
3307 class Target_mips : public Sized_target<size, big_endian>
3308 {
3309 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3310 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3311 Reloc_section;
3312 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3313 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3314 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3315 Reltype;
3316 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3317 Relatype;
3318
3319 public:
3320 Target_mips(const Target::Target_info* info = &mips_info)
3321 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3322 got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3323 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3324 mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3325 mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3326 entry_symbol_is_compressed_(false), insn32_(false)
3327 {
3328 this->add_machine_extensions();
3329 }
3330
3331 // The offset of $gp from the beginning of the .got section.
3332 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3333
3334 // The maximum size of the GOT for it to be addressable using 16-bit
3335 // offsets from $gp.
3336 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3337
3338 // Make a new symbol table entry for the Mips target.
3339 Sized_symbol<size>*
3340 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3341 { return new Mips_symbol<size>(); }
3342
3343 // Process the relocations to determine unreferenced sections for
3344 // garbage collection.
3345 void
3346 gc_process_relocs(Symbol_table* symtab,
3347 Layout* layout,
3348 Sized_relobj_file<size, big_endian>* object,
3349 unsigned int data_shndx,
3350 unsigned int sh_type,
3351 const unsigned char* prelocs,
3352 size_t reloc_count,
3353 Output_section* output_section,
3354 bool needs_special_offset_handling,
3355 size_t local_symbol_count,
3356 const unsigned char* plocal_symbols);
3357
3358 // Scan the relocations to look for symbol adjustments.
3359 void
3360 scan_relocs(Symbol_table* symtab,
3361 Layout* layout,
3362 Sized_relobj_file<size, big_endian>* object,
3363 unsigned int data_shndx,
3364 unsigned int sh_type,
3365 const unsigned char* prelocs,
3366 size_t reloc_count,
3367 Output_section* output_section,
3368 bool needs_special_offset_handling,
3369 size_t local_symbol_count,
3370 const unsigned char* plocal_symbols);
3371
3372 // Finalize the sections.
3373 void
3374 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3375
3376 // Relocate a section.
3377 void
3378 relocate_section(const Relocate_info<size, big_endian>*,
3379 unsigned int sh_type,
3380 const unsigned char* prelocs,
3381 size_t reloc_count,
3382 Output_section* output_section,
3383 bool needs_special_offset_handling,
3384 unsigned char* view,
3385 Mips_address view_address,
3386 section_size_type view_size,
3387 const Reloc_symbol_changes*);
3388
3389 // Scan the relocs during a relocatable link.
3390 void
3391 scan_relocatable_relocs(Symbol_table* symtab,
3392 Layout* layout,
3393 Sized_relobj_file<size, big_endian>* object,
3394 unsigned int data_shndx,
3395 unsigned int sh_type,
3396 const unsigned char* prelocs,
3397 size_t reloc_count,
3398 Output_section* output_section,
3399 bool needs_special_offset_handling,
3400 size_t local_symbol_count,
3401 const unsigned char* plocal_symbols,
3402 Relocatable_relocs*);
3403
3404 // Scan the relocs for --emit-relocs.
3405 void
3406 emit_relocs_scan(Symbol_table* symtab,
3407 Layout* layout,
3408 Sized_relobj_file<size, big_endian>* object,
3409 unsigned int data_shndx,
3410 unsigned int sh_type,
3411 const unsigned char* prelocs,
3412 size_t reloc_count,
3413 Output_section* output_section,
3414 bool needs_special_offset_handling,
3415 size_t local_symbol_count,
3416 const unsigned char* plocal_syms,
3417 Relocatable_relocs* rr);
3418
3419 // Emit relocations for a section.
3420 void
3421 relocate_relocs(const Relocate_info<size, big_endian>*,
3422 unsigned int sh_type,
3423 const unsigned char* prelocs,
3424 size_t reloc_count,
3425 Output_section* output_section,
3426 typename elfcpp::Elf_types<size>::Elf_Off
3427 offset_in_output_section,
3428 unsigned char* view,
3429 Mips_address view_address,
3430 section_size_type view_size,
3431 unsigned char* reloc_view,
3432 section_size_type reloc_view_size);
3433
3434 // Perform target-specific processing in a relocatable link. This is
3435 // only used if we use the relocation strategy RELOC_SPECIAL.
3436 void
3437 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3438 unsigned int sh_type,
3439 const unsigned char* preloc_in,
3440 size_t relnum,
3441 Output_section* output_section,
3442 typename elfcpp::Elf_types<size>::Elf_Off
3443 offset_in_output_section,
3444 unsigned char* view,
3445 Mips_address view_address,
3446 section_size_type view_size,
3447 unsigned char* preloc_out);
3448
3449 // Return whether SYM is defined by the ABI.
3450 bool
3451 do_is_defined_by_abi(const Symbol* sym) const
3452 {
3453 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3454 || (strcmp(sym->name(), "_gp_disp") == 0)
3455 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3456 }
3457
3458 // Return the number of entries in the GOT.
3459 unsigned int
3460 got_entry_count() const
3461 {
3462 if (!this->has_got_section())
3463 return 0;
3464 return this->got_size() / (size/8);
3465 }
3466
3467 // Return the number of entries in the PLT.
3468 unsigned int
3469 plt_entry_count() const
3470 {
3471 if (this->plt_ == NULL)
3472 return 0;
3473 return this->plt_->entry_count();
3474 }
3475
3476 // Return the offset of the first non-reserved PLT entry.
3477 unsigned int
3478 first_plt_entry_offset() const
3479 { return this->plt_->first_plt_entry_offset(); }
3480
3481 // Return the size of each PLT entry.
3482 unsigned int
3483 plt_entry_size() const
3484 { return this->plt_->plt_entry_size(); }
3485
3486 // Get the GOT section, creating it if necessary.
3487 Mips_output_data_got<size, big_endian>*
3488 got_section(Symbol_table*, Layout*);
3489
3490 // Get the GOT section.
3491 Mips_output_data_got<size, big_endian>*
3492 got_section() const
3493 {
3494 gold_assert(this->got_ != NULL);
3495 return this->got_;
3496 }
3497
3498 // Get the .MIPS.stubs section, creating it if necessary.
3499 Mips_output_data_mips_stubs<size, big_endian>*
3500 mips_stubs_section(Layout* layout);
3501
3502 // Get the .MIPS.stubs section.
3503 Mips_output_data_mips_stubs<size, big_endian>*
3504 mips_stubs_section() const
3505 {
3506 gold_assert(this->mips_stubs_ != NULL);
3507 return this->mips_stubs_;
3508 }
3509
3510 // Get the LA25 stub section, creating it if necessary.
3511 Mips_output_data_la25_stub<size, big_endian>*
3512 la25_stub_section(Layout*);
3513
3514 // Get the LA25 stub section.
3515 Mips_output_data_la25_stub<size, big_endian>*
3516 la25_stub_section()
3517 {
3518 gold_assert(this->la25_stub_ != NULL);
3519 return this->la25_stub_;
3520 }
3521
3522 // Get gp value. It has the value of .got + 0x7FF0.
3523 Mips_address
3524 gp_value() const
3525 {
3526 if (this->gp_ != NULL)
3527 return this->gp_->value();
3528 return 0;
3529 }
3530
3531 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3532 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3533 Mips_address
3534 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3535 {
3536 if (this->gp_ == NULL)
3537 return 0;
3538
3539 bool multi_got = false;
3540 if (this->has_got_section())
3541 multi_got = this->got_section()->multi_got();
3542 if (!multi_got)
3543 return this->gp_->value();
3544 else
3545 return this->gp_->value() + this->got_section()->get_got_offset(object);
3546 }
3547
3548 // Get the dynamic reloc section, creating it if necessary.
3549 Reloc_section*
3550 rel_dyn_section(Layout*);
3551
3552 bool
3553 do_has_custom_set_dynsym_indexes() const
3554 { return true; }
3555
3556 // Don't emit input .reginfo/.MIPS.abiflags sections to
3557 // output .reginfo/.MIPS.abiflags.
3558 bool
3559 do_should_include_section(elfcpp::Elf_Word sh_type) const
3560 {
3561 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3562 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3563 }
3564
3565 // Set the dynamic symbol indexes. INDEX is the index of the first
3566 // global dynamic symbol. Pointers to the symbols are stored into the
3567 // vector SYMS. The names are added to DYNPOOL. This returns an
3568 // updated dynamic symbol index.
3569 unsigned int
3570 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3571 std::vector<Symbol*>* syms, Stringpool* dynpool,
3572 Versions* versions, Symbol_table* symtab) const;
3573
3574 // Remove .MIPS.stubs entry for a symbol.
3575 void
3576 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3577 {
3578 if (this->mips_stubs_ != NULL)
3579 this->mips_stubs_->remove_entry(sym);
3580 }
3581
3582 // The value to write into got[1] for SVR4 targets, to identify it is
3583 // a GNU object. The dynamic linker can then use got[1] to store the
3584 // module pointer.
3585 uint64_t
3586 mips_elf_gnu_got1_mask()
3587 {
3588 if (this->is_output_n64())
3589 return (uint64_t)1 << 63;
3590 else
3591 return 1 << 31;
3592 }
3593
3594 // Whether the output has microMIPS code. This is valid only after
3595 // merge_obj_e_flags() is called.
3596 bool
3597 is_output_micromips() const
3598 {
3599 gold_assert(this->are_processor_specific_flags_set());
3600 return elfcpp::is_micromips(this->processor_specific_flags());
3601 }
3602
3603 // Whether the output uses N32 ABI. This is valid only after
3604 // merge_obj_e_flags() is called.
3605 bool
3606 is_output_n32() const
3607 {
3608 gold_assert(this->are_processor_specific_flags_set());
3609 return elfcpp::abi_n32(this->processor_specific_flags());
3610 }
3611
3612 // Whether the output uses R6 ISA. This is valid only after
3613 // merge_obj_e_flags() is called.
3614 bool
3615 is_output_r6() const
3616 {
3617 gold_assert(this->are_processor_specific_flags_set());
3618 return elfcpp::r6_isa(this->processor_specific_flags());
3619 }
3620
3621 // Whether the output uses N64 ABI.
3622 bool
3623 is_output_n64() const
3624 { return size == 64; }
3625
3626 // Whether the output uses NEWABI. This is valid only after
3627 // merge_obj_e_flags() is called.
3628 bool
3629 is_output_newabi() const
3630 { return this->is_output_n32() || this->is_output_n64(); }
3631
3632 // Whether we can only use 32-bit microMIPS instructions.
3633 bool
3634 use_32bit_micromips_instructions() const
3635 { return this->insn32_; }
3636
3637 // Return the r_sym field from a relocation.
3638 unsigned int
3639 get_r_sym(const unsigned char* preloc) const
3640 {
3641 // Since REL and RELA relocs share the same structure through
3642 // the r_info field, we can just use REL here.
3643 Reltype rel(preloc);
3644 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3645 get_r_sym(&rel);
3646 }
3647
3648 protected:
3649 // Return the value to use for a dynamic symbol which requires special
3650 // treatment. This is how we support equality comparisons of function
3651 // pointers across shared library boundaries, as described in the
3652 // processor specific ABI supplement.
3653 uint64_t
3654 do_dynsym_value(const Symbol* gsym) const;
3655
3656 // Make an ELF object.
3657 Object*
3658 do_make_elf_object(const std::string&, Input_file*, off_t,
3659 const elfcpp::Ehdr<size, big_endian>& ehdr);
3660
3661 Object*
3662 do_make_elf_object(const std::string&, Input_file*, off_t,
3663 const elfcpp::Ehdr<size, !big_endian>&)
3664 { gold_unreachable(); }
3665
3666 // Make an output section.
3667 Output_section*
3668 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3669 elfcpp::Elf_Xword flags)
3670 {
3671 if (type == elfcpp::SHT_MIPS_OPTIONS)
3672 return new Mips_output_section_options<size, big_endian>(name, type,
3673 flags, this);
3674 else
3675 return new Output_section(name, type, flags);
3676 }
3677
3678 // Adjust ELF file header.
3679 void
3680 do_adjust_elf_header(unsigned char* view, int len);
3681
3682 // Get the custom dynamic tag value.
3683 unsigned int
3684 do_dynamic_tag_custom_value(elfcpp::DT) const;
3685
3686 // Adjust the value written to the dynamic symbol table.
3687 virtual void
3688 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3689 {
3690 elfcpp::Sym<size, big_endian> isym(view);
3691 elfcpp::Sym_write<size, big_endian> osym(view);
3692 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3693
3694 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3695 // to treat compressed symbols like any other.
3696 Mips_address value = isym.get_st_value();
3697 if (mips_sym->is_mips16() && value != 0)
3698 {
3699 if (!mips_sym->has_mips16_fn_stub())
3700 value |= 1;
3701 else
3702 {
3703 // If we have a MIPS16 function with a stub, the dynamic symbol
3704 // must refer to the stub, since only the stub uses the standard
3705 // calling conventions. Stub contains MIPS32 code, so don't add +1
3706 // in this case.
3707
3708 // There is a code which does this in the method
3709 // Target_mips::do_dynsym_value, but that code will only be
3710 // executed if the symbol is from dynobj.
3711 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3712 // table.
3713
3714 Mips16_stub_section<size, big_endian>* fn_stub =
3715 mips_sym->template get_mips16_fn_stub<big_endian>();
3716 value = fn_stub->output_address();
3717 osym.put_st_size(fn_stub->section_size());
3718 }
3719
3720 osym.put_st_value(value);
3721 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3722 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3723 }
3724 else if ((mips_sym->is_micromips()
3725 // Stubs are always microMIPS if there is any microMIPS code in
3726 // the output.
3727 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3728 && value != 0)
3729 {
3730 osym.put_st_value(value | 1);
3731 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3732 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3733 }
3734 }
3735
3736 private:
3737 // The class which scans relocations.
3738 class Scan
3739 {
3740 public:
3741 Scan()
3742 { }
3743
3744 static inline int
3745 get_reference_flags(unsigned int r_type);
3746
3747 inline void
3748 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3749 Sized_relobj_file<size, big_endian>* object,
3750 unsigned int data_shndx,
3751 Output_section* output_section,
3752 const Reltype& reloc, unsigned int r_type,
3753 const elfcpp::Sym<size, big_endian>& lsym,
3754 bool is_discarded);
3755
3756 inline void
3757 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3758 Sized_relobj_file<size, big_endian>* object,
3759 unsigned int data_shndx,
3760 Output_section* output_section,
3761 const Relatype& reloc, unsigned int r_type,
3762 const elfcpp::Sym<size, big_endian>& lsym,
3763 bool is_discarded);
3764
3765 inline void
3766 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3767 Sized_relobj_file<size, big_endian>* object,
3768 unsigned int data_shndx,
3769 Output_section* output_section,
3770 const Relatype* rela,
3771 const Reltype* rel,
3772 unsigned int rel_type,
3773 unsigned int r_type,
3774 const elfcpp::Sym<size, big_endian>& lsym,
3775 bool is_discarded);
3776
3777 inline void
3778 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3779 Sized_relobj_file<size, big_endian>* object,
3780 unsigned int data_shndx,
3781 Output_section* output_section,
3782 const Reltype& reloc, unsigned int r_type,
3783 Symbol* gsym);
3784
3785 inline void
3786 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3787 Sized_relobj_file<size, big_endian>* object,
3788 unsigned int data_shndx,
3789 Output_section* output_section,
3790 const Relatype& reloc, unsigned int r_type,
3791 Symbol* gsym);
3792
3793 inline void
3794 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3795 Sized_relobj_file<size, big_endian>* object,
3796 unsigned int data_shndx,
3797 Output_section* output_section,
3798 const Relatype* rela,
3799 const Reltype* rel,
3800 unsigned int rel_type,
3801 unsigned int r_type,
3802 Symbol* gsym);
3803
3804 inline bool
3805 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3806 Target_mips*,
3807 Sized_relobj_file<size, big_endian>*,
3808 unsigned int,
3809 Output_section*,
3810 const Reltype&,
3811 unsigned int,
3812 const elfcpp::Sym<size, big_endian>&)
3813 { return false; }
3814
3815 inline bool
3816 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3817 Target_mips*,
3818 Sized_relobj_file<size, big_endian>*,
3819 unsigned int,
3820 Output_section*,
3821 const Reltype&,
3822 unsigned int, Symbol*)
3823 { return false; }
3824
3825 inline bool
3826 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3827 Target_mips*,
3828 Sized_relobj_file<size, big_endian>*,
3829 unsigned int,
3830 Output_section*,
3831 const Relatype&,
3832 unsigned int,
3833 const elfcpp::Sym<size, big_endian>&)
3834 { return false; }
3835
3836 inline bool
3837 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3838 Target_mips*,
3839 Sized_relobj_file<size, big_endian>*,
3840 unsigned int,
3841 Output_section*,
3842 const Relatype&,
3843 unsigned int, Symbol*)
3844 { return false; }
3845 private:
3846 static void
3847 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3848 unsigned int r_type);
3849
3850 static void
3851 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3852 unsigned int r_type, Symbol*);
3853 };
3854
3855 // The class which implements relocation.
3856 class Relocate
3857 {
3858 public:
3859 Relocate()
3860 : calculated_value_(0), calculate_only_(false)
3861 { }
3862
3863 ~Relocate()
3864 { }
3865
3866 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3867 inline bool
3868 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3869 unsigned int r_type,
3870 Output_section* output_section,
3871 Target_mips* target);
3872
3873 // Do a relocation. Return false if the caller should not issue
3874 // any warnings about this relocation.
3875 inline bool
3876 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3877 Target_mips*, Output_section*, size_t, const unsigned char*,
3878 const Sized_symbol<size>*, const Symbol_value<size>*,
3879 unsigned char*, Mips_address, section_size_type);
3880
3881 private:
3882 // Result of the relocation.
3883 Valtype calculated_value_;
3884 // Whether we have to calculate relocation instead of applying it.
3885 bool calculate_only_;
3886 };
3887
3888 // This POD class holds the dynamic relocations that should be emitted instead
3889 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3890 // relocations if it turns out that the symbol does not have static
3891 // relocations.
3892 class Dyn_reloc
3893 {
3894 public:
3895 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3896 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3897 Output_section* output_section, Mips_address r_offset)
3898 : sym_(sym), r_type_(r_type), relobj_(relobj),
3899 shndx_(shndx), output_section_(output_section),
3900 r_offset_(r_offset)
3901 { }
3902
3903 // Emit this reloc if appropriate. This is called after we have
3904 // scanned all the relocations, so we know whether the symbol has
3905 // static relocations.
3906 void
3907 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3908 Symbol_table* symtab)
3909 {
3910 if (!this->sym_->has_static_relocs())
3911 {
3912 got->record_global_got_symbol(this->sym_, this->relobj_,
3913 this->r_type_, true, false);
3914 if (!symbol_references_local(this->sym_,
3915 this->sym_->should_add_dynsym_entry(symtab)))
3916 rel_dyn->add_global(this->sym_, this->r_type_,
3917 this->output_section_, this->relobj_,
3918 this->shndx_, this->r_offset_);
3919 else
3920 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3921 this->output_section_, this->relobj_,
3922 this->shndx_, this->r_offset_);
3923 }
3924 }
3925
3926 private:
3927 Mips_symbol<size>* sym_;
3928 unsigned int r_type_;
3929 Mips_relobj<size, big_endian>* relobj_;
3930 unsigned int shndx_;
3931 Output_section* output_section_;
3932 Mips_address r_offset_;
3933 };
3934
3935 // Adjust TLS relocation type based on the options and whether this
3936 // is a local symbol.
3937 static tls::Tls_optimization
3938 optimize_tls_reloc(bool is_final, int r_type);
3939
3940 // Return whether there is a GOT section.
3941 bool
3942 has_got_section() const
3943 { return this->got_ != NULL; }
3944
3945 // Check whether the given ELF header flags describe a 32-bit binary.
3946 bool
3947 mips_32bit_flags(elfcpp::Elf_Word);
3948
3949 enum Mips_mach {
3950 mach_mips3000 = 3000,
3951 mach_mips3900 = 3900,
3952 mach_mips4000 = 4000,
3953 mach_mips4010 = 4010,
3954 mach_mips4100 = 4100,
3955 mach_mips4111 = 4111,
3956 mach_mips4120 = 4120,
3957 mach_mips4300 = 4300,
3958 mach_mips4400 = 4400,
3959 mach_mips4600 = 4600,
3960 mach_mips4650 = 4650,
3961 mach_mips5000 = 5000,
3962 mach_mips5400 = 5400,
3963 mach_mips5500 = 5500,
3964 mach_mips5900 = 5900,
3965 mach_mips6000 = 6000,
3966 mach_mips7000 = 7000,
3967 mach_mips8000 = 8000,
3968 mach_mips9000 = 9000,
3969 mach_mips10000 = 10000,
3970 mach_mips12000 = 12000,
3971 mach_mips14000 = 14000,
3972 mach_mips16000 = 16000,
3973 mach_mips16 = 16,
3974 mach_mips5 = 5,
3975 mach_mips_loongson_2e = 3001,
3976 mach_mips_loongson_2f = 3002,
3977 mach_mips_loongson_3a = 3003,
3978 mach_mips_sb1 = 12310201, // octal 'SB', 01
3979 mach_mips_octeon = 6501,
3980 mach_mips_octeonp = 6601,
3981 mach_mips_octeon2 = 6502,
3982 mach_mips_octeon3 = 6503,
3983 mach_mips_xlr = 887682, // decimal 'XLR'
3984 mach_mipsisa32 = 32,
3985 mach_mipsisa32r2 = 33,
3986 mach_mipsisa32r3 = 34,
3987 mach_mipsisa32r5 = 36,
3988 mach_mipsisa32r6 = 37,
3989 mach_mipsisa64 = 64,
3990 mach_mipsisa64r2 = 65,
3991 mach_mipsisa64r3 = 66,
3992 mach_mipsisa64r5 = 68,
3993 mach_mipsisa64r6 = 69,
3994 mach_mips_micromips = 96
3995 };
3996
3997 // Return the MACH for a MIPS e_flags value.
3998 unsigned int
3999 elf_mips_mach(elfcpp::Elf_Word);
4000
4001 // Return the MACH for each .MIPS.abiflags ISA Extension.
4002 unsigned int
4003 mips_isa_ext_mach(unsigned int);
4004
4005 // Return the .MIPS.abiflags value representing each ISA Extension.
4006 unsigned int
4007 mips_isa_ext(unsigned int);
4008
4009 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4010 void
4011 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
4012 Mips_abiflags<big_endian>*);
4013
4014 // Infer the content of the ABI flags based on the elf header.
4015 void
4016 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4017
4018 // Create abiflags from elf header or from .MIPS.abiflags section.
4019 void
4020 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4021
4022 // Return the meaning of fp_abi, or "unknown" if not known.
4023 const char*
4024 fp_abi_string(int);
4025
4026 // Select fp_abi.
4027 int
4028 select_fp_abi(const std::string&, int, int);
4029
4030 // Merge attributes from input object.
4031 void
4032 merge_obj_attributes(const std::string&, const Attributes_section_data*);
4033
4034 // Merge abiflags from input object.
4035 void
4036 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
4037
4038 // Check whether machine EXTENSION is an extension of machine BASE.
4039 bool
4040 mips_mach_extends(unsigned int, unsigned int);
4041
4042 // Merge file header flags from input object.
4043 void
4044 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4045
4046 // Encode ISA level and revision as a single value.
4047 int
4048 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4049 { return (isa_level << 3) | isa_rev; }
4050
4051 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4052 static inline bool
4053 jal_to_bal()
4054 { return false; }
4055
4056 // True if we are linking for CPUs that are faster if JALR is converted to
4057 // BAL. This should be safe for all architectures. We enable this predicate
4058 // for all CPUs.
4059 static inline bool
4060 jalr_to_bal()
4061 { return true; }
4062
4063 // True if we are linking for CPUs that are faster if JR is converted to B.
4064 // This should be safe for all architectures. We enable this predicate for
4065 // all CPUs.
4066 static inline bool
4067 jr_to_b()
4068 { return true; }
4069
4070 // Return the size of the GOT section.
4071 section_size_type
4072 got_size() const
4073 {
4074 gold_assert(this->got_ != NULL);
4075 return this->got_->data_size();
4076 }
4077
4078 // Create a PLT entry for a global symbol referenced by r_type relocation.
4079 void
4080 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4081 unsigned int r_type);
4082
4083 // Get the PLT section.
4084 Mips_output_data_plt<size, big_endian>*
4085 plt_section() const
4086 {
4087 gold_assert(this->plt_ != NULL);
4088 return this->plt_;
4089 }
4090
4091 // Get the GOT PLT section.
4092 const Mips_output_data_plt<size, big_endian>*
4093 got_plt_section() const
4094 {
4095 gold_assert(this->got_plt_ != NULL);
4096 return this->got_plt_;
4097 }
4098
4099 // Copy a relocation against a global symbol.
4100 void
4101 copy_reloc(Symbol_table* symtab, Layout* layout,
4102 Sized_relobj_file<size, big_endian>* object,
4103 unsigned int shndx, Output_section* output_section,
4104 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4105 {
4106 this->copy_relocs_.copy_reloc(symtab, layout,
4107 symtab->get_sized_symbol<size>(sym),
4108 object, shndx, output_section,
4109 r_type, r_offset, 0,
4110 this->rel_dyn_section(layout));
4111 }
4112
4113 void
4114 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4115 Mips_relobj<size, big_endian>* relobj,
4116 unsigned int shndx, Output_section* output_section,
4117 Mips_address r_offset)
4118 {
4119 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4120 output_section, r_offset));
4121 }
4122
4123 // Calculate value of _gp symbol.
4124 void
4125 set_gp(Layout*, Symbol_table*);
4126
4127 const char*
4128 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4129 const char*
4130 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4131
4132 // Adds entries that describe how machines relate to one another. The entries
4133 // are ordered topologically with MIPS I extensions listed last. First
4134 // element is extension, second element is base.
4135 void
4136 add_machine_extensions()
4137 {
4138 // MIPS64r2 extensions.
4139 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4140 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4141 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4142 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4143 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4144
4145 // MIPS64 extensions.
4146 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4147 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4148 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4149
4150 // MIPS V extensions.
4151 this->add_extension(mach_mipsisa64, mach_mips5);
4152
4153 // R10000 extensions.
4154 this->add_extension(mach_mips12000, mach_mips10000);
4155 this->add_extension(mach_mips14000, mach_mips10000);
4156 this->add_extension(mach_mips16000, mach_mips10000);
4157
4158 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4159 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4160 // better to allow vr5400 and vr5500 code to be merged anyway, since
4161 // many libraries will just use the core ISA. Perhaps we could add
4162 // some sort of ASE flag if this ever proves a problem.
4163 this->add_extension(mach_mips5500, mach_mips5400);
4164 this->add_extension(mach_mips5400, mach_mips5000);
4165
4166 // MIPS IV extensions.
4167 this->add_extension(mach_mips5, mach_mips8000);
4168 this->add_extension(mach_mips10000, mach_mips8000);
4169 this->add_extension(mach_mips5000, mach_mips8000);
4170 this->add_extension(mach_mips7000, mach_mips8000);
4171 this->add_extension(mach_mips9000, mach_mips8000);
4172
4173 // VR4100 extensions.
4174 this->add_extension(mach_mips4120, mach_mips4100);
4175 this->add_extension(mach_mips4111, mach_mips4100);
4176
4177 // MIPS III extensions.
4178 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4179 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4180 this->add_extension(mach_mips8000, mach_mips4000);
4181 this->add_extension(mach_mips4650, mach_mips4000);
4182 this->add_extension(mach_mips4600, mach_mips4000);
4183 this->add_extension(mach_mips4400, mach_mips4000);
4184 this->add_extension(mach_mips4300, mach_mips4000);
4185 this->add_extension(mach_mips4100, mach_mips4000);
4186 this->add_extension(mach_mips4010, mach_mips4000);
4187 this->add_extension(mach_mips5900, mach_mips4000);
4188
4189 // MIPS32 extensions.
4190 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4191
4192 // MIPS II extensions.
4193 this->add_extension(mach_mips4000, mach_mips6000);
4194 this->add_extension(mach_mipsisa32, mach_mips6000);
4195
4196 // MIPS I extensions.
4197 this->add_extension(mach_mips6000, mach_mips3000);
4198 this->add_extension(mach_mips3900, mach_mips3000);
4199 }
4200
4201 // Add value to MIPS extenstions.
4202 void
4203 add_extension(unsigned int base, unsigned int extension)
4204 {
4205 std::pair<unsigned int, unsigned int> ext(base, extension);
4206 this->mips_mach_extensions_.push_back(ext);
4207 }
4208
4209 // Return the number of entries in the .dynsym section.
4210 unsigned int get_dt_mips_symtabno() const
4211 {
4212 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4213 / elfcpp::Elf_sizes<size>::sym_size));
4214 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4215 }
4216
4217 // Information about this specific target which we pass to the
4218 // general Target structure.
4219 static const Target::Target_info mips_info;
4220 // The GOT section.
4221 Mips_output_data_got<size, big_endian>* got_;
4222 // gp symbol. It has the value of .got + 0x7FF0.
4223 Sized_symbol<size>* gp_;
4224 // The PLT section.
4225 Mips_output_data_plt<size, big_endian>* plt_;
4226 // The GOT PLT section.
4227 Output_data_space* got_plt_;
4228 // The dynamic reloc section.
4229 Reloc_section* rel_dyn_;
4230 // The .rld_map section.
4231 Output_data_zero_fill* rld_map_;
4232 // Relocs saved to avoid a COPY reloc.
4233 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4234
4235 // A list of dyn relocs to be saved.
4236 std::vector<Dyn_reloc> dyn_relocs_;
4237
4238 // The LA25 stub section.
4239 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4240 // Architecture extensions.
4241 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4242 // .MIPS.stubs
4243 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4244
4245 // Attributes section data in output.
4246 Attributes_section_data* attributes_section_data_;
4247 // .MIPS.abiflags section data in output.
4248 Mips_abiflags<big_endian>* abiflags_;
4249
4250 unsigned int mach_;
4251 Layout* layout_;
4252
4253 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4254
4255 // Whether there is an input .MIPS.abiflags section.
4256 bool has_abiflags_section_;
4257
4258 // Whether the entry symbol is mips16 or micromips.
4259 bool entry_symbol_is_compressed_;
4260
4261 // Whether we can use only 32-bit microMIPS instructions.
4262 // TODO(sasa): This should be a linker option.
4263 bool insn32_;
4264 };
4265
4266 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4267 // It records high part of the relocation pair.
4268
4269 template<int size, bool big_endian>
4270 struct reloc_high
4271 {
4272 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4273
4274 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4275 const Symbol_value<size>* _psymval, Mips_address _addend,
4276 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4277 Mips_address _address = 0, bool _gp_disp = false)
4278 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4279 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4280 address(_address), gp_disp(_gp_disp)
4281 { }
4282
4283 unsigned char* view;
4284 const Mips_relobj<size, big_endian>* object;
4285 const Symbol_value<size>* psymval;
4286 Mips_address addend;
4287 unsigned int r_type;
4288 unsigned int r_sym;
4289 bool extract_addend;
4290 Mips_address address;
4291 bool gp_disp;
4292 };
4293
4294 template<int size, bool big_endian>
4295 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4296 {
4297 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4298 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4299 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4300 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4301 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4302
4303 public:
4304 typedef enum
4305 {
4306 STATUS_OKAY, // No error during relocation.
4307 STATUS_OVERFLOW, // Relocation overflow.
4308 STATUS_BAD_RELOC, // Relocation cannot be applied.
4309 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4310 } Status;
4311
4312 private:
4313 typedef Relocate_functions<size, big_endian> Base;
4314 typedef Mips_relocate_functions<size, big_endian> This;
4315
4316 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4317 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4318 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4319
4320 template<int valsize>
4321 static inline typename This::Status
4322 check_overflow(Valtype value)
4323 {
4324 if (size == 32)
4325 return (Bits<valsize>::has_overflow32(value)
4326 ? This::STATUS_OVERFLOW
4327 : This::STATUS_OKAY);
4328
4329 return (Bits<valsize>::has_overflow(value)
4330 ? This::STATUS_OVERFLOW
4331 : This::STATUS_OKAY);
4332 }
4333
4334 static inline bool
4335 should_shuffle_micromips_reloc(unsigned int r_type)
4336 {
4337 return (micromips_reloc(r_type)
4338 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4339 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4340 }
4341
4342 public:
4343 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4344 // Most mips16 instructions are 16 bits, but these instructions
4345 // are 32 bits.
4346 //
4347 // The format of these instructions is:
4348 //
4349 // +--------------+--------------------------------+
4350 // | JALX | X| Imm 20:16 | Imm 25:21 |
4351 // +--------------+--------------------------------+
4352 // | Immediate 15:0 |
4353 // +-----------------------------------------------+
4354 //
4355 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4356 // Note that the immediate value in the first word is swapped.
4357 //
4358 // When producing a relocatable object file, R_MIPS16_26 is
4359 // handled mostly like R_MIPS_26. In particular, the addend is
4360 // stored as a straight 26-bit value in a 32-bit instruction.
4361 // (gas makes life simpler for itself by never adjusting a
4362 // R_MIPS16_26 reloc to be against a section, so the addend is
4363 // always zero). However, the 32 bit instruction is stored as 2
4364 // 16-bit values, rather than a single 32-bit value. In a
4365 // big-endian file, the result is the same; in a little-endian
4366 // file, the two 16-bit halves of the 32 bit value are swapped.
4367 // This is so that a disassembler can recognize the jal
4368 // instruction.
4369 //
4370 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4371 // instruction stored as two 16-bit values. The addend A is the
4372 // contents of the targ26 field. The calculation is the same as
4373 // R_MIPS_26. When storing the calculated value, reorder the
4374 // immediate value as shown above, and don't forget to store the
4375 // value as two 16-bit values.
4376 //
4377 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4378 // defined as
4379 //
4380 // big-endian:
4381 // +--------+----------------------+
4382 // | | |
4383 // | | targ26-16 |
4384 // |31 26|25 0|
4385 // +--------+----------------------+
4386 //
4387 // little-endian:
4388 // +----------+------+-------------+
4389 // | | | |
4390 // | sub1 | | sub2 |
4391 // |0 9|10 15|16 31|
4392 // +----------+--------------------+
4393 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4394 // ((sub1 << 16) | sub2)).
4395 //
4396 // When producing a relocatable object file, the calculation is
4397 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4398 // When producing a fully linked file, the calculation is
4399 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4400 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4401 //
4402 // The table below lists the other MIPS16 instruction relocations.
4403 // Each one is calculated in the same way as the non-MIPS16 relocation
4404 // given on the right, but using the extended MIPS16 layout of 16-bit
4405 // immediate fields:
4406 //
4407 // R_MIPS16_GPREL R_MIPS_GPREL16
4408 // R_MIPS16_GOT16 R_MIPS_GOT16
4409 // R_MIPS16_CALL16 R_MIPS_CALL16
4410 // R_MIPS16_HI16 R_MIPS_HI16
4411 // R_MIPS16_LO16 R_MIPS_LO16
4412 //
4413 // A typical instruction will have a format like this:
4414 //
4415 // +--------------+--------------------------------+
4416 // | EXTEND | Imm 10:5 | Imm 15:11 |
4417 // +--------------+--------------------------------+
4418 // | Major | rx | ry | Imm 4:0 |
4419 // +--------------+--------------------------------+
4420 //
4421 // EXTEND is the five bit value 11110. Major is the instruction
4422 // opcode.
4423 //
4424 // All we need to do here is shuffle the bits appropriately.
4425 // As above, the two 16-bit halves must be swapped on a
4426 // little-endian system.
4427
4428 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4429 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4430 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4431
4432 static void
4433 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4434 bool jal_shuffle)
4435 {
4436 if (!mips16_reloc(r_type)
4437 && !should_shuffle_micromips_reloc(r_type))
4438 return;
4439
4440 // Pick up the first and second halfwords of the instruction.
