Correct the definition of _gp and _GLOBAL_OFFSET_TABLE_ symbols for MIPS.
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_data_la25_stub;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_mips_stubs;
71
72 template<int size>
73 class Mips_symbol;
74
75 template<int size, bool big_endian>
76 class Mips_got_info;
77
78 template<int size, bool big_endian>
79 class Mips_relobj;
80
81 class Mips16_stub_section_base;
82
83 template<int size, bool big_endian>
84 class Mips16_stub_section;
85
86 // The ABI says that every symbol used by dynamic relocations must have
87 // a global GOT entry. Among other things, this provides the dynamic
88 // linker with a free, directly-indexed cache. The GOT can therefore
89 // contain symbols that are not referenced by GOT relocations themselves
90 // (in other words, it may have symbols that are not referenced by things
91 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
92
93 // GOT relocations are less likely to overflow if we put the associated
94 // GOT entries towards the beginning. We therefore divide the global
95 // GOT entries into two areas: "normal" and "reloc-only". Entries in
96 // the first area can be used for both dynamic relocations and GP-relative
97 // accesses, while those in the "reloc-only" area are for dynamic
98 // relocations only.
99
100 // These GGA_* ("Global GOT Area") values are organised so that lower
101 // values are more general than higher values. Also, non-GGA_NONE
102 // values are ordered by the position of the area in the GOT.
103
104 enum Global_got_area
105 {
106 GGA_NORMAL = 0,
107 GGA_RELOC_ONLY = 1,
108 GGA_NONE = 2
109 };
110
111 // The types of GOT entries needed for this platform.
112 // These values are exposed to the ABI in an incremental link.
113 // Do not renumber existing values without changing the version
114 // number of the .gnu_incremental_inputs section.
115 enum Got_type
116 {
117 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
118 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
119 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
120
121 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
122 GOT_TYPE_STANDARD_MULTIGOT = 3,
123 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
124 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
125 };
126
127 // TLS type of GOT entry.
128 enum Got_tls_type
129 {
130 GOT_TLS_NONE = 0,
131 GOT_TLS_GD = 1,
132 GOT_TLS_LDM = 2,
133 GOT_TLS_IE = 4
134 };
135
136 // Values found in the r_ssym field of a relocation entry.
137 enum Special_relocation_symbol
138 {
139 RSS_UNDEF = 0, // None - value is zero.
140 RSS_GP = 1, // Value of GP.
141 RSS_GP0 = 2, // Value of GP in object being relocated.
142 RSS_LOC = 3 // Address of location being relocated.
143 };
144
145 // Whether the section is readonly.
146 static inline bool
147 is_readonly_section(Output_section* output_section)
148 {
149 elfcpp::Elf_Xword section_flags = output_section->flags();
150 elfcpp::Elf_Word section_type = output_section->type();
151
152 if (section_type == elfcpp::SHT_NOBITS)
153 return false;
154
155 if (section_flags & elfcpp::SHF_WRITE)
156 return false;
157
158 return true;
159 }
160
161 // Return TRUE if a relocation of type R_TYPE from OBJECT might
162 // require an la25 stub. See also local_pic_function, which determines
163 // whether the destination function ever requires a stub.
164 template<int size, bool big_endian>
165 static inline bool
166 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
167 unsigned int r_type, bool target_is_16_bit_code)
168 {
169 // We specifically ignore branches and jumps from EF_PIC objects,
170 // where the onus is on the compiler or programmer to perform any
171 // necessary initialization of $25. Sometimes such initialization
172 // is unnecessary; for example, -mno-shared functions do not use
173 // the incoming value of $25, and may therefore be called directly.
174 if (object->is_pic())
175 return false;
176
177 switch (r_type)
178 {
179 case elfcpp::R_MIPS_26:
180 case elfcpp::R_MIPS_PC16:
181 case elfcpp::R_MIPS_PC21_S2:
182 case elfcpp::R_MIPS_PC26_S2:
183 case elfcpp::R_MICROMIPS_26_S1:
184 case elfcpp::R_MICROMIPS_PC7_S1:
185 case elfcpp::R_MICROMIPS_PC10_S1:
186 case elfcpp::R_MICROMIPS_PC16_S1:
187 case elfcpp::R_MICROMIPS_PC23_S2:
188 return true;
189
190 case elfcpp::R_MIPS16_26:
191 return !target_is_16_bit_code;
192
193 default:
194 return false;
195 }
196 }
197
198 // Return true if SYM is a locally-defined PIC function, in the sense
199 // that it or its fn_stub might need $25 to be valid on entry.
200 // Note that MIPS16 functions set up $gp using PC-relative instructions,
201 // so they themselves never need $25 to be valid. Only non-MIPS16
202 // entry points are of interest here.
203 template<int size, bool big_endian>
204 static inline bool
205 local_pic_function(Mips_symbol<size>* sym)
206 {
207 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
208 && !sym->object()->is_dynamic()
209 && !sym->is_undefined());
210
211 if (sym->is_defined() && def_regular)
212 {
213 Mips_relobj<size, big_endian>* object =
214 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
215
216 if ((object->is_pic() || sym->is_pic())
217 && (!sym->is_mips16()
218 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
219 return true;
220 }
221 return false;
222 }
223
224 static inline bool
225 hi16_reloc(int r_type)
226 {
227 return (r_type == elfcpp::R_MIPS_HI16
228 || r_type == elfcpp::R_MIPS16_HI16
229 || r_type == elfcpp::R_MICROMIPS_HI16
230 || r_type == elfcpp::R_MIPS_PCHI16);
231 }
232
233 static inline bool
234 lo16_reloc(int r_type)
235 {
236 return (r_type == elfcpp::R_MIPS_LO16
237 || r_type == elfcpp::R_MIPS16_LO16
238 || r_type == elfcpp::R_MICROMIPS_LO16
239 || r_type == elfcpp::R_MIPS_PCLO16);
240 }
241
242 static inline bool
243 got16_reloc(unsigned int r_type)
244 {
245 return (r_type == elfcpp::R_MIPS_GOT16
246 || r_type == elfcpp::R_MIPS16_GOT16
247 || r_type == elfcpp::R_MICROMIPS_GOT16);
248 }
249
250 static inline bool
251 call_lo16_reloc(unsigned int r_type)
252 {
253 return (r_type == elfcpp::R_MIPS_CALL_LO16
254 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
255 }
256
257 static inline bool
258 got_lo16_reloc(unsigned int r_type)
259 {
260 return (r_type == elfcpp::R_MIPS_GOT_LO16
261 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
262 }
263
264 static inline bool
265 eh_reloc(unsigned int r_type)
266 {
267 return (r_type == elfcpp::R_MIPS_EH);
268 }
269
270 static inline bool
271 got_disp_reloc(unsigned int r_type)
272 {
273 return (r_type == elfcpp::R_MIPS_GOT_DISP
274 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
275 }
276
277 static inline bool
278 got_page_reloc(unsigned int r_type)
279 {
280 return (r_type == elfcpp::R_MIPS_GOT_PAGE
281 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
282 }
283
284 static inline bool
285 tls_gd_reloc(unsigned int r_type)
286 {
287 return (r_type == elfcpp::R_MIPS_TLS_GD
288 || r_type == elfcpp::R_MIPS16_TLS_GD
289 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
290 }
291
292 static inline bool
293 tls_gottprel_reloc(unsigned int r_type)
294 {
295 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
296 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
297 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
298 }
299
300 static inline bool
301 tls_ldm_reloc(unsigned int r_type)
302 {
303 return (r_type == elfcpp::R_MIPS_TLS_LDM
304 || r_type == elfcpp::R_MIPS16_TLS_LDM
305 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
306 }
307
308 static inline bool
309 mips16_call_reloc(unsigned int r_type)
310 {
311 return (r_type == elfcpp::R_MIPS16_26
312 || r_type == elfcpp::R_MIPS16_CALL16);
313 }
314
315 static inline bool
316 jal_reloc(unsigned int r_type)
317 {
318 return (r_type == elfcpp::R_MIPS_26
319 || r_type == elfcpp::R_MIPS16_26
320 || r_type == elfcpp::R_MICROMIPS_26_S1);
321 }
322
323 static inline bool
324 micromips_branch_reloc(unsigned int r_type)
325 {
326 return (r_type == elfcpp::R_MICROMIPS_26_S1
327 || r_type == elfcpp::R_MICROMIPS_PC16_S1
328 || r_type == elfcpp::R_MICROMIPS_PC10_S1
329 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
330 }
331
332 // Check if R_TYPE is a MIPS16 reloc.
333 static inline bool
334 mips16_reloc(unsigned int r_type)
335 {
336 switch (r_type)
337 {
338 case elfcpp::R_MIPS16_26:
339 case elfcpp::R_MIPS16_GPREL:
340 case elfcpp::R_MIPS16_GOT16:
341 case elfcpp::R_MIPS16_CALL16:
342 case elfcpp::R_MIPS16_HI16:
343 case elfcpp::R_MIPS16_LO16:
344 case elfcpp::R_MIPS16_TLS_GD:
345 case elfcpp::R_MIPS16_TLS_LDM:
346 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
347 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
348 case elfcpp::R_MIPS16_TLS_GOTTPREL:
349 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
351 return true;
352
353 default:
354 return false;
355 }
356 }
357
358 // Check if R_TYPE is a microMIPS reloc.
359 static inline bool
360 micromips_reloc(unsigned int r_type)
361 {
362 switch (r_type)
363 {
364 case elfcpp::R_MICROMIPS_26_S1:
365 case elfcpp::R_MICROMIPS_HI16:
366 case elfcpp::R_MICROMIPS_LO16:
367 case elfcpp::R_MICROMIPS_GPREL16:
368 case elfcpp::R_MICROMIPS_LITERAL:
369 case elfcpp::R_MICROMIPS_GOT16:
370 case elfcpp::R_MICROMIPS_PC7_S1:
371 case elfcpp::R_MICROMIPS_PC10_S1:
372 case elfcpp::R_MICROMIPS_PC16_S1:
373 case elfcpp::R_MICROMIPS_CALL16:
374 case elfcpp::R_MICROMIPS_GOT_DISP:
375 case elfcpp::R_MICROMIPS_GOT_PAGE:
376 case elfcpp::R_MICROMIPS_GOT_OFST:
377 case elfcpp::R_MICROMIPS_GOT_HI16:
378 case elfcpp::R_MICROMIPS_GOT_LO16:
379 case elfcpp::R_MICROMIPS_SUB:
380 case elfcpp::R_MICROMIPS_HIGHER:
381 case elfcpp::R_MICROMIPS_HIGHEST:
382 case elfcpp::R_MICROMIPS_CALL_HI16:
383 case elfcpp::R_MICROMIPS_CALL_LO16:
384 case elfcpp::R_MICROMIPS_SCN_DISP:
385 case elfcpp::R_MICROMIPS_JALR:
386 case elfcpp::R_MICROMIPS_HI0_LO16:
387 case elfcpp::R_MICROMIPS_TLS_GD:
388 case elfcpp::R_MICROMIPS_TLS_LDM:
389 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
390 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
391 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
392 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
394 case elfcpp::R_MICROMIPS_GPREL7_S2:
395 case elfcpp::R_MICROMIPS_PC23_S2:
396 return true;
397
398 default:
399 return false;
400 }
401 }
402
403 static inline bool
404 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
405 {
406 switch (high_reloc)
407 {
408 case elfcpp::R_MIPS_HI16:
409 case elfcpp::R_MIPS_GOT16:
410 return lo16_reloc == elfcpp::R_MIPS_LO16;
411 case elfcpp::R_MIPS_PCHI16:
412 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
413 case elfcpp::R_MIPS16_HI16:
414 case elfcpp::R_MIPS16_GOT16:
415 return lo16_reloc == elfcpp::R_MIPS16_LO16;
416 case elfcpp::R_MICROMIPS_HI16:
417 case elfcpp::R_MICROMIPS_GOT16:
418 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
419 default:
420 return false;
421 }
422 }
423
424 // This class is used to hold information about one GOT entry.
425 // There are three types of entry:
426 //
427 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
428 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
429 // (2) a SYMBOL address, where SYMBOL is not local to an input object
430 // (sym != NULL, symndx == -1)
431 // (3) a TLS LDM slot (there's only one of these per GOT.)
432 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
433
434 template<int size, bool big_endian>
435 class Mips_got_entry
436 {
437 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
438
439 public:
440 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
441 Mips_address addend, unsigned char tls_type,
442 unsigned int shndx, bool is_section_symbol)
443 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
444 is_section_symbol_(is_section_symbol), shndx_(shndx)
445 { this->d.object = object; }
446
447 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
448 : addend_(0), symndx_(-1U), tls_type_(tls_type),
449 is_section_symbol_(false), shndx_(-1U)
450 { this->d.sym = sym; }
451
452 // Return whether this entry is for a local symbol.
453 bool
454 is_for_local_symbol() const
455 { return this->symndx_ != -1U; }
456
457 // Return whether this entry is for a global symbol.
458 bool
459 is_for_global_symbol() const
460 { return this->symndx_ == -1U; }
461
462 // Return the hash of this entry.
463 size_t
464 hash() const
465 {
466 if (this->tls_type_ == GOT_TLS_LDM)
467 return this->symndx_ + (1 << 18);
468
469 size_t name_hash_value = gold::string_hash<char>(
470 (this->symndx_ != -1U)
471 ? this->d.object->name().c_str()
472 : this->d.sym->name());
473 size_t addend = this->addend_;
474 return name_hash_value ^ this->symndx_ ^ addend;
475 }
476
477 // Return whether this entry is equal to OTHER.
478 bool
479 equals(Mips_got_entry<size, big_endian>* other) const
480 {
481 if (this->tls_type_ == GOT_TLS_LDM)
482 return true;
483
484 return ((this->tls_type_ == other->tls_type_)
485 && (this->symndx_ == other->symndx_)
486 && ((this->symndx_ != -1U)
487 ? (this->d.object == other->d.object)
488 : (this->d.sym == other->d.sym))
489 && (this->addend_ == other->addend_));
490 }
491
492 // Return input object that needs this GOT entry.
493 Mips_relobj<size, big_endian>*
494 object() const
495 {
496 gold_assert(this->symndx_ != -1U);
497 return this->d.object;
498 }
499
500 // Return local symbol index for local GOT entries.
501 unsigned int
502 symndx() const
503 {
504 gold_assert(this->symndx_ != -1U);
505 return this->symndx_;
506 }
507
508 // Return the relocation addend for local GOT entries.
509 Mips_address
510 addend() const
511 { return this->addend_; }
512
513 // Return global symbol for global GOT entries.
514 Mips_symbol<size>*
515 sym() const
516 {
517 gold_assert(this->symndx_ == -1U);
518 return this->d.sym;
519 }
520
521 // Return whether this is a TLS GOT entry.
522 bool
523 is_tls_entry() const
524 { return this->tls_type_ != GOT_TLS_NONE; }
525
526 // Return TLS type of this GOT entry.
527 unsigned char
528 tls_type() const
529 { return this->tls_type_; }
530
531 // Return section index of the local symbol for local GOT entries.
532 unsigned int
533 shndx() const
534 { return this->shndx_; }
535
536 // Return whether this is a STT_SECTION symbol.
537 bool
538 is_section_symbol() const
539 { return this->is_section_symbol_; }
540
541 private:
542 // The addend.
543 Mips_address addend_;
544
545 // The index of the symbol if we have a local symbol; -1 otherwise.
546 unsigned int symndx_;
547
548 union
549 {
550 // The input object for local symbols that needs the GOT entry.
551 Mips_relobj<size, big_endian>* object;
552 // If symndx == -1, the global symbol corresponding to this GOT entry. The
553 // symbol's entry is in the local area if mips_sym->global_got_area is
554 // GGA_NONE, otherwise it is in the global area.
555 Mips_symbol<size>* sym;
556 } d;
557
558 // The TLS type of this GOT entry. An LDM GOT entry will be a local
559 // symbol entry with r_symndx == 0.
560 unsigned char tls_type_;
561
562 // Whether this is a STT_SECTION symbol.
563 bool is_section_symbol_;
564
565 // For local GOT entries, section index of the local symbol.
566 unsigned int shndx_;
567 };
568
569 // Hash for Mips_got_entry.
570
571 template<int size, bool big_endian>
572 class Mips_got_entry_hash
573 {
574 public:
575 size_t
576 operator()(Mips_got_entry<size, big_endian>* entry) const
577 { return entry->hash(); }
578 };
579
580 // Equality for Mips_got_entry.
581
582 template<int size, bool big_endian>
583 class Mips_got_entry_eq
584 {
585 public:
586 bool
587 operator()(Mips_got_entry<size, big_endian>* e1,
588 Mips_got_entry<size, big_endian>* e2) const
589 { return e1->equals(e2); }
590 };
591
592 // Hash for Mips_symbol.
593
594 template<int size>
595 class Mips_symbol_hash
596 {
597 public:
598 size_t
599 operator()(Mips_symbol<size>* sym) const
600 { return sym->hash(); }
601 };
602
603 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
604 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
605 // increasing MIN_ADDEND.
606
607 struct Got_page_range
608 {
609 Got_page_range()
610 : next(NULL), min_addend(0), max_addend(0)
611 { }
612
613 Got_page_range* next;
614 int min_addend;
615 int max_addend;
616
617 // Return the maximum number of GOT page entries required.
618 int
619 get_max_pages()
620 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
621 };
622
623 // Got_page_entry. This class describes the range of addends that are applied
624 // to page relocations against a given symbol.
625
626 struct Got_page_entry
627 {
628 Got_page_entry()
629 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
630 { }
631
632 Got_page_entry(Object* object_, unsigned int symndx_)
633 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
634 { }
635
636 // The input object that needs the GOT page entry.
637 Object* object;
638 // The index of the symbol, as stored in the relocation r_info.
639 unsigned int symndx;
640 // The ranges for this page entry.
641 Got_page_range* ranges;
642 // The maximum number of page entries needed for RANGES.
643 unsigned int num_pages;
644 };
645
646 // Hash for Got_page_entry.
647
648 struct Got_page_entry_hash
649 {
650 size_t
651 operator()(Got_page_entry* entry) const
652 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
653 };
654
655 // Equality for Got_page_entry.
656
657 struct Got_page_entry_eq
658 {
659 bool
660 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
661 {
662 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
663 }
664 };
665
666 // This class is used to hold .got information when linking.
667
668 template<int size, bool big_endian>
669 class Mips_got_info
670 {
671 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
672 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
673 Reloc_section;
674 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
675
676 // Unordered set of GOT entries.
677 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
678 Mips_got_entry_hash<size, big_endian>,
679 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
680
681 // Unordered set of GOT page entries.
682 typedef Unordered_set<Got_page_entry*,
683 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
684
685 // Unordered set of global GOT entries.
686 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
687 Global_got_entry_set;
688
689 public:
690 Mips_got_info()
691 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
692 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
693 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
694 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
695 offset_(0)
696 { }
697
698 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
699 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
700 void
701 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
702 unsigned int symndx, Mips_address addend,
703 unsigned int r_type, unsigned int shndx,
704 bool is_section_symbol);
705
706 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
707 // in OBJECT. FOR_CALL is true if the caller is only interested in
708 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
709 // relocation.
710 void
711 record_global_got_symbol(Mips_symbol<size>* mips_sym,
712 Mips_relobj<size, big_endian>* object,
713 unsigned int r_type, bool dyn_reloc, bool for_call);
714
715 // Add ENTRY to master GOT and to OBJECT's GOT.
716 void
717 record_got_entry(Mips_got_entry<size, big_endian>* entry,
718 Mips_relobj<size, big_endian>* object);
719
720 // Record that OBJECT has a page relocation against symbol SYMNDX and
721 // that ADDEND is the addend for that relocation.
722 void
723 record_got_page_entry(Mips_relobj<size, big_endian>* object,
724 unsigned int symndx, int addend);
725
726 // Create all entries that should be in the local part of the GOT.
727 void
728 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
729
730 // Create GOT page entries.
731 void
732 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
733
734 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
735 void
736 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
737 unsigned int non_reloc_only_global_gotno);
738
739 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
740 void
741 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
742
743 // Create TLS GOT entries.
744 void
745 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
746
747 // Decide whether the symbol needs an entry in the global part of the primary
748 // GOT, setting global_got_area accordingly. Count the number of global
749 // symbols that are in the primary GOT only because they have dynamic
750 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
751 void
752 count_got_symbols(Symbol_table* symtab);
753
754 // Return the offset of GOT page entry for VALUE.
755 unsigned int
756 get_got_page_offset(Mips_address value,
757 Mips_output_data_got<size, big_endian>* got);
758
759 // Count the number of GOT entries required.
760 void
761 count_got_entries();
762
763 // Count the number of GOT entries required by ENTRY. Accumulate the result.
764 void
765 count_got_entry(Mips_got_entry<size, big_endian>* entry);
766
767 // Add FROM's GOT entries.
768 void
769 add_got_entries(Mips_got_info<size, big_endian>* from);
770
771 // Add FROM's GOT page entries.
772 void
773 add_got_page_entries(Mips_got_info<size, big_endian>* from);
774
775 // Return GOT size.
776 unsigned int
777 got_size() const
778 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
779 + this->tls_gotno_) * size/8);
780 }
781
782 // Return the number of local GOT entries.
783 unsigned int
784 local_gotno() const
785 { return this->local_gotno_; }
786
787 // Return the maximum number of page GOT entries needed.
788 unsigned int
789 page_gotno() const
790 { return this->page_gotno_; }
791
792 // Return the number of global GOT entries.
793 unsigned int
794 global_gotno() const
795 { return this->global_gotno_; }
796
797 // Set the number of global GOT entries.
798 void
799 set_global_gotno(unsigned int global_gotno)
800 { this->global_gotno_ = global_gotno; }
801
802 // Return the number of GGA_RELOC_ONLY global GOT entries.
803 unsigned int
804 reloc_only_gotno() const
805 { return this->reloc_only_gotno_; }
806
807 // Return the number of TLS GOT entries.
808 unsigned int
809 tls_gotno() const
810 { return this->tls_gotno_; }
811
812 // Return the GOT type for this GOT. Used for multi-GOT links only.
813 unsigned int
814 multigot_got_type(unsigned int got_type) const
815 {
816 switch (got_type)
817 {
818 case GOT_TYPE_STANDARD:
819 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
820 case GOT_TYPE_TLS_OFFSET:
821 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
822 case GOT_TYPE_TLS_PAIR:
823 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
824 default:
825 gold_unreachable();
826 }
827 }
828
829 // Remove lazy-binding stubs for global symbols in this GOT.
830 void
831 remove_lazy_stubs(Target_mips<size, big_endian>* target);
832
833 // Return offset of this GOT from the start of .got section.
834 unsigned int
835 offset() const
836 { return this->offset_; }
837
838 // Set offset of this GOT from the start of .got section.
839 void
840 set_offset(unsigned int offset)
841 { this->offset_ = offset; }
842
843 // Set index of this GOT in multi-GOT links.
844 void
845 set_index(unsigned int index)
846 { this->index_ = index; }
847
848 // Return next GOT in multi-GOT links.
849 Mips_got_info<size, big_endian>*
850 next() const
851 { return this->next_; }
852
853 // Set next GOT in multi-GOT links.
854 void
855 set_next(Mips_got_info<size, big_endian>* next)
856 { this->next_ = next; }
857
858 // Return the offset of TLS LDM entry for this GOT.
859 unsigned int
860 tls_ldm_offset() const
861 { return this->tls_ldm_offset_; }
862
863 // Set the offset of TLS LDM entry for this GOT.
864 void
865 set_tls_ldm_offset(unsigned int tls_ldm_offset)
866 { this->tls_ldm_offset_ = tls_ldm_offset; }
867
868 Global_got_entry_set&
869 global_got_symbols()
870 { return this->global_got_symbols_; }
871
872 // Return the GOT_TLS_* type required by relocation type R_TYPE.
873 static int
874 mips_elf_reloc_tls_type(unsigned int r_type)
875 {
876 if (tls_gd_reloc(r_type))
877 return GOT_TLS_GD;
878
879 if (tls_ldm_reloc(r_type))
880 return GOT_TLS_LDM;
881
882 if (tls_gottprel_reloc(r_type))
883 return GOT_TLS_IE;
884
885 return GOT_TLS_NONE;
886 }
887
888 // Return the number of GOT slots needed for GOT TLS type TYPE.
889 static int
890 mips_tls_got_entries(unsigned int type)
891 {
892 switch (type)
893 {
894 case GOT_TLS_GD:
895 case GOT_TLS_LDM:
896 return 2;
897
898 case GOT_TLS_IE:
899 return 1;
900
901 case GOT_TLS_NONE:
902 return 0;
903
904 default:
905 gold_unreachable();
906 }
907 }
908
909 private:
910 // The number of local GOT entries.
911 unsigned int local_gotno_;
912 // The maximum number of page GOT entries needed.
913 unsigned int page_gotno_;
914 // The number of global GOT entries.
915 unsigned int global_gotno_;
916 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
917 unsigned int reloc_only_gotno_;
918 // The number of TLS GOT entries.
