Remove redundant checks for relocatable link (MIPS).
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_section_options;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_la25_stub;
71
72 template<int size, bool big_endian>
73 class Mips_output_data_mips_stubs;
74
75 template<int size>
76 class Mips_symbol;
77
78 template<int size, bool big_endian>
79 class Mips_got_info;
80
81 template<int size, bool big_endian>
82 class Mips_relobj;
83
84 class Mips16_stub_section_base;
85
86 template<int size, bool big_endian>
87 class Mips16_stub_section;
88
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry. Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache. The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
95
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning. We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only". Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
101 // relocations only.
102
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values. Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
106
107 enum Global_got_area
108 {
109 GGA_NORMAL = 0,
110 GGA_RELOC_ONLY = 1,
111 GGA_NONE = 2
112 };
113
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
118 enum Got_type
119 {
120 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
121 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
122 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
123
124 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125 GOT_TYPE_STANDARD_MULTIGOT = 3,
126 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
127 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
128 };
129
130 // TLS type of GOT entry.
131 enum Got_tls_type
132 {
133 GOT_TLS_NONE = 0,
134 GOT_TLS_GD = 1,
135 GOT_TLS_LDM = 2,
136 GOT_TLS_IE = 4
137 };
138
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
141 {
142 RSS_UNDEF = 0, // None - value is zero.
143 RSS_GP = 1, // Value of GP.
144 RSS_GP0 = 2, // Value of GP in object being relocated.
145 RSS_LOC = 3 // Address of location being relocated.
146 };
147
148 // Whether the section is readonly.
149 static inline bool
150 is_readonly_section(Output_section* output_section)
151 {
152 elfcpp::Elf_Xword section_flags = output_section->flags();
153 elfcpp::Elf_Word section_type = output_section->type();
154
155 if (section_type == elfcpp::SHT_NOBITS)
156 return false;
157
158 if (section_flags & elfcpp::SHF_WRITE)
159 return false;
160
161 return true;
162 }
163
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub. See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size, bool big_endian>
168 static inline bool
169 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
170 unsigned int r_type, bool target_is_16_bit_code)
171 {
172 // We specifically ignore branches and jumps from EF_PIC objects,
173 // where the onus is on the compiler or programmer to perform any
174 // necessary initialization of $25. Sometimes such initialization
175 // is unnecessary; for example, -mno-shared functions do not use
176 // the incoming value of $25, and may therefore be called directly.
177 if (object->is_pic())
178 return false;
179
180 switch (r_type)
181 {
182 case elfcpp::R_MIPS_26:
183 case elfcpp::R_MIPS_PC16:
184 case elfcpp::R_MIPS_PC21_S2:
185 case elfcpp::R_MIPS_PC26_S2:
186 case elfcpp::R_MICROMIPS_26_S1:
187 case elfcpp::R_MICROMIPS_PC7_S1:
188 case elfcpp::R_MICROMIPS_PC10_S1:
189 case elfcpp::R_MICROMIPS_PC16_S1:
190 case elfcpp::R_MICROMIPS_PC23_S2:
191 return true;
192
193 case elfcpp::R_MIPS16_26:
194 return !target_is_16_bit_code;
195
196 default:
197 return false;
198 }
199 }
200
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid. Only non-MIPS16
205 // entry points are of interest here.
206 template<int size, bool big_endian>
207 static inline bool
208 local_pic_function(Mips_symbol<size>* sym)
209 {
210 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
211 && !sym->object()->is_dynamic()
212 && !sym->is_undefined());
213
214 if (sym->is_defined() && def_regular)
215 {
216 Mips_relobj<size, big_endian>* object =
217 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
218
219 if ((object->is_pic() || sym->is_pic())
220 && (!sym->is_mips16()
221 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
222 return true;
223 }
224 return false;
225 }
226
227 static inline bool
228 hi16_reloc(int r_type)
229 {
230 return (r_type == elfcpp::R_MIPS_HI16
231 || r_type == elfcpp::R_MIPS16_HI16
232 || r_type == elfcpp::R_MICROMIPS_HI16
233 || r_type == elfcpp::R_MIPS_PCHI16);
234 }
235
236 static inline bool
237 lo16_reloc(int r_type)
238 {
239 return (r_type == elfcpp::R_MIPS_LO16
240 || r_type == elfcpp::R_MIPS16_LO16
241 || r_type == elfcpp::R_MICROMIPS_LO16
242 || r_type == elfcpp::R_MIPS_PCLO16);
243 }
244
245 static inline bool
246 got16_reloc(unsigned int r_type)
247 {
248 return (r_type == elfcpp::R_MIPS_GOT16
249 || r_type == elfcpp::R_MIPS16_GOT16
250 || r_type == elfcpp::R_MICROMIPS_GOT16);
251 }
252
253 static inline bool
254 call_lo16_reloc(unsigned int r_type)
255 {
256 return (r_type == elfcpp::R_MIPS_CALL_LO16
257 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
258 }
259
260 static inline bool
261 got_lo16_reloc(unsigned int r_type)
262 {
263 return (r_type == elfcpp::R_MIPS_GOT_LO16
264 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
265 }
266
267 static inline bool
268 eh_reloc(unsigned int r_type)
269 {
270 return (r_type == elfcpp::R_MIPS_EH);
271 }
272
273 static inline bool
274 got_disp_reloc(unsigned int r_type)
275 {
276 return (r_type == elfcpp::R_MIPS_GOT_DISP
277 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
278 }
279
280 static inline bool
281 got_page_reloc(unsigned int r_type)
282 {
283 return (r_type == elfcpp::R_MIPS_GOT_PAGE
284 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
285 }
286
287 static inline bool
288 tls_gd_reloc(unsigned int r_type)
289 {
290 return (r_type == elfcpp::R_MIPS_TLS_GD
291 || r_type == elfcpp::R_MIPS16_TLS_GD
292 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
293 }
294
295 static inline bool
296 tls_gottprel_reloc(unsigned int r_type)
297 {
298 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
299 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
300 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
301 }
302
303 static inline bool
304 tls_ldm_reloc(unsigned int r_type)
305 {
306 return (r_type == elfcpp::R_MIPS_TLS_LDM
307 || r_type == elfcpp::R_MIPS16_TLS_LDM
308 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
309 }
310
311 static inline bool
312 mips16_call_reloc(unsigned int r_type)
313 {
314 return (r_type == elfcpp::R_MIPS16_26
315 || r_type == elfcpp::R_MIPS16_CALL16);
316 }
317
318 static inline bool
319 jal_reloc(unsigned int r_type)
320 {
321 return (r_type == elfcpp::R_MIPS_26
322 || r_type == elfcpp::R_MIPS16_26
323 || r_type == elfcpp::R_MICROMIPS_26_S1);
324 }
325
326 static inline bool
327 micromips_branch_reloc(unsigned int r_type)
328 {
329 return (r_type == elfcpp::R_MICROMIPS_26_S1
330 || r_type == elfcpp::R_MICROMIPS_PC16_S1
331 || r_type == elfcpp::R_MICROMIPS_PC10_S1
332 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
333 }
334
335 // Check if R_TYPE is a MIPS16 reloc.
336 static inline bool
337 mips16_reloc(unsigned int r_type)
338 {
339 switch (r_type)
340 {
341 case elfcpp::R_MIPS16_26:
342 case elfcpp::R_MIPS16_GPREL:
343 case elfcpp::R_MIPS16_GOT16:
344 case elfcpp::R_MIPS16_CALL16:
345 case elfcpp::R_MIPS16_HI16:
346 case elfcpp::R_MIPS16_LO16:
347 case elfcpp::R_MIPS16_TLS_GD:
348 case elfcpp::R_MIPS16_TLS_LDM:
349 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
351 case elfcpp::R_MIPS16_TLS_GOTTPREL:
352 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
353 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
354 return true;
355
356 default:
357 return false;
358 }
359 }
360
361 // Check if R_TYPE is a microMIPS reloc.
362 static inline bool
363 micromips_reloc(unsigned int r_type)
364 {
365 switch (r_type)
366 {
367 case elfcpp::R_MICROMIPS_26_S1:
368 case elfcpp::R_MICROMIPS_HI16:
369 case elfcpp::R_MICROMIPS_LO16:
370 case elfcpp::R_MICROMIPS_GPREL16:
371 case elfcpp::R_MICROMIPS_LITERAL:
372 case elfcpp::R_MICROMIPS_GOT16:
373 case elfcpp::R_MICROMIPS_PC7_S1:
374 case elfcpp::R_MICROMIPS_PC10_S1:
375 case elfcpp::R_MICROMIPS_PC16_S1:
376 case elfcpp::R_MICROMIPS_CALL16:
377 case elfcpp::R_MICROMIPS_GOT_DISP:
378 case elfcpp::R_MICROMIPS_GOT_PAGE:
379 case elfcpp::R_MICROMIPS_GOT_OFST:
380 case elfcpp::R_MICROMIPS_GOT_HI16:
381 case elfcpp::R_MICROMIPS_GOT_LO16:
382 case elfcpp::R_MICROMIPS_SUB:
383 case elfcpp::R_MICROMIPS_HIGHER:
384 case elfcpp::R_MICROMIPS_HIGHEST:
385 case elfcpp::R_MICROMIPS_CALL_HI16:
386 case elfcpp::R_MICROMIPS_CALL_LO16:
387 case elfcpp::R_MICROMIPS_SCN_DISP:
388 case elfcpp::R_MICROMIPS_JALR:
389 case elfcpp::R_MICROMIPS_HI0_LO16:
390 case elfcpp::R_MICROMIPS_TLS_GD:
391 case elfcpp::R_MICROMIPS_TLS_LDM:
392 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
394 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
395 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
396 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
397 case elfcpp::R_MICROMIPS_GPREL7_S2:
398 case elfcpp::R_MICROMIPS_PC23_S2:
399 return true;
400
401 default:
402 return false;
403 }
404 }
405
406 static inline bool
407 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
408 {
409 switch (high_reloc)
410 {
411 case elfcpp::R_MIPS_HI16:
412 case elfcpp::R_MIPS_GOT16:
413 return lo16_reloc == elfcpp::R_MIPS_LO16;
414 case elfcpp::R_MIPS_PCHI16:
415 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
416 case elfcpp::R_MIPS16_HI16:
417 case elfcpp::R_MIPS16_GOT16:
418 return lo16_reloc == elfcpp::R_MIPS16_LO16;
419 case elfcpp::R_MICROMIPS_HI16:
420 case elfcpp::R_MICROMIPS_GOT16:
421 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
422 default:
423 return false;
424 }
425 }
426
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
429 //
430 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 // (2) a SYMBOL address, where SYMBOL is not local to an input object
433 // (sym != NULL, symndx == -1)
434 // (3) a TLS LDM slot (there's only one of these per GOT.)
435 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
436
437 template<int size, bool big_endian>
438 class Mips_got_entry
439 {
440 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
441
442 public:
443 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
444 Mips_address addend, unsigned char tls_type,
445 unsigned int shndx, bool is_section_symbol)
446 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
447 is_section_symbol_(is_section_symbol), shndx_(shndx)
448 { this->d.object = object; }
449
450 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
451 : addend_(0), symndx_(-1U), tls_type_(tls_type),
452 is_section_symbol_(false), shndx_(-1U)
453 { this->d.sym = sym; }
454
455 // Return whether this entry is for a local symbol.
456 bool
457 is_for_local_symbol() const
458 { return this->symndx_ != -1U; }
459
460 // Return whether this entry is for a global symbol.
461 bool
462 is_for_global_symbol() const
463 { return this->symndx_ == -1U; }
464
465 // Return the hash of this entry.
466 size_t
467 hash() const
468 {
469 if (this->tls_type_ == GOT_TLS_LDM)
470 return this->symndx_ + (1 << 18);
471
472 size_t name_hash_value = gold::string_hash<char>(
473 (this->symndx_ != -1U)
474 ? this->d.object->name().c_str()
475 : this->d.sym->name());
476 size_t addend = this->addend_;
477 return name_hash_value ^ this->symndx_ ^ addend;
478 }
479
480 // Return whether this entry is equal to OTHER.
481 bool
482 equals(Mips_got_entry<size, big_endian>* other) const
483 {
484 if (this->tls_type_ == GOT_TLS_LDM)
485 return true;
486
487 return ((this->tls_type_ == other->tls_type_)
488 && (this->symndx_ == other->symndx_)
489 && ((this->symndx_ != -1U)
490 ? (this->d.object == other->d.object)
491 : (this->d.sym == other->d.sym))
492 && (this->addend_ == other->addend_));
493 }
494
495 // Return input object that needs this GOT entry.
496 Mips_relobj<size, big_endian>*
497 object() const
498 {
499 gold_assert(this->symndx_ != -1U);
500 return this->d.object;
501 }
502
503 // Return local symbol index for local GOT entries.
504 unsigned int
505 symndx() const
506 {
507 gold_assert(this->symndx_ != -1U);
508 return this->symndx_;
509 }
510
511 // Return the relocation addend for local GOT entries.
512 Mips_address
513 addend() const
514 { return this->addend_; }
515
516 // Return global symbol for global GOT entries.
517 Mips_symbol<size>*
518 sym() const
519 {
520 gold_assert(this->symndx_ == -1U);
521 return this->d.sym;
522 }
523
524 // Return whether this is a TLS GOT entry.
525 bool
526 is_tls_entry() const
527 { return this->tls_type_ != GOT_TLS_NONE; }
528
529 // Return TLS type of this GOT entry.
530 unsigned char
531 tls_type() const
532 { return this->tls_type_; }
533
534 // Return section index of the local symbol for local GOT entries.
535 unsigned int
536 shndx() const
537 { return this->shndx_; }
538
539 // Return whether this is a STT_SECTION symbol.
540 bool
541 is_section_symbol() const
542 { return this->is_section_symbol_; }
543
544 private:
545 // The addend.
546 Mips_address addend_;
547
548 // The index of the symbol if we have a local symbol; -1 otherwise.
549 unsigned int symndx_;
550
551 union
552 {
553 // The input object for local symbols that needs the GOT entry.
554 Mips_relobj<size, big_endian>* object;
555 // If symndx == -1, the global symbol corresponding to this GOT entry. The
556 // symbol's entry is in the local area if mips_sym->global_got_area is
557 // GGA_NONE, otherwise it is in the global area.
558 Mips_symbol<size>* sym;
559 } d;
560
561 // The TLS type of this GOT entry. An LDM GOT entry will be a local
562 // symbol entry with r_symndx == 0.
563 unsigned char tls_type_;
564
565 // Whether this is a STT_SECTION symbol.
566 bool is_section_symbol_;
567
568 // For local GOT entries, section index of the local symbol.
569 unsigned int shndx_;
570 };
571
572 // Hash for Mips_got_entry.
573
574 template<int size, bool big_endian>
575 class Mips_got_entry_hash
576 {
577 public:
578 size_t
579 operator()(Mips_got_entry<size, big_endian>* entry) const
580 { return entry->hash(); }
581 };
582
583 // Equality for Mips_got_entry.
584
585 template<int size, bool big_endian>
586 class Mips_got_entry_eq
587 {
588 public:
589 bool
590 operator()(Mips_got_entry<size, big_endian>* e1,
591 Mips_got_entry<size, big_endian>* e2) const
592 { return e1->equals(e2); }
593 };
594
595 // Hash for Mips_symbol.
596
597 template<int size>
598 class Mips_symbol_hash
599 {
600 public:
601 size_t
602 operator()(Mips_symbol<size>* sym) const
603 { return sym->hash(); }
604 };
605
606 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
607 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
608 // increasing MIN_ADDEND.
609
610 struct Got_page_range
611 {
612 Got_page_range()
613 : next(NULL), min_addend(0), max_addend(0)
614 { }
615
616 Got_page_range* next;
617 int min_addend;
618 int max_addend;
619
620 // Return the maximum number of GOT page entries required.
621 int
622 get_max_pages()
623 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
624 };
625
626 // Got_page_entry. This class describes the range of addends that are applied
627 // to page relocations against a given symbol.
628
629 struct Got_page_entry
630 {
631 Got_page_entry()
632 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
633 { }
634
635 Got_page_entry(Object* object_, unsigned int symndx_)
636 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
637 { }
638
639 // The input object that needs the GOT page entry.
640 Object* object;
641 // The index of the symbol, as stored in the relocation r_info.
642 unsigned int symndx;
643 // The ranges for this page entry.
644 Got_page_range* ranges;
645 // The maximum number of page entries needed for RANGES.
646 unsigned int num_pages;
647 };
648
649 // Hash for Got_page_entry.
650
651 struct Got_page_entry_hash
652 {
653 size_t
654 operator()(Got_page_entry* entry) const
655 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
656 };
657
658 // Equality for Got_page_entry.
659
660 struct Got_page_entry_eq
661 {
662 bool
663 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
664 {
665 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
666 }
667 };
668
669 // This class is used to hold .got information when linking.
670
671 template<int size, bool big_endian>
672 class Mips_got_info
673 {
674 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
675 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
676 Reloc_section;
677 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
678
679 // Unordered set of GOT entries.
680 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
681 Mips_got_entry_hash<size, big_endian>,
682 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
683
684 // Unordered set of GOT page entries.
685 typedef Unordered_set<Got_page_entry*,
686 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
687
688 // Unordered set of global GOT entries.
689 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
690 Global_got_entry_set;
691
692 public:
693 Mips_got_info()
694 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
695 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
696 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
697 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
698 offset_(0)
699 { }
700
701 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
702 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
703 void
704 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
705 unsigned int symndx, Mips_address addend,
706 unsigned int r_type, unsigned int shndx,
707 bool is_section_symbol);
708
709 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
710 // in OBJECT. FOR_CALL is true if the caller is only interested in
711 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
712 // relocation.
713 void
714 record_global_got_symbol(Mips_symbol<size>* mips_sym,
715 Mips_relobj<size, big_endian>* object,
716 unsigned int r_type, bool dyn_reloc, bool for_call);
717
718 // Add ENTRY to master GOT and to OBJECT's GOT.
719 void
720 record_got_entry(Mips_got_entry<size, big_endian>* entry,
721 Mips_relobj<size, big_endian>* object);
722
723 // Record that OBJECT has a page relocation against symbol SYMNDX and
724 // that ADDEND is the addend for that relocation.
725 void
726 record_got_page_entry(Mips_relobj<size, big_endian>* object,
727 unsigned int symndx, int addend);
728
729 // Create all entries that should be in the local part of the GOT.
730 void
731 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
732
733 // Create GOT page entries.
734 void
735 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
736
737 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
738 void
739 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
740 unsigned int non_reloc_only_global_gotno);
741
742 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
743 void
744 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
745
746 // Create TLS GOT entries.
747 void
748 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
749
750 // Decide whether the symbol needs an entry in the global part of the primary
751 // GOT, setting global_got_area accordingly. Count the number of global
752 // symbols that are in the primary GOT only because they have dynamic
753 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
754 void
755 count_got_symbols(Symbol_table* symtab);
756
757 // Return the offset of GOT page entry for VALUE.
758 unsigned int
759 get_got_page_offset(Mips_address value,
760 Mips_output_data_got<size, big_endian>* got);
761
762 // Count the number of GOT entries required.
763 void
764 count_got_entries();
765
766 // Count the number of GOT entries required by ENTRY. Accumulate the result.
767 void
768 count_got_entry(Mips_got_entry<size, big_endian>* entry);
769
770 // Add FROM's GOT entries.
771 void
772 add_got_entries(Mips_got_info<size, big_endian>* from);
773
774 // Add FROM's GOT page entries.
775 void
776 add_got_page_entries(Mips_got_info<size, big_endian>* from);
777
778 // Return GOT size.
779 unsigned int
780 got_size() const
781 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
782 + this->tls_gotno_) * size/8);
783 }
784
785 // Return the number of local GOT entries.
786 unsigned int
787 local_gotno() const
788 { return this->local_gotno_; }
789
790 // Return the maximum number of page GOT entries needed.
791 unsigned int
792 page_gotno() const
793 { return this->page_gotno_; }
794
795 // Return the number of global GOT entries.
796 unsigned int
797 global_gotno() const
798 { return this->global_gotno_; }
799
800 // Set the number of global GOT entries.
801 void
802 set_global_gotno(unsigned int global_gotno)
803 { this->global_gotno_ = global_gotno; }
804
805 // Return the number of GGA_RELOC_ONLY global GOT entries.
806 unsigned int
807 reloc_only_gotno() const
808 { return this->reloc_only_gotno_; }
809
810 // Return the number of TLS GOT entries.
811 unsigned int
812 tls_gotno() const
813 { return this->tls_gotno_; }
814
815 // Return the GOT type for this GOT. Used for multi-GOT links only.
816 unsigned int
817 multigot_got_type(unsigned int got_type) const
818 {
819 switch (got_type)
820 {
821 case GOT_TYPE_STANDARD:
822 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
823 case GOT_TYPE_TLS_OFFSET:
824 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
825 case GOT_TYPE_TLS_PAIR:
826 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
827 default:
828 gold_unreachable();
829 }
830 }
831
832 // Remove lazy-binding stubs for global symbols in this GOT.
833 void
834 remove_lazy_stubs(Target_mips<size, big_endian>* target);
835
836 // Return offset of this GOT from the start of .got section.
837 unsigned int
838 offset() const
839 { return this->offset_; }
840
841 // Set offset of this GOT from the start of .got section.
842 void
843 set_offset(unsigned int offset)
844 { this->offset_ = offset; }
845
846 // Set index of this GOT in multi-GOT links.
847 void
848 set_index(unsigned int index)
849 { this->index_ = index; }
850
851 // Return next GOT in multi-GOT links.
852 Mips_got_info<size, big_endian>*
853 next() const
854 { return this->next_; }
855
856 // Set next GOT in multi-GOT links.
857 void
858 set_next(Mips_got_info<size, big_endian>* next)
859 { this->next_ = next; }
860
861 // Return the offset of TLS LDM entry for this GOT.
862 unsigned int
863 tls_ldm_offset() const
864 { return this->tls_ldm_offset_; }
865
866 // Set the offset of TLS LDM entry for this GOT.
867 void
868 set_tls_ldm_offset(unsigned int tls_ldm_offset)
869 { this->tls_ldm_offset_ = tls_ldm_offset; }
870
871 Global_got_entry_set&
872 global_got_symbols()
873 { return this->global_got_symbols_; }
874
875 // Return the GOT_TLS_* type required by relocation type R_TYPE.
876 static int
877 mips_elf_reloc_tls_type(unsigned int r_type)
878 {
879 if (tls_gd_reloc(r_type))
880 return GOT_TLS_GD;
881
882 if (tls_ldm_reloc(r_type))
883 return GOT_TLS_LDM;
884
885 if (tls_gottprel_reloc(r_type))
886 return GOT_TLS_IE;
887
888 return GOT_TLS_NONE;
889 }
890
891 // Return the number of GOT slots needed for GOT TLS type TYPE.
892 static int
893 mips_tls_got_entries(unsigned int type)
894 {
895 switch (type)
896 {
897 case GOT_TLS_GD:
898 case GOT_TLS_LDM:
899 return 2;
900
901 case GOT_TLS_IE:
902 return 1;
903
904 case GOT_TLS_NONE:
905 return 0;
906
907 default:
908 gold_unreachable();
909 }
910 }
911
912 private:
913 // The number of local GOT entries.
914 unsigned int local_gotno_;
915 // The maximum number of page GOT entries needed.
916 unsigned int page_gotno_;
917 // The number of global GOT entries.
918 unsigned int global_gotno_;
919 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
920 unsigned int reloc_only_gotno_;
921 // The number of TLS GOT entries.
922 unsigned int tls_gotno_;
923 // The offset of TLS LDM entry for this GOT.
924 unsigned int tls_ldm_offset_;
925 // All symbols that have global GOT entry.
926 Global_got_entry_set global_got_symbols_;
927 // A hash table holding GOT entries.
928 Got_entry_set got_entries_;
929 // A hash table of GOT page entries.
930 Got_page_entry_set got_page_entries_;
931 // The offset of first GOT page entry for this GOT.
932 unsigned int got_page_offset_start_;
933 // The offset of next available GOT page entry for this GOT.
934 unsigned int got_page_offset_next_;
935 // A hash table that maps GOT page entry value to the GOT offset where
936 // the entry is located.
937 Got_page_offsets got_page_offsets_;
938 // In multi-GOT links, a pointer to the next GOT.
939 Mips_got_info<size, big_endian>* next_;
940 // Index of this GOT in multi-GOT links.
941 unsigned int index_;
942 // The offset of this GOT in multi-GOT links.
943 unsigned int offset_;
944 };
945
946 // This is a helper class used during relocation scan. It records GOT16 addend.
947
948 template<int size, bool big_endian>
949 struct got16_addend
950 {
951 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
952
953 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
954 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
955 Mips_address _addend)
956 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
957 addend(_addend)
958 { }
959
960 const Sized_relobj_file<size, big_endian>* object;
961 unsigned int shndx;
962 unsigned int r_type;
963 unsigned int r_sym;
964 Mips_address addend;
965 };
966
967 // .MIPS.abiflags section content
968
969 template<bool big_endian>
970 struct Mips_abiflags
971 {
972 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
973 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
974 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
975
976 Mips_abiflags()
977 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
978 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
979 { }
980
981 // Version of flags structure.
982 Valtype16 version;
983 // The level of the ISA: 1-5, 32, 64.
984 Valtype8 isa_level;
985 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
986 Valtype8 isa_rev;
987 // The size of general purpose registers.
988 Valtype8 gpr_size;
989 // The size of co-processor 1 registers.
990 Valtype8 cpr1_size;
991 // The size of co-processor 2 registers.
992 Valtype8 cpr2_size;
993 // The floating-point ABI.
994 Valtype8 fp_abi;
995 // Processor-specific extension.
996 Valtype32 isa_ext;
997 // Mask of ASEs used.
998 Valtype32 ases;
999 // Mask of general flags.
1000 Valtype32 flags1;
1001 Valtype32 flags2;
1002 };
1003
1004 // Mips_symbol class. Holds additional symbol information needed for Mips.
1005
1006 template<int size>
1007 class Mips_symbol : public Sized_symbol<size>
1008 {
1009 public:
1010 Mips_symbol()
1011 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1012 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1013 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1014 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1015 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1016 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1017 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1018 { }
1019
1020 // Return whether this is a MIPS16 symbol.
1021 bool
1022 is_mips16() const
1023 {
1024 // (st_other & STO_MIPS16) == STO_MIPS16
1025 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1026 == elfcpp::STO_MIPS16 >> 2);
1027 }
1028
1029 // Return whether this is a microMIPS symbol.
1030 bool
1031 is_micromips() const
1032 {
1033 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1034 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1035 == elfcpp::STO_MICROMIPS >> 2);
1036 }
1037
1038 // Return whether the symbol needs MIPS16 fn_stub.
1039 bool
1040 need_fn_stub() const
1041 { return this->need_fn_stub_; }
1042
1043 // Set that the symbol needs MIPS16 fn_stub.
1044 void
1045 set_need_fn_stub()
1046 { this->need_fn_stub_ = true; }
1047
1048 // Return whether this symbol is referenced by branch relocations from
1049 // any non-PIC input file.
1050 bool
1051 has_nonpic_branches() const
1052 { return this->has_nonpic_branches_; }
1053
1054 // Set that this symbol is referenced by branch relocations from
1055 // any non-PIC input file.
1056 void
1057 set_has_nonpic_branches()
1058 { this->has_nonpic_branches_ = true; }
1059
1060 // Return the offset of the la25 stub for this symbol from the start of the
1061 // la25 stub section.
1062 unsigned int
1063 la25_stub_offset() const
1064 { return this->la25_stub_offset_; }
1065
1066 // Set the offset of the la25 stub for this symbol from the start of the
1067 // la25 stub section.
1068 void
1069 set_la25_stub_offset(unsigned int offset)
1070 { this->la25_stub_offset_ = offset; }
1071
1072 // Return whether the symbol has la25 stub. This is true if this symbol is
1073 // for a PIC function, and there are non-PIC branches and jumps to it.
1074 bool
1075 has_la25_stub() const
1076 { return this->la25_stub_offset_ != -1U; }
1077
1078 // Return whether there is a relocation against this symbol that must be
1079 // resolved by the static linker (that is, the relocation cannot possibly
1080 // be made dynamic).
1081 bool
1082 has_static_relocs() const
1083 { return this->has_static_relocs_; }
1084
1085 // Set that there is a relocation against this symbol that must be resolved
1086 // by the static linker (that is, the relocation cannot possibly be made
1087 // dynamic).
1088 void
1089 set_has_static_relocs()
1090 { this->has_static_relocs_ = true; }
1091
1092 // Return whether we must not create a lazy-binding stub for this symbol.
1093 bool
1094 no_lazy_stub() const
1095 { return this->no_lazy_stub_; }
1096
1097 // Set that we must not create a lazy-binding stub for this symbol.
1098 void
1099 set_no_lazy_stub()
1100 { this->no_lazy_stub_ = true; }
1101
1102 // Return the offset of the lazy-binding stub for this symbol from the start
1103 // of .MIPS.stubs section.
1104 unsigned int
1105 lazy_stub_offset() const
1106 { return this->lazy_stub_offset_; }
1107
1108 // Set the offset of the lazy-binding stub for this symbol from the start
1109 // of .MIPS.stubs section.
1110 void
1111 set_lazy_stub_offset(unsigned int offset)
1112 { this->lazy_stub_offset_ = offset; }
1113
1114 // Return whether there are any relocations for this symbol where
1115 // pointer equality matters.
1116 bool
1117 pointer_equality_needed() const
1118 { return this->pointer_equality_needed_; }
1119
1120 // Set that there are relocations for this symbol where pointer equality
1121 // matters.
1122 void
1123 set_pointer_equality_needed()
1124 { this->pointer_equality_needed_ = true; }
1125
1126 // Return global GOT area where this symbol in located.
1127 Global_got_area
1128 global_got_area() const
1129 { return this->global_got_area_; }
1130
1131 // Set global GOT area where this symbol in located.
1132 void
1133 set_global_got_area(Global_got_area global_got_area)
1134 { this->global_got_area_ = global_got_area; }
1135
1136 // Return the global GOT offset for this symbol. For multi-GOT links, this
1137 // returns the offset from the start of .got section to the first GOT entry
1138 // for the symbol. Note that in multi-GOT links the symbol can have entry
1139 // in more than one GOT.
1140 unsigned int
1141 global_gotoffset() const
1142 { return this->global_gotoffset_; }
1143
1144 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1145 // the symbol can have entry in more than one GOT. This method will set
1146 // the offset only if it is less than current offset.
1147 void
1148 set_global_gotoffset(unsigned int offset)
1149 {
1150 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1151 this->global_gotoffset_ = offset;
1152 }
1153
1154 // Return whether all GOT relocations for this symbol are for calls.
1155 bool
1156 got_only_for_calls() const
1157 { return this->got_only_for_calls_; }
1158
1159 // Set that there is a GOT relocation for this symbol that is not for call.
1160 void
1161 set_got_not_only_for_calls()
1162 { this->got_only_for_calls_ = false; }
1163
1164 // Return whether this is a PIC symbol.
1165 bool
1166 is_pic() const
1167 {
1168 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1169 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1170 == (elfcpp::STO_MIPS_PIC >> 2));
1171 }
1172
1173 // Set the flag in st_other field that marks this symbol as PIC.
1174 void
1175 set_pic()
1176 {
1177 if (this->is_mips16())
1178 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1179 this->set_nonvis((this->nonvis()
1180 & ~((elfcpp::STO_MIPS16 >> 2)
1181 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1182 | (elfcpp::STO_MIPS_PIC >> 2));
1183 else
1184 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1185 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1186 | (elfcpp::STO_MIPS_PIC >> 2));
1187 }
1188
1189 // Set the flag in st_other field that marks this symbol as PLT.
1190 void
1191 set_mips_plt()
1192 {
1193 if (this->is_mips16())
1194 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1195 this->set_nonvis((this->nonvis()
1196 & ((elfcpp::STO_MIPS16 >> 2)
1197 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1198 | (elfcpp::STO_MIPS_PLT >> 2));
1199
1200 else
1201 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1202 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1203 | (elfcpp::STO_MIPS_PLT >> 2));
1204 }
1205
1206 // Downcast a base pointer to a Mips_symbol pointer.
1207 static Mips_symbol<size>*
1208 as_mips_sym(Symbol* sym)
1209 { return static_cast<Mips_symbol<size>*>(sym); }
1210
1211 // Downcast a base pointer to a Mips_symbol pointer.
1212 static const Mips_symbol<size>*
1213 as_mips_sym(const Symbol* sym)
1214 { return static_cast<const Mips_symbol<size>*>(sym); }
1215
1216 // Return whether the symbol has lazy-binding stub.
1217 bool
1218 has_lazy_stub() const
1219 { return this->has_lazy_stub_; }
1220
1221 // Set whether the symbol has lazy-binding stub.
1222 void
1223 set_has_lazy_stub(bool has_lazy_stub)
1224 { this->has_lazy_stub_ = has_lazy_stub; }
1225
1226 // Return whether the symbol needs a standard PLT entry.
1227 bool
1228 needs_mips_plt() const
1229 { return this->needs_mips_plt_; }
1230
1231 // Set whether the symbol needs a standard PLT entry.
1232 void
1233 set_needs_mips_plt(bool needs_mips_plt)
1234 { this->needs_mips_plt_ = needs_mips_plt; }
1235
1236 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1237 // entry.
1238 bool
1239 needs_comp_plt() const
1240 { return this->needs_comp_plt_; }
1241
1242 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1243 void
1244 set_needs_comp_plt(bool needs_comp_plt)
1245 { this->needs_comp_plt_ = needs_comp_plt; }
1246
1247 // Return standard PLT entry offset, or -1 if none.
1248 unsigned int
1249 mips_plt_offset() const
1250 { return this->mips_plt_offset_; }
1251
1252 // Set standard PLT entry offset.
1253 void
1254 set_mips_plt_offset(unsigned int mips_plt_offset)
1255 { this->mips_plt_offset_ = mips_plt_offset; }
1256
1257 // Return whether the symbol has standard PLT entry.
1258 bool
1259 has_mips_plt_offset() const
1260 { return this->mips_plt_offset_ != -1U; }
1261
1262 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1263 unsigned int
1264 comp_plt_offset() const
1265 { return this->comp_plt_offset_; }
1266
1267 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1268 void
1269 set_comp_plt_offset(unsigned int comp_plt_offset)
1270 { this->comp_plt_offset_ = comp_plt_offset; }
1271
1272 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1273 bool
1274 has_comp_plt_offset() const
1275 { return this->comp_plt_offset_ != -1U; }
1276
1277 // Return MIPS16 fn stub for a symbol.
1278 template<bool big_endian>
1279 Mips16_stub_section<size, big_endian>*
1280 get_mips16_fn_stub() const
1281 {
1282 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1283 }
1284
1285 // Set MIPS16 fn stub for a symbol.
1286 void
1287 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1288 { this->mips16_fn_stub_ = stub; }
1289
1290 // Return whether symbol has MIPS16 fn stub.
1291 bool
1292 has_mips16_fn_stub() const
1293 { return this->mips16_fn_stub_ != NULL; }
1294
1295 // Return MIPS16 call stub for a symbol.
1296 template<bool big_endian>
1297 Mips16_stub_section<size, big_endian>*
1298 get_mips16_call_stub() const
1299 {
1300 return static_cast<Mips16_stub_section<size, big_endian>*>(
1301 mips16_call_stub_);
1302 }
1303
1304 // Set MIPS16 call stub for a symbol.
1305 void
1306 set_mips16_call_stub(Mips16_stub_section_base* stub)
1307 { this->mips16_call_stub_ = stub; }
1308
1309 // Return whether symbol has MIPS16 call stub.
1310 bool
1311 has_mips16_call_stub() const
1312 { return this->mips16_call_stub_ != NULL; }
1313
1314 // Return MIPS16 call_fp stub for a symbol.
1315 template<bool big_endian>
1316 Mips16_stub_section<size, big_endian>*
1317 get_mips16_call_fp_stub() const
1318 {
1319 return static_cast<Mips16_stub_section<size, big_endian>*>(
1320 mips16_call_fp_stub_);
1321 }
1322
1323 // Set MIPS16 call_fp stub for a symbol.
1324 void
1325 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1326 { this->mips16_call_fp_stub_ = stub; }
1327
1328 // Return whether symbol has MIPS16 call_fp stub.
1329 bool
1330 has_mips16_call_fp_stub() const
1331 { return this->mips16_call_fp_stub_ != NULL; }
1332
1333 bool
1334 get_applied_secondary_got_fixup() const
1335 { return applied_secondary_got_fixup_; }
1336
1337 void
1338 set_applied_secondary_got_fixup()
1339 { this->applied_secondary_got_fixup_ = true; }
1340
1341 // Return the hash of this symbol.
1342 size_t
1343 hash() const
1344 {
1345 return gold::string_hash<char>(this->name());
1346 }
1347
1348 private:
1349 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1350 // appears in any relocs other than a 16 bit call.
1351 bool need_fn_stub_;
1352
1353 // True if this symbol is referenced by branch relocations from
1354 // any non-PIC input file. This is used to determine whether an
1355 // la25 stub is required.
1356 bool has_nonpic_branches_;
1357
1358 // The offset of the la25 stub for this symbol from the start of the
1359 // la25 stub section.
1360 unsigned int la25_stub_offset_;
1361
1362 // True if there is a relocation against this symbol that must be
1363 // resolved by the static linker (that is, the relocation cannot
1364 // possibly be made dynamic).
1365 bool has_static_relocs_;
1366
1367 // Whether we must not create a lazy-binding stub for this symbol.
1368 // This is true if the symbol has relocations related to taking the
1369 // function's address.
1370 bool no_lazy_stub_;
1371
1372 // The offset of the lazy-binding stub for this symbol from the start of
1373 // .MIPS.stubs section.
1374 unsigned int lazy_stub_offset_;
1375
1376 // True if there are any relocations for this symbol where pointer equality
1377 // matters.
1378 bool pointer_equality_needed_;
1379
1380 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1381 // in the global part of the GOT.
1382 Global_got_area global_got_area_;
1383
1384 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1385 // from the start of .got section to the first GOT entry for the symbol.
1386 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1387 unsigned int global_gotoffset_;
1388
1389 // Whether all GOT relocations for this symbol are for calls.
1390 bool got_only_for_calls_;
1391 // Whether the symbol has lazy-binding stub.
1392 bool has_lazy_stub_;
1393 // Whether the symbol needs a standard PLT entry.
1394 bool needs_mips_plt_;
1395 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1396 bool needs_comp_plt_;
1397 // Standard PLT entry offset, or -1 if none.
1398 unsigned int mips_plt_offset_;
1399 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1400 unsigned int comp_plt_offset_;
1401 // MIPS16 fn stub for a symbol.
1402 Mips16_stub_section_base* mips16_fn_stub_;
1403 // MIPS16 call stub for a symbol.
1404 Mips16_stub_section_base* mips16_call_stub_;
1405 // MIPS16 call_fp stub for a symbol.
1406 Mips16_stub_section_base* mips16_call_fp_stub_;
1407
1408 bool applied_secondary_got_fixup_;
1409 };
1410
1411 // Mips16_stub_section class.
1412
1413 // The mips16 compiler uses a couple of special sections to handle
1414 // floating point arguments.
1415
1416 // Section names that look like .mips16.fn.FNNAME contain stubs that
1417 // copy floating point arguments from the fp regs to the gp regs and
1418 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1419 // call should be redirected to the stub instead. If no 32 bit
1420 // function calls FNNAME, the stub should be discarded. We need to
1421 // consider any reference to the function, not just a call, because
1422 // if the address of the function is taken we will need the stub,
1423 // since the address might be passed to a 32 bit function.
1424
1425 // Section names that look like .mips16.call.FNNAME contain stubs
1426 // that copy floating point arguments from the gp regs to the fp
1427 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1428 // then any 16 bit function that calls FNNAME should be redirected
1429 // to the stub instead. If FNNAME is not a 32 bit function, the
1430 // stub should be discarded.
1431
1432 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1433 // which call FNNAME and then copy the return value from the fp regs
1434 // to the gp regs. These stubs store the return address in $18 while
1435 // calling FNNAME; any function which might call one of these stubs
1436 // must arrange to save $18 around the call. (This case is not
1437 // needed for 32 bit functions that call 16 bit functions, because
1438 // 16 bit functions always return floating point values in both
1439 // $f0/$f1 and $2/$3.)
1440
1441 // Note that in all cases FNNAME might be defined statically.
1442 // Therefore, FNNAME is not used literally. Instead, the relocation
1443 // information will indicate which symbol the section is for.
1444
1445 // We record any stubs that we find in the symbol table.
1446
1447 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1448
1449 class Mips16_stub_section_base { };
1450
1451 template<int size, bool big_endian>
1452 class Mips16_stub_section : public Mips16_stub_section_base
1453 {
1454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1455
1456 public:
1457 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1458 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1459 found_r_mips_none_(false)
1460 {
1461 gold_assert(object->is_mips16_fn_stub_section(shndx)
1462 || object->is_mips16_call_stub_section(shndx)
1463 || object->is_mips16_call_fp_stub_section(shndx));
1464 }
1465
1466 // Return the object of this stub section.
1467 Mips_relobj<size, big_endian>*
1468 object() const
1469 { return this->object_; }
1470
1471 // Return the size of a section.
1472 uint64_t
1473 section_size() const
1474 { return this->object_->section_size(this->shndx_); }
1475
1476 // Return section index of this stub section.
1477 unsigned int
1478 shndx() const
1479 { return this->shndx_; }
1480
1481 // Return symbol index, if stub is for a local function.
1482 unsigned int
1483 r_sym() const
1484 { return this->r_sym_; }
1485
1486 // Return symbol, if stub is for a global function.
1487 Mips_symbol<size>*
1488 gsym() const
1489 { return this->gsym_; }
1490
1491 // Return whether stub is for a local function.
1492 bool
1493 is_for_local_function() const
1494 { return this->gsym_ == NULL; }
1495
1496 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1497 // is found in the stub section. Try to find stub target.
1498 void
1499 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1500 {
1501 // To find target symbol for this stub, trust the first R_MIPS_NONE
1502 // relocation, if any. Otherwise trust the first relocation, whatever
1503 // its kind.
1504 if (this->found_r_mips_none_)
1505 return;
1506 if (r_type == elfcpp::R_MIPS_NONE)
1507 {
1508 this->r_sym_ = r_sym;
1509 this->gsym_ = NULL;
1510 this->found_r_mips_none_ = true;
1511 }
1512 else if (!is_target_found())
1513 this->r_sym_ = r_sym;
1514 }
1515
1516 // This method is called when a new relocation R_TYPE for global symbol GSYM
1517 // is found in the stub section. Try to find stub target.
1518 void
1519 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1520 {
1521 // To find target symbol for this stub, trust the first R_MIPS_NONE
1522 // relocation, if any. Otherwise trust the first relocation, whatever
1523 // its kind.
1524 if (this->found_r_mips_none_)
1525 return;
1526 if (r_type == elfcpp::R_MIPS_NONE)
1527 {
1528 this->gsym_ = gsym;
1529 this->r_sym_ = 0;
1530 this->found_r_mips_none_ = true;
1531 }
1532 else if (!is_target_found())
1533 this->gsym_ = gsym;
1534 }
1535
1536 // Return whether we found the stub target.
1537 bool
1538 is_target_found() const
1539 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1540
1541 // Return whether this is a fn stub.
1542 bool
1543 is_fn_stub() const
1544 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1545
1546 // Return whether this is a call stub.
1547 bool
1548 is_call_stub() const
1549 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1550
1551 // Return whether this is a call_fp stub.
1552 bool
1553 is_call_fp_stub() const
1554 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1555
1556 // Return the output address.
1557 Mips_address
1558 output_address() const
1559 {
1560 return (this->object_->output_section(this->shndx_)->address()
1561 + this->object_->output_section_offset(this->shndx_));
1562 }
1563
1564 private:
1565 // The object of this stub section.
1566 Mips_relobj<size, big_endian>* object_;
1567 // The section index of this stub section.
1568 unsigned int shndx_;
1569 // The symbol index, if stub is for a local function.
1570 unsigned int r_sym_;
1571 // The symbol, if stub is for a global function.
1572 Mips_symbol<size>* gsym_;
1573 // True if we found R_MIPS_NONE relocation in this stub.
1574 bool found_r_mips_none_;
1575 };
1576
1577 // Mips_relobj class.
1578
1579 template<int size, bool big_endian>
1580 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1581 {
1582 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1583 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1584 Mips16_stubs_int_map;
1585 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1586
1587 public:
1588 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1589 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1590 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1591 processor_specific_flags_(0), local_symbol_is_mips16_(),
1592 local_symbol_is_micromips_(), mips16_stub_sections_(),
1593 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1594 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1595 got_info_(NULL), section_is_mips16_fn_stub_(),
1596 section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1597 pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1598 gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1599 {
1600 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1601 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1602 }
1603
1604 ~Mips_relobj()
1605 { delete this->attributes_section_data_; }
1606
1607 // Downcast a base pointer to a Mips_relobj pointer. This is
1608 // not type-safe but we only use Mips_relobj not the base class.
1609 static Mips_relobj<size, big_endian>*
1610 as_mips_relobj(Relobj* relobj)
1611 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1612
1613 // Downcast a base pointer to a Mips_relobj pointer. This is
1614 // not type-safe but we only use Mips_relobj not the base class.
1615 static const Mips_relobj<size, big_endian>*
1616 as_mips_relobj(const Relobj* relobj)
1617 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1618
1619 // Processor-specific flags in ELF file header. This is valid only after
1620 // reading symbols.
1621 elfcpp::Elf_Word
1622 processor_specific_flags() const
1623 { return this->processor_specific_flags_; }
1624
1625 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1626 // index. This is only valid after do_count_local_symbol is called.
1627 bool
1628 local_symbol_is_mips16(unsigned int r_sym) const
1629 {
1630 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1631 return this->local_symbol_is_mips16_[r_sym];
1632 }
1633
1634 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1635 // index. This is only valid after do_count_local_symbol is called.
1636 bool
1637 local_symbol_is_micromips(unsigned int r_sym) const
1638 {
1639 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1640 return this->local_symbol_is_micromips_[r_sym];
1641 }
1642
1643 // Get or create MIPS16 stub section.
1644 Mips16_stub_section<size, big_endian>*
1645 get_mips16_stub_section(unsigned int shndx)
1646 {
1647 typename Mips16_stubs_int_map::const_iterator it =
1648 this->mips16_stub_sections_.find(shndx);
1649 if (it != this->mips16_stub_sections_.end())
1650 return (*it).second;
1651
1652 Mips16_stub_section<size, big_endian>* stub_section =
1653 new Mips16_stub_section<size, big_endian>(this, shndx);
1654 this->mips16_stub_sections_.insert(
1655 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1656 stub_section->shndx(), stub_section));
1657 return stub_section;
1658 }
1659
1660 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1661 // object doesn't have fn stub for R_SYM.
1662 Mips16_stub_section<size, big_endian>*
1663 get_local_mips16_fn_stub(unsigned int r_sym) const
1664 {
1665 typename Mips16_stubs_int_map::const_iterator it =
1666 this->local_mips16_fn_stubs_.find(r_sym);
1667 if (it != this->local_mips16_fn_stubs_.end())
1668 return (*it).second;
1669 return NULL;
1670 }
1671
1672 // Record that this object has MIPS16 fn stub for local symbol. This method
1673 // is only called if we decided not to discard the stub.
1674 void
1675 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1676 {
1677 gold_assert(stub->is_for_local_function());
1678 unsigned int r_sym = stub->r_sym();
1679 this->local_mips16_fn_stubs_.insert(
1680 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1681 r_sym, stub));
1682 }
1683
1684 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1685 // object doesn't have call stub for R_SYM.
1686 Mips16_stub_section<size, big_endian>*
1687 get_local_mips16_call_stub(unsigned int r_sym) const
1688 {
1689 typename Mips16_stubs_int_map::const_iterator it =
1690 this->local_mips16_call_stubs_.find(r_sym);
1691 if (it != this->local_mips16_call_stubs_.end())
1692 return (*it).second;
1693 return NULL;
1694 }
1695
1696 // Record that this object has MIPS16 call stub for local symbol. This method
1697 // is only called if we decided not to discard the stub.