4441 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4442 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4443 Valtype32 val;
4444
4445 if (micromips_reloc(r_type)
4446 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4447 val = first << 16 | second;
4448 else if (r_type != elfcpp::R_MIPS16_26)
4449 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4450 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4451 else
4452 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4453 | ((first & 0x1f) << 21) | second);
4454
4455 elfcpp::Swap<32, big_endian>::writeval(view, val);
4456 }
4457
4458 static void
4459 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4460 {
4461 if (!mips16_reloc(r_type)
4462 && !should_shuffle_micromips_reloc(r_type))
4463 return;
4464
4465 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4466 Valtype16 first, second;
4467
4468 if (micromips_reloc(r_type)
4469 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4470 {
4471 second = val & 0xffff;
4472 first = val >> 16;
4473 }
4474 else if (r_type != elfcpp::R_MIPS16_26)
4475 {
4476 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4477 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4478 }
4479 else
4480 {
4481 second = val & 0xffff;
4482 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4483 | ((val >> 21) & 0x1f);
4484 }
4485
4486 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4487 elfcpp::Swap<16, big_endian>::writeval(view, first);
4488 }
4489
4490 // R_MIPS_16: S + sign-extend(A)
4491 static inline typename This::Status
4492 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4493 const Symbol_value<size>* psymval, Mips_address addend_a,
4494 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4495 {
4496 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4497 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4498
4499 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4500 : addend_a);
4501
4502 Valtype x = psymval->value(object, addend);
4503 val = Bits<16>::bit_select32(val, x, 0xffffU);
4504
4505 if (calculate_only)
4506 {
4507 *calculated_value = x;
4508 return This::STATUS_OKAY;
4509 }
4510 else
4511 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4512
4513 return check_overflow<16>(x);
4514 }
4515
4516 // R_MIPS_32: S + A
4517 static inline typename This::Status
4518 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4519 const Symbol_value<size>* psymval, Mips_address addend_a,
4520 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4521 {
4522 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4523 Valtype addend = (extract_addend
4524 ? elfcpp::Swap<32, big_endian>::readval(wv)
4525 : addend_a);
4526 Valtype x = psymval->value(object, addend);
4527
4528 if (calculate_only)
4529 *calculated_value = x;
4530 else
4531 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4532
4533 return This::STATUS_OKAY;
4534 }
4535
4536 // R_MIPS_JALR, R_MICROMIPS_JALR
4537 static inline typename This::Status
4538 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4539 const Symbol_value<size>* psymval, Mips_address address,
4540 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4541 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4542 bool calculate_only, Valtype* calculated_value)
4543 {
4544 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4545 Valtype addend = extract_addend ? 0 : addend_a;
4546 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4547
4548 // Try converting J(AL)R to B(AL), if the target is in range.
4549 if (r_type == elfcpp::R_MIPS_JALR
4550 && !cross_mode_jump
4551 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4552 || (jr_to_b && val == 0x03200008))) // jr t9
4553 {
4554 int offset = psymval->value(object, addend) - (address + 4);
4555 if (!Bits<18>::has_overflow32(offset))
4556 {
4557 if (val == 0x03200008) // jr t9
4558 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4559 else
4560 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4561 }
4562 }
4563
4564 if (calculate_only)
4565 *calculated_value = val;
4566 else
4567 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4568
4569 return This::STATUS_OKAY;
4570 }
4571
4572 // R_MIPS_PC32: S + A - P
4573 static inline typename This::Status
4574 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4575 const Symbol_value<size>* psymval, Mips_address address,
4576 Mips_address addend_a, bool extract_addend, bool calculate_only,
4577 Valtype* calculated_value)
4578 {
4579 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4580 Valtype addend = (extract_addend
4581 ? elfcpp::Swap<32, big_endian>::readval(wv)
4582 : addend_a);
4583 Valtype x = psymval->value(object, addend) - address;
4584
4585 if (calculate_only)
4586 *calculated_value = x;
4587 else
4588 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4589
4590 return This::STATUS_OKAY;
4591 }
4592
4593 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4594 static inline typename This::Status
4595 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4596 const Symbol_value<size>* psymval, Mips_address address,
4597 bool local, Mips_address addend_a, bool extract_addend,
4598 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4599 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4600 {
4601 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4602 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4603
4604 Valtype addend;
4605 if (extract_addend)
4606 {
4607 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4608 addend = (val & 0x03ffffff) << 1;
4609 else
4610 addend = (val & 0x03ffffff) << 2;
4611 }
4612 else
4613 addend = addend_a;
4614
4615 // Make sure the target of JALX is word-aligned. Bit 0 must be
4616 // the correct ISA mode selector and bit 1 must be 0.
4617 if (!calculate_only && cross_mode_jump
4618 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4619 {
4620 gold_warning(_("JALX to a non-word-aligned address"));
4621 return This::STATUS_BAD_RELOC;
4622 }
4623
4624 // Shift is 2, unusually, for microMIPS JALX.
4625 unsigned int shift =
4626 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4627
4628 Valtype x;
4629 if (local)
4630 x = addend | ((address + 4) & (0xfc000000 << shift));
4631 else
4632 {
4633 if (shift == 1)
4634 x = Bits<27>::sign_extend32(addend);
4635 else
4636 x = Bits<28>::sign_extend32(addend);
4637 }
4638 x = psymval->value(object, x) >> shift;
4639
4640 if (!calculate_only && !local && !gsym->is_weak_undefined()
4641 && ((x >> 26) != ((address + 4) >> (26 + shift))))
4642 return This::STATUS_OVERFLOW;
4643
4644 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4645
4646 // If required, turn JAL into JALX.
4647 if (cross_mode_jump)
4648 {
4649 bool ok;
4650 Valtype32 opcode = val >> 26;
4651 Valtype32 jalx_opcode;
4652
4653 // Check to see if the opcode is already JAL or JALX.
4654 if (r_type == elfcpp::R_MIPS16_26)
4655 {
4656 ok = (opcode == 0x6) || (opcode == 0x7);
4657 jalx_opcode = 0x7;
4658 }
4659 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4660 {
4661 ok = (opcode == 0x3d) || (opcode == 0x3c);
4662 jalx_opcode = 0x3c;
4663 }
4664 else
4665 {
4666 ok = (opcode == 0x3) || (opcode == 0x1d);
4667 jalx_opcode = 0x1d;
4668 }
4669
4670 // If the opcode is not JAL or JALX, there's a problem. We cannot
4671 // convert J or JALS to JALX.
4672 if (!calculate_only && !ok)
4673 {
4674 gold_error(_("Unsupported jump between ISA modes; consider "
4675 "recompiling with interlinking enabled."));
4676 return This::STATUS_BAD_RELOC;
4677 }
4678
4679 // Make this the JALX opcode.
4680 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4681 }
4682
4683 // Try converting JAL to BAL, if the target is in range.
4684 if (!parameters->options().relocatable()
4685 && !cross_mode_jump
4686 && ((jal_to_bal
4687 && r_type == elfcpp::R_MIPS_26
4688 && (val >> 26) == 0x3))) // jal addr
4689 {
4690 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4691 int offset = dest - (address + 4);
4692 if (!Bits<18>::has_overflow32(offset))
4693 {
4694 if (val == 0x03200008) // jr t9
4695 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4696 else
4697 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4698 }
4699 }
4700
4701 if (calculate_only)
4702 *calculated_value = val;
4703 else
4704 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4705
4706 return This::STATUS_OKAY;
4707 }
4708
4709 // R_MIPS_PC16
4710 static inline typename This::Status
4711 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4712 const Symbol_value<size>* psymval, Mips_address address,
4713 Mips_address addend_a, bool extract_addend, bool calculate_only,
4714 Valtype* calculated_value)
4715 {
4716 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4717 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4718
4719 Valtype addend = (extract_addend
4720 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4721 : addend_a);
4722
4723 Valtype x = psymval->value(object, addend) - address;
4724 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4725
4726 if (calculate_only)
4727 {
4728 *calculated_value = x >> 2;
4729 return This::STATUS_OKAY;
4730 }
4731 else
4732 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4733
4734 if (psymval->value(object, addend) & 3)
4735 return This::STATUS_PCREL_UNALIGNED;
4736
4737 return check_overflow<18>(x);
4738 }
4739
4740 // R_MIPS_PC21_S2
4741 static inline typename This::Status
4742 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4743 const Symbol_value<size>* psymval, Mips_address address,
4744 Mips_address addend_a, bool extract_addend, bool calculate_only,
4745 Valtype* calculated_value)
4746 {
4747 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4748 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4749
4750 Valtype addend = (extract_addend
4751 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4752 : addend_a);
4753
4754 Valtype x = psymval->value(object, addend) - address;
4755 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4756
4757 if (calculate_only)
4758 {
4759 *calculated_value = x >> 2;
4760 return This::STATUS_OKAY;
4761 }
4762 else
4763 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4764
4765 if (psymval->value(object, addend) & 3)
4766 return This::STATUS_PCREL_UNALIGNED;
4767
4768 return check_overflow<23>(x);
4769 }
4770
4771 // R_MIPS_PC26_S2
4772 static inline typename This::Status
4773 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4774 const Symbol_value<size>* psymval, Mips_address address,
4775 Mips_address addend_a, bool extract_addend, bool calculate_only,
4776 Valtype* calculated_value)
4777 {
4778 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4779 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4780
4781 Valtype addend = (extract_addend
4782 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4783 : addend_a);
4784
4785 Valtype x = psymval->value(object, addend) - address;
4786 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4787
4788 if (calculate_only)
4789 {
4790 *calculated_value = x >> 2;
4791 return This::STATUS_OKAY;
4792 }
4793 else
4794 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4795
4796 if (psymval->value(object, addend) & 3)
4797 return This::STATUS_PCREL_UNALIGNED;
4798
4799 return check_overflow<28>(x);
4800 }
4801
4802 // R_MIPS_PC18_S3
4803 static inline typename This::Status
4804 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4805 const Symbol_value<size>* psymval, Mips_address address,
4806 Mips_address addend_a, bool extract_addend, bool calculate_only,
4807 Valtype* calculated_value)
4808 {
4809 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4810 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4811
4812 Valtype addend = (extract_addend
4813 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4814 : addend_a);
4815
4816 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4817 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4818
4819 if (calculate_only)
4820 {
4821 *calculated_value = x >> 3;
4822 return This::STATUS_OKAY;
4823 }
4824 else
4825 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4826
4827 if (psymval->value(object, addend) & 7)
4828 return This::STATUS_PCREL_UNALIGNED;
4829
4830 return check_overflow<21>(x);
4831 }
4832
4833 // R_MIPS_PC19_S2
4834 static inline typename This::Status
4835 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4836 const Symbol_value<size>* psymval, Mips_address address,
4837 Mips_address addend_a, bool extract_addend, bool calculate_only,
4838 Valtype* calculated_value)
4839 {
4840 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4841 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4842
4843 Valtype addend = (extract_addend
4844 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4845 : addend_a);
4846
4847 Valtype x = psymval->value(object, addend) - address;
4848 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4849
4850 if (calculate_only)
4851 {
4852 *calculated_value = x >> 2;
4853 return This::STATUS_OKAY;
4854 }
4855 else
4856 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4857
4858 if (psymval->value(object, addend) & 3)
4859 return This::STATUS_PCREL_UNALIGNED;
4860
4861 return check_overflow<21>(x);
4862 }
4863
4864 // R_MIPS_PCHI16
4865 static inline typename This::Status
4866 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4867 const Symbol_value<size>* psymval, Mips_address addend,
4868 Mips_address address, unsigned int r_sym, bool extract_addend)
4869 {
4870 // Record the relocation. It will be resolved when we find pclo16 part.
4871 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4872 addend, 0, r_sym, extract_addend, address));
4873 return This::STATUS_OKAY;
4874 }
4875
4876 // R_MIPS_PCHI16
4877 static inline typename This::Status
4878 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4879 const Symbol_value<size>* psymval, Mips_address addend_hi,
4880 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4881 bool calculate_only, Valtype* calculated_value)
4882 {
4883 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4884 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4885
4886 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4887 : addend_hi);
4888
4889 Valtype value = psymval->value(object, addend) - address;
4890 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4891 val = Bits<32>::bit_select32(val, x, 0xffff);
4892
4893 if (calculate_only)
4894 *calculated_value = x;
4895 else
4896 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4897
4898 return This::STATUS_OKAY;
4899 }
4900
4901 // R_MIPS_PCLO16
4902 static inline typename This::Status
4903 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4904 const Symbol_value<size>* psymval, Mips_address addend_a,
4905 bool extract_addend, Mips_address address, unsigned int r_sym,
4906 unsigned int rel_type, bool calculate_only,
4907 Valtype* calculated_value)
4908 {
4909 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4910 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4911
4912 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4913 : addend_a);
4914
4915 if (rel_type == elfcpp::SHT_REL)
4916 {
4917 // Resolve pending R_MIPS_PCHI16 relocations.
4918 typename std::list<reloc_high<size, big_endian> >::iterator it =
4919 pchi16_relocs.begin();
4920 while (it != pchi16_relocs.end())
4921 {
4922 reloc_high<size, big_endian> pchi16 = *it;
4923 if (pchi16.r_sym == r_sym)
4924 {
4925 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4926 pchi16.addend, pchi16.address,
4927 pchi16.extract_addend, addend, calculate_only,
4928 calculated_value);
4929 it = pchi16_relocs.erase(it);
4930 }
4931 else
4932 ++it;
4933 }
4934 }
4935
4936 // Resolve R_MIPS_PCLO16 relocation.
4937 Valtype x = psymval->value(object, addend) - address;
4938 val = Bits<32>::bit_select32(val, x, 0xffff);
4939
4940 if (calculate_only)
4941 *calculated_value = x;
4942 else
4943 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4944
4945 return This::STATUS_OKAY;
4946 }
4947
4948 // R_MICROMIPS_PC7_S1
4949 static inline typename This::Status
4950 relmicromips_pc7_s1(unsigned char* view,
4951 const Mips_relobj<size, big_endian>* object,
4952 const Symbol_value<size>* psymval, Mips_address address,
4953 Mips_address addend_a, bool extract_addend,
4954 bool calculate_only, Valtype* calculated_value)
4955 {
4956 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4957 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4958
4959 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4960 : addend_a;
4961
4962 Valtype x = psymval->value(object, addend) - address;
4963 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4964
4965 if (calculate_only)
4966 {
4967 *calculated_value = x >> 1;
4968 return This::STATUS_OKAY;
4969 }
4970 else
4971 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4972
4973 return check_overflow<8>(x);
4974 }
4975
4976 // R_MICROMIPS_PC10_S1
4977 static inline typename This::Status
4978 relmicromips_pc10_s1(unsigned char* view,
4979 const Mips_relobj<size, big_endian>* object,
4980 const Symbol_value<size>* psymval, Mips_address address,
4981 Mips_address addend_a, bool extract_addend,
4982 bool calculate_only, Valtype* calculated_value)
4983 {
4984 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4985 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4986
4987 Valtype addend = (extract_addend
4988 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4989 : addend_a);
4990
4991 Valtype x = psymval->value(object, addend) - address;
4992 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4993
4994 if (calculate_only)
4995 {
4996 *calculated_value = x >> 1;
4997 return This::STATUS_OKAY;
4998 }
4999 else
5000 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5001
5002 return check_overflow<11>(x);
5003 }
5004
5005 // R_MICROMIPS_PC16_S1
5006 static inline typename This::Status
5007 relmicromips_pc16_s1(unsigned char* view,
5008 const Mips_relobj<size, big_endian>* object,
5009 const Symbol_value<size>* psymval, Mips_address address,
5010 Mips_address addend_a, bool extract_addend,
5011 bool calculate_only, Valtype* calculated_value)
5012 {
5013 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5014 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5015
5016 Valtype addend = (extract_addend
5017 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
5018 : addend_a);
5019
5020 Valtype x = psymval->value(object, addend) - address;
5021 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
5022
5023 if (calculate_only)
5024 {
5025 *calculated_value = x >> 1;
5026 return This::STATUS_OKAY;
5027 }
5028 else
5029 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5030
5031 return check_overflow<17>(x);
5032 }
5033
5034 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5035 static inline typename This::Status
5036 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5037 const Symbol_value<size>* psymval, Mips_address addend,
5038 Mips_address address, bool gp_disp, unsigned int r_type,
5039 unsigned int r_sym, bool extract_addend)
5040 {
5041 // Record the relocation. It will be resolved when we find lo16 part.
5042 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5043 addend, r_type, r_sym, extract_addend, address,
5044 gp_disp));
5045 return This::STATUS_OKAY;
5046 }
5047
5048 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5049 static inline typename This::Status
5050 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5051 const Symbol_value<size>* psymval, Mips_address addend_hi,
5052 Mips_address address, bool is_gp_disp, unsigned int r_type,
5053 bool extract_addend, Valtype32 addend_lo,
5054 Target_mips<size, big_endian>* target, bool calculate_only,
5055 Valtype* calculated_value)
5056 {
5057 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5058 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5059
5060 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5061 : addend_hi);
5062
5063 Valtype32 value;
5064 if (!is_gp_disp)
5065 value = psymval->value(object, addend);
5066 else
5067 {
5068 // For MIPS16 ABI code we generate this sequence
5069 // 0: li $v0,%hi(_gp_disp)
5070 // 4: addiupc $v1,%lo(_gp_disp)
5071 // 8: sll $v0,16
5072 // 12: addu $v0,$v1
5073 // 14: move $gp,$v0
5074 // So the offsets of hi and lo relocs are the same, but the
5075 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5076 // ADDIUPC clears the low two bits of the instruction address,
5077 // so the base is ($t9 + 4) & ~3.
5078 Valtype32 gp_disp;
5079 if (r_type == elfcpp::R_MIPS16_HI16)
5080 gp_disp = (target->adjusted_gp_value(object)
5081 - ((address + 4) & ~0x3));
5082 // The microMIPS .cpload sequence uses the same assembly
5083 // instructions as the traditional psABI version, but the
5084 // incoming $t9 has the low bit set.
5085 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5086 gp_disp = target->adjusted_gp_value(object) - address - 1;
5087 else
5088 gp_disp = target->adjusted_gp_value(object) - address;
5089 value = gp_disp + addend;
5090 }
5091 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5092 val = Bits<32>::bit_select32(val, x, 0xffff);
5093
5094 if (calculate_only)
5095 {
5096 *calculated_value = x;
5097 return This::STATUS_OKAY;
5098 }
5099 else
5100 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5101
5102 return (is_gp_disp ? check_overflow<16>(x)
5103 : This::STATUS_OKAY);
5104 }
5105
5106 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5107 static inline typename This::Status
5108 relgot16_local(unsigned char* view,
5109 const Mips_relobj<size, big_endian>* object,
5110 const Symbol_value<size>* psymval, Mips_address addend_a,
5111 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5112 {
5113 // Record the relocation. It will be resolved when we find lo16 part.
5114 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5115 addend_a, r_type, r_sym, extract_addend));
5116 return This::STATUS_OKAY;
5117 }
5118
5119 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5120 static inline typename This::Status
5121 do_relgot16_local(unsigned char* view,
5122 const Mips_relobj<size, big_endian>* object,
5123 const Symbol_value<size>* psymval, Mips_address addend_hi,
5124 bool extract_addend, Valtype32 addend_lo,
5125 Target_mips<size, big_endian>* target, bool calculate_only,
5126 Valtype* calculated_value)
5127 {
5128 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5129 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5130
5131 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5132 : addend_hi);
5133
5134 // Find GOT page entry.
5135 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5136 & 0xffff;
5137 value <<= 16;
5138 unsigned int got_offset =
5139 target->got_section()->get_got_page_offset(value, object);
5140
5141 // Resolve the relocation.
5142 Valtype x = target->got_section()->gp_offset(got_offset, object);
5143 val = Bits<32>::bit_select32(val, x, 0xffff);
5144
5145 if (calculate_only)
5146 {
5147 *calculated_value = x;
5148 return This::STATUS_OKAY;
5149 }
5150 else
5151 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5152
5153 return check_overflow<16>(x);
5154 }
5155
5156 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5157 static inline typename This::Status
5158 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5159 const Mips_relobj<size, big_endian>* object,
5160 const Symbol_value<size>* psymval, Mips_address addend_a,
5161 bool extract_addend, Mips_address address, bool is_gp_disp,
5162 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5163 bool calculate_only, Valtype* calculated_value)
5164 {
5165 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5166 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5167
5168 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5169 : addend_a);
5170
5171 if (rel_type == elfcpp::SHT_REL)
5172 {
5173 typename This::Status reloc_status = This::STATUS_OKAY;
5174 // Resolve pending R_MIPS_HI16 relocations.
5175 typename std::list<reloc_high<size, big_endian> >::iterator it =
5176 hi16_relocs.begin();
5177 while (it != hi16_relocs.end())
5178 {
5179 reloc_high<size, big_endian> hi16 = *it;
5180 if (hi16.r_sym == r_sym
5181 && is_matching_lo16_reloc(hi16.r_type, r_type))
5182 {
5183 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5184 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5185 hi16.addend, hi16.address, hi16.gp_disp,
5186 hi16.r_type, hi16.extract_addend, addend,
5187 target, calculate_only, calculated_value);
5188 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5189 if (reloc_status == This::STATUS_OVERFLOW)
5190 return This::STATUS_OVERFLOW;
5191 it = hi16_relocs.erase(it);
5192 }
5193 else
5194 ++it;
5195 }
5196
5197 // Resolve pending local R_MIPS_GOT16 relocations.
5198 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5199 got16_relocs.begin();
5200 while (it2 != got16_relocs.end())
5201 {
5202 reloc_high<size, big_endian> got16 = *it2;
5203 if (got16.r_sym == r_sym
5204 && is_matching_lo16_reloc(got16.r_type, r_type))
5205 {
5206 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5207
5208 reloc_status = do_relgot16_local(got16.view, got16.object,
5209 got16.psymval, got16.addend,
5210 got16.extract_addend, addend, target,
5211 calculate_only, calculated_value);
5212
5213 mips_reloc_shuffle(got16.view, got16.r_type, false);
5214 if (reloc_status == This::STATUS_OVERFLOW)
5215 return This::STATUS_OVERFLOW;
5216 it2 = got16_relocs.erase(it2);
5217 }
5218 else
5219 ++it2;
5220 }
5221 }
5222
5223 // Resolve R_MIPS_LO16 relocation.
5224 Valtype x;
5225 if (!is_gp_disp)
5226 x = psymval->value(object, addend);
5227 else
5228 {
5229 // See the comment for R_MIPS16_HI16 above for the reason
5230 // for this conditional.
5231 Valtype32 gp_disp;
5232 if (r_type == elfcpp::R_MIPS16_LO16)
5233 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5234 else if (r_type == elfcpp::R_MICROMIPS_LO16
5235 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5236 gp_disp = target->adjusted_gp_value(object) - address + 3;
5237 else
5238 gp_disp = target->adjusted_gp_value(object) - address + 4;
5239 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5240 // for overflow. Relocations against _gp_disp are normally
5241 // generated from the .cpload pseudo-op. It generates code
5242 // that normally looks like this:
5243
5244 // lui $gp,%hi(_gp_disp)
5245 // addiu $gp,$gp,%lo(_gp_disp)
5246 // addu $gp,$gp,$t9
5247
5248 // Here $t9 holds the address of the function being called,
5249 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5250 // relocation can easily overflow in this situation, but the
5251 // R_MIPS_HI16 relocation will handle the overflow.
5252 // Therefore, we consider this a bug in the MIPS ABI, and do
5253 // not check for overflow here.
5254 x = gp_disp + addend;
5255 }
5256 val = Bits<32>::bit_select32(val, x, 0xffff);
5257
5258 if (calculate_only)
5259 *calculated_value = x;
5260 else
5261 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5262
5263 return This::STATUS_OKAY;
5264 }
5265
5266 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5267 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5268 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5269 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5270 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5271 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5272 static inline typename This::Status
5273 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5274 Valtype* calculated_value)
5275 {
5276 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5277 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5278 Valtype x = gp_offset;
5279 val = Bits<32>::bit_select32(val, x, 0xffff);
5280
5281 if (calculate_only)
5282 {
5283 *calculated_value = x;
5284 return This::STATUS_OKAY;
5285 }
5286 else
5287 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5288
5289 return check_overflow<16>(x);
5290 }
5291
5292 // R_MIPS_EH
5293 static inline typename This::Status
5294 releh(unsigned char* view, int gp_offset, bool calculate_only,
5295 Valtype* calculated_value)
5296 {
5297 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5298 Valtype x = gp_offset;
5299
5300 if (calculate_only)
5301 {
5302 *calculated_value = x;
5303 return This::STATUS_OKAY;
5304 }
5305 else
5306 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5307
5308 return check_overflow<32>(x);
5309 }
5310
5311 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5312 static inline typename This::Status
5313 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5314 const Mips_relobj<size, big_endian>* object,
5315 const Symbol_value<size>* psymval, Mips_address addend_a,
5316 bool extract_addend, bool calculate_only,
5317 Valtype* calculated_value)
5318 {
5319 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5320 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5321 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5322
5323 // Find a GOT page entry that points to within 32KB of symbol + addend.
5324 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5325 unsigned int got_offset =
5326 target->got_section()->get_got_page_offset(value, object);
5327
5328 Valtype x = target->got_section()->gp_offset(got_offset, object);
5329 val = Bits<32>::bit_select32(val, x, 0xffff);
5330
5331 if (calculate_only)
5332 {
5333 *calculated_value = x;
5334 return This::STATUS_OKAY;
5335 }
5336 else
5337 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5338
5339 return check_overflow<16>(x);
5340 }
5341
5342 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5343 static inline typename This::Status
5344 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5345 const Mips_relobj<size, big_endian>* object,
5346 const Symbol_value<size>* psymval, Mips_address addend_a,
5347 bool extract_addend, bool local, bool calculate_only,
5348 Valtype* calculated_value)
5349 {
5350 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5351 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5352 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5353
5354 // For a local symbol, find a GOT page entry that points to within 32KB of
5355 // symbol + addend. Relocation value is the offset of the GOT page entry's
5356 // value from symbol + addend.
5357 // For a global symbol, relocation value is addend.
5358 Valtype x;
5359 if (local)
5360 {
5361 // Find GOT page entry.
5362 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5363 & ~0xffff);
5364 target->got_section()->get_got_page_offset(value, object);
5365
5366 x = psymval->value(object, addend) - value;
5367 }
5368 else
5369 x = addend;
5370 val = Bits<32>::bit_select32(val, x, 0xffff);
5371
5372 if (calculate_only)
5373 {
5374 *calculated_value = x;
5375 return This::STATUS_OKAY;
5376 }
5377 else
5378 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5379
5380 return check_overflow<16>(x);
5381 }
5382
5383 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5384 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5385 static inline typename This::Status
5386 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5387 Valtype* calculated_value)
5388 {
5389 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5390 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5391 Valtype x = gp_offset;
5392 x = ((x + 0x8000) >> 16) & 0xffff;
5393 val = Bits<32>::bit_select32(val, x, 0xffff);
5394
5395 if (calculate_only)
5396 *calculated_value = x;
5397 else
5398 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5399
5400 return This::STATUS_OKAY;
5401 }
5402
5403 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5404 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5405 static inline typename This::Status
5406 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5407 Valtype* calculated_value)
5408 {
5409 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5410 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5411 Valtype x = gp_offset;
5412 val = Bits<32>::bit_select32(val, x, 0xffff);
5413
5414 if (calculate_only)
5415 *calculated_value = x;
5416 else
5417 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5418
5419 return This::STATUS_OKAY;
5420 }
5421
5422 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5423 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5424 static inline typename This::Status
5425 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5426 const Symbol_value<size>* psymval, Mips_address gp,
5427 Mips_address addend_a, bool extract_addend, bool local,
5428 unsigned int r_type, bool calculate_only,
5429 Valtype* calculated_value)
5430 {
5431 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5432 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5433
5434 Valtype addend;
5435 if (extract_addend)
5436 {
5437 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5438 addend = (val & 0x7f) << 2;
5439 else
5440 addend = val & 0xffff;
5441 // Only sign-extend the addend if it was extracted from the
5442 // instruction. If the addend was separate, leave it alone,
5443 // otherwise we may lose significant bits.
5444 addend = Bits<16>::sign_extend32(addend);
5445 }
5446 else
5447 addend = addend_a;
5448
5449 Valtype x = psymval->value(object, addend) - gp;
5450
5451 // If the symbol was local, any earlier relocatable links will
5452 // have adjusted its addend with the gp offset, so compensate
5453 // for that now. Don't do it for symbols forced local in this
5454 // link, though, since they won't have had the gp offset applied
5455 // to them before.
5456 if (local)
5457 x += object->gp_value();
5458
5459 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5460 val = Bits<32>::bit_select32(val, x, 0x7f);
5461 else
5462 val = Bits<32>::bit_select32(val, x, 0xffff);
5463
5464 if (calculate_only)
5465 {
5466 *calculated_value = x;
5467 return This::STATUS_OKAY;
5468 }
5469 else
5470 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5471
5472 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5473 {
5474 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5475 "limit (see option -G)"));
5476 return This::STATUS_OVERFLOW;
5477 }
5478 return This::STATUS_OKAY;
5479 }
5480
5481 // R_MIPS_GPREL32
5482 static inline typename This::Status
5483 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5484 const Symbol_value<size>* psymval, Mips_address gp,
5485 Mips_address addend_a, bool extract_addend, bool calculate_only,
5486 Valtype* calculated_value)
5487 {
5488 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5489 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5490 Valtype addend = extract_addend ? val : addend_a;
5491
5492 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5493 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5494
5495 if (calculate_only)
5496 *calculated_value = x;
5497 else
5498 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5499
5500 return This::STATUS_OKAY;
5501 }
5502
5503 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5504 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5505 // R_MICROMIPS_TLS_DTPREL_HI16
5506 static inline typename This::Status
5507 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5508 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5509 Mips_address addend_a, bool extract_addend, bool calculate_only,
5510 Valtype* calculated_value)
5511 {
5512 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5513 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5514 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5515
5516 // tls symbol values are relative to tls_segment()->vaddr()
5517 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5518 val = Bits<32>::bit_select32(val, x, 0xffff);
5519
5520 if (calculate_only)
5521 *calculated_value = x;
5522 else
5523 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5524
5525 return This::STATUS_OKAY;
5526 }
5527
5528 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5529 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5530 // R_MICROMIPS_TLS_DTPREL_LO16,
5531 static inline typename This::Status
5532 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5533 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5534 Mips_address addend_a, bool extract_addend, bool calculate_only,
5535 Valtype* calculated_value)
5536 {
5537 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5538 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5539 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5540
5541 // tls symbol values are relative to tls_segment()->vaddr()
5542 Valtype x = psymval->value(object, addend) - tp_offset;
5543 val = Bits<32>::bit_select32(val, x, 0xffff);
5544
5545 if (calculate_only)
5546 *calculated_value = x;
5547 else
5548 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5549
5550 return This::STATUS_OKAY;
5551 }
5552
5553 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5554 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5555 static inline typename This::Status
5556 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5557 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5558 Mips_address addend_a, bool extract_addend, bool calculate_only,
5559 Valtype* calculated_value)
5560 {
5561 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5562 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5563 Valtype addend = extract_addend ? val : addend_a;
5564
5565 // tls symbol values are relative to tls_segment()->vaddr()
5566 Valtype x = psymval->value(object, addend) - tp_offset;
5567
5568 if (calculate_only)
5569 *calculated_value = x;
5570 else
5571 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5572
5573 return This::STATUS_OKAY;
5574 }
5575
5576 // R_MIPS_SUB, R_MICROMIPS_SUB
5577 static inline typename This::Status
5578 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5579 const Symbol_value<size>* psymval, Mips_address addend_a,
5580 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5581 {
5582 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5583 Valtype64 addend = (extract_addend
5584 ? elfcpp::Swap<64, big_endian>::readval(wv)
5585 : addend_a);
5586
5587 Valtype64 x = psymval->value(object, -addend);
5588 if (calculate_only)
5589 *calculated_value = x;
5590 else
5591 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5592
5593 return This::STATUS_OKAY;
5594 }
5595
5596 // R_MIPS_64: S + A
5597 static inline typename This::Status
5598 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5599 const Symbol_value<size>* psymval, Mips_address addend_a,
5600 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5601 bool apply_addend_only)
5602 {
5603 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5604 Valtype64 addend = (extract_addend
5605 ? elfcpp::Swap<64, big_endian>::readval(wv)
5606 : addend_a);
5607
5608 Valtype64 x = psymval->value(object, addend);
5609 if (calculate_only)
5610 *calculated_value = x;
5611 else
5612 {
5613 if (apply_addend_only)
5614 x = addend;
5615 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5616 }
5617
5618 return This::STATUS_OKAY;
5619 }
5620
5621 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5622 static inline typename This::Status
5623 relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5624 const Symbol_value<size>* psymval, Mips_address addend_a,
5625 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5626 {
5627 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5628 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5629 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5630 : addend_a);
5631
5632 Valtype x = psymval->value(object, addend);
5633 x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5634 val = Bits<32>::bit_select32(val, x, 0xffff);
5635
5636 if (calculate_only)
5637 *calculated_value = x;
5638 else
5639 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5640
5641 return This::STATUS_OKAY;
5642 }
5643
5644 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5645 static inline typename This::Status
5646 relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5647 const Symbol_value<size>* psymval, Mips_address addend_a,
5648 bool extract_addend, bool calculate_only,
5649 Valtype* calculated_value)
5650 {
5651 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5652 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5653 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5654 : addend_a);
5655
5656 Valtype x = psymval->value(object, addend);
5657 x = ((x + (uint64_t) 0x800080008000) >> 48) & 0xffff;
5658 val = Bits<32>::bit_select32(val, x, 0xffff);
5659
5660 if (calculate_only)
5661 *calculated_value = x;
5662 else
5663 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5664
5665 return This::STATUS_OKAY;
5666 }
5667 };
5668
5669 template<int size, bool big_endian>
5670 typename std::list<reloc_high<size, big_endian> >
5671 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5672
5673 template<int size, bool big_endian>
5674 typename std::list<reloc_high<size, big_endian> >
5675 Mips_relocate_functions<size, big_endian>::got16_relocs;
5676
5677 template<int size, bool big_endian>
5678 typename std::list<reloc_high<size, big_endian> >
5679 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5680
5681 // Mips_got_info methods.
5682
5683 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5684 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5685
5686 template<int size, bool big_endian>
5687 void
5688 Mips_got_info<size, big_endian>::record_local_got_symbol(
5689 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5690 Mips_address addend, unsigned int r_type, unsigned int shndx,
5691 bool is_section_symbol)
5692 {
5693 Mips_got_entry<size, big_endian>* entry =
5694 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5695 mips_elf_reloc_tls_type(r_type),
5696 shndx, is_section_symbol);
5697 this->record_got_entry(entry, object);
5698 }
5699
5700 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5701 // in OBJECT. FOR_CALL is true if the caller is only interested in
5702 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5703 // relocation.
5704
5705 template<int size, bool big_endian>
5706 void
5707 Mips_got_info<size, big_endian>::record_global_got_symbol(
5708 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5709 unsigned int r_type, bool dyn_reloc, bool for_call)
5710 {
5711 if (!for_call)
5712 mips_sym->set_got_not_only_for_calls();
5713
5714 // A global symbol in the GOT must also be in the dynamic symbol table.
5715 if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5716 {
5717 switch (mips_sym->visibility())
5718 {
5719 case elfcpp::STV_INTERNAL:
5720 case elfcpp::STV_HIDDEN:
5721 mips_sym->set_is_forced_local();
5722 break;
5723 default:
5724 mips_sym->set_needs_dynsym_entry();
5725 break;
5726 }
5727 }
5728
5729 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5730 if (tls_type == GOT_TLS_NONE)
5731 this->global_got_symbols_.insert(mips_sym);
5732
5733 if (dyn_reloc)
5734 {
5735 if (mips_sym->global_got_area() == GGA_NONE)
5736 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5737 return;
5738 }
5739
5740 Mips_got_entry<size, big_endian>* entry =
5741 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5742
5743 this->record_got_entry(entry, object);
5744 }
5745
5746 // Add ENTRY to master GOT and to OBJECT's GOT.
5747
5748 template<int size, bool big_endian>
5749 void
5750 Mips_got_info<size, big_endian>::record_got_entry(
5751 Mips_got_entry<size, big_endian>* entry,
5752 Mips_relobj<size, big_endian>* object)
5753 {
5754 this->got_entries_.insert(entry);
5755
5756 // Create the GOT entry for the OBJECT's GOT.
5757 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5758 Mips_got_entry<size, big_endian>* entry2 =
5759 new Mips_got_entry<size, big_endian>(*entry);
5760
5761 g->got_entries_.insert(entry2);
5762 }
5763
5764 // Record that OBJECT has a page relocation against symbol SYMNDX and
5765 // that ADDEND is the addend for that relocation.
5766 // This function creates an upper bound on the number of GOT slots
5767 // required; no attempt is made to combine references to non-overridable
5768 // global symbols across multiple input files.