919 unsigned int tls_gotno_;
920 // The offset of TLS LDM entry for this GOT.
921 unsigned int tls_ldm_offset_;
922 // All symbols that have global GOT entry.
923 Global_got_entry_set global_got_symbols_;
924 // A hash table holding GOT entries.
925 Got_entry_set got_entries_;
926 // A hash table of GOT page entries.
927 Got_page_entry_set got_page_entries_;
928 // The offset of first GOT page entry for this GOT.
929 unsigned int got_page_offset_start_;
930 // The offset of next available GOT page entry for this GOT.
931 unsigned int got_page_offset_next_;
932 // A hash table that maps GOT page entry value to the GOT offset where
933 // the entry is located.
934 Got_page_offsets got_page_offsets_;
935 // In multi-GOT links, a pointer to the next GOT.
936 Mips_got_info<size, big_endian>* next_;
937 // Index of this GOT in multi-GOT links.
938 unsigned int index_;
939 // The offset of this GOT in multi-GOT links.
940 unsigned int offset_;
941 };
942
943 // This is a helper class used during relocation scan. It records GOT16 addend.
944
945 template<int size, bool big_endian>
946 struct got16_addend
947 {
948 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
949
950 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
951 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
952 Mips_address _addend)
953 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
954 addend(_addend)
955 { }
956
957 const Sized_relobj_file<size, big_endian>* object;
958 unsigned int shndx;
959 unsigned int r_type;
960 unsigned int r_sym;
961 Mips_address addend;
962 };
963
964 // .MIPS.abiflags section content
965
966 template<bool big_endian>
967 struct Mips_abiflags
968 {
969 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
970 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
971 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
972
973 Mips_abiflags()
974 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
975 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
976 { }
977
978 // Version of flags structure.
979 Valtype16 version;
980 // The level of the ISA: 1-5, 32, 64.
981 Valtype8 isa_level;
982 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
983 Valtype8 isa_rev;
984 // The size of general purpose registers.
985 Valtype8 gpr_size;
986 // The size of co-processor 1 registers.
987 Valtype8 cpr1_size;
988 // The size of co-processor 2 registers.
989 Valtype8 cpr2_size;
990 // The floating-point ABI.
991 Valtype8 fp_abi;
992 // Processor-specific extension.
993 Valtype32 isa_ext;
994 // Mask of ASEs used.
995 Valtype32 ases;
996 // Mask of general flags.
997 Valtype32 flags1;
998 Valtype32 flags2;
999 };
1000
1001 // Mips_symbol class. Holds additional symbol information needed for Mips.
1002
1003 template<int size>
1004 class Mips_symbol : public Sized_symbol<size>
1005 {
1006 public:
1007 Mips_symbol()
1008 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1009 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1010 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1011 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1012 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1013 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1014 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1015 { }
1016
1017 // Return whether this is a MIPS16 symbol.
1018 bool
1019 is_mips16() const
1020 {
1021 // (st_other & STO_MIPS16) == STO_MIPS16
1022 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1023 == elfcpp::STO_MIPS16 >> 2);
1024 }
1025
1026 // Return whether this is a microMIPS symbol.
1027 bool
1028 is_micromips() const
1029 {
1030 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1031 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1032 == elfcpp::STO_MICROMIPS >> 2);
1033 }
1034
1035 // Return whether the symbol needs MIPS16 fn_stub.
1036 bool
1037 need_fn_stub() const
1038 { return this->need_fn_stub_; }
1039
1040 // Set that the symbol needs MIPS16 fn_stub.
1041 void
1042 set_need_fn_stub()
1043 { this->need_fn_stub_ = true; }
1044
1045 // Return whether this symbol is referenced by branch relocations from
1046 // any non-PIC input file.
1047 bool
1048 has_nonpic_branches() const
1049 { return this->has_nonpic_branches_; }
1050
1051 // Set that this symbol is referenced by branch relocations from
1052 // any non-PIC input file.
1053 void
1054 set_has_nonpic_branches()
1055 { this->has_nonpic_branches_ = true; }
1056
1057 // Return the offset of the la25 stub for this symbol from the start of the
1058 // la25 stub section.
1059 unsigned int
1060 la25_stub_offset() const
1061 { return this->la25_stub_offset_; }
1062
1063 // Set the offset of the la25 stub for this symbol from the start of the
1064 // la25 stub section.
1065 void
1066 set_la25_stub_offset(unsigned int offset)
1067 { this->la25_stub_offset_ = offset; }
1068
1069 // Return whether the symbol has la25 stub. This is true if this symbol is
1070 // for a PIC function, and there are non-PIC branches and jumps to it.
1071 bool
1072 has_la25_stub() const
1073 { return this->la25_stub_offset_ != -1U; }
1074
1075 // Return whether there is a relocation against this symbol that must be
1076 // resolved by the static linker (that is, the relocation cannot possibly
1077 // be made dynamic).
1078 bool
1079 has_static_relocs() const
1080 { return this->has_static_relocs_; }
1081
1082 // Set that there is a relocation against this symbol that must be resolved
1083 // by the static linker (that is, the relocation cannot possibly be made
1084 // dynamic).
1085 void
1086 set_has_static_relocs()
1087 { this->has_static_relocs_ = true; }
1088
1089 // Return whether we must not create a lazy-binding stub for this symbol.
1090 bool
1091 no_lazy_stub() const
1092 { return this->no_lazy_stub_; }
1093
1094 // Set that we must not create a lazy-binding stub for this symbol.
1095 void
1096 set_no_lazy_stub()
1097 { this->no_lazy_stub_ = true; }
1098
1099 // Return the offset of the lazy-binding stub for this symbol from the start
1100 // of .MIPS.stubs section.
1101 unsigned int
1102 lazy_stub_offset() const
1103 { return this->lazy_stub_offset_; }
1104
1105 // Set the offset of the lazy-binding stub for this symbol from the start
1106 // of .MIPS.stubs section.
1107 void
1108 set_lazy_stub_offset(unsigned int offset)
1109 { this->lazy_stub_offset_ = offset; }
1110
1111 // Return whether there are any relocations for this symbol where
1112 // pointer equality matters.
1113 bool
1114 pointer_equality_needed() const
1115 { return this->pointer_equality_needed_; }
1116
1117 // Set that there are relocations for this symbol where pointer equality
1118 // matters.
1119 void
1120 set_pointer_equality_needed()
1121 { this->pointer_equality_needed_ = true; }
1122
1123 // Return global GOT area where this symbol in located.
1124 Global_got_area
1125 global_got_area() const
1126 { return this->global_got_area_; }
1127
1128 // Set global GOT area where this symbol in located.
1129 void
1130 set_global_got_area(Global_got_area global_got_area)
1131 { this->global_got_area_ = global_got_area; }
1132
1133 // Return the global GOT offset for this symbol. For multi-GOT links, this
1134 // returns the offset from the start of .got section to the first GOT entry
1135 // for the symbol. Note that in multi-GOT links the symbol can have entry
1136 // in more than one GOT.
1137 unsigned int
1138 global_gotoffset() const
1139 { return this->global_gotoffset_; }
1140
1141 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1142 // the symbol can have entry in more than one GOT. This method will set
1143 // the offset only if it is less than current offset.
1144 void
1145 set_global_gotoffset(unsigned int offset)
1146 {
1147 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1148 this->global_gotoffset_ = offset;
1149 }
1150
1151 // Return whether all GOT relocations for this symbol are for calls.
1152 bool
1153 got_only_for_calls() const
1154 { return this->got_only_for_calls_; }
1155
1156 // Set that there is a GOT relocation for this symbol that is not for call.
1157 void
1158 set_got_not_only_for_calls()
1159 { this->got_only_for_calls_ = false; }
1160
1161 // Return whether this is a PIC symbol.
1162 bool
1163 is_pic() const
1164 {
1165 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1166 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1167 == (elfcpp::STO_MIPS_PIC >> 2));
1168 }
1169
1170 // Set the flag in st_other field that marks this symbol as PIC.
1171 void
1172 set_pic()
1173 {
1174 if (this->is_mips16())
1175 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1176 this->set_nonvis((this->nonvis()
1177 & ~((elfcpp::STO_MIPS16 >> 2)
1178 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1179 | (elfcpp::STO_MIPS_PIC >> 2));
1180 else
1181 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1182 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1183 | (elfcpp::STO_MIPS_PIC >> 2));
1184 }
1185
1186 // Set the flag in st_other field that marks this symbol as PLT.
1187 void
1188 set_mips_plt()
1189 {
1190 if (this->is_mips16())
1191 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1192 this->set_nonvis((this->nonvis()
1193 & ((elfcpp::STO_MIPS16 >> 2)
1194 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1195 | (elfcpp::STO_MIPS_PLT >> 2));
1196
1197 else
1198 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1199 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1200 | (elfcpp::STO_MIPS_PLT >> 2));
1201 }
1202
1203 // Downcast a base pointer to a Mips_symbol pointer.
1204 static Mips_symbol<size>*
1205 as_mips_sym(Symbol* sym)
1206 { return static_cast<Mips_symbol<size>*>(sym); }
1207
1208 // Downcast a base pointer to a Mips_symbol pointer.
1209 static const Mips_symbol<size>*
1210 as_mips_sym(const Symbol* sym)
1211 { return static_cast<const Mips_symbol<size>*>(sym); }
1212
1213 // Return whether the symbol has lazy-binding stub.
1214 bool
1215 has_lazy_stub() const
1216 { return this->has_lazy_stub_; }
1217
1218 // Set whether the symbol has lazy-binding stub.
1219 void
1220 set_has_lazy_stub(bool has_lazy_stub)
1221 { this->has_lazy_stub_ = has_lazy_stub; }
1222
1223 // Return whether the symbol needs a standard PLT entry.
1224 bool
1225 needs_mips_plt() const
1226 { return this->needs_mips_plt_; }
1227
1228 // Set whether the symbol needs a standard PLT entry.
1229 void
1230 set_needs_mips_plt(bool needs_mips_plt)
1231 { this->needs_mips_plt_ = needs_mips_plt; }
1232
1233 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1234 // entry.
1235 bool
1236 needs_comp_plt() const
1237 { return this->needs_comp_plt_; }
1238
1239 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1240 void
1241 set_needs_comp_plt(bool needs_comp_plt)
1242 { this->needs_comp_plt_ = needs_comp_plt; }
1243
1244 // Return standard PLT entry offset, or -1 if none.
1245 unsigned int
1246 mips_plt_offset() const
1247 { return this->mips_plt_offset_; }
1248
1249 // Set standard PLT entry offset.
1250 void
1251 set_mips_plt_offset(unsigned int mips_plt_offset)
1252 { this->mips_plt_offset_ = mips_plt_offset; }
1253
1254 // Return whether the symbol has standard PLT entry.
1255 bool
1256 has_mips_plt_offset() const
1257 { return this->mips_plt_offset_ != -1U; }
1258
1259 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1260 unsigned int
1261 comp_plt_offset() const
1262 { return this->comp_plt_offset_; }
1263
1264 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1265 void
1266 set_comp_plt_offset(unsigned int comp_plt_offset)
1267 { this->comp_plt_offset_ = comp_plt_offset; }
1268
1269 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1270 bool
1271 has_comp_plt_offset() const
1272 { return this->comp_plt_offset_ != -1U; }
1273
1274 // Return MIPS16 fn stub for a symbol.
1275 template<bool big_endian>
1276 Mips16_stub_section<size, big_endian>*
1277 get_mips16_fn_stub() const
1278 {
1279 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1280 }
1281
1282 // Set MIPS16 fn stub for a symbol.
1283 void
1284 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1285 { this->mips16_fn_stub_ = stub; }
1286
1287 // Return whether symbol has MIPS16 fn stub.
1288 bool
1289 has_mips16_fn_stub() const
1290 { return this->mips16_fn_stub_ != NULL; }
1291
1292 // Return MIPS16 call stub for a symbol.
1293 template<bool big_endian>
1294 Mips16_stub_section<size, big_endian>*
1295 get_mips16_call_stub() const
1296 {
1297 return static_cast<Mips16_stub_section<size, big_endian>*>(
1298 mips16_call_stub_);
1299 }
1300
1301 // Set MIPS16 call stub for a symbol.
1302 void
1303 set_mips16_call_stub(Mips16_stub_section_base* stub)
1304 { this->mips16_call_stub_ = stub; }
1305
1306 // Return whether symbol has MIPS16 call stub.
1307 bool
1308 has_mips16_call_stub() const
1309 { return this->mips16_call_stub_ != NULL; }
1310
1311 // Return MIPS16 call_fp stub for a symbol.
1312 template<bool big_endian>
1313 Mips16_stub_section<size, big_endian>*
1314 get_mips16_call_fp_stub() const
1315 {
1316 return static_cast<Mips16_stub_section<size, big_endian>*>(
1317 mips16_call_fp_stub_);
1318 }
1319
1320 // Set MIPS16 call_fp stub for a symbol.
1321 void
1322 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1323 { this->mips16_call_fp_stub_ = stub; }
1324
1325 // Return whether symbol has MIPS16 call_fp stub.
1326 bool
1327 has_mips16_call_fp_stub() const
1328 { return this->mips16_call_fp_stub_ != NULL; }
1329
1330 bool
1331 get_applied_secondary_got_fixup() const
1332 { return applied_secondary_got_fixup_; }
1333
1334 void
1335 set_applied_secondary_got_fixup()
1336 { this->applied_secondary_got_fixup_ = true; }
1337
1338 // Return the hash of this symbol.
1339 size_t
1340 hash() const
1341 {
1342 return gold::string_hash<char>(this->name());
1343 }
1344
1345 private:
1346 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1347 // appears in any relocs other than a 16 bit call.
1348 bool need_fn_stub_;
1349
1350 // True if this symbol is referenced by branch relocations from
1351 // any non-PIC input file. This is used to determine whether an
1352 // la25 stub is required.
1353 bool has_nonpic_branches_;
1354
1355 // The offset of the la25 stub for this symbol from the start of the
1356 // la25 stub section.
1357 unsigned int la25_stub_offset_;
1358
1359 // True if there is a relocation against this symbol that must be
1360 // resolved by the static linker (that is, the relocation cannot
1361 // possibly be made dynamic).
1362 bool has_static_relocs_;
1363
1364 // Whether we must not create a lazy-binding stub for this symbol.
1365 // This is true if the symbol has relocations related to taking the
1366 // function's address.
1367 bool no_lazy_stub_;
1368
1369 // The offset of the lazy-binding stub for this symbol from the start of
1370 // .MIPS.stubs section.
1371 unsigned int lazy_stub_offset_;
1372
1373 // True if there are any relocations for this symbol where pointer equality
1374 // matters.
1375 bool pointer_equality_needed_;
1376
1377 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1378 // in the global part of the GOT.
1379 Global_got_area global_got_area_;
1380
1381 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1382 // from the start of .got section to the first GOT entry for the symbol.
1383 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1384 unsigned int global_gotoffset_;
1385
1386 // Whether all GOT relocations for this symbol are for calls.
1387 bool got_only_for_calls_;
1388 // Whether the symbol has lazy-binding stub.
1389 bool has_lazy_stub_;
1390 // Whether the symbol needs a standard PLT entry.
1391 bool needs_mips_plt_;
1392 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1393 bool needs_comp_plt_;
1394 // Standard PLT entry offset, or -1 if none.
1395 unsigned int mips_plt_offset_;
1396 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1397 unsigned int comp_plt_offset_;
1398 // MIPS16 fn stub for a symbol.
1399 Mips16_stub_section_base* mips16_fn_stub_;
1400 // MIPS16 call stub for a symbol.
1401 Mips16_stub_section_base* mips16_call_stub_;
1402 // MIPS16 call_fp stub for a symbol.
1403 Mips16_stub_section_base* mips16_call_fp_stub_;
1404
1405 bool applied_secondary_got_fixup_;
1406 };
1407
1408 // Mips16_stub_section class.
1409
1410 // The mips16 compiler uses a couple of special sections to handle
1411 // floating point arguments.
1412
1413 // Section names that look like .mips16.fn.FNNAME contain stubs that
1414 // copy floating point arguments from the fp regs to the gp regs and
1415 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1416 // call should be redirected to the stub instead. If no 32 bit
1417 // function calls FNNAME, the stub should be discarded. We need to
1418 // consider any reference to the function, not just a call, because
1419 // if the address of the function is taken we will need the stub,
1420 // since the address might be passed to a 32 bit function.
1421
1422 // Section names that look like .mips16.call.FNNAME contain stubs
1423 // that copy floating point arguments from the gp regs to the fp
1424 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1425 // then any 16 bit function that calls FNNAME should be redirected
1426 // to the stub instead. If FNNAME is not a 32 bit function, the
1427 // stub should be discarded.
1428
1429 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1430 // which call FNNAME and then copy the return value from the fp regs
1431 // to the gp regs. These stubs store the return address in $18 while
1432 // calling FNNAME; any function which might call one of these stubs
1433 // must arrange to save $18 around the call. (This case is not
1434 // needed for 32 bit functions that call 16 bit functions, because
1435 // 16 bit functions always return floating point values in both
1436 // $f0/$f1 and $2/$3.)
1437
1438 // Note that in all cases FNNAME might be defined statically.
1439 // Therefore, FNNAME is not used literally. Instead, the relocation
1440 // information will indicate which symbol the section is for.
1441
1442 // We record any stubs that we find in the symbol table.
1443
1444 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1445
1446 class Mips16_stub_section_base { };
1447
1448 template<int size, bool big_endian>
1449 class Mips16_stub_section : public Mips16_stub_section_base
1450 {
1451 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1452
1453 public:
1454 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1455 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1456 found_r_mips_none_(false)
1457 {
1458 gold_assert(object->is_mips16_fn_stub_section(shndx)
1459 || object->is_mips16_call_stub_section(shndx)
1460 || object->is_mips16_call_fp_stub_section(shndx));
1461 }
1462
1463 // Return the object of this stub section.
1464 Mips_relobj<size, big_endian>*
1465 object() const
1466 { return this->object_; }
1467
1468 // Return the size of a section.
1469 uint64_t
1470 section_size() const
1471 { return this->object_->section_size(this->shndx_); }
1472
1473 // Return section index of this stub section.
1474 unsigned int
1475 shndx() const
1476 { return this->shndx_; }
1477
1478 // Return symbol index, if stub is for a local function.
1479 unsigned int
1480 r_sym() const
1481 { return this->r_sym_; }
1482
1483 // Return symbol, if stub is for a global function.
1484 Mips_symbol<size>*
1485 gsym() const
1486 { return this->gsym_; }
1487
1488 // Return whether stub is for a local function.
1489 bool
1490 is_for_local_function() const
1491 { return this->gsym_ == NULL; }
1492
1493 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1494 // is found in the stub section. Try to find stub target.
1495 void
1496 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1497 {
1498 // To find target symbol for this stub, trust the first R_MIPS_NONE
1499 // relocation, if any. Otherwise trust the first relocation, whatever
1500 // its kind.
1501 if (this->found_r_mips_none_)
1502 return;
1503 if (r_type == elfcpp::R_MIPS_NONE)
1504 {
1505 this->r_sym_ = r_sym;
1506 this->gsym_ = NULL;
1507 this->found_r_mips_none_ = true;
1508 }
1509 else if (!is_target_found())
1510 this->r_sym_ = r_sym;
1511 }
1512
1513 // This method is called when a new relocation R_TYPE for global symbol GSYM
1514 // is found in the stub section. Try to find stub target.
1515 void
1516 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1517 {
1518 // To find target symbol for this stub, trust the first R_MIPS_NONE
1519 // relocation, if any. Otherwise trust the first relocation, whatever
1520 // its kind.
1521 if (this->found_r_mips_none_)
1522 return;
1523 if (r_type == elfcpp::R_MIPS_NONE)
1524 {
1525 this->gsym_ = gsym;
1526 this->r_sym_ = 0;
1527 this->found_r_mips_none_ = true;
1528 }
1529 else if (!is_target_found())
1530 this->gsym_ = gsym;
1531 }
1532
1533 // Return whether we found the stub target.
1534 bool
1535 is_target_found() const
1536 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1537
1538 // Return whether this is a fn stub.
1539 bool
1540 is_fn_stub() const
1541 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1542
1543 // Return whether this is a call stub.
1544 bool
1545 is_call_stub() const
1546 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1547
1548 // Return whether this is a call_fp stub.
1549 bool
1550 is_call_fp_stub() const
1551 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1552
1553 // Return the output address.
1554 Mips_address
1555 output_address() const
1556 {
1557 return (this->object_->output_section(this->shndx_)->address()
1558 + this->object_->output_section_offset(this->shndx_));
1559 }
1560
1561 private:
1562 // The object of this stub section.
1563 Mips_relobj<size, big_endian>* object_;
1564 // The section index of this stub section.
1565 unsigned int shndx_;
1566 // The symbol index, if stub is for a local function.
1567 unsigned int r_sym_;
1568 // The symbol, if stub is for a global function.
1569 Mips_symbol<size>* gsym_;
1570 // True if we found R_MIPS_NONE relocation in this stub.
1571 bool found_r_mips_none_;
1572 };
1573
1574 // Mips_relobj class.
1575
1576 template<int size, bool big_endian>
1577 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1578 {
1579 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1580 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1581 Mips16_stubs_int_map;
1582 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1583
1584 public:
1585 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1586 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1587 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1588 processor_specific_flags_(0), local_symbol_is_mips16_(),
1589 local_symbol_is_micromips_(), mips16_stub_sections_(),
1590 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1591 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1592 got_info_(NULL), section_is_mips16_fn_stub_(),
1593 section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1594 pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1595 gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1596 {
1597 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1598 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1599 }
1600
1601 ~Mips_relobj()
1602 { delete this->attributes_section_data_; }
1603
1604 // Downcast a base pointer to a Mips_relobj pointer. This is
1605 // not type-safe but we only use Mips_relobj not the base class.
1606 static Mips_relobj<size, big_endian>*
1607 as_mips_relobj(Relobj* relobj)
1608 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1609
1610 // Downcast a base pointer to a Mips_relobj pointer. This is
1611 // not type-safe but we only use Mips_relobj not the base class.
1612 static const Mips_relobj<size, big_endian>*
1613 as_mips_relobj(const Relobj* relobj)
1614 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1615
1616 // Processor-specific flags in ELF file header. This is valid only after
1617 // reading symbols.
1618 elfcpp::Elf_Word
1619 processor_specific_flags() const
1620 { return this->processor_specific_flags_; }
1621
1622 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1623 // index. This is only valid after do_count_local_symbol is called.
1624 bool
1625 local_symbol_is_mips16(unsigned int r_sym) const
1626 {
1627 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1628 return this->local_symbol_is_mips16_[r_sym];
1629 }
1630
1631 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1632 // index. This is only valid after do_count_local_symbol is called.
1633 bool
1634 local_symbol_is_micromips(unsigned int r_sym) const
1635 {
1636 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1637 return this->local_symbol_is_micromips_[r_sym];
1638 }
1639
1640 // Get or create MIPS16 stub section.
1641 Mips16_stub_section<size, big_endian>*
1642 get_mips16_stub_section(unsigned int shndx)
1643 {
1644 typename Mips16_stubs_int_map::const_iterator it =
1645 this->mips16_stub_sections_.find(shndx);
1646 if (it != this->mips16_stub_sections_.end())
1647 return (*it).second;
1648
1649 Mips16_stub_section<size, big_endian>* stub_section =
1650 new Mips16_stub_section<size, big_endian>(this, shndx);
1651 this->mips16_stub_sections_.insert(
1652 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1653 stub_section->shndx(), stub_section));
1654 return stub_section;
1655 }
1656
1657 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1658 // object doesn't have fn stub for R_SYM.
1659 Mips16_stub_section<size, big_endian>*
1660 get_local_mips16_fn_stub(unsigned int r_sym) const
1661 {
1662 typename Mips16_stubs_int_map::const_iterator it =
1663 this->local_mips16_fn_stubs_.find(r_sym);
1664 if (it != this->local_mips16_fn_stubs_.end())
1665 return (*it).second;
1666 return NULL;
1667 }
1668
1669 // Record that this object has MIPS16 fn stub for local symbol. This method
1670 // is only called if we decided not to discard the stub.
1671 void
1672 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1673 {
1674 gold_assert(stub->is_for_local_function());
1675 unsigned int r_sym = stub->r_sym();
1676 this->local_mips16_fn_stubs_.insert(
1677 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1678 r_sym, stub));
1679 }
1680
1681 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1682 // object doesn't have call stub for R_SYM.
1683 Mips16_stub_section<size, big_endian>*
1684 get_local_mips16_call_stub(unsigned int r_sym) const
1685 {
1686 typename Mips16_stubs_int_map::const_iterator it =
1687 this->local_mips16_call_stubs_.find(r_sym);
1688 if (it != this->local_mips16_call_stubs_.end())
1689 return (*it).second;
1690 return NULL;
1691 }
1692
1693 // Record that this object has MIPS16 call stub for local symbol. This method
1694 // is only called if we decided not to discard the stub.