1698 void
1699 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1700 {
1701 gold_assert(stub->is_for_local_function());
1702 unsigned int r_sym = stub->r_sym();
1703 this->local_mips16_call_stubs_.insert(
1704 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1705 r_sym, stub));
1706 }
1707
1708 // Record that we found "non 16-bit" call relocation against local symbol
1709 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1710 // is one.
1711 void
1712 add_local_non_16bit_call(unsigned int symndx)
1713 { this->local_non_16bit_calls_.insert(symndx); }
1714
1715 // Return true if there is any "non 16-bit" call relocation against local
1716 // symbol SYMNDX in this object.
1717 bool
1718 has_local_non_16bit_call_relocs(unsigned int symndx)
1719 {
1720 return (this->local_non_16bit_calls_.find(symndx)
1721 != this->local_non_16bit_calls_.end());
1722 }
1723
1724 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1725 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1726 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1727 void
1728 add_local_16bit_call(unsigned int symndx)
1729 { this->local_16bit_calls_.insert(symndx); }
1730
1731 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1732 // symbol SYMNDX in this object.
1733 bool
1734 has_local_16bit_call_relocs(unsigned int symndx)
1735 {
1736 return (this->local_16bit_calls_.find(symndx)
1737 != this->local_16bit_calls_.end());
1738 }
1739
1740 // Get gp value that was used to create this object.
1741 Mips_address
1742 gp_value() const
1743 { return this->gp_; }
1744
1745 // Return whether the object is a PIC object.
1746 bool
1747 is_pic() const
1748 { return this->is_pic_; }
1749
1750 // Return whether the object uses N32 ABI.
1751 bool
1752 is_n32() const
1753 { return this->is_n32_; }
1754
1755 // Return whether the object uses N64 ABI.
1756 bool
1757 is_n64() const
1758 { return size == 64; }
1759
1760 // Return whether the object uses NewABI conventions.
1761 bool
1762 is_newabi() const
1763 { return this->is_n32() || this->is_n64(); }
1764
1765 // Return Mips_got_info for this object.
1766 Mips_got_info<size, big_endian>*
1767 get_got_info() const
1768 { return this->got_info_; }
1769
1770 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1771 Mips_got_info<size, big_endian>*
1772 get_or_create_got_info()
1773 {
1774 if (!this->got_info_)
1775 this->got_info_ = new Mips_got_info<size, big_endian>();
1776 return this->got_info_;
1777 }
1778
1779 // Set Mips_got_info for this object.
1780 void
1781 set_got_info(Mips_got_info<size, big_endian>* got_info)
1782 { this->got_info_ = got_info; }
1783
1784 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1785 // after do_read_symbols is called.
1786 bool
1787 is_mips16_stub_section(unsigned int shndx)
1788 {
1789 return (is_mips16_fn_stub_section(shndx)
1790 || is_mips16_call_stub_section(shndx)
1791 || is_mips16_call_fp_stub_section(shndx));
1792 }
1793
1794 // Return TRUE if relocations in section SHNDX can refer directly to a
1795 // MIPS16 function rather than to a hard-float stub. This is only valid
1796 // after do_read_symbols is called.
1797 bool
1798 section_allows_mips16_refs(unsigned int shndx)
1799 {
1800 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1801 }
1802
1803 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1804 // after do_read_symbols is called.
1805 bool
1806 is_mips16_fn_stub_section(unsigned int shndx)
1807 {
1808 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1809 return this->section_is_mips16_fn_stub_[shndx];
1810 }
1811
1812 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1813 // after do_read_symbols is called.
1814 bool
1815 is_mips16_call_stub_section(unsigned int shndx)
1816 {
1817 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1818 return this->section_is_mips16_call_stub_[shndx];
1819 }
1820
1821 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1822 // valid after do_read_symbols is called.
1823 bool
1824 is_mips16_call_fp_stub_section(unsigned int shndx)
1825 {
1826 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1827 return this->section_is_mips16_call_fp_stub_[shndx];
1828 }
1829
1830 // Discard MIPS16 stub secions that are not needed.
1831 void
1832 discard_mips16_stub_sections(Symbol_table* symtab);
1833
1834 // Return whether there is a .reginfo section.
1835 bool
1836 has_reginfo_section() const
1837 { return this->has_reginfo_section_; }
1838
1839 // Return gprmask from the .reginfo section of this object.
1840 Valtype
1841 gprmask() const
1842 { return this->gprmask_; }
1843
1844 // Return cprmask1 from the .reginfo section of this object.
1845 Valtype
1846 cprmask1() const
1847 { return this->cprmask1_; }
1848
1849 // Return cprmask2 from the .reginfo section of this object.
1850 Valtype
1851 cprmask2() const
1852 { return this->cprmask2_; }
1853
1854 // Return cprmask3 from the .reginfo section of this object.
1855 Valtype
1856 cprmask3() const
1857 { return this->cprmask3_; }
1858
1859 // Return cprmask4 from the .reginfo section of this object.
1860 Valtype
1861 cprmask4() const
1862 { return this->cprmask4_; }
1863
1864 // This is the contents of the .MIPS.abiflags section if there is one.
1865 Mips_abiflags<big_endian>*
1866 abiflags()
1867 { return this->abiflags_; }
1868
1869 // This is the contents of the .gnu.attribute section if there is one.
1870 const Attributes_section_data*
1871 attributes_section_data() const
1872 { return this->attributes_section_data_; }
1873
1874 protected:
1875 // Count the local symbols.
1876 void
1877 do_count_local_symbols(Stringpool_template<char>*,
1878 Stringpool_template<char>*);
1879
1880 // Read the symbol information.
1881 void
1882 do_read_symbols(Read_symbols_data* sd);
1883
1884 private:
1885 // The name of the options section.
1886 const char* mips_elf_options_section_name()
1887 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1888
1889 // processor-specific flags in ELF file header.
1890 elfcpp::Elf_Word processor_specific_flags_;
1891
1892 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1893 // This is only valid after do_count_local_symbol is called.
1894 std::vector<bool> local_symbol_is_mips16_;
1895
1896 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1897 // This is only valid after do_count_local_symbol is called.
1898 std::vector<bool> local_symbol_is_micromips_;
1899
1900 // Map from section index to the MIPS16 stub for that section. This contains
1901 // all stubs found in this object.
1902 Mips16_stubs_int_map mips16_stub_sections_;
1903
1904 // Local symbols that have "non 16-bit" call relocation. This relocation
1905 // would need to refer to a MIPS16 fn stub, if there is one.
1906 std::set<unsigned int> local_non_16bit_calls_;
1907
1908 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1909 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1910 // relocation that refers to the stub symbol.
1911 std::set<unsigned int> local_16bit_calls_;
1912
1913 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1914 // This contains only the stubs that we decided not to discard.
1915 Mips16_stubs_int_map local_mips16_fn_stubs_;
1916
1917 // Map from local symbol index to the MIPS16 call stub for that symbol.
1918 // This contains only the stubs that we decided not to discard.
1919 Mips16_stubs_int_map local_mips16_call_stubs_;
1920
1921 // gp value that was used to create this object.
1922 Mips_address gp_;
1923 // Whether the object is a PIC object.
1924 bool is_pic_ : 1;
1925 // Whether the object uses N32 ABI.
1926 bool is_n32_ : 1;
1927 // Whether the object contains a .reginfo section.
1928 bool has_reginfo_section_ : 1;
1929 // The Mips_got_info for this object.
1930 Mips_got_info<size, big_endian>* got_info_;
1931
1932 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1933 // This is only valid after do_read_symbols is called.
1934 std::vector<bool> section_is_mips16_fn_stub_;
1935
1936 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1937 // This is only valid after do_read_symbols is called.
1938 std::vector<bool> section_is_mips16_call_stub_;
1939
1940 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1941 // This is only valid after do_read_symbols is called.
1942 std::vector<bool> section_is_mips16_call_fp_stub_;
1943
1944 // .pdr section index.
1945 unsigned int pdr_shndx_;
1946
1947 // Object attributes if there is a .gnu.attributes section or NULL.
1948 Attributes_section_data* attributes_section_data_;
1949
1950 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1951 Mips_abiflags<big_endian>* abiflags_;
1952
1953 // gprmask from the .reginfo section of this object.
1954 Valtype gprmask_;
1955 // cprmask1 from the .reginfo section of this object.
1956 Valtype cprmask1_;
1957 // cprmask2 from the .reginfo section of this object.
1958 Valtype cprmask2_;
1959 // cprmask3 from the .reginfo section of this object.
1960 Valtype cprmask3_;
1961 // cprmask4 from the .reginfo section of this object.
1962 Valtype cprmask4_;
1963 };
1964
1965 // Mips_output_data_got class.
1966
1967 template<int size, bool big_endian>
1968 class Mips_output_data_got : public Output_data_got<size, big_endian>
1969 {
1970 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1971 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1972 Reloc_section;
1973 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1974
1975 public:
1976 Mips_output_data_got(Target_mips<size, big_endian>* target,
1977 Symbol_table* symtab, Layout* layout)
1978 : Output_data_got<size, big_endian>(), target_(target),
1979 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1980 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1981 secondary_got_relocs_()
1982 {
1983 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1984 this->set_addralign(16);
1985 }
1986
1987 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1988 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1989 void
1990 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1991 unsigned int symndx, Mips_address addend,
1992 unsigned int r_type, unsigned int shndx,
1993 bool is_section_symbol)
1994 {
1995 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1996 r_type, shndx,
1997 is_section_symbol);
1998 }
1999
2000 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2001 // in OBJECT. FOR_CALL is true if the caller is only interested in
2002 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2003 // relocation.
2004 void
2005 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2006 Mips_relobj<size, big_endian>* object,
2007 unsigned int r_type, bool dyn_reloc, bool for_call)
2008 {
2009 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2010 dyn_reloc, for_call);
2011 }
2012
2013 // Record that OBJECT has a page relocation against symbol SYMNDX and
2014 // that ADDEND is the addend for that relocation.
2015 void
2016 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2017 unsigned int symndx, int addend)
2018 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2019
2020 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2021 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2022 // applied in a static link.
2023 void
2024 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2025 Mips_symbol<size>* gsym)
2026 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2027
2028 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2029 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2030 // relocation that needs to be applied in a static link.
2031 void
2032 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2033 Sized_relobj_file<size, big_endian>* relobj,
2034 unsigned int index)
2035 {
2036 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2037 index));
2038 }
2039
2040 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2041 // secondary GOT at OFFSET.
2042 void
2043 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2044 Mips_symbol<size>* gsym)
2045 {
2046 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2047 r_type, gsym));
2048 }
2049
2050 // Update GOT entry at OFFSET with VALUE.
2051 void
2052 update_got_entry(unsigned int offset, Mips_address value)
2053 {
2054 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2055 }
2056
2057 // Return the number of entries in local part of the GOT. This includes
2058 // local entries, page entries and 2 reserved entries.
2059 unsigned int
2060 get_local_gotno() const
2061 {
2062 if (!this->multi_got())
2063 {
2064 return (2 + this->master_got_info_->local_gotno()
2065 + this->master_got_info_->page_gotno());
2066 }
2067 else
2068 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2069 }
2070
2071 // Return dynamic symbol table index of the first symbol with global GOT
2072 // entry.
2073 unsigned int
2074 first_global_got_dynsym_index() const
2075 { return this->first_global_got_dynsym_index_; }
2076
2077 // Set dynamic symbol table index of the first symbol with global GOT entry.
2078 void
2079 set_first_global_got_dynsym_index(unsigned int index)
2080 { this->first_global_got_dynsym_index_ = index; }
2081
2082 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2083 // larger than 64K, create multi-GOT.
2084 void
2085 lay_out_got(Layout* layout, Symbol_table* symtab,
2086 const Input_objects* input_objects);
2087
2088 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2089 void
2090 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2091
2092 // Attempt to merge GOTs of different input objects.
2093 void
2094 merge_gots(const Input_objects* input_objects);
2095
2096 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2097 // this would lead to overflow, true if they were merged successfully.
2098 bool
2099 merge_got_with(Mips_got_info<size, big_endian>* from,
2100 Mips_relobj<size, big_endian>* object,
2101 Mips_got_info<size, big_endian>* to);
2102
2103 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2104 // use OBJECT's GOT.
2105 unsigned int
2106 get_got_page_offset(Mips_address value,
2107 const Mips_relobj<size, big_endian>* object)
2108 {
2109 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2110 ? this->master_got_info_
2111 : object->get_got_info());
2112 gold_assert(g != NULL);
2113 return g->get_got_page_offset(value, this);
2114 }
2115
2116 // Return the GOT offset of type GOT_TYPE of the global symbol
2117 // GSYM. For multi-GOT links, use OBJECT's GOT.
2118 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2119 Mips_relobj<size, big_endian>* object) const
2120 {
2121 if (!this->multi_got())
2122 return gsym->got_offset(got_type);
2123 else
2124 {
2125 Mips_got_info<size, big_endian>* g = object->get_got_info();
2126 gold_assert(g != NULL);
2127 return gsym->got_offset(g->multigot_got_type(got_type));
2128 }
2129 }
2130
2131 // Return the GOT offset of type GOT_TYPE of the local symbol
2132 // SYMNDX.
2133 unsigned int
2134 got_offset(unsigned int symndx, unsigned int got_type,
2135 Sized_relobj_file<size, big_endian>* object,
2136 uint64_t addend) const
2137 { return object->local_got_offset(symndx, got_type, addend); }
2138
2139 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2140 unsigned int
2141 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2142 {
2143 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2144 ? this->master_got_info_
2145 : object->get_got_info());
2146 gold_assert(g != NULL);
2147 return g->tls_ldm_offset();
2148 }
2149
2150 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2151 void
2152 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2153 Mips_relobj<size, big_endian>* object)
2154 {
2155 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2156 ? this->master_got_info_
2157 : object->get_got_info());
2158 gold_assert(g != NULL);
2159 g->set_tls_ldm_offset(tls_ldm_offset);
2160 }
2161
2162 // Return true for multi-GOT links.
2163 bool
2164 multi_got() const
2165 { return this->primary_got_ != NULL; }
2166
2167 // Return the offset of OBJECT's GOT from the start of .got section.
2168 unsigned int
2169 get_got_offset(const Mips_relobj<size, big_endian>* object)
2170 {
2171 if (!this->multi_got())
2172 return 0;
2173 else
2174 {
2175 Mips_got_info<size, big_endian>* g = object->get_got_info();
2176 return g != NULL ? g->offset() : 0;
2177 }
2178 }
2179
2180 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2181 void
2182 add_reloc_only_entries()
2183 { this->master_got_info_->add_reloc_only_entries(this); }
2184
2185 // Return offset of the primary GOT's entry for global symbol.
2186 unsigned int
2187 get_primary_got_offset(const Mips_symbol<size>* sym) const
2188 {
2189 gold_assert(sym->global_got_area() != GGA_NONE);
2190 return (this->get_local_gotno() + sym->dynsym_index()
2191 - this->first_global_got_dynsym_index()) * size/8;
2192 }
2193
2194 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2195 // Input argument GOT_OFFSET is always global offset from the start of
2196 // .got section, for both single and multi-GOT links.
2197 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2198 // links, the return value is object_got_offset - 0x7FF0, where
2199 // object_got_offset is offset in the OBJECT's GOT.
2200 int
2201 gp_offset(unsigned int got_offset,
2202 const Mips_relobj<size, big_endian>* object) const
2203 {
2204 return (this->address() + got_offset
2205 - this->target_->adjusted_gp_value(object));
2206 }
2207
2208 protected:
2209 // Write out the GOT table.
2210 void
2211 do_write(Output_file*);
2212
2213 private:
2214
2215 // This class represent dynamic relocations that need to be applied by
2216 // gold because we are using TLS relocations in a static link.
2217 class Static_reloc
2218 {
2219 public:
2220 Static_reloc(unsigned int got_offset, unsigned int r_type,
2221 Mips_symbol<size>* gsym)
2222 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2223 { this->u_.global.symbol = gsym; }
2224
2225 Static_reloc(unsigned int got_offset, unsigned int r_type,
2226 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2227 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2228 {
2229 this->u_.local.relobj = relobj;
2230 this->u_.local.index = index;
2231 }
2232
2233 // Return the GOT offset.
2234 unsigned int
2235 got_offset() const
2236 { return this->got_offset_; }
2237
2238 // Relocation type.
2239 unsigned int
2240 r_type() const
2241 { return this->r_type_; }
2242
2243 // Whether the symbol is global or not.
2244 bool
2245 symbol_is_global() const
2246 { return this->symbol_is_global_; }
2247
2248 // For a relocation against a global symbol, the global symbol.
2249 Mips_symbol<size>*
2250 symbol() const
2251 {
2252 gold_assert(this->symbol_is_global_);
2253 return this->u_.global.symbol;
2254 }
2255
2256 // For a relocation against a local symbol, the defining object.
2257 Sized_relobj_file<size, big_endian>*
2258 relobj() const
2259 {
2260 gold_assert(!this->symbol_is_global_);
2261 return this->u_.local.relobj;
2262 }
2263
2264 // For a relocation against a local symbol, the local symbol index.
2265 unsigned int
2266 index() const
2267 {
2268 gold_assert(!this->symbol_is_global_);
2269 return this->u_.local.index;
2270 }
2271
2272 private:
2273 // GOT offset of the entry to which this relocation is applied.
2274 unsigned int got_offset_;
2275 // Type of relocation.
2276 unsigned int r_type_;
2277 // Whether this relocation is against a global symbol.
2278 bool symbol_is_global_;
2279 // A global or local symbol.
2280 union
2281 {
2282 struct
2283 {
2284 // For a global symbol, the symbol itself.
2285 Mips_symbol<size>* symbol;
2286 } global;
2287 struct
2288 {
2289 // For a local symbol, the object defining object.
2290 Sized_relobj_file<size, big_endian>* relobj;
2291 // For a local symbol, the symbol index.
2292 unsigned int index;
2293 } local;
2294 } u_;
2295 };
2296
2297 // The target.
2298 Target_mips<size, big_endian>* target_;
2299 // The symbol table.
2300 Symbol_table* symbol_table_;
2301 // The layout.
2302 Layout* layout_;
2303 // Static relocs to be applied to the GOT.
2304 std::vector<Static_reloc> static_relocs_;
2305 // .got section view.
2306 unsigned char* got_view_;
2307 // The dynamic symbol table index of the first symbol with global GOT entry.
2308 unsigned int first_global_got_dynsym_index_;
2309 // The master GOT information.
2310 Mips_got_info<size, big_endian>* master_got_info_;
2311 // The primary GOT information.
2312 Mips_got_info<size, big_endian>* primary_got_;
2313 // Secondary GOT fixups.
2314 std::vector<Static_reloc> secondary_got_relocs_;
2315 };
2316
2317 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2318 // two ways of creating these interfaces. The first is to add:
2319 //
2320 // lui $25,%hi(func)
2321 // j func
2322 // addiu $25,$25,%lo(func)
2323 //
2324 // to a separate trampoline section. The second is to add:
2325 //
2326 // lui $25,%hi(func)
2327 // addiu $25,$25,%lo(func)
2328 //
2329 // immediately before a PIC function "func", but only if a function is at the
2330 // beginning of the section, and the section is not too heavily aligned (i.e we
2331 // would need to add no more than 2 nops before the stub.)
2332 //
2333 // We only create stubs of the first type.
2334
2335 template<int size, bool big_endian>
2336 class Mips_output_data_la25_stub : public Output_section_data
2337 {
2338 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2339
2340 public:
2341 Mips_output_data_la25_stub()
2342 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2343 { }
2344
2345 // Create LA25 stub for a symbol.
2346 void
2347 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2348 Mips_symbol<size>* gsym);
2349
2350 // Return output address of a stub.
2351 Mips_address
2352 stub_address(const Mips_symbol<size>* sym) const
2353 {
2354 gold_assert(sym->has_la25_stub());
2355 return this->address() + sym->la25_stub_offset();
2356 }
2357
2358 protected:
2359 void
2360 do_adjust_output_section(Output_section* os)
2361 { os->set_entsize(0); }
2362
2363 private:
2364 // Template for standard LA25 stub.
2365 static const uint32_t la25_stub_entry[];
2366 // Template for microMIPS LA25 stub.
2367 static const uint32_t la25_stub_micromips_entry[];
2368
2369 // Set the final size.
2370 void
2371 set_final_data_size()
2372 { this->set_data_size(this->symbols_.size() * 16); }
2373
2374 // Create a symbol for SYM stub's value and size, to help make the
2375 // disassembly easier to read.
2376 void
2377 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2378 Target_mips<size, big_endian>* target, uint64_t symsize);
2379
2380 // Write to a map file.
2381 void
2382 do_print_to_mapfile(Mapfile* mapfile) const
2383 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2384
2385 // Write out the LA25 stub section.
2386 void
2387 do_write(Output_file*);
2388
2389 // Symbols that have LA25 stubs.
2390 std::vector<Mips_symbol<size>*> symbols_;
2391 };
2392
2393 // MIPS-specific relocation writer.
2394
2395 template<int sh_type, bool dynamic, int size, bool big_endian>
2396 struct Mips_output_reloc_writer;
2397
2398 template<int sh_type, bool dynamic, bool big_endian>
2399 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2400 {
2401 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2402 typedef std::vector<Output_reloc_type> Relocs;
2403
2404 static void
2405 write(typename Relocs::const_iterator p, unsigned char* pov)
2406 { p->write(pov); }
2407 };
2408
2409 template<int sh_type, bool dynamic, bool big_endian>
2410 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2411 {
2412 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2413 typedef std::vector<Output_reloc_type> Relocs;
2414
2415 static void
2416 write(typename Relocs::const_iterator p, unsigned char* pov)
2417 {
2418 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2419 orel.put_r_offset(p->get_address());
2420 orel.put_r_sym(p->get_symbol_index());
2421 orel.put_r_ssym(RSS_UNDEF);
2422 orel.put_r_type(p->type());
2423 if (p->type() == elfcpp::R_MIPS_REL32)
2424 orel.put_r_type2(elfcpp::R_MIPS_64);
2425 else
2426 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2427 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2428 }
2429 };
2430
2431 template<int sh_type, bool dynamic, int size, bool big_endian>
2432 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2433 size, big_endian>
2434 {
2435 public:
2436 Mips_output_data_reloc(bool sort_relocs)
2437 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2438 { }
2439
2440 protected:
2441 // Write out the data.
2442 void
2443 do_write(Output_file* of)
2444 {
2445 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2446 big_endian> Writer;
2447 this->template do_write_generic<Writer>(of);
2448 }
2449 };
2450
2451
2452 // A class to handle the PLT data.
2453
2454 template<int size, bool big_endian>
2455 class Mips_output_data_plt : public Output_section_data
2456 {
2457 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2458 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2459 size, big_endian> Reloc_section;
2460
2461 public:
2462 // Create the PLT section. The ordinary .got section is an argument,
2463 // since we need to refer to the start.
2464 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2465 Target_mips<size, big_endian>* target)
2466 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2467 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2468 target_(target)
2469 {
2470 this->rel_ = new Reloc_section(false);
2471 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2472 elfcpp::SHF_ALLOC, this->rel_,
2473 ORDER_DYNAMIC_PLT_RELOCS, false);
2474 }
2475
2476 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2477 void
2478 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2479
2480 // Return the .rel.plt section data.
2481 Reloc_section*
2482 rel_plt() const
2483 { return this->rel_; }
2484
2485 // Return the number of PLT entries.
2486 unsigned int
2487 entry_count() const
2488 { return this->symbols_.size(); }
2489
2490 // Return the offset of the first non-reserved PLT entry.
2491 unsigned int
2492 first_plt_entry_offset() const
2493 { return sizeof(plt0_entry_o32); }
2494
2495 // Return the size of a PLT entry.
2496 unsigned int
2497 plt_entry_size() const
2498 { return sizeof(plt_entry); }
2499
2500 // Set final PLT offsets. For each symbol, determine whether standard or
2501 // compressed (MIPS16 or microMIPS) PLT entry is used.
2502 void
2503 set_plt_offsets();
2504
2505 // Return the offset of the first standard PLT entry.
2506 unsigned int
2507 first_mips_plt_offset() const
2508 { return this->plt_header_size_; }
2509
2510 // Return the offset of the first compressed PLT entry.
2511 unsigned int
2512 first_comp_plt_offset() const
2513 { return this->plt_header_size_ + this->plt_mips_offset_; }
2514
2515 // Return whether there are any standard PLT entries.
2516 bool
2517 has_standard_entries() const
2518 { return this->plt_mips_offset_ > 0; }
2519
2520 // Return the output address of standard PLT entry.
2521 Mips_address
2522 mips_entry_address(const Mips_symbol<size>* sym) const
2523 {
2524 gold_assert (sym->has_mips_plt_offset());
2525 return (this->address() + this->first_mips_plt_offset()
2526 + sym->mips_plt_offset());
2527 }
2528
2529 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2530 Mips_address
2531 comp_entry_address(const Mips_symbol<size>* sym) const
2532 {
2533 gold_assert (sym->has_comp_plt_offset());
2534 return (this->address() + this->first_comp_plt_offset()
2535 + sym->comp_plt_offset());
2536 }
2537
2538 protected:
2539 void
2540 do_adjust_output_section(Output_section* os)
2541 { os->set_entsize(0); }
2542
2543 // Write to a map file.
2544 void
2545 do_print_to_mapfile(Mapfile* mapfile) const
2546 { mapfile->print_output_data(this, _(".plt")); }
2547
2548 private:
2549 // Template for the first PLT entry.
2550 static const uint32_t plt0_entry_o32[];
2551 static const uint32_t plt0_entry_n32[];
2552 static const uint32_t plt0_entry_n64[];
2553 static const uint32_t plt0_entry_micromips_o32[];
2554 static const uint32_t plt0_entry_micromips32_o32[];
2555
2556 // Template for subsequent PLT entries.
2557 static const uint32_t plt_entry[];
2558 static const uint32_t plt_entry_r6[];
2559 static const uint32_t plt_entry_mips16_o32[];
2560 static const uint32_t plt_entry_micromips_o32[];
2561 static const uint32_t plt_entry_micromips32_o32[];
2562
2563 // Set the final size.
2564 void
2565 set_final_data_size()
2566 {
2567 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2568 + this->plt_comp_offset_);
2569 }
2570
2571 // Write out the PLT data.
2572 void
2573 do_write(Output_file*);
2574
2575 // Return whether the plt header contains microMIPS code. For the sake of
2576 // cache alignment always use a standard header whenever any standard entries
2577 // are present even if microMIPS entries are present as well. This also lets
2578 // the microMIPS header rely on the value of $v0 only set by microMIPS
2579 // entries, for a small size reduction.
2580 bool
2581 is_plt_header_compressed() const
2582 {
2583 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2584 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2585 }
2586
2587 // Return the size of the PLT header.
2588 unsigned int
2589 get_plt_header_size() const
2590 {
2591 if (this->target_->is_output_n64())
2592 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2593 else if (this->target_->is_output_n32())
2594 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2595 else if (!this->is_plt_header_compressed())
2596 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2597 else if (this->target_->use_32bit_micromips_instructions())
2598 return (2 * sizeof(plt0_entry_micromips32_o32)
2599 / sizeof(plt0_entry_micromips32_o32[0]));
2600 else
2601 return (2 * sizeof(plt0_entry_micromips_o32)
2602 / sizeof(plt0_entry_micromips_o32[0]));
2603 }
2604
2605 // Return the PLT header entry.
2606 const uint32_t*
2607 get_plt_header_entry() const
2608 {
2609 if (this->target_->is_output_n64())
2610 return plt0_entry_n64;
2611 else if (this->target_->is_output_n32())
2612 return plt0_entry_n32;
2613 else if (!this->is_plt_header_compressed())
2614 return plt0_entry_o32;
2615 else if (this->target_->use_32bit_micromips_instructions())
2616 return plt0_entry_micromips32_o32;
2617 else
2618 return plt0_entry_micromips_o32;
2619 }
2620
2621 // Return the size of the standard PLT entry.
2622 unsigned int
2623 standard_plt_entry_size() const
2624 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2625
2626 // Return the size of the compressed PLT entry.
2627 unsigned int
2628 compressed_plt_entry_size() const
2629 {
2630 gold_assert(!this->target_->is_output_newabi());
2631
2632 if (!this->target_->is_output_micromips())
2633 return (2 * sizeof(plt_entry_mips16_o32)
2634 / sizeof(plt_entry_mips16_o32[0]));
2635 else if (this->target_->use_32bit_micromips_instructions())
2636 return (2 * sizeof(plt_entry_micromips32_o32)
2637 / sizeof(plt_entry_micromips32_o32[0]));
2638 else
2639 return (2 * sizeof(plt_entry_micromips_o32)
2640 / sizeof(plt_entry_micromips_o32[0]));
2641 }
2642
2643 // The reloc section.
2644 Reloc_section* rel_;
2645 // The .got.plt section.
2646 Output_data_space* got_plt_;
2647 // Symbols that have PLT entry.
2648 std::vector<Mips_symbol<size>*> symbols_;
2649 // The offset of the next standard PLT entry to create.
2650 unsigned int plt_mips_offset_;
2651 // The offset of the next compressed PLT entry to create.
2652 unsigned int plt_comp_offset_;
2653 // The size of the PLT header in bytes.
2654 unsigned int plt_header_size_;
2655 // The target.
2656 Target_mips<size, big_endian>* target_;
2657 };
2658
2659 // A class to handle the .MIPS.stubs data.
2660
2661 template<int size, bool big_endian>
2662 class Mips_output_data_mips_stubs : public Output_section_data
2663 {
2664 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2665
2666 // Unordered set of .MIPS.stubs entries.
2667 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2668 Mips_stubs_entry_set;
2669
2670 public:
2671 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2672 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2673 stub_offsets_are_set_(false), target_(target)
2674 { }
2675
2676 // Create entry for a symbol.
2677 void
2678 make_entry(Mips_symbol<size>*);
2679
2680 // Remove entry for a symbol.
2681 void
2682 remove_entry(Mips_symbol<size>* gsym);
2683
2684 // Set stub offsets for symbols. This method expects that the number of
2685 // entries in dynamic symbol table is set.
2686 void
2687 set_lazy_stub_offsets();
2688
2689 void
2690 set_needs_dynsym_value();
2691
2692 // Set the number of entries in dynamic symbol table.
2693 void
2694 set_dynsym_count(unsigned int dynsym_count)
2695 { this->dynsym_count_ = dynsym_count; }
2696
2697 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2698 // count is greater than 0x10000. If the dynamic symbol count is less than
2699 // 0x10000, the stub will be 4 bytes smaller.
2700 // There's no disadvantage from using microMIPS code here, so for the sake of
2701 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2702 // output produced at all. This has a benefit of stubs being shorter by
2703 // 4 bytes each too, unless in the insn32 mode.
2704 unsigned int
2705 stub_max_size() const
2706 {
2707 if (!this->target_->is_output_micromips()
2708 || this->target_->use_32bit_micromips_instructions())
2709 return 20;
2710 else
2711 return 16;
2712 }
2713
2714 // Return the size of the stub. This method expects that the final dynsym
2715 // count is set.
2716 unsigned int
2717 stub_size() const
2718 {
2719 gold_assert(this->dynsym_count_ != -1U);
2720 if (this->dynsym_count_ > 0x10000)
2721 return this->stub_max_size();
2722 else
2723 return this->stub_max_size() - 4;
2724 }
2725
2726 // Return output address of a stub.
2727 Mips_address
2728 stub_address(const Mips_symbol<size>* sym) const
2729 {
2730 gold_assert(sym->has_lazy_stub());
2731 return this->address() + sym->lazy_stub_offset();
2732 }
2733
2734 protected:
2735 void
2736 do_adjust_output_section(Output_section* os)
2737 { os->set_entsize(0); }
2738
2739 // Write to a map file.
2740 void
2741 do_print_to_mapfile(Mapfile* mapfile) const
2742 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2743
2744 private:
2745 static const uint32_t lazy_stub_normal_1[];
2746 static const uint32_t lazy_stub_normal_1_n64[];
2747 static const uint32_t lazy_stub_normal_2[];
2748 static const uint32_t lazy_stub_normal_2_n64[];
2749 static const uint32_t lazy_stub_big[];
2750 static const uint32_t lazy_stub_big_n64[];
2751
2752 static const uint32_t lazy_stub_micromips_normal_1[];
2753 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2754 static const uint32_t lazy_stub_micromips_normal_2[];
2755 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2756 static const uint32_t lazy_stub_micromips_big[];
2757 static const uint32_t lazy_stub_micromips_big_n64[];
2758
2759 static const uint32_t lazy_stub_micromips32_normal_1[];
2760 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2761 static const uint32_t lazy_stub_micromips32_normal_2[];
2762 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2763 static const uint32_t lazy_stub_micromips32_big[];
2764 static const uint32_t lazy_stub_micromips32_big_n64[];
2765
2766 // Set the final size.
2767 void
2768 set_final_data_size()
2769 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2770
2771 // Write out the .MIPS.stubs data.
2772 void
2773 do_write(Output_file*);
2774
2775 // .MIPS.stubs symbols
2776 Mips_stubs_entry_set symbols_;
2777 // Number of entries in dynamic symbol table.
2778 unsigned int dynsym_count_;
2779 // Whether the stub offsets are set.
2780 bool stub_offsets_are_set_;
2781 // The target.
2782 Target_mips<size, big_endian>* target_;
2783 };
2784
2785 // This class handles Mips .reginfo output section.
2786
2787 template<int size, bool big_endian>
2788 class Mips_output_section_reginfo : public Output_section_data
2789 {
2790 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2791
2792 public:
2793 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2794 Valtype gprmask, Valtype cprmask1,
2795 Valtype cprmask2, Valtype cprmask3,
2796 Valtype cprmask4)
2797 : Output_section_data(24, 4, true), target_(target),
2798 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2799 cprmask3_(cprmask3), cprmask4_(cprmask4)
2800 { }
2801
2802 protected:
2803 // Write to a map file.
2804 void
2805 do_print_to_mapfile(Mapfile* mapfile) const
2806 { mapfile->print_output_data(this, _(".reginfo")); }
2807
2808 // Write out reginfo section.
2809 void
2810 do_write(Output_file* of);
2811
2812 private:
2813 Target_mips<size, big_endian>* target_;
2814
2815 // gprmask of the output .reginfo section.
2816 Valtype gprmask_;
2817 // cprmask1 of the output .reginfo section.
2818 Valtype cprmask1_;
2819 // cprmask2 of the output .reginfo section.
2820 Valtype cprmask2_;
2821 // cprmask3 of the output .reginfo section.
2822 Valtype cprmask3_;
2823 // cprmask4 of the output .reginfo section.
2824 Valtype cprmask4_;
2825 };
2826
2827 // This class handles .MIPS.options output section.
2828
2829 template<int size, bool big_endian>
2830 class Mips_output_section_options : public Output_section
2831 {
2832 public:
2833 Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
2834 elfcpp::Elf_Xword flags,
2835 Target_mips<size, big_endian>* target)
2836 : Output_section(name, type, flags), target_(target)
2837 {
2838 // After the input sections are written, we only need to update
2839 // ri_gp_value field of ODK_REGINFO entries.
2840 this->set_after_input_sections();
2841 }
2842
2843 protected:
2844 // Write out option section.
2845 void
2846 do_write(Output_file* of);
2847
2848 private:
2849 Target_mips<size, big_endian>* target_;
2850 };
2851
2852 // This class handles .MIPS.abiflags output section.
2853
2854 template<int size, bool big_endian>
2855 class Mips_output_section_abiflags : public Output_section_data
2856 {
2857 public:
2858 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2859 : Output_section_data(24, 8, true), abiflags_(abiflags)
2860 { }
2861
2862 protected:
2863 // Write to a map file.
2864 void
2865 do_print_to_mapfile(Mapfile* mapfile) const
2866 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2867
2868 void
2869 do_write(Output_file* of);
2870
2871 private:
2872 const Mips_abiflags<big_endian>& abiflags_;
2873 };
2874
2875 // The MIPS target has relocation types which default handling of relocatable
2876 // relocation cannot process. So we have to extend the default code.
2877
2878 template<bool big_endian, typename Classify_reloc>
2879 class Mips_scan_relocatable_relocs :
2880 public Default_scan_relocatable_relocs<Classify_reloc>
2881 {
2882 public:
2883 // Return the strategy to use for a local symbol which is a section
2884 // symbol, given the relocation type.
2885 inline Relocatable_relocs::Reloc_strategy
2886 local_section_strategy(unsigned int r_type, Relobj* object)
2887 {
2888 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2889 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2890 else
2891 {
2892 switch (r_type)
2893 {
2894 case elfcpp::R_MIPS_26:
2895 return Relocatable_relocs::RELOC_SPECIAL;
2896
2897 default:
2898 return Default_scan_relocatable_relocs<Classify_reloc>::
2899 local_section_strategy(r_type, object);
2900 }
2901 }
2902 }
2903 };
2904
2905 // Mips_copy_relocs class. The only difference from the base class is the
2906 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2907 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2908 // cannot be made dynamic, a COPY reloc is emitted.
2909
2910 template<int sh_type, int size, bool big_endian>
2911 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2912 {
2913 public:
2914 Mips_copy_relocs()
2915 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2916 { }
2917
2918 // Emit any saved relocations which turn out to be needed. This is
2919 // called after all the relocs have been scanned.
2920 void
2921 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2922 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2923
2924 private:
2925 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2926 Copy_reloc_entry;
2927
2928 // Emit this reloc if appropriate. This is called after we have
2929 // scanned all the relocations, so we know whether we emitted a
2930 // COPY relocation for SYM_.
2931 void
2932 emit_entry(Copy_reloc_entry& entry,
2933 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2934 Symbol_table* symtab, Layout* layout,
2935 Target_mips<size, big_endian>* target);
2936 };
2937
2938
2939 // Return true if the symbol SYM should be considered to resolve local
2940 // to the current module, and false otherwise. The logic is taken from
2941 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2942 static bool
2943 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2944 bool local_protected)
2945 {
2946 // If it's a local sym, of course we resolve locally.
2947 if (sym == NULL)
2948 return true;
2949
2950 // STV_HIDDEN or STV_INTERNAL ones must be local.
2951 if (sym->visibility() == elfcpp::STV_HIDDEN
2952 || sym->visibility() == elfcpp::STV_INTERNAL)
2953 return true;
2954
2955 // If we don't have a definition in a regular file, then we can't
2956 // resolve locally. The sym is either undefined or dynamic.
2957 if (sym->is_from_dynobj() || sym->is_undefined())
2958 return false;
2959
2960 // Forced local symbols resolve locally.
2961 if (sym->is_forced_local())
2962 return true;
2963
2964 // As do non-dynamic symbols.
2965 if (!has_dynsym_entry)
2966 return true;
2967
2968 // At this point, we know the symbol is defined and dynamic. In an
2969 // executable it must resolve locally, likewise when building symbolic
2970 // shared libraries.
2971 if (parameters->options().output_is_executable()
2972 || parameters->options().Bsymbolic())
2973 return true;
2974
2975 // Now deal with defined dynamic symbols in shared libraries. Ones
2976 // with default visibility might not resolve locally.
2977 if (sym->visibility() == elfcpp::STV_DEFAULT)
2978 return false;
2979
2980 // STV_PROTECTED non-function symbols are local.
2981 if (sym->type() != elfcpp::STT_FUNC)
2982 return true;
2983
2984 // Function pointer equality tests may require that STV_PROTECTED
2985 // symbols be treated as dynamic symbols. If the address of a
2986 // function not defined in an executable is set to that function's
2987 // plt entry in the executable, then the address of the function in
2988 // a shared library must also be the plt entry in the executable.
2989 return local_protected;
2990 }
2991
2992 // Return TRUE if references to this symbol always reference the symbol in this
2993 // object.
2994 static bool
2995 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2996 {
2997 return symbol_refs_local(sym, has_dynsym_entry, false);
2998 }
2999
3000 // Return TRUE if calls to this symbol always call the version in this object.
3001 static bool
3002 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
3003 {
3004 return symbol_refs_local(sym, has_dynsym_entry, true);
3005 }
3006
3007 // Compare GOT offsets of two symbols.
3008
3009 template<int size, bool big_endian>
3010 static bool
3011 got_offset_compare(Symbol* sym1, Symbol* sym2)
3012 {
3013 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
3014 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
3015 unsigned int area1 = mips_sym1->global_got_area();
3016 unsigned int area2 = mips_sym2->global_got_area();
3017 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
3018
3019 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3020 if (area1 != area2)
3021 return area1 < area2;
3022
3023 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
3024 }
3025
3026 // This method divides dynamic symbols into symbols that have GOT entry, and
3027 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3028 // Mips ABI requires that symbols with the GOT entry must be at the end of
3029 // dynamic symbol table, and the order in dynamic symbol table must match the
3030 // order in GOT.
3031
3032 template<int size, bool big_endian>
3033 static void
3034 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3035 std::vector<Symbol*>* non_got_symbols,
3036 std::vector<Symbol*>* got_symbols)
3037 {
3038 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3039 p != dyn_symbols->end();
3040 ++p)
3041 {
3042 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3043 if (mips_sym->global_got_area() == GGA_NORMAL
3044 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3045 got_symbols->push_back(mips_sym);
3046 else
3047 non_got_symbols->push_back(mips_sym);
3048 }
3049
3050 std::sort(got_symbols->begin(), got_symbols->end(),
3051 got_offset_compare<size, big_endian>);
3052 }
3053
3054 // Functor class for processing the global symbol table.
3055
3056 template<int size, bool big_endian>
3057 class Symbol_visitor_check_symbols
3058 {
3059 public:
3060 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3061 Layout* layout, Symbol_table* symtab)
3062 : target_(target), layout_(layout), symtab_(symtab)
3063 { }
3064
3065 void
3066 operator()(Sized_symbol<size>* sym)
3067 {
3068 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3069 if (local_pic_function<size, big_endian>(mips_sym))
3070 {
3071 // SYM is a function that might need $25 to be valid on entry.
3072 // If we're creating a non-PIC relocatable object, mark SYM as
3073 // being PIC. If we're creating a non-relocatable object with
3074 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3075 // stub.
3076 if (parameters->options().relocatable())
3077 {
3078 if (!parameters->options().output_is_position_independent())
3079 mips_sym->set_pic();
3080 }
3081 else if (mips_sym->has_nonpic_branches())
3082 {
3083 this->target_->la25_stub_section(layout_)
3084 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3085 }
3086 }
3087 }
3088
3089 private:
3090 Target_mips<size, big_endian>* target_;
3091 Layout* layout_;
3092 Symbol_table* symtab_;
3093 };
3094
3095 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3096 // and endianness. The relocation format for MIPS-64 is non-standard.
3097
3098 template<int sh_type, int size, bool big_endian>
3099 struct Mips_reloc_types;
3100
3101 template<bool big_endian>
3102 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3103 {
3104 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3105 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3106
3107 static typename elfcpp::Elf_types<32>::Elf_Swxword
3108 get_r_addend(const Reloc*)
3109 { return 0; }
3110
3111 static inline void
3112 set_reloc_addend(Reloc_write*,
3113 typename elfcpp::Elf_types<32>::Elf_Swxword)
3114 { gold_unreachable(); }
3115 };
3116
3117 template<bool big_endian>
3118 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3119 {
3120 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3121 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3122
3123 static typename elfcpp::Elf_types<32>::Elf_Swxword
3124 get_r_addend(const Reloc* reloc)
3125 { return reloc->get_r_addend(); }
3126
3127 static inline void
3128 set_reloc_addend(Reloc_write* p,
3129 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3130 { p->put_r_addend(val); }
3131 };
3132
3133 template<bool big_endian>
3134 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3135 {
3136 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3137 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3138
3139 static typename elfcpp::Elf_types<64>::Elf_Swxword
3140 get_r_addend(const Reloc*)
3141 { return 0; }
3142
3143 static inline void
3144 set_reloc_addend(Reloc_write*,
3145 typename elfcpp::Elf_types<64>::Elf_Swxword)
3146 { gold_unreachable(); }
3147 };
3148
3149 template<bool big_endian>
3150 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3151 {
3152 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3153 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3154
3155 static typename elfcpp::Elf_types<64>::Elf_Swxword
3156 get_r_addend(const Reloc* reloc)
3157 { return reloc->get_r_addend(); }
3158
3159 static inline void
3160 set_reloc_addend(Reloc_write* p,
3161 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3162 { p->put_r_addend(val); }
3163 };
3164
3165 // Forward declaration.
3166 static unsigned int
3167 mips_get_size_for_reloc(unsigned int, Relobj*);
3168
3169 // A class for inquiring about properties of a relocation,
3170 // used while scanning relocs during a relocatable link and
3171 // garbage collection.
3172
3173 template<int sh_type_, int size, bool big_endian>
3174 class Mips_classify_reloc;
3175
3176 template<int sh_type_, bool big_endian>
3177 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3178 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3179 {
3180 public:
3181 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3182 Reltype;
3183 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3184 Reltype_write;
3185
3186 // Return the symbol referred to by the relocation.
3187 static inline unsigned int
3188 get_r_sym(const Reltype* reloc)
3189 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3190
3191 // Return the type of the relocation.
3192 static inline unsigned int
3193 get_r_type(const Reltype* reloc)
3194 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3195
3196 static inline unsigned int
3197 get_r_type2(const Reltype*)
3198 { return 0; }
3199
3200 static inline unsigned int
3201 get_r_type3(const Reltype*)
3202 { return 0; }
3203
3204 static inline unsigned int
3205 get_r_ssym(const Reltype*)
3206 { return 0; }
3207
3208 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3209 static inline unsigned int
3210 get_r_addend(const Reltype* reloc)
3211 {
3212 if (sh_type_ == elfcpp::SHT_REL)
3213 return 0;
3214 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3215 }
3216
3217 // Write the r_info field to a new reloc, using the r_info field from
3218 // the original reloc, replacing the r_sym field with R_SYM.
3219 static inline void
3220 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3221 {
3222 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3223 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3224 }
3225
3226 // Write the r_addend field to a new reloc.
3227 static inline void
3228 put_r_addend(Reltype_write* to,
3229 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3230 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3231
3232 // Return the size of the addend of the relocation (only used for SHT_REL).
3233 static unsigned int
3234 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3235 { return mips_get_size_for_reloc(r_type, obj); }
3236 };
3237
3238 template<int sh_type_, bool big_endian>
3239 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3240 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3241 {
3242 public:
3243 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3244 Reltype;
3245 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3246 Reltype_write;
3247
3248 // Return the symbol referred to by the relocation.
3249 static inline unsigned int
3250 get_r_sym(const Reltype* reloc)
3251 { return reloc->get_r_sym(); }
3252
3253 // Return the r_type of the relocation.
3254 static inline unsigned int
3255 get_r_type(const Reltype* reloc)
3256 { return reloc->get_r_type(); }
3257
3258 // Return the r_type2 of the relocation.
3259 static inline unsigned int
3260 get_r_type2(const Reltype* reloc)
3261 { return reloc->get_r_type2(); }
3262
3263 // Return the r_type3 of the relocation.
3264 static inline unsigned int
3265 get_r_type3(const Reltype* reloc)
3266 { return reloc->get_r_type3(); }
3267
3268 // Return the special symbol of the relocation.
3269 static inline unsigned int
3270 get_r_ssym(const Reltype* reloc)
3271 { return reloc->get_r_ssym(); }
3272
3273 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3274 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3275 get_r_addend(const Reltype* reloc)
3276 {
3277 if (sh_type_ == elfcpp::SHT_REL)
3278 return 0;
3279 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3280 }
3281
3282 // Write the r_info field to a new reloc, using the r_info field from
3283 // the original reloc, replacing the r_sym field with R_SYM.
3284 static inline void
3285 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3286 {
3287 new_reloc->put_r_sym(r_sym);
3288 new_reloc->put_r_ssym(reloc->get_r_ssym());
3289 new_reloc->put_r_type3(reloc->get_r_type3());
3290 new_reloc->put_r_type2(reloc->get_r_type2());
3291 new_reloc->put_r_type(reloc->get_r_type());
3292 }
3293
3294 // Write the r_addend field to a new reloc.