5769
5770 template<int size, bool big_endian>
5771 void
5772 Mips_got_info<size, big_endian>::record_got_page_entry(
5773 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5774 {
5775 struct Got_page_range **range_ptr, *range;
5776 int old_pages, new_pages;
5777
5778 // Find the Got_page_entry for this symbol.
5779 Got_page_entry* entry = new Got_page_entry(object, symndx);
5780 typename Got_page_entry_set::iterator it =
5781 this->got_page_entries_.find(entry);
5782 if (it != this->got_page_entries_.end())
5783 entry = *it;
5784 else
5785 this->got_page_entries_.insert(entry);
5786
5787 // Add the same entry to the OBJECT's GOT.
5788 Got_page_entry* entry2 = NULL;
5789 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5790 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5791 {
5792 entry2 = new Got_page_entry(*entry);
5793 g2->got_page_entries_.insert(entry2);
5794 }
5795
5796 // Skip over ranges whose maximum extent cannot share a page entry
5797 // with ADDEND.
5798 range_ptr = &entry->ranges;
5799 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5800 range_ptr = &(*range_ptr)->next;
5801
5802 // If we scanned to the end of the list, or found a range whose
5803 // minimum extent cannot share a page entry with ADDEND, create
5804 // a new singleton range.
5805 range = *range_ptr;
5806 if (!range || addend < range->min_addend - 0xffff)
5807 {
5808 range = new Got_page_range();
5809 range->next = *range_ptr;
5810 range->min_addend = addend;
5811 range->max_addend = addend;
5812
5813 *range_ptr = range;
5814 ++entry->num_pages;
5815 if (entry2 != NULL)
5816 ++entry2->num_pages;
5817 ++this->page_gotno_;
5818 ++g2->page_gotno_;
5819 return;
5820 }
5821
5822 // Remember how many pages the old range contributed.
5823 old_pages = range->get_max_pages();
5824
5825 // Update the ranges.
5826 if (addend < range->min_addend)
5827 range->min_addend = addend;
5828 else if (addend > range->max_addend)
5829 {
5830 if (range->next && addend >= range->next->min_addend - 0xffff)
5831 {
5832 old_pages += range->next->get_max_pages();
5833 range->max_addend = range->next->max_addend;
5834 range->next = range->next->next;
5835 }
5836 else
5837 range->max_addend = addend;
5838 }
5839
5840 // Record any change in the total estimate.
5841 new_pages = range->get_max_pages();
5842 if (old_pages != new_pages)
5843 {
5844 entry->num_pages += new_pages - old_pages;
5845 if (entry2 != NULL)
5846 entry2->num_pages += new_pages - old_pages;
5847 this->page_gotno_ += new_pages - old_pages;
5848 g2->page_gotno_ += new_pages - old_pages;
5849 }
5850 }
5851
5852 // Create all entries that should be in the local part of the GOT.
5853
5854 template<int size, bool big_endian>
5855 void
5856 Mips_got_info<size, big_endian>::add_local_entries(
5857 Target_mips<size, big_endian>* target, Layout* layout)
5858 {
5859 Mips_output_data_got<size, big_endian>* got = target->got_section();
5860 // First two GOT entries are reserved. The first entry will be filled at
5861 // runtime. The second entry will be used by some runtime loaders.
5862 got->add_constant(0);
5863 got->add_constant(target->mips_elf_gnu_got1_mask());
5864
5865 for (typename Got_entry_set::iterator
5866 p = this->got_entries_.begin();
5867 p != this->got_entries_.end();
5868 ++p)
5869 {
5870 Mips_got_entry<size, big_endian>* entry = *p;
5871 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5872 {
5873 got->add_local(entry->object(), entry->symndx(),
5874 GOT_TYPE_STANDARD, entry->addend());
5875 unsigned int got_offset = entry->object()->local_got_offset(
5876 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5877 if (got->multi_got() && this->index_ > 0
5878 && parameters->options().output_is_position_independent())
5879 {
5880 if (!entry->is_section_symbol())
5881 target->rel_dyn_section(layout)->add_local(entry->object(),
5882 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5883 else
5884 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5885 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5886 got, got_offset);
5887 }
5888 }
5889 }
5890
5891 this->add_page_entries(target, layout);
5892
5893 // Add global entries that should be in the local area.
5894 for (typename Got_entry_set::iterator
5895 p = this->got_entries_.begin();
5896 p != this->got_entries_.end();
5897 ++p)
5898 {
5899 Mips_got_entry<size, big_endian>* entry = *p;
5900 if (!entry->is_for_global_symbol())
5901 continue;
5902
5903 Mips_symbol<size>* mips_sym = entry->sym();
5904 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5905 {
5906 unsigned int got_type;
5907 if (!got->multi_got())
5908 got_type = GOT_TYPE_STANDARD;
5909 else
5910 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5911 if (got->add_global(mips_sym, got_type))
5912 {
5913 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5914 if (got->multi_got() && this->index_ > 0
5915 && parameters->options().output_is_position_independent())
5916 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5917 mips_sym, elfcpp::R_MIPS_REL32, got,
5918 mips_sym->got_offset(got_type));
5919 }
5920 }
5921 }
5922 }
5923
5924 // Create GOT page entries.
5925
5926 template<int size, bool big_endian>
5927 void
5928 Mips_got_info<size, big_endian>::add_page_entries(
5929 Target_mips<size, big_endian>* target, Layout* layout)
5930 {
5931 if (this->page_gotno_ == 0)
5932 return;
5933
5934 Mips_output_data_got<size, big_endian>* got = target->got_section();
5935 this->got_page_offset_start_ = got->add_constant(0);
5936 if (got->multi_got() && this->index_ > 0
5937 && parameters->options().output_is_position_independent())
5938 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5939 this->got_page_offset_start_);
5940 int num_entries = this->page_gotno_;
5941 unsigned int prev_offset = this->got_page_offset_start_;
5942 while (--num_entries > 0)
5943 {
5944 unsigned int next_offset = got->add_constant(0);
5945 if (got->multi_got() && this->index_ > 0
5946 && parameters->options().output_is_position_independent())
5947 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5948 next_offset);
5949 gold_assert(next_offset == prev_offset + size/8);
5950 prev_offset = next_offset;
5951 }
5952 this->got_page_offset_next_ = this->got_page_offset_start_;
5953 }
5954
5955 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5956
5957 template<int size, bool big_endian>
5958 void
5959 Mips_got_info<size, big_endian>::add_global_entries(
5960 Target_mips<size, big_endian>* target, Layout* layout,
5961 unsigned int non_reloc_only_global_gotno)
5962 {
5963 Mips_output_data_got<size, big_endian>* got = target->got_section();
5964 // Add GGA_NORMAL entries.
5965 unsigned int count = 0;
5966 for (typename Got_entry_set::iterator
5967 p = this->got_entries_.begin();
5968 p != this->got_entries_.end();
5969 ++p)
5970 {
5971 Mips_got_entry<size, big_endian>* entry = *p;
5972 if (!entry->is_for_global_symbol())
5973 continue;
5974
5975 Mips_symbol<size>* mips_sym = entry->sym();
5976 if (mips_sym->global_got_area() != GGA_NORMAL)
5977 continue;
5978
5979 unsigned int got_type;
5980 if (!got->multi_got())
5981 got_type = GOT_TYPE_STANDARD;
5982 else
5983 // In multi-GOT links, global symbol can be in both primary and
5984 // secondary GOT(s). By creating custom GOT type
5985 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5986 // is added to secondary GOT(s).
5987 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5988 if (!got->add_global(mips_sym, got_type))
5989 continue;
5990
5991 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5992 if (got->multi_got() && this->index_ == 0)
5993 count++;
5994 if (got->multi_got() && this->index_ > 0)
5995 {
5996 if (parameters->options().output_is_position_independent()
5997 || (!parameters->doing_static_link()
5998 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5999 {
6000 target->rel_dyn_section(layout)->add_global(
6001 mips_sym, elfcpp::R_MIPS_REL32, got,
6002 mips_sym->got_offset(got_type));
6003 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
6004 elfcpp::R_MIPS_REL32, mips_sym);
6005 }
6006 }
6007 }
6008
6009 if (!got->multi_got() || this->index_ == 0)
6010 {
6011 if (got->multi_got())
6012 {
6013 // We need to allocate space in the primary GOT for GGA_NORMAL entries
6014 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6015 // entries correspond to dynamic symbol indexes.
6016 while (count < non_reloc_only_global_gotno)
6017 {
6018 got->add_constant(0);
6019 ++count;
6020 }
6021 }
6022
6023 // Add GGA_RELOC_ONLY entries.
6024 got->add_reloc_only_entries();
6025 }
6026 }
6027
6028 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6029
6030 template<int size, bool big_endian>
6031 void
6032 Mips_got_info<size, big_endian>::add_reloc_only_entries(
6033 Mips_output_data_got<size, big_endian>* got)
6034 {
6035 for (typename Global_got_entry_set::iterator
6036 p = this->global_got_symbols_.begin();
6037 p != this->global_got_symbols_.end();
6038 ++p)
6039 {
6040 Mips_symbol<size>* mips_sym = *p;
6041 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6042 {
6043 unsigned int got_type;
6044 if (!got->multi_got())
6045 got_type = GOT_TYPE_STANDARD;
6046 else
6047 got_type = GOT_TYPE_STANDARD_MULTIGOT;
6048 if (got->add_global(mips_sym, got_type))
6049 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6050 }
6051 }
6052 }
6053
6054 // Create TLS GOT entries.
6055
6056 template<int size, bool big_endian>
6057 void
6058 Mips_got_info<size, big_endian>::add_tls_entries(
6059 Target_mips<size, big_endian>* target, Layout* layout)
6060 {
6061 Mips_output_data_got<size, big_endian>* got = target->got_section();
6062 // Add local tls entries.
6063 for (typename Got_entry_set::iterator
6064 p = this->got_entries_.begin();
6065 p != this->got_entries_.end();
6066 ++p)
6067 {
6068 Mips_got_entry<size, big_endian>* entry = *p;
6069 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6070 continue;
6071
6072 if (entry->tls_type() == GOT_TLS_GD)
6073 {
6074 unsigned int got_type = GOT_TYPE_TLS_PAIR;
6075 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6076 : elfcpp::R_MIPS_TLS_DTPMOD64);
6077 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6078 : elfcpp::R_MIPS_TLS_DTPREL64);
6079
6080 if (!parameters->doing_static_link())
6081 {
6082 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6083 entry->shndx(), got_type,
6084 target->rel_dyn_section(layout),
6085 r_type1, entry->addend());
6086 unsigned int got_offset =
6087 entry->object()->local_got_offset(entry->symndx(), got_type,
6088 entry->addend());
6089 got->add_static_reloc(got_offset + size/8, r_type2,
6090 entry->object(), entry->symndx());
6091 }
6092 else
6093 {
6094 // We are doing a static link. Mark it as belong to module 1,
6095 // the executable.
6096 unsigned int got_offset = got->add_constant(1);
6097 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6098 got_offset,
6099 entry->addend());
6100 got->add_constant(0);
6101 got->add_static_reloc(got_offset + size/8, r_type2,
6102 entry->object(), entry->symndx());
6103 }
6104 }
6105 else if (entry->tls_type() == GOT_TLS_IE)
6106 {
6107 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6108 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6109 : elfcpp::R_MIPS_TLS_TPREL64);
6110 if (!parameters->doing_static_link())
6111 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6112 target->rel_dyn_section(layout), r_type,
6113 entry->addend());
6114 else
6115 {
6116 got->add_local(entry->object(), entry->symndx(), got_type,
6117 entry->addend());
6118 unsigned int got_offset =
6119 entry->object()->local_got_offset(entry->symndx(), got_type,
6120 entry->addend());
6121 got->add_static_reloc(got_offset, r_type, entry->object(),
6122 entry->symndx());
6123 }
6124 }
6125 else if (entry->tls_type() == GOT_TLS_LDM)
6126 {
6127 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6128 : elfcpp::R_MIPS_TLS_DTPMOD64);
6129 unsigned int got_offset;
6130 if (!parameters->doing_static_link())
6131 {
6132 got_offset = got->add_constant(0);
6133 target->rel_dyn_section(layout)->add_local(
6134 entry->object(), 0, r_type, got, got_offset);
6135 }
6136 else
6137 // We are doing a static link. Just mark it as belong to module 1,
6138 // the executable.
6139 got_offset = got->add_constant(1);
6140
6141 got->add_constant(0);
6142 got->set_tls_ldm_offset(got_offset, entry->object());
6143 }
6144 else
6145 gold_unreachable();
6146 }
6147
6148 // Add global tls entries.
6149 for (typename Got_entry_set::iterator
6150 p = this->got_entries_.begin();
6151 p != this->got_entries_.end();
6152 ++p)
6153 {
6154 Mips_got_entry<size, big_endian>* entry = *p;
6155 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6156 continue;
6157
6158 Mips_symbol<size>* mips_sym = entry->sym();
6159 if (entry->tls_type() == GOT_TLS_GD)
6160 {
6161 unsigned int got_type;
6162 if (!got->multi_got())
6163 got_type = GOT_TYPE_TLS_PAIR;
6164 else
6165 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6166 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6167 : elfcpp::R_MIPS_TLS_DTPMOD64);
6168 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6169 : elfcpp::R_MIPS_TLS_DTPREL64);
6170 if (!parameters->doing_static_link())
6171 got->add_global_pair_with_rel(mips_sym, got_type,
6172 target->rel_dyn_section(layout), r_type1, r_type2);
6173 else
6174 {
6175 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6176 // GOT entries. The first one is initialized to be 1, which is the
6177 // module index for the main executable and the second one 0. A
6178 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6179 // the second GOT entry and will be applied by gold.
6180 unsigned int got_offset = got->add_constant(1);
6181 mips_sym->set_got_offset(got_type, got_offset);
6182 got->add_constant(0);
6183 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6184 }
6185 }
6186 else if (entry->tls_type() == GOT_TLS_IE)
6187 {
6188 unsigned int got_type;
6189 if (!got->multi_got())
6190 got_type = GOT_TYPE_TLS_OFFSET;
6191 else
6192 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6193 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6194 : elfcpp::R_MIPS_TLS_TPREL64);
6195 if (!parameters->doing_static_link())
6196 got->add_global_with_rel(mips_sym, got_type,
6197 target->rel_dyn_section(layout), r_type);
6198 else
6199 {
6200 got->add_global(mips_sym, got_type);
6201 unsigned int got_offset = mips_sym->got_offset(got_type);
6202 got->add_static_reloc(got_offset, r_type, mips_sym);
6203 }
6204 }
6205 else
6206 gold_unreachable();
6207 }
6208 }
6209
6210 // Decide whether the symbol needs an entry in the global part of the primary
6211 // GOT, setting global_got_area accordingly. Count the number of global
6212 // symbols that are in the primary GOT only because they have dynamic
6213 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6214
6215 template<int size, bool big_endian>
6216 void
6217 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6218 {
6219 for (typename Global_got_entry_set::iterator
6220 p = this->global_got_symbols_.begin();
6221 p != this->global_got_symbols_.end();
6222 ++p)
6223 {
6224 Mips_symbol<size>* sym = *p;
6225 // Make a final decision about whether the symbol belongs in the
6226 // local or global GOT. Symbols that bind locally can (and in the
6227 // case of forced-local symbols, must) live in the local GOT.
6228 // Those that are aren't in the dynamic symbol table must also
6229 // live in the local GOT.
6230
6231 if (!sym->should_add_dynsym_entry(symtab)
6232 || (sym->got_only_for_calls()
6233 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6234 : symbol_references_local(sym,
6235 sym->should_add_dynsym_entry(symtab))))
6236 // The symbol belongs in the local GOT. We no longer need this
6237 // entry if it was only used for relocations; those relocations
6238 // will be against the null or section symbol instead.
6239 sym->set_global_got_area(GGA_NONE);
6240 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6241 {
6242 ++this->reloc_only_gotno_;
6243 ++this->global_gotno_ ;
6244 }
6245 }
6246 }
6247
6248 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6249 // VALUE if it is not initialized.
6250
6251 template<int size, bool big_endian>
6252 unsigned int
6253 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6254 Mips_output_data_got<size, big_endian>* got)
6255 {
6256 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6257 if (it != this->got_page_offsets_.end())
6258 return it->second;
6259
6260 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6261 + (size/8) * this->page_gotno_);
6262
6263 unsigned int got_offset = this->got_page_offset_next_;
6264 this->got_page_offsets_[value] = got_offset;
6265 this->got_page_offset_next_ += size/8;
6266 got->update_got_entry(got_offset, value);
6267 return got_offset;
6268 }
6269
6270 // Remove lazy-binding stubs for global symbols in this GOT.
6271
6272 template<int size, bool big_endian>
6273 void
6274 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6275 Target_mips<size, big_endian>* target)
6276 {
6277 for (typename Got_entry_set::iterator
6278 p = this->got_entries_.begin();
6279 p != this->got_entries_.end();
6280 ++p)
6281 {
6282 Mips_got_entry<size, big_endian>* entry = *p;
6283 if (entry->is_for_global_symbol())
6284 target->remove_lazy_stub_entry(entry->sym());
6285 }
6286 }
6287
6288 // Count the number of GOT entries required.
6289
6290 template<int size, bool big_endian>
6291 void
6292 Mips_got_info<size, big_endian>::count_got_entries()
6293 {
6294 for (typename Got_entry_set::iterator
6295 p = this->got_entries_.begin();
6296 p != this->got_entries_.end();
6297 ++p)
6298 {
6299 this->count_got_entry(*p);
6300 }
6301 }
6302
6303 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6304
6305 template<int size, bool big_endian>
6306 void
6307 Mips_got_info<size, big_endian>::count_got_entry(
6308 Mips_got_entry<size, big_endian>* entry)
6309 {
6310 if (entry->is_tls_entry())
6311 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6312 else if (entry->is_for_local_symbol()
6313 || entry->sym()->global_got_area() == GGA_NONE)
6314 ++this->local_gotno_;
6315 else
6316 ++this->global_gotno_;
6317 }
6318
6319 // Add FROM's GOT entries.
6320
6321 template<int size, bool big_endian>
6322 void
6323 Mips_got_info<size, big_endian>::add_got_entries(
6324 Mips_got_info<size, big_endian>* from)
6325 {
6326 for (typename Got_entry_set::iterator
6327 p = from->got_entries_.begin();
6328 p != from->got_entries_.end();
6329 ++p)
6330 {
6331 Mips_got_entry<size, big_endian>* entry = *p;
6332 if (this->got_entries_.find(entry) == this->got_entries_.end())
6333 {
6334 Mips_got_entry<size, big_endian>* entry2 =
6335 new Mips_got_entry<size, big_endian>(*entry);
6336 this->got_entries_.insert(entry2);
6337 this->count_got_entry(entry);
6338 }
6339 }
6340 }
6341
6342 // Add FROM's GOT page entries.
6343
6344 template<int size, bool big_endian>
6345 void
6346 Mips_got_info<size, big_endian>::add_got_page_entries(
6347 Mips_got_info<size, big_endian>* from)
6348 {
6349 for (typename Got_page_entry_set::iterator
6350 p = from->got_page_entries_.begin();
6351 p != from->got_page_entries_.end();
6352 ++p)
6353 {
6354 Got_page_entry* entry = *p;
6355 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6356 {
6357 Got_page_entry* entry2 = new Got_page_entry(*entry);
6358 this->got_page_entries_.insert(entry2);
6359 this->page_gotno_ += entry->num_pages;
6360 }
6361 }
6362 }
6363
6364 // Mips_output_data_got methods.
6365
6366 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6367 // larger than 64K, create multi-GOT.
6368
6369 template<int size, bool big_endian>
6370 void
6371 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6372 Symbol_table* symtab, const Input_objects* input_objects)
6373 {
6374 // Decide which symbols need to go in the global part of the GOT and
6375 // count the number of reloc-only GOT symbols.
6376 this->master_got_info_->count_got_symbols(symtab);
6377
6378 // Count the number of GOT entries.
6379 this->master_got_info_->count_got_entries();
6380
6381 unsigned int got_size = this->master_got_info_->got_size();
6382 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6383 this->lay_out_multi_got(layout, input_objects);
6384 else
6385 {
6386 // Record that all objects use single GOT.
6387 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6388 p != input_objects->relobj_end();
6389 ++p)
6390 {
6391 Mips_relobj<size, big_endian>* object =
6392 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6393 if (object->get_got_info() != NULL)
6394 object->set_got_info(this->master_got_info_);
6395 }
6396
6397 this->master_got_info_->add_local_entries(this->target_, layout);
6398 this->master_got_info_->add_global_entries(this->target_, layout,
6399 /*not used*/-1U);
6400 this->master_got_info_->add_tls_entries(this->target_, layout);
6401 }
6402 }
6403
6404 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6405
6406 template<int size, bool big_endian>
6407 void
6408 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6409 const Input_objects* input_objects)
6410 {
6411 // Try to merge the GOTs of input objects together, as long as they
6412 // don't seem to exceed the maximum GOT size, choosing one of them
6413 // to be the primary GOT.
6414 this->merge_gots(input_objects);
6415
6416 // Every symbol that is referenced in a dynamic relocation must be
6417 // present in the primary GOT.
6418 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6419
6420 // Add GOT entries.
6421 unsigned int i = 0;
6422 unsigned int offset = 0;
6423 Mips_got_info<size, big_endian>* g = this->primary_got_;
6424 do
6425 {
6426 g->set_index(i);
6427 g->set_offset(offset);
6428
6429 g->add_local_entries(this->target_, layout);
6430 if (i == 0)
6431 g->add_global_entries(this->target_, layout,
6432 (this->master_got_info_->global_gotno()
6433 - this->master_got_info_->reloc_only_gotno()));
6434 else
6435 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6436 g->add_tls_entries(this->target_, layout);
6437
6438 // Forbid global symbols in every non-primary GOT from having
6439 // lazy-binding stubs.
6440 if (i > 0)
6441 g->remove_lazy_stubs(this->target_);
6442
6443 ++i;
6444 offset += g->got_size();
6445 g = g->next();
6446 }
6447 while (g);
6448 }
6449
6450 // Attempt to merge GOTs of different input objects. Try to use as much as
6451 // possible of the primary GOT, since it doesn't require explicit dynamic
6452 // relocations, but don't use objects that would reference global symbols
6453 // out of the addressable range. Failing the primary GOT, attempt to merge
6454 // with the current GOT, or finish the current GOT and then make make the new
6455 // GOT current.
6456
6457 template<int size, bool big_endian>
6458 void
6459 Mips_output_data_got<size, big_endian>::merge_gots(
6460 const Input_objects* input_objects)
6461 {
6462 gold_assert(this->primary_got_ == NULL);
6463 Mips_got_info<size, big_endian>* current = NULL;
6464
6465 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6466 p != input_objects->relobj_end();
6467 ++p)
6468 {
6469 Mips_relobj<size, big_endian>* object =
6470 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6471
6472 Mips_got_info<size, big_endian>* g = object->get_got_info();
6473 if (g == NULL)
6474 continue;
6475
6476 g->count_got_entries();
6477
6478 // Work out the number of page, local and TLS entries.
6479 unsigned int estimate = this->master_got_info_->page_gotno();
6480 if (estimate > g->page_gotno())
6481 estimate = g->page_gotno();
6482 estimate += g->local_gotno() + g->tls_gotno();
6483
6484 // We place TLS GOT entries after both locals and globals. The globals
6485 // for the primary GOT may overflow the normal GOT size limit, so be
6486 // sure not to merge a GOT which requires TLS with the primary GOT in that
6487 // case. This doesn't affect non-primary GOTs.
6488 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6489 : g->global_gotno());
6490
6491 unsigned int max_count =
6492 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6493 if (estimate <= max_count)
6494 {
6495 // If we don't have a primary GOT, use it as
6496 // a starting point for the primary GOT.
6497 if (!this->primary_got_)
6498 {
6499 this->primary_got_ = g;
6500 continue;
6501 }
6502
6503 // Try merging with the primary GOT.
6504 if (this->merge_got_with(g, object, this->primary_got_))
6505 continue;
6506 }
6507
6508 // If we can merge with the last-created GOT, do it.
6509 if (current && this->merge_got_with(g, object, current))
6510 continue;
6511
6512 // Well, we couldn't merge, so create a new GOT. Don't check if it
6513 // fits; if it turns out that it doesn't, we'll get relocation
6514 // overflows anyway.
6515 g->set_next(current);
6516 current = g;
6517 }
6518
6519 // If we do not find any suitable primary GOT, create an empty one.
6520 if (this->primary_got_ == NULL)
6521 this->primary_got_ = new Mips_got_info<size, big_endian>();
6522
6523 // Link primary GOT with secondary GOTs.
6524 this->primary_got_->set_next(current);
6525 }
6526
6527 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6528 // this would lead to overflow, true if they were merged successfully.
6529
6530 template<int size, bool big_endian>
6531 bool
6532 Mips_output_data_got<size, big_endian>::merge_got_with(
6533 Mips_got_info<size, big_endian>* from,
6534 Mips_relobj<size, big_endian>* object,
6535 Mips_got_info<size, big_endian>* to)
6536 {
6537 // Work out how many page entries we would need for the combined GOT.
6538 unsigned int estimate = this->master_got_info_->page_gotno();
6539 if (estimate >= from->page_gotno() + to->page_gotno())
6540 estimate = from->page_gotno() + to->page_gotno();
6541
6542 // Conservatively estimate how many local and TLS entries would be needed.
6543 estimate += from->local_gotno() + to->local_gotno();
6544 estimate += from->tls_gotno() + to->tls_gotno();
6545
6546 // If we're merging with the primary got, any TLS relocations will
6547 // come after the full set of global entries. Otherwise estimate those
6548 // conservatively as well.
6549 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6550 estimate += this->master_got_info_->global_gotno();
6551 else
6552 estimate += from->global_gotno() + to->global_gotno();
6553
6554 // Bail out if the combined GOT might be too big.
6555 unsigned int max_count =
6556 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6557 if (estimate > max_count)
6558 return false;
6559
6560 // Transfer the object's GOT information from FROM to TO.
6561 to->add_got_entries(from);
6562 to->add_got_page_entries(from);
6563
6564 // Record that OBJECT should use output GOT TO.
6565 object->set_got_info(to);
6566
6567 return true;
6568 }
6569
6570 // Write out the GOT.
6571
6572 template<int size, bool big_endian>
6573 void
6574 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6575 {
6576 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6577 Mips_stubs_entry_set;
6578
6579 // Call parent to write out GOT.
6580 Output_data_got<size, big_endian>::do_write(of);
6581
6582 const off_t offset = this->offset();
6583 const section_size_type oview_size =
6584 convert_to_section_size_type(this->data_size());
6585 unsigned char* const oview = of->get_output_view(offset, oview_size);
6586
6587 // Needed for fixing values of .got section.
6588 this->got_view_ = oview;
6589
6590 // Write lazy stub addresses.
6591 for (typename Mips_stubs_entry_set::iterator
6592 p = this->master_got_info_->global_got_symbols().begin();
6593 p != this->master_got_info_->global_got_symbols().end();
6594 ++p)
6595 {
6596 Mips_symbol<size>* mips_sym = *p;
6597 if (mips_sym->has_lazy_stub())
6598 {
6599 Valtype* wv = reinterpret_cast<Valtype*>(
6600 oview + this->get_primary_got_offset(mips_sym));
6601 Valtype value =
6602 this->target_->mips_stubs_section()->stub_address(mips_sym);
6603 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6604 }
6605 }
6606
6607 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6608 for (typename Mips_stubs_entry_set::iterator
6609 p = this->master_got_info_->global_got_symbols().begin();
6610 p != this->master_got_info_->global_got_symbols().end();
6611 ++p)
6612 {
6613 Mips_symbol<size>* mips_sym = *p;
6614 if (!this->multi_got()
6615 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6616 && mips_sym->global_got_area() == GGA_NONE
6617 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6618 {
6619 Valtype* wv = reinterpret_cast<Valtype*>(
6620 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6621 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6622 if (value != 0)
6623 {
6624 value |= 1;
6625 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6626 }
6627 }
6628 }
6629
6630 if (!this->secondary_got_relocs_.empty())
6631 {
6632 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6633 // secondary GOT entries with non-zero initial value copy the value
6634 // to the corresponding primary GOT entry, and set the secondary GOT
6635 // entry to zero.
6636 // TODO(sasa): This is workaround. It needs to be investigated further.
6637
6638 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6639 {
6640 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6641 if (reloc.symbol_is_global())
6642 {
6643 Mips_symbol<size>* gsym = reloc.symbol();
6644 gold_assert(gsym != NULL);
6645
6646 unsigned got_offset = reloc.got_offset();
6647 gold_assert(got_offset < oview_size);
6648
6649 // Find primary GOT entry.
6650 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6651 oview + this->get_primary_got_offset(gsym));
6652
6653 // Find secondary GOT entry.
6654 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6655
6656 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6657 if (value != 0)
6658 {
6659 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6660 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6661 gsym->set_applied_secondary_got_fixup();
6662 }
6663 }
6664 }
6665
6666 of->write_output_view(offset, oview_size, oview);
6667 }
6668
6669 // We are done if there is no fix up.
6670 if (this->static_relocs_.empty())
6671 return;
6672
6673 Output_segment* tls_segment = this->layout_->tls_segment();
6674 gold_assert(tls_segment != NULL);
6675
6676 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6677 {
6678 Static_reloc& reloc(this->static_relocs_[i]);
6679
6680 Mips_address value;
6681 if (!reloc.symbol_is_global())
6682 {
6683 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6684 const Symbol_value<size>* psymval =
6685 object->local_symbol(reloc.index());
6686
6687 // We are doing static linking. Issue an error and skip this
6688 // relocation if the symbol is undefined or in a discarded_section.
6689 bool is_ordinary;
6690 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6691 if ((shndx == elfcpp::SHN_UNDEF)
6692 || (is_ordinary
6693 && shndx != elfcpp::SHN_UNDEF
6694 && !object->is_section_included(shndx)
6695 && !this->symbol_table_->is_section_folded(object, shndx)))
6696 {
6697 gold_error(_("undefined or discarded local symbol %u from "
6698 " object %s in GOT"),
6699 reloc.index(), reloc.relobj()->name().c_str());
6700 continue;
6701 }
6702
6703 value = psymval->value(object, 0);
6704 }
6705 else
6706 {
6707 const Mips_symbol<size>* gsym = reloc.symbol();
6708 gold_assert(gsym != NULL);
6709
6710 // We are doing static linking. Issue an error and skip this
6711 // relocation if the symbol is undefined or in a discarded_section
6712 // unless it is a weakly_undefined symbol.
6713 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6714 && !gsym->is_weak_undefined())
6715 {
6716 gold_error(_("undefined or discarded symbol %s in GOT"),
6717 gsym->name());
6718 continue;
6719 }
6720
6721 if (!gsym->is_weak_undefined())
6722 value = gsym->value();
6723 else
6724 value = 0;
6725 }
6726
6727 unsigned got_offset = reloc.got_offset();
6728 gold_assert(got_offset < oview_size);
6729
6730 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6731 Valtype x;
6732
6733 switch (reloc.r_type())
6734 {
6735 case elfcpp::R_MIPS_TLS_DTPMOD32:
6736 case elfcpp::R_MIPS_TLS_DTPMOD64:
6737 x = value;
6738 break;
6739 case elfcpp::R_MIPS_TLS_DTPREL32:
6740 case elfcpp::R_MIPS_TLS_DTPREL64:
6741 x = value - elfcpp::DTP_OFFSET;
6742 break;
6743 case elfcpp::R_MIPS_TLS_TPREL32:
6744 case elfcpp::R_MIPS_TLS_TPREL64:
6745 x = value - elfcpp::TP_OFFSET;
6746 break;
6747 default:
6748 gold_unreachable();
6749 break;
6750 }
6751
6752 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6753 }
6754
6755 of->write_output_view(offset, oview_size, oview);
6756 }
6757
6758 // Mips_relobj methods.
6759
6760 // Count the local symbols. The Mips backend needs to know if a symbol
6761 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6762 // because the Symbol object keeps the ELF symbol type and st_other field.
6763 // For local symbol it is harder because we cannot access this information.
6764 // So we override the do_count_local_symbol in parent and scan local symbols to
6765 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6766 // I do not want to slow down other ports by calling a per symbol target hook
6767 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6768
6769 template<int size, bool big_endian>
6770 void
6771 Mips_relobj<size, big_endian>::do_count_local_symbols(
6772 Stringpool_template<char>* pool,
6773 Stringpool_template<char>* dynpool)
6774 {
6775 // Ask parent to count the local symbols.
6776 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6777 const unsigned int loccount = this->local_symbol_count();
6778 if (loccount == 0)
6779 return;
6780
6781 // Initialize the mips16 and micromips function bit-vector.
6782 this->local_symbol_is_mips16_.resize(loccount, false);
6783 this->local_symbol_is_micromips_.resize(loccount, false);
6784
6785 // Read the symbol table section header.
6786 const unsigned int symtab_shndx = this->symtab_shndx();
6787 elfcpp::Shdr<size, big_endian>
6788 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6789 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6790
6791 // Read the local symbols.
6792 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6793 gold_assert(loccount == symtabshdr.get_sh_info());
6794 off_t locsize = loccount * sym_size;
6795 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6796 locsize, true, true);
6797
6798 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6799
6800 // Skip the first dummy symbol.
6801 psyms += sym_size;
6802 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6803 {
6804 elfcpp::Sym<size, big_endian> sym(psyms);
6805 unsigned char st_other = sym.get_st_other();
6806 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6807 this->local_symbol_is_micromips_[i] =
6808 elfcpp::elf_st_is_micromips(st_other);
6809 }
6810 }
6811
6812 // Read the symbol information.
6813
6814 template<int size, bool big_endian>
6815 void
6816 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6817 {
6818 // Call parent class to read symbol information.
6819 this->base_read_symbols(sd);
6820
6821 // Read processor-specific flags in ELF file header.
6822 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6823 elfcpp::Elf_sizes<size>::ehdr_size,
6824 true, false);
6825 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6826 this->processor_specific_flags_ = ehdr.get_e_flags();
6827
6828 // Get the section names.
6829 const unsigned char* pnamesu = sd->section_names->data();
6830 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6831
6832 // Initialize the mips16 stub section bit-vectors.
6833 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6834 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6835 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6836
6837 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6838 const unsigned char* pshdrs = sd->section_headers->data();
6839 const unsigned char* ps = pshdrs + shdr_size;
6840 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6841 {
6842 elfcpp::Shdr<size, big_endian> shdr(ps);
6843
6844 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6845 {
6846 this->has_reginfo_section_ = true;
6847 // Read the gp value that was used to create this object. We need the
6848 // gp value while processing relocs. The .reginfo section is not used
6849 // in the 64-bit MIPS ELF ABI.
6850 section_offset_type section_offset = shdr.get_sh_offset();
6851 section_size_type section_size =
6852 convert_to_section_size_type(shdr.get_sh_size());
6853 const unsigned char* view =
6854 this->get_view(section_offset, section_size, true, false);
6855
6856 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6857
6858 // Read the rest of .reginfo.
6859 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6860 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6861 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6862 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6863 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6864 }
6865
6866 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6867 {
6868 gold_assert(this->attributes_section_data_ == NULL);
6869 section_offset_type section_offset = shdr.get_sh_offset();
6870 section_size_type section_size =
6871 convert_to_section_size_type(shdr.get_sh_size());
6872 const unsigned char* view =
6873 this->get_view(section_offset, section_size, true, false);
6874 this->attributes_section_data_ =
6875 new Attributes_section_data(view, section_size);
6876 }
6877
6878 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6879 {
6880 gold_assert(this->abiflags_ == NULL);
6881 section_offset_type section_offset = shdr.get_sh_offset();
6882 section_size_type section_size =
6883 convert_to_section_size_type(shdr.get_sh_size());
6884 const unsigned char* view =
6885 this->get_view(section_offset, section_size, true, false);
6886 this->abiflags_ = new Mips_abiflags<big_endian>();
6887
6888 this->abiflags_->version =
6889 elfcpp::Swap<16, big_endian>::readval(view);
6890 if (this->abiflags_->version != 0)
6891 {
6892 gold_error(_("%s: .MIPS.abiflags section has "
6893 "unsupported version %u"),
6894 this->name().c_str(),
6895 this->abiflags_->version);
6896 break;
6897 }
6898 this->abiflags_->isa_level =
6899 elfcpp::Swap<8, big_endian>::readval(view + 2);
6900 this->abiflags_->isa_rev =
6901 elfcpp::Swap<8, big_endian>::readval(view + 3);
6902 this->abiflags_->gpr_size =
6903 elfcpp::Swap<8, big_endian>::readval(view + 4);
6904 this->abiflags_->cpr1_size =
6905 elfcpp::Swap<8, big_endian>::readval(view + 5);
6906 this->abiflags_->cpr2_size =
6907 elfcpp::Swap<8, big_endian>::readval(view + 6);
6908 this->abiflags_->fp_abi =
6909 elfcpp::Swap<8, big_endian>::readval(view + 7);
6910 this->abiflags_->isa_ext =
6911 elfcpp::Swap<32, big_endian>::readval(view + 8);
6912 this->abiflags_->ases =
6913 elfcpp::Swap<32, big_endian>::readval(view + 12);
6914 this->abiflags_->flags1 =
6915 elfcpp::Swap<32, big_endian>::readval(view + 16);
6916 this->abiflags_->flags2 =
6917 elfcpp::Swap<32, big_endian>::readval(view + 20);
6918 }
6919
6920 // In the 64-bit ABI, .MIPS.options section holds register information.