1695 void
1696 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1697 {
1698 gold_assert(stub->is_for_local_function());
1699 unsigned int r_sym = stub->r_sym();
1700 this->local_mips16_call_stubs_.insert(
1701 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1702 r_sym, stub));
1703 }
1704
1705 // Record that we found "non 16-bit" call relocation against local symbol
1706 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1707 // is one.
1708 void
1709 add_local_non_16bit_call(unsigned int symndx)
1710 { this->local_non_16bit_calls_.insert(symndx); }
1711
1712 // Return true if there is any "non 16-bit" call relocation against local
1713 // symbol SYMNDX in this object.
1714 bool
1715 has_local_non_16bit_call_relocs(unsigned int symndx)
1716 {
1717 return (this->local_non_16bit_calls_.find(symndx)
1718 != this->local_non_16bit_calls_.end());
1719 }
1720
1721 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1722 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1723 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1724 void
1725 add_local_16bit_call(unsigned int symndx)
1726 { this->local_16bit_calls_.insert(symndx); }
1727
1728 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1729 // symbol SYMNDX in this object.
1730 bool
1731 has_local_16bit_call_relocs(unsigned int symndx)
1732 {
1733 return (this->local_16bit_calls_.find(symndx)
1734 != this->local_16bit_calls_.end());
1735 }
1736
1737 // Get gp value that was used to create this object.
1738 Mips_address
1739 gp_value() const
1740 { return this->gp_; }
1741
1742 // Return whether the object is a PIC object.
1743 bool
1744 is_pic() const
1745 { return this->is_pic_; }
1746
1747 // Return whether the object uses N32 ABI.
1748 bool
1749 is_n32() const
1750 { return this->is_n32_; }
1751
1752 // Return whether the object uses N64 ABI.
1753 bool
1754 is_n64() const
1755 { return size == 64; }
1756
1757 // Return whether the object uses NewABI conventions.
1758 bool
1759 is_newabi() const
1760 { return this->is_n32() || this->is_n64(); }
1761
1762 // Return Mips_got_info for this object.
1763 Mips_got_info<size, big_endian>*
1764 get_got_info() const
1765 { return this->got_info_; }
1766
1767 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1768 Mips_got_info<size, big_endian>*
1769 get_or_create_got_info()
1770 {
1771 if (!this->got_info_)
1772 this->got_info_ = new Mips_got_info<size, big_endian>();
1773 return this->got_info_;
1774 }
1775
1776 // Set Mips_got_info for this object.
1777 void
1778 set_got_info(Mips_got_info<size, big_endian>* got_info)
1779 { this->got_info_ = got_info; }
1780
1781 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1782 // after do_read_symbols is called.
1783 bool
1784 is_mips16_stub_section(unsigned int shndx)
1785 {
1786 return (is_mips16_fn_stub_section(shndx)
1787 || is_mips16_call_stub_section(shndx)
1788 || is_mips16_call_fp_stub_section(shndx));
1789 }
1790
1791 // Return TRUE if relocations in section SHNDX can refer directly to a
1792 // MIPS16 function rather than to a hard-float stub. This is only valid
1793 // after do_read_symbols is called.
1794 bool
1795 section_allows_mips16_refs(unsigned int shndx)
1796 {
1797 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1798 }
1799
1800 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1801 // after do_read_symbols is called.
1802 bool
1803 is_mips16_fn_stub_section(unsigned int shndx)
1804 {
1805 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1806 return this->section_is_mips16_fn_stub_[shndx];
1807 }
1808
1809 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1810 // after do_read_symbols is called.
1811 bool
1812 is_mips16_call_stub_section(unsigned int shndx)
1813 {
1814 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1815 return this->section_is_mips16_call_stub_[shndx];
1816 }
1817
1818 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1819 // valid after do_read_symbols is called.
1820 bool
1821 is_mips16_call_fp_stub_section(unsigned int shndx)
1822 {
1823 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1824 return this->section_is_mips16_call_fp_stub_[shndx];
1825 }
1826
1827 // Discard MIPS16 stub secions that are not needed.
1828 void
1829 discard_mips16_stub_sections(Symbol_table* symtab);
1830
1831 // Return whether there is a .reginfo section.
1832 bool
1833 has_reginfo_section() const
1834 { return this->has_reginfo_section_; }
1835
1836 // Return gprmask from the .reginfo section of this object.
1837 Valtype
1838 gprmask() const
1839 { return this->gprmask_; }
1840
1841 // Return cprmask1 from the .reginfo section of this object.
1842 Valtype
1843 cprmask1() const
1844 { return this->cprmask1_; }
1845
1846 // Return cprmask2 from the .reginfo section of this object.
1847 Valtype
1848 cprmask2() const
1849 { return this->cprmask2_; }
1850
1851 // Return cprmask3 from the .reginfo section of this object.
1852 Valtype
1853 cprmask3() const
1854 { return this->cprmask3_; }
1855
1856 // Return cprmask4 from the .reginfo section of this object.
1857 Valtype
1858 cprmask4() const
1859 { return this->cprmask4_; }
1860
1861 // This is the contents of the .MIPS.abiflags section if there is one.
1862 Mips_abiflags<big_endian>*
1863 abiflags()
1864 { return this->abiflags_; }
1865
1866 // This is the contents of the .gnu.attribute section if there is one.
1867 const Attributes_section_data*
1868 attributes_section_data() const
1869 { return this->attributes_section_data_; }
1870
1871 protected:
1872 // Count the local symbols.
1873 void
1874 do_count_local_symbols(Stringpool_template<char>*,
1875 Stringpool_template<char>*);
1876
1877 // Read the symbol information.
1878 void
1879 do_read_symbols(Read_symbols_data* sd);
1880
1881 private:
1882 // The name of the options section.
1883 const char* mips_elf_options_section_name()
1884 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1885
1886 // processor-specific flags in ELF file header.
1887 elfcpp::Elf_Word processor_specific_flags_;
1888
1889 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1890 // This is only valid after do_count_local_symbol is called.
1891 std::vector<bool> local_symbol_is_mips16_;
1892
1893 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1894 // This is only valid after do_count_local_symbol is called.
1895 std::vector<bool> local_symbol_is_micromips_;
1896
1897 // Map from section index to the MIPS16 stub for that section. This contains
1898 // all stubs found in this object.
1899 Mips16_stubs_int_map mips16_stub_sections_;
1900
1901 // Local symbols that have "non 16-bit" call relocation. This relocation
1902 // would need to refer to a MIPS16 fn stub, if there is one.
1903 std::set<unsigned int> local_non_16bit_calls_;
1904
1905 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1906 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1907 // relocation that refers to the stub symbol.
1908 std::set<unsigned int> local_16bit_calls_;
1909
1910 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1911 // This contains only the stubs that we decided not to discard.
1912 Mips16_stubs_int_map local_mips16_fn_stubs_;
1913
1914 // Map from local symbol index to the MIPS16 call stub for that symbol.
1915 // This contains only the stubs that we decided not to discard.
1916 Mips16_stubs_int_map local_mips16_call_stubs_;
1917
1918 // gp value that was used to create this object.
1919 Mips_address gp_;
1920 // Whether the object is a PIC object.
1921 bool is_pic_ : 1;
1922 // Whether the object uses N32 ABI.
1923 bool is_n32_ : 1;
1924 // Whether the object contains a .reginfo section.
1925 bool has_reginfo_section_ : 1;
1926 // The Mips_got_info for this object.
1927 Mips_got_info<size, big_endian>* got_info_;
1928
1929 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1930 // This is only valid after do_read_symbols is called.
1931 std::vector<bool> section_is_mips16_fn_stub_;
1932
1933 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1934 // This is only valid after do_read_symbols is called.
1935 std::vector<bool> section_is_mips16_call_stub_;
1936
1937 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1938 // This is only valid after do_read_symbols is called.
1939 std::vector<bool> section_is_mips16_call_fp_stub_;
1940
1941 // .pdr section index.
1942 unsigned int pdr_shndx_;
1943
1944 // Object attributes if there is a .gnu.attributes section or NULL.
1945 Attributes_section_data* attributes_section_data_;
1946
1947 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1948 Mips_abiflags<big_endian>* abiflags_;
1949
1950 // gprmask from the .reginfo section of this object.
1951 Valtype gprmask_;
1952 // cprmask1 from the .reginfo section of this object.
1953 Valtype cprmask1_;
1954 // cprmask2 from the .reginfo section of this object.
1955 Valtype cprmask2_;
1956 // cprmask3 from the .reginfo section of this object.
1957 Valtype cprmask3_;
1958 // cprmask4 from the .reginfo section of this object.
1959 Valtype cprmask4_;
1960 };
1961
1962 // Mips_output_data_got class.
1963
1964 template<int size, bool big_endian>
1965 class Mips_output_data_got : public Output_data_got<size, big_endian>
1966 {
1967 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1968 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1969 Reloc_section;
1970 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1971
1972 public:
1973 Mips_output_data_got(Target_mips<size, big_endian>* target,
1974 Symbol_table* symtab, Layout* layout)
1975 : Output_data_got<size, big_endian>(), target_(target),
1976 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1977 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1978 secondary_got_relocs_()
1979 {
1980 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1981 this->set_addralign(16);
1982 }
1983
1984 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1985 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1986 void
1987 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1988 unsigned int symndx, Mips_address addend,
1989 unsigned int r_type, unsigned int shndx,
1990 bool is_section_symbol)
1991 {
1992 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1993 r_type, shndx,
1994 is_section_symbol);
1995 }
1996
1997 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1998 // in OBJECT. FOR_CALL is true if the caller is only interested in
1999 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2000 // relocation.
2001 void
2002 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2003 Mips_relobj<size, big_endian>* object,
2004 unsigned int r_type, bool dyn_reloc, bool for_call)
2005 {
2006 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2007 dyn_reloc, for_call);
2008 }
2009
2010 // Record that OBJECT has a page relocation against symbol SYMNDX and
2011 // that ADDEND is the addend for that relocation.
2012 void
2013 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2014 unsigned int symndx, int addend)
2015 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2016
2017 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2018 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2019 // applied in a static link.
2020 void
2021 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2022 Mips_symbol<size>* gsym)
2023 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2024
2025 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2026 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2027 // relocation that needs to be applied in a static link.
2028 void
2029 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2030 Sized_relobj_file<size, big_endian>* relobj,
2031 unsigned int index)
2032 {
2033 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2034 index));
2035 }
2036
2037 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2038 // secondary GOT at OFFSET.
2039 void
2040 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2041 Mips_symbol<size>* gsym)
2042 {
2043 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2044 r_type, gsym));
2045 }
2046
2047 // Update GOT entry at OFFSET with VALUE.
2048 void
2049 update_got_entry(unsigned int offset, Mips_address value)
2050 {
2051 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2052 }
2053
2054 // Return the number of entries in local part of the GOT. This includes
2055 // local entries, page entries and 2 reserved entries.
2056 unsigned int
2057 get_local_gotno() const
2058 {
2059 if (!this->multi_got())
2060 {
2061 return (2 + this->master_got_info_->local_gotno()
2062 + this->master_got_info_->page_gotno());
2063 }
2064 else
2065 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2066 }
2067
2068 // Return dynamic symbol table index of the first symbol with global GOT
2069 // entry.
2070 unsigned int
2071 first_global_got_dynsym_index() const
2072 { return this->first_global_got_dynsym_index_; }
2073
2074 // Set dynamic symbol table index of the first symbol with global GOT entry.
2075 void
2076 set_first_global_got_dynsym_index(unsigned int index)
2077 { this->first_global_got_dynsym_index_ = index; }
2078
2079 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2080 // larger than 64K, create multi-GOT.
2081 void
2082 lay_out_got(Layout* layout, Symbol_table* symtab,
2083 const Input_objects* input_objects);
2084
2085 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2086 void
2087 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2088
2089 // Attempt to merge GOTs of different input objects.
2090 void
2091 merge_gots(const Input_objects* input_objects);
2092
2093 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2094 // this would lead to overflow, true if they were merged successfully.
2095 bool
2096 merge_got_with(Mips_got_info<size, big_endian>* from,
2097 Mips_relobj<size, big_endian>* object,
2098 Mips_got_info<size, big_endian>* to);
2099
2100 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2101 // use OBJECT's GOT.
2102 unsigned int
2103 get_got_page_offset(Mips_address value,
2104 const Mips_relobj<size, big_endian>* object)
2105 {
2106 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2107 ? this->master_got_info_
2108 : object->get_got_info());
2109 gold_assert(g != NULL);
2110 return g->get_got_page_offset(value, this);
2111 }
2112
2113 // Return the GOT offset of type GOT_TYPE of the global symbol
2114 // GSYM. For multi-GOT links, use OBJECT's GOT.
2115 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2116 Mips_relobj<size, big_endian>* object) const
2117 {
2118 if (!this->multi_got())
2119 return gsym->got_offset(got_type);
2120 else
2121 {
2122 Mips_got_info<size, big_endian>* g = object->get_got_info();
2123 gold_assert(g != NULL);
2124 return gsym->got_offset(g->multigot_got_type(got_type));
2125 }
2126 }
2127
2128 // Return the GOT offset of type GOT_TYPE of the local symbol
2129 // SYMNDX.
2130 unsigned int
2131 got_offset(unsigned int symndx, unsigned int got_type,
2132 Sized_relobj_file<size, big_endian>* object,
2133 uint64_t addend) const
2134 { return object->local_got_offset(symndx, got_type, addend); }
2135
2136 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2137 unsigned int
2138 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2139 {
2140 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2141 ? this->master_got_info_
2142 : object->get_got_info());
2143 gold_assert(g != NULL);
2144 return g->tls_ldm_offset();
2145 }
2146
2147 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2148 void
2149 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2150 Mips_relobj<size, big_endian>* object)
2151 {
2152 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2153 ? this->master_got_info_
2154 : object->get_got_info());
2155 gold_assert(g != NULL);
2156 g->set_tls_ldm_offset(tls_ldm_offset);
2157 }
2158
2159 // Return true for multi-GOT links.
2160 bool
2161 multi_got() const
2162 { return this->primary_got_ != NULL; }
2163
2164 // Return the offset of OBJECT's GOT from the start of .got section.
2165 unsigned int
2166 get_got_offset(const Mips_relobj<size, big_endian>* object)
2167 {
2168 if (!this->multi_got())
2169 return 0;
2170 else
2171 {
2172 Mips_got_info<size, big_endian>* g = object->get_got_info();
2173 return g != NULL ? g->offset() : 0;
2174 }
2175 }
2176
2177 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2178 void
2179 add_reloc_only_entries()
2180 { this->master_got_info_->add_reloc_only_entries(this); }
2181
2182 // Return offset of the primary GOT's entry for global symbol.
2183 unsigned int
2184 get_primary_got_offset(const Mips_symbol<size>* sym) const
2185 {
2186 gold_assert(sym->global_got_area() != GGA_NONE);
2187 return (this->get_local_gotno() + sym->dynsym_index()
2188 - this->first_global_got_dynsym_index()) * size/8;
2189 }
2190
2191 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2192 // Input argument GOT_OFFSET is always global offset from the start of
2193 // .got section, for both single and multi-GOT links.
2194 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2195 // links, the return value is object_got_offset - 0x7FF0, where
2196 // object_got_offset is offset in the OBJECT's GOT.
2197 int
2198 gp_offset(unsigned int got_offset,
2199 const Mips_relobj<size, big_endian>* object) const
2200 {
2201 return (this->address() + got_offset
2202 - this->target_->adjusted_gp_value(object));
2203 }
2204
2205 protected:
2206 // Write out the GOT table.
2207 void
2208 do_write(Output_file*);
2209
2210 private:
2211
2212 // This class represent dynamic relocations that need to be applied by
2213 // gold because we are using TLS relocations in a static link.
2214 class Static_reloc
2215 {
2216 public:
2217 Static_reloc(unsigned int got_offset, unsigned int r_type,
2218 Mips_symbol<size>* gsym)
2219 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2220 { this->u_.global.symbol = gsym; }
2221
2222 Static_reloc(unsigned int got_offset, unsigned int r_type,
2223 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2224 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2225 {
2226 this->u_.local.relobj = relobj;
2227 this->u_.local.index = index;
2228 }
2229
2230 // Return the GOT offset.
2231 unsigned int
2232 got_offset() const
2233 { return this->got_offset_; }
2234
2235 // Relocation type.
2236 unsigned int
2237 r_type() const
2238 { return this->r_type_; }
2239
2240 // Whether the symbol is global or not.
2241 bool
2242 symbol_is_global() const
2243 { return this->symbol_is_global_; }
2244
2245 // For a relocation against a global symbol, the global symbol.
2246 Mips_symbol<size>*
2247 symbol() const
2248 {
2249 gold_assert(this->symbol_is_global_);
2250 return this->u_.global.symbol;
2251 }
2252
2253 // For a relocation against a local symbol, the defining object.
2254 Sized_relobj_file<size, big_endian>*
2255 relobj() const
2256 {
2257 gold_assert(!this->symbol_is_global_);
2258 return this->u_.local.relobj;
2259 }
2260
2261 // For a relocation against a local symbol, the local symbol index.
2262 unsigned int
2263 index() const
2264 {
2265 gold_assert(!this->symbol_is_global_);
2266 return this->u_.local.index;
2267 }
2268
2269 private:
2270 // GOT offset of the entry to which this relocation is applied.
2271 unsigned int got_offset_;
2272 // Type of relocation.
2273 unsigned int r_type_;
2274 // Whether this relocation is against a global symbol.
2275 bool symbol_is_global_;
2276 // A global or local symbol.
2277 union
2278 {
2279 struct
2280 {
2281 // For a global symbol, the symbol itself.
2282 Mips_symbol<size>* symbol;
2283 } global;
2284 struct
2285 {
2286 // For a local symbol, the object defining object.
2287 Sized_relobj_file<size, big_endian>* relobj;
2288 // For a local symbol, the symbol index.
2289 unsigned int index;
2290 } local;
2291 } u_;
2292 };
2293
2294 // The target.
2295 Target_mips<size, big_endian>* target_;
2296 // The symbol table.
2297 Symbol_table* symbol_table_;
2298 // The layout.
2299 Layout* layout_;
2300 // Static relocs to be applied to the GOT.
2301 std::vector<Static_reloc> static_relocs_;
2302 // .got section view.
2303 unsigned char* got_view_;
2304 // The dynamic symbol table index of the first symbol with global GOT entry.
2305 unsigned int first_global_got_dynsym_index_;
2306 // The master GOT information.
2307 Mips_got_info<size, big_endian>* master_got_info_;
2308 // The primary GOT information.
2309 Mips_got_info<size, big_endian>* primary_got_;
2310 // Secondary GOT fixups.
2311 std::vector<Static_reloc> secondary_got_relocs_;
2312 };
2313
2314 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2315 // two ways of creating these interfaces. The first is to add:
2316 //
2317 // lui $25,%hi(func)
2318 // j func
2319 // addiu $25,$25,%lo(func)
2320 //
2321 // to a separate trampoline section. The second is to add:
2322 //
2323 // lui $25,%hi(func)
2324 // addiu $25,$25,%lo(func)
2325 //
2326 // immediately before a PIC function "func", but only if a function is at the
2327 // beginning of the section, and the section is not too heavily aligned (i.e we
2328 // would need to add no more than 2 nops before the stub.)
2329 //
2330 // We only create stubs of the first type.
2331
2332 template<int size, bool big_endian>
2333 class Mips_output_data_la25_stub : public Output_section_data
2334 {
2335 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2336
2337 public:
2338 Mips_output_data_la25_stub()
2339 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2340 { }
2341
2342 // Create LA25 stub for a symbol.
2343 void
2344 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2345 Mips_symbol<size>* gsym);
2346
2347 // Return output address of a stub.
2348 Mips_address
2349 stub_address(const Mips_symbol<size>* sym) const
2350 {
2351 gold_assert(sym->has_la25_stub());
2352 return this->address() + sym->la25_stub_offset();
2353 }
2354
2355 protected:
2356 void
2357 do_adjust_output_section(Output_section* os)
2358 { os->set_entsize(0); }
2359
2360 private:
2361 // Template for standard LA25 stub.
2362 static const uint32_t la25_stub_entry[];
2363 // Template for microMIPS LA25 stub.
2364 static const uint32_t la25_stub_micromips_entry[];
2365
2366 // Set the final size.
2367 void
2368 set_final_data_size()
2369 { this->set_data_size(this->symbols_.size() * 16); }
2370
2371 // Create a symbol for SYM stub's value and size, to help make the
2372 // disassembly easier to read.
2373 void
2374 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2375 Target_mips<size, big_endian>* target, uint64_t symsize);
2376
2377 // Write to a map file.
2378 void
2379 do_print_to_mapfile(Mapfile* mapfile) const
2380 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2381
2382 // Write out the LA25 stub section.
2383 void
2384 do_write(Output_file*);
2385
2386 // Symbols that have LA25 stubs.
2387 std::vector<Mips_symbol<size>*> symbols_;
2388 };
2389
2390 // MIPS-specific relocation writer.
2391
2392 template<int sh_type, bool dynamic, int size, bool big_endian>
2393 struct Mips_output_reloc_writer;
2394
2395 template<int sh_type, bool dynamic, bool big_endian>
2396 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2397 {
2398 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2399 typedef std::vector<Output_reloc_type> Relocs;
2400
2401 static void
2402 write(typename Relocs::const_iterator p, unsigned char* pov)
2403 { p->write(pov); }
2404 };
2405
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2408 {
2409 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2410 typedef std::vector<Output_reloc_type> Relocs;
2411
2412 static void
2413 write(typename Relocs::const_iterator p, unsigned char* pov)
2414 {
2415 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2416 orel.put_r_offset(p->get_address());
2417 orel.put_r_sym(p->get_symbol_index());
2418 orel.put_r_ssym(RSS_UNDEF);
2419 orel.put_r_type(p->type());
2420 if (p->type() == elfcpp::R_MIPS_REL32)
2421 orel.put_r_type2(elfcpp::R_MIPS_64);
2422 else
2423 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2424 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2425 }
2426 };
2427
2428 template<int sh_type, bool dynamic, int size, bool big_endian>
2429 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2430 size, big_endian>
2431 {
2432 public:
2433 Mips_output_data_reloc(bool sort_relocs)
2434 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2435 { }
2436
2437 protected:
2438 // Write out the data.
2439 void
2440 do_write(Output_file* of)
2441 {
2442 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2443 big_endian> Writer;
2444 this->template do_write_generic<Writer>(of);
2445 }
2446 };
2447
2448
2449 // A class to handle the PLT data.
2450
2451 template<int size, bool big_endian>
2452 class Mips_output_data_plt : public Output_section_data
2453 {
2454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2455 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2456 size, big_endian> Reloc_section;
2457
2458 public:
2459 // Create the PLT section. The ordinary .got section is an argument,
2460 // since we need to refer to the start.
2461 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2462 Target_mips<size, big_endian>* target)
2463 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2464 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2465 target_(target)
2466 {
2467 this->rel_ = new Reloc_section(false);
2468 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2469 elfcpp::SHF_ALLOC, this->rel_,
2470 ORDER_DYNAMIC_PLT_RELOCS, false);
2471 }
2472
2473 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2474 void
2475 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2476
2477 // Return the .rel.plt section data.
2478 Reloc_section*
2479 rel_plt() const
2480 { return this->rel_; }
2481
2482 // Return the number of PLT entries.
2483 unsigned int
2484 entry_count() const
2485 { return this->symbols_.size(); }
2486
2487 // Return the offset of the first non-reserved PLT entry.
2488 unsigned int
2489 first_plt_entry_offset() const
2490 { return sizeof(plt0_entry_o32); }
2491
2492 // Return the size of a PLT entry.
2493 unsigned int
2494 plt_entry_size() const
2495 { return sizeof(plt_entry); }
2496
2497 // Set final PLT offsets. For each symbol, determine whether standard or
2498 // compressed (MIPS16 or microMIPS) PLT entry is used.
2499 void
2500 set_plt_offsets();
2501
2502 // Return the offset of the first standard PLT entry.
2503 unsigned int
2504 first_mips_plt_offset() const
2505 { return this->plt_header_size_; }
2506
2507 // Return the offset of the first compressed PLT entry.
2508 unsigned int
2509 first_comp_plt_offset() const
2510 { return this->plt_header_size_ + this->plt_mips_offset_; }
2511
2512 // Return whether there are any standard PLT entries.
2513 bool
2514 has_standard_entries() const
2515 { return this->plt_mips_offset_ > 0; }
2516
2517 // Return the output address of standard PLT entry.
2518 Mips_address
2519 mips_entry_address(const Mips_symbol<size>* sym) const
2520 {
2521 gold_assert (sym->has_mips_plt_offset());
2522 return (this->address() + this->first_mips_plt_offset()
2523 + sym->mips_plt_offset());
2524 }
2525
2526 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2527 Mips_address
2528 comp_entry_address(const Mips_symbol<size>* sym) const
2529 {
2530 gold_assert (sym->has_comp_plt_offset());
2531 return (this->address() + this->first_comp_plt_offset()
2532 + sym->comp_plt_offset());
2533 }
2534
2535 protected:
2536 void
2537 do_adjust_output_section(Output_section* os)
2538 { os->set_entsize(0); }
2539
2540 // Write to a map file.