3295 static inline void
3296 put_r_addend(Reltype_write* to,
3297 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3298 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3299
3300 // Return the size of the addend of the relocation (only used for SHT_REL).
3301 static unsigned int
3302 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3303 { return mips_get_size_for_reloc(r_type, obj); }
3304 };
3305
3306 template<int size, bool big_endian>
3307 class Target_mips : public Sized_target<size, big_endian>
3308 {
3309 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3310 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3311 Reloc_section;
3312 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3313 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3314 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3315 Reltype;
3316 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3317 Relatype;
3318
3319 public:
3320 Target_mips(const Target::Target_info* info = &mips_info)
3321 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3322 got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3323 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3324 mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3325 mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3326 entry_symbol_is_compressed_(false), insn32_(false)
3327 {
3328 this->add_machine_extensions();
3329 }
3330
3331 // The offset of $gp from the beginning of the .got section.
3332 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3333
3334 // The maximum size of the GOT for it to be addressable using 16-bit
3335 // offsets from $gp.
3336 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3337
3338 // Make a new symbol table entry for the Mips target.
3339 Sized_symbol<size>*
3340 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3341 { return new Mips_symbol<size>(); }
3342
3343 // Process the relocations to determine unreferenced sections for
3344 // garbage collection.
3345 void
3346 gc_process_relocs(Symbol_table* symtab,
3347 Layout* layout,
3348 Sized_relobj_file<size, big_endian>* object,
3349 unsigned int data_shndx,
3350 unsigned int sh_type,
3351 const unsigned char* prelocs,
3352 size_t reloc_count,
3353 Output_section* output_section,
3354 bool needs_special_offset_handling,
3355 size_t local_symbol_count,
3356 const unsigned char* plocal_symbols);
3357
3358 // Scan the relocations to look for symbol adjustments.
3359 void
3360 scan_relocs(Symbol_table* symtab,
3361 Layout* layout,
3362 Sized_relobj_file<size, big_endian>* object,
3363 unsigned int data_shndx,
3364 unsigned int sh_type,
3365 const unsigned char* prelocs,
3366 size_t reloc_count,
3367 Output_section* output_section,
3368 bool needs_special_offset_handling,
3369 size_t local_symbol_count,
3370 const unsigned char* plocal_symbols);
3371
3372 // Finalize the sections.
3373 void
3374 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3375
3376 // Relocate a section.
3377 void
3378 relocate_section(const Relocate_info<size, big_endian>*,
3379 unsigned int sh_type,
3380 const unsigned char* prelocs,
3381 size_t reloc_count,
3382 Output_section* output_section,
3383 bool needs_special_offset_handling,
3384 unsigned char* view,
3385 Mips_address view_address,
3386 section_size_type view_size,
3387 const Reloc_symbol_changes*);
3388
3389 // Scan the relocs during a relocatable link.
3390 void
3391 scan_relocatable_relocs(Symbol_table* symtab,
3392 Layout* layout,
3393 Sized_relobj_file<size, big_endian>* object,
3394 unsigned int data_shndx,
3395 unsigned int sh_type,
3396 const unsigned char* prelocs,
3397 size_t reloc_count,
3398 Output_section* output_section,
3399 bool needs_special_offset_handling,
3400 size_t local_symbol_count,
3401 const unsigned char* plocal_symbols,
3402 Relocatable_relocs*);
3403
3404 // Scan the relocs for --emit-relocs.
3405 void
3406 emit_relocs_scan(Symbol_table* symtab,
3407 Layout* layout,
3408 Sized_relobj_file<size, big_endian>* object,
3409 unsigned int data_shndx,
3410 unsigned int sh_type,
3411 const unsigned char* prelocs,
3412 size_t reloc_count,
3413 Output_section* output_section,
3414 bool needs_special_offset_handling,
3415 size_t local_symbol_count,
3416 const unsigned char* plocal_syms,
3417 Relocatable_relocs* rr);
3418
3419 // Emit relocations for a section.
3420 void
3421 relocate_relocs(const Relocate_info<size, big_endian>*,
3422 unsigned int sh_type,
3423 const unsigned char* prelocs,
3424 size_t reloc_count,
3425 Output_section* output_section,
3426 typename elfcpp::Elf_types<size>::Elf_Off
3427 offset_in_output_section,
3428 unsigned char* view,
3429 Mips_address view_address,
3430 section_size_type view_size,
3431 unsigned char* reloc_view,
3432 section_size_type reloc_view_size);
3433
3434 // Perform target-specific processing in a relocatable link. This is
3435 // only used if we use the relocation strategy RELOC_SPECIAL.
3436 void
3437 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3438 unsigned int sh_type,
3439 const unsigned char* preloc_in,
3440 size_t relnum,
3441 Output_section* output_section,
3442 typename elfcpp::Elf_types<size>::Elf_Off
3443 offset_in_output_section,
3444 unsigned char* view,
3445 Mips_address view_address,
3446 section_size_type view_size,
3447 unsigned char* preloc_out);
3448
3449 // Return whether SYM is defined by the ABI.
3450 bool
3451 do_is_defined_by_abi(const Symbol* sym) const
3452 {
3453 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3454 || (strcmp(sym->name(), "_gp_disp") == 0)
3455 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3456 }
3457
3458 // Return the number of entries in the GOT.
3459 unsigned int
3460 got_entry_count() const
3461 {
3462 if (!this->has_got_section())
3463 return 0;
3464 return this->got_size() / (size/8);
3465 }
3466
3467 // Return the number of entries in the PLT.
3468 unsigned int
3469 plt_entry_count() const
3470 {
3471 if (this->plt_ == NULL)
3472 return 0;
3473 return this->plt_->entry_count();
3474 }
3475
3476 // Return the offset of the first non-reserved PLT entry.
3477 unsigned int
3478 first_plt_entry_offset() const
3479 { return this->plt_->first_plt_entry_offset(); }
3480
3481 // Return the size of each PLT entry.
3482 unsigned int
3483 plt_entry_size() const
3484 { return this->plt_->plt_entry_size(); }
3485
3486 // Get the GOT section, creating it if necessary.
3487 Mips_output_data_got<size, big_endian>*
3488 got_section(Symbol_table*, Layout*);
3489
3490 // Get the GOT section.
3491 Mips_output_data_got<size, big_endian>*
3492 got_section() const
3493 {
3494 gold_assert(this->got_ != NULL);
3495 return this->got_;
3496 }
3497
3498 // Get the .MIPS.stubs section, creating it if necessary.
3499 Mips_output_data_mips_stubs<size, big_endian>*
3500 mips_stubs_section(Layout* layout);
3501
3502 // Get the .MIPS.stubs section.
3503 Mips_output_data_mips_stubs<size, big_endian>*
3504 mips_stubs_section() const
3505 {
3506 gold_assert(this->mips_stubs_ != NULL);
3507 return this->mips_stubs_;
3508 }
3509
3510 // Get the LA25 stub section, creating it if necessary.
3511 Mips_output_data_la25_stub<size, big_endian>*
3512 la25_stub_section(Layout*);
3513
3514 // Get the LA25 stub section.
3515 Mips_output_data_la25_stub<size, big_endian>*
3516 la25_stub_section()
3517 {
3518 gold_assert(this->la25_stub_ != NULL);
3519 return this->la25_stub_;
3520 }
3521
3522 // Get gp value. It has the value of .got + 0x7FF0.
3523 Mips_address
3524 gp_value() const
3525 {
3526 if (this->gp_ != NULL)
3527 return this->gp_->value();
3528 return 0;
3529 }
3530
3531 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3532 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3533 Mips_address
3534 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3535 {
3536 if (this->gp_ == NULL)
3537 return 0;
3538
3539 bool multi_got = false;
3540 if (this->has_got_section())
3541 multi_got = this->got_section()->multi_got();
3542 if (!multi_got)
3543 return this->gp_->value();
3544 else
3545 return this->gp_->value() + this->got_section()->get_got_offset(object);
3546 }
3547
3548 // Get the dynamic reloc section, creating it if necessary.
3549 Reloc_section*
3550 rel_dyn_section(Layout*);
3551
3552 bool
3553 do_has_custom_set_dynsym_indexes() const
3554 { return true; }
3555
3556 // Don't emit input .reginfo/.MIPS.abiflags sections to
3557 // output .reginfo/.MIPS.abiflags.
3558 bool
3559 do_should_include_section(elfcpp::Elf_Word sh_type) const
3560 {
3561 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3562 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3563 }
3564
3565 // Set the dynamic symbol indexes. INDEX is the index of the first
3566 // global dynamic symbol. Pointers to the symbols are stored into the
3567 // vector SYMS. The names are added to DYNPOOL. This returns an
3568 // updated dynamic symbol index.
3569 unsigned int
3570 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3571 std::vector<Symbol*>* syms, Stringpool* dynpool,
3572 Versions* versions, Symbol_table* symtab) const;
3573
3574 // Remove .MIPS.stubs entry for a symbol.
3575 void
3576 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3577 {
3578 if (this->mips_stubs_ != NULL)
3579 this->mips_stubs_->remove_entry(sym);
3580 }
3581
3582 // The value to write into got[1] for SVR4 targets, to identify it is
3583 // a GNU object. The dynamic linker can then use got[1] to store the
3584 // module pointer.
3585 uint64_t
3586 mips_elf_gnu_got1_mask()
3587 {
3588 if (this->is_output_n64())
3589 return (uint64_t)1 << 63;
3590 else
3591 return 1 << 31;
3592 }
3593
3594 // Whether the output has microMIPS code. This is valid only after
3595 // merge_obj_e_flags() is called.
3596 bool
3597 is_output_micromips() const
3598 {
3599 gold_assert(this->are_processor_specific_flags_set());
3600 return elfcpp::is_micromips(this->processor_specific_flags());
3601 }
3602
3603 // Whether the output uses N32 ABI. This is valid only after
3604 // merge_obj_e_flags() is called.
3605 bool
3606 is_output_n32() const
3607 {
3608 gold_assert(this->are_processor_specific_flags_set());
3609 return elfcpp::abi_n32(this->processor_specific_flags());
3610 }
3611
3612 // Whether the output uses R6 ISA. This is valid only after
3613 // merge_obj_e_flags() is called.
3614 bool
3615 is_output_r6() const
3616 {
3617 gold_assert(this->are_processor_specific_flags_set());
3618 return elfcpp::r6_isa(this->processor_specific_flags());
3619 }
3620
3621 // Whether the output uses N64 ABI.
3622 bool
3623 is_output_n64() const
3624 { return size == 64; }
3625
3626 // Whether the output uses NEWABI. This is valid only after
3627 // merge_obj_e_flags() is called.
3628 bool
3629 is_output_newabi() const
3630 { return this->is_output_n32() || this->is_output_n64(); }
3631
3632 // Whether we can only use 32-bit microMIPS instructions.
3633 bool
3634 use_32bit_micromips_instructions() const
3635 { return this->insn32_; }
3636
3637 // Return the r_sym field from a relocation.
3638 unsigned int
3639 get_r_sym(const unsigned char* preloc) const
3640 {
3641 // Since REL and RELA relocs share the same structure through
3642 // the r_info field, we can just use REL here.
3643 Reltype rel(preloc);
3644 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3645 get_r_sym(&rel);
3646 }
3647
3648 protected:
3649 // Return the value to use for a dynamic symbol which requires special
3650 // treatment. This is how we support equality comparisons of function
3651 // pointers across shared library boundaries, as described in the
3652 // processor specific ABI supplement.
3653 uint64_t
3654 do_dynsym_value(const Symbol* gsym) const;
3655
3656 // Make an ELF object.
3657 Object*
3658 do_make_elf_object(const std::string&, Input_file*, off_t,
3659 const elfcpp::Ehdr<size, big_endian>& ehdr);
3660
3661 Object*
3662 do_make_elf_object(const std::string&, Input_file*, off_t,
3663 const elfcpp::Ehdr<size, !big_endian>&)
3664 { gold_unreachable(); }
3665
3666 // Make an output section.
3667 Output_section*
3668 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3669 elfcpp::Elf_Xword flags)
3670 {
3671 if (type == elfcpp::SHT_MIPS_OPTIONS)
3672 return new Mips_output_section_options<size, big_endian>(name, type,
3673 flags, this);
3674 else
3675 return new Output_section(name, type, flags);
3676 }
3677
3678 // Adjust ELF file header.
3679 void
3680 do_adjust_elf_header(unsigned char* view, int len);
3681
3682 // Get the custom dynamic tag value.
3683 unsigned int
3684 do_dynamic_tag_custom_value(elfcpp::DT) const;
3685
3686 // Adjust the value written to the dynamic symbol table.
3687 virtual void
3688 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3689 {
3690 elfcpp::Sym<size, big_endian> isym(view);
3691 elfcpp::Sym_write<size, big_endian> osym(view);
3692 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3693
3694 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3695 // to treat compressed symbols like any other.
3696 Mips_address value = isym.get_st_value();
3697 if (mips_sym->is_mips16() && value != 0)
3698 {
3699 if (!mips_sym->has_mips16_fn_stub())
3700 value |= 1;
3701 else
3702 {
3703 // If we have a MIPS16 function with a stub, the dynamic symbol
3704 // must refer to the stub, since only the stub uses the standard
3705 // calling conventions. Stub contains MIPS32 code, so don't add +1
3706 // in this case.
3707
3708 // There is a code which does this in the method
3709 // Target_mips::do_dynsym_value, but that code will only be
3710 // executed if the symbol is from dynobj.
3711 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3712 // table.
3713
3714 Mips16_stub_section<size, big_endian>* fn_stub =
3715 mips_sym->template get_mips16_fn_stub<big_endian>();
3716 value = fn_stub->output_address();
3717 osym.put_st_size(fn_stub->section_size());
3718 }
3719
3720 osym.put_st_value(value);
3721 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3722 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3723 }
3724 else if ((mips_sym->is_micromips()
3725 // Stubs are always microMIPS if there is any microMIPS code in
3726 // the output.
3727 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3728 && value != 0)
3729 {
3730 osym.put_st_value(value | 1);
3731 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3732 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3733 }
3734 }
3735
3736 private:
3737 // The class which scans relocations.
3738 class Scan
3739 {
3740 public:
3741 Scan()
3742 { }
3743
3744 static inline int
3745 get_reference_flags(unsigned int r_type);
3746
3747 inline void
3748 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3749 Sized_relobj_file<size, big_endian>* object,
3750 unsigned int data_shndx,
3751 Output_section* output_section,
3752 const Reltype& reloc, unsigned int r_type,
3753 const elfcpp::Sym<size, big_endian>& lsym,
3754 bool is_discarded);
3755
3756 inline void
3757 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3758 Sized_relobj_file<size, big_endian>* object,
3759 unsigned int data_shndx,
3760 Output_section* output_section,
3761 const Relatype& reloc, unsigned int r_type,
3762 const elfcpp::Sym<size, big_endian>& lsym,
3763 bool is_discarded);
3764
3765 inline void
3766 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3767 Sized_relobj_file<size, big_endian>* object,
3768 unsigned int data_shndx,
3769 Output_section* output_section,
3770 const Relatype* rela,
3771 const Reltype* rel,
3772 unsigned int rel_type,
3773 unsigned int r_type,
3774 const elfcpp::Sym<size, big_endian>& lsym,
3775 bool is_discarded);
3776
3777 inline void
3778 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3779 Sized_relobj_file<size, big_endian>* object,
3780 unsigned int data_shndx,
3781 Output_section* output_section,
3782 const Reltype& reloc, unsigned int r_type,
3783 Symbol* gsym);
3784
3785 inline void
3786 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3787 Sized_relobj_file<size, big_endian>* object,
3788 unsigned int data_shndx,
3789 Output_section* output_section,
3790 const Relatype& reloc, unsigned int r_type,
3791 Symbol* gsym);
3792
3793 inline void
3794 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3795 Sized_relobj_file<size, big_endian>* object,
3796 unsigned int data_shndx,
3797 Output_section* output_section,
3798 const Relatype* rela,
3799 const Reltype* rel,
3800 unsigned int rel_type,
3801 unsigned int r_type,
3802 Symbol* gsym);
3803
3804 inline bool
3805 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3806 Target_mips*,
3807 Sized_relobj_file<size, big_endian>*,
3808 unsigned int,
3809 Output_section*,
3810 const Reltype&,
3811 unsigned int,
3812 const elfcpp::Sym<size, big_endian>&)
3813 { return false; }
3814
3815 inline bool
3816 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3817 Target_mips*,
3818 Sized_relobj_file<size, big_endian>*,
3819 unsigned int,
3820 Output_section*,
3821 const Reltype&,
3822 unsigned int, Symbol*)
3823 { return false; }
3824
3825 inline bool
3826 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3827 Target_mips*,
3828 Sized_relobj_file<size, big_endian>*,
3829 unsigned int,
3830 Output_section*,
3831 const Relatype&,
3832 unsigned int,
3833 const elfcpp::Sym<size, big_endian>&)
3834 { return false; }
3835
3836 inline bool
3837 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3838 Target_mips*,
3839 Sized_relobj_file<size, big_endian>*,
3840 unsigned int,
3841 Output_section*,
3842 const Relatype&,
3843 unsigned int, Symbol*)
3844 { return false; }
3845 private:
3846 static void
3847 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3848 unsigned int r_type);
3849
3850 static void
3851 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3852 unsigned int r_type, Symbol*);
3853 };
3854
3855 // The class which implements relocation.
3856 class Relocate
3857 {
3858 public:
3859 Relocate()
3860 { }
3861
3862 ~Relocate()
3863 { }
3864
3865 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3866 inline bool
3867 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3868 unsigned int r_type,
3869 Output_section* output_section,
3870 Target_mips* target);
3871
3872 // Do a relocation. Return false if the caller should not issue
3873 // any warnings about this relocation.
3874 inline bool
3875 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3876 Target_mips*, Output_section*, size_t, const unsigned char*,
3877 const Sized_symbol<size>*, const Symbol_value<size>*,
3878 unsigned char*, Mips_address, section_size_type);
3879 };
3880
3881 // This POD class holds the dynamic relocations that should be emitted instead
3882 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3883 // relocations if it turns out that the symbol does not have static
3884 // relocations.
3885 class Dyn_reloc
3886 {
3887 public:
3888 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3889 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3890 Output_section* output_section, Mips_address r_offset)
3891 : sym_(sym), r_type_(r_type), relobj_(relobj),
3892 shndx_(shndx), output_section_(output_section),
3893 r_offset_(r_offset)
3894 { }
3895
3896 // Emit this reloc if appropriate. This is called after we have
3897 // scanned all the relocations, so we know whether the symbol has
3898 // static relocations.
3899 void
3900 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3901 Symbol_table* symtab)
3902 {
3903 if (!this->sym_->has_static_relocs())
3904 {
3905 got->record_global_got_symbol(this->sym_, this->relobj_,
3906 this->r_type_, true, false);
3907 if (!symbol_references_local(this->sym_,
3908 this->sym_->should_add_dynsym_entry(symtab)))
3909 rel_dyn->add_global(this->sym_, this->r_type_,
3910 this->output_section_, this->relobj_,
3911 this->shndx_, this->r_offset_);
3912 else
3913 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3914 this->output_section_, this->relobj_,
3915 this->shndx_, this->r_offset_);
3916 }
3917 }
3918
3919 private:
3920 Mips_symbol<size>* sym_;
3921 unsigned int r_type_;
3922 Mips_relobj<size, big_endian>* relobj_;
3923 unsigned int shndx_;
3924 Output_section* output_section_;
3925 Mips_address r_offset_;
3926 };
3927
3928 // Adjust TLS relocation type based on the options and whether this
3929 // is a local symbol.
3930 static tls::Tls_optimization
3931 optimize_tls_reloc(bool is_final, int r_type);
3932
3933 // Return whether there is a GOT section.
3934 bool
3935 has_got_section() const
3936 { return this->got_ != NULL; }
3937
3938 // Check whether the given ELF header flags describe a 32-bit binary.
3939 bool
3940 mips_32bit_flags(elfcpp::Elf_Word);
3941
3942 enum Mips_mach {
3943 mach_mips3000 = 3000,
3944 mach_mips3900 = 3900,
3945 mach_mips4000 = 4000,
3946 mach_mips4010 = 4010,
3947 mach_mips4100 = 4100,
3948 mach_mips4111 = 4111,
3949 mach_mips4120 = 4120,
3950 mach_mips4300 = 4300,
3951 mach_mips4400 = 4400,
3952 mach_mips4600 = 4600,
3953 mach_mips4650 = 4650,
3954 mach_mips5000 = 5000,
3955 mach_mips5400 = 5400,
3956 mach_mips5500 = 5500,
3957 mach_mips5900 = 5900,
3958 mach_mips6000 = 6000,
3959 mach_mips7000 = 7000,
3960 mach_mips8000 = 8000,
3961 mach_mips9000 = 9000,
3962 mach_mips10000 = 10000,
3963 mach_mips12000 = 12000,
3964 mach_mips14000 = 14000,
3965 mach_mips16000 = 16000,
3966 mach_mips16 = 16,
3967 mach_mips5 = 5,
3968 mach_mips_loongson_2e = 3001,
3969 mach_mips_loongson_2f = 3002,
3970 mach_mips_loongson_3a = 3003,
3971 mach_mips_sb1 = 12310201, // octal 'SB', 01
3972 mach_mips_octeon = 6501,
3973 mach_mips_octeonp = 6601,
3974 mach_mips_octeon2 = 6502,
3975 mach_mips_octeon3 = 6503,
3976 mach_mips_xlr = 887682, // decimal 'XLR'
3977 mach_mipsisa32 = 32,
3978 mach_mipsisa32r2 = 33,
3979 mach_mipsisa32r3 = 34,
3980 mach_mipsisa32r5 = 36,
3981 mach_mipsisa32r6 = 37,
3982 mach_mipsisa64 = 64,
3983 mach_mipsisa64r2 = 65,
3984 mach_mipsisa64r3 = 66,
3985 mach_mipsisa64r5 = 68,
3986 mach_mipsisa64r6 = 69,
3987 mach_mips_micromips = 96
3988 };
3989
3990 // Return the MACH for a MIPS e_flags value.
3991 unsigned int
3992 elf_mips_mach(elfcpp::Elf_Word);
3993
3994 // Return the MACH for each .MIPS.abiflags ISA Extension.
3995 unsigned int
3996 mips_isa_ext_mach(unsigned int);
3997
3998 // Return the .MIPS.abiflags value representing each ISA Extension.
3999 unsigned int
4000 mips_isa_ext(unsigned int);
4001
4002 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4003 void
4004 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
4005 Mips_abiflags<big_endian>*);
4006
4007 // Infer the content of the ABI flags based on the elf header.
4008 void
4009 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4010
4011 // Create abiflags from elf header or from .MIPS.abiflags section.
4012 void
4013 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4014
4015 // Return the meaning of fp_abi, or "unknown" if not known.
4016 const char*
4017 fp_abi_string(int);
4018
4019 // Select fp_abi.
4020 int
4021 select_fp_abi(const std::string&, int, int);
4022
4023 // Merge attributes from input object.
4024 void
4025 merge_obj_attributes(const std::string&, const Attributes_section_data*);
4026
4027 // Merge abiflags from input object.
4028 void
4029 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
4030
4031 // Check whether machine EXTENSION is an extension of machine BASE.
4032 bool
4033 mips_mach_extends(unsigned int, unsigned int);
4034
4035 // Merge file header flags from input object.
4036 void
4037 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4038
4039 // Encode ISA level and revision as a single value.
4040 int
4041 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4042 { return (isa_level << 3) | isa_rev; }
4043
4044 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4045 static inline bool
4046 jal_to_bal()
4047 { return false; }
4048
4049 // True if we are linking for CPUs that are faster if JALR is converted to
4050 // BAL. This should be safe for all architectures. We enable this predicate
4051 // for all CPUs.
4052 static inline bool
4053 jalr_to_bal()
4054 { return true; }
4055
4056 // True if we are linking for CPUs that are faster if JR is converted to B.
4057 // This should be safe for all architectures. We enable this predicate for
4058 // all CPUs.
4059 static inline bool
4060 jr_to_b()
4061 { return true; }
4062
4063 // Return the size of the GOT section.
4064 section_size_type
4065 got_size() const
4066 {
4067 gold_assert(this->got_ != NULL);
4068 return this->got_->data_size();
4069 }
4070
4071 // Create a PLT entry for a global symbol referenced by r_type relocation.
4072 void
4073 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4074 unsigned int r_type);
4075
4076 // Get the PLT section.
4077 Mips_output_data_plt<size, big_endian>*
4078 plt_section() const
4079 {
4080 gold_assert(this->plt_ != NULL);
4081 return this->plt_;
4082 }
4083
4084 // Get the GOT PLT section.
4085 const Mips_output_data_plt<size, big_endian>*
4086 got_plt_section() const
4087 {
4088 gold_assert(this->got_plt_ != NULL);
4089 return this->got_plt_;
4090 }
4091
4092 // Copy a relocation against a global symbol.
4093 void
4094 copy_reloc(Symbol_table* symtab, Layout* layout,
4095 Sized_relobj_file<size, big_endian>* object,
4096 unsigned int shndx, Output_section* output_section,
4097 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4098 {
4099 this->copy_relocs_.copy_reloc(symtab, layout,
4100 symtab->get_sized_symbol<size>(sym),
4101 object, shndx, output_section,
4102 r_type, r_offset, 0,
4103 this->rel_dyn_section(layout));
4104 }
4105
4106 void
4107 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4108 Mips_relobj<size, big_endian>* relobj,
4109 unsigned int shndx, Output_section* output_section,
4110 Mips_address r_offset)
4111 {
4112 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4113 output_section, r_offset));
4114 }
4115
4116 // Calculate value of _gp symbol.
4117 void
4118 set_gp(Layout*, Symbol_table*);
4119
4120 const char*
4121 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4122 const char*
4123 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4124
4125 // Adds entries that describe how machines relate to one another. The entries
4126 // are ordered topologically with MIPS I extensions listed last. First
4127 // element is extension, second element is base.
4128 void
4129 add_machine_extensions()
4130 {
4131 // MIPS64r2 extensions.
4132 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4133 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4134 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4135 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4136 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4137
4138 // MIPS64 extensions.
4139 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4140 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4141 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4142
4143 // MIPS V extensions.
4144 this->add_extension(mach_mipsisa64, mach_mips5);
4145
4146 // R10000 extensions.
4147 this->add_extension(mach_mips12000, mach_mips10000);
4148 this->add_extension(mach_mips14000, mach_mips10000);
4149 this->add_extension(mach_mips16000, mach_mips10000);
4150
4151 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4152 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4153 // better to allow vr5400 and vr5500 code to be merged anyway, since
4154 // many libraries will just use the core ISA. Perhaps we could add
4155 // some sort of ASE flag if this ever proves a problem.
4156 this->add_extension(mach_mips5500, mach_mips5400);
4157 this->add_extension(mach_mips5400, mach_mips5000);
4158
4159 // MIPS IV extensions.
4160 this->add_extension(mach_mips5, mach_mips8000);
4161 this->add_extension(mach_mips10000, mach_mips8000);
4162 this->add_extension(mach_mips5000, mach_mips8000);
4163 this->add_extension(mach_mips7000, mach_mips8000);
4164 this->add_extension(mach_mips9000, mach_mips8000);
4165
4166 // VR4100 extensions.
4167 this->add_extension(mach_mips4120, mach_mips4100);
4168 this->add_extension(mach_mips4111, mach_mips4100);
4169
4170 // MIPS III extensions.
4171 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4172 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4173 this->add_extension(mach_mips8000, mach_mips4000);
4174 this->add_extension(mach_mips4650, mach_mips4000);
4175 this->add_extension(mach_mips4600, mach_mips4000);
4176 this->add_extension(mach_mips4400, mach_mips4000);
4177 this->add_extension(mach_mips4300, mach_mips4000);
4178 this->add_extension(mach_mips4100, mach_mips4000);
4179 this->add_extension(mach_mips4010, mach_mips4000);
4180 this->add_extension(mach_mips5900, mach_mips4000);
4181
4182 // MIPS32 extensions.
4183 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4184
4185 // MIPS II extensions.
4186 this->add_extension(mach_mips4000, mach_mips6000);
4187 this->add_extension(mach_mipsisa32, mach_mips6000);
4188
4189 // MIPS I extensions.
4190 this->add_extension(mach_mips6000, mach_mips3000);
4191 this->add_extension(mach_mips3900, mach_mips3000);
4192 }
4193
4194 // Add value to MIPS extenstions.
4195 void
4196 add_extension(unsigned int base, unsigned int extension)
4197 {
4198 std::pair<unsigned int, unsigned int> ext(base, extension);
4199 this->mips_mach_extensions_.push_back(ext);
4200 }
4201
4202 // Return the number of entries in the .dynsym section.
4203 unsigned int get_dt_mips_symtabno() const
4204 {
4205 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4206 / elfcpp::Elf_sizes<size>::sym_size));
4207 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4208 }
4209
4210 // Information about this specific target which we pass to the
4211 // general Target structure.
4212 static const Target::Target_info mips_info;
4213 // The GOT section.
4214 Mips_output_data_got<size, big_endian>* got_;
4215 // gp symbol. It has the value of .got + 0x7FF0.
4216 Sized_symbol<size>* gp_;
4217 // The PLT section.
4218 Mips_output_data_plt<size, big_endian>* plt_;
4219 // The GOT PLT section.
4220 Output_data_space* got_plt_;
4221 // The dynamic reloc section.
4222 Reloc_section* rel_dyn_;
4223 // The .rld_map section.
4224 Output_data_zero_fill* rld_map_;
4225 // Relocs saved to avoid a COPY reloc.
4226 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4227
4228 // A list of dyn relocs to be saved.
4229 std::vector<Dyn_reloc> dyn_relocs_;
4230
4231 // The LA25 stub section.
4232 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4233 // Architecture extensions.
4234 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4235 // .MIPS.stubs
4236 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4237
4238 // Attributes section data in output.
4239 Attributes_section_data* attributes_section_data_;
4240 // .MIPS.abiflags section data in output.
4241 Mips_abiflags<big_endian>* abiflags_;
4242
4243 unsigned int mach_;
4244 Layout* layout_;
4245
4246 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4247
4248 // Whether there is an input .MIPS.abiflags section.
4249 bool has_abiflags_section_;
4250
4251 // Whether the entry symbol is mips16 or micromips.
4252 bool entry_symbol_is_compressed_;
4253
4254 // Whether we can use only 32-bit microMIPS instructions.
4255 // TODO(sasa): This should be a linker option.
4256 bool insn32_;
4257 };
4258
4259 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4260 // It records high part of the relocation pair.
4261
4262 template<int size, bool big_endian>
4263 struct reloc_high
4264 {
4265 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4266
4267 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4268 const Symbol_value<size>* _psymval, Mips_address _addend,
4269 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4270 Mips_address _address = 0, bool _gp_disp = false)
4271 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4272 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4273 address(_address), gp_disp(_gp_disp)
4274 { }
4275
4276 unsigned char* view;
4277 const Mips_relobj<size, big_endian>* object;
4278 const Symbol_value<size>* psymval;
4279 Mips_address addend;
4280 unsigned int r_type;
4281 unsigned int r_sym;
4282 bool extract_addend;
4283 Mips_address address;
4284 bool gp_disp;
4285 };
4286
4287 template<int size, bool big_endian>
4288 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4289 {
4290 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4291 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4292 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4293 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4294 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4295
4296 public:
4297 typedef enum
4298 {
4299 STATUS_OKAY, // No error during relocation.
4300 STATUS_OVERFLOW, // Relocation overflow.
4301 STATUS_BAD_RELOC, // Relocation cannot be applied.
4302 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4303 } Status;
4304
4305 private:
4306 typedef Relocate_functions<size, big_endian> Base;
4307 typedef Mips_relocate_functions<size, big_endian> This;
4308
4309 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4310 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4311 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4312
4313 template<int valsize>
4314 static inline typename This::Status
4315 check_overflow(Valtype value)
4316 {
4317 if (size == 32)
4318 return (Bits<valsize>::has_overflow32(value)
4319 ? This::STATUS_OVERFLOW
4320 : This::STATUS_OKAY);
4321
4322 return (Bits<valsize>::has_overflow(value)
4323 ? This::STATUS_OVERFLOW
4324 : This::STATUS_OKAY);
4325 }
4326
4327 static inline bool
4328 should_shuffle_micromips_reloc(unsigned int r_type)
4329 {
4330 return (micromips_reloc(r_type)
4331 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4332 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4333 }
4334
4335 public:
4336 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4337 // Most mips16 instructions are 16 bits, but these instructions
4338 // are 32 bits.
4339 //
4340 // The format of these instructions is:
4341 //
4342 // +--------------+--------------------------------+
4343 // | JALX | X| Imm 20:16 | Imm 25:21 |
4344 // +--------------+--------------------------------+
4345 // | Immediate 15:0 |
4346 // +-----------------------------------------------+
4347 //
4348 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4349 // Note that the immediate value in the first word is swapped.
4350 //
4351 // When producing a relocatable object file, R_MIPS16_26 is
4352 // handled mostly like R_MIPS_26. In particular, the addend is
4353 // stored as a straight 26-bit value in a 32-bit instruction.
4354 // (gas makes life simpler for itself by never adjusting a
4355 // R_MIPS16_26 reloc to be against a section, so the addend is
4356 // always zero). However, the 32 bit instruction is stored as 2
4357 // 16-bit values, rather than a single 32-bit value. In a
4358 // big-endian file, the result is the same; in a little-endian
4359 // file, the two 16-bit halves of the 32 bit value are swapped.
4360 // This is so that a disassembler can recognize the jal
4361 // instruction.
4362 //
4363 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4364 // instruction stored as two 16-bit values. The addend A is the
4365 // contents of the targ26 field. The calculation is the same as
4366 // R_MIPS_26. When storing the calculated value, reorder the
4367 // immediate value as shown above, and don't forget to store the
4368 // value as two 16-bit values.
4369 //
4370 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4371 // defined as
4372 //
4373 // big-endian:
4374 // +--------+----------------------+
4375 // | | |
4376 // | | targ26-16 |
4377 // |31 26|25 0|
4378 // +--------+----------------------+
4379 //
4380 // little-endian:
4381 // +----------+------+-------------+
4382 // | | | |
4383 // | sub1 | | sub2 |
4384 // |0 9|10 15|16 31|
4385 // +----------+--------------------+
4386 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4387 // ((sub1 << 16) | sub2)).
4388 //
4389 // When producing a relocatable object file, the calculation is
4390 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4391 // When producing a fully linked file, the calculation is
4392 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4393 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4394 //
4395 // The table below lists the other MIPS16 instruction relocations.
4396 // Each one is calculated in the same way as the non-MIPS16 relocation
4397 // given on the right, but using the extended MIPS16 layout of 16-bit
4398 // immediate fields:
4399 //
4400 // R_MIPS16_GPREL R_MIPS_GPREL16
4401 // R_MIPS16_GOT16 R_MIPS_GOT16
4402 // R_MIPS16_CALL16 R_MIPS_CALL16
4403 // R_MIPS16_HI16 R_MIPS_HI16
4404 // R_MIPS16_LO16 R_MIPS_LO16
4405 //
4406 // A typical instruction will have a format like this:
4407 //
4408 // +--------------+--------------------------------+
4409 // | EXTEND | Imm 10:5 | Imm 15:11 |
4410 // +--------------+--------------------------------+
4411 // | Major | rx | ry | Imm 4:0 |
4412 // +--------------+--------------------------------+
4413 //
4414 // EXTEND is the five bit value 11110. Major is the instruction
4415 // opcode.
4416 //
4417 // All we need to do here is shuffle the bits appropriately.
4418 // As above, the two 16-bit halves must be swapped on a
4419 // little-endian system.
4420
4421 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4422 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4423 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4424
4425 static void
4426 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4427 bool jal_shuffle)
4428 {
4429 if (!mips16_reloc(r_type)
4430 && !should_shuffle_micromips_reloc(r_type))
4431 return;
4432
4433 // Pick up the first and second halfwords of the instruction.
4434 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4435 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4436 Valtype32 val;
4437
4438 if (micromips_reloc(r_type)
4439 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4440 val = first << 16 | second;
4441 else if (r_type != elfcpp::R_MIPS16_26)
4442 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4443 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4444 else
4445 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4446 | ((first & 0x1f) << 21) | second);
4447
4448 elfcpp::Swap<32, big_endian>::writeval(view, val);
4449 }
4450
4451 static void
4452 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4453 {
4454 if (!mips16_reloc(r_type)
4455 && !should_shuffle_micromips_reloc(r_type))
4456 return;
4457
4458 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4459 Valtype16 first, second;
4460
4461 if (micromips_reloc(r_type)
4462 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4463 {
4464 second = val & 0xffff;
4465 first = val >> 16;
4466 }
4467 else if (r_type != elfcpp::R_MIPS16_26)
4468 {
4469 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4470 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4471 }
4472 else
4473 {
4474 second = val & 0xffff;
4475 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4476 | ((val >> 21) & 0x1f);
4477 }
4478
4479 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4480 elfcpp::Swap<16, big_endian>::writeval(view, first);
4481 }
4482
4483 // R_MIPS_16: S + sign-extend(A)
4484 static inline typename This::Status
4485 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4486 const Symbol_value<size>* psymval, Mips_address addend_a,
4487 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4488 {
4489 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4490 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4491
4492 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4493 : addend_a);
4494
4495 Valtype x = psymval->value(object, addend);
4496 val = Bits<16>::bit_select32(val, x, 0xffffU);
4497
4498 if (calculate_only)
4499 {
4500 *calculated_value = x;
4501 return This::STATUS_OKAY;
4502 }
4503 else
4504 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4505
4506 return check_overflow<16>(x);
4507 }
4508
4509 // R_MIPS_32: S + A
4510 static inline typename This::Status
4511 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4512 const Symbol_value<size>* psymval, Mips_address addend_a,
4513 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4514 {
4515 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4516 Valtype addend = (extract_addend
4517 ? elfcpp::Swap<32, big_endian>::readval(wv)
4518 : addend_a);
4519 Valtype x = psymval->value(object, addend);
4520
4521 if (calculate_only)
4522 *calculated_value = x;
4523 else
4524 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4525
4526 return This::STATUS_OKAY;
4527 }
4528
4529 // R_MIPS_JALR, R_MICROMIPS_JALR
4530 static inline typename This::Status
4531 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4532 const Symbol_value<size>* psymval, Mips_address address,
4533 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4534 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4535 bool calculate_only, Valtype* calculated_value)
4536 {
4537 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4538 Valtype addend = extract_addend ? 0 : addend_a;
4539 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4540
4541 // Try converting J(AL)R to B(AL), if the target is in range.
4542 if (r_type == elfcpp::R_MIPS_JALR
4543 && !cross_mode_jump
4544 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4545 || (jr_to_b && val == 0x03200008))) // jr t9
4546 {
4547 int offset = psymval->value(object, addend) - (address + 4);
4548 if (!Bits<18>::has_overflow32(offset))
4549 {
4550 if (val == 0x03200008) // jr t9
4551 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4552 else
4553 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4554 }
4555 }
4556
4557 if (calculate_only)
4558 *calculated_value = val;
4559 else
4560 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4561
4562 return This::STATUS_OKAY;
4563 }
4564
4565 // R_MIPS_PC32: S + A - P
4566 static inline typename This::Status
4567 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4568 const Symbol_value<size>* psymval, Mips_address address,
4569 Mips_address addend_a, bool extract_addend, bool calculate_only,
4570 Valtype* calculated_value)
4571 {
4572 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4573 Valtype addend = (extract_addend
4574 ? elfcpp::Swap<32, big_endian>::readval(wv)
4575 : addend_a);
4576 Valtype x = psymval->value(object, addend) - address;
4577
4578 if (calculate_only)
4579 *calculated_value = x;
4580 else
4581 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4582
4583 return This::STATUS_OKAY;
4584 }
4585
4586 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4587 static inline typename This::Status
4588 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4589 const Symbol_value<size>* psymval, Mips_address address,
4590 bool local, Mips_address addend_a, bool extract_addend,
4591 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4592 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4593 {
4594 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4595 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4596
4597 Valtype addend;
4598 if (extract_addend)
4599 {
4600 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4601 addend = (val & 0x03ffffff) << 1;
4602 else
4603 addend = (val & 0x03ffffff) << 2;
4604 }
4605 else
4606 addend = addend_a;
4607
4608 // Make sure the target of JALX is word-aligned. Bit 0 must be
4609 // the correct ISA mode selector and bit 1 must be 0.
4610 if (!calculate_only && cross_mode_jump
4611 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4612 {
4613 gold_warning(_("JALX to a non-word-aligned address"));
4614 return This::STATUS_BAD_RELOC;
4615 }
4616
4617 // Shift is 2, unusually, for microMIPS JALX.
4618 unsigned int shift =
4619 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4620
4621 Valtype x;
4622 if (local)
4623 x = addend | ((address + 4) & (0xfc000000 << shift));
4624 else
4625 {
4626 if (shift == 1)
4627 x = Bits<27>::sign_extend32(addend);
4628 else
4629 x = Bits<28>::sign_extend32(addend);
4630 }
4631 x = psymval->value(object, x) >> shift;
4632
4633 if (!calculate_only && !local && !gsym->is_weak_undefined()
4634 && ((x >> 26) != ((address + 4) >> (26 + shift))))
4635 return This::STATUS_OVERFLOW;
4636
4637 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4638
4639 // If required, turn JAL into JALX.
4640 if (cross_mode_jump)
4641 {
4642 bool ok;
4643 Valtype32 opcode = val >> 26;
4644 Valtype32 jalx_opcode;
4645
4646 // Check to see if the opcode is already JAL or JALX.
4647 if (r_type == elfcpp::R_MIPS16_26)
4648 {
4649 ok = (opcode == 0x6) || (opcode == 0x7);
4650 jalx_opcode = 0x7;
4651 }
4652 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4653 {
4654 ok = (opcode == 0x3d) || (opcode == 0x3c);
4655 jalx_opcode = 0x3c;
4656 }
4657 else
4658 {
4659 ok = (opcode == 0x3) || (opcode == 0x1d);
4660 jalx_opcode = 0x1d;
4661 }
4662
4663 // If the opcode is not JAL or JALX, there's a problem. We cannot
4664 // convert J or JALS to JALX.
4665 if (!calculate_only && !ok)
4666 {
4667 gold_error(_("Unsupported jump between ISA modes; consider "
4668 "recompiling with interlinking enabled."));
4669 return This::STATUS_BAD_RELOC;
4670 }
4671
4672 // Make this the JALX opcode.
4673 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4674 }
4675
4676 // Try converting JAL to BAL, if the target is in range.
4677 if (!parameters->options().relocatable()
4678 && !cross_mode_jump
4679 && ((jal_to_bal
4680 && r_type == elfcpp::R_MIPS_26
4681 && (val >> 26) == 0x3))) // jal addr
4682 {
4683 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4684 int offset = dest - (address + 4);
4685 if (!Bits<18>::has_overflow32(offset))
4686 {
4687 if (val == 0x03200008) // jr t9
4688 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4689 else
4690 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4691 }
4692 }
4693
4694 if (calculate_only)
4695 *calculated_value = val;
4696 else
4697 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4698
4699 return This::STATUS_OKAY;
4700 }
4701
4702 // R_MIPS_PC16
4703 static inline typename This::Status
4704 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4705 const Symbol_value<size>* psymval, Mips_address address,
4706 Mips_address addend_a, bool extract_addend, bool calculate_only,
4707 Valtype* calculated_value)
4708 {
4709 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4710 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4711
4712 Valtype addend = (extract_addend
4713 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4714 : addend_a);
4715
4716 Valtype x = psymval->value(object, addend) - address;
4717 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4718
4719 if (calculate_only)
4720 {
4721 *calculated_value = x >> 2;
4722 return This::STATUS_OKAY;
4723 }
4724 else
4725 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4726
4727 if (psymval->value(object, addend) & 3)
4728 return This::STATUS_PCREL_UNALIGNED;
4729
4730 return check_overflow<18>(x);
4731 }
4732
4733 // R_MIPS_PC21_S2
4734 static inline typename This::Status
4735 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4736 const Symbol_value<size>* psymval, Mips_address address,
4737 Mips_address addend_a, bool extract_addend, bool calculate_only,
4738 Valtype* calculated_value)
4739 {
4740 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4741 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4742
4743 Valtype addend = (extract_addend
4744 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4745 : addend_a);
4746
4747 Valtype x = psymval->value(object, addend) - address;
4748 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4749
4750 if (calculate_only)
4751 {
4752 *calculated_value = x >> 2;
4753 return This::STATUS_OKAY;
4754 }
4755 else
4756 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4757
4758 if (psymval->value(object, addend) & 3)
4759 return This::STATUS_PCREL_UNALIGNED;
4760
4761 return check_overflow<23>(x);
4762 }
4763
4764 // R_MIPS_PC26_S2
4765 static inline typename This::Status
4766 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4767 const Symbol_value<size>* psymval, Mips_address address,
4768 Mips_address addend_a, bool extract_addend, bool calculate_only,
4769 Valtype* calculated_value)
4770 {
4771 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4772 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4773
4774 Valtype addend = (extract_addend
4775 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4776 : addend_a);
4777
4778 Valtype x = psymval->value(object, addend) - address;
4779 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4780
4781 if (calculate_only)
4782 {
4783 *calculated_value = x >> 2;
4784 return This::STATUS_OKAY;
4785 }
4786 else
4787 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4788
4789 if (psymval->value(object, addend) & 3)
4790 return This::STATUS_PCREL_UNALIGNED;
4791
4792 return check_overflow<28>(x);
4793 }
4794
4795 // R_MIPS_PC18_S3
4796 static inline typename This::Status
4797 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4798 const Symbol_value<size>* psymval, Mips_address address,
4799 Mips_address addend_a, bool extract_addend, bool calculate_only,
4800 Valtype* calculated_value)
4801 {
4802 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4803 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4804
4805 Valtype addend = (extract_addend
4806 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4807 : addend_a);
4808
4809 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4810 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4811
4812 if (calculate_only)
4813 {
4814 *calculated_value = x >> 3;
4815 return This::STATUS_OKAY;
4816 }
4817 else
4818 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4819
4820 if (psymval->value(object, addend) & 7)
4821 return This::STATUS_PCREL_UNALIGNED;
4822
4823 return check_overflow<21>(x);
4824 }
4825
4826 // R_MIPS_PC19_S2
4827 static inline typename This::Status
4828 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4829 const Symbol_value<size>* psymval, Mips_address address,
4830 Mips_address addend_a, bool extract_addend, bool calculate_only,
4831 Valtype* calculated_value)
4832 {
4833 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4834 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4835
4836 Valtype addend = (extract_addend
4837 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4838 : addend_a);
4839
4840 Valtype x = psymval->value(object, addend) - address;
4841 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4842
4843 if (calculate_only)
4844 {
4845 *calculated_value = x >> 2;
4846 return This::STATUS_OKAY;
4847 }
4848 else
4849 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4850
4851 if (psymval->value(object, addend) & 3)
4852 return This::STATUS_PCREL_UNALIGNED;
4853
4854 return check_overflow<21>(x);
4855 }
4856
4857 // R_MIPS_PCHI16
4858 static inline typename This::Status
4859 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4860 const Symbol_value<size>* psymval, Mips_address addend,
4861 Mips_address address, unsigned int r_sym, bool extract_addend)
4862 {
4863 // Record the relocation. It will be resolved when we find pclo16 part.
4864 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4865 addend, 0, r_sym, extract_addend, address));
4866 return This::STATUS_OKAY;
4867 }
4868
4869 // R_MIPS_PCHI16
4870 static inline typename This::Status
4871 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4872 const Symbol_value<size>* psymval, Mips_address addend_hi,
4873 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4874 bool calculate_only, Valtype* calculated_value)
4875 {
4876 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4877 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4878
4879 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4880 : addend_hi);
4881
4882 Valtype value = psymval->value(object, addend) - address;
4883 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4884 val = Bits<32>::bit_select32(val, x, 0xffff);
4885
4886 if (calculate_only)
4887 *calculated_value = x;
4888 else
4889 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4890
4891 return This::STATUS_OKAY;
4892 }
4893
4894 // R_MIPS_PCLO16
4895 static inline typename This::Status
4896 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4897 const Symbol_value<size>* psymval, Mips_address addend_a,
4898 bool extract_addend, Mips_address address, unsigned int r_sym,
4899 unsigned int rel_type, bool calculate_only,
4900 Valtype* calculated_value)
4901 {
4902 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4903 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4904
4905 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4906 : addend_a);
4907
4908 if (rel_type == elfcpp::SHT_REL)
4909 {
4910 // Resolve pending R_MIPS_PCHI16 relocations.