6921 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6922 // starts with this header:
6923 //
6924 // typedef struct
6925 // {
6926 // // Type of option.
6927 // unsigned char kind[1];
6928 // // Size of option descriptor, including header.
6929 // unsigned char size[1];
6930 // // Section index of affected section, or 0 for global option.
6931 // unsigned char section[2];
6932 // // Information specific to this kind of option.
6933 // unsigned char info[4];
6934 // };
6935 //
6936 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6937 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6938 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6939
6940 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6941 {
6942 section_offset_type section_offset = shdr.get_sh_offset();
6943 section_size_type section_size =
6944 convert_to_section_size_type(shdr.get_sh_size());
6945 const unsigned char* view =
6946 this->get_view(section_offset, section_size, true, false);
6947 const unsigned char* end = view + section_size;
6948
6949 while (view + 8 <= end)
6950 {
6951 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6952 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6953 if (sz < 8)
6954 {
6955 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6956 "than its header"),
6957 this->name().c_str(),
6958 this->mips_elf_options_section_name(), sz);
6959 break;
6960 }
6961
6962 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6963 {
6964 // In the 64 bit ABI, an ODK_REGINFO option is the following
6965 // structure. The info field of the options header is not
6966 // used.
6967 //
6968 // typedef struct
6969 // {
6970 // // Mask of general purpose registers used.
6971 // unsigned char ri_gprmask[4];
6972 // // Padding.
6973 // unsigned char ri_pad[4];
6974 // // Mask of co-processor registers used.
6975 // unsigned char ri_cprmask[4][4];
6976 // // GP register value for this object file.
6977 // unsigned char ri_gp_value[8];
6978 // };
6979
6980 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6981 + 32);
6982 }
6983 else if (kind == elfcpp::ODK_REGINFO)
6984 {
6985 // In the 32 bit ABI, an ODK_REGINFO option is the following
6986 // structure. The info field of the options header is not
6987 // used. The same structure is used in .reginfo section.
6988 //
6989 // typedef struct
6990 // {
6991 // unsigned char ri_gprmask[4];
6992 // unsigned char ri_cprmask[4][4];
6993 // unsigned char ri_gp_value[4];
6994 // };
6995
6996 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6997 + 28);
6998 }
6999 view += sz;
7000 }
7001 }
7002
7003 const char* name = pnames + shdr.get_sh_name();
7004 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
7005 this->section_is_mips16_call_stub_[i] =
7006 is_prefix_of(".mips16.call.", name);
7007 this->section_is_mips16_call_fp_stub_[i] =
7008 is_prefix_of(".mips16.call.fp.", name);
7009
7010 if (strcmp(name, ".pdr") == 0)
7011 {
7012 gold_assert(this->pdr_shndx_ == -1U);
7013 this->pdr_shndx_ = i;
7014 }
7015 }
7016 }
7017
7018 // Discard MIPS16 stub secions that are not needed.
7019
7020 template<int size, bool big_endian>
7021 void
7022 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
7023 {
7024 for (typename Mips16_stubs_int_map::const_iterator
7025 it = this->mips16_stub_sections_.begin();
7026 it != this->mips16_stub_sections_.end(); ++it)
7027 {
7028 Mips16_stub_section<size, big_endian>* stub_section = it->second;
7029 if (!stub_section->is_target_found())
7030 {
7031 gold_error(_("no relocation found in mips16 stub section '%s'"),
7032 stub_section->object()
7033 ->section_name(stub_section->shndx()).c_str());
7034 }
7035
7036 bool discard = false;
7037 if (stub_section->is_for_local_function())
7038 {
7039 if (stub_section->is_fn_stub())
7040 {
7041 // This stub is for a local symbol. This stub will only
7042 // be needed if there is some relocation in this object,
7043 // other than a 16 bit function call, which refers to this
7044 // symbol.
7045 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7046 discard = true;
7047 else
7048 this->add_local_mips16_fn_stub(stub_section);
7049 }
7050 else
7051 {
7052 // This stub is for a local symbol. This stub will only
7053 // be needed if there is some relocation (R_MIPS16_26) in
7054 // this object that refers to this symbol.
7055 gold_assert(stub_section->is_call_stub()
7056 || stub_section->is_call_fp_stub());
7057 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7058 discard = true;
7059 else
7060 this->add_local_mips16_call_stub(stub_section);
7061 }
7062 }
7063 else
7064 {
7065 Mips_symbol<size>* gsym = stub_section->gsym();
7066 if (stub_section->is_fn_stub())
7067 {
7068 if (gsym->has_mips16_fn_stub())
7069 // We already have a stub for this function.
7070 discard = true;
7071 else
7072 {
7073 gsym->set_mips16_fn_stub(stub_section);
7074 if (gsym->should_add_dynsym_entry(symtab))
7075 {
7076 // If we have a MIPS16 function with a stub, the
7077 // dynamic symbol must refer to the stub, since only
7078 // the stub uses the standard calling conventions.
7079 gsym->set_need_fn_stub();
7080 if (gsym->is_from_dynobj())
7081 gsym->set_needs_dynsym_value();
7082 }
7083 }
7084 if (!gsym->need_fn_stub())
7085 discard = true;
7086 }
7087 else if (stub_section->is_call_stub())
7088 {
7089 if (gsym->is_mips16())
7090 // We don't need the call_stub; this is a 16 bit
7091 // function, so calls from other 16 bit functions are
7092 // OK.
7093 discard = true;
7094 else if (gsym->has_mips16_call_stub())
7095 // We already have a stub for this function.
7096 discard = true;
7097 else
7098 gsym->set_mips16_call_stub(stub_section);
7099 }
7100 else
7101 {
7102 gold_assert(stub_section->is_call_fp_stub());
7103 if (gsym->is_mips16())
7104 // We don't need the call_stub; this is a 16 bit
7105 // function, so calls from other 16 bit functions are
7106 // OK.
7107 discard = true;
7108 else if (gsym->has_mips16_call_fp_stub())
7109 // We already have a stub for this function.
7110 discard = true;
7111 else
7112 gsym->set_mips16_call_fp_stub(stub_section);
7113 }
7114 }
7115 if (discard)
7116 this->set_output_section(stub_section->shndx(), NULL);
7117 }
7118 }
7119
7120 // Mips_output_data_la25_stub methods.
7121
7122 // Template for standard LA25 stub.
7123 template<int size, bool big_endian>
7124 const uint32_t
7125 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7126 {
7127 0x3c190000, // lui $25,%hi(func)
7128 0x08000000, // j func
7129 0x27390000, // add $25,$25,%lo(func)
7130 0x00000000 // nop
7131 };
7132
7133 // Template for microMIPS LA25 stub.
7134 template<int size, bool big_endian>
7135 const uint32_t
7136 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7137 {
7138 0x41b9, 0x0000, // lui t9,%hi(func)
7139 0xd400, 0x0000, // j func
7140 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7141 0x0000, 0x0000 // nop
7142 };
7143
7144 // Create la25 stub for a symbol.
7145
7146 template<int size, bool big_endian>
7147 void
7148 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7149 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7150 Mips_symbol<size>* gsym)
7151 {
7152 if (!gsym->has_la25_stub())
7153 {
7154 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7155 this->symbols_.push_back(gsym);
7156 this->create_stub_symbol(gsym, symtab, target, 16);
7157 }
7158 }
7159
7160 // Create a symbol for SYM stub's value and size, to help make the disassembly
7161 // easier to read.
7162
7163 template<int size, bool big_endian>
7164 void
7165 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7166 Mips_symbol<size>* sym, Symbol_table* symtab,
7167 Target_mips<size, big_endian>* target, uint64_t symsize)
7168 {
7169 std::string name(".pic.");
7170 name += sym->name();
7171
7172 unsigned int offset = sym->la25_stub_offset();
7173 if (sym->is_micromips())
7174 offset |= 1;
7175
7176 // Make it a local function.
7177 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7178 Symbol_table::PREDEFINED,
7179 target->la25_stub_section(),
7180 offset, symsize, elfcpp::STT_FUNC,
7181 elfcpp::STB_LOCAL,
7182 elfcpp::STV_DEFAULT, 0,
7183 false, false);
7184 new_sym->set_is_forced_local();
7185 }
7186
7187 // Write out la25 stubs. This uses the hand-coded instructions above,
7188 // and adjusts them as needed.
7189
7190 template<int size, bool big_endian>
7191 void
7192 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7193 {
7194 const off_t offset = this->offset();
7195 const section_size_type oview_size =
7196 convert_to_section_size_type(this->data_size());
7197 unsigned char* const oview = of->get_output_view(offset, oview_size);
7198
7199 for (typename std::vector<Mips_symbol<size>*>::iterator
7200 p = this->symbols_.begin();
7201 p != this->symbols_.end();
7202 ++p)
7203 {
7204 Mips_symbol<size>* sym = *p;
7205 unsigned char* pov = oview + sym->la25_stub_offset();
7206
7207 Mips_address target = sym->value();
7208 if (!sym->is_micromips())
7209 {
7210 elfcpp::Swap<32, big_endian>::writeval(pov,
7211 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7212 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7213 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7214 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7215 la25_stub_entry[2] | (target & 0xffff));
7216 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7217 }
7218 else
7219 {
7220 target |= 1;
7221 // First stub instruction. Paste high 16-bits of the target.
7222 elfcpp::Swap<16, big_endian>::writeval(pov,
7223 la25_stub_micromips_entry[0]);
7224 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7225 ((target + 0x8000) >> 16) & 0xffff);
7226 // Second stub instruction. Paste low 26-bits of the target, shifted
7227 // right by 1.
7228 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7229 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7230 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7231 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7232 // Third stub instruction. Paste low 16-bits of the target.
7233 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7234 la25_stub_micromips_entry[4]);
7235 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7236 // Fourth stub instruction.
7237 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7238 la25_stub_micromips_entry[6]);
7239 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7240 la25_stub_micromips_entry[7]);
7241 }
7242 }
7243
7244 of->write_output_view(offset, oview_size, oview);
7245 }
7246
7247 // Mips_output_data_plt methods.
7248
7249 // The format of the first PLT entry in an O32 executable.
7250 template<int size, bool big_endian>
7251 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7252 {
7253 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7254 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7255 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7256 0x031cc023, // subu $24, $24, $28
7257 0x03e07825, // or $15, $31, zero
7258 0x0018c082, // srl $24, $24, 2
7259 0x0320f809, // jalr $25
7260 0x2718fffe // subu $24, $24, 2
7261 };
7262
7263 // The format of the first PLT entry in an N32 executable. Different
7264 // because gp ($28) is not available; we use t2 ($14) instead.
7265 template<int size, bool big_endian>
7266 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7267 {
7268 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7269 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7270 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7271 0x030ec023, // subu $24, $24, $14
7272 0x03e07825, // or $15, $31, zero
7273 0x0018c082, // srl $24, $24, 2
7274 0x0320f809, // jalr $25
7275 0x2718fffe // subu $24, $24, 2
7276 };
7277
7278 // The format of the first PLT entry in an N64 executable. Different
7279 // from N32 because of the increased size of GOT entries.
7280 template<int size, bool big_endian>
7281 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7282 {
7283 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7284 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7285 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7286 0x030ec023, // subu $24, $24, $14
7287 0x03e07825, // or $15, $31, zero
7288 0x0018c0c2, // srl $24, $24, 3
7289 0x0320f809, // jalr $25
7290 0x2718fffe // subu $24, $24, 2
7291 };
7292
7293 // The format of the microMIPS first PLT entry in an O32 executable.
7294 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7295 // of the GOTPLT entry handled, so this stub may only be used when
7296 // all the subsequent PLT entries are microMIPS code too.
7297 //
7298 // The trailing NOP is for alignment and correct disassembly only.
7299 template<int size, bool big_endian>
7300 const uint32_t Mips_output_data_plt<size, big_endian>::
7301 plt0_entry_micromips_o32[] =
7302 {
7303 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7304 0xff23, 0x0000, // lw $25, 0($3)
7305 0x0535, // subu $2, $2, $3
7306 0x2525, // srl $2, $2, 2
7307 0x3302, 0xfffe, // subu $24, $2, 2
7308 0x0dff, // move $15, $31
7309 0x45f9, // jalrs $25
7310 0x0f83, // move $28, $3
7311 0x0c00 // nop
7312 };
7313
7314 // The format of the microMIPS first PLT entry in an O32 executable
7315 // in the insn32 mode.
7316 template<int size, bool big_endian>
7317 const uint32_t Mips_output_data_plt<size, big_endian>::
7318 plt0_entry_micromips32_o32[] =
7319 {
7320 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7321 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7322 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7323 0x0398, 0xc1d0, // subu $24, $24, $28
7324 0x001f, 0x7a90, // or $15, $31, zero
7325 0x0318, 0x1040, // srl $24, $24, 2
7326 0x03f9, 0x0f3c, // jalr $25
7327 0x3318, 0xfffe // subu $24, $24, 2
7328 };
7329
7330 // The format of subsequent standard entries in the PLT.
7331 template<int size, bool big_endian>
7332 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7333 {
7334 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7335 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7336 0x03200008, // jr $25
7337 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7338 };
7339
7340 // The format of subsequent R6 PLT entries.
7341 template<int size, bool big_endian>
7342 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7343 {
7344 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7345 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7346 0x03200009, // jr $25
7347 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7348 };
7349
7350 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7351 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7352 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7353 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7354 // target function address in register v0.
7355 template<int size, bool big_endian>
7356 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7357 {
7358 0xb303, // lw $3, 12($pc)
7359 0x651b, // move $24, $3
7360 0x9b60, // lw $3, 0($3)
7361 0xeb00, // jr $3
7362 0x653b, // move $25, $3
7363 0x6500, // nop
7364 0x0000, 0x0000 // .word (.got.plt entry)
7365 };
7366
7367 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7368 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7369 template<int size, bool big_endian>
7370 const uint32_t Mips_output_data_plt<size, big_endian>::
7371 plt_entry_micromips_o32[] =
7372 {
7373 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7374 0xff22, 0x0000, // lw $25, 0($2)
7375 0x4599, // jr $25
7376 0x0f02 // move $24, $2
7377 };
7378
7379 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7380 template<int size, bool big_endian>
7381 const uint32_t Mips_output_data_plt<size, big_endian>::
7382 plt_entry_micromips32_o32[] =
7383 {
7384 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7385 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7386 0x0019, 0x0f3c, // jr $25
7387 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7388 };
7389
7390 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7391
7392 template<int size, bool big_endian>
7393 void
7394 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7395 unsigned int r_type)
7396 {
7397 gold_assert(!gsym->has_plt_offset());
7398
7399 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7400 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7401 + sizeof(plt0_entry_o32));
7402 this->symbols_.push_back(gsym);
7403
7404 // Record whether the relocation requires a standard MIPS
7405 // or a compressed code entry.
7406 if (jal_reloc(r_type))
7407 {
7408 if (r_type == elfcpp::R_MIPS_26)
7409 gsym->set_needs_mips_plt(true);
7410 else
7411 gsym->set_needs_comp_plt(true);
7412 }
7413
7414 section_offset_type got_offset = this->got_plt_->current_data_size();
7415
7416 // Every PLT entry needs a GOT entry which points back to the PLT
7417 // entry (this will be changed by the dynamic linker, normally
7418 // lazily when the function is called).
7419 this->got_plt_->set_current_data_size(got_offset + size/8);
7420
7421 gsym->set_needs_dynsym_entry();
7422 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7423 got_offset);
7424 }
7425
7426 // Set final PLT offsets. For each symbol, determine whether standard or
7427 // compressed (MIPS16 or microMIPS) PLT entry is used.
7428
7429 template<int size, bool big_endian>
7430 void
7431 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7432 {
7433 // The sizes of individual PLT entries.
7434 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7435 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7436 ? this->compressed_plt_entry_size() : 0);
7437
7438 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7439 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7440 {
7441 Mips_symbol<size>* mips_sym = *p;
7442
7443 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7444 // so always use a standard entry there.
7445 //
7446 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7447 // all MIPS16 calls will go via that stub, and there is no benefit
7448 // to having a MIPS16 entry. And in the case of call_stub a
7449 // standard entry actually has to be used as the stub ends with a J
7450 // instruction.
7451 if (this->target_->is_output_newabi()
7452 || mips_sym->has_mips16_call_stub()
7453 || mips_sym->has_mips16_call_fp_stub())
7454 {
7455 mips_sym->set_needs_mips_plt(true);
7456 mips_sym->set_needs_comp_plt(false);
7457 }
7458
7459 // Otherwise, if there are no direct calls to the function, we
7460 // have a free choice of whether to use standard or compressed
7461 // entries. Prefer microMIPS entries if the object is known to
7462 // contain microMIPS code, so that it becomes possible to create
7463 // pure microMIPS binaries. Prefer standard entries otherwise,
7464 // because MIPS16 ones are no smaller and are usually slower.
7465 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7466 {
7467 if (this->target_->is_output_micromips())
7468 mips_sym->set_needs_comp_plt(true);
7469 else
7470 mips_sym->set_needs_mips_plt(true);
7471 }
7472
7473 if (mips_sym->needs_mips_plt())
7474 {
7475 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7476 this->plt_mips_offset_ += plt_mips_entry_size;
7477 }
7478 if (mips_sym->needs_comp_plt())
7479 {
7480 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7481 this->plt_comp_offset_ += plt_comp_entry_size;
7482 }
7483 }
7484
7485 // Figure out the size of the PLT header if we know that we are using it.
7486 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7487 this->plt_header_size_ = this->get_plt_header_size();
7488 }
7489
7490 // Write out the PLT. This uses the hand-coded instructions above,
7491 // and adjusts them as needed.
7492
7493 template<int size, bool big_endian>
7494 void
7495 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7496 {
7497 const off_t offset = this->offset();
7498 const section_size_type oview_size =
7499 convert_to_section_size_type(this->data_size());
7500 unsigned char* const oview = of->get_output_view(offset, oview_size);
7501
7502 const off_t gotplt_file_offset = this->got_plt_->offset();
7503 const section_size_type gotplt_size =
7504 convert_to_section_size_type(this->got_plt_->data_size());
7505 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7506 gotplt_size);
7507 unsigned char* pov = oview;
7508
7509 Mips_address plt_address = this->address();
7510
7511 // Calculate the address of .got.plt.
7512 Mips_address gotplt_addr = this->got_plt_->address();
7513 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7514 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7515
7516 // The PLT sequence is not safe for N64 if .got.plt's address can
7517 // not be loaded in two instructions.
7518 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7519 || ~(gotplt_addr | 0x7fffffff) == 0);
7520
7521 // Write the PLT header.
7522 const uint32_t* plt0_entry = this->get_plt_header_entry();
7523 if (plt0_entry == plt0_entry_micromips_o32)
7524 {
7525 // Write microMIPS PLT header.
7526 gold_assert(gotplt_addr % 4 == 0);
7527
7528 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7529
7530 // ADDIUPC has a span of +/-16MB, check we're in range.
7531 if (gotpc_offset + 0x1000000 >= 0x2000000)
7532 {
7533 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7534 "ADDIUPC"), (long)gotpc_offset);
7535 return;
7536 }
7537
7538 elfcpp::Swap<16, big_endian>::writeval(pov,
7539 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7540 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7541 (gotpc_offset >> 2) & 0xffff);
7542 pov += 4;
7543 for (unsigned int i = 2;
7544 i < (sizeof(plt0_entry_micromips_o32)
7545 / sizeof(plt0_entry_micromips_o32[0]));
7546 i++)
7547 {
7548 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7549 pov += 2;
7550 }
7551 }
7552 else if (plt0_entry == plt0_entry_micromips32_o32)
7553 {
7554 // Write microMIPS PLT header in insn32 mode.
7555 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7556 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7557 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7558 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7559 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7560 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7561 pov += 12;
7562 for (unsigned int i = 6;
7563 i < (sizeof(plt0_entry_micromips32_o32)
7564 / sizeof(plt0_entry_micromips32_o32[0]));
7565 i++)
7566 {
7567 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7568 pov += 2;
7569 }
7570 }
7571 else
7572 {
7573 // Write standard PLT header.
7574 elfcpp::Swap<32, big_endian>::writeval(pov,
7575 plt0_entry[0] | gotplt_addr_high);
7576 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7577 plt0_entry[1] | gotplt_addr_low);
7578 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7579 plt0_entry[2] | gotplt_addr_low);
7580 pov += 12;
7581 for (int i = 3; i < 8; i++)
7582 {
7583 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7584 pov += 4;
7585 }
7586 }
7587
7588
7589 unsigned char* gotplt_pov = gotplt_view;
7590 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7591
7592 // The first two entries in .got.plt are reserved.
7593 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7594 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7595
7596 unsigned int gotplt_offset = 2 * got_entry_size;
7597 gotplt_pov += 2 * got_entry_size;
7598
7599 // Calculate the address of the PLT header.
7600 Mips_address header_address = (plt_address
7601 + (this->is_plt_header_compressed() ? 1 : 0));
7602
7603 // Initialize compressed PLT area view.
7604 unsigned char* pov2 = pov + this->plt_mips_offset_;
7605
7606 // Write the PLT entries.
7607 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7608 p = this->symbols_.begin();
7609 p != this->symbols_.end();
7610 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7611 {
7612 Mips_symbol<size>* mips_sym = *p;
7613
7614 // Calculate the address of the .got.plt entry.
7615 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7616 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7617 & 0xffff);
7618 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7619
7620 // Initially point the .got.plt entry at the PLT header.
7621 if (this->target_->is_output_n64())
7622 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7623 else
7624 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7625
7626 // Now handle the PLT itself. First the standard entry.
7627 if (mips_sym->has_mips_plt_offset())
7628 {
7629 // Pick the load opcode (LW or LD).
7630 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7631 : 0x8c000000;
7632
7633 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7634 : plt_entry;
7635
7636 // Fill in the PLT entry itself.
7637 elfcpp::Swap<32, big_endian>::writeval(pov,
7638 entry[0] | gotplt_entry_addr_hi);
7639 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7640 entry[1] | gotplt_entry_addr_lo | load);
7641 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7642 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7643 entry[3] | gotplt_entry_addr_lo);
7644 pov += 16;
7645 }
7646
7647 // Now the compressed entry. They come after any standard ones.
7648 if (mips_sym->has_comp_plt_offset())
7649 {
7650 if (!this->target_->is_output_micromips())
7651 {
7652 // Write MIPS16 PLT entry.
7653 const uint32_t* plt_entry = plt_entry_mips16_o32;
7654
7655 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7656 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7657 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7658 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7659 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7660 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7661 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7662 gotplt_entry_addr);
7663 pov2 += 16;
7664 }
7665 else if (this->target_->use_32bit_micromips_instructions())
7666 {
7667 // Write microMIPS PLT entry in insn32 mode.
7668 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7669
7670 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7671 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7672 gotplt_entry_addr_hi);
7673 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7674 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7675 gotplt_entry_addr_lo);
7676 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7677 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7678 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7679 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7680 gotplt_entry_addr_lo);
7681 pov2 += 16;
7682 }
7683 else
7684 {
7685 // Write microMIPS PLT entry.
7686 const uint32_t* plt_entry = plt_entry_micromips_o32;
7687
7688 gold_assert(gotplt_entry_addr % 4 == 0);
7689
7690 Mips_address loc_address = plt_address + pov2 - oview;
7691 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7692
7693 // ADDIUPC has a span of +/-16MB, check we're in range.
7694 if (gotpc_offset + 0x1000000 >= 0x2000000)
7695 {
7696 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7697 "range of ADDIUPC"), (long)gotpc_offset);
7698 return;
7699 }
7700
7701 elfcpp::Swap<16, big_endian>::writeval(pov2,
7702 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7703 elfcpp::Swap<16, big_endian>::writeval(
7704 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7705 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7706 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7707 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7708 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7709 pov2 += 12;
7710 }
7711 }
7712 }
7713
7714 // Check the number of bytes written for standard entries.
7715 gold_assert(static_cast<section_size_type>(
7716 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7717 // Check the number of bytes written for compressed entries.
7718 gold_assert((static_cast<section_size_type>(pov2 - pov)
7719 == this->plt_comp_offset_));
7720 // Check the total number of bytes written.
7721 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7722
7723 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7724 == gotplt_size);
7725
7726 of->write_output_view(offset, oview_size, oview);
7727 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7728 }
7729
7730 // Mips_output_data_mips_stubs methods.
7731
7732 // The format of the lazy binding stub when dynamic symbol count is less than
7733 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7734 template<int size, bool big_endian>
7735 const uint32_t
7736 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7737 {
7738 0x8f998010, // lw t9,0x8010(gp)
7739 0x03e07825, // or t7,ra,zero
7740 0x0320f809, // jalr t9,ra
7741 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7742 };
7743
7744 // The format of the lazy binding stub when dynamic symbol count is less than
7745 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7746 template<int size, bool big_endian>
7747 const uint32_t
7748 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7749 {
7750 0xdf998010, // ld t9,0x8010(gp)
7751 0x03e07825, // or t7,ra,zero
7752 0x0320f809, // jalr t9,ra
7753 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7754 };
7755
7756 // The format of the lazy binding stub when dynamic symbol count is less than
7757 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7758 template<int size, bool big_endian>
7759 const uint32_t
7760 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7761 {
7762 0x8f998010, // lw t9,0x8010(gp)
7763 0x03e07825, // or t7,ra,zero
7764 0x0320f809, // jalr t9,ra
7765 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7766 };
7767
7768 // The format of the lazy binding stub when dynamic symbol count is less than
7769 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7770 template<int size, bool big_endian>
7771 const uint32_t
7772 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7773 {
7774 0xdf998010, // ld t9,0x8010(gp)
7775 0x03e07825, // or t7,ra,zero
7776 0x0320f809, // jalr t9,ra
7777 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7778 };
7779
7780 // The format of the lazy binding stub when dynamic symbol count is greater than
7781 // 64K, and ABI is not N64.
7782 template<int size, bool big_endian>
7783 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7784 {
7785 0x8f998010, // lw t9,0x8010(gp)
7786 0x03e07825, // or t7,ra,zero
7787 0x3c180000, // lui t8,DYN_INDEX
7788 0x0320f809, // jalr t9,ra
7789 0x37180000 // ori t8,t8,DYN_INDEX
7790 };
7791
7792 // The format of the lazy binding stub when dynamic symbol count is greater than
7793 // 64K, and ABI is N64.
7794 template<int size, bool big_endian>
7795 const uint32_t
7796 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7797 {
7798 0xdf998010, // ld t9,0x8010(gp)
7799 0x03e07825, // or t7,ra,zero
7800 0x3c180000, // lui t8,DYN_INDEX
7801 0x0320f809, // jalr t9,ra
7802 0x37180000 // ori t8,t8,DYN_INDEX
7803 };
7804
7805 // microMIPS stubs.
7806
7807 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7808 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7809 template<int size, bool big_endian>
7810 const uint32_t
7811 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7812 {
7813 0xff3c, 0x8010, // lw t9,0x8010(gp)
7814 0x0dff, // move t7,ra
7815 0x45d9, // jalr t9
7816 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7817 };
7818
7819 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7820 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7821 template<int size, bool big_endian>
7822 const uint32_t
7823 Mips_output_data_mips_stubs<size, big_endian>::
7824 lazy_stub_micromips_normal_1_n64[] =
7825 {
7826 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7827 0x0dff, // move t7,ra
7828 0x45d9, // jalr t9
7829 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7830 };
7831
7832 // The format of the microMIPS lazy binding stub when dynamic symbol
7833 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7834 // and ABI is not N64.
7835 template<int size, bool big_endian>
7836 const uint32_t
7837 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7838 {
7839 0xff3c, 0x8010, // lw t9,0x8010(gp)
7840 0x0dff, // move t7,ra
7841 0x45d9, // jalr t9
7842 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7843 };
7844
7845 // The format of the microMIPS lazy binding stub when dynamic symbol
7846 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7847 // and ABI is N64.
7848 template<int size, bool big_endian>
7849 const uint32_t
7850 Mips_output_data_mips_stubs<size, big_endian>::
7851 lazy_stub_micromips_normal_2_n64[] =
7852 {
7853 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7854 0x0dff, // move t7,ra
7855 0x45d9, // jalr t9
7856 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7857 };
7858
7859 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7860 // greater than 64K, and ABI is not N64.
7861 template<int size, bool big_endian>
7862 const uint32_t
7863 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7864 {
7865 0xff3c, 0x8010, // lw t9,0x8010(gp)
7866 0x0dff, // move t7,ra
7867 0x41b8, 0x0000, // lui t8,DYN_INDEX
7868 0x45d9, // jalr t9
7869 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7870 };
7871
7872 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7873 // greater than 64K, and ABI is N64.
7874 template<int size, bool big_endian>
7875 const uint32_t
7876 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7877 {
7878 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7879 0x0dff, // move t7,ra
7880 0x41b8, 0x0000, // lui t8,DYN_INDEX
7881 0x45d9, // jalr t9
7882 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7883 };
7884
7885 // 32-bit microMIPS stubs.
7886
7887 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7888 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7889 // can use only 32-bit instructions.
7890 template<int size, bool big_endian>
7891 const uint32_t
7892 Mips_output_data_mips_stubs<size, big_endian>::
7893 lazy_stub_micromips32_normal_1[] =
7894 {
7895 0xff3c, 0x8010, // lw t9,0x8010(gp)
7896 0x001f, 0x7a90, // or t7,ra,zero
7897 0x03f9, 0x0f3c, // jalr ra,t9
7898 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7899 };
7900
7901 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7902 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7903 // use only 32-bit instructions.
7904 template<int size, bool big_endian>
7905 const uint32_t
7906 Mips_output_data_mips_stubs<size, big_endian>::
7907 lazy_stub_micromips32_normal_1_n64[] =
7908 {
7909 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7910 0x001f, 0x7a90, // or t7,ra,zero
7911 0x03f9, 0x0f3c, // jalr ra,t9
7912 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7913 };
7914
7915 // The format of the microMIPS lazy binding stub when dynamic symbol
7916 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7917 // ABI is not N64, and we can use only 32-bit instructions.
7918 template<int size, bool big_endian>
7919 const uint32_t
7920 Mips_output_data_mips_stubs<size, big_endian>::
7921 lazy_stub_micromips32_normal_2[] =
7922 {
7923 0xff3c, 0x8010, // lw t9,0x8010(gp)
7924 0x001f, 0x7a90, // or t7,ra,zero
7925 0x03f9, 0x0f3c, // jalr ra,t9
7926 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7927 };
7928
7929 // The format of the microMIPS lazy binding stub when dynamic symbol
7930 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7931 // ABI is N64, and we can use only 32-bit instructions.
7932 template<int size, bool big_endian>
7933 const uint32_t
7934 Mips_output_data_mips_stubs<size, big_endian>::
7935 lazy_stub_micromips32_normal_2_n64[] =
7936 {
7937 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7938 0x001f, 0x7a90, // or t7,ra,zero
7939 0x03f9, 0x0f3c, // jalr ra,t9
7940 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7941 };
7942
7943 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7944 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7945 template<int size, bool big_endian>
7946 const uint32_t
7947 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7948 {
7949 0xff3c, 0x8010, // lw t9,0x8010(gp)
7950 0x001f, 0x7a90, // or t7,ra,zero
7951 0x41b8, 0x0000, // lui t8,DYN_INDEX
7952 0x03f9, 0x0f3c, // jalr ra,t9
7953 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7954 };
7955
7956 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7957 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7958 template<int size, bool big_endian>
7959 const uint32_t
7960 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7961 {
7962 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7963 0x001f, 0x7a90, // or t7,ra,zero
7964 0x41b8, 0x0000, // lui t8,DYN_INDEX
7965 0x03f9, 0x0f3c, // jalr ra,t9
7966 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7967 };
7968
7969 // Create entry for a symbol.
7970
7971 template<int size, bool big_endian>
7972 void
7973 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7974 Mips_symbol<size>* gsym)
7975 {
7976 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7977 {
7978 this->symbols_.insert(gsym);
7979 gsym->set_has_lazy_stub(true);
7980 }
7981 }
7982
7983 // Remove entry for a symbol.
7984
7985 template<int size, bool big_endian>
7986 void
7987 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7988 Mips_symbol<size>* gsym)
7989 {
7990 if (gsym->has_lazy_stub())
7991 {
7992 this->symbols_.erase(gsym);
7993 gsym->set_has_lazy_stub(false);
7994 }
7995 }
7996
7997 // Set stub offsets for symbols. This method expects that the number of
7998 // entries in dynamic symbol table is set.
7999
8000 template<int size, bool big_endian>
8001 void
8002 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
8003 {
8004 gold_assert(this->dynsym_count_ != -1U);
8005
8006 if (this->stub_offsets_are_set_)
8007 return;
8008
8009 unsigned int stub_size = this->stub_size();
8010 unsigned int offset = 0;
8011 for (typename Mips_stubs_entry_set::const_iterator
8012 p = this->symbols_.begin();
8013 p != this->symbols_.end();
8014 ++p, offset += stub_size)
8015 {
8016 Mips_symbol<size>* mips_sym = *p;
8017 mips_sym->set_lazy_stub_offset(offset);
8018 }
8019 this->stub_offsets_are_set_ = true;
8020 }
8021
8022 template<int size, bool big_endian>
8023 void
8024 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
8025 {
8026 for (typename Mips_stubs_entry_set::const_iterator
8027 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8028 {
8029 Mips_symbol<size>* sym = *p;
8030 if (sym->is_from_dynobj())
8031 sym->set_needs_dynsym_value();
8032 }
8033 }
8034
8035 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
8036 // adjusts them as needed.
8037
8038 template<int size, bool big_endian>
8039 void
8040 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8041 {
8042 const off_t offset = this->offset();
8043 const section_size_type oview_size =
8044 convert_to_section_size_type(this->data_size());
8045 unsigned char* const oview = of->get_output_view(offset, oview_size);
8046
8047 bool big_stub = this->dynsym_count_ > 0x10000;
8048
8049 unsigned char* pov = oview;
8050 for (typename Mips_stubs_entry_set::const_iterator
8051 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8052 {
8053 Mips_symbol<size>* sym = *p;
8054 const uint32_t* lazy_stub;
8055 bool n64 = this->target_->is_output_n64();
8056
8057 if (!this->target_->is_output_micromips())
8058 {
8059 // Write standard (non-microMIPS) stub.
8060 if (!big_stub)
8061 {
8062 if (sym->dynsym_index() & ~0x7fff)
8063 // Dynsym index is between 32K and 64K.
8064 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8065 else
8066 // Dynsym index is less than 32K.
8067 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8068 }
8069 else
8070 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8071
8072 unsigned int i = 0;
8073 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8074 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8075 pov += 8;
8076
8077 i += 2;
8078 if (big_stub)
8079 {
8080 // LUI instruction of the big stub. Paste high 16 bits of the
8081 // dynsym index.
8082 elfcpp::Swap<32, big_endian>::writeval(pov,
8083 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8084 pov += 4;
8085 i += 1;
8086 }
8087 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8088 // Last stub instruction. Paste low 16 bits of the dynsym index.
8089 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8090 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8091 pov += 8;
8092 }
8093 else if (this->target_->use_32bit_micromips_instructions())
8094 {
8095 // Write microMIPS stub in insn32 mode.
8096 if (!big_stub)
8097 {
8098 if (sym->dynsym_index() & ~0x7fff)
8099 // Dynsym index is between 32K and 64K.