2541 void
2542 do_print_to_mapfile(Mapfile* mapfile) const
2543 { mapfile->print_output_data(this, _(".plt")); }
2544
2545 private:
2546 // Template for the first PLT entry.
2547 static const uint32_t plt0_entry_o32[];
2548 static const uint32_t plt0_entry_n32[];
2549 static const uint32_t plt0_entry_n64[];
2550 static const uint32_t plt0_entry_micromips_o32[];
2551 static const uint32_t plt0_entry_micromips32_o32[];
2552
2553 // Template for subsequent PLT entries.
2554 static const uint32_t plt_entry[];
2555 static const uint32_t plt_entry_r6[];
2556 static const uint32_t plt_entry_mips16_o32[];
2557 static const uint32_t plt_entry_micromips_o32[];
2558 static const uint32_t plt_entry_micromips32_o32[];
2559
2560 // Set the final size.
2561 void
2562 set_final_data_size()
2563 {
2564 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2565 + this->plt_comp_offset_);
2566 }
2567
2568 // Write out the PLT data.
2569 void
2570 do_write(Output_file*);
2571
2572 // Return whether the plt header contains microMIPS code. For the sake of
2573 // cache alignment always use a standard header whenever any standard entries
2574 // are present even if microMIPS entries are present as well. This also lets
2575 // the microMIPS header rely on the value of $v0 only set by microMIPS
2576 // entries, for a small size reduction.
2577 bool
2578 is_plt_header_compressed() const
2579 {
2580 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2581 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2582 }
2583
2584 // Return the size of the PLT header.
2585 unsigned int
2586 get_plt_header_size() const
2587 {
2588 if (this->target_->is_output_n64())
2589 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2590 else if (this->target_->is_output_n32())
2591 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2592 else if (!this->is_plt_header_compressed())
2593 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2594 else if (this->target_->use_32bit_micromips_instructions())
2595 return (2 * sizeof(plt0_entry_micromips32_o32)
2596 / sizeof(plt0_entry_micromips32_o32[0]));
2597 else
2598 return (2 * sizeof(plt0_entry_micromips_o32)
2599 / sizeof(plt0_entry_micromips_o32[0]));
2600 }
2601
2602 // Return the PLT header entry.
2603 const uint32_t*
2604 get_plt_header_entry() const
2605 {
2606 if (this->target_->is_output_n64())
2607 return plt0_entry_n64;
2608 else if (this->target_->is_output_n32())
2609 return plt0_entry_n32;
2610 else if (!this->is_plt_header_compressed())
2611 return plt0_entry_o32;
2612 else if (this->target_->use_32bit_micromips_instructions())
2613 return plt0_entry_micromips32_o32;
2614 else
2615 return plt0_entry_micromips_o32;
2616 }
2617
2618 // Return the size of the standard PLT entry.
2619 unsigned int
2620 standard_plt_entry_size() const
2621 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2622
2623 // Return the size of the compressed PLT entry.
2624 unsigned int
2625 compressed_plt_entry_size() const
2626 {
2627 gold_assert(!this->target_->is_output_newabi());
2628
2629 if (!this->target_->is_output_micromips())
2630 return (2 * sizeof(plt_entry_mips16_o32)
2631 / sizeof(plt_entry_mips16_o32[0]));
2632 else if (this->target_->use_32bit_micromips_instructions())
2633 return (2 * sizeof(plt_entry_micromips32_o32)
2634 / sizeof(plt_entry_micromips32_o32[0]));
2635 else
2636 return (2 * sizeof(plt_entry_micromips_o32)
2637 / sizeof(plt_entry_micromips_o32[0]));
2638 }
2639
2640 // The reloc section.
2641 Reloc_section* rel_;
2642 // The .got.plt section.
2643 Output_data_space* got_plt_;
2644 // Symbols that have PLT entry.
2645 std::vector<Mips_symbol<size>*> symbols_;
2646 // The offset of the next standard PLT entry to create.
2647 unsigned int plt_mips_offset_;
2648 // The offset of the next compressed PLT entry to create.
2649 unsigned int plt_comp_offset_;
2650 // The size of the PLT header in bytes.
2651 unsigned int plt_header_size_;
2652 // The target.
2653 Target_mips<size, big_endian>* target_;
2654 };
2655
2656 // A class to handle the .MIPS.stubs data.
2657
2658 template<int size, bool big_endian>
2659 class Mips_output_data_mips_stubs : public Output_section_data
2660 {
2661 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2662
2663 // Unordered set of .MIPS.stubs entries.
2664 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2665 Mips_stubs_entry_set;
2666
2667 public:
2668 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2669 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2670 stub_offsets_are_set_(false), target_(target)
2671 { }
2672
2673 // Create entry for a symbol.
2674 void
2675 make_entry(Mips_symbol<size>*);
2676
2677 // Remove entry for a symbol.
2678 void
2679 remove_entry(Mips_symbol<size>* gsym);
2680
2681 // Set stub offsets for symbols. This method expects that the number of
2682 // entries in dynamic symbol table is set.
2683 void
2684 set_lazy_stub_offsets();
2685
2686 void
2687 set_needs_dynsym_value();
2688
2689 // Set the number of entries in dynamic symbol table.
2690 void
2691 set_dynsym_count(unsigned int dynsym_count)
2692 { this->dynsym_count_ = dynsym_count; }
2693
2694 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2695 // count is greater than 0x10000. If the dynamic symbol count is less than
2696 // 0x10000, the stub will be 4 bytes smaller.
2697 // There's no disadvantage from using microMIPS code here, so for the sake of
2698 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2699 // output produced at all. This has a benefit of stubs being shorter by
2700 // 4 bytes each too, unless in the insn32 mode.
2701 unsigned int
2702 stub_max_size() const
2703 {
2704 if (!this->target_->is_output_micromips()
2705 || this->target_->use_32bit_micromips_instructions())
2706 return 20;
2707 else
2708 return 16;
2709 }
2710
2711 // Return the size of the stub. This method expects that the final dynsym
2712 // count is set.
2713 unsigned int
2714 stub_size() const
2715 {
2716 gold_assert(this->dynsym_count_ != -1U);
2717 if (this->dynsym_count_ > 0x10000)
2718 return this->stub_max_size();
2719 else
2720 return this->stub_max_size() - 4;
2721 }
2722
2723 // Return output address of a stub.
2724 Mips_address
2725 stub_address(const Mips_symbol<size>* sym) const
2726 {
2727 gold_assert(sym->has_lazy_stub());
2728 return this->address() + sym->lazy_stub_offset();
2729 }
2730
2731 protected:
2732 void
2733 do_adjust_output_section(Output_section* os)
2734 { os->set_entsize(0); }
2735
2736 // Write to a map file.
2737 void
2738 do_print_to_mapfile(Mapfile* mapfile) const
2739 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2740
2741 private:
2742 static const uint32_t lazy_stub_normal_1[];
2743 static const uint32_t lazy_stub_normal_1_n64[];
2744 static const uint32_t lazy_stub_normal_2[];
2745 static const uint32_t lazy_stub_normal_2_n64[];
2746 static const uint32_t lazy_stub_big[];
2747 static const uint32_t lazy_stub_big_n64[];
2748
2749 static const uint32_t lazy_stub_micromips_normal_1[];
2750 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2751 static const uint32_t lazy_stub_micromips_normal_2[];
2752 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2753 static const uint32_t lazy_stub_micromips_big[];
2754 static const uint32_t lazy_stub_micromips_big_n64[];
2755
2756 static const uint32_t lazy_stub_micromips32_normal_1[];
2757 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2758 static const uint32_t lazy_stub_micromips32_normal_2[];
2759 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2760 static const uint32_t lazy_stub_micromips32_big[];
2761 static const uint32_t lazy_stub_micromips32_big_n64[];
2762
2763 // Set the final size.
2764 void
2765 set_final_data_size()
2766 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2767
2768 // Write out the .MIPS.stubs data.
2769 void
2770 do_write(Output_file*);
2771
2772 // .MIPS.stubs symbols
2773 Mips_stubs_entry_set symbols_;
2774 // Number of entries in dynamic symbol table.
2775 unsigned int dynsym_count_;
2776 // Whether the stub offsets are set.
2777 bool stub_offsets_are_set_;
2778 // The target.
2779 Target_mips<size, big_endian>* target_;
2780 };
2781
2782 // This class handles Mips .reginfo output section.
2783
2784 template<int size, bool big_endian>
2785 class Mips_output_section_reginfo : public Output_section_data
2786 {
2787 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2788
2789 public:
2790 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2791 Valtype gprmask, Valtype cprmask1,
2792 Valtype cprmask2, Valtype cprmask3,
2793 Valtype cprmask4)
2794 : Output_section_data(24, 4, true), target_(target),
2795 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2796 cprmask3_(cprmask3), cprmask4_(cprmask4)
2797 { }
2798
2799 protected:
2800 // Write to a map file.
2801 void
2802 do_print_to_mapfile(Mapfile* mapfile) const
2803 { mapfile->print_output_data(this, _(".reginfo")); }
2804
2805 // Write out reginfo section.
2806 void
2807 do_write(Output_file* of);
2808
2809 private:
2810 Target_mips<size, big_endian>* target_;
2811
2812 // gprmask of the output .reginfo section.
2813 Valtype gprmask_;
2814 // cprmask1 of the output .reginfo section.
2815 Valtype cprmask1_;
2816 // cprmask2 of the output .reginfo section.
2817 Valtype cprmask2_;
2818 // cprmask3 of the output .reginfo section.
2819 Valtype cprmask3_;
2820 // cprmask4 of the output .reginfo section.
2821 Valtype cprmask4_;
2822 };
2823
2824 // This class handles .MIPS.abiflags output section.
2825
2826 template<int size, bool big_endian>
2827 class Mips_output_section_abiflags : public Output_section_data
2828 {
2829 public:
2830 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2831 : Output_section_data(24, 8, true), abiflags_(abiflags)
2832 { }
2833
2834 protected:
2835 // Write to a map file.
2836 void
2837 do_print_to_mapfile(Mapfile* mapfile) const
2838 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2839
2840 void
2841 do_write(Output_file* of);
2842
2843 private:
2844 const Mips_abiflags<big_endian>& abiflags_;
2845 };
2846
2847 // The MIPS target has relocation types which default handling of relocatable
2848 // relocation cannot process. So we have to extend the default code.
2849
2850 template<bool big_endian, typename Classify_reloc>
2851 class Mips_scan_relocatable_relocs :
2852 public Default_scan_relocatable_relocs<Classify_reloc>
2853 {
2854 public:
2855 // Return the strategy to use for a local symbol which is a section
2856 // symbol, given the relocation type.
2857 inline Relocatable_relocs::Reloc_strategy
2858 local_section_strategy(unsigned int r_type, Relobj* object)
2859 {
2860 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2861 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2862 else
2863 {
2864 switch (r_type)
2865 {
2866 case elfcpp::R_MIPS_26:
2867 return Relocatable_relocs::RELOC_SPECIAL;
2868
2869 default:
2870 return Default_scan_relocatable_relocs<Classify_reloc>::
2871 local_section_strategy(r_type, object);
2872 }
2873 }
2874 }
2875 };
2876
2877 // Mips_copy_relocs class. The only difference from the base class is the
2878 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2879 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2880 // cannot be made dynamic, a COPY reloc is emitted.
2881
2882 template<int sh_type, int size, bool big_endian>
2883 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2884 {
2885 public:
2886 Mips_copy_relocs()
2887 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2888 { }
2889
2890 // Emit any saved relocations which turn out to be needed. This is
2891 // called after all the relocs have been scanned.
2892 void
2893 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2894 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2895
2896 private:
2897 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2898 Copy_reloc_entry;
2899
2900 // Emit this reloc if appropriate. This is called after we have
2901 // scanned all the relocations, so we know whether we emitted a
2902 // COPY relocation for SYM_.
2903 void
2904 emit_entry(Copy_reloc_entry& entry,
2905 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2906 Symbol_table* symtab, Layout* layout,
2907 Target_mips<size, big_endian>* target);
2908 };
2909
2910
2911 // Return true if the symbol SYM should be considered to resolve local
2912 // to the current module, and false otherwise. The logic is taken from
2913 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2914 static bool
2915 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2916 bool local_protected)
2917 {
2918 // If it's a local sym, of course we resolve locally.
2919 if (sym == NULL)
2920 return true;
2921
2922 // STV_HIDDEN or STV_INTERNAL ones must be local.
2923 if (sym->visibility() == elfcpp::STV_HIDDEN
2924 || sym->visibility() == elfcpp::STV_INTERNAL)
2925 return true;
2926
2927 // If we don't have a definition in a regular file, then we can't
2928 // resolve locally. The sym is either undefined or dynamic.
2929 if (sym->is_from_dynobj() || sym->is_undefined())
2930 return false;
2931
2932 // Forced local symbols resolve locally.
2933 if (sym->is_forced_local())
2934 return true;
2935
2936 // As do non-dynamic symbols.
2937 if (!has_dynsym_entry)
2938 return true;
2939
2940 // At this point, we know the symbol is defined and dynamic. In an
2941 // executable it must resolve locally, likewise when building symbolic
2942 // shared libraries.
2943 if (parameters->options().output_is_executable()
2944 || parameters->options().Bsymbolic())
2945 return true;
2946
2947 // Now deal with defined dynamic symbols in shared libraries. Ones
2948 // with default visibility might not resolve locally.
2949 if (sym->visibility() == elfcpp::STV_DEFAULT)
2950 return false;
2951
2952 // STV_PROTECTED non-function symbols are local.
2953 if (sym->type() != elfcpp::STT_FUNC)
2954 return true;
2955
2956 // Function pointer equality tests may require that STV_PROTECTED
2957 // symbols be treated as dynamic symbols. If the address of a
2958 // function not defined in an executable is set to that function's
2959 // plt entry in the executable, then the address of the function in
2960 // a shared library must also be the plt entry in the executable.
2961 return local_protected;
2962 }
2963
2964 // Return TRUE if references to this symbol always reference the symbol in this
2965 // object.
2966 static bool
2967 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2968 {
2969 return symbol_refs_local(sym, has_dynsym_entry, false);
2970 }
2971
2972 // Return TRUE if calls to this symbol always call the version in this object.
2973 static bool
2974 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2975 {
2976 return symbol_refs_local(sym, has_dynsym_entry, true);
2977 }
2978
2979 // Compare GOT offsets of two symbols.
2980
2981 template<int size, bool big_endian>
2982 static bool
2983 got_offset_compare(Symbol* sym1, Symbol* sym2)
2984 {
2985 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2986 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2987 unsigned int area1 = mips_sym1->global_got_area();
2988 unsigned int area2 = mips_sym2->global_got_area();
2989 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2990
2991 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2992 if (area1 != area2)
2993 return area1 < area2;
2994
2995 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2996 }
2997
2998 // This method divides dynamic symbols into symbols that have GOT entry, and
2999 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3000 // Mips ABI requires that symbols with the GOT entry must be at the end of
3001 // dynamic symbol table, and the order in dynamic symbol table must match the
3002 // order in GOT.
3003
3004 template<int size, bool big_endian>
3005 static void
3006 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3007 std::vector<Symbol*>* non_got_symbols,
3008 std::vector<Symbol*>* got_symbols)
3009 {
3010 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3011 p != dyn_symbols->end();
3012 ++p)
3013 {
3014 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3015 if (mips_sym->global_got_area() == GGA_NORMAL
3016 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3017 got_symbols->push_back(mips_sym);
3018 else
3019 non_got_symbols->push_back(mips_sym);
3020 }
3021
3022 std::sort(got_symbols->begin(), got_symbols->end(),
3023 got_offset_compare<size, big_endian>);
3024 }
3025
3026 // Functor class for processing the global symbol table.
3027
3028 template<int size, bool big_endian>
3029 class Symbol_visitor_check_symbols
3030 {
3031 public:
3032 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3033 Layout* layout, Symbol_table* symtab)
3034 : target_(target), layout_(layout), symtab_(symtab)
3035 { }
3036
3037 void
3038 operator()(Sized_symbol<size>* sym)
3039 {
3040 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3041 if (local_pic_function<size, big_endian>(mips_sym))
3042 {
3043 // SYM is a function that might need $25 to be valid on entry.
3044 // If we're creating a non-PIC relocatable object, mark SYM as
3045 // being PIC. If we're creating a non-relocatable object with
3046 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3047 // stub.
3048 if (parameters->options().relocatable())
3049 {
3050 if (!parameters->options().output_is_position_independent())
3051 mips_sym->set_pic();
3052 }
3053 else if (mips_sym->has_nonpic_branches())
3054 {
3055 this->target_->la25_stub_section(layout_)
3056 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3057 }
3058 }
3059 }
3060
3061 private:
3062 Target_mips<size, big_endian>* target_;
3063 Layout* layout_;
3064 Symbol_table* symtab_;
3065 };
3066
3067 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3068 // and endianness. The relocation format for MIPS-64 is non-standard.
3069
3070 template<int sh_type, int size, bool big_endian>
3071 struct Mips_reloc_types;
3072
3073 template<bool big_endian>
3074 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3075 {
3076 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3077 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3078
3079 static typename elfcpp::Elf_types<32>::Elf_Swxword
3080 get_r_addend(const Reloc*)
3081 { return 0; }
3082
3083 static inline void
3084 set_reloc_addend(Reloc_write*,
3085 typename elfcpp::Elf_types<32>::Elf_Swxword)
3086 { gold_unreachable(); }
3087 };
3088
3089 template<bool big_endian>
3090 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3091 {
3092 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3093 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3094
3095 static typename elfcpp::Elf_types<32>::Elf_Swxword
3096 get_r_addend(const Reloc* reloc)
3097 { return reloc->get_r_addend(); }
3098
3099 static inline void
3100 set_reloc_addend(Reloc_write* p,
3101 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3102 { p->put_r_addend(val); }
3103 };
3104
3105 template<bool big_endian>
3106 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3107 {
3108 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3109 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3110
3111 static typename elfcpp::Elf_types<64>::Elf_Swxword
3112 get_r_addend(const Reloc*)
3113 { return 0; }
3114
3115 static inline void
3116 set_reloc_addend(Reloc_write*,
3117 typename elfcpp::Elf_types<64>::Elf_Swxword)
3118 { gold_unreachable(); }
3119 };
3120
3121 template<bool big_endian>
3122 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3123 {
3124 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3125 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3126
3127 static typename elfcpp::Elf_types<64>::Elf_Swxword
3128 get_r_addend(const Reloc* reloc)
3129 { return reloc->get_r_addend(); }
3130
3131 static inline void
3132 set_reloc_addend(Reloc_write* p,
3133 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3134 { p->put_r_addend(val); }
3135 };
3136
3137 // Forward declaration.
3138 static unsigned int
3139 mips_get_size_for_reloc(unsigned int, Relobj*);
3140
3141 // A class for inquiring about properties of a relocation,
3142 // used while scanning relocs during a relocatable link and
3143 // garbage collection.
3144
3145 template<int sh_type_, int size, bool big_endian>
3146 class Mips_classify_reloc;
3147
3148 template<int sh_type_, bool big_endian>
3149 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3150 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3151 {
3152 public:
3153 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3154 Reltype;
3155 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3156 Reltype_write;
3157
3158 // Return the symbol referred to by the relocation.
3159 static inline unsigned int
3160 get_r_sym(const Reltype* reloc)
3161 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3162
3163 // Return the type of the relocation.
3164 static inline unsigned int
3165 get_r_type(const Reltype* reloc)
3166 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3167
3168 static inline unsigned int
3169 get_r_type2(const Reltype*)
3170 { return 0; }
3171
3172 static inline unsigned int
3173 get_r_type3(const Reltype*)
3174 { return 0; }
3175
3176 static inline unsigned int
3177 get_r_ssym(const Reltype*)
3178 { return 0; }
3179
3180 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3181 static inline unsigned int
3182 get_r_addend(const Reltype* reloc)
3183 {
3184 if (sh_type_ == elfcpp::SHT_REL)
3185 return 0;
3186 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3187 }
3188
3189 // Write the r_info field to a new reloc, using the r_info field from
3190 // the original reloc, replacing the r_sym field with R_SYM.
3191 static inline void
3192 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3193 {
3194 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3195 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3196 }
3197
3198 // Write the r_addend field to a new reloc.
3199 static inline void
3200 put_r_addend(Reltype_write* to,
3201 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3202 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3203
3204 // Return the size of the addend of the relocation (only used for SHT_REL).
3205 static unsigned int
3206 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3207 { return mips_get_size_for_reloc(r_type, obj); }
3208 };
3209
3210 template<int sh_type_, bool big_endian>
3211 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3212 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3213 {
3214 public:
3215 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3216 Reltype;
3217 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3218 Reltype_write;
3219
3220 // Return the symbol referred to by the relocation.
3221 static inline unsigned int
3222 get_r_sym(const Reltype* reloc)
3223 { return reloc->get_r_sym(); }
3224
3225 // Return the r_type of the relocation.
3226 static inline unsigned int
3227 get_r_type(const Reltype* reloc)
3228 { return reloc->get_r_type(); }
3229
3230 // Return the r_type2 of the relocation.
3231 static inline unsigned int
3232 get_r_type2(const Reltype* reloc)
3233 { return reloc->get_r_type2(); }
3234
3235 // Return the r_type3 of the relocation.
3236 static inline unsigned int
3237 get_r_type3(const Reltype* reloc)
3238 { return reloc->get_r_type3(); }
3239
3240 // Return the special symbol of the relocation.
3241 static inline unsigned int
3242 get_r_ssym(const Reltype* reloc)
3243 { return reloc->get_r_ssym(); }
3244
3245 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3246 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3247 get_r_addend(const Reltype* reloc)
3248 {
3249 if (sh_type_ == elfcpp::SHT_REL)
3250 return 0;
3251 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3252 }
3253
3254 // Write the r_info field to a new reloc, using the r_info field from
3255 // the original reloc, replacing the r_sym field with R_SYM.
3256 static inline void
3257 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3258 {
3259 new_reloc->put_r_sym(r_sym);
3260 new_reloc->put_r_ssym(reloc->get_r_ssym());
3261 new_reloc->put_r_type3(reloc->get_r_type3());
3262 new_reloc->put_r_type2(reloc->get_r_type2());
3263 new_reloc->put_r_type(reloc->get_r_type());
3264 }
3265
3266 // Write the r_addend field to a new reloc.
3267 static inline void
3268 put_r_addend(Reltype_write* to,
3269 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3270 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3271
3272 // Return the size of the addend of the relocation (only used for SHT_REL).
3273 static unsigned int
3274 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3275 { return mips_get_size_for_reloc(r_type, obj); }
3276 };
3277
3278 template<int size, bool big_endian>
3279 class Target_mips : public Sized_target<size, big_endian>
3280 {
3281 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3282 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3283 Reloc_section;
3284 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3285 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3286 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3287 Reltype;
3288 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3289 Relatype;
3290
3291 public:
3292 Target_mips(const Target::Target_info* info = &mips_info)
3293 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3294 got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3295 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3296 mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3297 mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3298 entry_symbol_is_compressed_(false), insn32_(false)
3299 {
3300 this->add_machine_extensions();
3301 }
3302
3303 // The offset of $gp from the beginning of the .got section.
3304 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3305
3306 // The maximum size of the GOT for it to be addressable using 16-bit
3307 // offsets from $gp.
3308 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3309
3310 // Make a new symbol table entry for the Mips target.
3311 Sized_symbol<size>*
3312 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3313 { return new Mips_symbol<size>(); }
3314
3315 // Process the relocations to determine unreferenced sections for
3316 // garbage collection.
3317 void
3318 gc_process_relocs(Symbol_table* symtab,
3319 Layout* layout,
3320 Sized_relobj_file<size, big_endian>* object,
3321 unsigned int data_shndx,
3322 unsigned int sh_type,
3323 const unsigned char* prelocs,
3324 size_t reloc_count,
3325 Output_section* output_section,
3326 bool needs_special_offset_handling,
3327 size_t local_symbol_count,
3328 const unsigned char* plocal_symbols);
3329
3330 // Scan the relocations to look for symbol adjustments.
3331 void
3332 scan_relocs(Symbol_table* symtab,
3333 Layout* layout,
3334 Sized_relobj_file<size, big_endian>* object,
3335 unsigned int data_shndx,
3336 unsigned int sh_type,
3337 const unsigned char* prelocs,
3338 size_t reloc_count,
3339 Output_section* output_section,
3340 bool needs_special_offset_handling,
3341 size_t local_symbol_count,
3342 const unsigned char* plocal_symbols);
3343
3344 // Finalize the sections.
3345 void
3346 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3347
3348 // Relocate a section.
3349 void
3350 relocate_section(const Relocate_info<size, big_endian>*,
3351 unsigned int sh_type,
3352 const unsigned char* prelocs,
3353 size_t reloc_count,
3354 Output_section* output_section,
3355 bool needs_special_offset_handling,
3356 unsigned char* view,
3357 Mips_address view_address,
3358 section_size_type view_size,
3359 const Reloc_symbol_changes*);
3360
3361 // Scan the relocs during a relocatable link.