4911 typename std::list<reloc_high<size, big_endian> >::iterator it =
4912 pchi16_relocs.begin();
4913 while (it != pchi16_relocs.end())
4914 {
4915 reloc_high<size, big_endian> pchi16 = *it;
4916 if (pchi16.r_sym == r_sym)
4917 {
4918 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4919 pchi16.addend, pchi16.address,
4920 pchi16.extract_addend, addend, calculate_only,
4921 calculated_value);
4922 it = pchi16_relocs.erase(it);
4923 }
4924 else
4925 ++it;
4926 }
4927 }
4928
4929 // Resolve R_MIPS_PCLO16 relocation.
4930 Valtype x = psymval->value(object, addend) - address;
4931 val = Bits<32>::bit_select32(val, x, 0xffff);
4932
4933 if (calculate_only)
4934 *calculated_value = x;
4935 else
4936 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4937
4938 return This::STATUS_OKAY;
4939 }
4940
4941 // R_MICROMIPS_PC7_S1
4942 static inline typename This::Status
4943 relmicromips_pc7_s1(unsigned char* view,
4944 const Mips_relobj<size, big_endian>* object,
4945 const Symbol_value<size>* psymval, Mips_address address,
4946 Mips_address addend_a, bool extract_addend,
4947 bool calculate_only, Valtype* calculated_value)
4948 {
4949 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4950 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4951
4952 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4953 : addend_a;
4954
4955 Valtype x = psymval->value(object, addend) - address;
4956 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4957
4958 if (calculate_only)
4959 {
4960 *calculated_value = x >> 1;
4961 return This::STATUS_OKAY;
4962 }
4963 else
4964 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4965
4966 return check_overflow<8>(x);
4967 }
4968
4969 // R_MICROMIPS_PC10_S1
4970 static inline typename This::Status
4971 relmicromips_pc10_s1(unsigned char* view,
4972 const Mips_relobj<size, big_endian>* object,
4973 const Symbol_value<size>* psymval, Mips_address address,
4974 Mips_address addend_a, bool extract_addend,
4975 bool calculate_only, Valtype* calculated_value)
4976 {
4977 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4978 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4979
4980 Valtype addend = (extract_addend
4981 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4982 : addend_a);
4983
4984 Valtype x = psymval->value(object, addend) - address;
4985 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4986
4987 if (calculate_only)
4988 {
4989 *calculated_value = x >> 1;
4990 return This::STATUS_OKAY;
4991 }
4992 else
4993 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4994
4995 return check_overflow<11>(x);
4996 }
4997
4998 // R_MICROMIPS_PC16_S1
4999 static inline typename This::Status
5000 relmicromips_pc16_s1(unsigned char* view,
5001 const Mips_relobj<size, big_endian>* object,
5002 const Symbol_value<size>* psymval, Mips_address address,
5003 Mips_address addend_a, bool extract_addend,
5004 bool calculate_only, Valtype* calculated_value)
5005 {
5006 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5007 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5008
5009 Valtype addend = (extract_addend
5010 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
5011 : addend_a);
5012
5013 Valtype x = psymval->value(object, addend) - address;
5014 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
5015
5016 if (calculate_only)
5017 {
5018 *calculated_value = x >> 1;
5019 return This::STATUS_OKAY;
5020 }
5021 else
5022 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5023
5024 return check_overflow<17>(x);
5025 }
5026
5027 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5028 static inline typename This::Status
5029 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5030 const Symbol_value<size>* psymval, Mips_address addend,
5031 Mips_address address, bool gp_disp, unsigned int r_type,
5032 unsigned int r_sym, bool extract_addend)
5033 {
5034 // Record the relocation. It will be resolved when we find lo16 part.
5035 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5036 addend, r_type, r_sym, extract_addend, address,
5037 gp_disp));
5038 return This::STATUS_OKAY;
5039 }
5040
5041 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5042 static inline typename This::Status
5043 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5044 const Symbol_value<size>* psymval, Mips_address addend_hi,
5045 Mips_address address, bool is_gp_disp, unsigned int r_type,
5046 bool extract_addend, Valtype32 addend_lo,
5047 Target_mips<size, big_endian>* target, bool calculate_only,
5048 Valtype* calculated_value)
5049 {
5050 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5051 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5052
5053 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5054 : addend_hi);
5055
5056 Valtype32 value;
5057 if (!is_gp_disp)
5058 value = psymval->value(object, addend);
5059 else
5060 {
5061 // For MIPS16 ABI code we generate this sequence
5062 // 0: li $v0,%hi(_gp_disp)
5063 // 4: addiupc $v1,%lo(_gp_disp)
5064 // 8: sll $v0,16
5065 // 12: addu $v0,$v1
5066 // 14: move $gp,$v0
5067 // So the offsets of hi and lo relocs are the same, but the
5068 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5069 // ADDIUPC clears the low two bits of the instruction address,
5070 // so the base is ($t9 + 4) & ~3.
5071 Valtype32 gp_disp;
5072 if (r_type == elfcpp::R_MIPS16_HI16)
5073 gp_disp = (target->adjusted_gp_value(object)
5074 - ((address + 4) & ~0x3));
5075 // The microMIPS .cpload sequence uses the same assembly
5076 // instructions as the traditional psABI version, but the
5077 // incoming $t9 has the low bit set.
5078 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5079 gp_disp = target->adjusted_gp_value(object) - address - 1;
5080 else
5081 gp_disp = target->adjusted_gp_value(object) - address;
5082 value = gp_disp + addend;
5083 }
5084 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5085 val = Bits<32>::bit_select32(val, x, 0xffff);
5086
5087 if (calculate_only)
5088 {
5089 *calculated_value = x;
5090 return This::STATUS_OKAY;
5091 }
5092 else
5093 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5094
5095 return (is_gp_disp ? check_overflow<16>(x)
5096 : This::STATUS_OKAY);
5097 }
5098
5099 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5100 static inline typename This::Status
5101 relgot16_local(unsigned char* view,
5102 const Mips_relobj<size, big_endian>* object,
5103 const Symbol_value<size>* psymval, Mips_address addend_a,
5104 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5105 {
5106 // Record the relocation. It will be resolved when we find lo16 part.
5107 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5108 addend_a, r_type, r_sym, extract_addend));
5109 return This::STATUS_OKAY;
5110 }
5111
5112 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5113 static inline typename This::Status
5114 do_relgot16_local(unsigned char* view,
5115 const Mips_relobj<size, big_endian>* object,
5116 const Symbol_value<size>* psymval, Mips_address addend_hi,
5117 bool extract_addend, Valtype32 addend_lo,
5118 Target_mips<size, big_endian>* target, bool calculate_only,
5119 Valtype* calculated_value)
5120 {
5121 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5122 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5123
5124 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5125 : addend_hi);
5126
5127 // Find GOT page entry.
5128 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5129 & 0xffff;
5130 value <<= 16;
5131 unsigned int got_offset =
5132 target->got_section()->get_got_page_offset(value, object);
5133
5134 // Resolve the relocation.
5135 Valtype x = target->got_section()->gp_offset(got_offset, object);
5136 val = Bits<32>::bit_select32(val, x, 0xffff);
5137
5138 if (calculate_only)
5139 {
5140 *calculated_value = x;
5141 return This::STATUS_OKAY;
5142 }
5143 else
5144 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5145
5146 return check_overflow<16>(x);
5147 }
5148
5149 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5150 static inline typename This::Status
5151 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5152 const Mips_relobj<size, big_endian>* object,
5153 const Symbol_value<size>* psymval, Mips_address addend_a,
5154 bool extract_addend, Mips_address address, bool is_gp_disp,
5155 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5156 bool calculate_only, Valtype* calculated_value)
5157 {
5158 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5159 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5160
5161 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5162 : addend_a);
5163
5164 if (rel_type == elfcpp::SHT_REL)
5165 {
5166 typename This::Status reloc_status = This::STATUS_OKAY;
5167 // Resolve pending R_MIPS_HI16 relocations.
5168 typename std::list<reloc_high<size, big_endian> >::iterator it =
5169 hi16_relocs.begin();
5170 while (it != hi16_relocs.end())
5171 {
5172 reloc_high<size, big_endian> hi16 = *it;
5173 if (hi16.r_sym == r_sym
5174 && is_matching_lo16_reloc(hi16.r_type, r_type))
5175 {
5176 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5177 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5178 hi16.addend, hi16.address, hi16.gp_disp,
5179 hi16.r_type, hi16.extract_addend, addend,
5180 target, calculate_only, calculated_value);
5181 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5182 if (reloc_status == This::STATUS_OVERFLOW)
5183 return This::STATUS_OVERFLOW;
5184 it = hi16_relocs.erase(it);
5185 }
5186 else
5187 ++it;
5188 }
5189
5190 // Resolve pending local R_MIPS_GOT16 relocations.
5191 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5192 got16_relocs.begin();
5193 while (it2 != got16_relocs.end())
5194 {
5195 reloc_high<size, big_endian> got16 = *it2;
5196 if (got16.r_sym == r_sym
5197 && is_matching_lo16_reloc(got16.r_type, r_type))
5198 {
5199 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5200
5201 reloc_status = do_relgot16_local(got16.view, got16.object,
5202 got16.psymval, got16.addend,
5203 got16.extract_addend, addend, target,
5204 calculate_only, calculated_value);
5205
5206 mips_reloc_shuffle(got16.view, got16.r_type, false);
5207 if (reloc_status == This::STATUS_OVERFLOW)
5208 return This::STATUS_OVERFLOW;
5209 it2 = got16_relocs.erase(it2);
5210 }
5211 else
5212 ++it2;
5213 }
5214 }
5215
5216 // Resolve R_MIPS_LO16 relocation.
5217 Valtype x;
5218 if (!is_gp_disp)
5219 x = psymval->value(object, addend);
5220 else
5221 {
5222 // See the comment for R_MIPS16_HI16 above for the reason
5223 // for this conditional.
5224 Valtype32 gp_disp;
5225 if (r_type == elfcpp::R_MIPS16_LO16)
5226 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5227 else if (r_type == elfcpp::R_MICROMIPS_LO16
5228 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5229 gp_disp = target->adjusted_gp_value(object) - address + 3;
5230 else
5231 gp_disp = target->adjusted_gp_value(object) - address + 4;
5232 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5233 // for overflow. Relocations against _gp_disp are normally
5234 // generated from the .cpload pseudo-op. It generates code
5235 // that normally looks like this:
5236
5237 // lui $gp,%hi(_gp_disp)
5238 // addiu $gp,$gp,%lo(_gp_disp)
5239 // addu $gp,$gp,$t9
5240
5241 // Here $t9 holds the address of the function being called,
5242 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5243 // relocation can easily overflow in this situation, but the
5244 // R_MIPS_HI16 relocation will handle the overflow.
5245 // Therefore, we consider this a bug in the MIPS ABI, and do
5246 // not check for overflow here.
5247 x = gp_disp + addend;
5248 }
5249 val = Bits<32>::bit_select32(val, x, 0xffff);
5250
5251 if (calculate_only)
5252 *calculated_value = x;
5253 else
5254 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5255
5256 return This::STATUS_OKAY;
5257 }
5258
5259 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5260 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5261 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5262 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5263 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5264 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5265 static inline typename This::Status
5266 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5267 Valtype* calculated_value)
5268 {
5269 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5270 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5271 Valtype x = gp_offset;
5272 val = Bits<32>::bit_select32(val, x, 0xffff);
5273
5274 if (calculate_only)
5275 {
5276 *calculated_value = x;
5277 return This::STATUS_OKAY;
5278 }
5279 else
5280 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5281
5282 return check_overflow<16>(x);
5283 }
5284
5285 // R_MIPS_EH
5286 static inline typename This::Status
5287 releh(unsigned char* view, int gp_offset, bool calculate_only,
5288 Valtype* calculated_value)
5289 {
5290 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5291 Valtype x = gp_offset;
5292
5293 if (calculate_only)
5294 {
5295 *calculated_value = x;
5296 return This::STATUS_OKAY;
5297 }
5298 else
5299 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5300
5301 return check_overflow<32>(x);
5302 }
5303
5304 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5305 static inline typename This::Status
5306 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5307 const Mips_relobj<size, big_endian>* object,
5308 const Symbol_value<size>* psymval, Mips_address addend_a,
5309 bool extract_addend, bool calculate_only,
5310 Valtype* calculated_value)
5311 {
5312 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5313 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5314 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5315
5316 // Find a GOT page entry that points to within 32KB of symbol + addend.
5317 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5318 unsigned int got_offset =
5319 target->got_section()->get_got_page_offset(value, object);
5320
5321 Valtype x = target->got_section()->gp_offset(got_offset, object);
5322 val = Bits<32>::bit_select32(val, x, 0xffff);
5323
5324 if (calculate_only)
5325 {
5326 *calculated_value = x;
5327 return This::STATUS_OKAY;
5328 }
5329 else
5330 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5331
5332 return check_overflow<16>(x);
5333 }
5334
5335 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5336 static inline typename This::Status
5337 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5338 const Mips_relobj<size, big_endian>* object,
5339 const Symbol_value<size>* psymval, Mips_address addend_a,
5340 bool extract_addend, bool local, bool calculate_only,
5341 Valtype* calculated_value)
5342 {
5343 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5344 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5345 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5346
5347 // For a local symbol, find a GOT page entry that points to within 32KB of
5348 // symbol + addend. Relocation value is the offset of the GOT page entry's
5349 // value from symbol + addend.
5350 // For a global symbol, relocation value is addend.
5351 Valtype x;
5352 if (local)
5353 {
5354 // Find GOT page entry.
5355 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5356 & ~0xffff);
5357 target->got_section()->get_got_page_offset(value, object);
5358
5359 x = psymval->value(object, addend) - value;
5360 }
5361 else
5362 x = addend;
5363 val = Bits<32>::bit_select32(val, x, 0xffff);
5364
5365 if (calculate_only)
5366 {
5367 *calculated_value = x;
5368 return This::STATUS_OKAY;
5369 }
5370 else
5371 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5372
5373 return check_overflow<16>(x);
5374 }
5375
5376 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5377 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5378 static inline typename This::Status
5379 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5380 Valtype* calculated_value)
5381 {
5382 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5383 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5384 Valtype x = gp_offset;
5385 x = ((x + 0x8000) >> 16) & 0xffff;
5386 val = Bits<32>::bit_select32(val, x, 0xffff);
5387
5388 if (calculate_only)
5389 *calculated_value = x;
5390 else
5391 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5392
5393 return This::STATUS_OKAY;
5394 }
5395
5396 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5397 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5398 static inline typename This::Status
5399 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5400 Valtype* calculated_value)
5401 {
5402 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5403 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5404 Valtype x = gp_offset;
5405 val = Bits<32>::bit_select32(val, x, 0xffff);
5406
5407 if (calculate_only)
5408 *calculated_value = x;
5409 else
5410 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5411
5412 return This::STATUS_OKAY;
5413 }
5414
5415 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5416 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5417 static inline typename This::Status
5418 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5419 const Symbol_value<size>* psymval, Mips_address gp,
5420 Mips_address addend_a, bool extract_addend, bool local,
5421 unsigned int r_type, bool calculate_only,
5422 Valtype* calculated_value)
5423 {
5424 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5425 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5426
5427 Valtype addend;
5428 if (extract_addend)
5429 {
5430 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5431 addend = (val & 0x7f) << 2;
5432 else
5433 addend = val & 0xffff;
5434 // Only sign-extend the addend if it was extracted from the
5435 // instruction. If the addend was separate, leave it alone,
5436 // otherwise we may lose significant bits.
5437 addend = Bits<16>::sign_extend32(addend);
5438 }
5439 else
5440 addend = addend_a;
5441
5442 Valtype x = psymval->value(object, addend) - gp;
5443
5444 // If the symbol was local, any earlier relocatable links will
5445 // have adjusted its addend with the gp offset, so compensate
5446 // for that now. Don't do it for symbols forced local in this
5447 // link, though, since they won't have had the gp offset applied
5448 // to them before.
5449 if (local)
5450 x += object->gp_value();
5451
5452 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5453 val = Bits<32>::bit_select32(val, x, 0x7f);
5454 else
5455 val = Bits<32>::bit_select32(val, x, 0xffff);
5456
5457 if (calculate_only)
5458 {
5459 *calculated_value = x;
5460 return This::STATUS_OKAY;
5461 }
5462 else
5463 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5464
5465 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5466 {
5467 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5468 "limit (see option -G)"));
5469 return This::STATUS_OVERFLOW;
5470 }
5471 return This::STATUS_OKAY;
5472 }
5473
5474 // R_MIPS_GPREL32
5475 static inline typename This::Status
5476 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5477 const Symbol_value<size>* psymval, Mips_address gp,
5478 Mips_address addend_a, bool extract_addend, bool calculate_only,
5479 Valtype* calculated_value)
5480 {
5481 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5482 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5483 Valtype addend = extract_addend ? val : addend_a;
5484
5485 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5486 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5487
5488 if (calculate_only)
5489 *calculated_value = x;
5490 else
5491 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5492
5493 return This::STATUS_OKAY;
5494 }
5495
5496 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5497 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5498 // R_MICROMIPS_TLS_DTPREL_HI16
5499 static inline typename This::Status
5500 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5501 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5502 Mips_address addend_a, bool extract_addend, bool calculate_only,
5503 Valtype* calculated_value)
5504 {
5505 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5506 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5507 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5508
5509 // tls symbol values are relative to tls_segment()->vaddr()
5510 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5511 val = Bits<32>::bit_select32(val, x, 0xffff);
5512
5513 if (calculate_only)
5514 *calculated_value = x;
5515 else
5516 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5517
5518 return This::STATUS_OKAY;
5519 }
5520
5521 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5522 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5523 // R_MICROMIPS_TLS_DTPREL_LO16,
5524 static inline typename This::Status
5525 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5526 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5527 Mips_address addend_a, bool extract_addend, bool calculate_only,
5528 Valtype* calculated_value)
5529 {
5530 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5531 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5532 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5533
5534 // tls symbol values are relative to tls_segment()->vaddr()
5535 Valtype x = psymval->value(object, addend) - tp_offset;
5536 val = Bits<32>::bit_select32(val, x, 0xffff);
5537
5538 if (calculate_only)
5539 *calculated_value = x;
5540 else
5541 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5542
5543 return This::STATUS_OKAY;
5544 }
5545
5546 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5547 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5548 static inline typename This::Status
5549 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5550 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5551 Mips_address addend_a, bool extract_addend, bool calculate_only,
5552 Valtype* calculated_value)
5553 {
5554 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5555 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5556 Valtype addend = extract_addend ? val : addend_a;
5557
5558 // tls symbol values are relative to tls_segment()->vaddr()
5559 Valtype x = psymval->value(object, addend) - tp_offset;
5560
5561 if (calculate_only)
5562 *calculated_value = x;
5563 else
5564 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5565
5566 return This::STATUS_OKAY;
5567 }
5568
5569 // R_MIPS_SUB, R_MICROMIPS_SUB
5570 static inline typename This::Status
5571 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5572 const Symbol_value<size>* psymval, Mips_address addend_a,
5573 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5574 {
5575 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5576 Valtype64 addend = (extract_addend
5577 ? elfcpp::Swap<64, big_endian>::readval(wv)
5578 : addend_a);
5579
5580 Valtype64 x = psymval->value(object, -addend);
5581 if (calculate_only)
5582 *calculated_value = x;
5583 else
5584 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5585
5586 return This::STATUS_OKAY;
5587 }
5588
5589 // R_MIPS_64: S + A
5590 static inline typename This::Status
5591 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5592 const Symbol_value<size>* psymval, Mips_address addend_a,
5593 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5594 bool apply_addend_only)
5595 {
5596 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5597 Valtype64 addend = (extract_addend
5598 ? elfcpp::Swap<64, big_endian>::readval(wv)
5599 : addend_a);
5600
5601 Valtype64 x = psymval->value(object, addend);
5602 if (calculate_only)
5603 *calculated_value = x;
5604 else
5605 {
5606 if (apply_addend_only)
5607 x = addend;
5608 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5609 }
5610
5611 return This::STATUS_OKAY;
5612 }
5613
5614 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5615 static inline typename This::Status
5616 relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5617 const Symbol_value<size>* psymval, Mips_address addend_a,
5618 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5619 {
5620 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5621 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5622 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5623 : addend_a);
5624
5625 Valtype x = psymval->value(object, addend);
5626 x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5627 val = Bits<32>::bit_select32(val, x, 0xffff);
5628
5629 if (calculate_only)
5630 *calculated_value = x;
5631 else
5632 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5633
5634 return This::STATUS_OKAY;
5635 }
5636
5637 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5638 static inline typename This::Status
5639 relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5640 const Symbol_value<size>* psymval, Mips_address addend_a,
5641 bool extract_addend, bool calculate_only,
5642 Valtype* calculated_value)
5643 {
5644 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5645 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5646 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5647 : addend_a);
5648
5649 Valtype x = psymval->value(object, addend);
5650 x = ((x + (uint64_t) 0x800080008000) >> 48) & 0xffff;
5651 val = Bits<32>::bit_select32(val, x, 0xffff);
5652
5653 if (calculate_only)
5654 *calculated_value = x;
5655 else
5656 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5657
5658 return This::STATUS_OKAY;
5659 }
5660 };
5661
5662 template<int size, bool big_endian>
5663 typename std::list<reloc_high<size, big_endian> >
5664 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5665
5666 template<int size, bool big_endian>
5667 typename std::list<reloc_high<size, big_endian> >
5668 Mips_relocate_functions<size, big_endian>::got16_relocs;
5669
5670 template<int size, bool big_endian>
5671 typename std::list<reloc_high<size, big_endian> >
5672 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5673
5674 // Mips_got_info methods.
5675
5676 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5677 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5678
5679 template<int size, bool big_endian>
5680 void
5681 Mips_got_info<size, big_endian>::record_local_got_symbol(
5682 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5683 Mips_address addend, unsigned int r_type, unsigned int shndx,
5684 bool is_section_symbol)
5685 {
5686 Mips_got_entry<size, big_endian>* entry =
5687 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5688 mips_elf_reloc_tls_type(r_type),
5689 shndx, is_section_symbol);
5690 this->record_got_entry(entry, object);
5691 }
5692
5693 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5694 // in OBJECT. FOR_CALL is true if the caller is only interested in
5695 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5696 // relocation.
5697
5698 template<int size, bool big_endian>
5699 void
5700 Mips_got_info<size, big_endian>::record_global_got_symbol(
5701 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5702 unsigned int r_type, bool dyn_reloc, bool for_call)
5703 {
5704 if (!for_call)
5705 mips_sym->set_got_not_only_for_calls();
5706
5707 // A global symbol in the GOT must also be in the dynamic symbol table.
5708 if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5709 {
5710 switch (mips_sym->visibility())
5711 {
5712 case elfcpp::STV_INTERNAL:
5713 case elfcpp::STV_HIDDEN:
5714 mips_sym->set_is_forced_local();
5715 break;
5716 default:
5717 mips_sym->set_needs_dynsym_entry();
5718 break;
5719 }
5720 }
5721
5722 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5723 if (tls_type == GOT_TLS_NONE)
5724 this->global_got_symbols_.insert(mips_sym);
5725
5726 if (dyn_reloc)
5727 {
5728 if (mips_sym->global_got_area() == GGA_NONE)
5729 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5730 return;
5731 }
5732
5733 Mips_got_entry<size, big_endian>* entry =
5734 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5735
5736 this->record_got_entry(entry, object);
5737 }
5738
5739 // Add ENTRY to master GOT and to OBJECT's GOT.
5740
5741 template<int size, bool big_endian>
5742 void
5743 Mips_got_info<size, big_endian>::record_got_entry(
5744 Mips_got_entry<size, big_endian>* entry,
5745 Mips_relobj<size, big_endian>* object)
5746 {
5747 this->got_entries_.insert(entry);
5748
5749 // Create the GOT entry for the OBJECT's GOT.
5750 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5751 Mips_got_entry<size, big_endian>* entry2 =
5752 new Mips_got_entry<size, big_endian>(*entry);
5753
5754 g->got_entries_.insert(entry2);
5755 }
5756
5757 // Record that OBJECT has a page relocation against symbol SYMNDX and
5758 // that ADDEND is the addend for that relocation.
5759 // This function creates an upper bound on the number of GOT slots
5760 // required; no attempt is made to combine references to non-overridable
5761 // global symbols across multiple input files.
5762
5763 template<int size, bool big_endian>
5764 void
5765 Mips_got_info<size, big_endian>::record_got_page_entry(
5766 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5767 {
5768 struct Got_page_range **range_ptr, *range;
5769 int old_pages, new_pages;
5770
5771 // Find the Got_page_entry for this symbol.
5772 Got_page_entry* entry = new Got_page_entry(object, symndx);
5773 typename Got_page_entry_set::iterator it =
5774 this->got_page_entries_.find(entry);
5775 if (it != this->got_page_entries_.end())
5776 entry = *it;
5777 else
5778 this->got_page_entries_.insert(entry);
5779
5780 // Add the same entry to the OBJECT's GOT.
5781 Got_page_entry* entry2 = NULL;
5782 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5783 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5784 {
5785 entry2 = new Got_page_entry(*entry);
5786 g2->got_page_entries_.insert(entry2);
5787 }
5788
5789 // Skip over ranges whose maximum extent cannot share a page entry
5790 // with ADDEND.
5791 range_ptr = &entry->ranges;
5792 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5793 range_ptr = &(*range_ptr)->next;
5794
5795 // If we scanned to the end of the list, or found a range whose
5796 // minimum extent cannot share a page entry with ADDEND, create
5797 // a new singleton range.
5798 range = *range_ptr;
5799 if (!range || addend < range->min_addend - 0xffff)
5800 {
5801 range = new Got_page_range();
5802 range->next = *range_ptr;
5803 range->min_addend = addend;
5804 range->max_addend = addend;
5805
5806 *range_ptr = range;
5807 ++entry->num_pages;
5808 if (entry2 != NULL)
5809 ++entry2->num_pages;
5810 ++this->page_gotno_;
5811 ++g2->page_gotno_;
5812 return;
5813 }
5814
5815 // Remember how many pages the old range contributed.
5816 old_pages = range->get_max_pages();
5817
5818 // Update the ranges.
5819 if (addend < range->min_addend)
5820 range->min_addend = addend;
5821 else if (addend > range->max_addend)
5822 {
5823 if (range->next && addend >= range->next->min_addend - 0xffff)
5824 {
5825 old_pages += range->next->get_max_pages();
5826 range->max_addend = range->next->max_addend;
5827 range->next = range->next->next;
5828 }
5829 else
5830 range->max_addend = addend;
5831 }
5832
5833 // Record any change in the total estimate.
5834 new_pages = range->get_max_pages();
5835 if (old_pages != new_pages)
5836 {
5837 entry->num_pages += new_pages - old_pages;
5838 if (entry2 != NULL)
5839 entry2->num_pages += new_pages - old_pages;
5840 this->page_gotno_ += new_pages - old_pages;
5841 g2->page_gotno_ += new_pages - old_pages;
5842 }
5843 }
5844
5845 // Create all entries that should be in the local part of the GOT.
5846
5847 template<int size, bool big_endian>
5848 void
5849 Mips_got_info<size, big_endian>::add_local_entries(
5850 Target_mips<size, big_endian>* target, Layout* layout)
5851 {
5852 Mips_output_data_got<size, big_endian>* got = target->got_section();
5853 // First two GOT entries are reserved. The first entry will be filled at
5854 // runtime. The second entry will be used by some runtime loaders.
5855 got->add_constant(0);
5856 got->add_constant(target->mips_elf_gnu_got1_mask());
5857
5858 for (typename Got_entry_set::iterator
5859 p = this->got_entries_.begin();
5860 p != this->got_entries_.end();
5861 ++p)
5862 {
5863 Mips_got_entry<size, big_endian>* entry = *p;
5864 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5865 {
5866 got->add_local(entry->object(), entry->symndx(),
5867 GOT_TYPE_STANDARD, entry->addend());
5868 unsigned int got_offset = entry->object()->local_got_offset(
5869 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5870 if (got->multi_got() && this->index_ > 0
5871 && parameters->options().output_is_position_independent())
5872 {
5873 if (!entry->is_section_symbol())
5874 target->rel_dyn_section(layout)->add_local(entry->object(),
5875 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5876 else
5877 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5878 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5879 got, got_offset);
5880 }
5881 }
5882 }
5883
5884 this->add_page_entries(target, layout);
5885
5886 // Add global entries that should be in the local area.
5887 for (typename Got_entry_set::iterator
5888 p = this->got_entries_.begin();
5889 p != this->got_entries_.end();
5890 ++p)
5891 {
5892 Mips_got_entry<size, big_endian>* entry = *p;
5893 if (!entry->is_for_global_symbol())
5894 continue;
5895
5896 Mips_symbol<size>* mips_sym = entry->sym();
5897 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5898 {
5899 unsigned int got_type;
5900 if (!got->multi_got())
5901 got_type = GOT_TYPE_STANDARD;
5902 else
5903 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5904 if (got->add_global(mips_sym, got_type))
5905 {
5906 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5907 if (got->multi_got() && this->index_ > 0
5908 && parameters->options().output_is_position_independent())
5909 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5910 mips_sym, elfcpp::R_MIPS_REL32, got,
5911 mips_sym->got_offset(got_type));
5912 }
5913 }
5914 }
5915 }
5916
5917 // Create GOT page entries.
5918
5919 template<int size, bool big_endian>
5920 void
5921 Mips_got_info<size, big_endian>::add_page_entries(
5922 Target_mips<size, big_endian>* target, Layout* layout)
5923 {
5924 if (this->page_gotno_ == 0)
5925 return;
5926
5927 Mips_output_data_got<size, big_endian>* got = target->got_section();
5928 this->got_page_offset_start_ = got->add_constant(0);
5929 if (got->multi_got() && this->index_ > 0
5930 && parameters->options().output_is_position_independent())
5931 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5932 this->got_page_offset_start_);
5933 int num_entries = this->page_gotno_;
5934 unsigned int prev_offset = this->got_page_offset_start_;
5935 while (--num_entries > 0)
5936 {
5937 unsigned int next_offset = got->add_constant(0);
5938 if (got->multi_got() && this->index_ > 0
5939 && parameters->options().output_is_position_independent())
5940 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5941 next_offset);
5942 gold_assert(next_offset == prev_offset + size/8);
5943 prev_offset = next_offset;
5944 }
5945 this->got_page_offset_next_ = this->got_page_offset_start_;
5946 }
5947
5948 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5949
5950 template<int size, bool big_endian>
5951 void
5952 Mips_got_info<size, big_endian>::add_global_entries(
5953 Target_mips<size, big_endian>* target, Layout* layout,
5954 unsigned int non_reloc_only_global_gotno)
5955 {
5956 Mips_output_data_got<size, big_endian>* got = target->got_section();
5957 // Add GGA_NORMAL entries.
5958 unsigned int count = 0;
5959 for (typename Got_entry_set::iterator
5960 p = this->got_entries_.begin();
5961 p != this->got_entries_.end();
5962 ++p)
5963 {
5964 Mips_got_entry<size, big_endian>* entry = *p;
5965 if (!entry->is_for_global_symbol())
5966 continue;
5967
5968 Mips_symbol<size>* mips_sym = entry->sym();
5969 if (mips_sym->global_got_area() != GGA_NORMAL)
5970 continue;
5971
5972 unsigned int got_type;
5973 if (!got->multi_got())
5974 got_type = GOT_TYPE_STANDARD;
5975 else
5976 // In multi-GOT links, global symbol can be in both primary and
5977 // secondary GOT(s). By creating custom GOT type
5978 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5979 // is added to secondary GOT(s).
5980 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5981 if (!got->add_global(mips_sym, got_type))
5982 continue;
5983
5984 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5985 if (got->multi_got() && this->index_ == 0)
5986 count++;
5987 if (got->multi_got() && this->index_ > 0)
5988 {
5989 if (parameters->options().output_is_position_independent()
5990 || (!parameters->doing_static_link()
5991 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5992 {
5993 target->rel_dyn_section(layout)->add_global(
5994 mips_sym, elfcpp::R_MIPS_REL32, got,
5995 mips_sym->got_offset(got_type));
5996 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5997 elfcpp::R_MIPS_REL32, mips_sym);
5998 }
5999 }
6000 }
6001
6002 if (!got->multi_got() || this->index_ == 0)
6003 {
6004 if (got->multi_got())
6005 {
6006 // We need to allocate space in the primary GOT for GGA_NORMAL entries
6007 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6008 // entries correspond to dynamic symbol indexes.
6009 while (count < non_reloc_only_global_gotno)
6010 {
6011 got->add_constant(0);
6012 ++count;
6013 }
6014 }
6015
6016 // Add GGA_RELOC_ONLY entries.
6017 got->add_reloc_only_entries();
6018 }
6019 }
6020
6021 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6022
6023 template<int size, bool big_endian>
6024 void
6025 Mips_got_info<size, big_endian>::add_reloc_only_entries(
6026 Mips_output_data_got<size, big_endian>* got)
6027 {
6028 for (typename Global_got_entry_set::iterator
6029 p = this->global_got_symbols_.begin();
6030 p != this->global_got_symbols_.end();
6031 ++p)
6032 {
6033 Mips_symbol<size>* mips_sym = *p;
6034 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6035 {
6036 unsigned int got_type;
6037 if (!got->multi_got())
6038 got_type = GOT_TYPE_STANDARD;
6039 else
6040 got_type = GOT_TYPE_STANDARD_MULTIGOT;
6041 if (got->add_global(mips_sym, got_type))
6042 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6043 }
6044 }
6045 }
6046
6047 // Create TLS GOT entries.
6048
6049 template<int size, bool big_endian>
6050 void
6051 Mips_got_info<size, big_endian>::add_tls_entries(
6052 Target_mips<size, big_endian>* target, Layout* layout)
6053 {
6054 Mips_output_data_got<size, big_endian>* got = target->got_section();
6055 // Add local tls entries.
6056 for (typename Got_entry_set::iterator
6057 p = this->got_entries_.begin();
6058 p != this->got_entries_.end();
6059 ++p)
6060 {
6061 Mips_got_entry<size, big_endian>* entry = *p;
6062 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6063 continue;
6064
6065 if (entry->tls_type() == GOT_TLS_GD)
6066 {
6067 unsigned int got_type = GOT_TYPE_TLS_PAIR;
6068 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6069 : elfcpp::R_MIPS_TLS_DTPMOD64);
6070 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6071 : elfcpp::R_MIPS_TLS_DTPREL64);
6072
6073 if (!parameters->doing_static_link())
6074 {
6075 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6076 entry->shndx(), got_type,
6077 target->rel_dyn_section(layout),
6078 r_type1, entry->addend());
6079 unsigned int got_offset =
6080 entry->object()->local_got_offset(entry->symndx(), got_type,
6081 entry->addend());
6082 got->add_static_reloc(got_offset + size/8, r_type2,
6083 entry->object(), entry->symndx());
6084 }
6085 else
6086 {
6087 // We are doing a static link. Mark it as belong to module 1,
6088 // the executable.
6089 unsigned int got_offset = got->add_constant(1);
6090 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6091 got_offset,
6092 entry->addend());
6093 got->add_constant(0);
6094 got->add_static_reloc(got_offset + size/8, r_type2,
6095 entry->object(), entry->symndx());
6096 }
6097 }
6098 else if (entry->tls_type() == GOT_TLS_IE)
6099 {
6100 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6101 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6102 : elfcpp::R_MIPS_TLS_TPREL64);
6103 if (!parameters->doing_static_link())
6104 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6105 target->rel_dyn_section(layout), r_type,
6106 entry->addend());
6107 else
6108 {
6109 got->add_local(entry->object(), entry->symndx(), got_type,
6110 entry->addend());
6111 unsigned int got_offset =
6112 entry->object()->local_got_offset(entry->symndx(), got_type,
6113 entry->addend());
6114 got->add_static_reloc(got_offset, r_type, entry->object(),
6115 entry->symndx());
6116 }
6117 }
6118 else if (entry->tls_type() == GOT_TLS_LDM)
6119 {
6120 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6121 : elfcpp::R_MIPS_TLS_DTPMOD64);
6122 unsigned int got_offset;
6123 if (!parameters->doing_static_link())
6124 {
6125 got_offset = got->add_constant(0);
6126 target->rel_dyn_section(layout)->add_local(
6127 entry->object(), 0, r_type, got, got_offset);
6128 }
6129 else
6130 // We are doing a static link. Just mark it as belong to module 1,
6131 // the executable.
6132 got_offset = got->add_constant(1);
6133
6134 got->add_constant(0);
6135 got->set_tls_ldm_offset(got_offset, entry->object());
6136 }
6137 else
6138 gold_unreachable();
6139 }
6140
6141 // Add global tls entries.
6142 for (typename Got_entry_set::iterator
6143 p = this->got_entries_.begin();
6144 p != this->got_entries_.end();
6145 ++p)
6146 {
6147 Mips_got_entry<size, big_endian>* entry = *p;
6148 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6149 continue;
6150
6151 Mips_symbol<size>* mips_sym = entry->sym();
6152 if (entry->tls_type() == GOT_TLS_GD)
6153 {
6154 unsigned int got_type;
6155 if (!got->multi_got())
6156 got_type = GOT_TYPE_TLS_PAIR;
6157 else
6158 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6159 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6160 : elfcpp::R_MIPS_TLS_DTPMOD64);
6161 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6162 : elfcpp::R_MIPS_TLS_DTPREL64);
6163 if (!parameters->doing_static_link())
6164 got->add_global_pair_with_rel(mips_sym, got_type,
6165 target->rel_dyn_section(layout), r_type1, r_type2);
6166 else
6167 {
6168 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6169 // GOT entries. The first one is initialized to be 1, which is the
6170 // module index for the main executable and the second one 0. A
6171 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6172 // the second GOT entry and will be applied by gold.
6173 unsigned int got_offset = got->add_constant(1);
6174 mips_sym->set_got_offset(got_type, got_offset);
6175 got->add_constant(0);
6176 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6177 }
6178 }
6179 else if (entry->tls_type() == GOT_TLS_IE)
6180 {
6181 unsigned int got_type;
6182 if (!got->multi_got())
6183 got_type = GOT_TYPE_TLS_OFFSET;
6184 else
6185 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6186 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6187 : elfcpp::R_MIPS_TLS_TPREL64);
6188 if (!parameters->doing_static_link())
6189 got->add_global_with_rel(mips_sym, got_type,
6190 target->rel_dyn_section(layout), r_type);
6191 else
6192 {
6193 got->add_global(mips_sym, got_type);
6194 unsigned int got_offset = mips_sym->got_offset(got_type);
6195 got->add_static_reloc(got_offset, r_type, mips_sym);
6196 }
6197 }
6198 else
6199 gold_unreachable();
6200 }
6201 }
6202
6203 // Decide whether the symbol needs an entry in the global part of the primary
6204 // GOT, setting global_got_area accordingly. Count the number of global
6205 // symbols that are in the primary GOT only because they have dynamic
6206 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6207
6208 template<int size, bool big_endian>
6209 void
6210 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6211 {
6212 for (typename Global_got_entry_set::iterator
6213 p = this->global_got_symbols_.begin();
6214 p != this->global_got_symbols_.end();
6215 ++p)
6216 {
6217 Mips_symbol<size>* sym = *p;
6218 // Make a final decision about whether the symbol belongs in the
6219 // local or global GOT. Symbols that bind locally can (and in the
6220 // case of forced-local symbols, must) live in the local GOT.
6221 // Those that are aren't in the dynamic symbol table must also
6222 // live in the local GOT.
6223
6224 if (!sym->should_add_dynsym_entry(symtab)
6225 || (sym->got_only_for_calls()
6226 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6227 : symbol_references_local(sym,
6228 sym->should_add_dynsym_entry(symtab))))
6229 // The symbol belongs in the local GOT. We no longer need this
6230 // entry if it was only used for relocations; those relocations
6231 // will be against the null or section symbol instead.
6232 sym->set_global_got_area(GGA_NONE);
6233 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6234 {
6235 ++this->reloc_only_gotno_;
6236 ++this->global_gotno_ ;
6237 }
6238 }
6239 }
6240
6241 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6242 // VALUE if it is not initialized.
6243
6244 template<int size, bool big_endian>
6245 unsigned int
6246 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6247 Mips_output_data_got<size, big_endian>* got)
6248 {
6249 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6250 if (it != this->got_page_offsets_.end())
6251 return it->second;
6252
6253 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6254 + (size/8) * this->page_gotno_);
6255
6256 unsigned int got_offset = this->got_page_offset_next_;
6257 this->got_page_offsets_[value] = got_offset;
6258 this->got_page_offset_next_ += size/8;
6259 got->update_got_entry(got_offset, value);
6260 return got_offset;
6261 }
6262
6263 // Remove lazy-binding stubs for global symbols in this GOT.
6264
6265 template<int size, bool big_endian>
6266 void
6267 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6268 Target_mips<size, big_endian>* target)
6269 {
6270 for (typename Got_entry_set::iterator
6271 p = this->got_entries_.begin();
6272 p != this->got_entries_.end();
6273 ++p)
6274 {
6275 Mips_got_entry<size, big_endian>* entry = *p;
6276 if (entry->is_for_global_symbol())
6277 target->remove_lazy_stub_entry(entry->sym());
6278 }
6279 }
6280
6281 // Count the number of GOT entries required.
6282
6283 template<int size, bool big_endian>
6284 void
6285 Mips_got_info<size, big_endian>::count_got_entries()
6286 {
6287 for (typename Got_entry_set::iterator
6288 p = this->got_entries_.begin();
6289 p != this->got_entries_.end();
6290 ++p)
6291 {
6292 this->count_got_entry(*p);
6293 }
6294 }
6295
6296 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6297
6298 template<int size, bool big_endian>
6299 void
6300 Mips_got_info<size, big_endian>::count_got_entry(
6301 Mips_got_entry<size, big_endian>* entry)
6302 {
6303 if (entry->is_tls_entry())
6304 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6305 else if (entry->is_for_local_symbol()
6306 || entry->sym()->global_got_area() == GGA_NONE)
6307 ++this->local_gotno_;
6308 else
6309 ++this->global_gotno_;
6310 }
6311
6312 // Add FROM's GOT entries.
6313
6314 template<int size, bool big_endian>
6315 void
6316 Mips_got_info<size, big_endian>::add_got_entries(
6317 Mips_got_info<size, big_endian>* from)
6318 {
6319 for (typename Got_entry_set::iterator
6320 p = from->got_entries_.begin();
6321 p != from->got_entries_.end();
6322 ++p)
6323 {
6324 Mips_got_entry<size, big_endian>* entry = *p;
6325 if (this->got_entries_.find(entry) == this->got_entries_.end())
6326 {
6327 Mips_got_entry<size, big_endian>* entry2 =
6328 new Mips_got_entry<size, big_endian>(*entry);
6329 this->got_entries_.insert(entry2);
6330 this->count_got_entry(entry);
6331 }
6332 }
6333 }
6334
6335 // Add FROM's GOT page entries.
6336
6337 template<int size, bool big_endian>
6338 void
6339 Mips_got_info<size, big_endian>::add_got_page_entries(
6340 Mips_got_info<size, big_endian>* from)
6341 {
6342 for (typename Got_page_entry_set::iterator
6343 p = from->got_page_entries_.begin();
6344 p != from->got_page_entries_.end();
6345 ++p)
6346 {
6347 Got_page_entry* entry = *p;
6348 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6349 {
6350 Got_page_entry* entry2 = new Got_page_entry(*entry);
6351 this->got_page_entries_.insert(entry2);
6352 this->page_gotno_ += entry->num_pages;
6353 }
6354 }
6355 }
6356
6357 // Mips_output_data_got methods.
6358
6359 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6360 // larger than 64K, create multi-GOT.
6361
6362 template<int size, bool big_endian>
6363 void
6364 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6365 Symbol_table* symtab, const Input_objects* input_objects)
6366 {
6367 // Decide which symbols need to go in the global part of the GOT and
6368 // count the number of reloc-only GOT symbols.
6369 this->master_got_info_->count_got_symbols(symtab);
6370
6371 // Count the number of GOT entries.
6372 this->master_got_info_->count_got_entries();
6373
6374 unsigned int got_size = this->master_got_info_->got_size();
6375 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6376 this->lay_out_multi_got(layout, input_objects);
6377 else
6378 {
6379 // Record that all objects use single GOT.
6380 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6381 p != input_objects->relobj_end();
6382 ++p)
6383 {
6384 Mips_relobj<size, big_endian>* object =
6385 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6386 if (object->get_got_info() != NULL)
6387 object->set_got_info(this->master_got_info_);
6388 }
6389
6390 this->master_got_info_->add_local_entries(this->target_, layout);
6391 this->master_got_info_->add_global_entries(this->target_, layout,
6392 /*not used*/-1U);
6393 this->master_got_info_->add_tls_entries(this->target_, layout);
6394 }
6395 }
6396
6397 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6398
6399 template<int size, bool big_endian>
6400 void
6401 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6402 const Input_objects* input_objects)
6403 {
6404 // Try to merge the GOTs of input objects together, as long as they
6405 // don't seem to exceed the maximum GOT size, choosing one of them
6406 // to be the primary GOT.
6407 this->merge_gots(input_objects);
6408
6409 // Every symbol that is referenced in a dynamic relocation must be
6410 // present in the primary GOT.
6411 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6412
6413 // Add GOT entries.
6414 unsigned int i = 0;
6415 unsigned int offset = 0;
6416 Mips_got_info<size, big_endian>* g = this->primary_got_;
6417 do
6418 {
6419 g->set_index(i);
6420 g->set_offset(offset);
6421
6422 g->add_local_entries(this->target_, layout);
6423 if (i == 0)
6424 g->add_global_entries(this->target_, layout,
6425 (this->master_got_info_->global_gotno()
6426 - this->master_got_info_->reloc_only_gotno()));
6427 else
6428 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6429 g->add_tls_entries(this->target_, layout);
6430
6431 // Forbid global symbols in every non-primary GOT from having
6432 // lazy-binding stubs.
6433 if (i > 0)
6434 g->remove_lazy_stubs(this->target_);
6435
6436 ++i;
6437 offset += g->got_size();
6438 g = g->next();
6439 }
6440 while (g);
6441 }
6442
6443 // Attempt to merge GOTs of different input objects. Try to use as much as
6444 // possible of the primary GOT, since it doesn't require explicit dynamic
6445 // relocations, but don't use objects that would reference global symbols
6446 // out of the addressable range. Failing the primary GOT, attempt to merge
6447 // with the current GOT, or finish the current GOT and then make make the new
6448 // GOT current.
6449
6450 template<int size, bool big_endian>
6451 void
6452 Mips_output_data_got<size, big_endian>::merge_gots(
6453 const Input_objects* input_objects)
6454 {
6455 gold_assert(this->primary_got_ == NULL);
6456 Mips_got_info<size, big_endian>* current = NULL;
6457
6458 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6459 p != input_objects->relobj_end();
6460 ++p)
6461 {
6462 Mips_relobj<size, big_endian>* object =
6463 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6464
6465 Mips_got_info<size, big_endian>* g = object->get_got_info();
6466 if (g == NULL)
6467 continue;
6468
6469 g->count_got_entries();
6470
6471 // Work out the number of page, local and TLS entries.
6472 unsigned int estimate = this->master_got_info_->page_gotno();
6473 if (estimate > g->page_gotno())
6474 estimate = g->page_gotno();
6475 estimate += g->local_gotno() + g->tls_gotno();
6476
6477 // We place TLS GOT entries after both locals and globals. The globals
6478 // for the primary GOT may overflow the normal GOT size limit, so be
6479 // sure not to merge a GOT which requires TLS with the primary GOT in that
6480 // case. This doesn't affect non-primary GOTs.