8100 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8101 : lazy_stub_micromips32_normal_2;
8102 else
8103 // Dynsym index is less than 32K.
8104 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8105 : lazy_stub_micromips32_normal_1;
8106 }
8107 else
8108 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8109 : lazy_stub_micromips32_big;
8110
8111 unsigned int i = 0;
8112 // First stub instruction. We emit 32-bit microMIPS instructions by
8113 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8114 // the instruction where the opcode is must always come first, for
8115 // both little and big endian.
8116 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8117 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8118 // Second stub instruction.
8119 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8120 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8121 pov += 8;
8122 i += 4;
8123 if (big_stub)
8124 {
8125 // LUI instruction of the big stub. Paste high 16 bits of the
8126 // dynsym index.
8127 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8128 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8129 (sym->dynsym_index() >> 16) & 0x7fff);
8130 pov += 4;
8131 i += 2;
8132 }
8133 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8134 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8135 // Last stub instruction. Paste low 16 bits of the dynsym index.
8136 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8137 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8138 sym->dynsym_index() & 0xffff);
8139 pov += 8;
8140 }
8141 else
8142 {
8143 // Write microMIPS stub.
8144 if (!big_stub)
8145 {
8146 if (sym->dynsym_index() & ~0x7fff)
8147 // Dynsym index is between 32K and 64K.
8148 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8149 : lazy_stub_micromips_normal_2;
8150 else
8151 // Dynsym index is less than 32K.
8152 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8153 : lazy_stub_micromips_normal_1;
8154 }
8155 else
8156 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8157 : lazy_stub_micromips_big;
8158
8159 unsigned int i = 0;
8160 // First stub instruction. We emit 32-bit microMIPS instructions by
8161 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8162 // the instruction where the opcode is must always come first, for
8163 // both little and big endian.
8164 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8165 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8166 // Second stub instruction.
8167 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8168 pov += 6;
8169 i += 3;
8170 if (big_stub)
8171 {
8172 // LUI instruction of the big stub. Paste high 16 bits of the
8173 // dynsym index.
8174 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8175 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8176 (sym->dynsym_index() >> 16) & 0x7fff);
8177 pov += 4;
8178 i += 2;
8179 }
8180 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8181 // Last stub instruction. Paste low 16 bits of the dynsym index.
8182 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8183 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8184 sym->dynsym_index() & 0xffff);
8185 pov += 6;
8186 }
8187 }
8188
8189 // We always allocate 20 bytes for every stub, because final dynsym count is
8190 // not known in method do_finalize_sections. There are 4 unused bytes per
8191 // stub if final dynsym count is less than 0x10000.
8192 unsigned int used = pov - oview;
8193 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8194 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8195
8196 // Fill the unused space with zeroes.
8197 // TODO(sasa): Can we strip unused bytes during the relaxation?
8198 if (unused > 0)
8199 memset(pov, 0, unused);
8200
8201 of->write_output_view(offset, oview_size, oview);
8202 }
8203
8204 // Mips_output_section_reginfo methods.
8205
8206 template<int size, bool big_endian>
8207 void
8208 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8209 {
8210 off_t offset = this->offset();
8211 off_t data_size = this->data_size();
8212
8213 unsigned char* view = of->get_output_view(offset, data_size);
8214 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8215 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8216 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8217 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8218 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8219 // Write the gp value.
8220 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8221 this->target_->gp_value());
8222
8223 of->write_output_view(offset, data_size, view);
8224 }
8225
8226 // Mips_output_section_options methods.
8227
8228 template<int size, bool big_endian>
8229 void
8230 Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
8231 {
8232 off_t offset = this->offset();
8233 const section_size_type oview_size =
8234 convert_to_section_size_type(this->data_size());
8235 unsigned char* view = of->get_output_view(offset, oview_size);
8236 const unsigned char* end = view + oview_size;
8237
8238 while (view + 8 <= end)
8239 {
8240 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
8241 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
8242 if (sz < 8)
8243 {
8244 gold_error(_("Warning: bad `%s' option size %u smaller "
8245 "than its header in output section"),
8246 this->name(), sz);
8247 break;
8248 }
8249
8250 // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8251 if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
8252 elfcpp::Swap<size, big_endian>::writeval(view + 32,
8253 this->target_->gp_value());
8254 else if (kind == elfcpp::ODK_REGINFO)
8255 elfcpp::Swap<size, big_endian>::writeval(view + 28,
8256 this->target_->gp_value());
8257
8258 view += sz;
8259 }
8260
8261 of->write_output_view(offset, oview_size, view);
8262 }
8263
8264 // Mips_output_section_abiflags methods.
8265
8266 template<int size, bool big_endian>
8267 void
8268 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8269 {
8270 off_t offset = this->offset();
8271 off_t data_size = this->data_size();
8272
8273 unsigned char* view = of->get_output_view(offset, data_size);
8274 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8275 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8276 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8277 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8278 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8279 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8280 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8281 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8282 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8283 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8284 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8285
8286 of->write_output_view(offset, data_size, view);
8287 }
8288
8289 // Mips_copy_relocs methods.
8290
8291 // Emit any saved relocs.
8292
8293 template<int sh_type, int size, bool big_endian>
8294 void
8295 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8296 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8297 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8298 {
8299 for (typename Copy_relocs<sh_type, size, big_endian>::
8300 Copy_reloc_entries::iterator p = this->entries_.begin();
8301 p != this->entries_.end();
8302 ++p)
8303 emit_entry(*p, reloc_section, symtab, layout, target);
8304
8305 // We no longer need the saved information.
8306 this->entries_.clear();
8307 }
8308
8309 // Emit the reloc if appropriate.
8310
8311 template<int sh_type, int size, bool big_endian>
8312 void
8313 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8314 Copy_reloc_entry& entry,
8315 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8316 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8317 {
8318 // If the symbol is no longer defined in a dynamic object, then we
8319 // emitted a COPY relocation, and we do not want to emit this
8320 // dynamic relocation.
8321 if (!entry.sym_->is_from_dynobj())
8322 return;
8323
8324 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8325 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8326 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8327
8328 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8329 if (can_make_dynamic && !sym->has_static_relocs())
8330 {
8331 Mips_relobj<size, big_endian>* object =
8332 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8333 target->got_section(symtab, layout)->record_global_got_symbol(
8334 sym, object, entry.reloc_type_, true, false);
8335 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8336 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8337 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8338 else
8339 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8340 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8341 entry.shndx_, entry.address_);
8342 }
8343 else
8344 this->make_copy_reloc(symtab, layout,
8345 static_cast<Sized_symbol<size>*>(entry.sym_),
8346 entry.relobj_,
8347 reloc_section);
8348 }
8349
8350 // Target_mips methods.
8351
8352 // Return the value to use for a dynamic symbol which requires special
8353 // treatment. This is how we support equality comparisons of function
8354 // pointers across shared library boundaries, as described in the
8355 // processor specific ABI supplement.
8356
8357 template<int size, bool big_endian>
8358 uint64_t
8359 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8360 {
8361 uint64_t value = 0;
8362 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8363
8364 if (!mips_sym->has_lazy_stub())
8365 {
8366 if (mips_sym->has_plt_offset())
8367 {
8368 // We distinguish between PLT entries and lazy-binding stubs by
8369 // giving the former an st_other value of STO_MIPS_PLT. Set the
8370 // value to the stub address if there are any relocations in the
8371 // binary where pointer equality matters.
8372 if (mips_sym->pointer_equality_needed())
8373 {
8374 // Prefer a standard MIPS PLT entry.
8375 if (mips_sym->has_mips_plt_offset())
8376 value = this->plt_section()->mips_entry_address(mips_sym);
8377 else
8378 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8379 }
8380 else
8381 value = 0;
8382 }
8383 }
8384 else
8385 {
8386 // First, set stub offsets for symbols. This method expects that the
8387 // number of entries in dynamic symbol table is set.
8388 this->mips_stubs_section()->set_lazy_stub_offsets();
8389
8390 // The run-time linker uses the st_value field of the symbol
8391 // to reset the global offset table entry for this external
8392 // to its stub address when unlinking a shared object.
8393 value = this->mips_stubs_section()->stub_address(mips_sym);
8394 }
8395
8396 if (mips_sym->has_mips16_fn_stub())
8397 {
8398 // If we have a MIPS16 function with a stub, the dynamic symbol must
8399 // refer to the stub, since only the stub uses the standard calling
8400 // conventions.
8401 value = mips_sym->template
8402 get_mips16_fn_stub<big_endian>()->output_address();
8403 }
8404
8405 return value;
8406 }
8407
8408 // Get the dynamic reloc section, creating it if necessary. It's always
8409 // .rel.dyn, even for MIPS64.
8410
8411 template<int size, bool big_endian>
8412 typename Target_mips<size, big_endian>::Reloc_section*
8413 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8414 {
8415 if (this->rel_dyn_ == NULL)
8416 {
8417 gold_assert(layout != NULL);
8418 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8419 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8420 elfcpp::SHF_ALLOC, this->rel_dyn_,
8421 ORDER_DYNAMIC_RELOCS, false);
8422
8423 // First entry in .rel.dyn has to be null.
8424 // This is hack - we define dummy output data and set its address to 0,
8425 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8426 // This ensures that the entry is null.
8427 Output_data* od = new Output_data_zero_fill(0, 0);
8428 od->set_address(0);
8429 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8430 }
8431 return this->rel_dyn_;
8432 }
8433
8434 // Get the GOT section, creating it if necessary.
8435
8436 template<int size, bool big_endian>
8437 Mips_output_data_got<size, big_endian>*
8438 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8439 Layout* layout)
8440 {
8441 if (this->got_ == NULL)
8442 {
8443 gold_assert(symtab != NULL && layout != NULL);
8444
8445 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8446 layout);
8447 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8448 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8449 elfcpp::SHF_MIPS_GPREL),
8450 this->got_, ORDER_DATA, false);
8451
8452 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8453 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8454 Symbol_table::PREDEFINED,
8455 this->got_,
8456 0, 0, elfcpp::STT_OBJECT,
8457 elfcpp::STB_GLOBAL,
8458 elfcpp::STV_HIDDEN, 0,
8459 false, false);
8460 }
8461
8462 return this->got_;
8463 }
8464
8465 // Calculate value of _gp symbol.
8466
8467 template<int size, bool big_endian>
8468 void
8469 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8470 {
8471 gold_assert(this->gp_ == NULL);
8472
8473 Sized_symbol<size>* gp =
8474 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8475
8476 // Set _gp symbol if the linker script hasn't created it.
8477 if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8478 {
8479 // If there is no .got section, gp should be based on .sdata.
8480 Output_data* gp_section = (this->got_ != NULL
8481 ? this->got_->output_section()
8482 : layout->find_output_section(".sdata"));
8483
8484 if (gp_section != NULL)
8485 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8486 "_gp", NULL, Symbol_table::PREDEFINED,
8487 gp_section, MIPS_GP_OFFSET, 0,
8488 elfcpp::STT_NOTYPE,
8489 elfcpp::STB_LOCAL,
8490 elfcpp::STV_DEFAULT,
8491 0, false, false));
8492 }
8493
8494 this->gp_ = gp;
8495 }
8496
8497 // Set the dynamic symbol indexes. INDEX is the index of the first
8498 // global dynamic symbol. Pointers to the symbols are stored into the
8499 // vector SYMS. The names are added to DYNPOOL. This returns an
8500 // updated dynamic symbol index.
8501
8502 template<int size, bool big_endian>
8503 unsigned int
8504 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8505 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8506 std::vector<Symbol*>* syms, Stringpool* dynpool,
8507 Versions* versions, Symbol_table* symtab) const
8508 {
8509 std::vector<Symbol*> non_got_symbols;
8510 std::vector<Symbol*> got_symbols;
8511
8512 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8513 &got_symbols);
8514
8515 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8516 p != non_got_symbols.end();
8517 ++p)
8518 {
8519 Symbol* sym = *p;
8520
8521 // Note that SYM may already have a dynamic symbol index, since
8522 // some symbols appear more than once in the symbol table, with
8523 // and without a version.
8524
8525 if (!sym->has_dynsym_index())
8526 {
8527 sym->set_dynsym_index(index);
8528 ++index;
8529 syms->push_back(sym);
8530 dynpool->add(sym->name(), false, NULL);
8531
8532 // Record any version information.
8533 if (sym->version() != NULL)
8534 versions->record_version(symtab, dynpool, sym);
8535
8536 // If the symbol is defined in a dynamic object and is
8537 // referenced in a regular object, then mark the dynamic
8538 // object as needed. This is used to implement --as-needed.
8539 if (sym->is_from_dynobj() && sym->in_reg())
8540 sym->object()->set_is_needed();
8541 }
8542 }
8543
8544 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8545 p != got_symbols.end();
8546 ++p)
8547 {
8548 Symbol* sym = *p;
8549 if (!sym->has_dynsym_index())
8550 {
8551 // Record any version information.
8552 if (sym->version() != NULL)
8553 versions->record_version(symtab, dynpool, sym);
8554 }
8555 }
8556
8557 index = versions->finalize(symtab, index, syms);
8558
8559 int got_sym_count = 0;
8560 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8561 p != got_symbols.end();
8562 ++p)
8563 {
8564 Symbol* sym = *p;
8565
8566 if (!sym->has_dynsym_index())
8567 {
8568 ++got_sym_count;
8569 sym->set_dynsym_index(index);
8570 ++index;
8571 syms->push_back(sym);
8572 dynpool->add(sym->name(), false, NULL);
8573
8574 // If the symbol is defined in a dynamic object and is
8575 // referenced in a regular object, then mark the dynamic
8576 // object as needed. This is used to implement --as-needed.
8577 if (sym->is_from_dynobj() && sym->in_reg())
8578 sym->object()->set_is_needed();
8579 }
8580 }
8581
8582 // Set index of the first symbol that has .got entry.
8583 this->got_->set_first_global_got_dynsym_index(
8584 got_sym_count > 0 ? index - got_sym_count : -1U);
8585
8586 if (this->mips_stubs_ != NULL)
8587 this->mips_stubs_->set_dynsym_count(index);
8588
8589 return index;
8590 }
8591
8592 // Create a PLT entry for a global symbol referenced by r_type relocation.
8593
8594 template<int size, bool big_endian>
8595 void
8596 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8597 Layout* layout,
8598 Mips_symbol<size>* gsym,
8599 unsigned int r_type)
8600 {
8601 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8602 return;
8603
8604 if (this->plt_ == NULL)
8605 {
8606 // Create the GOT section first.
8607 this->got_section(symtab, layout);
8608
8609 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8610 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8611 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8612 this->got_plt_, ORDER_DATA, false);
8613
8614 // The first two entries are reserved.
8615 this->got_plt_->set_current_data_size(2 * size/8);
8616
8617 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8618 this->got_plt_,
8619 this);
8620 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8621 (elfcpp::SHF_ALLOC
8622 | elfcpp::SHF_EXECINSTR),
8623 this->plt_, ORDER_PLT, false);
8624
8625 // Make the sh_info field of .rel.plt point to .plt.
8626 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8627 rel_plt_os->set_info_section(this->plt_->output_section());
8628 }
8629
8630 this->plt_->add_entry(gsym, r_type);
8631 }
8632
8633
8634 // Get the .MIPS.stubs section, creating it if necessary.
8635
8636 template<int size, bool big_endian>
8637 Mips_output_data_mips_stubs<size, big_endian>*
8638 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8639 {
8640 if (this->mips_stubs_ == NULL)
8641 {
8642 this->mips_stubs_ =
8643 new Mips_output_data_mips_stubs<size, big_endian>(this);
8644 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8645 (elfcpp::SHF_ALLOC
8646 | elfcpp::SHF_EXECINSTR),
8647 this->mips_stubs_, ORDER_PLT, false);
8648 }
8649 return this->mips_stubs_;
8650 }
8651
8652 // Get the LA25 stub section, creating it if necessary.
8653
8654 template<int size, bool big_endian>
8655 Mips_output_data_la25_stub<size, big_endian>*
8656 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8657 {
8658 if (this->la25_stub_ == NULL)
8659 {
8660 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8661 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8662 (elfcpp::SHF_ALLOC
8663 | elfcpp::SHF_EXECINSTR),
8664 this->la25_stub_, ORDER_TEXT, false);
8665 }
8666 return this->la25_stub_;
8667 }
8668
8669 // Process the relocations to determine unreferenced sections for
8670 // garbage collection.
8671
8672 template<int size, bool big_endian>
8673 void
8674 Target_mips<size, big_endian>::gc_process_relocs(
8675 Symbol_table* symtab,
8676 Layout* layout,
8677 Sized_relobj_file<size, big_endian>* object,
8678 unsigned int data_shndx,
8679 unsigned int sh_type,
8680 const unsigned char* prelocs,
8681 size_t reloc_count,
8682 Output_section* output_section,
8683 bool needs_special_offset_handling,
8684 size_t local_symbol_count,
8685 const unsigned char* plocal_symbols)
8686 {
8687 typedef Target_mips<size, big_endian> Mips;
8688
8689 if (sh_type == elfcpp::SHT_REL)
8690 {
8691 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8692 Classify_reloc;
8693
8694 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8695 symtab,
8696 layout,
8697 this,
8698 object,
8699 data_shndx,
8700 prelocs,
8701 reloc_count,
8702 output_section,
8703 needs_special_offset_handling,
8704 local_symbol_count,
8705 plocal_symbols);
8706 }
8707 else if (sh_type == elfcpp::SHT_RELA)
8708 {
8709 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8710 Classify_reloc;
8711
8712 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8713 symtab,
8714 layout,
8715 this,
8716 object,
8717 data_shndx,
8718 prelocs,
8719 reloc_count,
8720 output_section,
8721 needs_special_offset_handling,
8722 local_symbol_count,
8723 plocal_symbols);
8724 }
8725 else
8726 gold_unreachable();
8727 }
8728
8729 // Scan relocations for a section.
8730
8731 template<int size, bool big_endian>
8732 void
8733 Target_mips<size, big_endian>::scan_relocs(
8734 Symbol_table* symtab,
8735 Layout* layout,
8736 Sized_relobj_file<size, big_endian>* object,
8737 unsigned int data_shndx,
8738 unsigned int sh_type,
8739 const unsigned char* prelocs,
8740 size_t reloc_count,
8741 Output_section* output_section,
8742 bool needs_special_offset_handling,
8743 size_t local_symbol_count,
8744 const unsigned char* plocal_symbols)
8745 {
8746 typedef Target_mips<size, big_endian> Mips;
8747
8748 if (sh_type == elfcpp::SHT_REL)
8749 {
8750 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8751 Classify_reloc;
8752
8753 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8754 symtab,
8755 layout,
8756 this,
8757 object,
8758 data_shndx,
8759 prelocs,
8760 reloc_count,
8761 output_section,
8762 needs_special_offset_handling,
8763 local_symbol_count,
8764 plocal_symbols);
8765 }
8766 else if (sh_type == elfcpp::SHT_RELA)
8767 {
8768 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8769 Classify_reloc;
8770
8771 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8772 symtab,
8773 layout,
8774 this,
8775 object,
8776 data_shndx,
8777 prelocs,
8778 reloc_count,
8779 output_section,
8780 needs_special_offset_handling,
8781 local_symbol_count,
8782 plocal_symbols);
8783 }
8784 }
8785
8786 template<int size, bool big_endian>
8787 bool
8788 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8789 {
8790 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8791 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8792 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8793 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8794 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8795 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8796 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8797 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8798 }
8799
8800 // Return the MACH for a MIPS e_flags value.
8801 template<int size, bool big_endian>
8802 unsigned int
8803 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8804 {
8805 switch (flags & elfcpp::EF_MIPS_MACH)
8806 {
8807 case elfcpp::E_MIPS_MACH_3900:
8808 return mach_mips3900;
8809
8810 case elfcpp::E_MIPS_MACH_4010:
8811 return mach_mips4010;
8812
8813 case elfcpp::E_MIPS_MACH_4100:
8814 return mach_mips4100;
8815
8816 case elfcpp::E_MIPS_MACH_4111:
8817 return mach_mips4111;
8818
8819 case elfcpp::E_MIPS_MACH_4120:
8820 return mach_mips4120;
8821
8822 case elfcpp::E_MIPS_MACH_4650:
8823 return mach_mips4650;
8824
8825 case elfcpp::E_MIPS_MACH_5400:
8826 return mach_mips5400;
8827
8828 case elfcpp::E_MIPS_MACH_5500:
8829 return mach_mips5500;
8830
8831 case elfcpp::E_MIPS_MACH_5900:
8832 return mach_mips5900;
8833
8834 case elfcpp::E_MIPS_MACH_9000:
8835 return mach_mips9000;
8836
8837 case elfcpp::E_MIPS_MACH_SB1:
8838 return mach_mips_sb1;
8839
8840 case elfcpp::E_MIPS_MACH_LS2E:
8841 return mach_mips_loongson_2e;
8842
8843 case elfcpp::E_MIPS_MACH_LS2F:
8844 return mach_mips_loongson_2f;
8845
8846 case elfcpp::E_MIPS_MACH_LS3A:
8847 return mach_mips_loongson_3a;
8848
8849 case elfcpp::E_MIPS_MACH_OCTEON3:
8850 return mach_mips_octeon3;
8851
8852 case elfcpp::E_MIPS_MACH_OCTEON2:
8853 return mach_mips_octeon2;
8854
8855 case elfcpp::E_MIPS_MACH_OCTEON:
8856 return mach_mips_octeon;
8857
8858 case elfcpp::E_MIPS_MACH_XLR:
8859 return mach_mips_xlr;
8860
8861 default:
8862 switch (flags & elfcpp::EF_MIPS_ARCH)
8863 {
8864 default:
8865 case elfcpp::E_MIPS_ARCH_1:
8866 return mach_mips3000;
8867
8868 case elfcpp::E_MIPS_ARCH_2:
8869 return mach_mips6000;
8870
8871 case elfcpp::E_MIPS_ARCH_3:
8872 return mach_mips4000;
8873
8874 case elfcpp::E_MIPS_ARCH_4:
8875 return mach_mips8000;
8876
8877 case elfcpp::E_MIPS_ARCH_5:
8878 return mach_mips5;
8879
8880 case elfcpp::E_MIPS_ARCH_32:
8881 return mach_mipsisa32;
8882
8883 case elfcpp::E_MIPS_ARCH_64:
8884 return mach_mipsisa64;
8885
8886 case elfcpp::E_MIPS_ARCH_32R2:
8887 return mach_mipsisa32r2;
8888
8889 case elfcpp::E_MIPS_ARCH_32R6:
8890 return mach_mipsisa32r6;
8891
8892 case elfcpp::E_MIPS_ARCH_64R2:
8893 return mach_mipsisa64r2;
8894
8895 case elfcpp::E_MIPS_ARCH_64R6:
8896 return mach_mipsisa64r6;
8897 }
8898 }
8899
8900 return 0;
8901 }
8902
8903 // Return the MACH for each .MIPS.abiflags ISA Extension.
8904
8905 template<int size, bool big_endian>
8906 unsigned int
8907 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8908 {
8909 switch (isa_ext)
8910 {
8911 case elfcpp::AFL_EXT_3900:
8912 return mach_mips3900;
8913
8914 case elfcpp::AFL_EXT_4010:
8915 return mach_mips4010;
8916
8917 case elfcpp::AFL_EXT_4100:
8918 return mach_mips4100;
8919
8920 case elfcpp::AFL_EXT_4111:
8921 return mach_mips4111;
8922
8923 case elfcpp::AFL_EXT_4120:
8924 return mach_mips4120;
8925
8926 case elfcpp::AFL_EXT_4650:
8927 return mach_mips4650;
8928
8929 case elfcpp::AFL_EXT_5400:
8930 return mach_mips5400;
8931
8932 case elfcpp::AFL_EXT_5500:
8933 return mach_mips5500;
8934
8935 case elfcpp::AFL_EXT_5900:
8936 return mach_mips5900;
8937
8938 case elfcpp::AFL_EXT_10000:
8939 return mach_mips10000;
8940
8941 case elfcpp::AFL_EXT_LOONGSON_2E:
8942 return mach_mips_loongson_2e;
8943
8944 case elfcpp::AFL_EXT_LOONGSON_2F:
8945 return mach_mips_loongson_2f;
8946
8947 case elfcpp::AFL_EXT_LOONGSON_3A:
8948 return mach_mips_loongson_3a;
8949
8950 case elfcpp::AFL_EXT_SB1:
8951 return mach_mips_sb1;
8952
8953 case elfcpp::AFL_EXT_OCTEON:
8954 return mach_mips_octeon;
8955
8956 case elfcpp::AFL_EXT_OCTEONP:
8957 return mach_mips_octeonp;
8958
8959 case elfcpp::AFL_EXT_OCTEON2:
8960 return mach_mips_octeon2;
8961
8962 case elfcpp::AFL_EXT_XLR:
8963 return mach_mips_xlr;
8964
8965 default:
8966 return mach_mips3000;
8967 }
8968 }
8969
8970 // Return the .MIPS.abiflags value representing each ISA Extension.
8971
8972 template<int size, bool big_endian>
8973 unsigned int
8974 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8975 {
8976 switch (mips_mach)
8977 {
8978 case mach_mips3900:
8979 return elfcpp::AFL_EXT_3900;
8980
8981 case mach_mips4010:
8982 return elfcpp::AFL_EXT_4010;
8983
8984 case mach_mips4100:
8985 return elfcpp::AFL_EXT_4100;
8986
8987 case mach_mips4111:
8988 return elfcpp::AFL_EXT_4111;
8989
8990 case mach_mips4120:
8991 return elfcpp::AFL_EXT_4120;
8992
8993 case mach_mips4650:
8994 return elfcpp::AFL_EXT_4650;
8995
8996 case mach_mips5400:
8997 return elfcpp::AFL_EXT_5400;
8998
8999 case mach_mips5500:
9000 return elfcpp::AFL_EXT_5500;
9001
9002 case mach_mips5900:
9003 return elfcpp::AFL_EXT_5900;
9004
9005 case mach_mips10000:
9006 return elfcpp::AFL_EXT_10000;
9007
9008 case mach_mips_loongson_2e:
9009 return elfcpp::AFL_EXT_LOONGSON_2E;
9010
9011 case mach_mips_loongson_2f:
9012 return elfcpp::AFL_EXT_LOONGSON_2F;
9013
9014 case mach_mips_loongson_3a:
9015 return elfcpp::AFL_EXT_LOONGSON_3A;
9016
9017 case mach_mips_sb1:
9018 return elfcpp::AFL_EXT_SB1;
9019
9020 case mach_mips_octeon:
9021 return elfcpp::AFL_EXT_OCTEON;
9022
9023 case mach_mips_octeonp:
9024 return elfcpp::AFL_EXT_OCTEONP;
9025
9026 case mach_mips_octeon3:
9027 return elfcpp::AFL_EXT_OCTEON3;
9028
9029 case mach_mips_octeon2:
9030 return elfcpp::AFL_EXT_OCTEON2;
9031
9032 case mach_mips_xlr:
9033 return elfcpp::AFL_EXT_XLR;
9034
9035 default:
9036 return 0;
9037 }
9038 }
9039
9040 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9041
9042 template<int size, bool big_endian>
9043 void
9044 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
9045 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
9046 {
9047 int new_isa = 0;
9048 switch (e_flags & elfcpp::EF_MIPS_ARCH)
9049 {
9050 case elfcpp::E_MIPS_ARCH_1:
9051 new_isa = this->level_rev(1, 0);
9052 break;
9053 case elfcpp::E_MIPS_ARCH_2:
9054 new_isa = this->level_rev(2, 0);
9055 break;
9056 case elfcpp::E_MIPS_ARCH_3:
9057 new_isa = this->level_rev(3, 0);
9058 break;
9059 case elfcpp::E_MIPS_ARCH_4:
9060 new_isa = this->level_rev(4, 0);
9061 break;
9062 case elfcpp::E_MIPS_ARCH_5:
9063 new_isa = this->level_rev(5, 0);
9064 break;
9065 case elfcpp::E_MIPS_ARCH_32:
9066 new_isa = this->level_rev(32, 1);
9067 break;
9068 case elfcpp::E_MIPS_ARCH_32R2:
9069 new_isa = this->level_rev(32, 2);
9070 break;
9071 case elfcpp::E_MIPS_ARCH_32R6:
9072 new_isa = this->level_rev(32, 6);
9073 break;
9074 case elfcpp::E_MIPS_ARCH_64:
9075 new_isa = this->level_rev(64, 1);
9076 break;
9077 case elfcpp::E_MIPS_ARCH_64R2:
9078 new_isa = this->level_rev(64, 2);
9079 break;
9080 case elfcpp::E_MIPS_ARCH_64R6:
9081 new_isa = this->level_rev(64, 6);
9082 break;
9083 default:
9084 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9085 this->elf_mips_mach_name(e_flags));
9086 }
9087
9088 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9089 {
9090 // Decode a single value into level and revision.
9091 abiflags->isa_level = new_isa >> 3;
9092 abiflags->isa_rev = new_isa & 0x7;
9093 }
9094
9095 // Update the isa_ext if needed.
9096 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9097 this->elf_mips_mach(e_flags)))
9098 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9099 }
9100
9101 // Infer the content of the ABI flags based on the elf header.
9102
9103 template<int size, bool big_endian>
9104 void
9105 Target_mips<size, big_endian>::infer_abiflags(
9106 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9107 {
9108 const Attributes_section_data* pasd = relobj->attributes_section_data();
9109 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9110 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9111
9112 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9113 if (pasd != NULL)
9114 {
9115 // Read fp_abi from the .gnu.attribute section.
9116 const Object_attribute* attr =
9117 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9118 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9119 }
9120
9121 abiflags->fp_abi = attr_fp_abi;
9122 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9123 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9124 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9125 : elfcpp::AFL_REG_64;
9126
9127 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9128 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9129 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9130 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9131 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9132 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9133 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9134 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9135 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9136
9137 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9138 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9139 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9140 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9141 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9142 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9143
9144 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9145 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9146 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9147 && abiflags->isa_level >= 32
9148 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9149 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9150 }
9151
9152 // Create abiflags from elf header or from .MIPS.abiflags section.
9153
9154 template<int size, bool big_endian>
9155 void
9156 Target_mips<size, big_endian>::create_abiflags(
9157 Mips_relobj<size, big_endian>* relobj,
9158 Mips_abiflags<big_endian>* abiflags)
9159 {
9160 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9161 Mips_abiflags<big_endian> header_abiflags;
9162
9163 this->infer_abiflags(relobj, &header_abiflags);
9164
9165 if (sec_abiflags == NULL)
9166 {
9167 // If there is no input .MIPS.abiflags section, use abiflags created
9168 // from elf header.
9169 *abiflags = header_abiflags;
9170 return;
9171 }
9172
9173 this->has_abiflags_section_ = true;
9174
9175 // It is not possible to infer the correct ISA revision for R3 or R5
9176 // so drop down to R2 for the checks.
9177 unsigned char isa_rev = sec_abiflags->isa_rev;
9178 if (isa_rev == 3 || isa_rev == 5)
9179 isa_rev = 2;
9180
9181 // Check compatibility between abiflags created from elf header
9182 // and abiflags from .MIPS.abiflags section in this object file.
9183 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9184 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9185 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9186 relobj->name().c_str());
9187 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9188 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9189 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9190 ".MIPS.abiflags"), relobj->name().c_str());
9191 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9192 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9193 relobj->name().c_str());
9194 // The isa_ext is allowed to be an extension of what can be inferred
9195 // from e_flags.
9196 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9197 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9198 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9199 ".MIPS.abiflags"), relobj->name().c_str());
9200 if (sec_abiflags->flags2 != 0)
9201 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9202 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9203 sec_abiflags->flags2);
9204 // Use abiflags from .MIPS.abiflags section.
9205 *abiflags = *sec_abiflags;
9206 }
9207
9208 // Return the meaning of fp_abi, or "unknown" if not known.
9209
9210 template<int size, bool big_endian>
9211 const char*
9212 Target_mips<size, big_endian>::fp_abi_string(int fp)
9213 {
9214 switch (fp)
9215 {
9216 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9217 return "-mdouble-float";
9218 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9219 return "-msingle-float";
9220 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9221 return "-msoft-float";
9222 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9223 return _("-mips32r2 -mfp64 (12 callee-saved)");
9224 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9225 return "-mfpxx";
9226 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9227 return "-mgp32 -mfp64";
9228 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9229 return "-mgp32 -mfp64 -mno-odd-spreg";
9230 default:
9231 return "unknown";
9232 }
9233 }
9234
9235 // Select fp_abi.
9236
9237 template<int size, bool big_endian>
9238 int
9239 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9240 int out_fp)
9241 {
9242 if (in_fp == out_fp)
9243 return out_fp;
9244
9245 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9246 return in_fp;
9247 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9248 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9249 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9250 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9251 return in_fp;
9252 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9253 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9254 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9255 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9256 return out_fp; // Keep the current setting.
9257 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9258 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9259 return in_fp;
9260 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9261 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9262 return out_fp; // Keep the current setting.
9263 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9264 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9265 fp_abi_string(in_fp), fp_abi_string(out_fp));
9266 return out_fp;
9267 }
9268
9269 // Merge attributes from input object.
9270
9271 template<int size, bool big_endian>
9272 void
9273 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9274 const Attributes_section_data* pasd)
9275 {
9276 // Return if there is no attributes section data.
9277 if (pasd == NULL)
9278 return;
9279
9280 // If output has no object attributes, just copy.
9281 if (this->attributes_section_data_ == NULL)
9282 {
9283 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9284 return;
9285 }
9286
9287 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9288 Object_attribute::OBJ_ATTR_GNU);
9289
9290 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9291 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9292
9293 // Merge Tag_compatibility attributes and any common GNU ones.
9294 this->attributes_section_data_->merge(name.c_str(), pasd);
9295 }
9296
9297 // Merge abiflags from input object.
9298
9299 template<int size, bool big_endian>
9300 void
9301 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9302 Mips_abiflags<big_endian>* in_abiflags)
9303 {
9304 // If output has no abiflags, just copy.
9305 if (this->abiflags_ == NULL)
9306 {
9307 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9308 return;
9309 }
9310
9311 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9312 this->abiflags_->fp_abi);
9313
9314 // Merge abiflags.
9315 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9316 in_abiflags->isa_level);
9317 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9318 in_abiflags->isa_rev);
9319 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9320 in_abiflags->gpr_size);
9321 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9322 in_abiflags->cpr1_size);
9323 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9324 in_abiflags->cpr2_size);
9325 this->abiflags_->ases |= in_abiflags->ases;
9326 this->abiflags_->flags1 |= in_abiflags->flags1;
9327 }
9328
9329 // Check whether machine EXTENSION is an extension of machine BASE.
9330 template<int size, bool big_endian>
9331 bool
9332 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9333 unsigned int extension)
9334 {
9335 if (extension == base)
9336 return true;
9337
9338 if ((base == mach_mipsisa32)
9339 && this->mips_mach_extends(mach_mipsisa64, extension))
9340 return true;
9341
9342 if ((base == mach_mipsisa32r2)
9343 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9344 return true;
9345
9346 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9347 if (extension == this->mips_mach_extensions_[i].first)
9348 {
9349 extension = this->mips_mach_extensions_[i].second;
9350 if (extension == base)
9351 return true;
9352 }
9353
9354 return false;
9355 }
9356
9357 // Merge file header flags from input object.
9358
9359 template<int size, bool big_endian>
9360 void
9361 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9362 elfcpp::Elf_Word in_flags)
9363 {
9364 // If flags are not set yet, just copy them.
9365 if (!this->are_processor_specific_flags_set())
9366 {
9367 this->set_processor_specific_flags(in_flags);
9368 this->mach_ = this->elf_mips_mach(in_flags);
9369 return;
9370 }
9371
9372 elfcpp::Elf_Word new_flags = in_flags;
9373 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9374 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9375 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9376
9377 // Check flag compatibility.
9378 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9379 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9380
9381 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9382 // doesn't seem to matter.
9383 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9384 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9385
9386 // MIPSpro generates ucode info in n64 objects. Again, we should
9387 // just be able to ignore this.
9388 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9389 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9390
9391 if (new_flags == old_flags)
9392 {
9393 this->set_processor_specific_flags(merged_flags);
9394 return;
9395 }
9396
9397 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9398 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9399 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9400 name.c_str());
9401
9402 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9403 merged_flags |= elfcpp::EF_MIPS_CPIC;
9404 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9405 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9406
9407 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9408 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9409
9410 // Compare the ISAs.