3362 void
3363 scan_relocatable_relocs(Symbol_table* symtab,
3364 Layout* layout,
3365 Sized_relobj_file<size, big_endian>* object,
3366 unsigned int data_shndx,
3367 unsigned int sh_type,
3368 const unsigned char* prelocs,
3369 size_t reloc_count,
3370 Output_section* output_section,
3371 bool needs_special_offset_handling,
3372 size_t local_symbol_count,
3373 const unsigned char* plocal_symbols,
3374 Relocatable_relocs*);
3375
3376 // Scan the relocs for --emit-relocs.
3377 void
3378 emit_relocs_scan(Symbol_table* symtab,
3379 Layout* layout,
3380 Sized_relobj_file<size, big_endian>* object,
3381 unsigned int data_shndx,
3382 unsigned int sh_type,
3383 const unsigned char* prelocs,
3384 size_t reloc_count,
3385 Output_section* output_section,
3386 bool needs_special_offset_handling,
3387 size_t local_symbol_count,
3388 const unsigned char* plocal_syms,
3389 Relocatable_relocs* rr);
3390
3391 // Emit relocations for a section.
3392 void
3393 relocate_relocs(const Relocate_info<size, big_endian>*,
3394 unsigned int sh_type,
3395 const unsigned char* prelocs,
3396 size_t reloc_count,
3397 Output_section* output_section,
3398 typename elfcpp::Elf_types<size>::Elf_Off
3399 offset_in_output_section,
3400 unsigned char* view,
3401 Mips_address view_address,
3402 section_size_type view_size,
3403 unsigned char* reloc_view,
3404 section_size_type reloc_view_size);
3405
3406 // Perform target-specific processing in a relocatable link. This is
3407 // only used if we use the relocation strategy RELOC_SPECIAL.
3408 void
3409 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3410 unsigned int sh_type,
3411 const unsigned char* preloc_in,
3412 size_t relnum,
3413 Output_section* output_section,
3414 typename elfcpp::Elf_types<size>::Elf_Off
3415 offset_in_output_section,
3416 unsigned char* view,
3417 Mips_address view_address,
3418 section_size_type view_size,
3419 unsigned char* preloc_out);
3420
3421 // Return whether SYM is defined by the ABI.
3422 bool
3423 do_is_defined_by_abi(const Symbol* sym) const
3424 {
3425 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3426 || (strcmp(sym->name(), "_gp_disp") == 0)
3427 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3428 }
3429
3430 // Return the number of entries in the GOT.
3431 unsigned int
3432 got_entry_count() const
3433 {
3434 if (!this->has_got_section())
3435 return 0;
3436 return this->got_size() / (size/8);
3437 }
3438
3439 // Return the number of entries in the PLT.
3440 unsigned int
3441 plt_entry_count() const
3442 {
3443 if (this->plt_ == NULL)
3444 return 0;
3445 return this->plt_->entry_count();
3446 }
3447
3448 // Return the offset of the first non-reserved PLT entry.
3449 unsigned int
3450 first_plt_entry_offset() const
3451 { return this->plt_->first_plt_entry_offset(); }
3452
3453 // Return the size of each PLT entry.
3454 unsigned int
3455 plt_entry_size() const
3456 { return this->plt_->plt_entry_size(); }
3457
3458 // Get the GOT section, creating it if necessary.
3459 Mips_output_data_got<size, big_endian>*
3460 got_section(Symbol_table*, Layout*);
3461
3462 // Get the GOT section.
3463 Mips_output_data_got<size, big_endian>*
3464 got_section() const
3465 {
3466 gold_assert(this->got_ != NULL);
3467 return this->got_;
3468 }
3469
3470 // Get the .MIPS.stubs section, creating it if necessary.
3471 Mips_output_data_mips_stubs<size, big_endian>*
3472 mips_stubs_section(Layout* layout);
3473
3474 // Get the .MIPS.stubs section.
3475 Mips_output_data_mips_stubs<size, big_endian>*
3476 mips_stubs_section() const
3477 {
3478 gold_assert(this->mips_stubs_ != NULL);
3479 return this->mips_stubs_;
3480 }
3481
3482 // Get the LA25 stub section, creating it if necessary.
3483 Mips_output_data_la25_stub<size, big_endian>*
3484 la25_stub_section(Layout*);
3485
3486 // Get the LA25 stub section.
3487 Mips_output_data_la25_stub<size, big_endian>*
3488 la25_stub_section()
3489 {
3490 gold_assert(this->la25_stub_ != NULL);
3491 return this->la25_stub_;
3492 }
3493
3494 // Get gp value. It has the value of .got + 0x7FF0.
3495 Mips_address
3496 gp_value() const
3497 {
3498 if (this->gp_ != NULL)
3499 return this->gp_->value();
3500 return 0;
3501 }
3502
3503 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3504 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3505 Mips_address
3506 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3507 {
3508 if (this->gp_ == NULL)
3509 return 0;
3510
3511 bool multi_got = false;
3512 if (this->has_got_section())
3513 multi_got = this->got_section()->multi_got();
3514 if (!multi_got)
3515 return this->gp_->value();
3516 else
3517 return this->gp_->value() + this->got_section()->get_got_offset(object);
3518 }
3519
3520 // Get the dynamic reloc section, creating it if necessary.
3521 Reloc_section*
3522 rel_dyn_section(Layout*);
3523
3524 bool
3525 do_has_custom_set_dynsym_indexes() const
3526 { return true; }
3527
3528 // Don't emit input .reginfo/.MIPS.abiflags sections to
3529 // output .reginfo/.MIPS.abiflags.
3530 bool
3531 do_should_include_section(elfcpp::Elf_Word sh_type) const
3532 {
3533 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3534 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3535 }
3536
3537 // Set the dynamic symbol indexes. INDEX is the index of the first
3538 // global dynamic symbol. Pointers to the symbols are stored into the
3539 // vector SYMS. The names are added to DYNPOOL. This returns an
3540 // updated dynamic symbol index.
3541 unsigned int
3542 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3543 std::vector<Symbol*>* syms, Stringpool* dynpool,
3544 Versions* versions, Symbol_table* symtab) const;
3545
3546 // Remove .MIPS.stubs entry for a symbol.
3547 void
3548 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3549 {
3550 if (this->mips_stubs_ != NULL)
3551 this->mips_stubs_->remove_entry(sym);
3552 }
3553
3554 // The value to write into got[1] for SVR4 targets, to identify it is
3555 // a GNU object. The dynamic linker can then use got[1] to store the
3556 // module pointer.
3557 uint64_t
3558 mips_elf_gnu_got1_mask()
3559 {
3560 if (this->is_output_n64())
3561 return (uint64_t)1 << 63;
3562 else
3563 return 1 << 31;
3564 }
3565
3566 // Whether the output has microMIPS code. This is valid only after
3567 // merge_obj_e_flags() is called.
3568 bool
3569 is_output_micromips() const
3570 {
3571 gold_assert(this->are_processor_specific_flags_set());
3572 return elfcpp::is_micromips(this->processor_specific_flags());
3573 }
3574
3575 // Whether the output uses N32 ABI. This is valid only after
3576 // merge_obj_e_flags() is called.
3577 bool
3578 is_output_n32() const
3579 {
3580 gold_assert(this->are_processor_specific_flags_set());
3581 return elfcpp::abi_n32(this->processor_specific_flags());
3582 }
3583
3584 // Whether the output uses R6 ISA. This is valid only after
3585 // merge_obj_e_flags() is called.
3586 bool
3587 is_output_r6() const
3588 {
3589 gold_assert(this->are_processor_specific_flags_set());
3590 return elfcpp::r6_isa(this->processor_specific_flags());
3591 }
3592
3593 // Whether the output uses N64 ABI.
3594 bool
3595 is_output_n64() const
3596 { return size == 64; }
3597
3598 // Whether the output uses NEWABI. This is valid only after
3599 // merge_obj_e_flags() is called.
3600 bool
3601 is_output_newabi() const
3602 { return this->is_output_n32() || this->is_output_n64(); }
3603
3604 // Whether we can only use 32-bit microMIPS instructions.
3605 bool
3606 use_32bit_micromips_instructions() const
3607 { return this->insn32_; }
3608
3609 // Return the r_sym field from a relocation.
3610 unsigned int
3611 get_r_sym(const unsigned char* preloc) const
3612 {
3613 // Since REL and RELA relocs share the same structure through
3614 // the r_info field, we can just use REL here.
3615 Reltype rel(preloc);
3616 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3617 get_r_sym(&rel);
3618 }
3619
3620 protected:
3621 // Return the value to use for a dynamic symbol which requires special
3622 // treatment. This is how we support equality comparisons of function
3623 // pointers across shared library boundaries, as described in the
3624 // processor specific ABI supplement.
3625 uint64_t
3626 do_dynsym_value(const Symbol* gsym) const;
3627
3628 // Make an ELF object.
3629 Object*
3630 do_make_elf_object(const std::string&, Input_file*, off_t,
3631 const elfcpp::Ehdr<size, big_endian>& ehdr);
3632
3633 Object*
3634 do_make_elf_object(const std::string&, Input_file*, off_t,
3635 const elfcpp::Ehdr<size, !big_endian>&)
3636 { gold_unreachable(); }
3637
3638 // Adjust ELF file header.
3639 void
3640 do_adjust_elf_header(unsigned char* view, int len);
3641
3642 // Get the custom dynamic tag value.
3643 unsigned int
3644 do_dynamic_tag_custom_value(elfcpp::DT) const;
3645
3646 // Adjust the value written to the dynamic symbol table.
3647 virtual void
3648 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3649 {
3650 elfcpp::Sym<size, big_endian> isym(view);
3651 elfcpp::Sym_write<size, big_endian> osym(view);
3652 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3653
3654 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3655 // to treat compressed symbols like any other.
3656 Mips_address value = isym.get_st_value();
3657 if (mips_sym->is_mips16() && value != 0)
3658 {
3659 if (!mips_sym->has_mips16_fn_stub())
3660 value |= 1;
3661 else
3662 {
3663 // If we have a MIPS16 function with a stub, the dynamic symbol
3664 // must refer to the stub, since only the stub uses the standard
3665 // calling conventions. Stub contains MIPS32 code, so don't add +1
3666 // in this case.
3667
3668 // There is a code which does this in the method
3669 // Target_mips::do_dynsym_value, but that code will only be
3670 // executed if the symbol is from dynobj.
3671 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3672 // table.
3673
3674 Mips16_stub_section<size, big_endian>* fn_stub =
3675 mips_sym->template get_mips16_fn_stub<big_endian>();
3676 value = fn_stub->output_address();
3677 osym.put_st_size(fn_stub->section_size());
3678 }
3679
3680 osym.put_st_value(value);
3681 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3682 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3683 }
3684 else if ((mips_sym->is_micromips()
3685 // Stubs are always microMIPS if there is any microMIPS code in
3686 // the output.
3687 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3688 && value != 0)
3689 {
3690 osym.put_st_value(value | 1);
3691 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3692 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3693 }
3694 }
3695
3696 private:
3697 // The class which scans relocations.
3698 class Scan
3699 {
3700 public:
3701 Scan()
3702 { }
3703
3704 static inline int
3705 get_reference_flags(unsigned int r_type);
3706
3707 inline void
3708 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3709 Sized_relobj_file<size, big_endian>* object,
3710 unsigned int data_shndx,
3711 Output_section* output_section,
3712 const Reltype& reloc, unsigned int r_type,
3713 const elfcpp::Sym<size, big_endian>& lsym,
3714 bool is_discarded);
3715
3716 inline void
3717 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3718 Sized_relobj_file<size, big_endian>* object,
3719 unsigned int data_shndx,
3720 Output_section* output_section,
3721 const Relatype& reloc, unsigned int r_type,
3722 const elfcpp::Sym<size, big_endian>& lsym,
3723 bool is_discarded);
3724
3725 inline void
3726 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3727 Sized_relobj_file<size, big_endian>* object,
3728 unsigned int data_shndx,
3729 Output_section* output_section,
3730 const Relatype* rela,
3731 const Reltype* rel,
3732 unsigned int rel_type,
3733 unsigned int r_type,
3734 const elfcpp::Sym<size, big_endian>& lsym,
3735 bool is_discarded);
3736
3737 inline void
3738 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3739 Sized_relobj_file<size, big_endian>* object,
3740 unsigned int data_shndx,
3741 Output_section* output_section,
3742 const Reltype& reloc, unsigned int r_type,
3743 Symbol* gsym);
3744
3745 inline void
3746 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3747 Sized_relobj_file<size, big_endian>* object,
3748 unsigned int data_shndx,
3749 Output_section* output_section,
3750 const Relatype& reloc, unsigned int r_type,
3751 Symbol* gsym);
3752
3753 inline void
3754 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3755 Sized_relobj_file<size, big_endian>* object,
3756 unsigned int data_shndx,
3757 Output_section* output_section,
3758 const Relatype* rela,
3759 const Reltype* rel,
3760 unsigned int rel_type,
3761 unsigned int r_type,
3762 Symbol* gsym);
3763
3764 inline bool
3765 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3766 Target_mips*,
3767 Sized_relobj_file<size, big_endian>*,
3768 unsigned int,
3769 Output_section*,
3770 const Reltype&,
3771 unsigned int,
3772 const elfcpp::Sym<size, big_endian>&)
3773 { return false; }
3774
3775 inline bool
3776 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3777 Target_mips*,
3778 Sized_relobj_file<size, big_endian>*,
3779 unsigned int,
3780 Output_section*,
3781 const Reltype&,
3782 unsigned int, Symbol*)
3783 { return false; }
3784
3785 inline bool
3786 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3787 Target_mips*,
3788 Sized_relobj_file<size, big_endian>*,
3789 unsigned int,
3790 Output_section*,
3791 const Relatype&,
3792 unsigned int,
3793 const elfcpp::Sym<size, big_endian>&)
3794 { return false; }
3795
3796 inline bool
3797 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3798 Target_mips*,
3799 Sized_relobj_file<size, big_endian>*,
3800 unsigned int,
3801 Output_section*,
3802 const Relatype&,
3803 unsigned int, Symbol*)
3804 { return false; }
3805 private:
3806 static void
3807 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3808 unsigned int r_type);
3809
3810 static void
3811 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3812 unsigned int r_type, Symbol*);
3813 };
3814
3815 // The class which implements relocation.
3816 class Relocate
3817 {
3818 public:
3819 Relocate()
3820 { }
3821
3822 ~Relocate()
3823 { }
3824
3825 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3826 inline bool
3827 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3828 unsigned int r_type,
3829 Output_section* output_section,
3830 Target_mips* target);
3831
3832 // Do a relocation. Return false if the caller should not issue
3833 // any warnings about this relocation.
3834 inline bool
3835 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3836 Target_mips*, Output_section*, size_t, const unsigned char*,
3837 const Sized_symbol<size>*, const Symbol_value<size>*,
3838 unsigned char*, Mips_address, section_size_type);
3839 };
3840
3841 // This POD class holds the dynamic relocations that should be emitted instead
3842 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3843 // relocations if it turns out that the symbol does not have static
3844 // relocations.
3845 class Dyn_reloc
3846 {
3847 public:
3848 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3849 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3850 Output_section* output_section, Mips_address r_offset)
3851 : sym_(sym), r_type_(r_type), relobj_(relobj),
3852 shndx_(shndx), output_section_(output_section),
3853 r_offset_(r_offset)
3854 { }
3855
3856 // Emit this reloc if appropriate. This is called after we have
3857 // scanned all the relocations, so we know whether the symbol has
3858 // static relocations.
3859 void
3860 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3861 Symbol_table* symtab)
3862 {
3863 if (!this->sym_->has_static_relocs())
3864 {
3865 got->record_global_got_symbol(this->sym_, this->relobj_,
3866 this->r_type_, true, false);
3867 if (!symbol_references_local(this->sym_,
3868 this->sym_->should_add_dynsym_entry(symtab)))
3869 rel_dyn->add_global(this->sym_, this->r_type_,
3870 this->output_section_, this->relobj_,
3871 this->shndx_, this->r_offset_);
3872 else
3873 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3874 this->output_section_, this->relobj_,
3875 this->shndx_, this->r_offset_);
3876 }
3877 }
3878
3879 private:
3880 Mips_symbol<size>* sym_;
3881 unsigned int r_type_;
3882 Mips_relobj<size, big_endian>* relobj_;
3883 unsigned int shndx_;
3884 Output_section* output_section_;
3885 Mips_address r_offset_;
3886 };
3887
3888 // Adjust TLS relocation type based on the options and whether this
3889 // is a local symbol.
3890 static tls::Tls_optimization
3891 optimize_tls_reloc(bool is_final, int r_type);
3892
3893 // Return whether there is a GOT section.
3894 bool
3895 has_got_section() const
3896 { return this->got_ != NULL; }
3897
3898 // Check whether the given ELF header flags describe a 32-bit binary.
3899 bool
3900 mips_32bit_flags(elfcpp::Elf_Word);
3901
3902 enum Mips_mach {
3903 mach_mips3000 = 3000,
3904 mach_mips3900 = 3900,
3905 mach_mips4000 = 4000,
3906 mach_mips4010 = 4010,
3907 mach_mips4100 = 4100,
3908 mach_mips4111 = 4111,
3909 mach_mips4120 = 4120,
3910 mach_mips4300 = 4300,
3911 mach_mips4400 = 4400,
3912 mach_mips4600 = 4600,
3913 mach_mips4650 = 4650,
3914 mach_mips5000 = 5000,
3915 mach_mips5400 = 5400,
3916 mach_mips5500 = 5500,
3917 mach_mips5900 = 5900,
3918 mach_mips6000 = 6000,
3919 mach_mips7000 = 7000,
3920 mach_mips8000 = 8000,
3921 mach_mips9000 = 9000,
3922 mach_mips10000 = 10000,
3923 mach_mips12000 = 12000,
3924 mach_mips14000 = 14000,
3925 mach_mips16000 = 16000,
3926 mach_mips16 = 16,
3927 mach_mips5 = 5,
3928 mach_mips_loongson_2e = 3001,
3929 mach_mips_loongson_2f = 3002,
3930 mach_mips_loongson_3a = 3003,
3931 mach_mips_sb1 = 12310201, // octal 'SB', 01
3932 mach_mips_octeon = 6501,
3933 mach_mips_octeonp = 6601,
3934 mach_mips_octeon2 = 6502,
3935 mach_mips_octeon3 = 6503,
3936 mach_mips_xlr = 887682, // decimal 'XLR'
3937 mach_mipsisa32 = 32,
3938 mach_mipsisa32r2 = 33,
3939 mach_mipsisa32r3 = 34,
3940 mach_mipsisa32r5 = 36,
3941 mach_mipsisa32r6 = 37,
3942 mach_mipsisa64 = 64,
3943 mach_mipsisa64r2 = 65,
3944 mach_mipsisa64r3 = 66,
3945 mach_mipsisa64r5 = 68,
3946 mach_mipsisa64r6 = 69,
3947 mach_mips_micromips = 96
3948 };
3949
3950 // Return the MACH for a MIPS e_flags value.
3951 unsigned int
3952 elf_mips_mach(elfcpp::Elf_Word);
3953
3954 // Return the MACH for each .MIPS.abiflags ISA Extension.
3955 unsigned int
3956 mips_isa_ext_mach(unsigned int);
3957
3958 // Return the .MIPS.abiflags value representing each ISA Extension.
3959 unsigned int
3960 mips_isa_ext(unsigned int);
3961
3962 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
3963 void
3964 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
3965 Mips_abiflags<big_endian>*);
3966
3967 // Infer the content of the ABI flags based on the elf header.
3968 void
3969 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3970
3971 // Create abiflags from elf header or from .MIPS.abiflags section.
3972 void
3973 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3974
3975 // Return the meaning of fp_abi, or "unknown" if not known.
3976 const char*
3977 fp_abi_string(int);
3978
3979 // Select fp_abi.
3980 int
3981 select_fp_abi(const std::string&, int, int);
3982
3983 // Merge attributes from input object.
3984 void
3985 merge_obj_attributes(const std::string&, const Attributes_section_data*);
3986
3987 // Merge abiflags from input object.
3988 void
3989 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
3990
3991 // Check whether machine EXTENSION is an extension of machine BASE.
3992 bool
3993 mips_mach_extends(unsigned int, unsigned int);
3994
3995 // Merge file header flags from input object.
3996 void
3997 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
3998
3999 // Encode ISA level and revision as a single value.
4000 int
4001 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4002 { return (isa_level << 3) | isa_rev; }
4003
4004 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4005 static inline bool
4006 jal_to_bal()
4007 { return false; }
4008
4009 // True if we are linking for CPUs that are faster if JALR is converted to
4010 // BAL. This should be safe for all architectures. We enable this predicate
4011 // for all CPUs.
4012 static inline bool
4013 jalr_to_bal()
4014 { return true; }
4015
4016 // True if we are linking for CPUs that are faster if JR is converted to B.
4017 // This should be safe for all architectures. We enable this predicate for
4018 // all CPUs.
4019 static inline bool
4020 jr_to_b()
4021 { return true; }
4022
4023 // Return the size of the GOT section.
4024 section_size_type
4025 got_size() const
4026 {
4027 gold_assert(this->got_ != NULL);
4028 return this->got_->data_size();
4029 }
4030
4031 // Create a PLT entry for a global symbol referenced by r_type relocation.
4032 void
4033 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4034 unsigned int r_type);
4035
4036 // Get the PLT section.
4037 Mips_output_data_plt<size, big_endian>*
4038 plt_section() const
4039 {
4040 gold_assert(this->plt_ != NULL);
4041 return this->plt_;
4042 }
4043
4044 // Get the GOT PLT section.
4045 const Mips_output_data_plt<size, big_endian>*
4046 got_plt_section() const
4047 {
4048 gold_assert(this->got_plt_ != NULL);
4049 return this->got_plt_;
4050 }
4051
4052 // Copy a relocation against a global symbol.
4053 void
4054 copy_reloc(Symbol_table* symtab, Layout* layout,
4055 Sized_relobj_file<size, big_endian>* object,
4056 unsigned int shndx, Output_section* output_section,
4057 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4058 {
4059 this->copy_relocs_.copy_reloc(symtab, layout,
4060 symtab->get_sized_symbol<size>(sym),
4061 object, shndx, output_section,
4062 r_type, r_offset, 0,
4063 this->rel_dyn_section(layout));
4064 }
4065
4066 void
4067 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4068 Mips_relobj<size, big_endian>* relobj,
4069 unsigned int shndx, Output_section* output_section,
4070 Mips_address r_offset)
4071 {
4072 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4073 output_section, r_offset));
4074 }
4075
4076 // Calculate value of _gp symbol.
4077 void
4078 set_gp(Layout*, Symbol_table*);
4079
4080 const char*
4081 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4082 const char*
4083 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4084
4085 // Adds entries that describe how machines relate to one another. The entries
4086 // are ordered topologically with MIPS I extensions listed last. First
4087 // element is extension, second element is base.
4088 void
4089 add_machine_extensions()
4090 {
4091 // MIPS64r2 extensions.
4092 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4093 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4094 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4095 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4096 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4097
4098 // MIPS64 extensions.
4099 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4100 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4101 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4102
4103 // MIPS V extensions.
4104 this->add_extension(mach_mipsisa64, mach_mips5);
4105
4106 // R10000 extensions.
4107 this->add_extension(mach_mips12000, mach_mips10000);
4108 this->add_extension(mach_mips14000, mach_mips10000);
4109 this->add_extension(mach_mips16000, mach_mips10000);
4110
4111 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4112 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4113 // better to allow vr5400 and vr5500 code to be merged anyway, since
4114 // many libraries will just use the core ISA. Perhaps we could add
4115 // some sort of ASE flag if this ever proves a problem.
4116 this->add_extension(mach_mips5500, mach_mips5400);
4117 this->add_extension(mach_mips5400, mach_mips5000);
4118
4119 // MIPS IV extensions.
4120 this->add_extension(mach_mips5, mach_mips8000);
4121 this->add_extension(mach_mips10000, mach_mips8000);
4122 this->add_extension(mach_mips5000, mach_mips8000);
4123 this->add_extension(mach_mips7000, mach_mips8000);
4124 this->add_extension(mach_mips9000, mach_mips8000);
4125
4126 // VR4100 extensions.
4127 this->add_extension(mach_mips4120, mach_mips4100);
4128 this->add_extension(mach_mips4111, mach_mips4100);
4129
4130 // MIPS III extensions.
4131 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4132 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4133 this->add_extension(mach_mips8000, mach_mips4000);
4134 this->add_extension(mach_mips4650, mach_mips4000);
4135 this->add_extension(mach_mips4600, mach_mips4000);
4136 this->add_extension(mach_mips4400, mach_mips4000);
4137 this->add_extension(mach_mips4300, mach_mips4000);
4138 this->add_extension(mach_mips4100, mach_mips4000);
4139 this->add_extension(mach_mips4010, mach_mips4000);
4140 this->add_extension(mach_mips5900, mach_mips4000);
4141
4142 // MIPS32 extensions.