6481 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6482 : g->global_gotno());
6483
6484 unsigned int max_count =
6485 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6486 if (estimate <= max_count)
6487 {
6488 // If we don't have a primary GOT, use it as
6489 // a starting point for the primary GOT.
6490 if (!this->primary_got_)
6491 {
6492 this->primary_got_ = g;
6493 continue;
6494 }
6495
6496 // Try merging with the primary GOT.
6497 if (this->merge_got_with(g, object, this->primary_got_))
6498 continue;
6499 }
6500
6501 // If we can merge with the last-created GOT, do it.
6502 if (current && this->merge_got_with(g, object, current))
6503 continue;
6504
6505 // Well, we couldn't merge, so create a new GOT. Don't check if it
6506 // fits; if it turns out that it doesn't, we'll get relocation
6507 // overflows anyway.
6508 g->set_next(current);
6509 current = g;
6510 }
6511
6512 // If we do not find any suitable primary GOT, create an empty one.
6513 if (this->primary_got_ == NULL)
6514 this->primary_got_ = new Mips_got_info<size, big_endian>();
6515
6516 // Link primary GOT with secondary GOTs.
6517 this->primary_got_->set_next(current);
6518 }
6519
6520 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6521 // this would lead to overflow, true if they were merged successfully.
6522
6523 template<int size, bool big_endian>
6524 bool
6525 Mips_output_data_got<size, big_endian>::merge_got_with(
6526 Mips_got_info<size, big_endian>* from,
6527 Mips_relobj<size, big_endian>* object,
6528 Mips_got_info<size, big_endian>* to)
6529 {
6530 // Work out how many page entries we would need for the combined GOT.
6531 unsigned int estimate = this->master_got_info_->page_gotno();
6532 if (estimate >= from->page_gotno() + to->page_gotno())
6533 estimate = from->page_gotno() + to->page_gotno();
6534
6535 // Conservatively estimate how many local and TLS entries would be needed.
6536 estimate += from->local_gotno() + to->local_gotno();
6537 estimate += from->tls_gotno() + to->tls_gotno();
6538
6539 // If we're merging with the primary got, any TLS relocations will
6540 // come after the full set of global entries. Otherwise estimate those
6541 // conservatively as well.
6542 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6543 estimate += this->master_got_info_->global_gotno();
6544 else
6545 estimate += from->global_gotno() + to->global_gotno();
6546
6547 // Bail out if the combined GOT might be too big.
6548 unsigned int max_count =
6549 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6550 if (estimate > max_count)
6551 return false;
6552
6553 // Transfer the object's GOT information from FROM to TO.
6554 to->add_got_entries(from);
6555 to->add_got_page_entries(from);
6556
6557 // Record that OBJECT should use output GOT TO.
6558 object->set_got_info(to);
6559
6560 return true;
6561 }
6562
6563 // Write out the GOT.
6564
6565 template<int size, bool big_endian>
6566 void
6567 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6568 {
6569 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6570 Mips_stubs_entry_set;
6571
6572 // Call parent to write out GOT.
6573 Output_data_got<size, big_endian>::do_write(of);
6574
6575 const off_t offset = this->offset();
6576 const section_size_type oview_size =
6577 convert_to_section_size_type(this->data_size());
6578 unsigned char* const oview = of->get_output_view(offset, oview_size);
6579
6580 // Needed for fixing values of .got section.
6581 this->got_view_ = oview;
6582
6583 // Write lazy stub addresses.
6584 for (typename Mips_stubs_entry_set::iterator
6585 p = this->master_got_info_->global_got_symbols().begin();
6586 p != this->master_got_info_->global_got_symbols().end();
6587 ++p)
6588 {
6589 Mips_symbol<size>* mips_sym = *p;
6590 if (mips_sym->has_lazy_stub())
6591 {
6592 Valtype* wv = reinterpret_cast<Valtype*>(
6593 oview + this->get_primary_got_offset(mips_sym));
6594 Valtype value =
6595 this->target_->mips_stubs_section()->stub_address(mips_sym);
6596 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6597 }
6598 }
6599
6600 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6601 for (typename Mips_stubs_entry_set::iterator
6602 p = this->master_got_info_->global_got_symbols().begin();
6603 p != this->master_got_info_->global_got_symbols().end();
6604 ++p)
6605 {
6606 Mips_symbol<size>* mips_sym = *p;
6607 if (!this->multi_got()
6608 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6609 && mips_sym->global_got_area() == GGA_NONE
6610 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6611 {
6612 Valtype* wv = reinterpret_cast<Valtype*>(
6613 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6614 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6615 if (value != 0)
6616 {
6617 value |= 1;
6618 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6619 }
6620 }
6621 }
6622
6623 if (!this->secondary_got_relocs_.empty())
6624 {
6625 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6626 // secondary GOT entries with non-zero initial value copy the value
6627 // to the corresponding primary GOT entry, and set the secondary GOT
6628 // entry to zero.
6629 // TODO(sasa): This is workaround. It needs to be investigated further.
6630
6631 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6632 {
6633 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6634 if (reloc.symbol_is_global())
6635 {
6636 Mips_symbol<size>* gsym = reloc.symbol();
6637 gold_assert(gsym != NULL);
6638
6639 unsigned got_offset = reloc.got_offset();
6640 gold_assert(got_offset < oview_size);
6641
6642 // Find primary GOT entry.
6643 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6644 oview + this->get_primary_got_offset(gsym));
6645
6646 // Find secondary GOT entry.
6647 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6648
6649 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6650 if (value != 0)
6651 {
6652 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6653 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6654 gsym->set_applied_secondary_got_fixup();
6655 }
6656 }
6657 }
6658
6659 of->write_output_view(offset, oview_size, oview);
6660 }
6661
6662 // We are done if there is no fix up.
6663 if (this->static_relocs_.empty())
6664 return;
6665
6666 Output_segment* tls_segment = this->layout_->tls_segment();
6667 gold_assert(tls_segment != NULL);
6668
6669 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6670 {
6671 Static_reloc& reloc(this->static_relocs_[i]);
6672
6673 Mips_address value;
6674 if (!reloc.symbol_is_global())
6675 {
6676 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6677 const Symbol_value<size>* psymval =
6678 object->local_symbol(reloc.index());
6679
6680 // We are doing static linking. Issue an error and skip this
6681 // relocation if the symbol is undefined or in a discarded_section.
6682 bool is_ordinary;
6683 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6684 if ((shndx == elfcpp::SHN_UNDEF)
6685 || (is_ordinary
6686 && shndx != elfcpp::SHN_UNDEF
6687 && !object->is_section_included(shndx)
6688 && !this->symbol_table_->is_section_folded(object, shndx)))
6689 {
6690 gold_error(_("undefined or discarded local symbol %u from "
6691 " object %s in GOT"),
6692 reloc.index(), reloc.relobj()->name().c_str());
6693 continue;
6694 }
6695
6696 value = psymval->value(object, 0);
6697 }
6698 else
6699 {
6700 const Mips_symbol<size>* gsym = reloc.symbol();
6701 gold_assert(gsym != NULL);
6702
6703 // We are doing static linking. Issue an error and skip this
6704 // relocation if the symbol is undefined or in a discarded_section
6705 // unless it is a weakly_undefined symbol.
6706 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6707 && !gsym->is_weak_undefined())
6708 {
6709 gold_error(_("undefined or discarded symbol %s in GOT"),
6710 gsym->name());
6711 continue;
6712 }
6713
6714 if (!gsym->is_weak_undefined())
6715 value = gsym->value();
6716 else
6717 value = 0;
6718 }
6719
6720 unsigned got_offset = reloc.got_offset();
6721 gold_assert(got_offset < oview_size);
6722
6723 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6724 Valtype x;
6725
6726 switch (reloc.r_type())
6727 {
6728 case elfcpp::R_MIPS_TLS_DTPMOD32:
6729 case elfcpp::R_MIPS_TLS_DTPMOD64:
6730 x = value;
6731 break;
6732 case elfcpp::R_MIPS_TLS_DTPREL32:
6733 case elfcpp::R_MIPS_TLS_DTPREL64:
6734 x = value - elfcpp::DTP_OFFSET;
6735 break;
6736 case elfcpp::R_MIPS_TLS_TPREL32:
6737 case elfcpp::R_MIPS_TLS_TPREL64:
6738 x = value - elfcpp::TP_OFFSET;
6739 break;
6740 default:
6741 gold_unreachable();
6742 break;
6743 }
6744
6745 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6746 }
6747
6748 of->write_output_view(offset, oview_size, oview);
6749 }
6750
6751 // Mips_relobj methods.
6752
6753 // Count the local symbols. The Mips backend needs to know if a symbol
6754 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6755 // because the Symbol object keeps the ELF symbol type and st_other field.
6756 // For local symbol it is harder because we cannot access this information.
6757 // So we override the do_count_local_symbol in parent and scan local symbols to
6758 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6759 // I do not want to slow down other ports by calling a per symbol target hook
6760 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6761
6762 template<int size, bool big_endian>
6763 void
6764 Mips_relobj<size, big_endian>::do_count_local_symbols(
6765 Stringpool_template<char>* pool,
6766 Stringpool_template<char>* dynpool)
6767 {
6768 // Ask parent to count the local symbols.
6769 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6770 const unsigned int loccount = this->local_symbol_count();
6771 if (loccount == 0)
6772 return;
6773
6774 // Initialize the mips16 and micromips function bit-vector.
6775 this->local_symbol_is_mips16_.resize(loccount, false);
6776 this->local_symbol_is_micromips_.resize(loccount, false);
6777
6778 // Read the symbol table section header.
6779 const unsigned int symtab_shndx = this->symtab_shndx();
6780 elfcpp::Shdr<size, big_endian>
6781 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6782 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6783
6784 // Read the local symbols.
6785 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6786 gold_assert(loccount == symtabshdr.get_sh_info());
6787 off_t locsize = loccount * sym_size;
6788 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6789 locsize, true, true);
6790
6791 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6792
6793 // Skip the first dummy symbol.
6794 psyms += sym_size;
6795 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6796 {
6797 elfcpp::Sym<size, big_endian> sym(psyms);
6798 unsigned char st_other = sym.get_st_other();
6799 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6800 this->local_symbol_is_micromips_[i] =
6801 elfcpp::elf_st_is_micromips(st_other);
6802 }
6803 }
6804
6805 // Read the symbol information.
6806
6807 template<int size, bool big_endian>
6808 void
6809 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6810 {
6811 // Call parent class to read symbol information.
6812 this->base_read_symbols(sd);
6813
6814 // Read processor-specific flags in ELF file header.
6815 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6816 elfcpp::Elf_sizes<size>::ehdr_size,
6817 true, false);
6818 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6819 this->processor_specific_flags_ = ehdr.get_e_flags();
6820
6821 // Get the section names.
6822 const unsigned char* pnamesu = sd->section_names->data();
6823 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6824
6825 // Initialize the mips16 stub section bit-vectors.
6826 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6827 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6828 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6829
6830 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6831 const unsigned char* pshdrs = sd->section_headers->data();
6832 const unsigned char* ps = pshdrs + shdr_size;
6833 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6834 {
6835 elfcpp::Shdr<size, big_endian> shdr(ps);
6836
6837 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6838 {
6839 this->has_reginfo_section_ = true;
6840 // Read the gp value that was used to create this object. We need the
6841 // gp value while processing relocs. The .reginfo section is not used
6842 // in the 64-bit MIPS ELF ABI.
6843 section_offset_type section_offset = shdr.get_sh_offset();
6844 section_size_type section_size =
6845 convert_to_section_size_type(shdr.get_sh_size());
6846 const unsigned char* view =
6847 this->get_view(section_offset, section_size, true, false);
6848
6849 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6850
6851 // Read the rest of .reginfo.
6852 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6853 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6854 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6855 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6856 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6857 }
6858
6859 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6860 {
6861 gold_assert(this->attributes_section_data_ == NULL);
6862 section_offset_type section_offset = shdr.get_sh_offset();
6863 section_size_type section_size =
6864 convert_to_section_size_type(shdr.get_sh_size());
6865 const unsigned char* view =
6866 this->get_view(section_offset, section_size, true, false);
6867 this->attributes_section_data_ =
6868 new Attributes_section_data(view, section_size);
6869 }
6870
6871 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6872 {
6873 gold_assert(this->abiflags_ == NULL);
6874 section_offset_type section_offset = shdr.get_sh_offset();
6875 section_size_type section_size =
6876 convert_to_section_size_type(shdr.get_sh_size());
6877 const unsigned char* view =
6878 this->get_view(section_offset, section_size, true, false);
6879 this->abiflags_ = new Mips_abiflags<big_endian>();
6880
6881 this->abiflags_->version =
6882 elfcpp::Swap<16, big_endian>::readval(view);
6883 if (this->abiflags_->version != 0)
6884 {
6885 gold_error(_("%s: .MIPS.abiflags section has "
6886 "unsupported version %u"),
6887 this->name().c_str(),
6888 this->abiflags_->version);
6889 break;
6890 }
6891 this->abiflags_->isa_level =
6892 elfcpp::Swap<8, big_endian>::readval(view + 2);
6893 this->abiflags_->isa_rev =
6894 elfcpp::Swap<8, big_endian>::readval(view + 3);
6895 this->abiflags_->gpr_size =
6896 elfcpp::Swap<8, big_endian>::readval(view + 4);
6897 this->abiflags_->cpr1_size =
6898 elfcpp::Swap<8, big_endian>::readval(view + 5);
6899 this->abiflags_->cpr2_size =
6900 elfcpp::Swap<8, big_endian>::readval(view + 6);
6901 this->abiflags_->fp_abi =
6902 elfcpp::Swap<8, big_endian>::readval(view + 7);
6903 this->abiflags_->isa_ext =
6904 elfcpp::Swap<32, big_endian>::readval(view + 8);
6905 this->abiflags_->ases =
6906 elfcpp::Swap<32, big_endian>::readval(view + 12);
6907 this->abiflags_->flags1 =
6908 elfcpp::Swap<32, big_endian>::readval(view + 16);
6909 this->abiflags_->flags2 =
6910 elfcpp::Swap<32, big_endian>::readval(view + 20);
6911 }
6912
6913 // In the 64-bit ABI, .MIPS.options section holds register information.
6914 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6915 // starts with this header:
6916 //
6917 // typedef struct
6918 // {
6919 // // Type of option.
6920 // unsigned char kind[1];
6921 // // Size of option descriptor, including header.
6922 // unsigned char size[1];
6923 // // Section index of affected section, or 0 for global option.
6924 // unsigned char section[2];
6925 // // Information specific to this kind of option.
6926 // unsigned char info[4];
6927 // };
6928 //
6929 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6930 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6931 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6932
6933 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6934 {
6935 section_offset_type section_offset = shdr.get_sh_offset();
6936 section_size_type section_size =
6937 convert_to_section_size_type(shdr.get_sh_size());
6938 const unsigned char* view =
6939 this->get_view(section_offset, section_size, true, false);
6940 const unsigned char* end = view + section_size;
6941
6942 while (view + 8 <= end)
6943 {
6944 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6945 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6946 if (sz < 8)
6947 {
6948 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6949 "than its header"),
6950 this->name().c_str(),
6951 this->mips_elf_options_section_name(), sz);
6952 break;
6953 }
6954
6955 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6956 {
6957 // In the 64 bit ABI, an ODK_REGINFO option is the following
6958 // structure. The info field of the options header is not
6959 // used.
6960 //
6961 // typedef struct
6962 // {
6963 // // Mask of general purpose registers used.
6964 // unsigned char ri_gprmask[4];
6965 // // Padding.
6966 // unsigned char ri_pad[4];
6967 // // Mask of co-processor registers used.
6968 // unsigned char ri_cprmask[4][4];
6969 // // GP register value for this object file.
6970 // unsigned char ri_gp_value[8];
6971 // };
6972
6973 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6974 + 32);
6975 }
6976 else if (kind == elfcpp::ODK_REGINFO)
6977 {
6978 // In the 32 bit ABI, an ODK_REGINFO option is the following
6979 // structure. The info field of the options header is not
6980 // used. The same structure is used in .reginfo section.
6981 //
6982 // typedef struct
6983 // {
6984 // unsigned char ri_gprmask[4];
6985 // unsigned char ri_cprmask[4][4];
6986 // unsigned char ri_gp_value[4];
6987 // };
6988
6989 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6990 + 28);
6991 }
6992 view += sz;
6993 }
6994 }
6995
6996 const char* name = pnames + shdr.get_sh_name();
6997 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6998 this->section_is_mips16_call_stub_[i] =
6999 is_prefix_of(".mips16.call.", name);
7000 this->section_is_mips16_call_fp_stub_[i] =
7001 is_prefix_of(".mips16.call.fp.", name);
7002
7003 if (strcmp(name, ".pdr") == 0)
7004 {
7005 gold_assert(this->pdr_shndx_ == -1U);
7006 this->pdr_shndx_ = i;
7007 }
7008 }
7009 }
7010
7011 // Discard MIPS16 stub secions that are not needed.
7012
7013 template<int size, bool big_endian>
7014 void
7015 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
7016 {
7017 for (typename Mips16_stubs_int_map::const_iterator
7018 it = this->mips16_stub_sections_.begin();
7019 it != this->mips16_stub_sections_.end(); ++it)
7020 {
7021 Mips16_stub_section<size, big_endian>* stub_section = it->second;
7022 if (!stub_section->is_target_found())
7023 {
7024 gold_error(_("no relocation found in mips16 stub section '%s'"),
7025 stub_section->object()
7026 ->section_name(stub_section->shndx()).c_str());
7027 }
7028
7029 bool discard = false;
7030 if (stub_section->is_for_local_function())
7031 {
7032 if (stub_section->is_fn_stub())
7033 {
7034 // This stub is for a local symbol. This stub will only
7035 // be needed if there is some relocation in this object,
7036 // other than a 16 bit function call, which refers to this
7037 // symbol.
7038 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7039 discard = true;
7040 else
7041 this->add_local_mips16_fn_stub(stub_section);
7042 }
7043 else
7044 {
7045 // This stub is for a local symbol. This stub will only
7046 // be needed if there is some relocation (R_MIPS16_26) in
7047 // this object that refers to this symbol.
7048 gold_assert(stub_section->is_call_stub()
7049 || stub_section->is_call_fp_stub());
7050 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7051 discard = true;
7052 else
7053 this->add_local_mips16_call_stub(stub_section);
7054 }
7055 }
7056 else
7057 {
7058 Mips_symbol<size>* gsym = stub_section->gsym();
7059 if (stub_section->is_fn_stub())
7060 {
7061 if (gsym->has_mips16_fn_stub())
7062 // We already have a stub for this function.
7063 discard = true;
7064 else
7065 {
7066 gsym->set_mips16_fn_stub(stub_section);
7067 if (gsym->should_add_dynsym_entry(symtab))
7068 {
7069 // If we have a MIPS16 function with a stub, the
7070 // dynamic symbol must refer to the stub, since only
7071 // the stub uses the standard calling conventions.
7072 gsym->set_need_fn_stub();
7073 if (gsym->is_from_dynobj())
7074 gsym->set_needs_dynsym_value();
7075 }
7076 }
7077 if (!gsym->need_fn_stub())
7078 discard = true;
7079 }
7080 else if (stub_section->is_call_stub())
7081 {
7082 if (gsym->is_mips16())
7083 // We don't need the call_stub; this is a 16 bit
7084 // function, so calls from other 16 bit functions are
7085 // OK.
7086 discard = true;
7087 else if (gsym->has_mips16_call_stub())
7088 // We already have a stub for this function.
7089 discard = true;
7090 else
7091 gsym->set_mips16_call_stub(stub_section);
7092 }
7093 else
7094 {
7095 gold_assert(stub_section->is_call_fp_stub());
7096 if (gsym->is_mips16())
7097 // We don't need the call_stub; this is a 16 bit
7098 // function, so calls from other 16 bit functions are
7099 // OK.
7100 discard = true;
7101 else if (gsym->has_mips16_call_fp_stub())
7102 // We already have a stub for this function.
7103 discard = true;
7104 else
7105 gsym->set_mips16_call_fp_stub(stub_section);
7106 }
7107 }
7108 if (discard)
7109 this->set_output_section(stub_section->shndx(), NULL);
7110 }
7111 }
7112
7113 // Mips_output_data_la25_stub methods.
7114
7115 // Template for standard LA25 stub.
7116 template<int size, bool big_endian>
7117 const uint32_t
7118 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7119 {
7120 0x3c190000, // lui $25,%hi(func)
7121 0x08000000, // j func
7122 0x27390000, // add $25,$25,%lo(func)
7123 0x00000000 // nop
7124 };
7125
7126 // Template for microMIPS LA25 stub.
7127 template<int size, bool big_endian>
7128 const uint32_t
7129 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7130 {
7131 0x41b9, 0x0000, // lui t9,%hi(func)
7132 0xd400, 0x0000, // j func
7133 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7134 0x0000, 0x0000 // nop
7135 };
7136
7137 // Create la25 stub for a symbol.
7138
7139 template<int size, bool big_endian>
7140 void
7141 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7142 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7143 Mips_symbol<size>* gsym)
7144 {
7145 if (!gsym->has_la25_stub())
7146 {
7147 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7148 this->symbols_.push_back(gsym);
7149 this->create_stub_symbol(gsym, symtab, target, 16);
7150 }
7151 }
7152
7153 // Create a symbol for SYM stub's value and size, to help make the disassembly
7154 // easier to read.
7155
7156 template<int size, bool big_endian>
7157 void
7158 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7159 Mips_symbol<size>* sym, Symbol_table* symtab,
7160 Target_mips<size, big_endian>* target, uint64_t symsize)
7161 {
7162 std::string name(".pic.");
7163 name += sym->name();
7164
7165 unsigned int offset = sym->la25_stub_offset();
7166 if (sym->is_micromips())
7167 offset |= 1;
7168
7169 // Make it a local function.
7170 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7171 Symbol_table::PREDEFINED,
7172 target->la25_stub_section(),
7173 offset, symsize, elfcpp::STT_FUNC,
7174 elfcpp::STB_LOCAL,
7175 elfcpp::STV_DEFAULT, 0,
7176 false, false);
7177 new_sym->set_is_forced_local();
7178 }
7179
7180 // Write out la25 stubs. This uses the hand-coded instructions above,
7181 // and adjusts them as needed.
7182
7183 template<int size, bool big_endian>
7184 void
7185 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7186 {
7187 const off_t offset = this->offset();
7188 const section_size_type oview_size =
7189 convert_to_section_size_type(this->data_size());
7190 unsigned char* const oview = of->get_output_view(offset, oview_size);
7191
7192 for (typename std::vector<Mips_symbol<size>*>::iterator
7193 p = this->symbols_.begin();
7194 p != this->symbols_.end();
7195 ++p)
7196 {
7197 Mips_symbol<size>* sym = *p;
7198 unsigned char* pov = oview + sym->la25_stub_offset();
7199
7200 Mips_address target = sym->value();
7201 if (!sym->is_micromips())
7202 {
7203 elfcpp::Swap<32, big_endian>::writeval(pov,
7204 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7205 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7206 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7207 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7208 la25_stub_entry[2] | (target & 0xffff));
7209 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7210 }
7211 else
7212 {
7213 target |= 1;
7214 // First stub instruction. Paste high 16-bits of the target.
7215 elfcpp::Swap<16, big_endian>::writeval(pov,
7216 la25_stub_micromips_entry[0]);
7217 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7218 ((target + 0x8000) >> 16) & 0xffff);
7219 // Second stub instruction. Paste low 26-bits of the target, shifted
7220 // right by 1.
7221 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7222 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7223 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7224 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7225 // Third stub instruction. Paste low 16-bits of the target.
7226 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7227 la25_stub_micromips_entry[4]);
7228 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7229 // Fourth stub instruction.
7230 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7231 la25_stub_micromips_entry[6]);
7232 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7233 la25_stub_micromips_entry[7]);
7234 }
7235 }
7236
7237 of->write_output_view(offset, oview_size, oview);
7238 }
7239
7240 // Mips_output_data_plt methods.
7241
7242 // The format of the first PLT entry in an O32 executable.
7243 template<int size, bool big_endian>
7244 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7245 {
7246 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7247 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7248 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7249 0x031cc023, // subu $24, $24, $28
7250 0x03e07825, // or $15, $31, zero
7251 0x0018c082, // srl $24, $24, 2
7252 0x0320f809, // jalr $25
7253 0x2718fffe // subu $24, $24, 2
7254 };
7255
7256 // The format of the first PLT entry in an N32 executable. Different
7257 // because gp ($28) is not available; we use t2 ($14) instead.
7258 template<int size, bool big_endian>
7259 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7260 {
7261 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7262 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7263 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7264 0x030ec023, // subu $24, $24, $14
7265 0x03e07825, // or $15, $31, zero
7266 0x0018c082, // srl $24, $24, 2
7267 0x0320f809, // jalr $25
7268 0x2718fffe // subu $24, $24, 2
7269 };
7270
7271 // The format of the first PLT entry in an N64 executable. Different
7272 // from N32 because of the increased size of GOT entries.
7273 template<int size, bool big_endian>
7274 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7275 {
7276 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7277 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7278 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7279 0x030ec023, // subu $24, $24, $14
7280 0x03e07825, // or $15, $31, zero
7281 0x0018c0c2, // srl $24, $24, 3
7282 0x0320f809, // jalr $25
7283 0x2718fffe // subu $24, $24, 2
7284 };
7285
7286 // The format of the microMIPS first PLT entry in an O32 executable.
7287 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7288 // of the GOTPLT entry handled, so this stub may only be used when
7289 // all the subsequent PLT entries are microMIPS code too.
7290 //
7291 // The trailing NOP is for alignment and correct disassembly only.
7292 template<int size, bool big_endian>
7293 const uint32_t Mips_output_data_plt<size, big_endian>::
7294 plt0_entry_micromips_o32[] =
7295 {
7296 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7297 0xff23, 0x0000, // lw $25, 0($3)
7298 0x0535, // subu $2, $2, $3
7299 0x2525, // srl $2, $2, 2
7300 0x3302, 0xfffe, // subu $24, $2, 2
7301 0x0dff, // move $15, $31
7302 0x45f9, // jalrs $25
7303 0x0f83, // move $28, $3
7304 0x0c00 // nop
7305 };
7306
7307 // The format of the microMIPS first PLT entry in an O32 executable
7308 // in the insn32 mode.
7309 template<int size, bool big_endian>
7310 const uint32_t Mips_output_data_plt<size, big_endian>::
7311 plt0_entry_micromips32_o32[] =
7312 {
7313 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7314 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7315 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7316 0x0398, 0xc1d0, // subu $24, $24, $28
7317 0x001f, 0x7a90, // or $15, $31, zero
7318 0x0318, 0x1040, // srl $24, $24, 2
7319 0x03f9, 0x0f3c, // jalr $25
7320 0x3318, 0xfffe // subu $24, $24, 2
7321 };
7322
7323 // The format of subsequent standard entries in the PLT.
7324 template<int size, bool big_endian>
7325 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7326 {
7327 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7328 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7329 0x03200008, // jr $25
7330 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7331 };
7332
7333 // The format of subsequent R6 PLT entries.
7334 template<int size, bool big_endian>
7335 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7336 {
7337 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7338 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7339 0x03200009, // jr $25
7340 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7341 };
7342
7343 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7344 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7345 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7346 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7347 // target function address in register v0.
7348 template<int size, bool big_endian>
7349 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7350 {
7351 0xb303, // lw $3, 12($pc)
7352 0x651b, // move $24, $3
7353 0x9b60, // lw $3, 0($3)
7354 0xeb00, // jr $3
7355 0x653b, // move $25, $3
7356 0x6500, // nop
7357 0x0000, 0x0000 // .word (.got.plt entry)
7358 };
7359
7360 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7361 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7362 template<int size, bool big_endian>
7363 const uint32_t Mips_output_data_plt<size, big_endian>::
7364 plt_entry_micromips_o32[] =
7365 {
7366 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7367 0xff22, 0x0000, // lw $25, 0($2)
7368 0x4599, // jr $25
7369 0x0f02 // move $24, $2
7370 };
7371
7372 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7373 template<int size, bool big_endian>
7374 const uint32_t Mips_output_data_plt<size, big_endian>::
7375 plt_entry_micromips32_o32[] =
7376 {
7377 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7378 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7379 0x0019, 0x0f3c, // jr $25
7380 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7381 };
7382
7383 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7384
7385 template<int size, bool big_endian>
7386 void
7387 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7388 unsigned int r_type)
7389 {
7390 gold_assert(!gsym->has_plt_offset());
7391
7392 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7393 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7394 + sizeof(plt0_entry_o32));
7395 this->symbols_.push_back(gsym);
7396
7397 // Record whether the relocation requires a standard MIPS
7398 // or a compressed code entry.
7399 if (jal_reloc(r_type))
7400 {
7401 if (r_type == elfcpp::R_MIPS_26)
7402 gsym->set_needs_mips_plt(true);
7403 else
7404 gsym->set_needs_comp_plt(true);
7405 }
7406
7407 section_offset_type got_offset = this->got_plt_->current_data_size();
7408
7409 // Every PLT entry needs a GOT entry which points back to the PLT
7410 // entry (this will be changed by the dynamic linker, normally
7411 // lazily when the function is called).
7412 this->got_plt_->set_current_data_size(got_offset + size/8);
7413
7414 gsym->set_needs_dynsym_entry();
7415 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7416 got_offset);
7417 }
7418
7419 // Set final PLT offsets. For each symbol, determine whether standard or
7420 // compressed (MIPS16 or microMIPS) PLT entry is used.
7421
7422 template<int size, bool big_endian>
7423 void
7424 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7425 {
7426 // The sizes of individual PLT entries.
7427 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7428 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7429 ? this->compressed_plt_entry_size() : 0);
7430
7431 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7432 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7433 {
7434 Mips_symbol<size>* mips_sym = *p;
7435
7436 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7437 // so always use a standard entry there.
7438 //
7439 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7440 // all MIPS16 calls will go via that stub, and there is no benefit
7441 // to having a MIPS16 entry. And in the case of call_stub a
7442 // standard entry actually has to be used as the stub ends with a J
7443 // instruction.
7444 if (this->target_->is_output_newabi()
7445 || mips_sym->has_mips16_call_stub()
7446 || mips_sym->has_mips16_call_fp_stub())
7447 {
7448 mips_sym->set_needs_mips_plt(true);
7449 mips_sym->set_needs_comp_plt(false);
7450 }
7451
7452 // Otherwise, if there are no direct calls to the function, we
7453 // have a free choice of whether to use standard or compressed
7454 // entries. Prefer microMIPS entries if the object is known to
7455 // contain microMIPS code, so that it becomes possible to create
7456 // pure microMIPS binaries. Prefer standard entries otherwise,
7457 // because MIPS16 ones are no smaller and are usually slower.
7458 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7459 {
7460 if (this->target_->is_output_micromips())
7461 mips_sym->set_needs_comp_plt(true);
7462 else
7463 mips_sym->set_needs_mips_plt(true);
7464 }
7465
7466 if (mips_sym->needs_mips_plt())
7467 {
7468 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7469 this->plt_mips_offset_ += plt_mips_entry_size;
7470 }
7471 if (mips_sym->needs_comp_plt())
7472 {
7473 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7474 this->plt_comp_offset_ += plt_comp_entry_size;
7475 }
7476 }
7477
7478 // Figure out the size of the PLT header if we know that we are using it.
7479 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7480 this->plt_header_size_ = this->get_plt_header_size();
7481 }
7482
7483 // Write out the PLT. This uses the hand-coded instructions above,
7484 // and adjusts them as needed.
7485
7486 template<int size, bool big_endian>
7487 void
7488 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7489 {
7490 const off_t offset = this->offset();
7491 const section_size_type oview_size =
7492 convert_to_section_size_type(this->data_size());
7493 unsigned char* const oview = of->get_output_view(offset, oview_size);
7494
7495 const off_t gotplt_file_offset = this->got_plt_->offset();
7496 const section_size_type gotplt_size =
7497 convert_to_section_size_type(this->got_plt_->data_size());
7498 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7499 gotplt_size);
7500 unsigned char* pov = oview;
7501
7502 Mips_address plt_address = this->address();
7503
7504 // Calculate the address of .got.plt.
7505 Mips_address gotplt_addr = this->got_plt_->address();
7506 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7507 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7508
7509 // The PLT sequence is not safe for N64 if .got.plt's address can
7510 // not be loaded in two instructions.
7511 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7512 || ~(gotplt_addr | 0x7fffffff) == 0);
7513
7514 // Write the PLT header.
7515 const uint32_t* plt0_entry = this->get_plt_header_entry();
7516 if (plt0_entry == plt0_entry_micromips_o32)
7517 {
7518 // Write microMIPS PLT header.
7519 gold_assert(gotplt_addr % 4 == 0);
7520
7521 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7522
7523 // ADDIUPC has a span of +/-16MB, check we're in range.
7524 if (gotpc_offset + 0x1000000 >= 0x2000000)
7525 {
7526 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7527 "ADDIUPC"), (long)gotpc_offset);
7528 return;
7529 }
7530
7531 elfcpp::Swap<16, big_endian>::writeval(pov,
7532 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7533 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7534 (gotpc_offset >> 2) & 0xffff);
7535 pov += 4;
7536 for (unsigned int i = 2;
7537 i < (sizeof(plt0_entry_micromips_o32)
7538 / sizeof(plt0_entry_micromips_o32[0]));
7539 i++)
7540 {
7541 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7542 pov += 2;
7543 }
7544 }
7545 else if (plt0_entry == plt0_entry_micromips32_o32)
7546 {
7547 // Write microMIPS PLT header in insn32 mode.
7548 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7549 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7550 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7551 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7552 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7553 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7554 pov += 12;
7555 for (unsigned int i = 6;
7556 i < (sizeof(plt0_entry_micromips32_o32)
7557 / sizeof(plt0_entry_micromips32_o32[0]));
7558 i++)
7559 {
7560 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7561 pov += 2;
7562 }
7563 }
7564 else
7565 {
7566 // Write standard PLT header.
7567 elfcpp::Swap<32, big_endian>::writeval(pov,
7568 plt0_entry[0] | gotplt_addr_high);
7569 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7570 plt0_entry[1] | gotplt_addr_low);
7571 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7572 plt0_entry[2] | gotplt_addr_low);
7573 pov += 12;
7574 for (int i = 3; i < 8; i++)
7575 {
7576 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7577 pov += 4;
7578 }
7579 }
7580
7581
7582 unsigned char* gotplt_pov = gotplt_view;
7583 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7584
7585 // The first two entries in .got.plt are reserved.
7586 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7587 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7588
7589 unsigned int gotplt_offset = 2 * got_entry_size;
7590 gotplt_pov += 2 * got_entry_size;
7591
7592 // Calculate the address of the PLT header.
7593 Mips_address header_address = (plt_address
7594 + (this->is_plt_header_compressed() ? 1 : 0));
7595
7596 // Initialize compressed PLT area view.
7597 unsigned char* pov2 = pov + this->plt_mips_offset_;
7598
7599 // Write the PLT entries.
7600 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7601 p = this->symbols_.begin();
7602 p != this->symbols_.end();
7603 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7604 {
7605 Mips_symbol<size>* mips_sym = *p;
7606
7607 // Calculate the address of the .got.plt entry.
7608 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7609 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7610 & 0xffff);
7611 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7612
7613 // Initially point the .got.plt entry at the PLT header.
7614 if (this->target_->is_output_n64())
7615 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7616 else
7617 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7618
7619 // Now handle the PLT itself. First the standard entry.
7620 if (mips_sym->has_mips_plt_offset())
7621 {
7622 // Pick the load opcode (LW or LD).
7623 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7624 : 0x8c000000;
7625
7626 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7627 : plt_entry;
7628
7629 // Fill in the PLT entry itself.
7630 elfcpp::Swap<32, big_endian>::writeval(pov,
7631 entry[0] | gotplt_entry_addr_hi);
7632 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7633 entry[1] | gotplt_entry_addr_lo | load);
7634 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7635 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7636 entry[3] | gotplt_entry_addr_lo);
7637 pov += 16;
7638 }
7639
7640 // Now the compressed entry. They come after any standard ones.
7641 if (mips_sym->has_comp_plt_offset())
7642 {
7643 if (!this->target_->is_output_micromips())
7644 {
7645 // Write MIPS16 PLT entry.
7646 const uint32_t* plt_entry = plt_entry_mips16_o32;
7647
7648 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7649 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7650 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7651 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7652 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7653 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7654 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7655 gotplt_entry_addr);
7656 pov2 += 16;
7657 }
7658 else if (this->target_->use_32bit_micromips_instructions())
7659 {
7660 // Write microMIPS PLT entry in insn32 mode.
7661 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7662
7663 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7664 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7665 gotplt_entry_addr_hi);
7666 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7667 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7668 gotplt_entry_addr_lo);
7669 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7670 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7671 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7672 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7673 gotplt_entry_addr_lo);
7674 pov2 += 16;
7675 }
7676 else
7677 {
7678 // Write microMIPS PLT entry.
7679 const uint32_t* plt_entry = plt_entry_micromips_o32;
7680
7681 gold_assert(gotplt_entry_addr % 4 == 0);
7682
7683 Mips_address loc_address = plt_address + pov2 - oview;
7684 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7685
7686 // ADDIUPC has a span of +/-16MB, check we're in range.
7687 if (gotpc_offset + 0x1000000 >= 0x2000000)
7688 {
7689 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7690 "range of ADDIUPC"), (long)gotpc_offset);
7691 return;
7692 }
7693
7694 elfcpp::Swap<16, big_endian>::writeval(pov2,
7695 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7696 elfcpp::Swap<16, big_endian>::writeval(
7697 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7698 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7699 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7700 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7701 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7702 pov2 += 12;
7703 }
7704 }
7705 }
7706
7707 // Check the number of bytes written for standard entries.
7708 gold_assert(static_cast<section_size_type>(
7709 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7710 // Check the number of bytes written for compressed entries.
7711 gold_assert((static_cast<section_size_type>(pov2 - pov)
7712 == this->plt_comp_offset_));
7713 // Check the total number of bytes written.
7714 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7715
7716 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7717 == gotplt_size);
7718
7719 of->write_output_view(offset, oview_size, oview);
7720 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7721 }
7722
7723 // Mips_output_data_mips_stubs methods.
7724
7725 // The format of the lazy binding stub when dynamic symbol count is less than
7726 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7727 template<int size, bool big_endian>
7728 const uint32_t
7729 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7730 {
7731 0x8f998010, // lw t9,0x8010(gp)
7732 0x03e07825, // or t7,ra,zero
7733 0x0320f809, // jalr t9,ra
7734 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7735 };
7736
7737 // The format of the lazy binding stub when dynamic symbol count is less than
7738 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7739 template<int size, bool big_endian>
7740 const uint32_t
7741 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7742 {
7743 0xdf998010, // ld t9,0x8010(gp)
7744 0x03e07825, // or t7,ra,zero
7745 0x0320f809, // jalr t9,ra
7746 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7747 };
7748
7749 // The format of the lazy binding stub when dynamic symbol count is less than
7750 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7751 template<int size, bool big_endian>
7752 const uint32_t
7753 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7754 {
7755 0x8f998010, // lw t9,0x8010(gp)
7756 0x03e07825, // or t7,ra,zero
7757 0x0320f809, // jalr t9,ra
7758 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7759 };
7760
7761 // The format of the lazy binding stub when dynamic symbol count is less than
7762 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7763 template<int size, bool big_endian>
7764 const uint32_t
7765 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7766 {
7767 0xdf998010, // ld t9,0x8010(gp)
7768 0x03e07825, // or t7,ra,zero
7769 0x0320f809, // jalr t9,ra
7770 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7771 };
7772
7773 // The format of the lazy binding stub when dynamic symbol count is greater than
7774 // 64K, and ABI is not N64.
7775 template<int size, bool big_endian>
7776 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7777 {
7778 0x8f998010, // lw t9,0x8010(gp)
7779 0x03e07825, // or t7,ra,zero
7780 0x3c180000, // lui t8,DYN_INDEX
7781 0x0320f809, // jalr t9,ra
7782 0x37180000 // ori t8,t8,DYN_INDEX
7783 };
7784
7785 // The format of the lazy binding stub when dynamic symbol count is greater than
7786 // 64K, and ABI is N64.
7787 template<int size, bool big_endian>
7788 const uint32_t
7789 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7790 {
7791 0xdf998010, // ld t9,0x8010(gp)
7792 0x03e07825, // or t7,ra,zero
7793 0x3c180000, // lui t8,DYN_INDEX
7794 0x0320f809, // jalr t9,ra
7795 0x37180000 // ori t8,t8,DYN_INDEX
7796 };
7797
7798 // microMIPS stubs.
7799
7800 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7801 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7802 template<int size, bool big_endian>
7803 const uint32_t
7804 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7805 {
7806 0xff3c, 0x8010, // lw t9,0x8010(gp)
7807 0x0dff, // move t7,ra
7808 0x45d9, // jalr t9
7809 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7810 };
7811
7812 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7813 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7814 template<int size, bool big_endian>
7815 const uint32_t
7816 Mips_output_data_mips_stubs<size, big_endian>::
7817 lazy_stub_micromips_normal_1_n64[] =
7818 {
7819 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7820 0x0dff, // move t7,ra
7821 0x45d9, // jalr t9
7822 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7823 };
7824
7825 // The format of the microMIPS lazy binding stub when dynamic symbol
7826 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7827 // and ABI is not N64.
7828 template<int size, bool big_endian>
7829 const uint32_t
7830 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7831 {
7832 0xff3c, 0x8010, // lw t9,0x8010(gp)
7833 0x0dff, // move t7,ra
7834 0x45d9, // jalr t9
7835 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7836 };
7837
7838 // The format of the microMIPS lazy binding stub when dynamic symbol
7839 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7840 // and ABI is N64.
7841 template<int size, bool big_endian>
7842 const uint32_t
7843 Mips_output_data_mips_stubs<size, big_endian>::
7844 lazy_stub_micromips_normal_2_n64[] =
7845 {
7846 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7847 0x0dff, // move t7,ra
7848 0x45d9, // jalr t9
7849 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7850 };
7851
7852 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7853 // greater than 64K, and ABI is not N64.
7854 template<int size, bool big_endian>
7855 const uint32_t
7856 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7857 {
7858 0xff3c, 0x8010, // lw t9,0x8010(gp)
7859 0x0dff, // move t7,ra
7860 0x41b8, 0x0000, // lui t8,DYN_INDEX
7861 0x45d9, // jalr t9
7862 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7863 };
7864
7865 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7866 // greater than 64K, and ABI is N64.
7867 template<int size, bool big_endian>
7868 const uint32_t
7869 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7870 {
7871 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7872 0x0dff, // move t7,ra
7873 0x41b8, 0x0000, // lui t8,DYN_INDEX
7874 0x45d9, // jalr t9
7875 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7876 };
7877
7878 // 32-bit microMIPS stubs.
7879
7880 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7881 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7882 // can use only 32-bit instructions.
7883 template<int size, bool big_endian>
7884 const uint32_t
7885 Mips_output_data_mips_stubs<size, big_endian>::
7886 lazy_stub_micromips32_normal_1[] =
7887 {
7888 0xff3c, 0x8010, // lw t9,0x8010(gp)
7889 0x001f, 0x7a90, // or t7,ra,zero
7890 0x03f9, 0x0f3c, // jalr ra,t9
7891 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7892 };
7893
7894 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7895 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7896 // use only 32-bit instructions.
7897 template<int size, bool big_endian>
7898 const uint32_t
7899 Mips_output_data_mips_stubs<size, big_endian>::
7900 lazy_stub_micromips32_normal_1_n64[] =
7901 {
7902 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7903 0x001f, 0x7a90, // or t7,ra,zero
7904 0x03f9, 0x0f3c, // jalr ra,t9
7905 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7906 };
7907
7908 // The format of the microMIPS lazy binding stub when dynamic symbol
7909 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7910 // ABI is not N64, and we can use only 32-bit instructions.
7911 template<int size, bool big_endian>
7912 const uint32_t
7913 Mips_output_data_mips_stubs<size, big_endian>::
7914 lazy_stub_micromips32_normal_2[] =
7915 {
7916 0xff3c, 0x8010, // lw t9,0x8010(gp)
7917 0x001f, 0x7a90, // or t7,ra,zero
7918 0x03f9, 0x0f3c, // jalr ra,t9
7919 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7920 };
7921
7922 // The format of the microMIPS lazy binding stub when dynamic symbol
7923 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7924 // ABI is N64, and we can use only 32-bit instructions.
7925 template<int size, bool big_endian>
7926 const uint32_t
7927 Mips_output_data_mips_stubs<size, big_endian>::
7928 lazy_stub_micromips32_normal_2_n64[] =
7929 {
7930 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7931 0x001f, 0x7a90, // or t7,ra,zero
7932 0x03f9, 0x0f3c, // jalr ra,t9
7933 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7934 };
7935
7936 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7937 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7938 template<int size, bool big_endian>
7939 const uint32_t
7940 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7941 {
7942 0xff3c, 0x8010, // lw t9,0x8010(gp)
7943 0x001f, 0x7a90, // or t7,ra,zero
7944 0x41b8, 0x0000, // lui t8,DYN_INDEX
7945 0x03f9, 0x0f3c, // jalr ra,t9
7946 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7947 };
7948
7949 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7950 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7951 template<int size, bool big_endian>
7952 const uint32_t
7953 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7954 {
7955 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7956 0x001f, 0x7a90, // or t7,ra,zero
7957 0x41b8, 0x0000, // lui t8,DYN_INDEX
7958 0x03f9, 0x0f3c, // jalr ra,t9
7959 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7960 };
7961
7962 // Create entry for a symbol.
7963
7964 template<int size, bool big_endian>
7965 void
7966 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7967 Mips_symbol<size>* gsym)
7968 {
7969 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7970 {
7971 this->symbols_.insert(gsym);
7972 gsym->set_has_lazy_stub(true);
7973 }
7974 }
7975
7976 // Remove entry for a symbol.
7977
7978 template<int size, bool big_endian>
7979 void
7980 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7981 Mips_symbol<size>* gsym)
7982 {
7983 if (gsym->has_lazy_stub())
7984 {
7985 this->symbols_.erase(gsym);
7986 gsym->set_has_lazy_stub(false);
7987 }
7988 }
7989
7990 // Set stub offsets for symbols. This method expects that the number of
7991 // entries in dynamic symbol table is set.
7992
7993 template<int size, bool big_endian>
7994 void
7995 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7996 {
7997 gold_assert(this->dynsym_count_ != -1U);
7998
7999 if (this->stub_offsets_are_set_)
8000 return;
8001
8002 unsigned int stub_size = this->stub_size();
8003 unsigned int offset = 0;
8004 for (typename Mips_stubs_entry_set::const_iterator
8005 p = this->symbols_.begin();
8006 p != this->symbols_.end();
8007 ++p, offset += stub_size)
8008 {
8009 Mips_symbol<size>* mips_sym = *p;
8010 mips_sym->set_lazy_stub_offset(offset);
8011 }
8012 this->stub_offsets_are_set_ = true;
8013 }
8014
8015 template<int size, bool big_endian>
8016 void
8017 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
8018 {
8019 for (typename Mips_stubs_entry_set::const_iterator
8020 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8021 {
8022 Mips_symbol<size>* sym = *p;
8023 if (sym->is_from_dynobj())
8024 sym->set_needs_dynsym_value();
8025 }
8026 }
8027
8028 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
8029 // adjusts them as needed.
8030
8031 template<int size, bool big_endian>
8032 void
8033 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8034 {
8035 const off_t offset = this->offset();
8036 const section_size_type oview_size =
8037 convert_to_section_size_type(this->data_size());
8038 unsigned char* const oview = of->get_output_view(offset, oview_size);
8039
8040 bool big_stub = this->dynsym_count_ > 0x10000;
8041
8042 unsigned char* pov = oview;
8043 for (typename Mips_stubs_entry_set::const_iterator
8044 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8045 {
8046 Mips_symbol<size>* sym = *p;
8047 const uint32_t* lazy_stub;
8048 bool n64 = this->target_->is_output_n64();
8049
8050 if (!this->target_->is_output_micromips())
8051 {
8052 // Write standard (non-microMIPS) stub.