9411 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9412 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9413 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9414 {
9415 // Output ISA isn't the same as, or an extension of, input ISA.
9416 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9417 {
9418 // Copy the architecture info from input object to output. Also copy
9419 // the 32-bit flag (if set) so that we continue to recognise
9420 // output as a 32-bit binary.
9421 this->mach_ = this->elf_mips_mach(in_flags);
9422 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9423 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9424 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9425
9426 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9427 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9428
9429 // Copy across the ABI flags if output doesn't use them
9430 // and if that was what caused us to treat input object as 32-bit.
9431 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9432 && this->mips_32bit_flags(new_flags)
9433 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9434 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9435 }
9436 else
9437 // The ISAs aren't compatible.
9438 gold_error(_("%s: linking %s module with previous %s modules"),
9439 name.c_str(), this->elf_mips_mach_name(in_flags),
9440 this->elf_mips_mach_name(merged_flags));
9441 }
9442
9443 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9444 | elfcpp::EF_MIPS_32BITMODE));
9445 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9446 | elfcpp::EF_MIPS_32BITMODE));
9447
9448 // Compare ABIs.
9449 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9450 {
9451 // Only error if both are set (to different values).
9452 if ((new_flags & elfcpp::EF_MIPS_ABI)
9453 && (old_flags & elfcpp::EF_MIPS_ABI))
9454 gold_error(_("%s: ABI mismatch: linking %s module with "
9455 "previous %s modules"), name.c_str(),
9456 this->elf_mips_abi_name(in_flags),
9457 this->elf_mips_abi_name(merged_flags));
9458
9459 new_flags &= ~elfcpp::EF_MIPS_ABI;
9460 old_flags &= ~elfcpp::EF_MIPS_ABI;
9461 }
9462
9463 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9464 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9465 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9466 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9467 {
9468 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9469 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9470 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9471 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9472 int micro_mis = old_m16 && new_micro;
9473 int m16_mis = old_micro && new_m16;
9474
9475 if (m16_mis || micro_mis)
9476 gold_error(_("%s: ASE mismatch: linking %s module with "
9477 "previous %s modules"), name.c_str(),
9478 m16_mis ? "MIPS16" : "microMIPS",
9479 m16_mis ? "microMIPS" : "MIPS16");
9480
9481 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9482
9483 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9484 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9485 }
9486
9487 // Compare NaN encodings.
9488 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9489 {
9490 gold_error(_("%s: linking %s module with previous %s modules"),
9491 name.c_str(),
9492 (new_flags & elfcpp::EF_MIPS_NAN2008
9493 ? "-mnan=2008" : "-mnan=legacy"),
9494 (old_flags & elfcpp::EF_MIPS_NAN2008
9495 ? "-mnan=2008" : "-mnan=legacy"));
9496
9497 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9498 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9499 }
9500
9501 // Compare FP64 state.
9502 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9503 {
9504 gold_error(_("%s: linking %s module with previous %s modules"),
9505 name.c_str(),
9506 (new_flags & elfcpp::EF_MIPS_FP64
9507 ? "-mfp64" : "-mfp32"),
9508 (old_flags & elfcpp::EF_MIPS_FP64
9509 ? "-mfp64" : "-mfp32"));
9510
9511 new_flags &= ~elfcpp::EF_MIPS_FP64;
9512 old_flags &= ~elfcpp::EF_MIPS_FP64;
9513 }
9514
9515 // Warn about any other mismatches.
9516 if (new_flags != old_flags)
9517 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9518 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9519
9520 this->set_processor_specific_flags(merged_flags);
9521 }
9522
9523 // Adjust ELF file header.
9524
9525 template<int size, bool big_endian>
9526 void
9527 Target_mips<size, big_endian>::do_adjust_elf_header(
9528 unsigned char* view,
9529 int len)
9530 {
9531 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9532
9533 elfcpp::Ehdr<size, big_endian> ehdr(view);
9534 unsigned char e_ident[elfcpp::EI_NIDENT];
9535 elfcpp::Elf_Word flags = this->processor_specific_flags();
9536 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9537
9538 unsigned char ei_abiversion = 0;
9539 elfcpp::Elf_Half type = ehdr.get_e_type();
9540 if (type == elfcpp::ET_EXEC
9541 && parameters->options().copyreloc()
9542 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9543 == elfcpp::EF_MIPS_CPIC)
9544 ei_abiversion = 1;
9545
9546 if (this->abiflags_ != NULL
9547 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9548 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9549 ei_abiversion = 3;
9550
9551 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9552 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9553 oehdr.put_e_ident(e_ident);
9554
9555 if (this->entry_symbol_is_compressed_)
9556 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9557 }
9558
9559 // do_make_elf_object to override the same function in the base class.
9560 // We need to use a target-specific sub-class of
9561 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9562 // Hence we need to have our own ELF object creation.
9563
9564 template<int size, bool big_endian>
9565 Object*
9566 Target_mips<size, big_endian>::do_make_elf_object(
9567 const std::string& name,
9568 Input_file* input_file,
9569 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9570 {
9571 int et = ehdr.get_e_type();
9572 // ET_EXEC files are valid input for --just-symbols/-R,
9573 // and we treat them as relocatable objects.
9574 if (et == elfcpp::ET_REL
9575 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9576 {
9577 Mips_relobj<size, big_endian>* obj =
9578 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9579 obj->setup();
9580 return obj;
9581 }
9582 else if (et == elfcpp::ET_DYN)
9583 {
9584 // TODO(sasa): Should we create Mips_dynobj?
9585 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9586 }
9587 else
9588 {
9589 gold_error(_("%s: unsupported ELF file type %d"),
9590 name.c_str(), et);
9591 return NULL;
9592 }
9593 }
9594
9595 // Finalize the sections.
9596
9597 template <int size, bool big_endian>
9598 void
9599 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9600 const Input_objects* input_objects,
9601 Symbol_table* symtab)
9602 {
9603 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9604 // DT_FINI have correct values.
9605 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9606 symtab->lookup(parameters->options().init()));
9607 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9608 init->set_value(init->value() | 1);
9609 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9610 symtab->lookup(parameters->options().fini()));
9611 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9612 fini->set_value(fini->value() | 1);
9613
9614 // Check whether the entry symbol is mips16 or micromips. This is needed to
9615 // adjust entry address in ELF header.
9616 Mips_symbol<size>* entry =
9617 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9618 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9619 || entry->is_micromips()));
9620
9621 if (!parameters->doing_static_link()
9622 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9623 || strcmp(parameters->options().hash_style(), "both") == 0))
9624 {
9625 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9626 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9627 // MIPS ABI requires a mapping between the GOT and the symbol table.
9628 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9629 }
9630
9631 // Check whether the final section that was scanned has HI16 or GOT16
9632 // relocations without the corresponding LO16 part.
9633 if (this->got16_addends_.size() > 0)
9634 gold_error("Can't find matching LO16 reloc");
9635
9636 // Check for any mips16 stub sections that we can discard.
9637 if (!parameters->options().relocatable())
9638 {
9639 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9640 p != input_objects->relobj_end();
9641 ++p)
9642 {
9643 Mips_relobj<size, big_endian>* object =
9644 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9645 object->discard_mips16_stub_sections(symtab);
9646 }
9647 }
9648
9649 Valtype gprmask = 0;
9650 Valtype cprmask1 = 0;
9651 Valtype cprmask2 = 0;
9652 Valtype cprmask3 = 0;
9653 Valtype cprmask4 = 0;
9654 bool has_reginfo_section = false;
9655
9656 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9657 p != input_objects->relobj_end();
9658 ++p)
9659 {
9660 Mips_relobj<size, big_endian>* relobj =
9661 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9662
9663 // Merge .reginfo contents of input objects.
9664 if (relobj->has_reginfo_section())
9665 {
9666 has_reginfo_section = true;
9667 gprmask |= relobj->gprmask();
9668 cprmask1 |= relobj->cprmask1();
9669 cprmask2 |= relobj->cprmask2();
9670 cprmask3 |= relobj->cprmask3();
9671 cprmask4 |= relobj->cprmask4();
9672 }
9673
9674 Input_file::Format format = relobj->input_file()->format();
9675 if (format != Input_file::FORMAT_ELF)
9676 continue;
9677
9678 // If all input sections will be discarded, don't use this object
9679 // file for merging processor specific flags.
9680 bool should_merge_processor_specific_flags = false;
9681
9682 for (unsigned int i = 1; i < relobj->shnum(); ++i)
9683 if (relobj->output_section(i) != NULL)
9684 {
9685 should_merge_processor_specific_flags = true;
9686 break;
9687 }
9688
9689 if (!should_merge_processor_specific_flags)
9690 continue;
9691
9692 // Merge processor specific flags.
9693 Mips_abiflags<big_endian> in_abiflags;
9694
9695 this->create_abiflags(relobj, &in_abiflags);
9696 this->merge_obj_e_flags(relobj->name(),
9697 relobj->processor_specific_flags());
9698 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9699 this->merge_obj_attributes(relobj->name(),
9700 relobj->attributes_section_data());
9701 }
9702
9703 // Create a .gnu.attributes section if we have merged any attributes
9704 // from inputs.
9705 if (this->attributes_section_data_ != NULL)
9706 {
9707 Output_attributes_section_data* attributes_section =
9708 new Output_attributes_section_data(*this->attributes_section_data_);
9709 layout->add_output_section_data(".gnu.attributes",
9710 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9711 attributes_section, ORDER_INVALID, false);
9712 }
9713
9714 // Create .MIPS.abiflags output section if there is an input section.
9715 if (this->has_abiflags_section_)
9716 {
9717 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9718 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9719
9720 Output_section* os =
9721 layout->add_output_section_data(".MIPS.abiflags",
9722 elfcpp::SHT_MIPS_ABIFLAGS,
9723 elfcpp::SHF_ALLOC,
9724 abiflags_section, ORDER_INVALID, false);
9725
9726 if (!parameters->options().relocatable() && os != NULL)
9727 {
9728 Output_segment* abiflags_segment =
9729 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9730 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9731 }
9732 }
9733
9734 if (has_reginfo_section && !parameters->options().gc_sections())
9735 {
9736 // Create .reginfo output section.
9737 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9738 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9739 cprmask1, cprmask2,
9740 cprmask3, cprmask4);
9741
9742 Output_section* os =
9743 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9744 elfcpp::SHF_ALLOC, reginfo_section,
9745 ORDER_INVALID, false);
9746
9747 if (!parameters->options().relocatable() && os != NULL)
9748 {
9749 Output_segment* reginfo_segment =
9750 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9751 elfcpp::PF_R);
9752 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9753 }
9754 }
9755
9756 if (this->plt_ != NULL)
9757 {
9758 // Set final PLT offsets for symbols.
9759 this->plt_section()->set_plt_offsets();
9760
9761 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9762 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9763 // there are no standard PLT entries present.
9764 unsigned char nonvis = 0;
9765 if (this->is_output_micromips()
9766 && !this->plt_section()->has_standard_entries())
9767 nonvis = elfcpp::STO_MICROMIPS >> 2;
9768 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9769 Symbol_table::PREDEFINED,
9770 this->plt_,
9771 0, 0, elfcpp::STT_FUNC,
9772 elfcpp::STB_LOCAL,
9773 elfcpp::STV_DEFAULT, nonvis,
9774 false, false);
9775 }
9776
9777 if (this->mips_stubs_ != NULL)
9778 {
9779 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9780 unsigned char nonvis = 0;
9781 if (this->is_output_micromips())
9782 nonvis = elfcpp::STO_MICROMIPS >> 2;
9783 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9784 Symbol_table::PREDEFINED,
9785 this->mips_stubs_,
9786 0, 0, elfcpp::STT_FUNC,
9787 elfcpp::STB_LOCAL,
9788 elfcpp::STV_DEFAULT, nonvis,
9789 false, false);
9790 }
9791
9792 if (!parameters->options().relocatable() && !parameters->doing_static_link())
9793 // In case there is no .got section, create one.
9794 this->got_section(symtab, layout);
9795
9796 // Emit any relocs we saved in an attempt to avoid generating COPY
9797 // relocs.
9798 if (this->copy_relocs_.any_saved_relocs())
9799 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9800 this);
9801
9802 // Set _gp value.
9803 this->set_gp(layout, symtab);
9804
9805 // Emit dynamic relocs.
9806 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9807 p != this->dyn_relocs_.end();
9808 ++p)
9809 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9810
9811 if (this->has_got_section())
9812 this->got_section()->lay_out_got(layout, symtab, input_objects);
9813
9814 if (this->mips_stubs_ != NULL)
9815 this->mips_stubs_->set_needs_dynsym_value();
9816
9817 // Check for functions that might need $25 to be valid on entry.
9818 // TODO(sasa): Can we do this without iterating over all symbols?
9819 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9820 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9821 symtab));
9822
9823 // Add NULL segment.
9824 if (!parameters->options().relocatable())
9825 layout->make_output_segment(elfcpp::PT_NULL, 0);
9826
9827 // Fill in some more dynamic tags.
9828 // TODO(sasa): Add more dynamic tags.
9829 const Reloc_section* rel_plt = (this->plt_ == NULL
9830 ? NULL : this->plt_->rel_plt());
9831 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9832 this->rel_dyn_, true, false);
9833
9834 Output_data_dynamic* const odyn = layout->dynamic_data();
9835 if (odyn != NULL
9836 && !parameters->options().relocatable()
9837 && !parameters->doing_static_link())
9838 {
9839 unsigned int d_val;
9840 // This element holds a 32-bit version id for the Runtime
9841 // Linker Interface. This will start at integer value 1.
9842 d_val = 0x01;
9843 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9844
9845 // Dynamic flags
9846 d_val = elfcpp::RHF_NOTPOT;
9847 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9848
9849 // Save layout for using when emitting custom dynamic tags.
9850 this->layout_ = layout;
9851
9852 // This member holds the base address of the segment.
9853 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9854
9855 // This member holds the number of entries in the .dynsym section.
9856 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9857
9858 // This member holds the index of the first dynamic symbol
9859 // table entry that corresponds to an entry in the global offset table.
9860 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9861
9862 // This member holds the number of local GOT entries.
9863 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9864 this->got_->get_local_gotno());
9865
9866 if (this->plt_ != NULL)
9867 // DT_MIPS_PLTGOT dynamic tag
9868 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9869
9870 if (!parameters->options().shared())
9871 {
9872 this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9873
9874 layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9875 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9876 this->rld_map_, ORDER_INVALID, false);
9877
9878 // __RLD_MAP will be filled in by the runtime loader to contain
9879 // a pointer to the _r_debug structure.
9880 Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9881 Symbol_table::PREDEFINED,
9882 this->rld_map_,
9883 0, 0, elfcpp::STT_OBJECT,
9884 elfcpp::STB_GLOBAL,
9885 elfcpp::STV_DEFAULT, 0,
9886 false, false);
9887
9888 if (!rld_map->is_forced_local())
9889 rld_map->set_needs_dynsym_entry();
9890
9891 if (!parameters->options().pie())
9892 // This member holds the absolute address of the debug pointer.
9893 odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9894 else
9895 // This member holds the offset to the debug pointer,
9896 // relative to the address of the tag.
9897 odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9898 }
9899 }
9900 }
9901
9902 // Get the custom dynamic tag value.
9903 template<int size, bool big_endian>
9904 unsigned int
9905 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9906 {
9907 switch (tag)
9908 {
9909 case elfcpp::DT_MIPS_BASE_ADDRESS:
9910 {
9911 // The base address of the segment.
9912 // At this point, the segment list has been sorted into final order,
9913 // so just return vaddr of the first readable PT_LOAD segment.
9914 Output_segment* seg =
9915 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9916 gold_assert(seg != NULL);
9917 return seg->vaddr();
9918 }
9919
9920 case elfcpp::DT_MIPS_SYMTABNO:
9921 // The number of entries in the .dynsym section.
9922 return this->get_dt_mips_symtabno();
9923
9924 case elfcpp::DT_MIPS_GOTSYM:
9925 {
9926 // The index of the first dynamic symbol table entry that corresponds
9927 // to an entry in the GOT.
9928 if (this->got_->first_global_got_dynsym_index() != -1U)
9929 return this->got_->first_global_got_dynsym_index();
9930 else
9931 // In case if we don't have global GOT symbols we default to setting
9932 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9933 return this->get_dt_mips_symtabno();
9934 }
9935
9936 case elfcpp::DT_MIPS_RLD_MAP_REL:
9937 {
9938 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9939 // relative to the address of the tag.
9940 Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9941 unsigned int entry_offset =
9942 odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9943 gold_assert(entry_offset != -1U);
9944 return this->rld_map_->address() - (odyn->address() + entry_offset);
9945 }
9946 default:
9947 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9948 }
9949
9950 return (unsigned int)-1;
9951 }
9952
9953 // Relocate section data.
9954
9955 template<int size, bool big_endian>
9956 void
9957 Target_mips<size, big_endian>::relocate_section(
9958 const Relocate_info<size, big_endian>* relinfo,
9959 unsigned int sh_type,
9960 const unsigned char* prelocs,
9961 size_t reloc_count,
9962 Output_section* output_section,
9963 bool needs_special_offset_handling,
9964 unsigned char* view,
9965 Mips_address address,
9966 section_size_type view_size,
9967 const Reloc_symbol_changes* reloc_symbol_changes)
9968 {
9969 typedef Target_mips<size, big_endian> Mips;
9970 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9971
9972 if (sh_type == elfcpp::SHT_REL)
9973 {
9974 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9975 Classify_reloc;
9976
9977 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9978 gold::Default_comdat_behavior, Classify_reloc>(
9979 relinfo,
9980 this,
9981 prelocs,
9982 reloc_count,
9983 output_section,
9984 needs_special_offset_handling,
9985 view,
9986 address,
9987 view_size,
9988 reloc_symbol_changes);
9989 }
9990 else if (sh_type == elfcpp::SHT_RELA)
9991 {
9992 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9993 Classify_reloc;
9994
9995 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9996 gold::Default_comdat_behavior, Classify_reloc>(
9997 relinfo,
9998 this,
9999 prelocs,
10000 reloc_count,
10001 output_section,
10002 needs_special_offset_handling,
10003 view,
10004 address,
10005 view_size,
10006 reloc_symbol_changes);
10007 }
10008 }
10009
10010 // Return the size of a relocation while scanning during a relocatable
10011 // link.
10012
10013 unsigned int
10014 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
10015 {
10016 switch (r_type)
10017 {
10018 case elfcpp::R_MIPS_NONE:
10019 case elfcpp::R_MIPS_TLS_DTPMOD64:
10020 case elfcpp::R_MIPS_TLS_DTPREL64:
10021 case elfcpp::R_MIPS_TLS_TPREL64:
10022 return 0;
10023
10024 case elfcpp::R_MIPS_32:
10025 case elfcpp::R_MIPS_TLS_DTPMOD32:
10026 case elfcpp::R_MIPS_TLS_DTPREL32:
10027 case elfcpp::R_MIPS_TLS_TPREL32:
10028 case elfcpp::R_MIPS_REL32:
10029 case elfcpp::R_MIPS_PC32:
10030 case elfcpp::R_MIPS_GPREL32:
10031 case elfcpp::R_MIPS_JALR:
10032 case elfcpp::R_MIPS_EH:
10033 return 4;
10034
10035 case elfcpp::R_MIPS_16:
10036 case elfcpp::R_MIPS_HI16:
10037 case elfcpp::R_MIPS_LO16:
10038 case elfcpp::R_MIPS_HIGHER:
10039 case elfcpp::R_MIPS_HIGHEST:
10040 case elfcpp::R_MIPS_GPREL16:
10041 case elfcpp::R_MIPS16_HI16:
10042 case elfcpp::R_MIPS16_LO16:
10043 case elfcpp::R_MIPS_PC16:
10044 case elfcpp::R_MIPS_PCHI16:
10045 case elfcpp::R_MIPS_PCLO16:
10046 case elfcpp::R_MIPS_GOT16:
10047 case elfcpp::R_MIPS16_GOT16:
10048 case elfcpp::R_MIPS_CALL16:
10049 case elfcpp::R_MIPS16_CALL16:
10050 case elfcpp::R_MIPS_GOT_HI16:
10051 case elfcpp::R_MIPS_CALL_HI16:
10052 case elfcpp::R_MIPS_GOT_LO16:
10053 case elfcpp::R_MIPS_CALL_LO16:
10054 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10055 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10056 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10057 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10058 case elfcpp::R_MIPS16_GPREL:
10059 case elfcpp::R_MIPS_GOT_DISP:
10060 case elfcpp::R_MIPS_LITERAL:
10061 case elfcpp::R_MIPS_GOT_PAGE:
10062 case elfcpp::R_MIPS_GOT_OFST:
10063 case elfcpp::R_MIPS_TLS_GD:
10064 case elfcpp::R_MIPS_TLS_LDM:
10065 case elfcpp::R_MIPS_TLS_GOTTPREL:
10066 return 2;
10067
10068 // These relocations are not byte sized
10069 case elfcpp::R_MIPS_26:
10070 case elfcpp::R_MIPS16_26:
10071 case elfcpp::R_MIPS_PC21_S2:
10072 case elfcpp::R_MIPS_PC26_S2:
10073 case elfcpp::R_MIPS_PC18_S3:
10074 case elfcpp::R_MIPS_PC19_S2:
10075 return 4;
10076
10077 case elfcpp::R_MIPS_COPY:
10078 case elfcpp::R_MIPS_JUMP_SLOT:
10079 object->error(_("unexpected reloc %u in object file"), r_type);
10080 return 0;
10081
10082 default:
10083 object->error(_("unsupported reloc %u in object file"), r_type);
10084 return 0;
10085 }
10086 }
10087
10088 // Scan the relocs during a relocatable link.
10089
10090 template<int size, bool big_endian>
10091 void
10092 Target_mips<size, big_endian>::scan_relocatable_relocs(
10093 Symbol_table* symtab,
10094 Layout* layout,
10095 Sized_relobj_file<size, big_endian>* object,
10096 unsigned int data_shndx,
10097 unsigned int sh_type,
10098 const unsigned char* prelocs,
10099 size_t reloc_count,
10100 Output_section* output_section,
10101 bool needs_special_offset_handling,
10102 size_t local_symbol_count,
10103 const unsigned char* plocal_symbols,
10104 Relocatable_relocs* rr)
10105 {
10106 if (sh_type == elfcpp::SHT_REL)
10107 {
10108 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10109 Classify_reloc;
10110 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10111 Scan_relocatable_relocs;
10112
10113 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10114 symtab,
10115 layout,
10116 object,
10117 data_shndx,
10118 prelocs,
10119 reloc_count,
10120 output_section,
10121 needs_special_offset_handling,
10122 local_symbol_count,
10123 plocal_symbols,
10124 rr);
10125 }
10126 else if (sh_type == elfcpp::SHT_RELA)
10127 {
10128 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10129 Classify_reloc;
10130 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10131 Scan_relocatable_relocs;
10132
10133 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10134 symtab,
10135 layout,
10136 object,
10137 data_shndx,
10138 prelocs,
10139 reloc_count,
10140 output_section,
10141 needs_special_offset_handling,
10142 local_symbol_count,
10143 plocal_symbols,
10144 rr);
10145 }
10146 else
10147 gold_unreachable();
10148 }
10149
10150 // Scan the relocs for --emit-relocs.
10151
10152 template<int size, bool big_endian>
10153 void
10154 Target_mips<size, big_endian>::emit_relocs_scan(
10155 Symbol_table* symtab,
10156 Layout* layout,
10157 Sized_relobj_file<size, big_endian>* object,
10158 unsigned int data_shndx,
10159 unsigned int sh_type,
10160 const unsigned char* prelocs,
10161 size_t reloc_count,
10162 Output_section* output_section,
10163 bool needs_special_offset_handling,
10164 size_t local_symbol_count,
10165 const unsigned char* plocal_syms,
10166 Relocatable_relocs* rr)
10167 {
10168 if (sh_type == elfcpp::SHT_REL)
10169 {
10170 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10171 Classify_reloc;
10172 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10173 Emit_relocs_strategy;
10174
10175 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10176 symtab,
10177 layout,
10178 object,
10179 data_shndx,
10180 prelocs,
10181 reloc_count,
10182 output_section,
10183 needs_special_offset_handling,
10184 local_symbol_count,
10185 plocal_syms,
10186 rr);
10187 }
10188 else if (sh_type == elfcpp::SHT_RELA)
10189 {
10190 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10191 Classify_reloc;
10192 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10193 Emit_relocs_strategy;
10194
10195 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10196 symtab,
10197 layout,
10198 object,
10199 data_shndx,
10200 prelocs,
10201 reloc_count,
10202 output_section,
10203 needs_special_offset_handling,
10204 local_symbol_count,
10205 plocal_syms,
10206 rr);
10207 }
10208 else
10209 gold_unreachable();
10210 }
10211
10212 // Emit relocations for a section.
10213
10214 template<int size, bool big_endian>
10215 void
10216 Target_mips<size, big_endian>::relocate_relocs(
10217 const Relocate_info<size, big_endian>* relinfo,
10218 unsigned int sh_type,
10219 const unsigned char* prelocs,
10220 size_t reloc_count,
10221 Output_section* output_section,
10222 typename elfcpp::Elf_types<size>::Elf_Off
10223 offset_in_output_section,
10224 unsigned char* view,
10225 Mips_address view_address,
10226 section_size_type view_size,
10227 unsigned char* reloc_view,
10228 section_size_type reloc_view_size)
10229 {
10230 if (sh_type == elfcpp::SHT_REL)
10231 {
10232 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10233 Classify_reloc;
10234
10235 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10236 relinfo,
10237 prelocs,
10238 reloc_count,
10239 output_section,
10240 offset_in_output_section,
10241 view,
10242 view_address,
10243 view_size,
10244 reloc_view,
10245 reloc_view_size);
10246 }
10247 else if (sh_type == elfcpp::SHT_RELA)
10248 {
10249 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10250 Classify_reloc;
10251
10252 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10253 relinfo,
10254 prelocs,
10255 reloc_count,
10256 output_section,
10257 offset_in_output_section,
10258 view,
10259 view_address,
10260 view_size,
10261 reloc_view,
10262 reloc_view_size);
10263 }
10264 else
10265 gold_unreachable();
10266 }
10267
10268 // Perform target-specific processing in a relocatable link. This is
10269 // only used if we use the relocation strategy RELOC_SPECIAL.
10270
10271 template<int size, bool big_endian>
10272 void
10273 Target_mips<size, big_endian>::relocate_special_relocatable(
10274 const Relocate_info<size, big_endian>* relinfo,
10275 unsigned int sh_type,
10276 const unsigned char* preloc_in,
10277 size_t relnum,
10278 Output_section* output_section,
10279 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10280 unsigned char* view,
10281 Mips_address view_address,
10282 section_size_type,
10283 unsigned char* preloc_out)
10284 {
10285 // We can only handle REL type relocation sections.
10286 gold_assert(sh_type == elfcpp::SHT_REL);
10287
10288 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10289 Reltype;
10290 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10291 Reltype_write;
10292
10293 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10294
10295 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10296
10297 Mips_relobj<size, big_endian>* object =
10298 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10299 const unsigned int local_count = object->local_symbol_count();
10300
10301 Reltype reloc(preloc_in);
10302 Reltype_write reloc_write(preloc_out);
10303
10304 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10305 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10306 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10307
10308 // Get the new symbol index.
10309 // We only use RELOC_SPECIAL strategy in local relocations.
10310 gold_assert(r_sym < local_count);
10311
10312 // We are adjusting a section symbol. We need to find
10313 // the symbol table index of the section symbol for
10314 // the output section corresponding to input section
10315 // in which this symbol is defined.
10316 bool is_ordinary;
10317 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10318 gold_assert(is_ordinary);
10319 Output_section* os = object->output_section(shndx);
10320 gold_assert(os != NULL);
10321 gold_assert(os->needs_symtab_index());
10322 unsigned int new_symndx = os->symtab_index();
10323
10324 // Get the new offset--the location in the output section where
10325 // this relocation should be applied.
10326
10327 Mips_address offset = reloc.get_r_offset();
10328 Mips_address new_offset;
10329 if (offset_in_output_section != invalid_address)
10330 new_offset = offset + offset_in_output_section;
10331 else
10332 {
10333 section_offset_type sot_offset =
10334 convert_types<section_offset_type, Mips_address>(offset);
10335 section_offset_type new_sot_offset =
10336 output_section->output_offset(object, relinfo->data_shndx,
10337 sot_offset);
10338 gold_assert(new_sot_offset != -1);
10339 new_offset = new_sot_offset;
10340 }
10341
10342 // In an object file, r_offset is an offset within the section.
10343 // In an executable or dynamic object, generated by
10344 // --emit-relocs, r_offset is an absolute address.
10345 if (!parameters->options().relocatable())
10346 {
10347 new_offset += view_address;
10348 if (offset_in_output_section != invalid_address)
10349 new_offset -= offset_in_output_section;
10350 }
10351
10352 reloc_write.put_r_offset(new_offset);
10353 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10354
10355 // Handle the reloc addend.
10356 // The relocation uses a section symbol in the input file.
10357 // We are adjusting it to use a section symbol in the output
10358 // file. The input section symbol refers to some address in
10359 // the input section. We need the relocation in the output
10360 // file to refer to that same address. This adjustment to
10361 // the addend is the same calculation we use for a simple
10362 // absolute relocation for the input section symbol.
10363 Valtype calculated_value = 0;
10364 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10365
10366 unsigned char* paddend = view + offset;
10367 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10368 switch (r_type)
10369 {
10370 case elfcpp::R_MIPS_26:
10371 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10372 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10373 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10374 false, &calculated_value);
10375 break;
10376
10377 default:
10378 gold_unreachable();
10379 }
10380
10381 // Report any errors.
10382 switch (reloc_status)
10383 {
10384 case Reloc_funcs::STATUS_OKAY:
10385 break;
10386 case Reloc_funcs::STATUS_OVERFLOW:
10387 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10388 _("relocation overflow: "
10389 "%u against local symbol %u in %s"),
10390 r_type, r_sym, object->name().c_str());
10391 break;
10392 case Reloc_funcs::STATUS_BAD_RELOC:
10393 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10394 _("unexpected opcode while processing relocation"));
10395 break;
10396 default:
10397 gold_unreachable();
10398 }
10399 }
10400
10401 // Optimize the TLS relocation type based on what we know about the
10402 // symbol. IS_FINAL is true if the final address of this symbol is
10403 // known at link time.
10404
10405 template<int size, bool big_endian>
10406 tls::Tls_optimization
10407 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10408 {
10409 // FIXME: Currently we do not do any TLS optimization.
10410 return tls::TLSOPT_NONE;
10411 }
10412
10413 // Scan a relocation for a local symbol.
10414
10415 template<int size, bool big_endian>
10416 inline void
10417 Target_mips<size, big_endian>::Scan::local(
10418 Symbol_table* symtab,
10419 Layout* layout,
10420 Target_mips<size, big_endian>* target,
10421 Sized_relobj_file<size, big_endian>* object,
10422 unsigned int data_shndx,
10423 Output_section* output_section,
10424 const Relatype* rela,
10425 const Reltype* rel,
10426 unsigned int rel_type,
10427 unsigned int r_type,
10428 const elfcpp::Sym<size, big_endian>& lsym,
10429 bool is_discarded)
10430 {
10431 if (is_discarded)
10432 return;
10433
10434 Mips_address r_offset;
10435 unsigned int r_sym;
10436 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10437
10438 if (rel_type == elfcpp::SHT_RELA)
10439 {
10440 r_offset = rela->get_r_offset();
10441 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10442 get_r_sym(rela);
10443 r_addend = rela->get_r_addend();
10444 }
10445 else
10446 {
10447 r_offset = rel->get_r_offset();
10448 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10449 get_r_sym(rel);
10450 r_addend = 0;
10451 }
10452
10453 Mips_relobj<size, big_endian>* mips_obj =
10454 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10455
10456 if (mips_obj->is_mips16_stub_section(data_shndx))
10457 {
10458 mips_obj->get_mips16_stub_section(data_shndx)
10459 ->new_local_reloc_found(r_type, r_sym);
10460 }
10461
10462 if (r_type == elfcpp::R_MIPS_NONE)
10463 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10464 // mips16 stub.
10465 return;
10466
10467 if (!mips16_call_reloc(r_type)
10468 && !mips_obj->section_allows_mips16_refs(data_shndx))
10469 // This reloc would need to refer to a MIPS16 hard-float stub, if
10470 // there is one. We ignore MIPS16 stub sections and .pdr section when
10471 // looking for relocs that would need to refer to MIPS16 stubs.
10472 mips_obj->add_local_non_16bit_call(r_sym);
10473
10474 if (r_type == elfcpp::R_MIPS16_26
10475 && !mips_obj->section_allows_mips16_refs(data_shndx))
10476 mips_obj->add_local_16bit_call(r_sym);
10477
10478 switch (r_type)
10479 {
10480 case elfcpp::R_MIPS_GOT16:
10481 case elfcpp::R_MIPS_CALL16:
10482 case elfcpp::R_MIPS_CALL_HI16:
10483 case elfcpp::R_MIPS_CALL_LO16:
10484 case elfcpp::R_MIPS_GOT_HI16:
10485 case elfcpp::R_MIPS_GOT_LO16:
10486 case elfcpp::R_MIPS_GOT_PAGE:
10487 case elfcpp::R_MIPS_GOT_OFST:
10488 case elfcpp::R_MIPS_GOT_DISP:
10489 case elfcpp::R_MIPS_TLS_GOTTPREL:
10490 case elfcpp::R_MIPS_TLS_GD:
10491 case elfcpp::R_MIPS_TLS_LDM:
10492 case elfcpp::R_MIPS16_GOT16:
10493 case elfcpp::R_MIPS16_CALL16:
10494 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10495 case elfcpp::R_MIPS16_TLS_GD:
10496 case elfcpp::R_MIPS16_TLS_LDM:
10497 case elfcpp::R_MICROMIPS_GOT16:
10498 case elfcpp::R_MICROMIPS_CALL16:
10499 case elfcpp::R_MICROMIPS_CALL_HI16:
10500 case elfcpp::R_MICROMIPS_CALL_LO16:
10501 case elfcpp::R_MICROMIPS_GOT_HI16:
10502 case elfcpp::R_MICROMIPS_GOT_LO16:
10503 case elfcpp::R_MICROMIPS_GOT_PAGE:
10504 case elfcpp::R_MICROMIPS_GOT_OFST:
10505 case elfcpp::R_MICROMIPS_GOT_DISP:
10506 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10507 case elfcpp::R_MICROMIPS_TLS_GD:
10508 case elfcpp::R_MICROMIPS_TLS_LDM:
10509 case elfcpp::R_MIPS_EH:
10510 // We need a GOT section.
10511 target->got_section(symtab, layout);
10512 break;
10513
10514 default:
10515 break;
10516 }
10517
10518 if (call_lo16_reloc(r_type)
10519 || got_lo16_reloc(r_type)
10520 || got_disp_reloc(r_type)
10521 || eh_reloc(r_type))
10522 {
10523 // We may need a local GOT entry for this relocation. We
10524 // don't count R_MIPS_GOT_PAGE because we can estimate the
10525 // maximum number of pages needed by looking at the size of
10526 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10527 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10528 // R_MIPS_CALL_HI16 because these are always followed by an
10529 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10530 Mips_output_data_got<size, big_endian>* got =
10531 target->got_section(symtab, layout);
10532 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10533 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10534 is_section_symbol);
10535 }
10536
10537 switch (r_type)
10538 {
10539 case elfcpp::R_MIPS_CALL16:
10540 case elfcpp::R_MIPS16_CALL16:
10541 case elfcpp::R_MICROMIPS_CALL16:
10542 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10543 (unsigned long)r_offset);
10544 return;
10545
10546 case elfcpp::R_MIPS_GOT_PAGE:
10547 case elfcpp::R_MICROMIPS_GOT_PAGE:
10548 case elfcpp::R_MIPS16_GOT16:
10549 case elfcpp::R_MIPS_GOT16:
10550 case elfcpp::R_MIPS_GOT_HI16:
10551 case elfcpp::R_MIPS_GOT_LO16:
10552 case elfcpp::R_MICROMIPS_GOT16:
10553 case elfcpp::R_MICROMIPS_GOT_HI16:
10554 case elfcpp::R_MICROMIPS_GOT_LO16:
10555 {
10556 // This relocation needs a page entry in the GOT.
10557 // Get the section contents.