4143 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4144
4145 // MIPS II extensions.
4146 this->add_extension(mach_mips4000, mach_mips6000);
4147 this->add_extension(mach_mipsisa32, mach_mips6000);
4148
4149 // MIPS I extensions.
4150 this->add_extension(mach_mips6000, mach_mips3000);
4151 this->add_extension(mach_mips3900, mach_mips3000);
4152 }
4153
4154 // Add value to MIPS extenstions.
4155 void
4156 add_extension(unsigned int base, unsigned int extension)
4157 {
4158 std::pair<unsigned int, unsigned int> ext(base, extension);
4159 this->mips_mach_extensions_.push_back(ext);
4160 }
4161
4162 // Return the number of entries in the .dynsym section.
4163 unsigned int get_dt_mips_symtabno() const
4164 {
4165 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4166 / elfcpp::Elf_sizes<size>::sym_size));
4167 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4168 }
4169
4170 // Information about this specific target which we pass to the
4171 // general Target structure.
4172 static const Target::Target_info mips_info;
4173 // The GOT section.
4174 Mips_output_data_got<size, big_endian>* got_;
4175 // gp symbol. It has the value of .got + 0x7FF0.
4176 Sized_symbol<size>* gp_;
4177 // The PLT section.
4178 Mips_output_data_plt<size, big_endian>* plt_;
4179 // The GOT PLT section.
4180 Output_data_space* got_plt_;
4181 // The dynamic reloc section.
4182 Reloc_section* rel_dyn_;
4183 // The .rld_map section.
4184 Output_data_zero_fill* rld_map_;
4185 // Relocs saved to avoid a COPY reloc.
4186 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4187
4188 // A list of dyn relocs to be saved.
4189 std::vector<Dyn_reloc> dyn_relocs_;
4190
4191 // The LA25 stub section.
4192 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4193 // Architecture extensions.
4194 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4195 // .MIPS.stubs
4196 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4197
4198 // Attributes section data in output.
4199 Attributes_section_data* attributes_section_data_;
4200 // .MIPS.abiflags section data in output.
4201 Mips_abiflags<big_endian>* abiflags_;
4202
4203 unsigned int mach_;
4204 Layout* layout_;
4205
4206 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4207
4208 // Whether there is an input .MIPS.abiflags section.
4209 bool has_abiflags_section_;
4210
4211 // Whether the entry symbol is mips16 or micromips.
4212 bool entry_symbol_is_compressed_;
4213
4214 // Whether we can use only 32-bit microMIPS instructions.
4215 // TODO(sasa): This should be a linker option.
4216 bool insn32_;
4217 };
4218
4219 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4220 // It records high part of the relocation pair.
4221
4222 template<int size, bool big_endian>
4223 struct reloc_high
4224 {
4225 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4226
4227 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4228 const Symbol_value<size>* _psymval, Mips_address _addend,
4229 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4230 Mips_address _address = 0, bool _gp_disp = false)
4231 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4232 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4233 address(_address), gp_disp(_gp_disp)
4234 { }
4235
4236 unsigned char* view;
4237 const Mips_relobj<size, big_endian>* object;
4238 const Symbol_value<size>* psymval;
4239 Mips_address addend;
4240 unsigned int r_type;
4241 unsigned int r_sym;
4242 bool extract_addend;
4243 Mips_address address;
4244 bool gp_disp;
4245 };
4246
4247 template<int size, bool big_endian>
4248 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4249 {
4250 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4251 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4252 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4253 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4254 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4255
4256 public:
4257 typedef enum
4258 {
4259 STATUS_OKAY, // No error during relocation.
4260 STATUS_OVERFLOW, // Relocation overflow.
4261 STATUS_BAD_RELOC, // Relocation cannot be applied.
4262 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4263 } Status;
4264
4265 private:
4266 typedef Relocate_functions<size, big_endian> Base;
4267 typedef Mips_relocate_functions<size, big_endian> This;
4268
4269 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4270 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4271 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4272
4273 template<int valsize>
4274 static inline typename This::Status
4275 check_overflow(Valtype value)
4276 {
4277 if (size == 32)
4278 return (Bits<valsize>::has_overflow32(value)
4279 ? This::STATUS_OVERFLOW
4280 : This::STATUS_OKAY);
4281
4282 return (Bits<valsize>::has_overflow(value)
4283 ? This::STATUS_OVERFLOW
4284 : This::STATUS_OKAY);
4285 }
4286
4287 static inline bool
4288 should_shuffle_micromips_reloc(unsigned int r_type)
4289 {
4290 return (micromips_reloc(r_type)
4291 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4292 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4293 }
4294
4295 public:
4296 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4297 // Most mips16 instructions are 16 bits, but these instructions
4298 // are 32 bits.
4299 //
4300 // The format of these instructions is:
4301 //
4302 // +--------------+--------------------------------+
4303 // | JALX | X| Imm 20:16 | Imm 25:21 |
4304 // +--------------+--------------------------------+
4305 // | Immediate 15:0 |
4306 // +-----------------------------------------------+
4307 //
4308 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4309 // Note that the immediate value in the first word is swapped.
4310 //
4311 // When producing a relocatable object file, R_MIPS16_26 is
4312 // handled mostly like R_MIPS_26. In particular, the addend is
4313 // stored as a straight 26-bit value in a 32-bit instruction.
4314 // (gas makes life simpler for itself by never adjusting a
4315 // R_MIPS16_26 reloc to be against a section, so the addend is
4316 // always zero). However, the 32 bit instruction is stored as 2
4317 // 16-bit values, rather than a single 32-bit value. In a
4318 // big-endian file, the result is the same; in a little-endian
4319 // file, the two 16-bit halves of the 32 bit value are swapped.
4320 // This is so that a disassembler can recognize the jal
4321 // instruction.
4322 //
4323 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4324 // instruction stored as two 16-bit values. The addend A is the
4325 // contents of the targ26 field. The calculation is the same as
4326 // R_MIPS_26. When storing the calculated value, reorder the
4327 // immediate value as shown above, and don't forget to store the
4328 // value as two 16-bit values.
4329 //
4330 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4331 // defined as
4332 //
4333 // big-endian:
4334 // +--------+----------------------+
4335 // | | |
4336 // | | targ26-16 |
4337 // |31 26|25 0|
4338 // +--------+----------------------+
4339 //
4340 // little-endian:
4341 // +----------+------+-------------+
4342 // | | | |
4343 // | sub1 | | sub2 |
4344 // |0 9|10 15|16 31|
4345 // +----------+--------------------+
4346 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4347 // ((sub1 << 16) | sub2)).
4348 //
4349 // When producing a relocatable object file, the calculation is
4350 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4351 // When producing a fully linked file, the calculation is
4352 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4353 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4354 //
4355 // The table below lists the other MIPS16 instruction relocations.
4356 // Each one is calculated in the same way as the non-MIPS16 relocation
4357 // given on the right, but using the extended MIPS16 layout of 16-bit
4358 // immediate fields:
4359 //
4360 // R_MIPS16_GPREL R_MIPS_GPREL16
4361 // R_MIPS16_GOT16 R_MIPS_GOT16
4362 // R_MIPS16_CALL16 R_MIPS_CALL16
4363 // R_MIPS16_HI16 R_MIPS_HI16
4364 // R_MIPS16_LO16 R_MIPS_LO16
4365 //
4366 // A typical instruction will have a format like this:
4367 //
4368 // +--------------+--------------------------------+
4369 // | EXTEND | Imm 10:5 | Imm 15:11 |
4370 // +--------------+--------------------------------+
4371 // | Major | rx | ry | Imm 4:0 |
4372 // +--------------+--------------------------------+
4373 //
4374 // EXTEND is the five bit value 11110. Major is the instruction
4375 // opcode.
4376 //
4377 // All we need to do here is shuffle the bits appropriately.
4378 // As above, the two 16-bit halves must be swapped on a
4379 // little-endian system.
4380
4381 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4382 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4383 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4384
4385 static void
4386 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4387 bool jal_shuffle)
4388 {
4389 if (!mips16_reloc(r_type)
4390 && !should_shuffle_micromips_reloc(r_type))
4391 return;
4392
4393 // Pick up the first and second halfwords of the instruction.
4394 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4395 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4396 Valtype32 val;
4397
4398 if (micromips_reloc(r_type)
4399 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4400 val = first << 16 | second;
4401 else if (r_type != elfcpp::R_MIPS16_26)
4402 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4403 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4404 else
4405 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4406 | ((first & 0x1f) << 21) | second);
4407
4408 elfcpp::Swap<32, big_endian>::writeval(view, val);
4409 }
4410
4411 static void
4412 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4413 {
4414 if (!mips16_reloc(r_type)
4415 && !should_shuffle_micromips_reloc(r_type))
4416 return;
4417
4418 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4419 Valtype16 first, second;
4420
4421 if (micromips_reloc(r_type)
4422 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4423 {
4424 second = val & 0xffff;
4425 first = val >> 16;
4426 }
4427 else if (r_type != elfcpp::R_MIPS16_26)
4428 {
4429 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4430 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4431 }
4432 else
4433 {
4434 second = val & 0xffff;
4435 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4436 | ((val >> 21) & 0x1f);
4437 }
4438
4439 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4440 elfcpp::Swap<16, big_endian>::writeval(view, first);
4441 }
4442
4443 // R_MIPS_16: S + sign-extend(A)
4444 static inline typename This::Status
4445 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4446 const Symbol_value<size>* psymval, Mips_address addend_a,
4447 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4448 {
4449 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4450 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4451
4452 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4453 : addend_a);
4454
4455 Valtype x = psymval->value(object, addend);
4456 val = Bits<16>::bit_select32(val, x, 0xffffU);
4457
4458 if (calculate_only)
4459 {
4460 *calculated_value = x;
4461 return This::STATUS_OKAY;
4462 }
4463 else
4464 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4465
4466 return check_overflow<16>(x);
4467 }
4468
4469 // R_MIPS_32: S + A
4470 static inline typename This::Status
4471 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4472 const Symbol_value<size>* psymval, Mips_address addend_a,
4473 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4474 {
4475 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4476 Valtype addend = (extract_addend
4477 ? elfcpp::Swap<32, big_endian>::readval(wv)
4478 : addend_a);
4479 Valtype x = psymval->value(object, addend);
4480
4481 if (calculate_only)
4482 *calculated_value = x;
4483 else
4484 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4485
4486 return This::STATUS_OKAY;
4487 }
4488
4489 // R_MIPS_JALR, R_MICROMIPS_JALR
4490 static inline typename This::Status
4491 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4492 const Symbol_value<size>* psymval, Mips_address address,
4493 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4494 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4495 bool calculate_only, Valtype* calculated_value)
4496 {
4497 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4498 Valtype addend = extract_addend ? 0 : addend_a;
4499 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4500
4501 // Try converting J(AL)R to B(AL), if the target is in range.
4502 if (!parameters->options().relocatable()
4503 && r_type == elfcpp::R_MIPS_JALR
4504 && !cross_mode_jump
4505 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4506 || (jr_to_b && val == 0x03200008))) // jr t9
4507 {
4508 int offset = psymval->value(object, addend) - (address + 4);
4509 if (!Bits<18>::has_overflow32(offset))
4510 {
4511 if (val == 0x03200008) // jr t9
4512 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4513 else
4514 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4515 }
4516 }
4517
4518 if (calculate_only)
4519 *calculated_value = val;
4520 else
4521 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4522
4523 return This::STATUS_OKAY;
4524 }
4525
4526 // R_MIPS_PC32: S + A - P
4527 static inline typename This::Status
4528 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4529 const Symbol_value<size>* psymval, Mips_address address,
4530 Mips_address addend_a, bool extract_addend, bool calculate_only,
4531 Valtype* calculated_value)
4532 {
4533 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4534 Valtype addend = (extract_addend
4535 ? elfcpp::Swap<32, big_endian>::readval(wv)
4536 : addend_a);
4537 Valtype x = psymval->value(object, addend) - address;
4538
4539 if (calculate_only)
4540 *calculated_value = x;
4541 else
4542 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4543
4544 return This::STATUS_OKAY;
4545 }
4546
4547 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4548 static inline typename This::Status
4549 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4550 const Symbol_value<size>* psymval, Mips_address address,
4551 bool local, Mips_address addend_a, bool extract_addend,
4552 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4553 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4554 {
4555 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4556 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4557
4558 Valtype addend;
4559 if (extract_addend)
4560 {
4561 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4562 addend = (val & 0x03ffffff) << 1;
4563 else
4564 addend = (val & 0x03ffffff) << 2;
4565 }
4566 else
4567 addend = addend_a;
4568
4569 // Make sure the target of JALX is word-aligned. Bit 0 must be
4570 // the correct ISA mode selector and bit 1 must be 0.
4571 if (!calculate_only && cross_mode_jump
4572 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4573 {
4574 gold_warning(_("JALX to a non-word-aligned address"));
4575 return This::STATUS_BAD_RELOC;
4576 }
4577
4578 // Shift is 2, unusually, for microMIPS JALX.
4579 unsigned int shift =
4580 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4581
4582 Valtype x;
4583 if (local)
4584 x = addend | ((address + 4) & (0xfc000000 << shift));
4585 else
4586 {
4587 if (shift == 1)
4588 x = Bits<27>::sign_extend32(addend);
4589 else
4590 x = Bits<28>::sign_extend32(addend);
4591 }
4592 x = psymval->value(object, x) >> shift;
4593
4594 if (!calculate_only && !local && !gsym->is_weak_undefined())
4595 {
4596 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4597 {
4598 gold_error(_("relocation truncated to fit: %u against '%s'"),
4599 r_type, gsym->name());
4600 return This::STATUS_OVERFLOW;
4601 }
4602 }
4603
4604 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4605
4606 // If required, turn JAL into JALX.
4607 if (cross_mode_jump)
4608 {
4609 bool ok;
4610 Valtype32 opcode = val >> 26;
4611 Valtype32 jalx_opcode;
4612
4613 // Check to see if the opcode is already JAL or JALX.
4614 if (r_type == elfcpp::R_MIPS16_26)
4615 {
4616 ok = (opcode == 0x6) || (opcode == 0x7);
4617 jalx_opcode = 0x7;
4618 }
4619 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4620 {
4621 ok = (opcode == 0x3d) || (opcode == 0x3c);
4622 jalx_opcode = 0x3c;
4623 }
4624 else
4625 {
4626 ok = (opcode == 0x3) || (opcode == 0x1d);
4627 jalx_opcode = 0x1d;
4628 }
4629
4630 // If the opcode is not JAL or JALX, there's a problem. We cannot
4631 // convert J or JALS to JALX.
4632 if (!calculate_only && !ok)
4633 {
4634 gold_error(_("Unsupported jump between ISA modes; consider "
4635 "recompiling with interlinking enabled."));
4636 return This::STATUS_BAD_RELOC;
4637 }
4638
4639 // Make this the JALX opcode.
4640 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4641 }
4642
4643 // Try converting JAL to BAL, if the target is in range.
4644 if (!parameters->options().relocatable()
4645 && !cross_mode_jump
4646 && ((jal_to_bal
4647 && r_type == elfcpp::R_MIPS_26
4648 && (val >> 26) == 0x3))) // jal addr
4649 {
4650 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4651 int offset = dest - (address + 4);
4652 if (!Bits<18>::has_overflow32(offset))
4653 {
4654 if (val == 0x03200008) // jr t9
4655 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4656 else
4657 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4658 }
4659 }
4660
4661 if (calculate_only)
4662 *calculated_value = val;
4663 else
4664 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4665
4666 return This::STATUS_OKAY;
4667 }
4668
4669 // R_MIPS_PC16
4670 static inline typename This::Status
4671 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4672 const Symbol_value<size>* psymval, Mips_address address,
4673 Mips_address addend_a, bool extract_addend, bool calculate_only,
4674 Valtype* calculated_value)
4675 {
4676 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4677 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4678
4679 Valtype addend = (extract_addend
4680 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4681 : addend_a);
4682
4683 Valtype x = psymval->value(object, addend) - address;
4684 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4685
4686 if (calculate_only)
4687 {
4688 *calculated_value = x >> 2;
4689 return This::STATUS_OKAY;
4690 }
4691 else
4692 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4693
4694 if (psymval->value(object, addend) & 3)
4695 return This::STATUS_PCREL_UNALIGNED;
4696
4697 return check_overflow<18>(x);
4698 }
4699
4700 // R_MIPS_PC21_S2
4701 static inline typename This::Status
4702 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4703 const Symbol_value<size>* psymval, Mips_address address,
4704 Mips_address addend_a, bool extract_addend, bool calculate_only,
4705 Valtype* calculated_value)
4706 {
4707 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4708 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4709
4710 Valtype addend = (extract_addend
4711 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4712 : addend_a);
4713
4714 Valtype x = psymval->value(object, addend) - address;
4715 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4716
4717 if (calculate_only)
4718 {
4719 *calculated_value = x >> 2;
4720 return This::STATUS_OKAY;
4721 }
4722 else
4723 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4724
4725 if (psymval->value(object, addend) & 3)
4726 return This::STATUS_PCREL_UNALIGNED;
4727
4728 return check_overflow<23>(x);
4729 }
4730
4731 // R_MIPS_PC26_S2
4732 static inline typename This::Status
4733 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4734 const Symbol_value<size>* psymval, Mips_address address,
4735 Mips_address addend_a, bool extract_addend, bool calculate_only,
4736 Valtype* calculated_value)
4737 {
4738 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4739 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4740
4741 Valtype addend = (extract_addend
4742 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4743 : addend_a);
4744
4745 Valtype x = psymval->value(object, addend) - address;
4746 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4747
4748 if (calculate_only)
4749 {
4750 *calculated_value = x >> 2;
4751 return This::STATUS_OKAY;
4752 }
4753 else
4754 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4755
4756 if (psymval->value(object, addend) & 3)
4757 return This::STATUS_PCREL_UNALIGNED;
4758
4759 return check_overflow<28>(x);
4760 }
4761
4762 // R_MIPS_PC18_S3
4763 static inline typename This::Status
4764 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4765 const Symbol_value<size>* psymval, Mips_address address,
4766 Mips_address addend_a, bool extract_addend, bool calculate_only,
4767 Valtype* calculated_value)
4768 {
4769 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4770 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4771
4772 Valtype addend = (extract_addend
4773 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4774 : addend_a);
4775
4776 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4777 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4778
4779 if (calculate_only)
4780 {
4781 *calculated_value = x >> 3;
4782 return This::STATUS_OKAY;
4783 }
4784 else
4785 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4786
4787 if (psymval->value(object, addend) & 7)
4788 return This::STATUS_PCREL_UNALIGNED;
4789
4790 return check_overflow<21>(x);
4791 }
4792
4793 // R_MIPS_PC19_S2
4794 static inline typename This::Status
4795 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4796 const Symbol_value<size>* psymval, Mips_address address,
4797 Mips_address addend_a, bool extract_addend, bool calculate_only,
4798 Valtype* calculated_value)
4799 {
4800 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4801 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4802
4803 Valtype addend = (extract_addend
4804 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4805 : addend_a);
4806
4807 Valtype x = psymval->value(object, addend) - address;
4808 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4809
4810 if (calculate_only)
4811 {
4812 *calculated_value = x >> 2;
4813 return This::STATUS_OKAY;
4814 }
4815 else
4816 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4817
4818 if (psymval->value(object, addend) & 3)
4819 return This::STATUS_PCREL_UNALIGNED;
4820
4821 return check_overflow<21>(x);
4822 }
4823
4824 // R_MIPS_PCHI16
4825 static inline typename This::Status
4826 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4827 const Symbol_value<size>* psymval, Mips_address addend,
4828 Mips_address address, unsigned int r_sym, bool extract_addend)
4829 {
4830 // Record the relocation. It will be resolved when we find pclo16 part.
4831 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4832 addend, 0, r_sym, extract_addend, address));
4833 return This::STATUS_OKAY;
4834 }
4835
4836 // R_MIPS_PCHI16
4837 static inline typename This::Status
4838 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4839 const Symbol_value<size>* psymval, Mips_address addend_hi,
4840 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4841 bool calculate_only, Valtype* calculated_value)
4842 {
4843 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4844 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4845
4846 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4847 : addend_hi);
4848
4849 Valtype value = psymval->value(object, addend) - address;
4850 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4851 val = Bits<32>::bit_select32(val, x, 0xffff);
4852
4853 if (calculate_only)
4854 *calculated_value = x;
4855 else
4856 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4857
4858 return This::STATUS_OKAY;
4859 }
4860
4861 // R_MIPS_PCLO16
4862 static inline typename This::Status
4863 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4864 const Symbol_value<size>* psymval, Mips_address addend_a,
4865 bool extract_addend, Mips_address address, unsigned int r_sym,
4866 unsigned int rel_type, bool calculate_only,
4867 Valtype* calculated_value)
4868 {
4869 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4870 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4871
4872 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4873 : addend_a);
4874
4875 if (rel_type == elfcpp::SHT_REL)
4876 {
4877 // Resolve pending R_MIPS_PCHI16 relocations.
4878 typename std::list<reloc_high<size, big_endian> >::iterator it =
4879 pchi16_relocs.begin();
4880 while (it != pchi16_relocs.end())
4881 {
4882 reloc_high<size, big_endian> pchi16 = *it;
4883 if (pchi16.r_sym == r_sym)
4884 {
4885 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4886 pchi16.addend, pchi16.address,
4887 pchi16.extract_addend, addend, calculate_only,
4888 calculated_value);
4889 it = pchi16_relocs.erase(it);
4890 }
4891 else
4892 ++it;
4893 }
4894 }
4895
4896 // Resolve R_MIPS_PCLO16 relocation.
4897 Valtype x = psymval->value(object, addend) - address;
4898 val = Bits<32>::bit_select32(val, x, 0xffff);
4899
4900 if (calculate_only)
4901 *calculated_value = x;
4902 else
4903 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4904
4905 return This::STATUS_OKAY;
4906 }
4907
4908 // R_MICROMIPS_PC7_S1
4909 static inline typename This::Status
4910 relmicromips_pc7_s1(unsigned char* view,
4911 const Mips_relobj<size, big_endian>* object,
4912 const Symbol_value<size>* psymval, Mips_address address,
4913 Mips_address addend_a, bool extract_addend,
4914 bool calculate_only, Valtype* calculated_value)
4915 {
4916 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4917 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4918
4919 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4920 : addend_a;
4921
4922 Valtype x = psymval->value(object, addend) - address;
4923 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4924
4925 if (calculate_only)
4926 {
4927 *calculated_value = x >> 1;
4928 return This::STATUS_OKAY;
4929 }
4930 else
4931 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4932
4933 return check_overflow<8>(x);
4934 }
4935
4936 // R_MICROMIPS_PC10_S1
4937 static inline typename This::Status
4938 relmicromips_pc10_s1(unsigned char* view,
4939 const Mips_relobj<size, big_endian>* object,
4940 const Symbol_value<size>* psymval, Mips_address address,
4941 Mips_address addend_a, bool extract_addend,
4942 bool calculate_only, Valtype* calculated_value)
4943 {
4944 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4945 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4946
4947 Valtype addend = (extract_addend
4948 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4949 : addend_a);
4950
4951 Valtype x = psymval->value(object, addend) - address;
4952 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4953
4954 if (calculate_only)
4955 {
4956 *calculated_value = x >> 1;
4957 return This::STATUS_OKAY;
4958 }
4959 else
4960 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4961
4962 return check_overflow<11>(x);
4963 }
4964
4965 // R_MICROMIPS_PC16_S1
4966 static inline typename This::Status
4967 relmicromips_pc16_s1(unsigned char* view,
4968 const Mips_relobj<size, big_endian>* object,
4969 const Symbol_value<size>* psymval, Mips_address address,
4970 Mips_address addend_a, bool extract_addend,
4971 bool calculate_only, Valtype* calculated_value)
4972 {
4973 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4974 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4975
4976 Valtype addend = (extract_addend
4977 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
4978 : addend_a);
4979
4980 Valtype x = psymval->value(object, addend) - address;
4981 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4982
4983 if (calculate_only)
4984 {
4985 *calculated_value = x >> 1;
4986 return This::STATUS_OKAY;
4987 }
4988 else
4989 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4990
4991 return check_overflow<17>(x);
4992 }
4993
4994 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4995 static inline typename This::Status
4996 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4997 const Symbol_value<size>* psymval, Mips_address addend,
4998 Mips_address address, bool gp_disp, unsigned int r_type,
4999 unsigned int r_sym, bool extract_addend)
5000 {
5001 // Record the relocation. It will be resolved when we find lo16 part.