8053 if (!big_stub)
8054 {
8055 if (sym->dynsym_index() & ~0x7fff)
8056 // Dynsym index is between 32K and 64K.
8057 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8058 else
8059 // Dynsym index is less than 32K.
8060 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8061 }
8062 else
8063 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8064
8065 unsigned int i = 0;
8066 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8067 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8068 pov += 8;
8069
8070 i += 2;
8071 if (big_stub)
8072 {
8073 // LUI instruction of the big stub. Paste high 16 bits of the
8074 // dynsym index.
8075 elfcpp::Swap<32, big_endian>::writeval(pov,
8076 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8077 pov += 4;
8078 i += 1;
8079 }
8080 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8081 // Last stub instruction. Paste low 16 bits of the dynsym index.
8082 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8083 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8084 pov += 8;
8085 }
8086 else if (this->target_->use_32bit_micromips_instructions())
8087 {
8088 // Write microMIPS stub in insn32 mode.
8089 if (!big_stub)
8090 {
8091 if (sym->dynsym_index() & ~0x7fff)
8092 // Dynsym index is between 32K and 64K.
8093 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8094 : lazy_stub_micromips32_normal_2;
8095 else
8096 // Dynsym index is less than 32K.
8097 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8098 : lazy_stub_micromips32_normal_1;
8099 }
8100 else
8101 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8102 : lazy_stub_micromips32_big;
8103
8104 unsigned int i = 0;
8105 // First stub instruction. We emit 32-bit microMIPS instructions by
8106 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8107 // the instruction where the opcode is must always come first, for
8108 // both little and big endian.
8109 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8110 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8111 // Second stub instruction.
8112 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8113 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8114 pov += 8;
8115 i += 4;
8116 if (big_stub)
8117 {
8118 // LUI instruction of the big stub. Paste high 16 bits of the
8119 // dynsym index.
8120 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8121 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8122 (sym->dynsym_index() >> 16) & 0x7fff);
8123 pov += 4;
8124 i += 2;
8125 }
8126 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8127 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8128 // Last stub instruction. Paste low 16 bits of the dynsym index.
8129 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8130 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8131 sym->dynsym_index() & 0xffff);
8132 pov += 8;
8133 }
8134 else
8135 {
8136 // Write microMIPS stub.
8137 if (!big_stub)
8138 {
8139 if (sym->dynsym_index() & ~0x7fff)
8140 // Dynsym index is between 32K and 64K.
8141 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8142 : lazy_stub_micromips_normal_2;
8143 else
8144 // Dynsym index is less than 32K.
8145 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8146 : lazy_stub_micromips_normal_1;
8147 }
8148 else
8149 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8150 : lazy_stub_micromips_big;
8151
8152 unsigned int i = 0;
8153 // First stub instruction. We emit 32-bit microMIPS instructions by
8154 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8155 // the instruction where the opcode is must always come first, for
8156 // both little and big endian.
8157 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8158 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8159 // Second stub instruction.
8160 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8161 pov += 6;
8162 i += 3;
8163 if (big_stub)
8164 {
8165 // LUI instruction of the big stub. Paste high 16 bits of the
8166 // dynsym index.
8167 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8168 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8169 (sym->dynsym_index() >> 16) & 0x7fff);
8170 pov += 4;
8171 i += 2;
8172 }
8173 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8174 // Last stub instruction. Paste low 16 bits of the dynsym index.
8175 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8176 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8177 sym->dynsym_index() & 0xffff);
8178 pov += 6;
8179 }
8180 }
8181
8182 // We always allocate 20 bytes for every stub, because final dynsym count is
8183 // not known in method do_finalize_sections. There are 4 unused bytes per
8184 // stub if final dynsym count is less than 0x10000.
8185 unsigned int used = pov - oview;
8186 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8187 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8188
8189 // Fill the unused space with zeroes.
8190 // TODO(sasa): Can we strip unused bytes during the relaxation?
8191 if (unused > 0)
8192 memset(pov, 0, unused);
8193
8194 of->write_output_view(offset, oview_size, oview);
8195 }
8196
8197 // Mips_output_section_reginfo methods.
8198
8199 template<int size, bool big_endian>
8200 void
8201 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8202 {
8203 off_t offset = this->offset();
8204 off_t data_size = this->data_size();
8205
8206 unsigned char* view = of->get_output_view(offset, data_size);
8207 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8208 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8209 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8210 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8211 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8212 // Write the gp value.
8213 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8214 this->target_->gp_value());
8215
8216 of->write_output_view(offset, data_size, view);
8217 }
8218
8219 // Mips_output_section_options methods.
8220
8221 template<int size, bool big_endian>
8222 void
8223 Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
8224 {
8225 off_t offset = this->offset();
8226 const section_size_type oview_size =
8227 convert_to_section_size_type(this->data_size());
8228 unsigned char* view = of->get_output_view(offset, oview_size);
8229 const unsigned char* end = view + oview_size;
8230
8231 while (view + 8 <= end)
8232 {
8233 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
8234 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
8235 if (sz < 8)
8236 {
8237 gold_error(_("Warning: bad `%s' option size %u smaller "
8238 "than its header in output section"),
8239 this->name(), sz);
8240 break;
8241 }
8242
8243 // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8244 if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
8245 elfcpp::Swap<size, big_endian>::writeval(view + 32,
8246 this->target_->gp_value());
8247 else if (kind == elfcpp::ODK_REGINFO)
8248 elfcpp::Swap<size, big_endian>::writeval(view + 28,
8249 this->target_->gp_value());
8250
8251 view += sz;
8252 }
8253
8254 of->write_output_view(offset, oview_size, view);
8255 }
8256
8257 // Mips_output_section_abiflags methods.
8258
8259 template<int size, bool big_endian>
8260 void
8261 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8262 {
8263 off_t offset = this->offset();
8264 off_t data_size = this->data_size();
8265
8266 unsigned char* view = of->get_output_view(offset, data_size);
8267 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8268 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8269 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8270 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8271 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8272 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8273 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8274 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8275 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8276 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8277 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8278
8279 of->write_output_view(offset, data_size, view);
8280 }
8281
8282 // Mips_copy_relocs methods.
8283
8284 // Emit any saved relocs.
8285
8286 template<int sh_type, int size, bool big_endian>
8287 void
8288 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8289 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8290 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8291 {
8292 for (typename Copy_relocs<sh_type, size, big_endian>::
8293 Copy_reloc_entries::iterator p = this->entries_.begin();
8294 p != this->entries_.end();
8295 ++p)
8296 emit_entry(*p, reloc_section, symtab, layout, target);
8297
8298 // We no longer need the saved information.
8299 this->entries_.clear();
8300 }
8301
8302 // Emit the reloc if appropriate.
8303
8304 template<int sh_type, int size, bool big_endian>
8305 void
8306 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8307 Copy_reloc_entry& entry,
8308 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8309 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8310 {
8311 // If the symbol is no longer defined in a dynamic object, then we
8312 // emitted a COPY relocation, and we do not want to emit this
8313 // dynamic relocation.
8314 if (!entry.sym_->is_from_dynobj())
8315 return;
8316
8317 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8318 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8319 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8320
8321 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8322 if (can_make_dynamic && !sym->has_static_relocs())
8323 {
8324 Mips_relobj<size, big_endian>* object =
8325 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8326 target->got_section(symtab, layout)->record_global_got_symbol(
8327 sym, object, entry.reloc_type_, true, false);
8328 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8329 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8330 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8331 else
8332 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8333 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8334 entry.shndx_, entry.address_);
8335 }
8336 else
8337 this->make_copy_reloc(symtab, layout,
8338 static_cast<Sized_symbol<size>*>(entry.sym_),
8339 entry.relobj_,
8340 reloc_section);
8341 }
8342
8343 // Target_mips methods.
8344
8345 // Return the value to use for a dynamic symbol which requires special
8346 // treatment. This is how we support equality comparisons of function
8347 // pointers across shared library boundaries, as described in the
8348 // processor specific ABI supplement.
8349
8350 template<int size, bool big_endian>
8351 uint64_t
8352 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8353 {
8354 uint64_t value = 0;
8355 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8356
8357 if (!mips_sym->has_lazy_stub())
8358 {
8359 if (mips_sym->has_plt_offset())
8360 {
8361 // We distinguish between PLT entries and lazy-binding stubs by
8362 // giving the former an st_other value of STO_MIPS_PLT. Set the
8363 // value to the stub address if there are any relocations in the
8364 // binary where pointer equality matters.
8365 if (mips_sym->pointer_equality_needed())
8366 {
8367 // Prefer a standard MIPS PLT entry.
8368 if (mips_sym->has_mips_plt_offset())
8369 value = this->plt_section()->mips_entry_address(mips_sym);
8370 else
8371 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8372 }
8373 else
8374 value = 0;
8375 }
8376 }
8377 else
8378 {
8379 // First, set stub offsets for symbols. This method expects that the
8380 // number of entries in dynamic symbol table is set.
8381 this->mips_stubs_section()->set_lazy_stub_offsets();
8382
8383 // The run-time linker uses the st_value field of the symbol
8384 // to reset the global offset table entry for this external
8385 // to its stub address when unlinking a shared object.
8386 value = this->mips_stubs_section()->stub_address(mips_sym);
8387 }
8388
8389 if (mips_sym->has_mips16_fn_stub())
8390 {
8391 // If we have a MIPS16 function with a stub, the dynamic symbol must
8392 // refer to the stub, since only the stub uses the standard calling
8393 // conventions.
8394 value = mips_sym->template
8395 get_mips16_fn_stub<big_endian>()->output_address();
8396 }
8397
8398 return value;
8399 }
8400
8401 // Get the dynamic reloc section, creating it if necessary. It's always
8402 // .rel.dyn, even for MIPS64.
8403
8404 template<int size, bool big_endian>
8405 typename Target_mips<size, big_endian>::Reloc_section*
8406 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8407 {
8408 if (this->rel_dyn_ == NULL)
8409 {
8410 gold_assert(layout != NULL);
8411 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8412 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8413 elfcpp::SHF_ALLOC, this->rel_dyn_,
8414 ORDER_DYNAMIC_RELOCS, false);
8415
8416 // First entry in .rel.dyn has to be null.
8417 // This is hack - we define dummy output data and set its address to 0,
8418 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8419 // This ensures that the entry is null.
8420 Output_data* od = new Output_data_zero_fill(0, 0);
8421 od->set_address(0);
8422 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8423 }
8424 return this->rel_dyn_;
8425 }
8426
8427 // Get the GOT section, creating it if necessary.
8428
8429 template<int size, bool big_endian>
8430 Mips_output_data_got<size, big_endian>*
8431 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8432 Layout* layout)
8433 {
8434 if (this->got_ == NULL)
8435 {
8436 gold_assert(symtab != NULL && layout != NULL);
8437
8438 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8439 layout);
8440 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8441 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8442 elfcpp::SHF_MIPS_GPREL),
8443 this->got_, ORDER_DATA, false);
8444
8445 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8446 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8447 Symbol_table::PREDEFINED,
8448 this->got_,
8449 0, 0, elfcpp::STT_OBJECT,
8450 elfcpp::STB_GLOBAL,
8451 elfcpp::STV_HIDDEN, 0,
8452 false, false);
8453 }
8454
8455 return this->got_;
8456 }
8457
8458 // Calculate value of _gp symbol.
8459
8460 template<int size, bool big_endian>
8461 void
8462 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8463 {
8464 gold_assert(this->gp_ == NULL);
8465
8466 Sized_symbol<size>* gp =
8467 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8468
8469 // Set _gp symbol if the linker script hasn't created it.
8470 if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8471 {
8472 // If there is no .got section, gp should be based on .sdata.
8473 Output_data* gp_section = (this->got_ != NULL
8474 ? this->got_->output_section()
8475 : layout->find_output_section(".sdata"));
8476
8477 if (gp_section != NULL)
8478 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8479 "_gp", NULL, Symbol_table::PREDEFINED,
8480 gp_section, MIPS_GP_OFFSET, 0,
8481 elfcpp::STT_NOTYPE,
8482 elfcpp::STB_LOCAL,
8483 elfcpp::STV_DEFAULT,
8484 0, false, false));
8485 }
8486
8487 this->gp_ = gp;
8488 }
8489
8490 // Set the dynamic symbol indexes. INDEX is the index of the first
8491 // global dynamic symbol. Pointers to the symbols are stored into the
8492 // vector SYMS. The names are added to DYNPOOL. This returns an
8493 // updated dynamic symbol index.
8494
8495 template<int size, bool big_endian>
8496 unsigned int
8497 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8498 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8499 std::vector<Symbol*>* syms, Stringpool* dynpool,
8500 Versions* versions, Symbol_table* symtab) const
8501 {
8502 std::vector<Symbol*> non_got_symbols;
8503 std::vector<Symbol*> got_symbols;
8504
8505 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8506 &got_symbols);
8507
8508 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8509 p != non_got_symbols.end();
8510 ++p)
8511 {
8512 Symbol* sym = *p;
8513
8514 // Note that SYM may already have a dynamic symbol index, since
8515 // some symbols appear more than once in the symbol table, with
8516 // and without a version.
8517
8518 if (!sym->has_dynsym_index())
8519 {
8520 sym->set_dynsym_index(index);
8521 ++index;
8522 syms->push_back(sym);
8523 dynpool->add(sym->name(), false, NULL);
8524
8525 // Record any version information.
8526 if (sym->version() != NULL)
8527 versions->record_version(symtab, dynpool, sym);
8528
8529 // If the symbol is defined in a dynamic object and is
8530 // referenced in a regular object, then mark the dynamic
8531 // object as needed. This is used to implement --as-needed.
8532 if (sym->is_from_dynobj() && sym->in_reg())
8533 sym->object()->set_is_needed();
8534 }
8535 }
8536
8537 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8538 p != got_symbols.end();
8539 ++p)
8540 {
8541 Symbol* sym = *p;
8542 if (!sym->has_dynsym_index())
8543 {
8544 // Record any version information.
8545 if (sym->version() != NULL)
8546 versions->record_version(symtab, dynpool, sym);
8547 }
8548 }
8549
8550 index = versions->finalize(symtab, index, syms);
8551
8552 int got_sym_count = 0;
8553 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8554 p != got_symbols.end();
8555 ++p)
8556 {
8557 Symbol* sym = *p;
8558
8559 if (!sym->has_dynsym_index())
8560 {
8561 ++got_sym_count;
8562 sym->set_dynsym_index(index);
8563 ++index;
8564 syms->push_back(sym);
8565 dynpool->add(sym->name(), false, NULL);
8566
8567 // If the symbol is defined in a dynamic object and is
8568 // referenced in a regular object, then mark the dynamic
8569 // object as needed. This is used to implement --as-needed.
8570 if (sym->is_from_dynobj() && sym->in_reg())
8571 sym->object()->set_is_needed();
8572 }
8573 }
8574
8575 // Set index of the first symbol that has .got entry.
8576 this->got_->set_first_global_got_dynsym_index(
8577 got_sym_count > 0 ? index - got_sym_count : -1U);
8578
8579 if (this->mips_stubs_ != NULL)
8580 this->mips_stubs_->set_dynsym_count(index);
8581
8582 return index;
8583 }
8584
8585 // Create a PLT entry for a global symbol referenced by r_type relocation.
8586
8587 template<int size, bool big_endian>
8588 void
8589 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8590 Layout* layout,
8591 Mips_symbol<size>* gsym,
8592 unsigned int r_type)
8593 {
8594 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8595 return;
8596
8597 if (this->plt_ == NULL)
8598 {
8599 // Create the GOT section first.
8600 this->got_section(symtab, layout);
8601
8602 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8603 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8604 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8605 this->got_plt_, ORDER_DATA, false);
8606
8607 // The first two entries are reserved.
8608 this->got_plt_->set_current_data_size(2 * size/8);
8609
8610 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8611 this->got_plt_,
8612 this);
8613 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8614 (elfcpp::SHF_ALLOC
8615 | elfcpp::SHF_EXECINSTR),
8616 this->plt_, ORDER_PLT, false);
8617
8618 // Make the sh_info field of .rel.plt point to .plt.
8619 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8620 rel_plt_os->set_info_section(this->plt_->output_section());
8621 }
8622
8623 this->plt_->add_entry(gsym, r_type);
8624 }
8625
8626
8627 // Get the .MIPS.stubs section, creating it if necessary.
8628
8629 template<int size, bool big_endian>
8630 Mips_output_data_mips_stubs<size, big_endian>*
8631 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8632 {
8633 if (this->mips_stubs_ == NULL)
8634 {
8635 this->mips_stubs_ =
8636 new Mips_output_data_mips_stubs<size, big_endian>(this);
8637 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8638 (elfcpp::SHF_ALLOC
8639 | elfcpp::SHF_EXECINSTR),
8640 this->mips_stubs_, ORDER_PLT, false);
8641 }
8642 return this->mips_stubs_;
8643 }
8644
8645 // Get the LA25 stub section, creating it if necessary.
8646
8647 template<int size, bool big_endian>
8648 Mips_output_data_la25_stub<size, big_endian>*
8649 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8650 {
8651 if (this->la25_stub_ == NULL)
8652 {
8653 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8654 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8655 (elfcpp::SHF_ALLOC
8656 | elfcpp::SHF_EXECINSTR),
8657 this->la25_stub_, ORDER_TEXT, false);
8658 }
8659 return this->la25_stub_;
8660 }
8661
8662 // Process the relocations to determine unreferenced sections for
8663 // garbage collection.
8664
8665 template<int size, bool big_endian>
8666 void
8667 Target_mips<size, big_endian>::gc_process_relocs(
8668 Symbol_table* symtab,
8669 Layout* layout,
8670 Sized_relobj_file<size, big_endian>* object,
8671 unsigned int data_shndx,
8672 unsigned int sh_type,
8673 const unsigned char* prelocs,
8674 size_t reloc_count,
8675 Output_section* output_section,
8676 bool needs_special_offset_handling,
8677 size_t local_symbol_count,
8678 const unsigned char* plocal_symbols)
8679 {
8680 typedef Target_mips<size, big_endian> Mips;
8681
8682 if (sh_type == elfcpp::SHT_REL)
8683 {
8684 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8685 Classify_reloc;
8686
8687 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8688 symtab,
8689 layout,
8690 this,
8691 object,
8692 data_shndx,
8693 prelocs,
8694 reloc_count,
8695 output_section,
8696 needs_special_offset_handling,
8697 local_symbol_count,
8698 plocal_symbols);
8699 }
8700 else if (sh_type == elfcpp::SHT_RELA)
8701 {
8702 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8703 Classify_reloc;
8704
8705 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8706 symtab,
8707 layout,
8708 this,
8709 object,
8710 data_shndx,
8711 prelocs,
8712 reloc_count,
8713 output_section,
8714 needs_special_offset_handling,
8715 local_symbol_count,
8716 plocal_symbols);
8717 }
8718 else
8719 gold_unreachable();
8720 }
8721
8722 // Scan relocations for a section.
8723
8724 template<int size, bool big_endian>
8725 void
8726 Target_mips<size, big_endian>::scan_relocs(
8727 Symbol_table* symtab,
8728 Layout* layout,
8729 Sized_relobj_file<size, big_endian>* object,
8730 unsigned int data_shndx,
8731 unsigned int sh_type,
8732 const unsigned char* prelocs,
8733 size_t reloc_count,
8734 Output_section* output_section,
8735 bool needs_special_offset_handling,
8736 size_t local_symbol_count,
8737 const unsigned char* plocal_symbols)
8738 {
8739 typedef Target_mips<size, big_endian> Mips;
8740
8741 if (sh_type == elfcpp::SHT_REL)
8742 {
8743 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8744 Classify_reloc;
8745
8746 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8747 symtab,
8748 layout,
8749 this,
8750 object,
8751 data_shndx,
8752 prelocs,
8753 reloc_count,
8754 output_section,
8755 needs_special_offset_handling,
8756 local_symbol_count,
8757 plocal_symbols);
8758 }
8759 else if (sh_type == elfcpp::SHT_RELA)
8760 {
8761 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8762 Classify_reloc;
8763
8764 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8765 symtab,
8766 layout,
8767 this,
8768 object,
8769 data_shndx,
8770 prelocs,
8771 reloc_count,
8772 output_section,
8773 needs_special_offset_handling,
8774 local_symbol_count,
8775 plocal_symbols);
8776 }
8777 }
8778
8779 template<int size, bool big_endian>
8780 bool
8781 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8782 {
8783 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8784 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8785 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8786 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8787 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8788 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8789 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8790 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8791 }
8792
8793 // Return the MACH for a MIPS e_flags value.
8794 template<int size, bool big_endian>
8795 unsigned int
8796 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8797 {
8798 switch (flags & elfcpp::EF_MIPS_MACH)
8799 {
8800 case elfcpp::E_MIPS_MACH_3900:
8801 return mach_mips3900;
8802
8803 case elfcpp::E_MIPS_MACH_4010:
8804 return mach_mips4010;
8805
8806 case elfcpp::E_MIPS_MACH_4100:
8807 return mach_mips4100;
8808
8809 case elfcpp::E_MIPS_MACH_4111:
8810 return mach_mips4111;
8811
8812 case elfcpp::E_MIPS_MACH_4120:
8813 return mach_mips4120;
8814
8815 case elfcpp::E_MIPS_MACH_4650:
8816 return mach_mips4650;
8817
8818 case elfcpp::E_MIPS_MACH_5400:
8819 return mach_mips5400;
8820
8821 case elfcpp::E_MIPS_MACH_5500:
8822 return mach_mips5500;
8823
8824 case elfcpp::E_MIPS_MACH_5900:
8825 return mach_mips5900;
8826
8827 case elfcpp::E_MIPS_MACH_9000:
8828 return mach_mips9000;
8829
8830 case elfcpp::E_MIPS_MACH_SB1:
8831 return mach_mips_sb1;
8832
8833 case elfcpp::E_MIPS_MACH_LS2E:
8834 return mach_mips_loongson_2e;
8835
8836 case elfcpp::E_MIPS_MACH_LS2F:
8837 return mach_mips_loongson_2f;
8838
8839 case elfcpp::E_MIPS_MACH_LS3A:
8840 return mach_mips_loongson_3a;
8841
8842 case elfcpp::E_MIPS_MACH_OCTEON3:
8843 return mach_mips_octeon3;
8844
8845 case elfcpp::E_MIPS_MACH_OCTEON2:
8846 return mach_mips_octeon2;
8847
8848 case elfcpp::E_MIPS_MACH_OCTEON:
8849 return mach_mips_octeon;
8850
8851 case elfcpp::E_MIPS_MACH_XLR:
8852 return mach_mips_xlr;
8853
8854 default:
8855 switch (flags & elfcpp::EF_MIPS_ARCH)
8856 {
8857 default:
8858 case elfcpp::E_MIPS_ARCH_1:
8859 return mach_mips3000;
8860
8861 case elfcpp::E_MIPS_ARCH_2:
8862 return mach_mips6000;
8863
8864 case elfcpp::E_MIPS_ARCH_3:
8865 return mach_mips4000;
8866
8867 case elfcpp::E_MIPS_ARCH_4:
8868 return mach_mips8000;
8869
8870 case elfcpp::E_MIPS_ARCH_5:
8871 return mach_mips5;
8872
8873 case elfcpp::E_MIPS_ARCH_32:
8874 return mach_mipsisa32;
8875
8876 case elfcpp::E_MIPS_ARCH_64:
8877 return mach_mipsisa64;
8878
8879 case elfcpp::E_MIPS_ARCH_32R2:
8880 return mach_mipsisa32r2;
8881
8882 case elfcpp::E_MIPS_ARCH_32R6:
8883 return mach_mipsisa32r6;
8884
8885 case elfcpp::E_MIPS_ARCH_64R2:
8886 return mach_mipsisa64r2;
8887
8888 case elfcpp::E_MIPS_ARCH_64R6:
8889 return mach_mipsisa64r6;
8890 }
8891 }
8892
8893 return 0;
8894 }
8895
8896 // Return the MACH for each .MIPS.abiflags ISA Extension.
8897
8898 template<int size, bool big_endian>
8899 unsigned int
8900 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8901 {
8902 switch (isa_ext)
8903 {
8904 case elfcpp::AFL_EXT_3900:
8905 return mach_mips3900;
8906
8907 case elfcpp::AFL_EXT_4010:
8908 return mach_mips4010;
8909
8910 case elfcpp::AFL_EXT_4100:
8911 return mach_mips4100;
8912
8913 case elfcpp::AFL_EXT_4111:
8914 return mach_mips4111;
8915
8916 case elfcpp::AFL_EXT_4120:
8917 return mach_mips4120;
8918
8919 case elfcpp::AFL_EXT_4650:
8920 return mach_mips4650;
8921
8922 case elfcpp::AFL_EXT_5400:
8923 return mach_mips5400;
8924
8925 case elfcpp::AFL_EXT_5500:
8926 return mach_mips5500;
8927
8928 case elfcpp::AFL_EXT_5900:
8929 return mach_mips5900;
8930
8931 case elfcpp::AFL_EXT_10000:
8932 return mach_mips10000;
8933
8934 case elfcpp::AFL_EXT_LOONGSON_2E:
8935 return mach_mips_loongson_2e;
8936
8937 case elfcpp::AFL_EXT_LOONGSON_2F:
8938 return mach_mips_loongson_2f;
8939
8940 case elfcpp::AFL_EXT_LOONGSON_3A:
8941 return mach_mips_loongson_3a;
8942
8943 case elfcpp::AFL_EXT_SB1:
8944 return mach_mips_sb1;
8945
8946 case elfcpp::AFL_EXT_OCTEON:
8947 return mach_mips_octeon;
8948
8949 case elfcpp::AFL_EXT_OCTEONP:
8950 return mach_mips_octeonp;
8951
8952 case elfcpp::AFL_EXT_OCTEON2:
8953 return mach_mips_octeon2;
8954
8955 case elfcpp::AFL_EXT_XLR:
8956 return mach_mips_xlr;
8957
8958 default:
8959 return mach_mips3000;
8960 }
8961 }
8962
8963 // Return the .MIPS.abiflags value representing each ISA Extension.
8964
8965 template<int size, bool big_endian>
8966 unsigned int
8967 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8968 {
8969 switch (mips_mach)
8970 {
8971 case mach_mips3900:
8972 return elfcpp::AFL_EXT_3900;
8973
8974 case mach_mips4010:
8975 return elfcpp::AFL_EXT_4010;
8976
8977 case mach_mips4100:
8978 return elfcpp::AFL_EXT_4100;
8979
8980 case mach_mips4111:
8981 return elfcpp::AFL_EXT_4111;
8982
8983 case mach_mips4120:
8984 return elfcpp::AFL_EXT_4120;
8985
8986 case mach_mips4650:
8987 return elfcpp::AFL_EXT_4650;
8988
8989 case mach_mips5400:
8990 return elfcpp::AFL_EXT_5400;
8991
8992 case mach_mips5500:
8993 return elfcpp::AFL_EXT_5500;
8994
8995 case mach_mips5900:
8996 return elfcpp::AFL_EXT_5900;
8997
8998 case mach_mips10000:
8999 return elfcpp::AFL_EXT_10000;
9000
9001 case mach_mips_loongson_2e:
9002 return elfcpp::AFL_EXT_LOONGSON_2E;
9003
9004 case mach_mips_loongson_2f:
9005 return elfcpp::AFL_EXT_LOONGSON_2F;
9006
9007 case mach_mips_loongson_3a:
9008 return elfcpp::AFL_EXT_LOONGSON_3A;
9009
9010 case mach_mips_sb1:
9011 return elfcpp::AFL_EXT_SB1;
9012
9013 case mach_mips_octeon:
9014 return elfcpp::AFL_EXT_OCTEON;
9015
9016 case mach_mips_octeonp:
9017 return elfcpp::AFL_EXT_OCTEONP;
9018
9019 case mach_mips_octeon3:
9020 return elfcpp::AFL_EXT_OCTEON3;
9021
9022 case mach_mips_octeon2:
9023 return elfcpp::AFL_EXT_OCTEON2;
9024
9025 case mach_mips_xlr:
9026 return elfcpp::AFL_EXT_XLR;
9027
9028 default:
9029 return 0;
9030 }
9031 }
9032
9033 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9034
9035 template<int size, bool big_endian>
9036 void
9037 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
9038 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
9039 {
9040 int new_isa = 0;
9041 switch (e_flags & elfcpp::EF_MIPS_ARCH)
9042 {
9043 case elfcpp::E_MIPS_ARCH_1:
9044 new_isa = this->level_rev(1, 0);
9045 break;
9046 case elfcpp::E_MIPS_ARCH_2:
9047 new_isa = this->level_rev(2, 0);
9048 break;
9049 case elfcpp::E_MIPS_ARCH_3:
9050 new_isa = this->level_rev(3, 0);
9051 break;
9052 case elfcpp::E_MIPS_ARCH_4:
9053 new_isa = this->level_rev(4, 0);
9054 break;
9055 case elfcpp::E_MIPS_ARCH_5:
9056 new_isa = this->level_rev(5, 0);
9057 break;
9058 case elfcpp::E_MIPS_ARCH_32:
9059 new_isa = this->level_rev(32, 1);
9060 break;
9061 case elfcpp::E_MIPS_ARCH_32R2:
9062 new_isa = this->level_rev(32, 2);
9063 break;
9064 case elfcpp::E_MIPS_ARCH_32R6:
9065 new_isa = this->level_rev(32, 6);
9066 break;
9067 case elfcpp::E_MIPS_ARCH_64:
9068 new_isa = this->level_rev(64, 1);
9069 break;
9070 case elfcpp::E_MIPS_ARCH_64R2:
9071 new_isa = this->level_rev(64, 2);
9072 break;
9073 case elfcpp::E_MIPS_ARCH_64R6:
9074 new_isa = this->level_rev(64, 6);
9075 break;
9076 default:
9077 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9078 this->elf_mips_mach_name(e_flags));
9079 }
9080
9081 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9082 {
9083 // Decode a single value into level and revision.
9084 abiflags->isa_level = new_isa >> 3;
9085 abiflags->isa_rev = new_isa & 0x7;
9086 }
9087
9088 // Update the isa_ext if needed.
9089 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9090 this->elf_mips_mach(e_flags)))
9091 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9092 }
9093
9094 // Infer the content of the ABI flags based on the elf header.
9095
9096 template<int size, bool big_endian>
9097 void
9098 Target_mips<size, big_endian>::infer_abiflags(
9099 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9100 {
9101 const Attributes_section_data* pasd = relobj->attributes_section_data();
9102 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9103 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9104
9105 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9106 if (pasd != NULL)
9107 {
9108 // Read fp_abi from the .gnu.attribute section.
9109 const Object_attribute* attr =
9110 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9111 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9112 }
9113
9114 abiflags->fp_abi = attr_fp_abi;
9115 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9116 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9117 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9118 : elfcpp::AFL_REG_64;
9119
9120 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9121 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9122 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9123 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9124 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9125 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9126 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9127 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9128 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9129
9130 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9131 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9132 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9133 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9134 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9135 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9136
9137 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9138 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9139 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9140 && abiflags->isa_level >= 32
9141 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9142 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9143 }
9144
9145 // Create abiflags from elf header or from .MIPS.abiflags section.
9146
9147 template<int size, bool big_endian>
9148 void
9149 Target_mips<size, big_endian>::create_abiflags(
9150 Mips_relobj<size, big_endian>* relobj,
9151 Mips_abiflags<big_endian>* abiflags)
9152 {
9153 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9154 Mips_abiflags<big_endian> header_abiflags;
9155
9156 this->infer_abiflags(relobj, &header_abiflags);
9157
9158 if (sec_abiflags == NULL)
9159 {
9160 // If there is no input .MIPS.abiflags section, use abiflags created
9161 // from elf header.
9162 *abiflags = header_abiflags;
9163 return;
9164 }
9165
9166 this->has_abiflags_section_ = true;
9167
9168 // It is not possible to infer the correct ISA revision for R3 or R5
9169 // so drop down to R2 for the checks.
9170 unsigned char isa_rev = sec_abiflags->isa_rev;
9171 if (isa_rev == 3 || isa_rev == 5)
9172 isa_rev = 2;
9173
9174 // Check compatibility between abiflags created from elf header
9175 // and abiflags from .MIPS.abiflags section in this object file.
9176 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9177 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9178 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9179 relobj->name().c_str());
9180 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9181 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9182 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9183 ".MIPS.abiflags"), relobj->name().c_str());
9184 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9185 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9186 relobj->name().c_str());
9187 // The isa_ext is allowed to be an extension of what can be inferred
9188 // from e_flags.
9189 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9190 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9191 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9192 ".MIPS.abiflags"), relobj->name().c_str());
9193 if (sec_abiflags->flags2 != 0)
9194 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9195 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9196 sec_abiflags->flags2);
9197 // Use abiflags from .MIPS.abiflags section.
9198 *abiflags = *sec_abiflags;
9199 }
9200
9201 // Return the meaning of fp_abi, or "unknown" if not known.
9202
9203 template<int size, bool big_endian>
9204 const char*
9205 Target_mips<size, big_endian>::fp_abi_string(int fp)
9206 {
9207 switch (fp)
9208 {
9209 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9210 return "-mdouble-float";
9211 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9212 return "-msingle-float";
9213 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9214 return "-msoft-float";
9215 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9216 return _("-mips32r2 -mfp64 (12 callee-saved)");
9217 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9218 return "-mfpxx";
9219 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9220 return "-mgp32 -mfp64";
9221 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9222 return "-mgp32 -mfp64 -mno-odd-spreg";
9223 default:
9224 return "unknown";
9225 }
9226 }
9227
9228 // Select fp_abi.
9229
9230 template<int size, bool big_endian>
9231 int
9232 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9233 int out_fp)
9234 {
9235 if (in_fp == out_fp)
9236 return out_fp;
9237
9238 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9239 return in_fp;
9240 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9241 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9242 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9243 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9244 return in_fp;
9245 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9246 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9247 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9248 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9249 return out_fp; // Keep the current setting.
9250 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9251 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9252 return in_fp;
9253 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9254 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9255 return out_fp; // Keep the current setting.
9256 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9257 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9258 fp_abi_string(in_fp), fp_abi_string(out_fp));
9259 return out_fp;
9260 }
9261
9262 // Merge attributes from input object.
9263
9264 template<int size, bool big_endian>
9265 void
9266 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9267 const Attributes_section_data* pasd)
9268 {
9269 // Return if there is no attributes section data.
9270 if (pasd == NULL)
9271 return;
9272
9273 // If output has no object attributes, just copy.
9274 if (this->attributes_section_data_ == NULL)
9275 {
9276 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9277 return;
9278 }
9279
9280 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9281 Object_attribute::OBJ_ATTR_GNU);
9282
9283 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9284 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9285
9286 // Merge Tag_compatibility attributes and any common GNU ones.
9287 this->attributes_section_data_->merge(name.c_str(), pasd);
9288 }
9289
9290 // Merge abiflags from input object.
9291
9292 template<int size, bool big_endian>
9293 void
9294 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9295 Mips_abiflags<big_endian>* in_abiflags)
9296 {
9297 // If output has no abiflags, just copy.
9298 if (this->abiflags_ == NULL)
9299 {
9300 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9301 return;
9302 }
9303
9304 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9305 this->abiflags_->fp_abi);
9306
9307 // Merge abiflags.
9308 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9309 in_abiflags->isa_level);
9310 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9311 in_abiflags->isa_rev);
9312 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9313 in_abiflags->gpr_size);
9314 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9315 in_abiflags->cpr1_size);
9316 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9317 in_abiflags->cpr2_size);
9318 this->abiflags_->ases |= in_abiflags->ases;
9319 this->abiflags_->flags1 |= in_abiflags->flags1;
9320 }
9321
9322 // Check whether machine EXTENSION is an extension of machine BASE.
9323 template<int size, bool big_endian>
9324 bool
9325 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9326 unsigned int extension)
9327 {
9328 if (extension == base)
9329 return true;
9330
9331 if ((base == mach_mipsisa32)
9332 && this->mips_mach_extends(mach_mipsisa64, extension))
9333 return true;
9334
9335 if ((base == mach_mipsisa32r2)
9336 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9337 return true;
9338
9339 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9340 if (extension == this->mips_mach_extensions_[i].first)
9341 {
9342 extension = this->mips_mach_extensions_[i].second;
9343 if (extension == base)
9344 return true;
9345 }
9346
9347 return false;
9348 }
9349
9350 // Merge file header flags from input object.
9351
9352 template<int size, bool big_endian>
9353 void
9354 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9355 elfcpp::Elf_Word in_flags)
9356 {
9357 // If flags are not set yet, just copy them.
9358 if (!this->are_processor_specific_flags_set())
9359 {
9360 this->set_processor_specific_flags(in_flags);
9361 this->mach_ = this->elf_mips_mach(in_flags);
9362 return;
9363 }
9364
9365 elfcpp::Elf_Word new_flags = in_flags;
9366 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9367 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9368 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9369
9370 // Check flag compatibility.
9371 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9372 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9373
9374 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9375 // doesn't seem to matter.
9376 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9377 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9378
9379 // MIPSpro generates ucode info in n64 objects. Again, we should
9380 // just be able to ignore this.
9381 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9382 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9383
9384 if (new_flags == old_flags)
9385 {
9386 this->set_processor_specific_flags(merged_flags);
9387 return;
9388 }
9389
9390 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9391 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9392 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9393 name.c_str());
9394
9395 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9396 merged_flags |= elfcpp::EF_MIPS_CPIC;
9397 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9398 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9399
9400 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9401 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9402
9403 // Compare the ISAs.
9404 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9405 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9406 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9407 {
9408 // Output ISA isn't the same as, or an extension of, input ISA.
9409 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9410 {
9411 // Copy the architecture info from input object to output. Also copy
9412 // the 32-bit flag (if set) so that we continue to recognise
9413 // output as a 32-bit binary.
9414 this->mach_ = this->elf_mips_mach(in_flags);
9415 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9416 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9417 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9418
9419 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9420 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9421
9422 // Copy across the ABI flags if output doesn't use them
9423 // and if that was what caused us to treat input object as 32-bit.
9424 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9425 && this->mips_32bit_flags(new_flags)
9426 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9427 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9428 }
9429 else
9430 // The ISAs aren't compatible.
9431 gold_error(_("%s: linking %s module with previous %s modules"),
9432 name.c_str(), this->elf_mips_mach_name(in_flags),
9433 this->elf_mips_mach_name(merged_flags));
9434 }
9435
9436 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9437 | elfcpp::EF_MIPS_32BITMODE));
9438 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9439 | elfcpp::EF_MIPS_32BITMODE));
9440
9441 // Compare ABIs.
9442 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9443 {
9444 // Only error if both are set (to different values).
9445 if ((new_flags & elfcpp::EF_MIPS_ABI)
9446 && (old_flags & elfcpp::EF_MIPS_ABI))
9447 gold_error(_("%s: ABI mismatch: linking %s module with "
9448 "previous %s modules"), name.c_str(),
9449 this->elf_mips_abi_name(in_flags),
9450 this->elf_mips_abi_name(merged_flags));
9451
9452 new_flags &= ~elfcpp::EF_MIPS_ABI;
9453 old_flags &= ~elfcpp::EF_MIPS_ABI;
9454 }
9455
9456 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9457 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9458 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9459 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9460 {
9461 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9462 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9463 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9464 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9465 int micro_mis = old_m16 && new_micro;
9466 int m16_mis = old_micro && new_m16;
9467
9468 if (m16_mis || micro_mis)
9469 gold_error(_("%s: ASE mismatch: linking %s module with "
9470 "previous %s modules"), name.c_str(),
9471 m16_mis ? "MIPS16" : "microMIPS",
9472 m16_mis ? "microMIPS" : "MIPS16");
9473
9474 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9475
9476 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9477 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9478 }
9479
9480 // Compare NaN encodings.
9481 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9482 {
9483 gold_error(_("%s: linking %s module with previous %s modules"),
9484 name.c_str(),
9485 (new_flags & elfcpp::EF_MIPS_NAN2008
9486 ? "-mnan=2008" : "-mnan=legacy"),
9487 (old_flags & elfcpp::EF_MIPS_NAN2008
9488 ? "-mnan=2008" : "-mnan=legacy"));
9489
9490 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9491 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9492 }
9493
9494 // Compare FP64 state.
9495 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9496 {
9497 gold_error(_("%s: linking %s module with previous %s modules"),
9498 name.c_str(),
9499 (new_flags & elfcpp::EF_MIPS_FP64
9500 ? "-mfp64" : "-mfp32"),
9501 (old_flags & elfcpp::EF_MIPS_FP64
9502 ? "-mfp64" : "-mfp32"));
9503
9504 new_flags &= ~elfcpp::EF_MIPS_FP64;
9505 old_flags &= ~elfcpp::EF_MIPS_FP64;
9506 }
9507
9508 // Warn about any other mismatches.
9509 if (new_flags != old_flags)
9510 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9511 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9512
9513 this->set_processor_specific_flags(merged_flags);
9514 }
9515
9516 // Adjust ELF file header.
9517
9518 template<int size, bool big_endian>
9519 void
9520 Target_mips<size, big_endian>::do_adjust_elf_header(
9521 unsigned char* view,
9522 int len)
9523 {
9524 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9525
9526 elfcpp::Ehdr<size, big_endian> ehdr(view);
9527 unsigned char e_ident[elfcpp::EI_NIDENT];
9528 elfcpp::Elf_Word flags = this->processor_specific_flags();
9529 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9530
9531 unsigned char ei_abiversion = 0;
9532 elfcpp::Elf_Half type = ehdr.get_e_type();
9533 if (type == elfcpp::ET_EXEC
9534 && parameters->options().copyreloc()
9535 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9536 == elfcpp::EF_MIPS_CPIC)
9537 ei_abiversion = 1;
9538
9539 if (this->abiflags_ != NULL
9540 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9541 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9542 ei_abiversion = 3;
9543
9544 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9545 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9546 oehdr.put_e_ident(e_ident);
9547
9548 if (this->entry_symbol_is_compressed_)
9549 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9550 }
9551
9552 // do_make_elf_object to override the same function in the base class.
9553 // We need to use a target-specific sub-class of
9554 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9555 // Hence we need to have our own ELF object creation.
9556
9557 template<int size, bool big_endian>
9558 Object*
9559 Target_mips<size, big_endian>::do_make_elf_object(
9560 const std::string& name,
9561 Input_file* input_file,
9562 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9563 {
9564 int et = ehdr.get_e_type();
9565 // ET_EXEC files are valid input for --just-symbols/-R,
9566 // and we treat them as relocatable objects.
9567 if (et == elfcpp::ET_REL
9568 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9569 {
9570 Mips_relobj<size, big_endian>* obj =
9571 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9572 obj->setup();
9573 return obj;
9574 }
9575 else if (et == elfcpp::ET_DYN)
9576 {
9577 // TODO(sasa): Should we create Mips_dynobj?
9578 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9579 }
9580 else
9581 {
9582 gold_error(_("%s: unsupported ELF file type %d"),
9583 name.c_str(), et);
9584 return NULL;
9585 }
9586 }
9587
9588 // Finalize the sections.
9589
9590 template <int size, bool big_endian>
9591 void
9592 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9593 const Input_objects* input_objects,
9594 Symbol_table* symtab)
9595 {
9596 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9597 // DT_FINI have correct values.
9598 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9599 symtab->lookup(parameters->options().init()));
9600 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9601 init->set_value(init->value() | 1);
9602 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9603 symtab->lookup(parameters->options().fini()));
9604 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9605 fini->set_value(fini->value() | 1);
9606
9607 // Check whether the entry symbol is mips16 or micromips. This is needed to
9608 // adjust entry address in ELF header.
9609 Mips_symbol<size>* entry =
9610 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9611 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9612 || entry->is_micromips()));
9613
9614 if (!parameters->doing_static_link()
9615 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9616 || strcmp(parameters->options().hash_style(), "both") == 0))
9617 {
9618 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9619 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9620 // MIPS ABI requires a mapping between the GOT and the symbol table.
9621 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9622 }
9623
9624 // Check whether the final section that was scanned has HI16 or GOT16
9625 // relocations without the corresponding LO16 part.
9626 if (this->got16_addends_.size() > 0)
9627 gold_error("Can't find matching LO16 reloc");
9628
9629 // Check for any mips16 stub sections that we can discard.
9630 if (!parameters->options().relocatable())
9631 {
9632 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9633 p != input_objects->relobj_end();
9634 ++p)
9635 {
9636 Mips_relobj<size, big_endian>* object =
9637 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9638 object->discard_mips16_stub_sections(symtab);
9639 }
9640 }
9641
9642 Valtype gprmask = 0;
9643 Valtype cprmask1 = 0;
9644 Valtype cprmask2 = 0;
9645 Valtype cprmask3 = 0;
9646 Valtype cprmask4 = 0;
9647 bool has_reginfo_section = false;
9648
9649 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9650 p != input_objects->relobj_end();
9651 ++p)
9652 {
9653 Mips_relobj<size, big_endian>* relobj =
9654 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9655
9656 // Merge .reginfo contents of input objects.
9657 if (relobj->has_reginfo_section())
9658 {
9659 has_reginfo_section = true;
9660 gprmask |= relobj->gprmask();
9661 cprmask1 |= relobj->cprmask1();
9662 cprmask2 |= relobj->cprmask2();
9663 cprmask3 |= relobj->cprmask3();
9664 cprmask4 |= relobj->cprmask4();
9665 }
9666
9667 Input_file::Format format = relobj->input_file()->format();
9668 if (format != Input_file::FORMAT_ELF)
9669 continue;
9670
9671 // If all input sections will be discarded, don't use this object
9672 // file for merging processor specific flags.
9673 bool should_merge_processor_specific_flags = false;
9674
9675 for (unsigned int i = 1; i < relobj->shnum(); ++i)
9676 if (relobj->output_section(i) != NULL)
9677 {
9678 should_merge_processor_specific_flags = true;
9679 break;
9680 }
9681
9682 if (!should_merge_processor_specific_flags)
9683 continue;
9684
9685 // Merge processor specific flags.
9686 Mips_abiflags<big_endian> in_abiflags;
9687
9688 this->create_abiflags(relobj, &in_abiflags);
9689 this->merge_obj_e_flags(relobj->name(),
9690 relobj->processor_specific_flags());
9691 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9692 this->merge_obj_attributes(relobj->name(),
9693 relobj->attributes_section_data());
9694 }
9695
9696 // Create a .gnu.attributes section if we have merged any attributes
9697 // from inputs.
9698 if (this->attributes_section_data_ != NULL)
9699 {
9700 Output_attributes_section_data* attributes_section =
9701 new Output_attributes_section_data(*this->attributes_section_data_);
9702 layout->add_output_section_data(".gnu.attributes",
9703 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9704 attributes_section, ORDER_INVALID, false);
9705 }
9706
9707 // Create .MIPS.abiflags output section if there is an input section.
9708 if (this->has_abiflags_section_)
9709 {
9710 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9711 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9712
9713 Output_section* os =
9714 layout->add_output_section_data(".MIPS.abiflags",
9715 elfcpp::SHT_MIPS_ABIFLAGS,
9716 elfcpp::SHF_ALLOC,
9717 abiflags_section, ORDER_INVALID, false);
9718
9719 if (!parameters->options().relocatable() && os != NULL)
9720 {
9721 Output_segment* abiflags_segment =
9722 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9723 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9724 }
9725 }
9726
9727 if (has_reginfo_section && !parameters->options().gc_sections())
9728 {
9729 // Create .reginfo output section.
9730 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9731 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9732 cprmask1, cprmask2,
9733 cprmask3, cprmask4);
9734
9735 Output_section* os =
9736 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9737 elfcpp::SHF_ALLOC, reginfo_section,
9738 ORDER_INVALID, false);
9739
9740 if (!parameters->options().relocatable() && os != NULL)
9741 {
9742 Output_segment* reginfo_segment =
9743 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9744 elfcpp::PF_R);
9745 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9746 }
9747 }
9748
9749 if (this->plt_ != NULL)
9750 {
9751 // Set final PLT offsets for symbols.