10558 section_size_type view_size = 0;
10559 const unsigned char* view = object->section_contents(data_shndx,
10560 &view_size, false);
10561 view += r_offset;
10562
10563 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10564 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10565 : r_addend);
10566
10567 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10568 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10569 object, data_shndx, r_type, r_sym, addend));
10570 else
10571 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10572 break;
10573 }
10574
10575 case elfcpp::R_MIPS_HI16:
10576 case elfcpp::R_MIPS_PCHI16:
10577 case elfcpp::R_MIPS16_HI16:
10578 case elfcpp::R_MICROMIPS_HI16:
10579 // Record the reloc so that we can check whether the corresponding LO16
10580 // part exists.
10581 if (rel_type == elfcpp::SHT_REL)
10582 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10583 object, data_shndx, r_type, r_sym, 0));
10584 break;
10585
10586 case elfcpp::R_MIPS_LO16:
10587 case elfcpp::R_MIPS_PCLO16:
10588 case elfcpp::R_MIPS16_LO16:
10589 case elfcpp::R_MICROMIPS_LO16:
10590 {
10591 if (rel_type != elfcpp::SHT_REL)
10592 break;
10593
10594 // Find corresponding GOT16/HI16 relocation.
10595
10596 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10597 // be immediately following. However, for the IRIX6 ABI, the next
10598 // relocation may be a composed relocation consisting of several
10599 // relocations for the same address. In that case, the R_MIPS_LO16
10600 // relocation may occur as one of these. We permit a similar
10601 // extension in general, as that is useful for GCC.
10602
10603 // In some cases GCC dead code elimination removes the LO16 but
10604 // keeps the corresponding HI16. This is strictly speaking a
10605 // violation of the ABI but not immediately harmful.
10606
10607 typename std::list<got16_addend<size, big_endian> >::iterator it =
10608 target->got16_addends_.begin();
10609 while (it != target->got16_addends_.end())
10610 {
10611 got16_addend<size, big_endian> _got16_addend = *it;
10612
10613 // TODO(sasa): Split got16_addends_ list into two lists - one for
10614 // GOT16 relocs and the other for HI16 relocs.
10615
10616 // Report an error if we find HI16 or GOT16 reloc from the
10617 // previous section without the matching LO16 part.
10618 if (_got16_addend.object != object
10619 || _got16_addend.shndx != data_shndx)
10620 {
10621 gold_error("Can't find matching LO16 reloc");
10622 break;
10623 }
10624
10625 if (_got16_addend.r_sym != r_sym
10626 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10627 {
10628 ++it;
10629 continue;
10630 }
10631
10632 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10633 // For GOT16, we need to calculate combined addend and record GOT page
10634 // entry.
10635 if (got16_reloc(_got16_addend.r_type))
10636 {
10637
10638 section_size_type view_size = 0;
10639 const unsigned char* view = object->section_contents(data_shndx,
10640 &view_size,
10641 false);
10642 view += r_offset;
10643
10644 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10645 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10646
10647 addend = (_got16_addend.addend << 16) + addend;
10648 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10649 addend);
10650 }
10651
10652 it = target->got16_addends_.erase(it);
10653 }
10654 break;
10655 }
10656 }
10657
10658 switch (r_type)
10659 {
10660 case elfcpp::R_MIPS_32:
10661 case elfcpp::R_MIPS_REL32:
10662 case elfcpp::R_MIPS_64:
10663 {
10664 if (parameters->options().output_is_position_independent())
10665 {
10666 // If building a shared library (or a position-independent
10667 // executable), we need to create a dynamic relocation for
10668 // this location.
10669 if (is_readonly_section(output_section))
10670 break;
10671 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10672 rel_dyn->add_symbolless_local_addend(object, r_sym,
10673 elfcpp::R_MIPS_REL32,
10674 output_section, data_shndx,
10675 r_offset);
10676 }
10677 break;
10678 }
10679
10680 case elfcpp::R_MIPS_TLS_GOTTPREL:
10681 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10682 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10683 case elfcpp::R_MIPS_TLS_LDM:
10684 case elfcpp::R_MIPS16_TLS_LDM:
10685 case elfcpp::R_MICROMIPS_TLS_LDM:
10686 case elfcpp::R_MIPS_TLS_GD:
10687 case elfcpp::R_MIPS16_TLS_GD:
10688 case elfcpp::R_MICROMIPS_TLS_GD:
10689 {
10690 bool output_is_shared = parameters->options().shared();
10691 const tls::Tls_optimization optimized_type
10692 = Target_mips<size, big_endian>::optimize_tls_reloc(
10693 !output_is_shared, r_type);
10694 switch (r_type)
10695 {
10696 case elfcpp::R_MIPS_TLS_GD:
10697 case elfcpp::R_MIPS16_TLS_GD:
10698 case elfcpp::R_MICROMIPS_TLS_GD:
10699 if (optimized_type == tls::TLSOPT_NONE)
10700 {
10701 // Create a pair of GOT entries for the module index and
10702 // dtv-relative offset.
10703 Mips_output_data_got<size, big_endian>* got =
10704 target->got_section(symtab, layout);
10705 unsigned int shndx = lsym.get_st_shndx();
10706 bool is_ordinary;
10707 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10708 if (!is_ordinary)
10709 {
10710 object->error(_("local symbol %u has bad shndx %u"),
10711 r_sym, shndx);
10712 break;
10713 }
10714 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10715 shndx, false);
10716 }
10717 else
10718 {
10719 // FIXME: TLS optimization not supported yet.
10720 gold_unreachable();
10721 }
10722 break;
10723
10724 case elfcpp::R_MIPS_TLS_LDM:
10725 case elfcpp::R_MIPS16_TLS_LDM:
10726 case elfcpp::R_MICROMIPS_TLS_LDM:
10727 if (optimized_type == tls::TLSOPT_NONE)
10728 {
10729 // We always record LDM symbols as local with index 0.
10730 target->got_section()->record_local_got_symbol(mips_obj, 0,
10731 r_addend, r_type,
10732 -1U, false);
10733 }
10734 else
10735 {
10736 // FIXME: TLS optimization not supported yet.
10737 gold_unreachable();
10738 }
10739 break;
10740 case elfcpp::R_MIPS_TLS_GOTTPREL:
10741 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10742 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10743 layout->set_has_static_tls();
10744 if (optimized_type == tls::TLSOPT_NONE)
10745 {
10746 // Create a GOT entry for the tp-relative offset.
10747 Mips_output_data_got<size, big_endian>* got =
10748 target->got_section(symtab, layout);
10749 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10750 -1U, false);
10751 }
10752 else
10753 {
10754 // FIXME: TLS optimization not supported yet.
10755 gold_unreachable();
10756 }
10757 break;
10758
10759 default:
10760 gold_unreachable();
10761 }
10762 }
10763 break;
10764
10765 default:
10766 break;
10767 }
10768
10769 // Refuse some position-dependent relocations when creating a
10770 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10771 // not PIC, but we can create dynamic relocations and the result
10772 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10773 // combined with R_MIPS_GOT16.
10774 if (parameters->options().shared())
10775 {
10776 switch (r_type)
10777 {
10778 case elfcpp::R_MIPS16_HI16:
10779 case elfcpp::R_MIPS_HI16:
10780 case elfcpp::R_MIPS_HIGHER:
10781 case elfcpp::R_MIPS_HIGHEST:
10782 case elfcpp::R_MICROMIPS_HI16:
10783 case elfcpp::R_MICROMIPS_HIGHER:
10784 case elfcpp::R_MICROMIPS_HIGHEST:
10785 // Don't refuse a high part relocation if it's against
10786 // no symbol (e.g. part of a compound relocation).
10787 if (r_sym == 0)
10788 break;
10789 // Fall through.
10790
10791 case elfcpp::R_MIPS16_26:
10792 case elfcpp::R_MIPS_26:
10793 case elfcpp::R_MICROMIPS_26_S1:
10794 gold_error(_("%s: relocation %u against `%s' can not be used when "
10795 "making a shared object; recompile with -fPIC"),
10796 object->name().c_str(), r_type, "a local symbol");
10797 default:
10798 break;
10799 }
10800 }
10801 }
10802
10803 template<int size, bool big_endian>
10804 inline void
10805 Target_mips<size, big_endian>::Scan::local(
10806 Symbol_table* symtab,
10807 Layout* layout,
10808 Target_mips<size, big_endian>* target,
10809 Sized_relobj_file<size, big_endian>* object,
10810 unsigned int data_shndx,
10811 Output_section* output_section,
10812 const Reltype& reloc,
10813 unsigned int r_type,
10814 const elfcpp::Sym<size, big_endian>& lsym,
10815 bool is_discarded)
10816 {
10817 if (is_discarded)
10818 return;
10819
10820 local(
10821 symtab,
10822 layout,
10823 target,
10824 object,
10825 data_shndx,
10826 output_section,
10827 (const Relatype*) NULL,
10828 &reloc,
10829 elfcpp::SHT_REL,
10830 r_type,
10831 lsym, is_discarded);
10832 }
10833
10834
10835 template<int size, bool big_endian>
10836 inline void
10837 Target_mips<size, big_endian>::Scan::local(
10838 Symbol_table* symtab,
10839 Layout* layout,
10840 Target_mips<size, big_endian>* target,
10841 Sized_relobj_file<size, big_endian>* object,
10842 unsigned int data_shndx,
10843 Output_section* output_section,
10844 const Relatype& reloc,
10845 unsigned int r_type,
10846 const elfcpp::Sym<size, big_endian>& lsym,
10847 bool is_discarded)
10848 {
10849 if (is_discarded)
10850 return;
10851
10852 local(
10853 symtab,
10854 layout,
10855 target,
10856 object,
10857 data_shndx,
10858 output_section,
10859 &reloc,
10860 (const Reltype*) NULL,
10861 elfcpp::SHT_RELA,
10862 r_type,
10863 lsym, is_discarded);
10864 }
10865
10866 // Scan a relocation for a global symbol.
10867
10868 template<int size, bool big_endian>
10869 inline void
10870 Target_mips<size, big_endian>::Scan::global(
10871 Symbol_table* symtab,
10872 Layout* layout,
10873 Target_mips<size, big_endian>* target,
10874 Sized_relobj_file<size, big_endian>* object,
10875 unsigned int data_shndx,
10876 Output_section* output_section,
10877 const Relatype* rela,
10878 const Reltype* rel,
10879 unsigned int rel_type,
10880 unsigned int r_type,
10881 Symbol* gsym)
10882 {
10883 Mips_address r_offset;
10884 unsigned int r_sym;
10885 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10886
10887 if (rel_type == elfcpp::SHT_RELA)
10888 {
10889 r_offset = rela->get_r_offset();
10890 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10891 get_r_sym(rela);
10892 r_addend = rela->get_r_addend();
10893 }
10894 else
10895 {
10896 r_offset = rel->get_r_offset();
10897 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10898 get_r_sym(rel);
10899 r_addend = 0;
10900 }
10901
10902 Mips_relobj<size, big_endian>* mips_obj =
10903 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10904 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10905
10906 if (mips_obj->is_mips16_stub_section(data_shndx))
10907 {
10908 mips_obj->get_mips16_stub_section(data_shndx)
10909 ->new_global_reloc_found(r_type, mips_sym);
10910 }
10911
10912 if (r_type == elfcpp::R_MIPS_NONE)
10913 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10914 // mips16 stub.
10915 return;
10916
10917 if (!mips16_call_reloc(r_type)
10918 && !mips_obj->section_allows_mips16_refs(data_shndx))
10919 // This reloc would need to refer to a MIPS16 hard-float stub, if
10920 // there is one. We ignore MIPS16 stub sections and .pdr section when
10921 // looking for relocs that would need to refer to MIPS16 stubs.
10922 mips_sym->set_need_fn_stub();
10923
10924 // We need PLT entries if there are static-only relocations against
10925 // an externally-defined function. This can technically occur for
10926 // shared libraries if there are branches to the symbol, although it
10927 // is unlikely that this will be used in practice due to the short
10928 // ranges involved. It can occur for any relative or absolute relocation
10929 // in executables; in that case, the PLT entry becomes the function's
10930 // canonical address.
10931 bool static_reloc = false;
10932
10933 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10934 // relocation into a dynamic one.
10935 bool can_make_dynamic = false;
10936 switch (r_type)
10937 {
10938 case elfcpp::R_MIPS_GOT16:
10939 case elfcpp::R_MIPS_CALL16:
10940 case elfcpp::R_MIPS_CALL_HI16:
10941 case elfcpp::R_MIPS_CALL_LO16:
10942 case elfcpp::R_MIPS_GOT_HI16:
10943 case elfcpp::R_MIPS_GOT_LO16:
10944 case elfcpp::R_MIPS_GOT_PAGE:
10945 case elfcpp::R_MIPS_GOT_OFST:
10946 case elfcpp::R_MIPS_GOT_DISP:
10947 case elfcpp::R_MIPS_TLS_GOTTPREL:
10948 case elfcpp::R_MIPS_TLS_GD:
10949 case elfcpp::R_MIPS_TLS_LDM:
10950 case elfcpp::R_MIPS16_GOT16:
10951 case elfcpp::R_MIPS16_CALL16:
10952 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10953 case elfcpp::R_MIPS16_TLS_GD:
10954 case elfcpp::R_MIPS16_TLS_LDM:
10955 case elfcpp::R_MICROMIPS_GOT16:
10956 case elfcpp::R_MICROMIPS_CALL16:
10957 case elfcpp::R_MICROMIPS_CALL_HI16:
10958 case elfcpp::R_MICROMIPS_CALL_LO16:
10959 case elfcpp::R_MICROMIPS_GOT_HI16:
10960 case elfcpp::R_MICROMIPS_GOT_LO16:
10961 case elfcpp::R_MICROMIPS_GOT_PAGE:
10962 case elfcpp::R_MICROMIPS_GOT_OFST:
10963 case elfcpp::R_MICROMIPS_GOT_DISP:
10964 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10965 case elfcpp::R_MICROMIPS_TLS_GD:
10966 case elfcpp::R_MICROMIPS_TLS_LDM:
10967 case elfcpp::R_MIPS_EH:
10968 // We need a GOT section.
10969 target->got_section(symtab, layout);
10970 break;
10971
10972 // This is just a hint; it can safely be ignored. Don't set
10973 // has_static_relocs for the corresponding symbol.
10974 case elfcpp::R_MIPS_JALR:
10975 case elfcpp::R_MICROMIPS_JALR:
10976 break;
10977
10978 case elfcpp::R_MIPS_GPREL16:
10979 case elfcpp::R_MIPS_GPREL32:
10980 case elfcpp::R_MIPS16_GPREL:
10981 case elfcpp::R_MICROMIPS_GPREL16:
10982 // TODO(sasa)
10983 // GP-relative relocations always resolve to a definition in a
10984 // regular input file, ignoring the one-definition rule. This is
10985 // important for the GP setup sequence in NewABI code, which
10986 // always resolves to a local function even if other relocations
10987 // against the symbol wouldn't.
10988 //constrain_symbol_p = FALSE;
10989 break;
10990
10991 case elfcpp::R_MIPS_32:
10992 case elfcpp::R_MIPS_REL32:
10993 case elfcpp::R_MIPS_64:
10994 if ((parameters->options().shared()
10995 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10996 && (!is_readonly_section(output_section)
10997 || mips_obj->is_pic())))
10998 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10999 {
11000 if (r_type != elfcpp::R_MIPS_REL32)
11001 mips_sym->set_pointer_equality_needed();
11002 can_make_dynamic = true;
11003 break;
11004 }
11005 // Fall through.
11006
11007 default:
11008 // Most static relocations require pointer equality, except
11009 // for branches.
11010 mips_sym->set_pointer_equality_needed();
11011 // Fall through.
11012
11013 case elfcpp::R_MIPS_26:
11014 case elfcpp::R_MIPS_PC16:
11015 case elfcpp::R_MIPS_PC21_S2:
11016 case elfcpp::R_MIPS_PC26_S2:
11017 case elfcpp::R_MIPS16_26:
11018 case elfcpp::R_MICROMIPS_26_S1:
11019 case elfcpp::R_MICROMIPS_PC7_S1:
11020 case elfcpp::R_MICROMIPS_PC10_S1:
11021 case elfcpp::R_MICROMIPS_PC16_S1:
11022 case elfcpp::R_MICROMIPS_PC23_S2:
11023 static_reloc = true;
11024 mips_sym->set_has_static_relocs();
11025 break;
11026 }
11027
11028 // If there are call relocations against an externally-defined symbol,
11029 // see whether we can create a MIPS lazy-binding stub for it. We can
11030 // only do this if all references to the function are through call
11031 // relocations, and in that case, the traditional lazy-binding stubs
11032 // are much more efficient than PLT entries.
11033 switch (r_type)
11034 {
11035 case elfcpp::R_MIPS16_CALL16:
11036 case elfcpp::R_MIPS_CALL16:
11037 case elfcpp::R_MIPS_CALL_HI16:
11038 case elfcpp::R_MIPS_CALL_LO16:
11039 case elfcpp::R_MIPS_JALR:
11040 case elfcpp::R_MICROMIPS_CALL16:
11041 case elfcpp::R_MICROMIPS_CALL_HI16:
11042 case elfcpp::R_MICROMIPS_CALL_LO16:
11043 case elfcpp::R_MICROMIPS_JALR:
11044 if (!mips_sym->no_lazy_stub())
11045 {
11046 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
11047 // Calls from shared objects to undefined symbols of type
11048 // STT_NOTYPE need lazy-binding stub.
11049 || (mips_sym->is_undefined() && parameters->options().shared()))
11050 target->mips_stubs_section(layout)->make_entry(mips_sym);
11051 }
11052 break;
11053 default:
11054 {
11055 // We must not create a stub for a symbol that has relocations
11056 // related to taking the function's address.
11057 mips_sym->set_no_lazy_stub();
11058 target->remove_lazy_stub_entry(mips_sym);
11059 break;
11060 }
11061 }
11062
11063 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11064 mips_sym->is_mips16()))
11065 mips_sym->set_has_nonpic_branches();
11066
11067 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11068 // and has a special meaning.
11069 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11070 && strcmp(gsym->name(), "_gp_disp") == 0
11071 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11072 if (static_reloc && gsym->needs_plt_entry())
11073 {
11074 target->make_plt_entry(symtab, layout, mips_sym, r_type);
11075
11076 // Since this is not a PC-relative relocation, we may be
11077 // taking the address of a function. In that case we need to
11078 // set the entry in the dynamic symbol table to the address of
11079 // the PLT entry.
11080 if (gsym->is_from_dynobj() && !parameters->options().shared())
11081 {
11082 gsym->set_needs_dynsym_value();
11083 // We distinguish between PLT entries and lazy-binding stubs by
11084 // giving the former an st_other value of STO_MIPS_PLT. Set the
11085 // flag if there are any relocations in the binary where pointer
11086 // equality matters.
11087 if (mips_sym->pointer_equality_needed())
11088 mips_sym->set_mips_plt();
11089 }
11090 }
11091 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11092 {
11093 // Absolute addressing relocations.
11094 // Make a dynamic relocation if necessary.
11095 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11096 {
11097 if (gsym->may_need_copy_reloc())
11098 {
11099 target->copy_reloc(symtab, layout, object, data_shndx,
11100 output_section, gsym, r_type, r_offset);
11101 }
11102 else if (can_make_dynamic)
11103 {
11104 // Create .rel.dyn section.
11105 target->rel_dyn_section(layout);
11106 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11107 data_shndx, output_section, r_offset);
11108 }
11109 else
11110 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11111 gsym->name());
11112 }
11113 }
11114
11115 bool for_call = false;
11116 switch (r_type)
11117 {
11118 case elfcpp::R_MIPS_CALL16:
11119 case elfcpp::R_MIPS16_CALL16:
11120 case elfcpp::R_MICROMIPS_CALL16:
11121 case elfcpp::R_MIPS_CALL_HI16:
11122 case elfcpp::R_MIPS_CALL_LO16:
11123 case elfcpp::R_MICROMIPS_CALL_HI16:
11124 case elfcpp::R_MICROMIPS_CALL_LO16:
11125 for_call = true;
11126 // Fall through.
11127
11128 case elfcpp::R_MIPS16_GOT16:
11129 case elfcpp::R_MIPS_GOT16:
11130 case elfcpp::R_MIPS_GOT_HI16:
11131 case elfcpp::R_MIPS_GOT_LO16:
11132 case elfcpp::R_MICROMIPS_GOT16:
11133 case elfcpp::R_MICROMIPS_GOT_HI16:
11134 case elfcpp::R_MICROMIPS_GOT_LO16:
11135 case elfcpp::R_MIPS_GOT_DISP:
11136 case elfcpp::R_MICROMIPS_GOT_DISP:
11137 case elfcpp::R_MIPS_EH:
11138 {
11139 // The symbol requires a GOT entry.
11140 Mips_output_data_got<size, big_endian>* got =
11141 target->got_section(symtab, layout);
11142 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11143 for_call);
11144 mips_sym->set_global_got_area(GGA_NORMAL);
11145 }
11146 break;
11147
11148 case elfcpp::R_MIPS_GOT_PAGE:
11149 case elfcpp::R_MICROMIPS_GOT_PAGE:
11150 {
11151 // This relocation needs a page entry in the GOT.
11152 // Get the section contents.
11153 section_size_type view_size = 0;
11154 const unsigned char* view =
11155 object->section_contents(data_shndx, &view_size, false);
11156 view += r_offset;
11157
11158 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11159 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11160 : r_addend);
11161 Mips_output_data_got<size, big_endian>* got =
11162 target->got_section(symtab, layout);
11163 got->record_got_page_entry(mips_obj, r_sym, addend);
11164
11165 // If this is a global, overridable symbol, GOT_PAGE will
11166 // decay to GOT_DISP, so we'll need a GOT entry for it.
11167 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11168 && !mips_sym->object()->is_dynamic()
11169 && !mips_sym->is_undefined());
11170 if (!def_regular
11171 || (parameters->options().output_is_position_independent()
11172 && !parameters->options().Bsymbolic()
11173 && !mips_sym->is_forced_local()))
11174 {
11175 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11176 for_call);
11177 mips_sym->set_global_got_area(GGA_NORMAL);
11178 }
11179 }
11180 break;
11181
11182 case elfcpp::R_MIPS_TLS_GOTTPREL:
11183 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11184 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11185 case elfcpp::R_MIPS_TLS_LDM:
11186 case elfcpp::R_MIPS16_TLS_LDM:
11187 case elfcpp::R_MICROMIPS_TLS_LDM:
11188 case elfcpp::R_MIPS_TLS_GD:
11189 case elfcpp::R_MIPS16_TLS_GD:
11190 case elfcpp::R_MICROMIPS_TLS_GD:
11191 {
11192 const bool is_final = gsym->final_value_is_known();
11193 const tls::Tls_optimization optimized_type =
11194 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11195
11196 switch (r_type)
11197 {
11198 case elfcpp::R_MIPS_TLS_GD:
11199 case elfcpp::R_MIPS16_TLS_GD:
11200 case elfcpp::R_MICROMIPS_TLS_GD:
11201 if (optimized_type == tls::TLSOPT_NONE)
11202 {
11203 // Create a pair of GOT entries for the module index and
11204 // dtv-relative offset.
11205 Mips_output_data_got<size, big_endian>* got =
11206 target->got_section(symtab, layout);
11207 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11208 false);
11209 }
11210 else
11211 {
11212 // FIXME: TLS optimization not supported yet.
11213 gold_unreachable();
11214 }
11215 break;
11216
11217 case elfcpp::R_MIPS_TLS_LDM:
11218 case elfcpp::R_MIPS16_TLS_LDM:
11219 case elfcpp::R_MICROMIPS_TLS_LDM:
11220 if (optimized_type == tls::TLSOPT_NONE)
11221 {
11222 // We always record LDM symbols as local with index 0.
11223 target->got_section()->record_local_got_symbol(mips_obj, 0,
11224 r_addend, r_type,
11225 -1U, false);
11226 }
11227 else
11228 {
11229 // FIXME: TLS optimization not supported yet.
11230 gold_unreachable();
11231 }
11232 break;
11233 case elfcpp::R_MIPS_TLS_GOTTPREL:
11234 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11235 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11236 layout->set_has_static_tls();
11237 if (optimized_type == tls::TLSOPT_NONE)
11238 {
11239 // Create a GOT entry for the tp-relative offset.
11240 Mips_output_data_got<size, big_endian>* got =
11241 target->got_section(symtab, layout);
11242 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11243 false);
11244 }
11245 else
11246 {
11247 // FIXME: TLS optimization not supported yet.
11248 gold_unreachable();
11249 }
11250 break;
11251
11252 default:
11253 gold_unreachable();
11254 }
11255 }
11256 break;
11257 case elfcpp::R_MIPS_COPY:
11258 case elfcpp::R_MIPS_JUMP_SLOT:
11259 // These are relocations which should only be seen by the
11260 // dynamic linker, and should never be seen here.
11261 gold_error(_("%s: unexpected reloc %u in object file"),
11262 object->name().c_str(), r_type);
11263 break;
11264
11265 default:
11266 break;
11267 }
11268
11269 // Refuse some position-dependent relocations when creating a
11270 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11271 // not PIC, but we can create dynamic relocations and the result
11272 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11273 // combined with R_MIPS_GOT16.
11274 if (parameters->options().shared())
11275 {
11276 switch (r_type)
11277 {
11278 case elfcpp::R_MIPS16_HI16:
11279 case elfcpp::R_MIPS_HI16:
11280 case elfcpp::R_MIPS_HIGHER:
11281 case elfcpp::R_MIPS_HIGHEST:
11282 case elfcpp::R_MICROMIPS_HI16:
11283 case elfcpp::R_MICROMIPS_HIGHER:
11284 case elfcpp::R_MICROMIPS_HIGHEST:
11285 // Don't refuse a high part relocation if it's against
11286 // no symbol (e.g. part of a compound relocation).
11287 if (r_sym == 0)
11288 break;
11289
11290 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11291 // and has a special meaning.
11292 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11293 break;
11294 // Fall through.
11295
11296 case elfcpp::R_MIPS16_26:
11297 case elfcpp::R_MIPS_26:
11298 case elfcpp::R_MICROMIPS_26_S1:
11299 gold_error(_("%s: relocation %u against `%s' can not be used when "
11300 "making a shared object; recompile with -fPIC"),
11301 object->name().c_str(), r_type, gsym->name());
11302 default:
11303 break;
11304 }
11305 }
11306 }
11307
11308 template<int size, bool big_endian>
11309 inline void
11310 Target_mips<size, big_endian>::Scan::global(
11311 Symbol_table* symtab,
11312 Layout* layout,
11313 Target_mips<size, big_endian>* target,
11314 Sized_relobj_file<size, big_endian>* object,
11315 unsigned int data_shndx,
11316 Output_section* output_section,
11317 const Relatype& reloc,
11318 unsigned int r_type,
11319 Symbol* gsym)
11320 {
11321 global(
11322 symtab,
11323 layout,
11324 target,
11325 object,
11326 data_shndx,
11327 output_section,
11328 &reloc,
11329 (const Reltype*) NULL,
11330 elfcpp::SHT_RELA,
11331 r_type,
11332 gsym);
11333 }
11334
11335 template<int size, bool big_endian>
11336 inline void
11337 Target_mips<size, big_endian>::Scan::global(
11338 Symbol_table* symtab,
11339 Layout* layout,
11340 Target_mips<size, big_endian>* target,
11341 Sized_relobj_file<size, big_endian>* object,
11342 unsigned int data_shndx,
11343 Output_section* output_section,
11344 const Reltype& reloc,
11345 unsigned int r_type,
11346 Symbol* gsym)
11347 {
11348 global(
11349 symtab,
11350 layout,
11351 target,
11352 object,
11353 data_shndx,
11354 output_section,
11355 (const Relatype*) NULL,
11356 &reloc,
11357 elfcpp::SHT_REL,
11358 r_type,
11359 gsym);
11360 }
11361
11362 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11363 // In cases where Scan::local() or Scan::global() has created
11364 // a dynamic relocation, the addend of the relocation is carried
11365 // in the data, and we must not apply the static relocation.
11366
11367 template<int size, bool big_endian>
11368 inline bool
11369 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11370 const Mips_symbol<size>* gsym,
11371 unsigned int r_type,
11372 Output_section* output_section,
11373 Target_mips* target)
11374 {
11375 // If the output section is not allocated, then we didn't call
11376 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11377 // the reloc here.
11378 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11379 return true;
11380
11381 if (gsym == NULL)
11382 return true;
11383 else
11384 {
11385 // For global symbols, we use the same helper routines used in the
11386 // scan pass.
11387 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11388 && !gsym->may_need_copy_reloc())
11389 {
11390 // We have generated dynamic reloc (R_MIPS_REL32).
11391
11392 bool multi_got = false;
11393 if (target->has_got_section())
11394 multi_got = target->got_section()->multi_got();
11395 bool has_got_offset;
11396 if (!multi_got)
11397 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11398 else
11399 has_got_offset = gsym->global_gotoffset() != -1U;
11400 if (!has_got_offset)
11401 return true;
11402 else
11403 // Apply the relocation only if the symbol is in the local got.
11404 // Do not apply the relocation if the symbol is in the global
11405 // got.
11406 return symbol_references_local(gsym, gsym->has_dynsym_index());
11407 }
11408 else
11409 // We have not generated dynamic reloc.
11410 return true;
11411 }
11412 }
11413
11414 // Perform a relocation.
11415
11416 template<int size, bool big_endian>
11417 inline bool
11418 Target_mips<size, big_endian>::Relocate::relocate(
11419 const Relocate_info<size, big_endian>* relinfo,
11420 unsigned int rel_type,
11421 Target_mips* target,
11422 Output_section* output_section,
11423 size_t relnum,
11424 const unsigned char* preloc,
11425 const Sized_symbol<size>* gsym,
11426 const Symbol_value<size>* psymval,
11427 unsigned char* view,
11428 Mips_address address,
11429 section_size_type)
11430 {
11431 Mips_address r_offset;
11432 unsigned int r_sym;
11433 unsigned int r_type;
11434 unsigned int r_type2;
11435 unsigned int r_type3;
11436 unsigned char r_ssym;
11437 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11438 // r_offset and r_type of the next relocation is needed for resolving multiple
11439 // consecutive relocations with the same offset.
11440 Mips_address next_r_offset = static_cast<Mips_address>(0) - 1;
11441 unsigned int next_r_type = elfcpp::R_MIPS_NONE;
11442
11443 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11444 size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize();
11445
11446 if (rel_type == elfcpp::SHT_RELA)
11447 {
11448 const Relatype rela(preloc);
11449 r_offset = rela.get_r_offset();
11450 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11451 get_r_sym(&rela);
11452 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11453 get_r_type(&rela);
11454 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11455 get_r_type2(&rela);
11456 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11457 get_r_type3(&rela);
11458 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11459 get_r_ssym(&rela);
11460 r_addend = rela.get_r_addend();
11461 // If this is not last relocation, get r_offset and r_type of the next
11462 // relocation.
11463 if (relnum + 1 < reloc_count)
11464 {
11465 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11466 const Relatype next_rela(preloc + reloc_size);
11467 next_r_offset = next_rela.get_r_offset();
11468 next_r_type =
11469 Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11470 get_r_type(&next_rela);
11471 }
11472 }
11473 else
11474 {
11475 const Reltype rel(preloc);
11476 r_offset = rel.get_r_offset();
11477 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11478 get_r_sym(&rel);
11479 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11480 get_r_type(&rel);
11481 r_ssym = 0;
11482 r_type2 = elfcpp::R_MIPS_NONE;
11483 r_type3 = elfcpp::R_MIPS_NONE;
11484 r_addend = 0;
11485 // If this is not last relocation, get r_offset and r_type of the next
11486 // relocation.
11487 if (relnum + 1 < reloc_count)
11488 {
11489 const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
11490 const Reltype next_rel(preloc + reloc_size);
11491 next_r_offset = next_rel.get_r_offset();
11492 next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11493 get_r_type(&next_rel);
11494 }
11495 }
11496
11497 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11498 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11499
11500 Mips_relobj<size, big_endian>* object =
11501 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11502
11503 bool target_is_16_bit_code = false;
11504 bool target_is_micromips_code = false;
11505 bool cross_mode_jump;
11506
11507 Symbol_value<size> symval;
11508
11509 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11510
11511 bool changed_symbol_value = false;
11512 if (gsym == NULL)
11513 {
11514 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11515 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11516 if (target_is_16_bit_code || target_is_micromips_code)
11517 {
11518 // MIPS16/microMIPS text labels should be treated as odd.
11519 symval.set_output_value(psymval->value(object, 1));
11520 psymval = &symval;
11521 changed_symbol_value = true;
11522 }
11523 }
11524 else
11525 {
11526 target_is_16_bit_code = mips_sym->is_mips16();
11527 target_is_micromips_code = mips_sym->is_micromips();
11528
11529 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11530 // it odd. This will cause something like .word SYM to come up with
11531 // the right value when it is loaded into the PC.
11532
11533 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11534 && psymval->value(object, 0) != 0)
11535 {
11536 symval.set_output_value(psymval->value(object, 0) | 1);
11537 psymval = &symval;
11538 changed_symbol_value = true;
11539 }
11540
11541 // Pick the value to use for symbols defined in shared objects.
11542 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11543 || mips_sym->has_lazy_stub())
11544 {
11545 Mips_address value;
11546 if (!mips_sym->has_lazy_stub())
11547 {
11548 // Prefer a standard MIPS PLT entry.
11549 if (mips_sym->has_mips_plt_offset())
11550 {
11551 value = target->plt_section()->mips_entry_address(mips_sym);
11552 target_is_micromips_code = false;
11553 target_is_16_bit_code = false;
11554 }
11555 else
11556 {
11557 value = (target->plt_section()->comp_entry_address(mips_sym)
11558 + 1);
11559 if (target->is_output_micromips())
11560 target_is_micromips_code = true;
11561 else
11562 target_is_16_bit_code = true;
11563 }
11564 }
11565 else
11566 value = target->mips_stubs_section()->stub_address(mips_sym);
11567
11568 symval.set_output_value(value);
11569 psymval = &symval;
11570 }
11571 }
11572
11573 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11574 // Note that such a symbol must always be a global symbol.
11575 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11576 && !object->is_newabi());
11577
11578 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11579 // Note that such a symbol must always be a global symbol.
11580 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11581
11582
11583 if (gp_disp)
11584 {
11585 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11586 gold_error_at_location(relinfo, relnum, r_offset,
11587 _("relocations against _gp_disp are permitted only"
11588 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11589 }
11590 else if (gnu_local_gp)
11591 {
11592 // __gnu_local_gp is _gp symbol.
11593 symval.set_output_value(target->adjusted_gp_value(object));
11594 psymval = &symval;
11595 }
11596
11597 // If this is a reference to a 16-bit function with a stub, we need
11598 // to redirect the relocation to the stub unless:
11599 //
11600 // (a) the relocation is for a MIPS16 JAL;
11601 //
11602 // (b) the relocation is for a MIPS16 PIC call, and there are no
11603 // non-MIPS16 uses of the GOT slot; or
11604 //
11605 // (c) the section allows direct references to MIPS16 functions.
11606 if (r_type != elfcpp::R_MIPS16_26
11607 && ((mips_sym != NULL
11608 && mips_sym->has_mips16_fn_stub()
11609 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11610 || (mips_sym == NULL
11611 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11612 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11613 {
11614 // This is a 32- or 64-bit call to a 16-bit function. We should
11615 // have already noticed that we were going to need the
11616 // stub.
11617 Mips_address value;
11618 if (mips_sym == NULL)
11619 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11620 else
11621 {
11622 gold_assert(mips_sym->need_fn_stub());
11623 if (mips_sym->has_la25_stub())
11624 value = target->la25_stub_section()->stub_address(mips_sym);
11625 else
11626 {
11627 value = mips_sym->template
11628 get_mips16_fn_stub<big_endian>()->output_address();
11629 }
11630 }
11631 symval.set_output_value(value);
11632 psymval = &symval;
11633 changed_symbol_value = true;
11634
11635 // The target is 16-bit, but the stub isn't.
11636 target_is_16_bit_code = false;
11637 }
11638 // If this is a MIPS16 call with a stub, that is made through the PLT or
11639 // to a standard MIPS function, we need to redirect the call to the stub.
11640 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11641 // indirect calls should use an indirect stub instead.