5002 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5003 addend, r_type, r_sym, extract_addend, address,
5004 gp_disp));
5005 return This::STATUS_OKAY;
5006 }
5007
5008 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5009 static inline typename This::Status
5010 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5011 const Symbol_value<size>* psymval, Mips_address addend_hi,
5012 Mips_address address, bool is_gp_disp, unsigned int r_type,
5013 bool extract_addend, Valtype32 addend_lo,
5014 Target_mips<size, big_endian>* target, bool calculate_only,
5015 Valtype* calculated_value)
5016 {
5017 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5018 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5019
5020 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5021 : addend_hi);
5022
5023 Valtype32 value;
5024 if (!is_gp_disp)
5025 value = psymval->value(object, addend);
5026 else
5027 {
5028 // For MIPS16 ABI code we generate this sequence
5029 // 0: li $v0,%hi(_gp_disp)
5030 // 4: addiupc $v1,%lo(_gp_disp)
5031 // 8: sll $v0,16
5032 // 12: addu $v0,$v1
5033 // 14: move $gp,$v0
5034 // So the offsets of hi and lo relocs are the same, but the
5035 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5036 // ADDIUPC clears the low two bits of the instruction address,
5037 // so the base is ($t9 + 4) & ~3.
5038 Valtype32 gp_disp;
5039 if (r_type == elfcpp::R_MIPS16_HI16)
5040 gp_disp = (target->adjusted_gp_value(object)
5041 - ((address + 4) & ~0x3));
5042 // The microMIPS .cpload sequence uses the same assembly
5043 // instructions as the traditional psABI version, but the
5044 // incoming $t9 has the low bit set.
5045 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5046 gp_disp = target->adjusted_gp_value(object) - address - 1;
5047 else
5048 gp_disp = target->adjusted_gp_value(object) - address;
5049 value = gp_disp + addend;
5050 }
5051 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5052 val = Bits<32>::bit_select32(val, x, 0xffff);
5053
5054 if (calculate_only)
5055 {
5056 *calculated_value = x;
5057 return This::STATUS_OKAY;
5058 }
5059 else
5060 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5061
5062 return (is_gp_disp ? check_overflow<16>(x)
5063 : This::STATUS_OKAY);
5064 }
5065
5066 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5067 static inline typename This::Status
5068 relgot16_local(unsigned char* view,
5069 const Mips_relobj<size, big_endian>* object,
5070 const Symbol_value<size>* psymval, Mips_address addend_a,
5071 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5072 {
5073 // Record the relocation. It will be resolved when we find lo16 part.
5074 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5075 addend_a, r_type, r_sym, extract_addend));
5076 return This::STATUS_OKAY;
5077 }
5078
5079 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5080 static inline typename This::Status
5081 do_relgot16_local(unsigned char* view,
5082 const Mips_relobj<size, big_endian>* object,
5083 const Symbol_value<size>* psymval, Mips_address addend_hi,
5084 bool extract_addend, Valtype32 addend_lo,
5085 Target_mips<size, big_endian>* target, bool calculate_only,
5086 Valtype* calculated_value)
5087 {
5088 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5089 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5090
5091 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5092 : addend_hi);
5093
5094 // Find GOT page entry.
5095 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5096 & 0xffff;
5097 value <<= 16;
5098 unsigned int got_offset =
5099 target->got_section()->get_got_page_offset(value, object);
5100
5101 // Resolve the relocation.
5102 Valtype x = target->got_section()->gp_offset(got_offset, object);
5103 val = Bits<32>::bit_select32(val, x, 0xffff);
5104
5105 if (calculate_only)
5106 {
5107 *calculated_value = x;
5108 return This::STATUS_OKAY;
5109 }
5110 else
5111 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5112
5113 return check_overflow<16>(x);
5114 }
5115
5116 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5117 static inline typename This::Status
5118 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5119 const Mips_relobj<size, big_endian>* object,
5120 const Symbol_value<size>* psymval, Mips_address addend_a,
5121 bool extract_addend, Mips_address address, bool is_gp_disp,
5122 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5123 bool calculate_only, Valtype* calculated_value)
5124 {
5125 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5126 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5127
5128 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5129 : addend_a);
5130
5131 if (rel_type == elfcpp::SHT_REL)
5132 {
5133 typename This::Status reloc_status = This::STATUS_OKAY;
5134 // Resolve pending R_MIPS_HI16 relocations.
5135 typename std::list<reloc_high<size, big_endian> >::iterator it =
5136 hi16_relocs.begin();
5137 while (it != hi16_relocs.end())
5138 {
5139 reloc_high<size, big_endian> hi16 = *it;
5140 if (hi16.r_sym == r_sym
5141 && is_matching_lo16_reloc(hi16.r_type, r_type))
5142 {
5143 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5144 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5145 hi16.addend, hi16.address, hi16.gp_disp,
5146 hi16.r_type, hi16.extract_addend, addend,
5147 target, calculate_only, calculated_value);
5148 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5149 if (reloc_status == This::STATUS_OVERFLOW)
5150 return This::STATUS_OVERFLOW;
5151 it = hi16_relocs.erase(it);
5152 }
5153 else
5154 ++it;
5155 }
5156
5157 // Resolve pending local R_MIPS_GOT16 relocations.
5158 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5159 got16_relocs.begin();
5160 while (it2 != got16_relocs.end())
5161 {
5162 reloc_high<size, big_endian> got16 = *it2;
5163 if (got16.r_sym == r_sym
5164 && is_matching_lo16_reloc(got16.r_type, r_type))
5165 {
5166 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5167
5168 reloc_status = do_relgot16_local(got16.view, got16.object,
5169 got16.psymval, got16.addend,
5170 got16.extract_addend, addend, target,
5171 calculate_only, calculated_value);
5172
5173 mips_reloc_shuffle(got16.view, got16.r_type, false);
5174 if (reloc_status == This::STATUS_OVERFLOW)
5175 return This::STATUS_OVERFLOW;
5176 it2 = got16_relocs.erase(it2);
5177 }
5178 else
5179 ++it2;
5180 }
5181 }
5182
5183 // Resolve R_MIPS_LO16 relocation.
5184 Valtype x;
5185 if (!is_gp_disp)
5186 x = psymval->value(object, addend);
5187 else
5188 {
5189 // See the comment for R_MIPS16_HI16 above for the reason
5190 // for this conditional.
5191 Valtype32 gp_disp;
5192 if (r_type == elfcpp::R_MIPS16_LO16)
5193 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5194 else if (r_type == elfcpp::R_MICROMIPS_LO16
5195 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5196 gp_disp = target->adjusted_gp_value(object) - address + 3;
5197 else
5198 gp_disp = target->adjusted_gp_value(object) - address + 4;
5199 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5200 // for overflow. Relocations against _gp_disp are normally
5201 // generated from the .cpload pseudo-op. It generates code
5202 // that normally looks like this:
5203
5204 // lui $gp,%hi(_gp_disp)
5205 // addiu $gp,$gp,%lo(_gp_disp)
5206 // addu $gp,$gp,$t9
5207
5208 // Here $t9 holds the address of the function being called,
5209 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5210 // relocation can easily overflow in this situation, but the
5211 // R_MIPS_HI16 relocation will handle the overflow.
5212 // Therefore, we consider this a bug in the MIPS ABI, and do
5213 // not check for overflow here.
5214 x = gp_disp + addend;
5215 }
5216 val = Bits<32>::bit_select32(val, x, 0xffff);
5217
5218 if (calculate_only)
5219 *calculated_value = x;
5220 else
5221 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5222
5223 return This::STATUS_OKAY;
5224 }
5225
5226 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5227 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5228 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5229 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5230 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5231 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5232 static inline typename This::Status
5233 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5234 Valtype* calculated_value)
5235 {
5236 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5237 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5238 Valtype x = gp_offset;
5239 val = Bits<32>::bit_select32(val, x, 0xffff);
5240
5241 if (calculate_only)
5242 {
5243 *calculated_value = x;
5244 return This::STATUS_OKAY;
5245 }
5246 else
5247 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5248
5249 return check_overflow<16>(x);
5250 }
5251
5252 // R_MIPS_EH
5253 static inline typename This::Status
5254 releh(unsigned char* view, int gp_offset, bool calculate_only,
5255 Valtype* calculated_value)
5256 {
5257 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5258 Valtype x = gp_offset;
5259
5260 if (calculate_only)
5261 {
5262 *calculated_value = x;
5263 return This::STATUS_OKAY;
5264 }
5265 else
5266 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5267
5268 return check_overflow<32>(x);
5269 }
5270
5271 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5272 static inline typename This::Status
5273 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5274 const Mips_relobj<size, big_endian>* object,
5275 const Symbol_value<size>* psymval, Mips_address addend_a,
5276 bool extract_addend, bool calculate_only,
5277 Valtype* calculated_value)
5278 {
5279 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5280 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5281 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5282
5283 // Find a GOT page entry that points to within 32KB of symbol + addend.
5284 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5285 unsigned int got_offset =
5286 target->got_section()->get_got_page_offset(value, object);
5287
5288 Valtype x = target->got_section()->gp_offset(got_offset, object);
5289 val = Bits<32>::bit_select32(val, x, 0xffff);
5290
5291 if (calculate_only)
5292 {
5293 *calculated_value = x;
5294 return This::STATUS_OKAY;
5295 }
5296 else
5297 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5298
5299 return check_overflow<16>(x);
5300 }
5301
5302 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5303 static inline typename This::Status
5304 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5305 const Mips_relobj<size, big_endian>* object,
5306 const Symbol_value<size>* psymval, Mips_address addend_a,
5307 bool extract_addend, bool local, bool calculate_only,
5308 Valtype* calculated_value)
5309 {
5310 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5311 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5312 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5313
5314 // For a local symbol, find a GOT page entry that points to within 32KB of
5315 // symbol + addend. Relocation value is the offset of the GOT page entry's
5316 // value from symbol + addend.
5317 // For a global symbol, relocation value is addend.
5318 Valtype x;
5319 if (local)
5320 {
5321 // Find GOT page entry.
5322 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5323 & ~0xffff);
5324 target->got_section()->get_got_page_offset(value, object);
5325
5326 x = psymval->value(object, addend) - value;
5327 }
5328 else
5329 x = addend;
5330 val = Bits<32>::bit_select32(val, x, 0xffff);
5331
5332 if (calculate_only)
5333 {
5334 *calculated_value = x;
5335 return This::STATUS_OKAY;
5336 }
5337 else
5338 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5339
5340 return check_overflow<16>(x);
5341 }
5342
5343 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5344 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5345 static inline typename This::Status
5346 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5347 Valtype* calculated_value)
5348 {
5349 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5350 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5351 Valtype x = gp_offset;
5352 x = ((x + 0x8000) >> 16) & 0xffff;
5353 val = Bits<32>::bit_select32(val, x, 0xffff);
5354
5355 if (calculate_only)
5356 *calculated_value = x;
5357 else
5358 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5359
5360 return This::STATUS_OKAY;
5361 }
5362
5363 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5364 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5365 static inline typename This::Status
5366 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5367 Valtype* calculated_value)
5368 {
5369 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5370 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5371 Valtype x = gp_offset;
5372 val = Bits<32>::bit_select32(val, x, 0xffff);
5373
5374 if (calculate_only)
5375 *calculated_value = x;
5376 else
5377 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5378
5379 return This::STATUS_OKAY;
5380 }
5381
5382 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5383 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5384 static inline typename This::Status
5385 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5386 const Symbol_value<size>* psymval, Mips_address gp,
5387 Mips_address addend_a, bool extract_addend, bool local,
5388 unsigned int r_type, bool calculate_only,
5389 Valtype* calculated_value)
5390 {
5391 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5392 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5393
5394 Valtype addend;
5395 if (extract_addend)
5396 {
5397 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5398 addend = (val & 0x7f) << 2;
5399 else
5400 addend = val & 0xffff;
5401 // Only sign-extend the addend if it was extracted from the
5402 // instruction. If the addend was separate, leave it alone,
5403 // otherwise we may lose significant bits.
5404 addend = Bits<16>::sign_extend32(addend);
5405 }
5406 else
5407 addend = addend_a;
5408
5409 Valtype x = psymval->value(object, addend) - gp;
5410
5411 // If the symbol was local, any earlier relocatable links will
5412 // have adjusted its addend with the gp offset, so compensate
5413 // for that now. Don't do it for symbols forced local in this
5414 // link, though, since they won't have had the gp offset applied
5415 // to them before.
5416 if (local)
5417 x += object->gp_value();
5418
5419 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5420 val = Bits<32>::bit_select32(val, x, 0x7f);
5421 else
5422 val = Bits<32>::bit_select32(val, x, 0xffff);
5423
5424 if (calculate_only)
5425 {
5426 *calculated_value = x;
5427 return This::STATUS_OKAY;
5428 }
5429 else
5430 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5431
5432 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5433 {
5434 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5435 "limit (see option -G)"));
5436 return This::STATUS_OVERFLOW;
5437 }
5438 return This::STATUS_OKAY;
5439 }
5440
5441 // R_MIPS_GPREL32
5442 static inline typename This::Status
5443 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5444 const Symbol_value<size>* psymval, Mips_address gp,
5445 Mips_address addend_a, bool extract_addend, bool calculate_only,
5446 Valtype* calculated_value)
5447 {
5448 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5449 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5450 Valtype addend = extract_addend ? val : addend_a;
5451
5452 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5453 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5454
5455 if (calculate_only)
5456 *calculated_value = x;
5457 else
5458 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5459
5460 return This::STATUS_OKAY;
5461 }
5462
5463 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5464 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5465 // R_MICROMIPS_TLS_DTPREL_HI16
5466 static inline typename This::Status
5467 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5468 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5469 Mips_address addend_a, bool extract_addend, bool calculate_only,
5470 Valtype* calculated_value)
5471 {
5472 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5473 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5474 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5475
5476 // tls symbol values are relative to tls_segment()->vaddr()
5477 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5478 val = Bits<32>::bit_select32(val, x, 0xffff);
5479
5480 if (calculate_only)
5481 *calculated_value = x;
5482 else
5483 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5484
5485 return This::STATUS_OKAY;
5486 }
5487
5488 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5489 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5490 // R_MICROMIPS_TLS_DTPREL_LO16,
5491 static inline typename This::Status
5492 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5493 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5494 Mips_address addend_a, bool extract_addend, bool calculate_only,
5495 Valtype* calculated_value)
5496 {
5497 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5498 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5499 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5500
5501 // tls symbol values are relative to tls_segment()->vaddr()
5502 Valtype x = psymval->value(object, addend) - tp_offset;
5503 val = Bits<32>::bit_select32(val, x, 0xffff);
5504
5505 if (calculate_only)
5506 *calculated_value = x;
5507 else
5508 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5509
5510 return This::STATUS_OKAY;
5511 }
5512
5513 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5514 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5515 static inline typename This::Status
5516 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5517 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5518 Mips_address addend_a, bool extract_addend, bool calculate_only,
5519 Valtype* calculated_value)
5520 {
5521 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5522 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5523 Valtype addend = extract_addend ? val : addend_a;
5524
5525 // tls symbol values are relative to tls_segment()->vaddr()
5526 Valtype x = psymval->value(object, addend) - tp_offset;
5527
5528 if (calculate_only)
5529 *calculated_value = x;
5530 else
5531 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5532
5533 return This::STATUS_OKAY;
5534 }
5535
5536 // R_MIPS_SUB, R_MICROMIPS_SUB
5537 static inline typename This::Status
5538 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5539 const Symbol_value<size>* psymval, Mips_address addend_a,
5540 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5541 {
5542 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5543 Valtype64 addend = (extract_addend
5544 ? elfcpp::Swap<64, big_endian>::readval(wv)
5545 : addend_a);
5546
5547 Valtype64 x = psymval->value(object, -addend);
5548 if (calculate_only)
5549 *calculated_value = x;
5550 else
5551 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5552
5553 return This::STATUS_OKAY;
5554 }
5555
5556 // R_MIPS_64: S + A
5557 static inline typename This::Status
5558 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5559 const Symbol_value<size>* psymval, Mips_address addend_a,
5560 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5561 bool apply_addend_only)
5562 {
5563 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5564 Valtype64 addend = (extract_addend
5565 ? elfcpp::Swap<64, big_endian>::readval(wv)
5566 : addend_a);
5567
5568 Valtype64 x = psymval->value(object, addend);
5569 if (calculate_only)
5570 *calculated_value = x;
5571 else
5572 {
5573 if (apply_addend_only)
5574 x = addend;
5575 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5576 }
5577
5578 return This::STATUS_OKAY;
5579 }
5580
5581 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5582 static inline typename This::Status
5583 relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5584 const Symbol_value<size>* psymval, Mips_address addend_a,
5585 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5586 {
5587 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5588 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5589 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5590 : addend_a);
5591
5592 Valtype x = psymval->value(object, addend);
5593 x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5594 val = Bits<32>::bit_select32(val, x, 0xffff);
5595
5596 if (calculate_only)
5597 *calculated_value = x;
5598 else
5599 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5600
5601 return This::STATUS_OKAY;
5602 }
5603
5604 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5605 static inline typename This::Status
5606 relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5607 const Symbol_value<size>* psymval, Mips_address addend_a,
5608 bool extract_addend, bool calculate_only,
5609 Valtype* calculated_value)
5610 {
5611 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5612 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5613 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5614 : addend_a);
5615
5616 Valtype x = psymval->value(object, addend);
5617 x = ((x + (uint64_t) 0x800080008000) >> 48) & 0xffff;
5618 val = Bits<32>::bit_select32(val, x, 0xffff);
5619
5620 if (calculate_only)
5621 *calculated_value = x;
5622 else
5623 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5624
5625 return This::STATUS_OKAY;
5626 }
5627 };
5628
5629 template<int size, bool big_endian>
5630 typename std::list<reloc_high<size, big_endian> >
5631 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5632
5633 template<int size, bool big_endian>
5634 typename std::list<reloc_high<size, big_endian> >
5635 Mips_relocate_functions<size, big_endian>::got16_relocs;
5636
5637 template<int size, bool big_endian>
5638 typename std::list<reloc_high<size, big_endian> >
5639 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5640
5641 // Mips_got_info methods.
5642
5643 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5644 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5645
5646 template<int size, bool big_endian>
5647 void
5648 Mips_got_info<size, big_endian>::record_local_got_symbol(
5649 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5650 Mips_address addend, unsigned int r_type, unsigned int shndx,
5651 bool is_section_symbol)
5652 {
5653 Mips_got_entry<size, big_endian>* entry =
5654 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5655 mips_elf_reloc_tls_type(r_type),
5656 shndx, is_section_symbol);
5657 this->record_got_entry(entry, object);
5658 }
5659
5660 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5661 // in OBJECT. FOR_CALL is true if the caller is only interested in
5662 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5663 // relocation.
5664
5665 template<int size, bool big_endian>
5666 void
5667 Mips_got_info<size, big_endian>::record_global_got_symbol(
5668 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5669 unsigned int r_type, bool dyn_reloc, bool for_call)
5670 {
5671 if (!for_call)
5672 mips_sym->set_got_not_only_for_calls();
5673
5674 // A global symbol in the GOT must also be in the dynamic symbol table.
5675 if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5676 {
5677 switch (mips_sym->visibility())
5678 {
5679 case elfcpp::STV_INTERNAL:
5680 case elfcpp::STV_HIDDEN:
5681 mips_sym->set_is_forced_local();
5682 break;
5683 default:
5684 mips_sym->set_needs_dynsym_entry();
5685 break;
5686 }
5687 }
5688
5689 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5690 if (tls_type == GOT_TLS_NONE)
5691 this->global_got_symbols_.insert(mips_sym);
5692
5693 if (dyn_reloc)
5694 {
5695 if (mips_sym->global_got_area() == GGA_NONE)
5696 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5697 return;
5698 }
5699
5700 Mips_got_entry<size, big_endian>* entry =
5701 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5702
5703 this->record_got_entry(entry, object);
5704 }
5705
5706 // Add ENTRY to master GOT and to OBJECT's GOT.
5707
5708 template<int size, bool big_endian>
5709 void
5710 Mips_got_info<size, big_endian>::record_got_entry(
5711 Mips_got_entry<size, big_endian>* entry,
5712 Mips_relobj<size, big_endian>* object)
5713 {
5714 this->got_entries_.insert(entry);
5715
5716 // Create the GOT entry for the OBJECT's GOT.
5717 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5718 Mips_got_entry<size, big_endian>* entry2 =
5719 new Mips_got_entry<size, big_endian>(*entry);
5720
5721 g->got_entries_.insert(entry2);
5722 }
5723
5724 // Record that OBJECT has a page relocation against symbol SYMNDX and
5725 // that ADDEND is the addend for that relocation.
5726 // This function creates an upper bound on the number of GOT slots
5727 // required; no attempt is made to combine references to non-overridable
5728 // global symbols across multiple input files.
5729
5730 template<int size, bool big_endian>
5731 void
5732 Mips_got_info<size, big_endian>::record_got_page_entry(
5733 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5734 {
5735 struct Got_page_range **range_ptr, *range;
5736 int old_pages, new_pages;
5737
5738 // Find the Got_page_entry for this symbol.
5739 Got_page_entry* entry = new Got_page_entry(object, symndx);
5740 typename Got_page_entry_set::iterator it =
5741 this->got_page_entries_.find(entry);
5742 if (it != this->got_page_entries_.end())
5743 entry = *it;
5744 else
5745 this->got_page_entries_.insert(entry);
5746
5747 // Add the same entry to the OBJECT's GOT.
5748 Got_page_entry* entry2 = NULL;
5749 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5750 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5751 {
5752 entry2 = new Got_page_entry(*entry);
5753 g2->got_page_entries_.insert(entry2);
5754 }
5755
5756 // Skip over ranges whose maximum extent cannot share a page entry
5757 // with ADDEND.
5758 range_ptr = &entry->ranges;
5759 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5760 range_ptr = &(*range_ptr)->next;
5761
5762 // If we scanned to the end of the list, or found a range whose
5763 // minimum extent cannot share a page entry with ADDEND, create
5764 // a new singleton range.
5765 range = *range_ptr;
5766 if (!range || addend < range->min_addend - 0xffff)
5767 {
5768 range = new Got_page_range();
5769 range->next = *range_ptr;
5770 range->min_addend = addend;
5771 range->max_addend = addend;
5772
5773 *range_ptr = range;
5774 ++entry->num_pages;
5775 if (entry2 != NULL)
5776 ++entry2->num_pages;
5777 ++this->page_gotno_;
5778 ++g2->page_gotno_;
5779 return;
5780 }
5781
5782 // Remember how many pages the old range contributed.
5783 old_pages = range->get_max_pages();
5784
5785 // Update the ranges.
5786 if (addend < range->min_addend)
5787 range->min_addend = addend;
5788 else if (addend > range->max_addend)
5789 {
5790 if (range->next && addend >= range->next->min_addend - 0xffff)
5791 {
5792 old_pages += range->next->get_max_pages();
5793 range->max_addend = range->next->max_addend;
5794 range->next = range->next->next;
5795 }
5796 else
5797 range->max_addend = addend;
5798 }
5799
5800 // Record any change in the total estimate.
5801 new_pages = range->get_max_pages();
5802 if (old_pages != new_pages)
5803 {
5804 entry->num_pages += new_pages - old_pages;
5805 if (entry2 != NULL)
5806 entry2->num_pages += new_pages - old_pages;
5807 this->page_gotno_ += new_pages - old_pages;
5808 g2->page_gotno_ += new_pages - old_pages;
5809 }
5810 }
5811
5812 // Create all entries that should be in the local part of the GOT.
5813
5814 template<int size, bool big_endian>
5815 void
5816 Mips_got_info<size, big_endian>::add_local_entries(
5817 Target_mips<size, big_endian>* target, Layout* layout)
5818 {
5819 Mips_output_data_got<size, big_endian>* got = target->got_section();
5820 // First two GOT entries are reserved. The first entry will be filled at
5821 // runtime. The second entry will be used by some runtime loaders.
5822 got->add_constant(0);
5823 got->add_constant(target->mips_elf_gnu_got1_mask());
5824
5825 for (typename Got_entry_set::iterator
5826 p = this->got_entries_.begin();
5827 p != this->got_entries_.end();
5828 ++p)
5829 {
5830 Mips_got_entry<size, big_endian>* entry = *p;
5831 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5832 {
5833 got->add_local(entry->object(), entry->symndx(),
5834 GOT_TYPE_STANDARD, entry->addend());
5835 unsigned int got_offset = entry->object()->local_got_offset(
5836 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5837 if (got->multi_got() && this->index_ > 0
5838 && parameters->options().output_is_position_independent())
5839 {
5840 if (!entry->is_section_symbol())
5841 target->rel_dyn_section(layout)->add_local(entry->object(),
5842 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5843 else
5844 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5845 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5846 got, got_offset);
5847 }
5848 }
5849 }
5850
5851 this->add_page_entries(target, layout);
5852
5853 // Add global entries that should be in the local area.
5854 for (typename Got_entry_set::iterator
5855 p = this->got_entries_.begin();
5856 p != this->got_entries_.end();
5857 ++p)
5858 {
5859 Mips_got_entry<size, big_endian>* entry = *p;
5860 if (!entry->is_for_global_symbol())
5861 continue;
5862
5863 Mips_symbol<size>* mips_sym = entry->sym();
5864 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5865 {
5866 unsigned int got_type;
5867 if (!got->multi_got())
5868 got_type = GOT_TYPE_STANDARD;
5869 else
5870 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5871 if (got->add_global(mips_sym, got_type))
5872 {
5873 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5874 if (got->multi_got() && this->index_ > 0
5875 && parameters->options().output_is_position_independent())
5876 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5877 mips_sym, elfcpp::R_MIPS_REL32, got,
5878 mips_sym->got_offset(got_type));
5879 }
5880 }
5881 }
5882 }
5883
5884 // Create GOT page entries.