9752 this->plt_section()->set_plt_offsets();
9753
9754 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9755 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9756 // there are no standard PLT entries present.
9757 unsigned char nonvis = 0;
9758 if (this->is_output_micromips()
9759 && !this->plt_section()->has_standard_entries())
9760 nonvis = elfcpp::STO_MICROMIPS >> 2;
9761 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9762 Symbol_table::PREDEFINED,
9763 this->plt_,
9764 0, 0, elfcpp::STT_FUNC,
9765 elfcpp::STB_LOCAL,
9766 elfcpp::STV_DEFAULT, nonvis,
9767 false, false);
9768 }
9769
9770 if (this->mips_stubs_ != NULL)
9771 {
9772 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9773 unsigned char nonvis = 0;
9774 if (this->is_output_micromips())
9775 nonvis = elfcpp::STO_MICROMIPS >> 2;
9776 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9777 Symbol_table::PREDEFINED,
9778 this->mips_stubs_,
9779 0, 0, elfcpp::STT_FUNC,
9780 elfcpp::STB_LOCAL,
9781 elfcpp::STV_DEFAULT, nonvis,
9782 false, false);
9783 }
9784
9785 if (!parameters->options().relocatable() && !parameters->doing_static_link())
9786 // In case there is no .got section, create one.
9787 this->got_section(symtab, layout);
9788
9789 // Emit any relocs we saved in an attempt to avoid generating COPY
9790 // relocs.
9791 if (this->copy_relocs_.any_saved_relocs())
9792 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9793 this);
9794
9795 // Set _gp value.
9796 this->set_gp(layout, symtab);
9797
9798 // Emit dynamic relocs.
9799 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9800 p != this->dyn_relocs_.end();
9801 ++p)
9802 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9803
9804 if (this->has_got_section())
9805 this->got_section()->lay_out_got(layout, symtab, input_objects);
9806
9807 if (this->mips_stubs_ != NULL)
9808 this->mips_stubs_->set_needs_dynsym_value();
9809
9810 // Check for functions that might need $25 to be valid on entry.
9811 // TODO(sasa): Can we do this without iterating over all symbols?
9812 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9813 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9814 symtab));
9815
9816 // Add NULL segment.
9817 if (!parameters->options().relocatable())
9818 layout->make_output_segment(elfcpp::PT_NULL, 0);
9819
9820 // Fill in some more dynamic tags.
9821 // TODO(sasa): Add more dynamic tags.
9822 const Reloc_section* rel_plt = (this->plt_ == NULL
9823 ? NULL : this->plt_->rel_plt());
9824 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9825 this->rel_dyn_, true, false);
9826
9827 Output_data_dynamic* const odyn = layout->dynamic_data();
9828 if (odyn != NULL
9829 && !parameters->options().relocatable()
9830 && !parameters->doing_static_link())
9831 {
9832 unsigned int d_val;
9833 // This element holds a 32-bit version id for the Runtime
9834 // Linker Interface. This will start at integer value 1.
9835 d_val = 0x01;
9836 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9837
9838 // Dynamic flags
9839 d_val = elfcpp::RHF_NOTPOT;
9840 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9841
9842 // Save layout for using when emitting custom dynamic tags.
9843 this->layout_ = layout;
9844
9845 // This member holds the base address of the segment.
9846 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9847
9848 // This member holds the number of entries in the .dynsym section.
9849 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9850
9851 // This member holds the index of the first dynamic symbol
9852 // table entry that corresponds to an entry in the global offset table.
9853 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9854
9855 // This member holds the number of local GOT entries.
9856 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9857 this->got_->get_local_gotno());
9858
9859 if (this->plt_ != NULL)
9860 // DT_MIPS_PLTGOT dynamic tag
9861 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9862
9863 if (!parameters->options().shared())
9864 {
9865 this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9866
9867 layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9868 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9869 this->rld_map_, ORDER_INVALID, false);
9870
9871 // __RLD_MAP will be filled in by the runtime loader to contain
9872 // a pointer to the _r_debug structure.
9873 Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9874 Symbol_table::PREDEFINED,
9875 this->rld_map_,
9876 0, 0, elfcpp::STT_OBJECT,
9877 elfcpp::STB_GLOBAL,
9878 elfcpp::STV_DEFAULT, 0,
9879 false, false);
9880
9881 if (!rld_map->is_forced_local())
9882 rld_map->set_needs_dynsym_entry();
9883
9884 if (!parameters->options().pie())
9885 // This member holds the absolute address of the debug pointer.
9886 odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9887 else
9888 // This member holds the offset to the debug pointer,
9889 // relative to the address of the tag.
9890 odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9891 }
9892 }
9893 }
9894
9895 // Get the custom dynamic tag value.
9896 template<int size, bool big_endian>
9897 unsigned int
9898 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9899 {
9900 switch (tag)
9901 {
9902 case elfcpp::DT_MIPS_BASE_ADDRESS:
9903 {
9904 // The base address of the segment.
9905 // At this point, the segment list has been sorted into final order,
9906 // so just return vaddr of the first readable PT_LOAD segment.
9907 Output_segment* seg =
9908 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9909 gold_assert(seg != NULL);
9910 return seg->vaddr();
9911 }
9912
9913 case elfcpp::DT_MIPS_SYMTABNO:
9914 // The number of entries in the .dynsym section.
9915 return this->get_dt_mips_symtabno();
9916
9917 case elfcpp::DT_MIPS_GOTSYM:
9918 {
9919 // The index of the first dynamic symbol table entry that corresponds
9920 // to an entry in the GOT.
9921 if (this->got_->first_global_got_dynsym_index() != -1U)
9922 return this->got_->first_global_got_dynsym_index();
9923 else
9924 // In case if we don't have global GOT symbols we default to setting
9925 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9926 return this->get_dt_mips_symtabno();
9927 }
9928
9929 case elfcpp::DT_MIPS_RLD_MAP_REL:
9930 {
9931 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9932 // relative to the address of the tag.
9933 Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9934 unsigned int entry_offset =
9935 odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9936 gold_assert(entry_offset != -1U);
9937 return this->rld_map_->address() - (odyn->address() + entry_offset);
9938 }
9939 default:
9940 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9941 }
9942
9943 return (unsigned int)-1;
9944 }
9945
9946 // Relocate section data.
9947
9948 template<int size, bool big_endian>
9949 void
9950 Target_mips<size, big_endian>::relocate_section(
9951 const Relocate_info<size, big_endian>* relinfo,
9952 unsigned int sh_type,
9953 const unsigned char* prelocs,
9954 size_t reloc_count,
9955 Output_section* output_section,
9956 bool needs_special_offset_handling,
9957 unsigned char* view,
9958 Mips_address address,
9959 section_size_type view_size,
9960 const Reloc_symbol_changes* reloc_symbol_changes)
9961 {
9962 typedef Target_mips<size, big_endian> Mips;
9963 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9964
9965 if (sh_type == elfcpp::SHT_REL)
9966 {
9967 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9968 Classify_reloc;
9969
9970 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9971 gold::Default_comdat_behavior, Classify_reloc>(
9972 relinfo,
9973 this,
9974 prelocs,
9975 reloc_count,
9976 output_section,
9977 needs_special_offset_handling,
9978 view,
9979 address,
9980 view_size,
9981 reloc_symbol_changes);
9982 }
9983 else if (sh_type == elfcpp::SHT_RELA)
9984 {
9985 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9986 Classify_reloc;
9987
9988 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9989 gold::Default_comdat_behavior, Classify_reloc>(
9990 relinfo,
9991 this,
9992 prelocs,
9993 reloc_count,
9994 output_section,
9995 needs_special_offset_handling,
9996 view,
9997 address,
9998 view_size,
9999 reloc_symbol_changes);
10000 }
10001 }
10002
10003 // Return the size of a relocation while scanning during a relocatable
10004 // link.
10005
10006 unsigned int
10007 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
10008 {
10009 switch (r_type)
10010 {
10011 case elfcpp::R_MIPS_NONE:
10012 case elfcpp::R_MIPS_TLS_DTPMOD64:
10013 case elfcpp::R_MIPS_TLS_DTPREL64:
10014 case elfcpp::R_MIPS_TLS_TPREL64:
10015 return 0;
10016
10017 case elfcpp::R_MIPS_32:
10018 case elfcpp::R_MIPS_TLS_DTPMOD32:
10019 case elfcpp::R_MIPS_TLS_DTPREL32:
10020 case elfcpp::R_MIPS_TLS_TPREL32:
10021 case elfcpp::R_MIPS_REL32:
10022 case elfcpp::R_MIPS_PC32:
10023 case elfcpp::R_MIPS_GPREL32:
10024 case elfcpp::R_MIPS_JALR:
10025 case elfcpp::R_MIPS_EH:
10026 return 4;
10027
10028 case elfcpp::R_MIPS_16:
10029 case elfcpp::R_MIPS_HI16:
10030 case elfcpp::R_MIPS_LO16:
10031 case elfcpp::R_MIPS_HIGHER:
10032 case elfcpp::R_MIPS_HIGHEST:
10033 case elfcpp::R_MIPS_GPREL16:
10034 case elfcpp::R_MIPS16_HI16:
10035 case elfcpp::R_MIPS16_LO16:
10036 case elfcpp::R_MIPS_PC16:
10037 case elfcpp::R_MIPS_PCHI16:
10038 case elfcpp::R_MIPS_PCLO16:
10039 case elfcpp::R_MIPS_GOT16:
10040 case elfcpp::R_MIPS16_GOT16:
10041 case elfcpp::R_MIPS_CALL16:
10042 case elfcpp::R_MIPS16_CALL16:
10043 case elfcpp::R_MIPS_GOT_HI16:
10044 case elfcpp::R_MIPS_CALL_HI16:
10045 case elfcpp::R_MIPS_GOT_LO16:
10046 case elfcpp::R_MIPS_CALL_LO16:
10047 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10048 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10049 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10050 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10051 case elfcpp::R_MIPS16_GPREL:
10052 case elfcpp::R_MIPS_GOT_DISP:
10053 case elfcpp::R_MIPS_LITERAL:
10054 case elfcpp::R_MIPS_GOT_PAGE:
10055 case elfcpp::R_MIPS_GOT_OFST:
10056 case elfcpp::R_MIPS_TLS_GD:
10057 case elfcpp::R_MIPS_TLS_LDM:
10058 case elfcpp::R_MIPS_TLS_GOTTPREL:
10059 return 2;
10060
10061 // These relocations are not byte sized
10062 case elfcpp::R_MIPS_26:
10063 case elfcpp::R_MIPS16_26:
10064 case elfcpp::R_MIPS_PC21_S2:
10065 case elfcpp::R_MIPS_PC26_S2:
10066 case elfcpp::R_MIPS_PC18_S3:
10067 case elfcpp::R_MIPS_PC19_S2:
10068 return 4;
10069
10070 case elfcpp::R_MIPS_COPY:
10071 case elfcpp::R_MIPS_JUMP_SLOT:
10072 object->error(_("unexpected reloc %u in object file"), r_type);
10073 return 0;
10074
10075 default:
10076 object->error(_("unsupported reloc %u in object file"), r_type);
10077 return 0;
10078 }
10079 }
10080
10081 // Scan the relocs during a relocatable link.
10082
10083 template<int size, bool big_endian>
10084 void
10085 Target_mips<size, big_endian>::scan_relocatable_relocs(
10086 Symbol_table* symtab,
10087 Layout* layout,
10088 Sized_relobj_file<size, big_endian>* object,
10089 unsigned int data_shndx,
10090 unsigned int sh_type,
10091 const unsigned char* prelocs,
10092 size_t reloc_count,
10093 Output_section* output_section,
10094 bool needs_special_offset_handling,
10095 size_t local_symbol_count,
10096 const unsigned char* plocal_symbols,
10097 Relocatable_relocs* rr)
10098 {
10099 if (sh_type == elfcpp::SHT_REL)
10100 {
10101 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10102 Classify_reloc;
10103 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10104 Scan_relocatable_relocs;
10105
10106 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10107 symtab,
10108 layout,
10109 object,
10110 data_shndx,
10111 prelocs,
10112 reloc_count,
10113 output_section,
10114 needs_special_offset_handling,
10115 local_symbol_count,
10116 plocal_symbols,
10117 rr);
10118 }
10119 else if (sh_type == elfcpp::SHT_RELA)
10120 {
10121 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10122 Classify_reloc;
10123 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10124 Scan_relocatable_relocs;
10125
10126 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10127 symtab,
10128 layout,
10129 object,
10130 data_shndx,
10131 prelocs,
10132 reloc_count,
10133 output_section,
10134 needs_special_offset_handling,
10135 local_symbol_count,
10136 plocal_symbols,
10137 rr);
10138 }
10139 else
10140 gold_unreachable();
10141 }
10142
10143 // Scan the relocs for --emit-relocs.
10144
10145 template<int size, bool big_endian>
10146 void
10147 Target_mips<size, big_endian>::emit_relocs_scan(
10148 Symbol_table* symtab,
10149 Layout* layout,
10150 Sized_relobj_file<size, big_endian>* object,
10151 unsigned int data_shndx,
10152 unsigned int sh_type,
10153 const unsigned char* prelocs,
10154 size_t reloc_count,
10155 Output_section* output_section,
10156 bool needs_special_offset_handling,
10157 size_t local_symbol_count,
10158 const unsigned char* plocal_syms,
10159 Relocatable_relocs* rr)
10160 {
10161 if (sh_type == elfcpp::SHT_REL)
10162 {
10163 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10164 Classify_reloc;
10165 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10166 Emit_relocs_strategy;
10167
10168 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10169 symtab,
10170 layout,
10171 object,
10172 data_shndx,
10173 prelocs,
10174 reloc_count,
10175 output_section,
10176 needs_special_offset_handling,
10177 local_symbol_count,
10178 plocal_syms,
10179 rr);
10180 }
10181 else if (sh_type == elfcpp::SHT_RELA)
10182 {
10183 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10184 Classify_reloc;
10185 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10186 Emit_relocs_strategy;
10187
10188 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10189 symtab,
10190 layout,
10191 object,
10192 data_shndx,
10193 prelocs,
10194 reloc_count,
10195 output_section,
10196 needs_special_offset_handling,
10197 local_symbol_count,
10198 plocal_syms,
10199 rr);
10200 }
10201 else
10202 gold_unreachable();
10203 }
10204
10205 // Emit relocations for a section.
10206
10207 template<int size, bool big_endian>
10208 void
10209 Target_mips<size, big_endian>::relocate_relocs(
10210 const Relocate_info<size, big_endian>* relinfo,
10211 unsigned int sh_type,
10212 const unsigned char* prelocs,
10213 size_t reloc_count,
10214 Output_section* output_section,
10215 typename elfcpp::Elf_types<size>::Elf_Off
10216 offset_in_output_section,
10217 unsigned char* view,
10218 Mips_address view_address,
10219 section_size_type view_size,
10220 unsigned char* reloc_view,
10221 section_size_type reloc_view_size)
10222 {
10223 if (sh_type == elfcpp::SHT_REL)
10224 {
10225 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10226 Classify_reloc;
10227
10228 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10229 relinfo,
10230 prelocs,
10231 reloc_count,
10232 output_section,
10233 offset_in_output_section,
10234 view,
10235 view_address,
10236 view_size,
10237 reloc_view,
10238 reloc_view_size);
10239 }
10240 else if (sh_type == elfcpp::SHT_RELA)
10241 {
10242 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10243 Classify_reloc;
10244
10245 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10246 relinfo,
10247 prelocs,
10248 reloc_count,
10249 output_section,
10250 offset_in_output_section,
10251 view,
10252 view_address,
10253 view_size,
10254 reloc_view,
10255 reloc_view_size);
10256 }
10257 else
10258 gold_unreachable();
10259 }
10260
10261 // Perform target-specific processing in a relocatable link. This is
10262 // only used if we use the relocation strategy RELOC_SPECIAL.
10263
10264 template<int size, bool big_endian>
10265 void
10266 Target_mips<size, big_endian>::relocate_special_relocatable(
10267 const Relocate_info<size, big_endian>* relinfo,
10268 unsigned int sh_type,
10269 const unsigned char* preloc_in,
10270 size_t relnum,
10271 Output_section* output_section,
10272 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10273 unsigned char* view,
10274 Mips_address view_address,
10275 section_size_type,
10276 unsigned char* preloc_out)
10277 {
10278 // We can only handle REL type relocation sections.
10279 gold_assert(sh_type == elfcpp::SHT_REL);
10280
10281 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10282 Reltype;
10283 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10284 Reltype_write;
10285
10286 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10287
10288 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10289
10290 Mips_relobj<size, big_endian>* object =
10291 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10292 const unsigned int local_count = object->local_symbol_count();
10293
10294 Reltype reloc(preloc_in);
10295 Reltype_write reloc_write(preloc_out);
10296
10297 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10298 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10299 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10300
10301 // Get the new symbol index.
10302 // We only use RELOC_SPECIAL strategy in local relocations.
10303 gold_assert(r_sym < local_count);
10304
10305 // We are adjusting a section symbol. We need to find
10306 // the symbol table index of the section symbol for
10307 // the output section corresponding to input section
10308 // in which this symbol is defined.
10309 bool is_ordinary;
10310 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10311 gold_assert(is_ordinary);
10312 Output_section* os = object->output_section(shndx);
10313 gold_assert(os != NULL);
10314 gold_assert(os->needs_symtab_index());
10315 unsigned int new_symndx = os->symtab_index();
10316
10317 // Get the new offset--the location in the output section where
10318 // this relocation should be applied.
10319
10320 Mips_address offset = reloc.get_r_offset();
10321 Mips_address new_offset;
10322 if (offset_in_output_section != invalid_address)
10323 new_offset = offset + offset_in_output_section;
10324 else
10325 {
10326 section_offset_type sot_offset =
10327 convert_types<section_offset_type, Mips_address>(offset);
10328 section_offset_type new_sot_offset =
10329 output_section->output_offset(object, relinfo->data_shndx,
10330 sot_offset);
10331 gold_assert(new_sot_offset != -1);
10332 new_offset = new_sot_offset;
10333 }
10334
10335 // In an object file, r_offset is an offset within the section.
10336 // In an executable or dynamic object, generated by
10337 // --emit-relocs, r_offset is an absolute address.
10338 if (!parameters->options().relocatable())
10339 {
10340 new_offset += view_address;
10341 if (offset_in_output_section != invalid_address)
10342 new_offset -= offset_in_output_section;
10343 }
10344
10345 reloc_write.put_r_offset(new_offset);
10346 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10347
10348 // Handle the reloc addend.
10349 // The relocation uses a section symbol in the input file.
10350 // We are adjusting it to use a section symbol in the output
10351 // file. The input section symbol refers to some address in
10352 // the input section. We need the relocation in the output
10353 // file to refer to that same address. This adjustment to
10354 // the addend is the same calculation we use for a simple
10355 // absolute relocation for the input section symbol.
10356 Valtype calculated_value = 0;
10357 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10358
10359 unsigned char* paddend = view + offset;
10360 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10361 switch (r_type)
10362 {
10363 case elfcpp::R_MIPS_26:
10364 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10365 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10366 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10367 false, &calculated_value);
10368 break;
10369
10370 default:
10371 gold_unreachable();
10372 }
10373
10374 // Report any errors.
10375 switch (reloc_status)
10376 {
10377 case Reloc_funcs::STATUS_OKAY:
10378 break;
10379 case Reloc_funcs::STATUS_OVERFLOW:
10380 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10381 _("relocation overflow: "
10382 "%u against local symbol %u in %s"),
10383 r_type, r_sym, object->name().c_str());
10384 break;
10385 case Reloc_funcs::STATUS_BAD_RELOC:
10386 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10387 _("unexpected opcode while processing relocation"));
10388 break;
10389 default:
10390 gold_unreachable();
10391 }
10392 }
10393
10394 // Optimize the TLS relocation type based on what we know about the
10395 // symbol. IS_FINAL is true if the final address of this symbol is
10396 // known at link time.
10397
10398 template<int size, bool big_endian>
10399 tls::Tls_optimization
10400 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10401 {
10402 // FIXME: Currently we do not do any TLS optimization.
10403 return tls::TLSOPT_NONE;
10404 }
10405
10406 // Scan a relocation for a local symbol.
10407
10408 template<int size, bool big_endian>
10409 inline void
10410 Target_mips<size, big_endian>::Scan::local(
10411 Symbol_table* symtab,
10412 Layout* layout,
10413 Target_mips<size, big_endian>* target,
10414 Sized_relobj_file<size, big_endian>* object,
10415 unsigned int data_shndx,
10416 Output_section* output_section,
10417 const Relatype* rela,
10418 const Reltype* rel,
10419 unsigned int rel_type,
10420 unsigned int r_type,
10421 const elfcpp::Sym<size, big_endian>& lsym,
10422 bool is_discarded)
10423 {
10424 if (is_discarded)
10425 return;
10426
10427 Mips_address r_offset;
10428 unsigned int r_sym;
10429 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10430
10431 if (rel_type == elfcpp::SHT_RELA)
10432 {
10433 r_offset = rela->get_r_offset();
10434 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10435 get_r_sym(rela);
10436 r_addend = rela->get_r_addend();
10437 }
10438 else
10439 {
10440 r_offset = rel->get_r_offset();
10441 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10442 get_r_sym(rel);
10443 r_addend = 0;
10444 }
10445
10446 Mips_relobj<size, big_endian>* mips_obj =
10447 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10448
10449 if (mips_obj->is_mips16_stub_section(data_shndx))
10450 {
10451 mips_obj->get_mips16_stub_section(data_shndx)
10452 ->new_local_reloc_found(r_type, r_sym);
10453 }
10454
10455 if (r_type == elfcpp::R_MIPS_NONE)
10456 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10457 // mips16 stub.
10458 return;
10459
10460 if (!mips16_call_reloc(r_type)
10461 && !mips_obj->section_allows_mips16_refs(data_shndx))
10462 // This reloc would need to refer to a MIPS16 hard-float stub, if
10463 // there is one. We ignore MIPS16 stub sections and .pdr section when
10464 // looking for relocs that would need to refer to MIPS16 stubs.
10465 mips_obj->add_local_non_16bit_call(r_sym);
10466
10467 if (r_type == elfcpp::R_MIPS16_26
10468 && !mips_obj->section_allows_mips16_refs(data_shndx))
10469 mips_obj->add_local_16bit_call(r_sym);
10470
10471 switch (r_type)
10472 {
10473 case elfcpp::R_MIPS_GOT16:
10474 case elfcpp::R_MIPS_CALL16:
10475 case elfcpp::R_MIPS_CALL_HI16:
10476 case elfcpp::R_MIPS_CALL_LO16:
10477 case elfcpp::R_MIPS_GOT_HI16:
10478 case elfcpp::R_MIPS_GOT_LO16:
10479 case elfcpp::R_MIPS_GOT_PAGE:
10480 case elfcpp::R_MIPS_GOT_OFST:
10481 case elfcpp::R_MIPS_GOT_DISP:
10482 case elfcpp::R_MIPS_TLS_GOTTPREL:
10483 case elfcpp::R_MIPS_TLS_GD:
10484 case elfcpp::R_MIPS_TLS_LDM:
10485 case elfcpp::R_MIPS16_GOT16:
10486 case elfcpp::R_MIPS16_CALL16:
10487 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10488 case elfcpp::R_MIPS16_TLS_GD:
10489 case elfcpp::R_MIPS16_TLS_LDM:
10490 case elfcpp::R_MICROMIPS_GOT16:
10491 case elfcpp::R_MICROMIPS_CALL16:
10492 case elfcpp::R_MICROMIPS_CALL_HI16:
10493 case elfcpp::R_MICROMIPS_CALL_LO16:
10494 case elfcpp::R_MICROMIPS_GOT_HI16:
10495 case elfcpp::R_MICROMIPS_GOT_LO16:
10496 case elfcpp::R_MICROMIPS_GOT_PAGE:
10497 case elfcpp::R_MICROMIPS_GOT_OFST:
10498 case elfcpp::R_MICROMIPS_GOT_DISP:
10499 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10500 case elfcpp::R_MICROMIPS_TLS_GD:
10501 case elfcpp::R_MICROMIPS_TLS_LDM:
10502 case elfcpp::R_MIPS_EH:
10503 // We need a GOT section.
10504 target->got_section(symtab, layout);
10505 break;
10506
10507 default:
10508 break;
10509 }
10510
10511 if (call_lo16_reloc(r_type)
10512 || got_lo16_reloc(r_type)
10513 || got_disp_reloc(r_type)
10514 || eh_reloc(r_type))
10515 {
10516 // We may need a local GOT entry for this relocation. We
10517 // don't count R_MIPS_GOT_PAGE because we can estimate the
10518 // maximum number of pages needed by looking at the size of
10519 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10520 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10521 // R_MIPS_CALL_HI16 because these are always followed by an
10522 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10523 Mips_output_data_got<size, big_endian>* got =
10524 target->got_section(symtab, layout);
10525 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10526 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10527 is_section_symbol);
10528 }
10529
10530 switch (r_type)
10531 {
10532 case elfcpp::R_MIPS_CALL16:
10533 case elfcpp::R_MIPS16_CALL16:
10534 case elfcpp::R_MICROMIPS_CALL16:
10535 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10536 (unsigned long)r_offset);
10537 return;
10538
10539 case elfcpp::R_MIPS_GOT_PAGE:
10540 case elfcpp::R_MICROMIPS_GOT_PAGE:
10541 case elfcpp::R_MIPS16_GOT16:
10542 case elfcpp::R_MIPS_GOT16:
10543 case elfcpp::R_MIPS_GOT_HI16:
10544 case elfcpp::R_MIPS_GOT_LO16:
10545 case elfcpp::R_MICROMIPS_GOT16:
10546 case elfcpp::R_MICROMIPS_GOT_HI16:
10547 case elfcpp::R_MICROMIPS_GOT_LO16:
10548 {
10549 // This relocation needs a page entry in the GOT.
10550 // Get the section contents.
10551 section_size_type view_size = 0;
10552 const unsigned char* view = object->section_contents(data_shndx,
10553 &view_size, false);
10554 view += r_offset;
10555
10556 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10557 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10558 : r_addend);
10559
10560 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10561 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10562 object, data_shndx, r_type, r_sym, addend));
10563 else
10564 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10565 break;
10566 }
10567
10568 case elfcpp::R_MIPS_HI16:
10569 case elfcpp::R_MIPS_PCHI16:
10570 case elfcpp::R_MIPS16_HI16:
10571 case elfcpp::R_MICROMIPS_HI16:
10572 // Record the reloc so that we can check whether the corresponding LO16
10573 // part exists.
10574 if (rel_type == elfcpp::SHT_REL)
10575 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10576 object, data_shndx, r_type, r_sym, 0));
10577 break;
10578
10579 case elfcpp::R_MIPS_LO16:
10580 case elfcpp::R_MIPS_PCLO16:
10581 case elfcpp::R_MIPS16_LO16:
10582 case elfcpp::R_MICROMIPS_LO16:
10583 {
10584 if (rel_type != elfcpp::SHT_REL)
10585 break;
10586
10587 // Find corresponding GOT16/HI16 relocation.
10588
10589 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10590 // be immediately following. However, for the IRIX6 ABI, the next
10591 // relocation may be a composed relocation consisting of several
10592 // relocations for the same address. In that case, the R_MIPS_LO16
10593 // relocation may occur as one of these. We permit a similar
10594 // extension in general, as that is useful for GCC.
10595
10596 // In some cases GCC dead code elimination removes the LO16 but
10597 // keeps the corresponding HI16. This is strictly speaking a
10598 // violation of the ABI but not immediately harmful.
10599
10600 typename std::list<got16_addend<size, big_endian> >::iterator it =
10601 target->got16_addends_.begin();
10602 while (it != target->got16_addends_.end())
10603 {
10604 got16_addend<size, big_endian> _got16_addend = *it;
10605
10606 // TODO(sasa): Split got16_addends_ list into two lists - one for
10607 // GOT16 relocs and the other for HI16 relocs.
10608
10609 // Report an error if we find HI16 or GOT16 reloc from the
10610 // previous section without the matching LO16 part.
10611 if (_got16_addend.object != object
10612 || _got16_addend.shndx != data_shndx)
10613 {
10614 gold_error("Can't find matching LO16 reloc");
10615 break;
10616 }
10617
10618 if (_got16_addend.r_sym != r_sym
10619 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10620 {
10621 ++it;
10622 continue;
10623 }
10624
10625 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10626 // For GOT16, we need to calculate combined addend and record GOT page
10627 // entry.
10628 if (got16_reloc(_got16_addend.r_type))
10629 {
10630
10631 section_size_type view_size = 0;
10632 const unsigned char* view = object->section_contents(data_shndx,
10633 &view_size,
10634 false);
10635 view += r_offset;
10636
10637 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10638 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10639
10640 addend = (_got16_addend.addend << 16) + addend;
10641 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10642 addend);
10643 }
10644
10645 it = target->got16_addends_.erase(it);
10646 }
10647 break;
10648 }
10649 }
10650
10651 switch (r_type)
10652 {
10653 case elfcpp::R_MIPS_32:
10654 case elfcpp::R_MIPS_REL32:
10655 case elfcpp::R_MIPS_64:
10656 {
10657 if (parameters->options().output_is_position_independent())
10658 {
10659 // If building a shared library (or a position-independent
10660 // executable), we need to create a dynamic relocation for
10661 // this location.
10662 if (is_readonly_section(output_section))
10663 break;
10664 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10665 rel_dyn->add_symbolless_local_addend(object, r_sym,
10666 elfcpp::R_MIPS_REL32,
10667 output_section, data_shndx,
10668 r_offset);
10669 }
10670 break;
10671 }
10672
10673 case elfcpp::R_MIPS_TLS_GOTTPREL:
10674 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10675 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10676 case elfcpp::R_MIPS_TLS_LDM:
10677 case elfcpp::R_MIPS16_TLS_LDM:
10678 case elfcpp::R_MICROMIPS_TLS_LDM:
10679 case elfcpp::R_MIPS_TLS_GD:
10680 case elfcpp::R_MIPS16_TLS_GD:
10681 case elfcpp::R_MICROMIPS_TLS_GD:
10682 {
10683 bool output_is_shared = parameters->options().shared();
10684 const tls::Tls_optimization optimized_type
10685 = Target_mips<size, big_endian>::optimize_tls_reloc(
10686 !output_is_shared, r_type);
10687 switch (r_type)
10688 {
10689 case elfcpp::R_MIPS_TLS_GD:
10690 case elfcpp::R_MIPS16_TLS_GD:
10691 case elfcpp::R_MICROMIPS_TLS_GD:
10692 if (optimized_type == tls::TLSOPT_NONE)
10693 {
10694 // Create a pair of GOT entries for the module index and
10695 // dtv-relative offset.
10696 Mips_output_data_got<size, big_endian>* got =
10697 target->got_section(symtab, layout);
10698 unsigned int shndx = lsym.get_st_shndx();
10699 bool is_ordinary;
10700 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10701 if (!is_ordinary)
10702 {
10703 object->error(_("local symbol %u has bad shndx %u"),
10704 r_sym, shndx);
10705 break;
10706 }
10707 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10708 shndx, false);
10709 }
10710 else
10711 {
10712 // FIXME: TLS optimization not supported yet.
10713 gold_unreachable();
10714 }
10715 break;
10716
10717 case elfcpp::R_MIPS_TLS_LDM:
10718 case elfcpp::R_MIPS16_TLS_LDM:
10719 case elfcpp::R_MICROMIPS_TLS_LDM:
10720 if (optimized_type == tls::TLSOPT_NONE)
10721 {
10722 // We always record LDM symbols as local with index 0.
10723 target->got_section()->record_local_got_symbol(mips_obj, 0,
10724 r_addend, r_type,
10725 -1U, false);
10726 }
10727 else
10728 {
10729 // FIXME: TLS optimization not supported yet.
10730 gold_unreachable();
10731 }
10732 break;
10733 case elfcpp::R_MIPS_TLS_GOTTPREL:
10734 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10735 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10736 layout->set_has_static_tls();
10737 if (optimized_type == tls::TLSOPT_NONE)
10738 {
10739 // Create a GOT entry for the tp-relative offset.
10740 Mips_output_data_got<size, big_endian>* got =
10741 target->got_section(symtab, layout);
10742 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10743 -1U, false);
10744 }
10745 else
10746 {
10747 // FIXME: TLS optimization not supported yet.
10748 gold_unreachable();
10749 }
10750 break;
10751
10752 default:
10753 gold_unreachable();
10754 }
10755 }
10756 break;
10757
10758 default:
10759 break;
10760 }
10761
10762 // Refuse some position-dependent relocations when creating a
10763 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10764 // not PIC, but we can create dynamic relocations and the result
10765 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10766 // combined with R_MIPS_GOT16.
10767 if (parameters->options().shared())
10768 {
10769 switch (r_type)
10770 {
10771 case elfcpp::R_MIPS16_HI16:
10772 case elfcpp::R_MIPS_HI16:
10773 case elfcpp::R_MIPS_HIGHER:
10774 case elfcpp::R_MIPS_HIGHEST:
10775 case elfcpp::R_MICROMIPS_HI16:
10776 case elfcpp::R_MICROMIPS_HIGHER:
10777 case elfcpp::R_MICROMIPS_HIGHEST:
10778 // Don't refuse a high part relocation if it's against
10779 // no symbol (e.g. part of a compound relocation).
10780 if (r_sym == 0)
10781 break;
10782 // Fall through.
10783
10784 case elfcpp::R_MIPS16_26:
10785 case elfcpp::R_MIPS_26:
10786 case elfcpp::R_MICROMIPS_26_S1:
10787 gold_error(_("%s: relocation %u against `%s' can not be used when "
10788 "making a shared object; recompile with -fPIC"),
10789 object->name().c_str(), r_type, "a local symbol");
10790 default:
10791 break;
10792 }
10793 }
10794 }
10795
10796 template<int size, bool big_endian>
10797 inline void
10798 Target_mips<size, big_endian>::Scan::local(
10799 Symbol_table* symtab,
10800 Layout* layout,
10801 Target_mips<size, big_endian>* target,
10802 Sized_relobj_file<size, big_endian>* object,
10803 unsigned int data_shndx,
10804 Output_section* output_section,
10805 const Reltype& reloc,
10806 unsigned int r_type,
10807 const elfcpp::Sym<size, big_endian>& lsym,
10808 bool is_discarded)
10809 {
10810 if (is_discarded)
10811 return;
10812
10813 local(
10814 symtab,
10815 layout,
10816 target,
10817 object,
10818 data_shndx,
10819 output_section,
10820 (const Relatype*) NULL,
10821 &reloc,
10822 elfcpp::SHT_REL,
10823 r_type,
10824 lsym, is_discarded);
10825 }
10826
10827
10828 template<int size, bool big_endian>
10829 inline void
10830 Target_mips<size, big_endian>::Scan::local(
10831 Symbol_table* symtab,
10832 Layout* layout,
10833 Target_mips<size, big_endian>* target,
10834 Sized_relobj_file<size, big_endian>* object,
10835 unsigned int data_shndx,
10836 Output_section* output_section,
10837 const Relatype& reloc,
10838 unsigned int r_type,
10839 const elfcpp::Sym<size, big_endian>& lsym,
10840 bool is_discarded)
10841 {
10842 if (is_discarded)
10843 return;
10844
10845 local(
10846 symtab,
10847 layout,
10848 target,
10849 object,
10850 data_shndx,
10851 output_section,
10852 &reloc,
10853 (const Reltype*) NULL,
10854 elfcpp::SHT_RELA,
10855 r_type,
10856 lsym, is_discarded);
10857 }
10858
10859 // Scan a relocation for a global symbol.
10860
10861 template<int size, bool big_endian>
10862 inline void
10863 Target_mips<size, big_endian>::Scan::global(
10864 Symbol_table* symtab,
10865 Layout* layout,
10866 Target_mips<size, big_endian>* target,
10867 Sized_relobj_file<size, big_endian>* object,
10868 unsigned int data_shndx,
10869 Output_section* output_section,
10870 const Relatype* rela,
10871 const Reltype* rel,
10872 unsigned int rel_type,
10873 unsigned int r_type,
10874 Symbol* gsym)
10875 {
10876 Mips_address r_offset;
10877 unsigned int r_sym;
10878 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10879
10880 if (rel_type == elfcpp::SHT_RELA)
10881 {
10882 r_offset = rela->get_r_offset();
10883 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10884 get_r_sym(rela);
10885 r_addend = rela->get_r_addend();
10886 }
10887 else
10888 {
10889 r_offset = rel->get_r_offset();
10890 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10891 get_r_sym(rel);
10892 r_addend = 0;
10893 }
10894
10895 Mips_relobj<size, big_endian>* mips_obj =
10896 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10897 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10898
10899 if (mips_obj->is_mips16_stub_section(data_shndx))
10900 {
10901 mips_obj->get_mips16_stub_section(data_shndx)
10902 ->new_global_reloc_found(r_type, mips_sym);
10903 }
10904
10905 if (r_type == elfcpp::R_MIPS_NONE)
10906 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10907 // mips16 stub.
10908 return;
10909
10910 if (!mips16_call_reloc(r_type)
10911 && !mips_obj->section_allows_mips16_refs(data_shndx))
10912 // This reloc would need to refer to a MIPS16 hard-float stub, if
10913 // there is one. We ignore MIPS16 stub sections and .pdr section when
10914 // looking for relocs that would need to refer to MIPS16 stubs.
10915 mips_sym->set_need_fn_stub();
10916
10917 // We need PLT entries if there are static-only relocations against
10918 // an externally-defined function. This can technically occur for
10919 // shared libraries if there are branches to the symbol, although it
10920 // is unlikely that this will be used in practice due to the short
10921 // ranges involved. It can occur for any relative or absolute relocation
10922 // in executables; in that case, the PLT entry becomes the function's
10923 // canonical address.
10924 bool static_reloc = false;
10925
10926 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10927 // relocation into a dynamic one.
10928 bool can_make_dynamic = false;
10929 switch (r_type)
10930 {
10931 case elfcpp::R_MIPS_GOT16:
10932 case elfcpp::R_MIPS_CALL16:
10933 case elfcpp::R_MIPS_CALL_HI16:
10934 case elfcpp::R_MIPS_CALL_LO16:
10935 case elfcpp::R_MIPS_GOT_HI16:
10936 case elfcpp::R_MIPS_GOT_LO16:
10937 case elfcpp::R_MIPS_GOT_PAGE:
10938 case elfcpp::R_MIPS_GOT_OFST:
10939 case elfcpp::R_MIPS_GOT_DISP:
10940 case elfcpp::R_MIPS_TLS_GOTTPREL:
10941 case elfcpp::R_MIPS_TLS_GD:
10942 case elfcpp::R_MIPS_TLS_LDM:
10943 case elfcpp::R_MIPS16_GOT16:
10944 case elfcpp::R_MIPS16_CALL16:
10945 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10946 case elfcpp::R_MIPS16_TLS_GD:
10947 case elfcpp::R_MIPS16_TLS_LDM:
10948 case elfcpp::R_MICROMIPS_GOT16:
10949 case elfcpp::R_MICROMIPS_CALL16:
10950 case elfcpp::R_MICROMIPS_CALL_HI16:
10951 case elfcpp::R_MICROMIPS_CALL_LO16:
10952 case elfcpp::R_MICROMIPS_GOT_HI16:
10953 case elfcpp::R_MICROMIPS_GOT_LO16:
10954 case elfcpp::R_MICROMIPS_GOT_PAGE:
10955 case elfcpp::R_MICROMIPS_GOT_OFST:
10956 case elfcpp::R_MICROMIPS_GOT_DISP:
10957 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10958 case elfcpp::R_MICROMIPS_TLS_GD:
10959 case elfcpp::R_MICROMIPS_TLS_LDM:
10960 case elfcpp::R_MIPS_EH:
10961 // We need a GOT section.
10962 target->got_section(symtab, layout);
10963 break;
10964
10965 // This is just a hint; it can safely be ignored. Don't set
10966 // has_static_relocs for the corresponding symbol.
10967 case elfcpp::R_MIPS_JALR:
10968 case elfcpp::R_MICROMIPS_JALR:
10969 break;
10970
10971 case elfcpp::R_MIPS_GPREL16:
10972 case elfcpp::R_MIPS_GPREL32:
10973 case elfcpp::R_MIPS16_GPREL:
10974 case elfcpp::R_MICROMIPS_GPREL16:
10975 // TODO(sasa)
10976 // GP-relative relocations always resolve to a definition in a
10977 // regular input file, ignoring the one-definition rule. This is
10978 // important for the GP setup sequence in NewABI code, which
10979 // always resolves to a local function even if other relocations
10980 // against the symbol wouldn't.
10981 //constrain_symbol_p = FALSE;
10982 break;
10983
10984 case elfcpp::R_MIPS_32:
10985 case elfcpp::R_MIPS_REL32:
10986 case elfcpp::R_MIPS_64:
10987 if ((parameters->options().shared()
10988 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10989 && (!is_readonly_section(output_section)
10990 || mips_obj->is_pic())))
10991 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10992 {
10993 if (r_type != elfcpp::R_MIPS_REL32)
10994 mips_sym->set_pointer_equality_needed();
10995 can_make_dynamic = true;
10996 break;
10997 }
10998 // Fall through.
10999
11000 default:
11001 // Most static relocations require pointer equality, except
11002 // for branches.
11003 mips_sym->set_pointer_equality_needed();
11004 // Fall through.
11005
11006 case elfcpp::R_MIPS_26:
11007 case elfcpp::R_MIPS_PC16:
11008 case elfcpp::R_MIPS_PC21_S2:
11009 case elfcpp::R_MIPS_PC26_S2:
11010 case elfcpp::R_MIPS16_26:
11011 case elfcpp::R_MICROMIPS_26_S1:
11012 case elfcpp::R_MICROMIPS_PC7_S1:
11013 case elfcpp::R_MICROMIPS_PC10_S1:
11014 case elfcpp::R_MICROMIPS_PC16_S1:
11015 case elfcpp::R_MICROMIPS_PC23_S2:
11016 static_reloc = true;
11017 mips_sym->set_has_static_relocs();
11018 break;
11019 }
11020
11021 // If there are call relocations against an externally-defined symbol,
11022 // see whether we can create a MIPS lazy-binding stub for it. We can
11023 // only do this if all references to the function are through call
11024 // relocations, and in that case, the traditional lazy-binding stubs
11025 // are much more efficient than PLT entries.
11026 switch (r_type)
11027 {
11028 case elfcpp::R_MIPS16_CALL16:
11029 case elfcpp::R_MIPS_CALL16:
11030 case elfcpp::R_MIPS_CALL_HI16:
11031 case elfcpp::R_MIPS_CALL_LO16:
11032 case elfcpp::R_MIPS_JALR:
11033 case elfcpp::R_MICROMIPS_CALL16:
11034 case elfcpp::R_MICROMIPS_CALL_HI16:
11035 case elfcpp::R_MICROMIPS_CALL_LO16:
11036 case elfcpp::R_MICROMIPS_JALR:
11037 if (!mips_sym->no_lazy_stub())
11038 {
11039 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
11040 // Calls from shared objects to undefined symbols of type
11041 // STT_NOTYPE need lazy-binding stub.
11042 || (mips_sym->is_undefined() && parameters->options().shared()))
11043 target->mips_stubs_section(layout)->make_entry(mips_sym);
11044 }
11045 break;
11046 default:
11047 {
11048 // We must not create a stub for a symbol that has relocations
11049 // related to taking the function's address.
11050 mips_sym->set_no_lazy_stub();
11051 target->remove_lazy_stub_entry(mips_sym);
11052 break;
11053 }
11054 }
11055
11056 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11057 mips_sym->is_mips16()))
11058 mips_sym->set_has_nonpic_branches();
11059
11060 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11061 // and has a special meaning.
11062 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11063 && strcmp(gsym->name(), "_gp_disp") == 0
11064 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11065 if (static_reloc && gsym->needs_plt_entry())
11066 {
11067 target->make_plt_entry(symtab, layout, mips_sym, r_type);
11068
11069 // Since this is not a PC-relative relocation, we may be
11070 // taking the address of a function. In that case we need to
11071 // set the entry in the dynamic symbol table to the address of
11072 // the PLT entry.
11073 if (gsym->is_from_dynobj() && !parameters->options().shared())
11074 {
11075 gsym->set_needs_dynsym_value();
11076 // We distinguish between PLT entries and lazy-binding stubs by
11077 // giving the former an st_other value of STO_MIPS_PLT. Set the
11078 // flag if there are any relocations in the binary where pointer
11079 // equality matters.
11080 if (mips_sym->pointer_equality_needed())
11081 mips_sym->set_mips_plt();
11082 }
11083 }
11084 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11085 {
11086 // Absolute addressing relocations.
11087 // Make a dynamic relocation if necessary.
11088 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11089 {
11090 if (gsym->may_need_copy_reloc())
11091 {
11092 target->copy_reloc(symtab, layout, object, data_shndx,
11093 output_section, gsym, r_type, r_offset);
11094 }
11095 else if (can_make_dynamic)
11096 {
11097 // Create .rel.dyn section.
11098 target->rel_dyn_section(layout);
11099 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11100 data_shndx, output_section, r_offset);
11101 }
11102 else
11103 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11104 gsym->name());
11105 }
11106 }
11107
11108 bool for_call = false;
11109 switch (r_type)
11110 {
11111 case elfcpp::R_MIPS_CALL16:
11112 case elfcpp::R_MIPS16_CALL16:
11113 case elfcpp::R_MICROMIPS_CALL16:
11114 case elfcpp::R_MIPS_CALL_HI16:
11115 case elfcpp::R_MIPS_CALL_LO16:
11116 case elfcpp::R_MICROMIPS_CALL_HI16:
11117 case elfcpp::R_MICROMIPS_CALL_LO16:
11118 for_call = true;
11119 // Fall through.
11120
11121 case elfcpp::R_MIPS16_GOT16:
11122 case elfcpp::R_MIPS_GOT16:
11123 case elfcpp::R_MIPS_GOT_HI16:
11124 case elfcpp::R_MIPS_GOT_LO16:
11125 case elfcpp::R_MICROMIPS_GOT16:
11126 case elfcpp::R_MICROMIPS_GOT_HI16:
11127 case elfcpp::R_MICROMIPS_GOT_LO16:
11128 case elfcpp::R_MIPS_GOT_DISP:
11129 case elfcpp::R_MICROMIPS_GOT_DISP:
11130 case elfcpp::R_MIPS_EH:
11131 {
11132 // The symbol requires a GOT entry.
11133 Mips_output_data_got<size, big_endian>* got =
11134 target->got_section(symtab, layout);
11135 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11136 for_call);
11137 mips_sym->set_global_got_area(GGA_NORMAL);
11138 }
11139 break;
11140
11141 case elfcpp::R_MIPS_GOT_PAGE:
11142 case elfcpp::R_MICROMIPS_GOT_PAGE:
11143 {
11144 // This relocation needs a page entry in the GOT.
11145 // Get the section contents.
11146 section_size_type view_size = 0;
11147 const unsigned char* view =
11148 object->section_contents(data_shndx, &view_size, false);
11149 view += r_offset;
11150
11151 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11152 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11153 : r_addend);
11154 Mips_output_data_got<size, big_endian>* got =
11155 target->got_section(symtab, layout);
11156 got->record_got_page_entry(mips_obj, r_sym, addend);
11157
11158 // If this is a global, overridable symbol, GOT_PAGE will
11159 // decay to GOT_DISP, so we'll need a GOT entry for it.
11160 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11161 && !mips_sym->object()->is_dynamic()
11162 && !mips_sym->is_undefined());
11163 if (!def_regular
11164 || (parameters->options().output_is_position_independent()
11165 && !parameters->options().Bsymbolic()
11166 && !mips_sym->is_forced_local()))
11167 {
11168 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11169 for_call);
11170 mips_sym->set_global_got_area(GGA_NORMAL);
11171 }
11172 }
11173 break;
11174
11175 case elfcpp::R_MIPS_TLS_GOTTPREL:
11176 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11177 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11178 case elfcpp::R_MIPS_TLS_LDM:
11179 case elfcpp::R_MIPS16_TLS_LDM:
11180 case elfcpp::R_MICROMIPS_TLS_LDM:
11181 case elfcpp::R_MIPS_TLS_GD:
11182 case elfcpp::R_MIPS16_TLS_GD:
11183 case elfcpp::R_MICROMIPS_TLS_GD:
11184 {
11185 const bool is_final = gsym->final_value_is_known();
11186 const tls::Tls_optimization optimized_type =
11187 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11188
11189 switch (r_type)
11190 {
11191 case elfcpp::R_MIPS_TLS_GD:
11192 case elfcpp::R_MIPS16_TLS_GD:
11193 case elfcpp::R_MICROMIPS_TLS_GD:
11194 if (optimized_type == tls::TLSOPT_NONE)
11195 {
11196 // Create a pair of GOT entries for the module index and
11197 // dtv-relative offset.