11642 else if (r_type == elfcpp::R_MIPS16_26
11643 && ((mips_sym != NULL
11644 && (mips_sym->has_mips16_call_stub()
11645 || mips_sym->has_mips16_call_fp_stub()))
11646 || (mips_sym == NULL
11647 && object->get_local_mips16_call_stub(r_sym) != NULL))
11648 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11649 || !target_is_16_bit_code))
11650 {
11651 Mips16_stub_section<size, big_endian>* call_stub;
11652 if (mips_sym == NULL)
11653 call_stub = object->get_local_mips16_call_stub(r_sym);
11654 else
11655 {
11656 // If both call_stub and call_fp_stub are defined, we can figure
11657 // out which one to use by checking which one appears in the input
11658 // file.
11659 if (mips_sym->has_mips16_call_stub()
11660 && mips_sym->has_mips16_call_fp_stub())
11661 {
11662 call_stub = NULL;
11663 for (unsigned int i = 1; i < object->shnum(); ++i)
11664 {
11665 if (object->is_mips16_call_fp_stub_section(i))
11666 {
11667 call_stub = mips_sym->template
11668 get_mips16_call_fp_stub<big_endian>();
11669 break;
11670 }
11671
11672 }
11673 if (call_stub == NULL)
11674 call_stub =
11675 mips_sym->template get_mips16_call_stub<big_endian>();
11676 }
11677 else if (mips_sym->has_mips16_call_stub())
11678 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11679 else
11680 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11681 }
11682
11683 symval.set_output_value(call_stub->output_address());
11684 psymval = &symval;
11685 changed_symbol_value = true;
11686 }
11687 // If this is a direct call to a PIC function, redirect to the
11688 // non-PIC stub.
11689 else if (mips_sym != NULL
11690 && mips_sym->has_la25_stub()
11691 && relocation_needs_la25_stub<size, big_endian>(
11692 object, r_type, target_is_16_bit_code))
11693 {
11694 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11695 if (mips_sym->is_micromips())
11696 value += 1;
11697 symval.set_output_value(value);
11698 psymval = &symval;
11699 }
11700 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11701 // entry is used if a standard PLT entry has also been made.
11702 else if ((r_type == elfcpp::R_MIPS16_26
11703 || r_type == elfcpp::R_MICROMIPS_26_S1)
11704 && mips_sym != NULL
11705 && mips_sym->has_plt_offset()
11706 && mips_sym->has_comp_plt_offset()
11707 && mips_sym->has_mips_plt_offset())
11708 {
11709 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11710 + 1);
11711 symval.set_output_value(value);
11712 psymval = &symval;
11713
11714 target_is_16_bit_code = !target->is_output_micromips();
11715 target_is_micromips_code = target->is_output_micromips();
11716 }
11717
11718 // Make sure MIPS16 and microMIPS are not used together.
11719 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11720 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11721 {
11722 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11723 }
11724
11725 // Calls from 16-bit code to 32-bit code and vice versa require the
11726 // mode change. However, we can ignore calls to undefined weak symbols,
11727 // which should never be executed at runtime. This exception is important
11728 // because the assembly writer may have "known" that any definition of the
11729 // symbol would be 16-bit code, and that direct jumps were therefore
11730 // acceptable.
11731 cross_mode_jump =
11732 (!(gsym != NULL && gsym->is_weak_undefined())
11733 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11734 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11735 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11736 && (target_is_16_bit_code || target_is_micromips_code))));
11737
11738 bool local = (mips_sym == NULL
11739 || (mips_sym->got_only_for_calls()
11740 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11741 : symbol_references_local(mips_sym,
11742 mips_sym->has_dynsym_index())));
11743
11744 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11745 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11746 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11747 if (got_page_reloc(r_type) && !local)
11748 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11749 : elfcpp::R_MIPS_GOT_DISP);
11750
11751 unsigned int got_offset = 0;
11752 int gp_offset = 0;
11753
11754 // Whether we have to extract addend from instruction.
11755 bool extract_addend = rel_type == elfcpp::SHT_REL;
11756 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11757
11758 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11759
11760 // For Mips64 N64 ABI, there may be up to three operations specified per
11761 // record, by the fields r_type, r_type2, and r_type3. The first operation
11762 // takes its addend from the relocation record. Each subsequent operation
11763 // takes as its addend the result of the previous operation.
11764 // The first operation in a record which references a symbol uses the symbol
11765 // implied by r_sym. The next operation in a record which references a symbol
11766 // uses the special symbol value given by the r_ssym field. A third operation
11767 // in a record which references a symbol will assume a NULL symbol,
11768 // i.e. value zero.
11769
11770 // TODO(Vladimir)
11771 // Check if a record references to a symbol.
11772 for (unsigned int i = 0; i < 3; ++i)
11773 {
11774 if (r_types[i] == elfcpp::R_MIPS_NONE)
11775 break;
11776
11777 // If we didn't apply previous relocation, use its result as addend
11778 // for current.
11779 if (this->calculate_only_)
11780 {
11781 r_addend = this->calculated_value_;
11782 extract_addend = false;
11783 }
11784
11785 // In the N32 and 64-bit ABIs there may be multiple consecutive
11786 // relocations for the same offset. In that case we are
11787 // supposed to treat the output of each relocation as the addend
11788 // for the next. For N64 ABI, we are checking offsets only in a
11789 // third operation in a record (r_type3).
11790 this->calculate_only_ =
11791 (object->is_n64() && i < 2
11792 ? r_types[i+1] != elfcpp::R_MIPS_NONE
11793 : (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE));
11794
11795 if (object->is_n64())
11796 {
11797 if (i == 1)
11798 {
11799 // Handle special symbol for r_type2 relocation type.
11800 switch (r_ssym)
11801 {
11802 case RSS_UNDEF:
11803 symval.set_output_value(0);
11804 break;
11805 case RSS_GP:
11806 symval.set_output_value(target->gp_value());
11807 break;
11808 case RSS_GP0:
11809 symval.set_output_value(object->gp_value());
11810 break;
11811 case RSS_LOC:
11812 symval.set_output_value(address);
11813 break;
11814 default:
11815 gold_unreachable();
11816 }
11817 psymval = &symval;
11818 }
11819 else if (i == 2)
11820 {
11821 // For r_type3 symbol value is 0.
11822 symval.set_output_value(0);
11823 }
11824 }
11825
11826 bool update_got_entry = false;
11827 switch (r_types[i])
11828 {
11829 case elfcpp::R_MIPS_NONE:
11830 break;
11831 case elfcpp::R_MIPS_16:
11832 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11833 extract_addend,
11834 this->calculate_only_,
11835 &this->calculated_value_);
11836 break;
11837
11838 case elfcpp::R_MIPS_32:
11839 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11840 target))
11841 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11842 extract_addend,
11843 this->calculate_only_,
11844 &this->calculated_value_);
11845 if (mips_sym != NULL
11846 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11847 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11848 {
11849 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11850 // already updated by adding +1.
11851 if (mips_sym->has_mips16_fn_stub())
11852 {
11853 gold_assert(mips_sym->need_fn_stub());
11854 Mips16_stub_section<size, big_endian>* fn_stub =
11855 mips_sym->template get_mips16_fn_stub<big_endian>();
11856
11857 symval.set_output_value(fn_stub->output_address());
11858 psymval = &symval;
11859 }
11860 got_offset = mips_sym->global_gotoffset();
11861 update_got_entry = true;
11862 }
11863 break;
11864
11865 case elfcpp::R_MIPS_64:
11866 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11867 target))
11868 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11869 extract_addend,
11870 this->calculate_only_,
11871 &this->calculated_value_, false);
11872 else if (target->is_output_n64() && r_addend != 0)
11873 // Only apply the addend. The static relocation was RELA, but the
11874 // dynamic relocation is REL, so we need to apply the addend.
11875 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11876 extract_addend,
11877 this->calculate_only_,
11878 &this->calculated_value_, true);
11879 break;
11880 case elfcpp::R_MIPS_REL32:
11881 gold_unreachable();
11882
11883 case elfcpp::R_MIPS_PC32:
11884 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11885 r_addend, extract_addend,
11886 this->calculate_only_,
11887 &this->calculated_value_);
11888 break;
11889
11890 case elfcpp::R_MIPS16_26:
11891 // The calculation for R_MIPS16_26 is just the same as for an
11892 // R_MIPS_26. It's only the storage of the relocated field into
11893 // the output file that's different. So, we just fall through to the
11894 // R_MIPS_26 case here.
11895 case elfcpp::R_MIPS_26:
11896 case elfcpp::R_MICROMIPS_26_S1:
11897 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11898 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11899 r_types[i], target->jal_to_bal(), this->calculate_only_,
11900 &this->calculated_value_);
11901 break;
11902
11903 case elfcpp::R_MIPS_HI16:
11904 case elfcpp::R_MIPS16_HI16:
11905 case elfcpp::R_MICROMIPS_HI16:
11906 if (rel_type == elfcpp::SHT_RELA)
11907 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11908 r_addend, address,
11909 gp_disp, r_types[i],
11910 extract_addend, 0,
11911 target,
11912 this->calculate_only_,
11913 &this->calculated_value_);
11914 else if (rel_type == elfcpp::SHT_REL)
11915 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11916 address, gp_disp, r_types[i],
11917 r_sym, extract_addend);
11918 else
11919 gold_unreachable();
11920 break;
11921
11922 case elfcpp::R_MIPS_LO16:
11923 case elfcpp::R_MIPS16_LO16:
11924 case elfcpp::R_MICROMIPS_LO16:
11925 case elfcpp::R_MICROMIPS_HI0_LO16:
11926 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11927 r_addend, extract_addend, address,
11928 gp_disp, r_types[i], r_sym,
11929 rel_type, this->calculate_only_,
11930 &this->calculated_value_);
11931 break;
11932
11933 case elfcpp::R_MIPS_LITERAL:
11934 case elfcpp::R_MICROMIPS_LITERAL:
11935 // Because we don't merge literal sections, we can handle this
11936 // just like R_MIPS_GPREL16. In the long run, we should merge
11937 // shared literals, and then we will need to additional work
11938 // here.
11939
11940 // Fall through.
11941
11942 case elfcpp::R_MIPS_GPREL16:
11943 case elfcpp::R_MIPS16_GPREL:
11944 case elfcpp::R_MICROMIPS_GPREL7_S2:
11945 case elfcpp::R_MICROMIPS_GPREL16:
11946 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11947 target->adjusted_gp_value(object),
11948 r_addend, extract_addend,
11949 gsym == NULL, r_types[i],
11950 this->calculate_only_,
11951 &this->calculated_value_);
11952 break;
11953
11954 case elfcpp::R_MIPS_PC16:
11955 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11956 r_addend, extract_addend,
11957 this->calculate_only_,
11958 &this->calculated_value_);
11959 break;
11960
11961 case elfcpp::R_MIPS_PC21_S2:
11962 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11963 r_addend, extract_addend,
11964 this->calculate_only_,
11965 &this->calculated_value_);
11966 break;
11967
11968 case elfcpp::R_MIPS_PC26_S2:
11969 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11970 r_addend, extract_addend,
11971 this->calculate_only_,
11972 &this->calculated_value_);
11973 break;
11974
11975 case elfcpp::R_MIPS_PC18_S3:
11976 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11977 r_addend, extract_addend,
11978 this->calculate_only_,
11979 &this->calculated_value_);
11980 break;
11981
11982 case elfcpp::R_MIPS_PC19_S2:
11983 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11984 r_addend, extract_addend,
11985 this->calculate_only_,
11986 &this->calculated_value_);
11987 break;
11988
11989 case elfcpp::R_MIPS_PCHI16:
11990 if (rel_type == elfcpp::SHT_RELA)
11991 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11992 r_addend, address,
11993 extract_addend, 0,
11994 this->calculate_only_,
11995 &this->calculated_value_);
11996 else if (rel_type == elfcpp::SHT_REL)
11997 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11998 r_addend, address, r_sym,
11999 extract_addend);
12000 else
12001 gold_unreachable();
12002 break;
12003
12004 case elfcpp::R_MIPS_PCLO16:
12005 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
12006 extract_addend, address, r_sym,
12007 rel_type, this->calculate_only_,
12008 &this->calculated_value_);
12009 break;
12010 case elfcpp::R_MICROMIPS_PC7_S1:
12011 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
12012 address, r_addend,
12013 extract_addend,
12014 this->calculate_only_,
12015 &this->calculated_value_);
12016 break;
12017 case elfcpp::R_MICROMIPS_PC10_S1:
12018 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
12019 psymval, address,
12020 r_addend, extract_addend,
12021 this->calculate_only_,
12022 &this->calculated_value_);
12023 break;
12024 case elfcpp::R_MICROMIPS_PC16_S1:
12025 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
12026 psymval, address,
12027 r_addend, extract_addend,
12028 this->calculate_only_,
12029 &this->calculated_value_);
12030 break;
12031 case elfcpp::R_MIPS_GPREL32:
12032 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
12033 target->adjusted_gp_value(object),
12034 r_addend, extract_addend,
12035 this->calculate_only_,
12036 &this->calculated_value_);
12037 break;
12038 case elfcpp::R_MIPS_GOT_HI16:
12039 case elfcpp::R_MIPS_CALL_HI16:
12040 case elfcpp::R_MICROMIPS_GOT_HI16:
12041 case elfcpp::R_MICROMIPS_CALL_HI16:
12042 if (gsym != NULL)
12043 got_offset = target->got_section()->got_offset(gsym,
12044 GOT_TYPE_STANDARD,
12045 object);
12046 else
12047 got_offset = target->got_section()->got_offset(r_sym,
12048 GOT_TYPE_STANDARD,
12049 object, r_addend);
12050 gp_offset = target->got_section()->gp_offset(got_offset, object);
12051 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
12052 this->calculate_only_,
12053 &this->calculated_value_);
12054 update_got_entry = changed_symbol_value;
12055 break;
12056
12057 case elfcpp::R_MIPS_GOT_LO16:
12058 case elfcpp::R_MIPS_CALL_LO16:
12059 case elfcpp::R_MICROMIPS_GOT_LO16:
12060 case elfcpp::R_MICROMIPS_CALL_LO16:
12061 if (gsym != NULL)
12062 got_offset = target->got_section()->got_offset(gsym,
12063 GOT_TYPE_STANDARD,
12064 object);
12065 else
12066 got_offset = target->got_section()->got_offset(r_sym,
12067 GOT_TYPE_STANDARD,
12068 object, r_addend);
12069 gp_offset = target->got_section()->gp_offset(got_offset, object);
12070 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
12071 this->calculate_only_,
12072 &this->calculated_value_);
12073 update_got_entry = changed_symbol_value;
12074 break;
12075
12076 case elfcpp::R_MIPS_GOT_DISP:
12077 case elfcpp::R_MICROMIPS_GOT_DISP:
12078 case elfcpp::R_MIPS_EH:
12079 if (gsym != NULL)
12080 got_offset = target->got_section()->got_offset(gsym,
12081 GOT_TYPE_STANDARD,
12082 object);
12083 else
12084 got_offset = target->got_section()->got_offset(r_sym,
12085 GOT_TYPE_STANDARD,
12086 object, r_addend);
12087 gp_offset = target->got_section()->gp_offset(got_offset, object);
12088 if (eh_reloc(r_types[i]))
12089 reloc_status = Reloc_funcs::releh(view, gp_offset,
12090 this->calculate_only_,
12091 &this->calculated_value_);
12092 else
12093 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12094 this->calculate_only_,
12095 &this->calculated_value_);
12096 break;
12097 case elfcpp::R_MIPS_CALL16:
12098 case elfcpp::R_MIPS16_CALL16:
12099 case elfcpp::R_MICROMIPS_CALL16:
12100 gold_assert(gsym != NULL);
12101 got_offset = target->got_section()->got_offset(gsym,
12102 GOT_TYPE_STANDARD,
12103 object);
12104 gp_offset = target->got_section()->gp_offset(got_offset, object);
12105 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12106 this->calculate_only_,
12107 &this->calculated_value_);
12108 // TODO(sasa): We should also initialize update_got_entry
12109 // in other place swhere relgot is called.
12110 update_got_entry = changed_symbol_value;
12111 break;
12112
12113 case elfcpp::R_MIPS_GOT16:
12114 case elfcpp::R_MIPS16_GOT16:
12115 case elfcpp::R_MICROMIPS_GOT16:
12116 if (gsym != NULL)
12117 {
12118 got_offset = target->got_section()->got_offset(gsym,
12119 GOT_TYPE_STANDARD,
12120 object);
12121 gp_offset = target->got_section()->gp_offset(got_offset, object);
12122 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12123 this->calculate_only_,
12124 &this->calculated_value_);
12125 }
12126 else
12127 {
12128 if (rel_type == elfcpp::SHT_RELA)
12129 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12130 psymval, r_addend,
12131 extract_addend, 0,
12132 target,
12133 this->calculate_only_,
12134 &this->calculated_value_);
12135 else if (rel_type == elfcpp::SHT_REL)
12136 reloc_status = Reloc_funcs::relgot16_local(view, object,
12137 psymval, r_addend,
12138 extract_addend,
12139 r_types[i], r_sym);
12140 else
12141 gold_unreachable();
12142 }
12143 update_got_entry = changed_symbol_value;
12144 break;
12145
12146 case elfcpp::R_MIPS_TLS_GD:
12147 case elfcpp::R_MIPS16_TLS_GD:
12148 case elfcpp::R_MICROMIPS_TLS_GD:
12149 if (gsym != NULL)
12150 got_offset = target->got_section()->got_offset(gsym,
12151 GOT_TYPE_TLS_PAIR,
12152 object);
12153 else
12154 got_offset = target->got_section()->got_offset(r_sym,
12155 GOT_TYPE_TLS_PAIR,
12156 object, r_addend);
12157 gp_offset = target->got_section()->gp_offset(got_offset, object);
12158 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12159 this->calculate_only_,
12160 &this->calculated_value_);
12161 break;
12162
12163 case elfcpp::R_MIPS_TLS_GOTTPREL:
12164 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12165 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12166 if (gsym != NULL)
12167 got_offset = target->got_section()->got_offset(gsym,
12168 GOT_TYPE_TLS_OFFSET,
12169 object);
12170 else
12171 got_offset = target->got_section()->got_offset(r_sym,
12172 GOT_TYPE_TLS_OFFSET,
12173 object, r_addend);
12174 gp_offset = target->got_section()->gp_offset(got_offset, object);
12175 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12176 this->calculate_only_,
12177 &this->calculated_value_);
12178 break;
12179
12180 case elfcpp::R_MIPS_TLS_LDM:
12181 case elfcpp::R_MIPS16_TLS_LDM:
12182 case elfcpp::R_MICROMIPS_TLS_LDM:
12183 // Relocate the field with the offset of the GOT entry for
12184 // the module index.
12185 got_offset = target->got_section()->tls_ldm_offset(object);
12186 gp_offset = target->got_section()->gp_offset(got_offset, object);
12187 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12188 this->calculate_only_,
12189 &this->calculated_value_);
12190 break;
12191
12192 case elfcpp::R_MIPS_GOT_PAGE:
12193 case elfcpp::R_MICROMIPS_GOT_PAGE:
12194 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12195 r_addend, extract_addend,
12196 this->calculate_only_,
12197 &this->calculated_value_);
12198 break;
12199
12200 case elfcpp::R_MIPS_GOT_OFST:
12201 case elfcpp::R_MICROMIPS_GOT_OFST:
12202 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12203 r_addend, extract_addend,
12204 local, this->calculate_only_,
12205 &this->calculated_value_);
12206 break;
12207
12208 case elfcpp::R_MIPS_JALR:
12209 case elfcpp::R_MICROMIPS_JALR:
12210 // This relocation is only a hint. In some cases, we optimize
12211 // it into a bal instruction. But we don't try to optimize
12212 // when the symbol does not resolve locally.
12213 if (gsym == NULL
12214 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12215 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12216 r_addend, extract_addend,
12217 cross_mode_jump, r_types[i],
12218 target->jalr_to_bal(),
12219 target->jr_to_b(),
12220 this->calculate_only_,
12221 &this->calculated_value_);
12222 break;
12223
12224 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12225 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12226 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12227 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12228 elfcpp::DTP_OFFSET, r_addend,
12229 extract_addend,
12230 this->calculate_only_,
12231 &this->calculated_value_);
12232 break;
12233 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12234 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12235 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12236 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12237 elfcpp::DTP_OFFSET, r_addend,
12238 extract_addend,
12239 this->calculate_only_,
12240 &this->calculated_value_);
12241 break;
12242 case elfcpp::R_MIPS_TLS_DTPREL32:
12243 case elfcpp::R_MIPS_TLS_DTPREL64:
12244 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12245 elfcpp::DTP_OFFSET, r_addend,
12246 extract_addend,
12247 this->calculate_only_,
12248 &this->calculated_value_);
12249 break;
12250 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12251 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12252 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12253 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12254 elfcpp::TP_OFFSET, r_addend,
12255 extract_addend,
12256 this->calculate_only_,
12257 &this->calculated_value_);
12258 break;
12259 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12260 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12261 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12262 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12263 elfcpp::TP_OFFSET, r_addend,
12264 extract_addend,
12265 this->calculate_only_,
12266 &this->calculated_value_);
12267 break;
12268 case elfcpp::R_MIPS_TLS_TPREL32:
12269 case elfcpp::R_MIPS_TLS_TPREL64:
12270 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12271 elfcpp::TP_OFFSET, r_addend,
12272 extract_addend,
12273 this->calculate_only_,
12274 &this->calculated_value_);
12275 break;
12276 case elfcpp::R_MIPS_SUB:
12277 case elfcpp::R_MICROMIPS_SUB:
12278 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12279 extract_addend,
12280 this->calculate_only_,
12281 &this->calculated_value_);
12282 break;
12283 case elfcpp::R_MIPS_HIGHER:
12284 case elfcpp::R_MICROMIPS_HIGHER:
12285 reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12286 extract_addend,
12287 this->calculate_only_,
12288 &this->calculated_value_);
12289 break;
12290 case elfcpp::R_MIPS_HIGHEST:
12291 case elfcpp::R_MICROMIPS_HIGHEST:
12292 reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12293 r_addend, extract_addend,
12294 this->calculate_only_,
12295 &this->calculated_value_);
12296 break;
12297 default:
12298 gold_error_at_location(relinfo, relnum, r_offset,
12299 _("unsupported reloc %u"), r_types[i]);
12300 break;
12301 }
12302
12303 if (update_got_entry)
12304 {
12305 Mips_output_data_got<size, big_endian>* got = target->got_section();
12306 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12307 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12308 psymval->value(object, 0));
12309 else
12310 got->update_got_entry(got_offset, psymval->value(object, 0));
12311 }
12312 }
12313
12314 bool jal_shuffle = jal_reloc(r_type);
12315 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12316
12317 // Report any errors.
12318 switch (reloc_status)
12319 {
12320 case Reloc_funcs::STATUS_OKAY:
12321 break;
12322 case Reloc_funcs::STATUS_OVERFLOW:
12323 if (gsym == NULL)
12324 gold_error_at_location(relinfo, relnum, r_offset,
12325 _("relocation overflow: "
12326 "%u against local symbol %u in %s"),
12327 r_type, r_sym, object->name().c_str());
12328 else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12329 gold_error_at_location(relinfo, relnum, r_offset,
12330 _("relocation overflow: "
12331 "%u against '%s' defined in %s"),
12332 r_type, gsym->demangled_name().c_str(),
12333 gsym->object()->name().c_str());
12334 else
12335 gold_error_at_location(relinfo, relnum, r_offset,
12336 _("relocation overflow: %u against '%s'"),
12337 r_type, gsym->demangled_name().c_str());
12338 break;
12339 case Reloc_funcs::STATUS_BAD_RELOC:
12340 gold_error_at_location(relinfo, relnum, r_offset,
12341 _("unexpected opcode while processing relocation"));
12342 break;
12343 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12344 gold_error_at_location(relinfo, relnum, r_offset,
12345 _("unaligned PC-relative relocation"));
12346 break;
12347 default:
12348 gold_unreachable();
12349 }
12350
12351 return true;
12352 }
12353
12354 // Get the Reference_flags for a particular relocation.
12355
12356 template<int size, bool big_endian>
12357 int
12358 Target_mips<size, big_endian>::Scan::get_reference_flags(
12359 unsigned int r_type)
12360 {
12361 switch (r_type)
12362 {
12363 case elfcpp::R_MIPS_NONE:
12364 // No symbol reference.
12365 return 0;
12366
12367 case elfcpp::R_MIPS_16:
12368 case elfcpp::R_MIPS_32:
12369 case elfcpp::R_MIPS_64:
12370 case elfcpp::R_MIPS_HI16:
12371 case elfcpp::R_MIPS_LO16:
12372 case elfcpp::R_MIPS_HIGHER:
12373 case elfcpp::R_MIPS_HIGHEST:
12374 case elfcpp::R_MIPS16_HI16:
12375 case elfcpp::R_MIPS16_LO16:
12376 case elfcpp::R_MICROMIPS_HI16:
12377 case elfcpp::R_MICROMIPS_LO16:
12378 case elfcpp::R_MICROMIPS_HIGHER:
12379 case elfcpp::R_MICROMIPS_HIGHEST:
12380 return Symbol::ABSOLUTE_REF;
12381
12382 case elfcpp::R_MIPS_26:
12383 case elfcpp::R_MIPS16_26:
12384 case elfcpp::R_MICROMIPS_26_S1:
12385 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12386
12387 case elfcpp::R_MIPS_PC18_S3:
12388 case elfcpp::R_MIPS_PC19_S2:
12389 case elfcpp::R_MIPS_PCHI16:
12390 case elfcpp::R_MIPS_PCLO16:
12391 case elfcpp::R_MIPS_GPREL32:
12392 case elfcpp::R_MIPS_GPREL16:
12393 case elfcpp::R_MIPS_REL32:
12394 case elfcpp::R_MIPS16_GPREL:
12395 return Symbol::RELATIVE_REF;
12396
12397 case elfcpp::R_MIPS_PC16:
12398 case elfcpp::R_MIPS_PC32:
12399 case elfcpp::R_MIPS_PC21_S2:
12400 case elfcpp::R_MIPS_PC26_S2:
12401 case elfcpp::R_MIPS_JALR:
12402 case elfcpp::R_MICROMIPS_JALR:
12403 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12404
12405 case elfcpp::R_MIPS_GOT16:
12406 case elfcpp::R_MIPS_CALL16:
12407 case elfcpp::R_MIPS_GOT_DISP:
12408 case elfcpp::R_MIPS_GOT_HI16:
12409 case elfcpp::R_MIPS_GOT_LO16:
12410 case elfcpp::R_MIPS_CALL_HI16:
12411 case elfcpp::R_MIPS_CALL_LO16:
12412 case elfcpp::R_MIPS_LITERAL:
12413 case elfcpp::R_MIPS_GOT_PAGE:
12414 case elfcpp::R_MIPS_GOT_OFST:
12415 case elfcpp::R_MIPS16_GOT16:
12416 case elfcpp::R_MIPS16_CALL16:
12417 case elfcpp::R_MICROMIPS_GOT16:
12418 case elfcpp::R_MICROMIPS_CALL16:
12419 case elfcpp::R_MICROMIPS_GOT_HI16:
12420 case elfcpp::R_MICROMIPS_GOT_LO16:
12421 case elfcpp::R_MICROMIPS_CALL_HI16:
12422 case elfcpp::R_MICROMIPS_CALL_LO16:
12423 case elfcpp::R_MIPS_EH:
12424 // Absolute in GOT.
12425 return Symbol::RELATIVE_REF;
12426
12427 case elfcpp::R_MIPS_TLS_DTPMOD32:
12428 case elfcpp::R_MIPS_TLS_DTPREL32:
12429 case elfcpp::R_MIPS_TLS_DTPMOD64:
12430 case elfcpp::R_MIPS_TLS_DTPREL64:
12431 case elfcpp::R_MIPS_TLS_GD:
12432 case elfcpp::R_MIPS_TLS_LDM:
12433 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12434 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12435 case elfcpp::R_MIPS_TLS_GOTTPREL:
12436 case elfcpp::R_MIPS_TLS_TPREL32:
12437 case elfcpp::R_MIPS_TLS_TPREL64:
12438 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12439 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12440 case elfcpp::R_MIPS16_TLS_GD:
12441 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12442 case elfcpp::R_MICROMIPS_TLS_GD:
12443 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12444 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12445 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12446 return Symbol::TLS_REF;
12447
12448 case elfcpp::R_MIPS_COPY:
12449 case elfcpp::R_MIPS_JUMP_SLOT:
12450 default:
12451 // Not expected. We will give an error later.
12452 return 0;
12453 }
12454 }
12455
12456 // Report an unsupported relocation against a local symbol.
12457
12458 template<int size, bool big_endian>
12459 void
12460 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12461 Sized_relobj_file<size, big_endian>* object,
12462 unsigned int r_type)
12463 {
12464 gold_error(_("%s: unsupported reloc %u against local symbol"),
12465 object->name().c_str(), r_type);
12466 }
12467
12468 // Report an unsupported relocation against a global symbol.
12469
12470 template<int size, bool big_endian>
12471 void
12472 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12473 Sized_relobj_file<size, big_endian>* object,
12474 unsigned int r_type,
12475 Symbol* gsym)
12476 {
12477 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12478 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12479 }
12480
12481 // Return printable name for ABI.
12482 template<int size, bool big_endian>
12483 const char*
12484 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12485 {
12486 switch (e_flags & elfcpp::EF_MIPS_ABI)
12487 {
12488 case 0:
12489 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12490 return "N32";
12491 else if (size == 64)
12492 return "64";
12493 else
12494 return "none";
12495 case elfcpp::E_MIPS_ABI_O32:
12496 return "O32";
12497 case elfcpp::E_MIPS_ABI_O64:
12498 return "O64";
12499 case elfcpp::E_MIPS_ABI_EABI32:
12500 return "EABI32";
12501 case elfcpp::E_MIPS_ABI_EABI64:
12502 return "EABI64";
12503 default:
12504 return "unknown abi";
12505 }
12506 }
12507
12508 template<int size, bool big_endian>
12509 const char*
12510 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12511 {
12512 switch (e_flags & elfcpp::EF_MIPS_MACH)
12513 {
12514 case elfcpp::E_MIPS_MACH_3900:
12515 return "mips:3900";
12516 case elfcpp::E_MIPS_MACH_4010:
12517 return "mips:4010";
12518 case elfcpp::E_MIPS_MACH_4100:
12519 return "mips:4100";
12520 case elfcpp::E_MIPS_MACH_4111:
12521 return "mips:4111";
12522 case elfcpp::E_MIPS_MACH_4120:
12523 return "mips:4120";
12524 case elfcpp::E_MIPS_MACH_4650:
12525 return "mips:4650";
12526 case elfcpp::E_MIPS_MACH_5400:
12527 return "mips:5400";
12528 case elfcpp::E_MIPS_MACH_5500:
12529 return "mips:5500";
12530 case elfcpp::E_MIPS_MACH_5900:
12531 return "mips:5900";
12532 case elfcpp::E_MIPS_MACH_SB1:
12533 return "mips:sb1";
12534 case elfcpp::E_MIPS_MACH_9000:
12535 return "mips:9000";
12536 case elfcpp::E_MIPS_MACH_LS2E:
12537 return "mips:loongson_2e";
12538 case elfcpp::E_MIPS_MACH_LS2F:
12539 return "mips:loongson_2f";
12540 case elfcpp::E_MIPS_MACH_LS3A:
12541 return "mips:loongson_3a";
12542 case elfcpp::E_MIPS_MACH_OCTEON:
12543 return "mips:octeon";
12544 case elfcpp::E_MIPS_MACH_OCTEON2:
12545 return "mips:octeon2";
12546 case elfcpp::E_MIPS_MACH_OCTEON3:
12547 return "mips:octeon3";
12548 case elfcpp::E_MIPS_MACH_XLR:
12549 return "mips:xlr";
12550 default:
12551 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12552 {
12553 default:
12554 case elfcpp::E_MIPS_ARCH_1:
12555 return "mips:3000";
12556
12557 case elfcpp::E_MIPS_ARCH_2:
12558 return "mips:6000";
12559
12560 case elfcpp::E_MIPS_ARCH_3:
12561 return "mips:4000";
12562
12563 case elfcpp::E_MIPS_ARCH_4:
12564 return "mips:8000";
12565
12566 case elfcpp::E_MIPS_ARCH_5:
12567 return "mips:mips5";
12568
12569 case elfcpp::E_MIPS_ARCH_32:
12570 return "mips:isa32";
12571
12572 case elfcpp::E_MIPS_ARCH_64:
12573 return "mips:isa64";
12574
12575 case elfcpp::E_MIPS_ARCH_32R2:
12576 return "mips:isa32r2";
12577
12578 case elfcpp::E_MIPS_ARCH_32R6:
12579 return "mips:isa32r6";
12580
12581 case elfcpp::E_MIPS_ARCH_64R2:
12582 return "mips:isa64r2";
12583
12584 case elfcpp::E_MIPS_ARCH_64R6:
12585 return "mips:isa64r6";
12586 }
12587 }
12588 return "unknown CPU";
12589 }
12590
12591 template<int size, bool big_endian>
12592 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12593 {
12594 size, // size
12595 big_endian, // is_big_endian
12596 elfcpp::EM_MIPS, // machine_code
12597 true, // has_make_symbol
12598 false, // has_resolve
12599 false, // has_code_fill
12600 true, // is_default_stack_executable
12601 false, // can_icf_inline_merge_sections
12602 '\0', // wrap_char
12603 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12604 0x400000, // default_text_segment_address
12605 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12606 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12607 false, // isolate_execinstr
12608 0, // rosegment_gap
12609 elfcpp::SHN_UNDEF, // small_common_shndx
12610 elfcpp::SHN_UNDEF, // large_common_shndx
12611 0, // small_common_section_flags
12612 0, // large_common_section_flags
12613 NULL, // attributes_section
12614 NULL, // attributes_vendor
12615 "__start", // entry_symbol_name
12616 32, // hash_entry_size
12617 };
12618
12619 template<int size, bool big_endian>
12620 class Target_mips_nacl : public Target_mips<size, big_endian>
12621 {
12622 public:
12623 Target_mips_nacl()
12624 : Target_mips<size, big_endian>(&mips_nacl_info)
12625 { }
12626
12627 private:
12628 static const Target::Target_info mips_nacl_info;
12629 };
12630
12631 template<int size, bool big_endian>
12632 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12633 {
12634 size, // size
12635 big_endian, // is_big_endian
12636 elfcpp::EM_MIPS, // machine_code
12637 true, // has_make_symbol
12638 false, // has_resolve
12639 false, // has_code_fill
12640 true, // is_default_stack_executable
12641 false, // can_icf_inline_merge_sections
12642 '\0', // wrap_char
12643 "/lib/ld.so.1", // dynamic_linker
12644 0x20000, // default_text_segment_address
12645 0x10000, // abi_pagesize (overridable by -z max-page-size)
12646 0x10000, // common_pagesize (overridable by -z common-page-size)
12647 true, // isolate_execinstr
12648 0x10000000, // rosegment_gap
12649 elfcpp::SHN_UNDEF, // small_common_shndx
12650 elfcpp::SHN_UNDEF, // large_common_shndx
12651 0, // small_common_section_flags
12652 0, // large_common_section_flags
12653 NULL, // attributes_section
12654 NULL, // attributes_vendor
12655 "_start", // entry_symbol_name
12656 32, // hash_entry_size
12657 };
12658
12659 // Target selector for Mips. Note this is never instantiated directly.
12660 // It's only used in Target_selector_mips_nacl, below.
12661
12662 template<int size, bool big_endian>
12663 class Target_selector_mips : public Target_selector
12664 {
12665 public:
12666 Target_selector_mips()
12667 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12668 (size == 64 ?
12669 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12670 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12671 (size == 64 ?
12672 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12673 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12674 { }
12675
12676 Target* do_instantiate_target()
12677 { return new Target_mips<size, big_endian>(); }
12678 };
12679
12680 template<int size, bool big_endian>
12681 class Target_selector_mips_nacl
12682 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12683 Target_mips_nacl<size, big_endian> >
12684 {
12685 public:
12686 Target_selector_mips_nacl()
12687 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12688 Target_mips_nacl<size, big_endian> >(
12689 // NaCl currently supports only MIPS32 little-endian.
12690 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12691 { }
12692 };
12693
12694 Target_selector_mips_nacl<32, true> target_selector_mips32;
12695 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12696 Target_selector_mips_nacl<64, true> target_selector_mips64;
12697 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12698
12699 } // End anonymous namespace.
This page took 0.331207 seconds and 5 git commands to generate.