11198 Mips_output_data_got<size, big_endian>* got =
11199 target->got_section(symtab, layout);
11200 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11201 false);
11202 }
11203 else
11204 {
11205 // FIXME: TLS optimization not supported yet.
11206 gold_unreachable();
11207 }
11208 break;
11209
11210 case elfcpp::R_MIPS_TLS_LDM:
11211 case elfcpp::R_MIPS16_TLS_LDM:
11212 case elfcpp::R_MICROMIPS_TLS_LDM:
11213 if (optimized_type == tls::TLSOPT_NONE)
11214 {
11215 // We always record LDM symbols as local with index 0.
11216 target->got_section()->record_local_got_symbol(mips_obj, 0,
11217 r_addend, r_type,
11218 -1U, false);
11219 }
11220 else
11221 {
11222 // FIXME: TLS optimization not supported yet.
11223 gold_unreachable();
11224 }
11225 break;
11226 case elfcpp::R_MIPS_TLS_GOTTPREL:
11227 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11228 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11229 layout->set_has_static_tls();
11230 if (optimized_type == tls::TLSOPT_NONE)
11231 {
11232 // Create a GOT entry for the tp-relative offset.
11233 Mips_output_data_got<size, big_endian>* got =
11234 target->got_section(symtab, layout);
11235 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11236 false);
11237 }
11238 else
11239 {
11240 // FIXME: TLS optimization not supported yet.
11241 gold_unreachable();
11242 }
11243 break;
11244
11245 default:
11246 gold_unreachable();
11247 }
11248 }
11249 break;
11250 case elfcpp::R_MIPS_COPY:
11251 case elfcpp::R_MIPS_JUMP_SLOT:
11252 // These are relocations which should only be seen by the
11253 // dynamic linker, and should never be seen here.
11254 gold_error(_("%s: unexpected reloc %u in object file"),
11255 object->name().c_str(), r_type);
11256 break;
11257
11258 default:
11259 break;
11260 }
11261
11262 // Refuse some position-dependent relocations when creating a
11263 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11264 // not PIC, but we can create dynamic relocations and the result
11265 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11266 // combined with R_MIPS_GOT16.
11267 if (parameters->options().shared())
11268 {
11269 switch (r_type)
11270 {
11271 case elfcpp::R_MIPS16_HI16:
11272 case elfcpp::R_MIPS_HI16:
11273 case elfcpp::R_MIPS_HIGHER:
11274 case elfcpp::R_MIPS_HIGHEST:
11275 case elfcpp::R_MICROMIPS_HI16:
11276 case elfcpp::R_MICROMIPS_HIGHER:
11277 case elfcpp::R_MICROMIPS_HIGHEST:
11278 // Don't refuse a high part relocation if it's against
11279 // no symbol (e.g. part of a compound relocation).
11280 if (r_sym == 0)
11281 break;
11282
11283 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11284 // and has a special meaning.
11285 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11286 break;
11287 // Fall through.
11288
11289 case elfcpp::R_MIPS16_26:
11290 case elfcpp::R_MIPS_26:
11291 case elfcpp::R_MICROMIPS_26_S1:
11292 gold_error(_("%s: relocation %u against `%s' can not be used when "
11293 "making a shared object; recompile with -fPIC"),
11294 object->name().c_str(), r_type, gsym->name());
11295 default:
11296 break;
11297 }
11298 }
11299 }
11300
11301 template<int size, bool big_endian>
11302 inline void
11303 Target_mips<size, big_endian>::Scan::global(
11304 Symbol_table* symtab,
11305 Layout* layout,
11306 Target_mips<size, big_endian>* target,
11307 Sized_relobj_file<size, big_endian>* object,
11308 unsigned int data_shndx,
11309 Output_section* output_section,
11310 const Relatype& reloc,
11311 unsigned int r_type,
11312 Symbol* gsym)
11313 {
11314 global(
11315 symtab,
11316 layout,
11317 target,
11318 object,
11319 data_shndx,
11320 output_section,
11321 &reloc,
11322 (const Reltype*) NULL,
11323 elfcpp::SHT_RELA,
11324 r_type,
11325 gsym);
11326 }
11327
11328 template<int size, bool big_endian>
11329 inline void
11330 Target_mips<size, big_endian>::Scan::global(
11331 Symbol_table* symtab,
11332 Layout* layout,
11333 Target_mips<size, big_endian>* target,
11334 Sized_relobj_file<size, big_endian>* object,
11335 unsigned int data_shndx,
11336 Output_section* output_section,
11337 const Reltype& reloc,
11338 unsigned int r_type,
11339 Symbol* gsym)
11340 {
11341 global(
11342 symtab,
11343 layout,
11344 target,
11345 object,
11346 data_shndx,
11347 output_section,
11348 (const Relatype*) NULL,
11349 &reloc,
11350 elfcpp::SHT_REL,
11351 r_type,
11352 gsym);
11353 }
11354
11355 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11356 // In cases where Scan::local() or Scan::global() has created
11357 // a dynamic relocation, the addend of the relocation is carried
11358 // in the data, and we must not apply the static relocation.
11359
11360 template<int size, bool big_endian>
11361 inline bool
11362 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11363 const Mips_symbol<size>* gsym,
11364 unsigned int r_type,
11365 Output_section* output_section,
11366 Target_mips* target)
11367 {
11368 // If the output section is not allocated, then we didn't call
11369 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11370 // the reloc here.
11371 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11372 return true;
11373
11374 if (gsym == NULL)
11375 return true;
11376 else
11377 {
11378 // For global symbols, we use the same helper routines used in the
11379 // scan pass.
11380 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11381 && !gsym->may_need_copy_reloc())
11382 {
11383 // We have generated dynamic reloc (R_MIPS_REL32).
11384
11385 bool multi_got = false;
11386 if (target->has_got_section())
11387 multi_got = target->got_section()->multi_got();
11388 bool has_got_offset;
11389 if (!multi_got)
11390 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11391 else
11392 has_got_offset = gsym->global_gotoffset() != -1U;
11393 if (!has_got_offset)
11394 return true;
11395 else
11396 // Apply the relocation only if the symbol is in the local got.
11397 // Do not apply the relocation if the symbol is in the global
11398 // got.
11399 return symbol_references_local(gsym, gsym->has_dynsym_index());
11400 }
11401 else
11402 // We have not generated dynamic reloc.
11403 return true;
11404 }
11405 }
11406
11407 // Perform a relocation.
11408
11409 template<int size, bool big_endian>
11410 inline bool
11411 Target_mips<size, big_endian>::Relocate::relocate(
11412 const Relocate_info<size, big_endian>* relinfo,
11413 unsigned int rel_type,
11414 Target_mips* target,
11415 Output_section* output_section,
11416 size_t relnum,
11417 const unsigned char* preloc,
11418 const Sized_symbol<size>* gsym,
11419 const Symbol_value<size>* psymval,
11420 unsigned char* view,
11421 Mips_address address,
11422 section_size_type)
11423 {
11424 Mips_address r_offset;
11425 unsigned int r_sym;
11426 unsigned int r_type;
11427 unsigned int r_type2;
11428 unsigned int r_type3;
11429 unsigned char r_ssym;
11430 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11431
11432 if (rel_type == elfcpp::SHT_RELA)
11433 {
11434 const Relatype rela(preloc);
11435 r_offset = rela.get_r_offset();
11436 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11437 get_r_sym(&rela);
11438 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11439 get_r_type(&rela);
11440 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11441 get_r_type2(&rela);
11442 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11443 get_r_type3(&rela);
11444 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11445 get_r_ssym(&rela);
11446 r_addend = rela.get_r_addend();
11447 }
11448 else
11449 {
11450 const Reltype rel(preloc);
11451 r_offset = rel.get_r_offset();
11452 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11453 get_r_sym(&rel);
11454 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11455 get_r_type(&rel);
11456 r_ssym = 0;
11457 r_type2 = 0;
11458 r_type3 = 0;
11459 r_addend = 0;
11460 }
11461
11462 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11463 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11464
11465 Mips_relobj<size, big_endian>* object =
11466 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11467
11468 bool target_is_16_bit_code = false;
11469 bool target_is_micromips_code = false;
11470 bool cross_mode_jump;
11471
11472 Symbol_value<size> symval;
11473
11474 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11475
11476 bool changed_symbol_value = false;
11477 if (gsym == NULL)
11478 {
11479 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11480 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11481 if (target_is_16_bit_code || target_is_micromips_code)
11482 {
11483 // MIPS16/microMIPS text labels should be treated as odd.
11484 symval.set_output_value(psymval->value(object, 1));
11485 psymval = &symval;
11486 changed_symbol_value = true;
11487 }
11488 }
11489 else
11490 {
11491 target_is_16_bit_code = mips_sym->is_mips16();
11492 target_is_micromips_code = mips_sym->is_micromips();
11493
11494 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11495 // it odd. This will cause something like .word SYM to come up with
11496 // the right value when it is loaded into the PC.
11497
11498 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11499 && psymval->value(object, 0) != 0)
11500 {
11501 symval.set_output_value(psymval->value(object, 0) | 1);
11502 psymval = &symval;
11503 changed_symbol_value = true;
11504 }
11505
11506 // Pick the value to use for symbols defined in shared objects.
11507 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11508 || mips_sym->has_lazy_stub())
11509 {
11510 Mips_address value;
11511 if (!mips_sym->has_lazy_stub())
11512 {
11513 // Prefer a standard MIPS PLT entry.
11514 if (mips_sym->has_mips_plt_offset())
11515 {
11516 value = target->plt_section()->mips_entry_address(mips_sym);
11517 target_is_micromips_code = false;
11518 target_is_16_bit_code = false;
11519 }
11520 else
11521 {
11522 value = (target->plt_section()->comp_entry_address(mips_sym)
11523 + 1);
11524 if (target->is_output_micromips())
11525 target_is_micromips_code = true;
11526 else
11527 target_is_16_bit_code = true;
11528 }
11529 }
11530 else
11531 value = target->mips_stubs_section()->stub_address(mips_sym);
11532
11533 symval.set_output_value(value);
11534 psymval = &symval;
11535 }
11536 }
11537
11538 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11539 // Note that such a symbol must always be a global symbol.
11540 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11541 && !object->is_newabi());
11542
11543 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11544 // Note that such a symbol must always be a global symbol.
11545 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11546
11547
11548 if (gp_disp)
11549 {
11550 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11551 gold_error_at_location(relinfo, relnum, r_offset,
11552 _("relocations against _gp_disp are permitted only"
11553 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11554 }
11555 else if (gnu_local_gp)
11556 {
11557 // __gnu_local_gp is _gp symbol.
11558 symval.set_output_value(target->adjusted_gp_value(object));
11559 psymval = &symval;
11560 }
11561
11562 // If this is a reference to a 16-bit function with a stub, we need
11563 // to redirect the relocation to the stub unless:
11564 //
11565 // (a) the relocation is for a MIPS16 JAL;
11566 //
11567 // (b) the relocation is for a MIPS16 PIC call, and there are no
11568 // non-MIPS16 uses of the GOT slot; or
11569 //
11570 // (c) the section allows direct references to MIPS16 functions.
11571 if (r_type != elfcpp::R_MIPS16_26
11572 && ((mips_sym != NULL
11573 && mips_sym->has_mips16_fn_stub()
11574 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11575 || (mips_sym == NULL
11576 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11577 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11578 {
11579 // This is a 32- or 64-bit call to a 16-bit function. We should
11580 // have already noticed that we were going to need the
11581 // stub.
11582 Mips_address value;
11583 if (mips_sym == NULL)
11584 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11585 else
11586 {
11587 gold_assert(mips_sym->need_fn_stub());
11588 if (mips_sym->has_la25_stub())
11589 value = target->la25_stub_section()->stub_address(mips_sym);
11590 else
11591 {
11592 value = mips_sym->template
11593 get_mips16_fn_stub<big_endian>()->output_address();
11594 }
11595 }
11596 symval.set_output_value(value);
11597 psymval = &symval;
11598 changed_symbol_value = true;
11599
11600 // The target is 16-bit, but the stub isn't.
11601 target_is_16_bit_code = false;
11602 }
11603 // If this is a MIPS16 call with a stub, that is made through the PLT or
11604 // to a standard MIPS function, we need to redirect the call to the stub.
11605 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11606 // indirect calls should use an indirect stub instead.
11607 else if (r_type == elfcpp::R_MIPS16_26
11608 && ((mips_sym != NULL
11609 && (mips_sym->has_mips16_call_stub()
11610 || mips_sym->has_mips16_call_fp_stub()))
11611 || (mips_sym == NULL
11612 && object->get_local_mips16_call_stub(r_sym) != NULL))
11613 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11614 || !target_is_16_bit_code))
11615 {
11616 Mips16_stub_section<size, big_endian>* call_stub;
11617 if (mips_sym == NULL)
11618 call_stub = object->get_local_mips16_call_stub(r_sym);
11619 else
11620 {
11621 // If both call_stub and call_fp_stub are defined, we can figure
11622 // out which one to use by checking which one appears in the input
11623 // file.
11624 if (mips_sym->has_mips16_call_stub()
11625 && mips_sym->has_mips16_call_fp_stub())
11626 {
11627 call_stub = NULL;
11628 for (unsigned int i = 1; i < object->shnum(); ++i)
11629 {
11630 if (object->is_mips16_call_fp_stub_section(i))
11631 {
11632 call_stub = mips_sym->template
11633 get_mips16_call_fp_stub<big_endian>();
11634 break;
11635 }
11636
11637 }
11638 if (call_stub == NULL)
11639 call_stub =
11640 mips_sym->template get_mips16_call_stub<big_endian>();
11641 }
11642 else if (mips_sym->has_mips16_call_stub())
11643 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11644 else
11645 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11646 }
11647
11648 symval.set_output_value(call_stub->output_address());
11649 psymval = &symval;
11650 changed_symbol_value = true;
11651 }
11652 // If this is a direct call to a PIC function, redirect to the
11653 // non-PIC stub.
11654 else if (mips_sym != NULL
11655 && mips_sym->has_la25_stub()
11656 && relocation_needs_la25_stub<size, big_endian>(
11657 object, r_type, target_is_16_bit_code))
11658 {
11659 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11660 if (mips_sym->is_micromips())
11661 value += 1;
11662 symval.set_output_value(value);
11663 psymval = &symval;
11664 }
11665 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11666 // entry is used if a standard PLT entry has also been made.
11667 else if ((r_type == elfcpp::R_MIPS16_26
11668 || r_type == elfcpp::R_MICROMIPS_26_S1)
11669 && mips_sym != NULL
11670 && mips_sym->has_plt_offset()
11671 && mips_sym->has_comp_plt_offset()
11672 && mips_sym->has_mips_plt_offset())
11673 {
11674 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11675 + 1);
11676 symval.set_output_value(value);
11677 psymval = &symval;
11678
11679 target_is_16_bit_code = !target->is_output_micromips();
11680 target_is_micromips_code = target->is_output_micromips();
11681 }
11682
11683 // Make sure MIPS16 and microMIPS are not used together.
11684 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11685 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11686 {
11687 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11688 }
11689
11690 // Calls from 16-bit code to 32-bit code and vice versa require the
11691 // mode change. However, we can ignore calls to undefined weak symbols,
11692 // which should never be executed at runtime. This exception is important
11693 // because the assembly writer may have "known" that any definition of the
11694 // symbol would be 16-bit code, and that direct jumps were therefore
11695 // acceptable.
11696 cross_mode_jump =
11697 (!(gsym != NULL && gsym->is_weak_undefined())
11698 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11699 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11700 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11701 && (target_is_16_bit_code || target_is_micromips_code))));
11702
11703 bool local = (mips_sym == NULL
11704 || (mips_sym->got_only_for_calls()
11705 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11706 : symbol_references_local(mips_sym,
11707 mips_sym->has_dynsym_index())));
11708
11709 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11710 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11711 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11712 if (got_page_reloc(r_type) && !local)
11713 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11714 : elfcpp::R_MIPS_GOT_DISP);
11715
11716 unsigned int got_offset = 0;
11717 int gp_offset = 0;
11718
11719 bool calculate_only = false;
11720 Valtype calculated_value = 0;
11721 bool extract_addend = rel_type == elfcpp::SHT_REL;
11722 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11723
11724 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11725
11726 // For Mips64 N64 ABI, there may be up to three operations specified per
11727 // record, by the fields r_type, r_type2, and r_type3. The first operation
11728 // takes its addend from the relocation record. Each subsequent operation
11729 // takes as its addend the result of the previous operation.
11730 // The first operation in a record which references a symbol uses the symbol
11731 // implied by r_sym. The next operation in a record which references a symbol
11732 // uses the special symbol value given by the r_ssym field. A third operation
11733 // in a record which references a symbol will assume a NULL symbol,
11734 // i.e. value zero.
11735
11736 // TODO(Vladimir)
11737 // Check if a record references to a symbol.
11738 for (unsigned int i = 0; i < 3; ++i)
11739 {
11740 if (r_types[i] == elfcpp::R_MIPS_NONE)
11741 break;
11742
11743 // TODO(Vladimir)
11744 // Check if the next relocation is for the same instruction.
11745 calculate_only = i == 2 ? false
11746 : r_types[i+1] != elfcpp::R_MIPS_NONE;
11747
11748 if (object->is_n64())
11749 {
11750 if (i == 1)
11751 {
11752 // Handle special symbol for r_type2 relocation type.
11753 switch (r_ssym)
11754 {
11755 case RSS_UNDEF:
11756 symval.set_output_value(0);
11757 break;
11758 case RSS_GP:
11759 symval.set_output_value(target->gp_value());
11760 break;
11761 case RSS_GP0:
11762 symval.set_output_value(object->gp_value());
11763 break;
11764 case RSS_LOC:
11765 symval.set_output_value(address);
11766 break;
11767 default:
11768 gold_unreachable();
11769 }
11770 psymval = &symval;
11771 }
11772 else if (i == 2)
11773 {
11774 // For r_type3 symbol value is 0.
11775 symval.set_output_value(0);
11776 }
11777 }
11778
11779 bool update_got_entry = false;
11780 switch (r_types[i])
11781 {
11782 case elfcpp::R_MIPS_NONE:
11783 break;
11784 case elfcpp::R_MIPS_16:
11785 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11786 extract_addend, calculate_only,
11787 &calculated_value);
11788 break;
11789
11790 case elfcpp::R_MIPS_32:
11791 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11792 target))
11793 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11794 extract_addend, calculate_only,
11795 &calculated_value);
11796 if (mips_sym != NULL
11797 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11798 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11799 {
11800 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11801 // already updated by adding +1.
11802 if (mips_sym->has_mips16_fn_stub())
11803 {
11804 gold_assert(mips_sym->need_fn_stub());
11805 Mips16_stub_section<size, big_endian>* fn_stub =
11806 mips_sym->template get_mips16_fn_stub<big_endian>();
11807
11808 symval.set_output_value(fn_stub->output_address());
11809 psymval = &symval;
11810 }
11811 got_offset = mips_sym->global_gotoffset();
11812 update_got_entry = true;
11813 }
11814 break;
11815
11816 case elfcpp::R_MIPS_64:
11817 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11818 target))
11819 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11820 extract_addend, calculate_only,
11821 &calculated_value, false);
11822 else if (target->is_output_n64() && r_addend != 0)
11823 // Only apply the addend. The static relocation was RELA, but the
11824 // dynamic relocation is REL, so we need to apply the addend.
11825 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11826 extract_addend, calculate_only,
11827 &calculated_value, true);
11828 break;
11829 case elfcpp::R_MIPS_REL32:
11830 gold_unreachable();
11831
11832 case elfcpp::R_MIPS_PC32:
11833 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11834 r_addend, extract_addend,
11835 calculate_only,
11836 &calculated_value);
11837 break;
11838
11839 case elfcpp::R_MIPS16_26:
11840 // The calculation for R_MIPS16_26 is just the same as for an
11841 // R_MIPS_26. It's only the storage of the relocated field into
11842 // the output file that's different. So, we just fall through to the
11843 // R_MIPS_26 case here.
11844 case elfcpp::R_MIPS_26:
11845 case elfcpp::R_MICROMIPS_26_S1:
11846 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11847 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11848 r_types[i], target->jal_to_bal(), calculate_only,
11849 &calculated_value);
11850 break;
11851
11852 case elfcpp::R_MIPS_HI16:
11853 case elfcpp::R_MIPS16_HI16:
11854 case elfcpp::R_MICROMIPS_HI16:
11855 if (rel_type == elfcpp::SHT_RELA)
11856 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11857 r_addend, address,
11858 gp_disp, r_types[i],
11859 extract_addend, 0,
11860 target, calculate_only,
11861 &calculated_value);
11862 else if (rel_type == elfcpp::SHT_REL)
11863 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11864 address, gp_disp, r_types[i],
11865 r_sym, extract_addend);
11866 else
11867 gold_unreachable();
11868 break;
11869
11870 case elfcpp::R_MIPS_LO16:
11871 case elfcpp::R_MIPS16_LO16:
11872 case elfcpp::R_MICROMIPS_LO16:
11873 case elfcpp::R_MICROMIPS_HI0_LO16:
11874 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11875 r_addend, extract_addend, address,
11876 gp_disp, r_types[i], r_sym,
11877 rel_type, calculate_only,
11878 &calculated_value);
11879 break;
11880
11881 case elfcpp::R_MIPS_LITERAL:
11882 case elfcpp::R_MICROMIPS_LITERAL:
11883 // Because we don't merge literal sections, we can handle this
11884 // just like R_MIPS_GPREL16. In the long run, we should merge
11885 // shared literals, and then we will need to additional work
11886 // here.
11887
11888 // Fall through.
11889
11890 case elfcpp::R_MIPS_GPREL16:
11891 case elfcpp::R_MIPS16_GPREL:
11892 case elfcpp::R_MICROMIPS_GPREL7_S2:
11893 case elfcpp::R_MICROMIPS_GPREL16:
11894 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11895 target->adjusted_gp_value(object),
11896 r_addend, extract_addend,
11897 gsym == NULL, r_types[i],
11898 calculate_only, &calculated_value);
11899 break;
11900
11901 case elfcpp::R_MIPS_PC16:
11902 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11903 r_addend, extract_addend,
11904 calculate_only,
11905 &calculated_value);
11906 break;
11907
11908 case elfcpp::R_MIPS_PC21_S2:
11909 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11910 r_addend, extract_addend,
11911 calculate_only,
11912 &calculated_value);
11913 break;
11914
11915 case elfcpp::R_MIPS_PC26_S2:
11916 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11917 r_addend, extract_addend,
11918 calculate_only,
11919 &calculated_value);
11920 break;
11921
11922 case elfcpp::R_MIPS_PC18_S3:
11923 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11924 r_addend, extract_addend,
11925 calculate_only,
11926 &calculated_value);
11927 break;
11928
11929 case elfcpp::R_MIPS_PC19_S2:
11930 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11931 r_addend, extract_addend,
11932 calculate_only,
11933 &calculated_value);
11934 break;
11935
11936 case elfcpp::R_MIPS_PCHI16:
11937 if (rel_type == elfcpp::SHT_RELA)
11938 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11939 r_addend, address,
11940 extract_addend, 0,
11941 calculate_only,
11942 &calculated_value);
11943 else if (rel_type == elfcpp::SHT_REL)
11944 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11945 r_addend, address, r_sym,
11946 extract_addend);
11947 else
11948 gold_unreachable();
11949 break;
11950
11951 case elfcpp::R_MIPS_PCLO16:
11952 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11953 extract_addend, address, r_sym,
11954 rel_type, calculate_only,
11955 &calculated_value);
11956 break;
11957 case elfcpp::R_MICROMIPS_PC7_S1:
11958 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11959 address, r_addend,
11960 extract_addend,
11961 calculate_only,
11962 &calculated_value);
11963 break;
11964 case elfcpp::R_MICROMIPS_PC10_S1:
11965 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11966 psymval, address,
11967 r_addend, extract_addend,
11968 calculate_only,
11969 &calculated_value);
11970 break;
11971 case elfcpp::R_MICROMIPS_PC16_S1:
11972 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11973 psymval, address,
11974 r_addend, extract_addend,
11975 calculate_only,
11976 &calculated_value);
11977 break;
11978 case elfcpp::R_MIPS_GPREL32:
11979 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11980 target->adjusted_gp_value(object),
11981 r_addend, extract_addend,
11982 calculate_only,
11983 &calculated_value);
11984 break;
11985 case elfcpp::R_MIPS_GOT_HI16:
11986 case elfcpp::R_MIPS_CALL_HI16:
11987 case elfcpp::R_MICROMIPS_GOT_HI16:
11988 case elfcpp::R_MICROMIPS_CALL_HI16:
11989 if (gsym != NULL)
11990 got_offset = target->got_section()->got_offset(gsym,
11991 GOT_TYPE_STANDARD,
11992 object);
11993 else
11994 got_offset = target->got_section()->got_offset(r_sym,
11995 GOT_TYPE_STANDARD,
11996 object, r_addend);
11997 gp_offset = target->got_section()->gp_offset(got_offset, object);
11998 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11999 calculate_only,
12000 &calculated_value);
12001 update_got_entry = changed_symbol_value;
12002 break;
12003
12004 case elfcpp::R_MIPS_GOT_LO16:
12005 case elfcpp::R_MIPS_CALL_LO16:
12006 case elfcpp::R_MICROMIPS_GOT_LO16:
12007 case elfcpp::R_MICROMIPS_CALL_LO16:
12008 if (gsym != NULL)
12009 got_offset = target->got_section()->got_offset(gsym,
12010 GOT_TYPE_STANDARD,
12011 object);
12012 else
12013 got_offset = target->got_section()->got_offset(r_sym,
12014 GOT_TYPE_STANDARD,
12015 object, r_addend);
12016 gp_offset = target->got_section()->gp_offset(got_offset, object);
12017 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
12018 calculate_only,
12019 &calculated_value);
12020 update_got_entry = changed_symbol_value;
12021 break;
12022
12023 case elfcpp::R_MIPS_GOT_DISP:
12024 case elfcpp::R_MICROMIPS_GOT_DISP:
12025 case elfcpp::R_MIPS_EH:
12026 if (gsym != NULL)
12027 got_offset = target->got_section()->got_offset(gsym,
12028 GOT_TYPE_STANDARD,
12029 object);
12030 else
12031 got_offset = target->got_section()->got_offset(r_sym,
12032 GOT_TYPE_STANDARD,
12033 object, r_addend);
12034 gp_offset = target->got_section()->gp_offset(got_offset, object);
12035 if (eh_reloc(r_types[i]))
12036 reloc_status = Reloc_funcs::releh(view, gp_offset,
12037 calculate_only,
12038 &calculated_value);
12039 else
12040 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12041 calculate_only,
12042 &calculated_value);
12043 break;
12044 case elfcpp::R_MIPS_CALL16:
12045 case elfcpp::R_MIPS16_CALL16:
12046 case elfcpp::R_MICROMIPS_CALL16:
12047 gold_assert(gsym != NULL);
12048 got_offset = target->got_section()->got_offset(gsym,
12049 GOT_TYPE_STANDARD,
12050 object);
12051 gp_offset = target->got_section()->gp_offset(got_offset, object);
12052 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12053 calculate_only, &calculated_value);
12054 // TODO(sasa): We should also initialize update_got_entry
12055 // in other place swhere relgot is called.
12056 update_got_entry = changed_symbol_value;
12057 break;
12058
12059 case elfcpp::R_MIPS_GOT16:
12060 case elfcpp::R_MIPS16_GOT16:
12061 case elfcpp::R_MICROMIPS_GOT16:
12062 if (gsym != NULL)
12063 {
12064 got_offset = target->got_section()->got_offset(gsym,
12065 GOT_TYPE_STANDARD,
12066 object);
12067 gp_offset = target->got_section()->gp_offset(got_offset, object);
12068 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12069 calculate_only,
12070 &calculated_value);
12071 }
12072 else
12073 {
12074 if (rel_type == elfcpp::SHT_RELA)
12075 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12076 psymval, r_addend,
12077 extract_addend, 0,
12078 target,
12079 calculate_only,
12080 &calculated_value);
12081 else if (rel_type == elfcpp::SHT_REL)
12082 reloc_status = Reloc_funcs::relgot16_local(view, object,
12083 psymval, r_addend,
12084 extract_addend,
12085 r_types[i], r_sym);
12086 else
12087 gold_unreachable();
12088 }
12089 update_got_entry = changed_symbol_value;
12090 break;
12091
12092 case elfcpp::R_MIPS_TLS_GD:
12093 case elfcpp::R_MIPS16_TLS_GD:
12094 case elfcpp::R_MICROMIPS_TLS_GD:
12095 if (gsym != NULL)
12096 got_offset = target->got_section()->got_offset(gsym,
12097 GOT_TYPE_TLS_PAIR,
12098 object);
12099 else
12100 got_offset = target->got_section()->got_offset(r_sym,
12101 GOT_TYPE_TLS_PAIR,
12102 object, r_addend);
12103 gp_offset = target->got_section()->gp_offset(got_offset, object);
12104 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12105 &calculated_value);
12106 break;
12107
12108 case elfcpp::R_MIPS_TLS_GOTTPREL:
12109 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12110 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12111 if (gsym != NULL)
12112 got_offset = target->got_section()->got_offset(gsym,
12113 GOT_TYPE_TLS_OFFSET,
12114 object);
12115 else
12116 got_offset = target->got_section()->got_offset(r_sym,
12117 GOT_TYPE_TLS_OFFSET,
12118 object, r_addend);
12119 gp_offset = target->got_section()->gp_offset(got_offset, object);
12120 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12121 &calculated_value);
12122 break;
12123
12124 case elfcpp::R_MIPS_TLS_LDM:
12125 case elfcpp::R_MIPS16_TLS_LDM:
12126 case elfcpp::R_MICROMIPS_TLS_LDM:
12127 // Relocate the field with the offset of the GOT entry for
12128 // the module index.
12129 got_offset = target->got_section()->tls_ldm_offset(object);
12130 gp_offset = target->got_section()->gp_offset(got_offset, object);
12131 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12132 &calculated_value);
12133 break;
12134
12135 case elfcpp::R_MIPS_GOT_PAGE:
12136 case elfcpp::R_MICROMIPS_GOT_PAGE:
12137 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12138 r_addend, extract_addend,
12139 calculate_only,
12140 &calculated_value);
12141 break;
12142
12143 case elfcpp::R_MIPS_GOT_OFST:
12144 case elfcpp::R_MICROMIPS_GOT_OFST:
12145 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12146 r_addend, extract_addend,
12147 local, calculate_only,
12148 &calculated_value);
12149 break;
12150
12151 case elfcpp::R_MIPS_JALR:
12152 case elfcpp::R_MICROMIPS_JALR:
12153 // This relocation is only a hint. In some cases, we optimize
12154 // it into a bal instruction. But we don't try to optimize
12155 // when the symbol does not resolve locally.
12156 if (gsym == NULL
12157 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12158 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12159 r_addend, extract_addend,
12160 cross_mode_jump, r_types[i],
12161 target->jalr_to_bal(),
12162 target->jr_to_b(),
12163 calculate_only,
12164 &calculated_value);
12165 break;
12166
12167 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12168 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12169 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12170 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12171 elfcpp::DTP_OFFSET, r_addend,
12172 extract_addend, calculate_only,
12173 &calculated_value);
12174 break;
12175 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12176 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12177 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12178 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12179 elfcpp::DTP_OFFSET, r_addend,
12180 extract_addend, calculate_only,
12181 &calculated_value);
12182 break;
12183 case elfcpp::R_MIPS_TLS_DTPREL32:
12184 case elfcpp::R_MIPS_TLS_DTPREL64:
12185 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12186 elfcpp::DTP_OFFSET, r_addend,
12187 extract_addend, calculate_only,
12188 &calculated_value);
12189 break;
12190 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12191 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12192 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12193 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12194 elfcpp::TP_OFFSET, r_addend,
12195 extract_addend, calculate_only,
12196 &calculated_value);
12197 break;
12198 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12199 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12200 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12201 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12202 elfcpp::TP_OFFSET, r_addend,
12203 extract_addend, calculate_only,
12204 &calculated_value);
12205 break;
12206 case elfcpp::R_MIPS_TLS_TPREL32:
12207 case elfcpp::R_MIPS_TLS_TPREL64:
12208 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12209 elfcpp::TP_OFFSET, r_addend,
12210 extract_addend, calculate_only,
12211 &calculated_value);
12212 break;
12213 case elfcpp::R_MIPS_SUB:
12214 case elfcpp::R_MICROMIPS_SUB:
12215 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12216 extract_addend,
12217 calculate_only, &calculated_value);
12218 break;
12219 case elfcpp::R_MIPS_HIGHER:
12220 case elfcpp::R_MICROMIPS_HIGHER:
12221 reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12222 extract_addend, calculate_only,
12223 &calculated_value);
12224 break;
12225 case elfcpp::R_MIPS_HIGHEST:
12226 case elfcpp::R_MICROMIPS_HIGHEST:
12227 reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12228 r_addend, extract_addend,
12229 calculate_only,
12230 &calculated_value);
12231 break;
12232 default:
12233 gold_error_at_location(relinfo, relnum, r_offset,
12234 _("unsupported reloc %u"), r_types[i]);
12235 break;
12236 }
12237
12238 if (update_got_entry)
12239 {
12240 Mips_output_data_got<size, big_endian>* got = target->got_section();
12241 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12242 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12243 psymval->value(object, 0));
12244 else
12245 got->update_got_entry(got_offset, psymval->value(object, 0));
12246 }
12247
12248 r_addend = calculated_value;
12249 }
12250
12251 bool jal_shuffle = jal_reloc(r_type);
12252 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12253
12254 // Report any errors.
12255 switch (reloc_status)
12256 {
12257 case Reloc_funcs::STATUS_OKAY:
12258 break;
12259 case Reloc_funcs::STATUS_OVERFLOW:
12260 if (gsym == NULL)
12261 gold_error_at_location(relinfo, relnum, r_offset,
12262 _("relocation overflow: "
12263 "%u against local symbol %u in %s"),
12264 r_type, r_sym, object->name().c_str());
12265 else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12266 gold_error_at_location(relinfo, relnum, r_offset,
12267 _("relocation overflow: "
12268 "%u against '%s' defined in %s"),
12269 r_type, gsym->demangled_name().c_str(),
12270 gsym->object()->name().c_str());
12271 else
12272 gold_error_at_location(relinfo, relnum, r_offset,
12273 _("relocation overflow: %u against '%s'"),
12274 r_type, gsym->demangled_name().c_str());
12275 break;
12276 case Reloc_funcs::STATUS_BAD_RELOC:
12277 gold_error_at_location(relinfo, relnum, r_offset,
12278 _("unexpected opcode while processing relocation"));
12279 break;
12280 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12281 gold_error_at_location(relinfo, relnum, r_offset,
12282 _("unaligned PC-relative relocation"));
12283 break;
12284 default:
12285 gold_unreachable();
12286 }
12287
12288 return true;
12289 }
12290
12291 // Get the Reference_flags for a particular relocation.
12292
12293 template<int size, bool big_endian>
12294 int
12295 Target_mips<size, big_endian>::Scan::get_reference_flags(
12296 unsigned int r_type)
12297 {
12298 switch (r_type)
12299 {
12300 case elfcpp::R_MIPS_NONE:
12301 // No symbol reference.
12302 return 0;
12303
12304 case elfcpp::R_MIPS_16:
12305 case elfcpp::R_MIPS_32:
12306 case elfcpp::R_MIPS_64:
12307 case elfcpp::R_MIPS_HI16:
12308 case elfcpp::R_MIPS_LO16:
12309 case elfcpp::R_MIPS_HIGHER:
12310 case elfcpp::R_MIPS_HIGHEST:
12311 case elfcpp::R_MIPS16_HI16:
12312 case elfcpp::R_MIPS16_LO16:
12313 case elfcpp::R_MICROMIPS_HI16:
12314 case elfcpp::R_MICROMIPS_LO16:
12315 case elfcpp::R_MICROMIPS_HIGHER:
12316 case elfcpp::R_MICROMIPS_HIGHEST:
12317 return Symbol::ABSOLUTE_REF;
12318
12319 case elfcpp::R_MIPS_26:
12320 case elfcpp::R_MIPS16_26:
12321 case elfcpp::R_MICROMIPS_26_S1:
12322 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12323
12324 case elfcpp::R_MIPS_PC18_S3:
12325 case elfcpp::R_MIPS_PC19_S2:
12326 case elfcpp::R_MIPS_PCHI16:
12327 case elfcpp::R_MIPS_PCLO16:
12328 case elfcpp::R_MIPS_GPREL32:
12329 case elfcpp::R_MIPS_GPREL16:
12330 case elfcpp::R_MIPS_REL32:
12331 case elfcpp::R_MIPS16_GPREL:
12332 return Symbol::RELATIVE_REF;
12333
12334 case elfcpp::R_MIPS_PC16:
12335 case elfcpp::R_MIPS_PC32:
12336 case elfcpp::R_MIPS_PC21_S2:
12337 case elfcpp::R_MIPS_PC26_S2:
12338 case elfcpp::R_MIPS_JALR:
12339 case elfcpp::R_MICROMIPS_JALR:
12340 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12341
12342 case elfcpp::R_MIPS_GOT16:
12343 case elfcpp::R_MIPS_CALL16:
12344 case elfcpp::R_MIPS_GOT_DISP:
12345 case elfcpp::R_MIPS_GOT_HI16:
12346 case elfcpp::R_MIPS_GOT_LO16:
12347 case elfcpp::R_MIPS_CALL_HI16:
12348 case elfcpp::R_MIPS_CALL_LO16:
12349 case elfcpp::R_MIPS_LITERAL:
12350 case elfcpp::R_MIPS_GOT_PAGE:
12351 case elfcpp::R_MIPS_GOT_OFST:
12352 case elfcpp::R_MIPS16_GOT16:
12353 case elfcpp::R_MIPS16_CALL16:
12354 case elfcpp::R_MICROMIPS_GOT16:
12355 case elfcpp::R_MICROMIPS_CALL16:
12356 case elfcpp::R_MICROMIPS_GOT_HI16:
12357 case elfcpp::R_MICROMIPS_GOT_LO16:
12358 case elfcpp::R_MICROMIPS_CALL_HI16:
12359 case elfcpp::R_MICROMIPS_CALL_LO16:
12360 case elfcpp::R_MIPS_EH:
12361 // Absolute in GOT.
12362 return Symbol::RELATIVE_REF;
12363
12364 case elfcpp::R_MIPS_TLS_DTPMOD32:
12365 case elfcpp::R_MIPS_TLS_DTPREL32:
12366 case elfcpp::R_MIPS_TLS_DTPMOD64:
12367 case elfcpp::R_MIPS_TLS_DTPREL64:
12368 case elfcpp::R_MIPS_TLS_GD:
12369 case elfcpp::R_MIPS_TLS_LDM:
12370 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12371 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12372 case elfcpp::R_MIPS_TLS_GOTTPREL:
12373 case elfcpp::R_MIPS_TLS_TPREL32:
12374 case elfcpp::R_MIPS_TLS_TPREL64:
12375 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12376 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12377 case elfcpp::R_MIPS16_TLS_GD:
12378 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12379 case elfcpp::R_MICROMIPS_TLS_GD:
12380 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12381 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12382 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12383 return Symbol::TLS_REF;
12384
12385 case elfcpp::R_MIPS_COPY:
12386 case elfcpp::R_MIPS_JUMP_SLOT:
12387 default:
12388 // Not expected. We will give an error later.
12389 return 0;
12390 }
12391 }
12392
12393 // Report an unsupported relocation against a local symbol.
12394
12395 template<int size, bool big_endian>
12396 void
12397 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12398 Sized_relobj_file<size, big_endian>* object,
12399 unsigned int r_type)
12400 {
12401 gold_error(_("%s: unsupported reloc %u against local symbol"),
12402 object->name().c_str(), r_type);
12403 }
12404
12405 // Report an unsupported relocation against a global symbol.
12406
12407 template<int size, bool big_endian>
12408 void
12409 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12410 Sized_relobj_file<size, big_endian>* object,
12411 unsigned int r_type,
12412 Symbol* gsym)
12413 {
12414 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12415 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12416 }
12417
12418 // Return printable name for ABI.
12419 template<int size, bool big_endian>
12420 const char*
12421 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12422 {
12423 switch (e_flags & elfcpp::EF_MIPS_ABI)
12424 {
12425 case 0:
12426 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12427 return "N32";
12428 else if (size == 64)
12429 return "64";
12430 else
12431 return "none";
12432 case elfcpp::E_MIPS_ABI_O32:
12433 return "O32";
12434 case elfcpp::E_MIPS_ABI_O64:
12435 return "O64";
12436 case elfcpp::E_MIPS_ABI_EABI32:
12437 return "EABI32";
12438 case elfcpp::E_MIPS_ABI_EABI64:
12439 return "EABI64";
12440 default:
12441 return "unknown abi";
12442 }
12443 }
12444
12445 template<int size, bool big_endian>
12446 const char*
12447 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12448 {
12449 switch (e_flags & elfcpp::EF_MIPS_MACH)
12450 {
12451 case elfcpp::E_MIPS_MACH_3900:
12452 return "mips:3900";
12453 case elfcpp::E_MIPS_MACH_4010:
12454 return "mips:4010";
12455 case elfcpp::E_MIPS_MACH_4100:
12456 return "mips:4100";
12457 case elfcpp::E_MIPS_MACH_4111:
12458 return "mips:4111";
12459 case elfcpp::E_MIPS_MACH_4120:
12460 return "mips:4120";
12461 case elfcpp::E_MIPS_MACH_4650:
12462 return "mips:4650";
12463 case elfcpp::E_MIPS_MACH_5400:
12464 return "mips:5400";
12465 case elfcpp::E_MIPS_MACH_5500:
12466 return "mips:5500";
12467 case elfcpp::E_MIPS_MACH_5900:
12468 return "mips:5900";
12469 case elfcpp::E_MIPS_MACH_SB1:
12470 return "mips:sb1";
12471 case elfcpp::E_MIPS_MACH_9000:
12472 return "mips:9000";
12473 case elfcpp::E_MIPS_MACH_LS2E:
12474 return "mips:loongson_2e";
12475 case elfcpp::E_MIPS_MACH_LS2F:
12476 return "mips:loongson_2f";
12477 case elfcpp::E_MIPS_MACH_LS3A:
12478 return "mips:loongson_3a";
12479 case elfcpp::E_MIPS_MACH_OCTEON:
12480 return "mips:octeon";
12481 case elfcpp::E_MIPS_MACH_OCTEON2:
12482 return "mips:octeon2";
12483 case elfcpp::E_MIPS_MACH_OCTEON3:
12484 return "mips:octeon3";
12485 case elfcpp::E_MIPS_MACH_XLR:
12486 return "mips:xlr";
12487 default:
12488 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12489 {
12490 default:
12491 case elfcpp::E_MIPS_ARCH_1:
12492 return "mips:3000";
12493
12494 case elfcpp::E_MIPS_ARCH_2:
12495 return "mips:6000";
12496
12497 case elfcpp::E_MIPS_ARCH_3:
12498 return "mips:4000";
12499
12500 case elfcpp::E_MIPS_ARCH_4:
12501 return "mips:8000";
12502
12503 case elfcpp::E_MIPS_ARCH_5:
12504 return "mips:mips5";
12505
12506 case elfcpp::E_MIPS_ARCH_32:
12507 return "mips:isa32";
12508
12509 case elfcpp::E_MIPS_ARCH_64:
12510 return "mips:isa64";
12511
12512 case elfcpp::E_MIPS_ARCH_32R2:
12513 return "mips:isa32r2";
12514
12515 case elfcpp::E_MIPS_ARCH_32R6:
12516 return "mips:isa32r6";
12517
12518 case elfcpp::E_MIPS_ARCH_64R2:
12519 return "mips:isa64r2";
12520
12521 case elfcpp::E_MIPS_ARCH_64R6:
12522 return "mips:isa64r6";
12523 }
12524 }
12525 return "unknown CPU";
12526 }
12527
12528 template<int size, bool big_endian>
12529 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12530 {
12531 size, // size
12532 big_endian, // is_big_endian
12533 elfcpp::EM_MIPS, // machine_code
12534 true, // has_make_symbol
12535 false, // has_resolve
12536 false, // has_code_fill
12537 true, // is_default_stack_executable
12538 false, // can_icf_inline_merge_sections
12539 '\0', // wrap_char
12540 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12541 0x400000, // default_text_segment_address
12542 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12543 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12544 false, // isolate_execinstr
12545 0, // rosegment_gap
12546 elfcpp::SHN_UNDEF, // small_common_shndx
12547 elfcpp::SHN_UNDEF, // large_common_shndx
12548 0, // small_common_section_flags
12549 0, // large_common_section_flags
12550 NULL, // attributes_section
12551 NULL, // attributes_vendor
12552 "__start", // entry_symbol_name
12553 32, // hash_entry_size
12554 };
12555
12556 template<int size, bool big_endian>
12557 class Target_mips_nacl : public Target_mips<size, big_endian>
12558 {
12559 public:
12560 Target_mips_nacl()
12561 : Target_mips<size, big_endian>(&mips_nacl_info)
12562 { }
12563
12564 private:
12565 static const Target::Target_info mips_nacl_info;
12566 };
12567
12568 template<int size, bool big_endian>
12569 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12570 {
12571 size, // size
12572 big_endian, // is_big_endian
12573 elfcpp::EM_MIPS, // machine_code
12574 true, // has_make_symbol
12575 false, // has_resolve
12576 false, // has_code_fill
12577 true, // is_default_stack_executable
12578 false, // can_icf_inline_merge_sections
12579 '\0', // wrap_char
12580 "/lib/ld.so.1", // dynamic_linker
12581 0x20000, // default_text_segment_address
12582 0x10000, // abi_pagesize (overridable by -z max-page-size)
12583 0x10000, // common_pagesize (overridable by -z common-page-size)
12584 true, // isolate_execinstr
12585 0x10000000, // rosegment_gap
12586 elfcpp::SHN_UNDEF, // small_common_shndx
12587 elfcpp::SHN_UNDEF, // large_common_shndx
12588 0, // small_common_section_flags
12589 0, // large_common_section_flags
12590 NULL, // attributes_section
12591 NULL, // attributes_vendor
12592 "_start", // entry_symbol_name
12593 32, // hash_entry_size
12594 };
12595
12596 // Target selector for Mips. Note this is never instantiated directly.
12597 // It's only used in Target_selector_mips_nacl, below.
12598
12599 template<int size, bool big_endian>
12600 class Target_selector_mips : public Target_selector
12601 {
12602 public:
12603 Target_selector_mips()
12604 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12605 (size == 64 ?
12606 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12607 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12608 (size == 64 ?
12609 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12610 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12611 { }
12612
12613 Target* do_instantiate_target()
12614 { return new Target_mips<size, big_endian>(); }
12615 };
12616
12617 template<int size, bool big_endian>
12618 class Target_selector_mips_nacl
12619 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12620 Target_mips_nacl<size, big_endian> >
12621 {
12622 public:
12623 Target_selector_mips_nacl()
12624 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12625 Target_mips_nacl<size, big_endian> >(
12626 // NaCl currently supports only MIPS32 little-endian.
12627 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12628 { }
12629 };
12630
12631 Target_selector_mips_nacl<32, true> target_selector_mips32;
12632 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12633 Target_selector_mips_nacl<64, true> target_selector_mips64;
12634 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12635
12636 } // End anonymous namespace.
This page took 0.286303 seconds and 5 git commands to generate.