5885
5886 template<int size, bool big_endian>
5887 void
5888 Mips_got_info<size, big_endian>::add_page_entries(
5889 Target_mips<size, big_endian>* target, Layout* layout)
5890 {
5891 if (this->page_gotno_ == 0)
5892 return;
5893
5894 Mips_output_data_got<size, big_endian>* got = target->got_section();
5895 this->got_page_offset_start_ = got->add_constant(0);
5896 if (got->multi_got() && this->index_ > 0
5897 && parameters->options().output_is_position_independent())
5898 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5899 this->got_page_offset_start_);
5900 int num_entries = this->page_gotno_;
5901 unsigned int prev_offset = this->got_page_offset_start_;
5902 while (--num_entries > 0)
5903 {
5904 unsigned int next_offset = got->add_constant(0);
5905 if (got->multi_got() && this->index_ > 0
5906 && parameters->options().output_is_position_independent())
5907 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5908 next_offset);
5909 gold_assert(next_offset == prev_offset + size/8);
5910 prev_offset = next_offset;
5911 }
5912 this->got_page_offset_next_ = this->got_page_offset_start_;
5913 }
5914
5915 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5916
5917 template<int size, bool big_endian>
5918 void
5919 Mips_got_info<size, big_endian>::add_global_entries(
5920 Target_mips<size, big_endian>* target, Layout* layout,
5921 unsigned int non_reloc_only_global_gotno)
5922 {
5923 Mips_output_data_got<size, big_endian>* got = target->got_section();
5924 // Add GGA_NORMAL entries.
5925 unsigned int count = 0;
5926 for (typename Got_entry_set::iterator
5927 p = this->got_entries_.begin();
5928 p != this->got_entries_.end();
5929 ++p)
5930 {
5931 Mips_got_entry<size, big_endian>* entry = *p;
5932 if (!entry->is_for_global_symbol())
5933 continue;
5934
5935 Mips_symbol<size>* mips_sym = entry->sym();
5936 if (mips_sym->global_got_area() != GGA_NORMAL)
5937 continue;
5938
5939 unsigned int got_type;
5940 if (!got->multi_got())
5941 got_type = GOT_TYPE_STANDARD;
5942 else
5943 // In multi-GOT links, global symbol can be in both primary and
5944 // secondary GOT(s). By creating custom GOT type
5945 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5946 // is added to secondary GOT(s).
5947 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5948 if (!got->add_global(mips_sym, got_type))
5949 continue;
5950
5951 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5952 if (got->multi_got() && this->index_ == 0)
5953 count++;
5954 if (got->multi_got() && this->index_ > 0)
5955 {
5956 if (parameters->options().output_is_position_independent()
5957 || (!parameters->doing_static_link()
5958 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5959 {
5960 target->rel_dyn_section(layout)->add_global(
5961 mips_sym, elfcpp::R_MIPS_REL32, got,
5962 mips_sym->got_offset(got_type));
5963 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5964 elfcpp::R_MIPS_REL32, mips_sym);
5965 }
5966 }
5967 }
5968
5969 if (!got->multi_got() || this->index_ == 0)
5970 {
5971 if (got->multi_got())
5972 {
5973 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5974 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5975 // entries correspond to dynamic symbol indexes.
5976 while (count < non_reloc_only_global_gotno)
5977 {
5978 got->add_constant(0);
5979 ++count;
5980 }
5981 }
5982
5983 // Add GGA_RELOC_ONLY entries.
5984 got->add_reloc_only_entries();
5985 }
5986 }
5987
5988 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5989
5990 template<int size, bool big_endian>
5991 void
5992 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5993 Mips_output_data_got<size, big_endian>* got)
5994 {
5995 for (typename Global_got_entry_set::iterator
5996 p = this->global_got_symbols_.begin();
5997 p != this->global_got_symbols_.end();
5998 ++p)
5999 {
6000 Mips_symbol<size>* mips_sym = *p;
6001 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6002 {
6003 unsigned int got_type;
6004 if (!got->multi_got())
6005 got_type = GOT_TYPE_STANDARD;
6006 else
6007 got_type = GOT_TYPE_STANDARD_MULTIGOT;
6008 if (got->add_global(mips_sym, got_type))
6009 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6010 }
6011 }
6012 }
6013
6014 // Create TLS GOT entries.
6015
6016 template<int size, bool big_endian>
6017 void
6018 Mips_got_info<size, big_endian>::add_tls_entries(
6019 Target_mips<size, big_endian>* target, Layout* layout)
6020 {
6021 Mips_output_data_got<size, big_endian>* got = target->got_section();
6022 // Add local tls entries.
6023 for (typename Got_entry_set::iterator
6024 p = this->got_entries_.begin();
6025 p != this->got_entries_.end();
6026 ++p)
6027 {
6028 Mips_got_entry<size, big_endian>* entry = *p;
6029 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6030 continue;
6031
6032 if (entry->tls_type() == GOT_TLS_GD)
6033 {
6034 unsigned int got_type = GOT_TYPE_TLS_PAIR;
6035 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6036 : elfcpp::R_MIPS_TLS_DTPMOD64);
6037 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6038 : elfcpp::R_MIPS_TLS_DTPREL64);
6039
6040 if (!parameters->doing_static_link())
6041 {
6042 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6043 entry->shndx(), got_type,
6044 target->rel_dyn_section(layout),
6045 r_type1, entry->addend());
6046 unsigned int got_offset =
6047 entry->object()->local_got_offset(entry->symndx(), got_type,
6048 entry->addend());
6049 got->add_static_reloc(got_offset + size/8, r_type2,
6050 entry->object(), entry->symndx());
6051 }
6052 else
6053 {
6054 // We are doing a static link. Mark it as belong to module 1,
6055 // the executable.
6056 unsigned int got_offset = got->add_constant(1);
6057 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6058 got_offset,
6059 entry->addend());
6060 got->add_constant(0);
6061 got->add_static_reloc(got_offset + size/8, r_type2,
6062 entry->object(), entry->symndx());
6063 }
6064 }
6065 else if (entry->tls_type() == GOT_TLS_IE)
6066 {
6067 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6068 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6069 : elfcpp::R_MIPS_TLS_TPREL64);
6070 if (!parameters->doing_static_link())
6071 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6072 target->rel_dyn_section(layout), r_type,
6073 entry->addend());
6074 else
6075 {
6076 got->add_local(entry->object(), entry->symndx(), got_type,
6077 entry->addend());
6078 unsigned int got_offset =
6079 entry->object()->local_got_offset(entry->symndx(), got_type,
6080 entry->addend());
6081 got->add_static_reloc(got_offset, r_type, entry->object(),
6082 entry->symndx());
6083 }
6084 }
6085 else if (entry->tls_type() == GOT_TLS_LDM)
6086 {
6087 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6088 : elfcpp::R_MIPS_TLS_DTPMOD64);
6089 unsigned int got_offset;
6090 if (!parameters->doing_static_link())
6091 {
6092 got_offset = got->add_constant(0);
6093 target->rel_dyn_section(layout)->add_local(
6094 entry->object(), 0, r_type, got, got_offset);
6095 }
6096 else
6097 // We are doing a static link. Just mark it as belong to module 1,
6098 // the executable.
6099 got_offset = got->add_constant(1);
6100
6101 got->add_constant(0);
6102 got->set_tls_ldm_offset(got_offset, entry->object());
6103 }
6104 else
6105 gold_unreachable();
6106 }
6107
6108 // Add global tls entries.
6109 for (typename Got_entry_set::iterator
6110 p = this->got_entries_.begin();
6111 p != this->got_entries_.end();
6112 ++p)
6113 {
6114 Mips_got_entry<size, big_endian>* entry = *p;
6115 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6116 continue;
6117
6118 Mips_symbol<size>* mips_sym = entry->sym();
6119 if (entry->tls_type() == GOT_TLS_GD)
6120 {
6121 unsigned int got_type;
6122 if (!got->multi_got())
6123 got_type = GOT_TYPE_TLS_PAIR;
6124 else
6125 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6126 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6127 : elfcpp::R_MIPS_TLS_DTPMOD64);
6128 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6129 : elfcpp::R_MIPS_TLS_DTPREL64);
6130 if (!parameters->doing_static_link())
6131 got->add_global_pair_with_rel(mips_sym, got_type,
6132 target->rel_dyn_section(layout), r_type1, r_type2);
6133 else
6134 {
6135 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6136 // GOT entries. The first one is initialized to be 1, which is the
6137 // module index for the main executable and the second one 0. A
6138 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6139 // the second GOT entry and will be applied by gold.
6140 unsigned int got_offset = got->add_constant(1);
6141 mips_sym->set_got_offset(got_type, got_offset);
6142 got->add_constant(0);
6143 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6144 }
6145 }
6146 else if (entry->tls_type() == GOT_TLS_IE)
6147 {
6148 unsigned int got_type;
6149 if (!got->multi_got())
6150 got_type = GOT_TYPE_TLS_OFFSET;
6151 else
6152 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6153 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6154 : elfcpp::R_MIPS_TLS_TPREL64);
6155 if (!parameters->doing_static_link())
6156 got->add_global_with_rel(mips_sym, got_type,
6157 target->rel_dyn_section(layout), r_type);
6158 else
6159 {
6160 got->add_global(mips_sym, got_type);
6161 unsigned int got_offset = mips_sym->got_offset(got_type);
6162 got->add_static_reloc(got_offset, r_type, mips_sym);
6163 }
6164 }
6165 else
6166 gold_unreachable();
6167 }
6168 }
6169
6170 // Decide whether the symbol needs an entry in the global part of the primary
6171 // GOT, setting global_got_area accordingly. Count the number of global
6172 // symbols that are in the primary GOT only because they have dynamic
6173 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6174
6175 template<int size, bool big_endian>
6176 void
6177 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6178 {
6179 for (typename Global_got_entry_set::iterator
6180 p = this->global_got_symbols_.begin();
6181 p != this->global_got_symbols_.end();
6182 ++p)
6183 {
6184 Mips_symbol<size>* sym = *p;
6185 // Make a final decision about whether the symbol belongs in the
6186 // local or global GOT. Symbols that bind locally can (and in the
6187 // case of forced-local symbols, must) live in the local GOT.
6188 // Those that are aren't in the dynamic symbol table must also
6189 // live in the local GOT.
6190
6191 if (!sym->should_add_dynsym_entry(symtab)
6192 || (sym->got_only_for_calls()
6193 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6194 : symbol_references_local(sym,
6195 sym->should_add_dynsym_entry(symtab))))
6196 // The symbol belongs in the local GOT. We no longer need this
6197 // entry if it was only used for relocations; those relocations
6198 // will be against the null or section symbol instead.
6199 sym->set_global_got_area(GGA_NONE);
6200 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6201 {
6202 ++this->reloc_only_gotno_;
6203 ++this->global_gotno_ ;
6204 }
6205 }
6206 }
6207
6208 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6209 // VALUE if it is not initialized.
6210
6211 template<int size, bool big_endian>
6212 unsigned int
6213 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6214 Mips_output_data_got<size, big_endian>* got)
6215 {
6216 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6217 if (it != this->got_page_offsets_.end())
6218 return it->second;
6219
6220 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6221 + (size/8) * this->page_gotno_);
6222
6223 unsigned int got_offset = this->got_page_offset_next_;
6224 this->got_page_offsets_[value] = got_offset;
6225 this->got_page_offset_next_ += size/8;
6226 got->update_got_entry(got_offset, value);
6227 return got_offset;
6228 }
6229
6230 // Remove lazy-binding stubs for global symbols in this GOT.
6231
6232 template<int size, bool big_endian>
6233 void
6234 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6235 Target_mips<size, big_endian>* target)
6236 {
6237 for (typename Got_entry_set::iterator
6238 p = this->got_entries_.begin();
6239 p != this->got_entries_.end();
6240 ++p)
6241 {
6242 Mips_got_entry<size, big_endian>* entry = *p;
6243 if (entry->is_for_global_symbol())
6244 target->remove_lazy_stub_entry(entry->sym());
6245 }
6246 }
6247
6248 // Count the number of GOT entries required.
6249
6250 template<int size, bool big_endian>
6251 void
6252 Mips_got_info<size, big_endian>::count_got_entries()
6253 {
6254 for (typename Got_entry_set::iterator
6255 p = this->got_entries_.begin();
6256 p != this->got_entries_.end();
6257 ++p)
6258 {
6259 this->count_got_entry(*p);
6260 }
6261 }
6262
6263 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6264
6265 template<int size, bool big_endian>
6266 void
6267 Mips_got_info<size, big_endian>::count_got_entry(
6268 Mips_got_entry<size, big_endian>* entry)
6269 {
6270 if (entry->is_tls_entry())
6271 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6272 else if (entry->is_for_local_symbol()
6273 || entry->sym()->global_got_area() == GGA_NONE)
6274 ++this->local_gotno_;
6275 else
6276 ++this->global_gotno_;
6277 }
6278
6279 // Add FROM's GOT entries.
6280
6281 template<int size, bool big_endian>
6282 void
6283 Mips_got_info<size, big_endian>::add_got_entries(
6284 Mips_got_info<size, big_endian>* from)
6285 {
6286 for (typename Got_entry_set::iterator
6287 p = from->got_entries_.begin();
6288 p != from->got_entries_.end();
6289 ++p)
6290 {
6291 Mips_got_entry<size, big_endian>* entry = *p;
6292 if (this->got_entries_.find(entry) == this->got_entries_.end())
6293 {
6294 Mips_got_entry<size, big_endian>* entry2 =
6295 new Mips_got_entry<size, big_endian>(*entry);
6296 this->got_entries_.insert(entry2);
6297 this->count_got_entry(entry);
6298 }
6299 }
6300 }
6301
6302 // Add FROM's GOT page entries.
6303
6304 template<int size, bool big_endian>
6305 void
6306 Mips_got_info<size, big_endian>::add_got_page_entries(
6307 Mips_got_info<size, big_endian>* from)
6308 {
6309 for (typename Got_page_entry_set::iterator
6310 p = from->got_page_entries_.begin();
6311 p != from->got_page_entries_.end();
6312 ++p)
6313 {
6314 Got_page_entry* entry = *p;
6315 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6316 {
6317 Got_page_entry* entry2 = new Got_page_entry(*entry);
6318 this->got_page_entries_.insert(entry2);
6319 this->page_gotno_ += entry->num_pages;
6320 }
6321 }
6322 }
6323
6324 // Mips_output_data_got methods.
6325
6326 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6327 // larger than 64K, create multi-GOT.
6328
6329 template<int size, bool big_endian>
6330 void
6331 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6332 Symbol_table* symtab, const Input_objects* input_objects)
6333 {
6334 // Decide which symbols need to go in the global part of the GOT and
6335 // count the number of reloc-only GOT symbols.
6336 this->master_got_info_->count_got_symbols(symtab);
6337
6338 // Count the number of GOT entries.
6339 this->master_got_info_->count_got_entries();
6340
6341 unsigned int got_size = this->master_got_info_->got_size();
6342 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6343 this->lay_out_multi_got(layout, input_objects);
6344 else
6345 {
6346 // Record that all objects use single GOT.
6347 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6348 p != input_objects->relobj_end();
6349 ++p)
6350 {
6351 Mips_relobj<size, big_endian>* object =
6352 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6353 if (object->get_got_info() != NULL)
6354 object->set_got_info(this->master_got_info_);
6355 }
6356
6357 this->master_got_info_->add_local_entries(this->target_, layout);
6358 this->master_got_info_->add_global_entries(this->target_, layout,
6359 /*not used*/-1U);
6360 this->master_got_info_->add_tls_entries(this->target_, layout);
6361 }
6362 }
6363
6364 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6365
6366 template<int size, bool big_endian>
6367 void
6368 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6369 const Input_objects* input_objects)
6370 {
6371 // Try to merge the GOTs of input objects together, as long as they
6372 // don't seem to exceed the maximum GOT size, choosing one of them
6373 // to be the primary GOT.
6374 this->merge_gots(input_objects);
6375
6376 // Every symbol that is referenced in a dynamic relocation must be
6377 // present in the primary GOT.
6378 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6379
6380 // Add GOT entries.
6381 unsigned int i = 0;
6382 unsigned int offset = 0;
6383 Mips_got_info<size, big_endian>* g = this->primary_got_;
6384 do
6385 {
6386 g->set_index(i);
6387 g->set_offset(offset);
6388
6389 g->add_local_entries(this->target_, layout);
6390 if (i == 0)
6391 g->add_global_entries(this->target_, layout,
6392 (this->master_got_info_->global_gotno()
6393 - this->master_got_info_->reloc_only_gotno()));
6394 else
6395 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6396 g->add_tls_entries(this->target_, layout);
6397
6398 // Forbid global symbols in every non-primary GOT from having
6399 // lazy-binding stubs.
6400 if (i > 0)
6401 g->remove_lazy_stubs(this->target_);
6402
6403 ++i;
6404 offset += g->got_size();
6405 g = g->next();
6406 }
6407 while (g);
6408 }
6409
6410 // Attempt to merge GOTs of different input objects. Try to use as much as
6411 // possible of the primary GOT, since it doesn't require explicit dynamic
6412 // relocations, but don't use objects that would reference global symbols
6413 // out of the addressable range. Failing the primary GOT, attempt to merge
6414 // with the current GOT, or finish the current GOT and then make make the new
6415 // GOT current.
6416
6417 template<int size, bool big_endian>
6418 void
6419 Mips_output_data_got<size, big_endian>::merge_gots(
6420 const Input_objects* input_objects)
6421 {
6422 gold_assert(this->primary_got_ == NULL);
6423 Mips_got_info<size, big_endian>* current = NULL;
6424
6425 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6426 p != input_objects->relobj_end();
6427 ++p)
6428 {
6429 Mips_relobj<size, big_endian>* object =
6430 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6431
6432 Mips_got_info<size, big_endian>* g = object->get_got_info();
6433 if (g == NULL)
6434 continue;
6435
6436 g->count_got_entries();
6437
6438 // Work out the number of page, local and TLS entries.
6439 unsigned int estimate = this->master_got_info_->page_gotno();
6440 if (estimate > g->page_gotno())
6441 estimate = g->page_gotno();
6442 estimate += g->local_gotno() + g->tls_gotno();
6443
6444 // We place TLS GOT entries after both locals and globals. The globals
6445 // for the primary GOT may overflow the normal GOT size limit, so be
6446 // sure not to merge a GOT which requires TLS with the primary GOT in that
6447 // case. This doesn't affect non-primary GOTs.
6448 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6449 : g->global_gotno());
6450
6451 unsigned int max_count =
6452 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6453 if (estimate <= max_count)
6454 {
6455 // If we don't have a primary GOT, use it as
6456 // a starting point for the primary GOT.
6457 if (!this->primary_got_)
6458 {
6459 this->primary_got_ = g;
6460 continue;
6461 }
6462
6463 // Try merging with the primary GOT.
6464 if (this->merge_got_with(g, object, this->primary_got_))
6465 continue;
6466 }
6467
6468 // If we can merge with the last-created GOT, do it.
6469 if (current && this->merge_got_with(g, object, current))
6470 continue;
6471
6472 // Well, we couldn't merge, so create a new GOT. Don't check if it
6473 // fits; if it turns out that it doesn't, we'll get relocation
6474 // overflows anyway.
6475 g->set_next(current);
6476 current = g;
6477 }
6478
6479 // If we do not find any suitable primary GOT, create an empty one.
6480 if (this->primary_got_ == NULL)
6481 this->primary_got_ = new Mips_got_info<size, big_endian>();
6482
6483 // Link primary GOT with secondary GOTs.
6484 this->primary_got_->set_next(current);
6485 }
6486
6487 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6488 // this would lead to overflow, true if they were merged successfully.
6489
6490 template<int size, bool big_endian>
6491 bool
6492 Mips_output_data_got<size, big_endian>::merge_got_with(
6493 Mips_got_info<size, big_endian>* from,
6494 Mips_relobj<size, big_endian>* object,
6495 Mips_got_info<size, big_endian>* to)
6496 {
6497 // Work out how many page entries we would need for the combined GOT.
6498 unsigned int estimate = this->master_got_info_->page_gotno();
6499 if (estimate >= from->page_gotno() + to->page_gotno())
6500 estimate = from->page_gotno() + to->page_gotno();
6501
6502 // Conservatively estimate how many local and TLS entries would be needed.
6503 estimate += from->local_gotno() + to->local_gotno();
6504 estimate += from->tls_gotno() + to->tls_gotno();
6505
6506 // If we're merging with the primary got, any TLS relocations will
6507 // come after the full set of global entries. Otherwise estimate those
6508 // conservatively as well.
6509 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6510 estimate += this->master_got_info_->global_gotno();
6511 else
6512 estimate += from->global_gotno() + to->global_gotno();
6513
6514 // Bail out if the combined GOT might be too big.
6515 unsigned int max_count =
6516 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6517 if (estimate > max_count)
6518 return false;
6519
6520 // Transfer the object's GOT information from FROM to TO.
6521 to->add_got_entries(from);
6522 to->add_got_page_entries(from);
6523
6524 // Record that OBJECT should use output GOT TO.
6525 object->set_got_info(to);
6526
6527 return true;
6528 }
6529
6530 // Write out the GOT.
6531
6532 template<int size, bool big_endian>
6533 void
6534 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6535 {
6536 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6537 Mips_stubs_entry_set;
6538
6539 // Call parent to write out GOT.
6540 Output_data_got<size, big_endian>::do_write(of);
6541
6542 const off_t offset = this->offset();
6543 const section_size_type oview_size =
6544 convert_to_section_size_type(this->data_size());
6545 unsigned char* const oview = of->get_output_view(offset, oview_size);
6546
6547 // Needed for fixing values of .got section.
6548 this->got_view_ = oview;
6549
6550 // Write lazy stub addresses.
6551 for (typename Mips_stubs_entry_set::iterator
6552 p = this->master_got_info_->global_got_symbols().begin();
6553 p != this->master_got_info_->global_got_symbols().end();
6554 ++p)
6555 {
6556 Mips_symbol<size>* mips_sym = *p;
6557 if (mips_sym->has_lazy_stub())
6558 {
6559 Valtype* wv = reinterpret_cast<Valtype*>(
6560 oview + this->get_primary_got_offset(mips_sym));
6561 Valtype value =
6562 this->target_->mips_stubs_section()->stub_address(mips_sym);
6563 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6564 }
6565 }
6566
6567 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6568 for (typename Mips_stubs_entry_set::iterator
6569 p = this->master_got_info_->global_got_symbols().begin();
6570 p != this->master_got_info_->global_got_symbols().end();
6571 ++p)
6572 {
6573 Mips_symbol<size>* mips_sym = *p;
6574 if (!this->multi_got()
6575 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6576 && mips_sym->global_got_area() == GGA_NONE
6577 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6578 {
6579 Valtype* wv = reinterpret_cast<Valtype*>(
6580 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6581 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6582 if (value != 0)
6583 {
6584 value |= 1;
6585 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6586 }
6587 }
6588 }
6589
6590 if (!this->secondary_got_relocs_.empty())
6591 {
6592 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6593 // secondary GOT entries with non-zero initial value copy the value
6594 // to the corresponding primary GOT entry, and set the secondary GOT
6595 // entry to zero.
6596 // TODO(sasa): This is workaround. It needs to be investigated further.
6597
6598 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6599 {
6600 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6601 if (reloc.symbol_is_global())
6602 {
6603 Mips_symbol<size>* gsym = reloc.symbol();
6604 gold_assert(gsym != NULL);
6605
6606 unsigned got_offset = reloc.got_offset();
6607 gold_assert(got_offset < oview_size);
6608
6609 // Find primary GOT entry.
6610 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6611 oview + this->get_primary_got_offset(gsym));
6612
6613 // Find secondary GOT entry.
6614 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6615
6616 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6617 if (value != 0)
6618 {
6619 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6620 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6621 gsym->set_applied_secondary_got_fixup();
6622 }
6623 }
6624 }
6625
6626 of->write_output_view(offset, oview_size, oview);
6627 }
6628
6629 // We are done if there is no fix up.
6630 if (this->static_relocs_.empty())
6631 return;
6632
6633 Output_segment* tls_segment = this->layout_->tls_segment();
6634 gold_assert(tls_segment != NULL);
6635
6636 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6637 {
6638 Static_reloc& reloc(this->static_relocs_[i]);
6639
6640 Mips_address value;
6641 if (!reloc.symbol_is_global())
6642 {
6643 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6644 const Symbol_value<size>* psymval =
6645 object->local_symbol(reloc.index());
6646
6647 // We are doing static linking. Issue an error and skip this
6648 // relocation if the symbol is undefined or in a discarded_section.
6649 bool is_ordinary;
6650 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6651 if ((shndx == elfcpp::SHN_UNDEF)
6652 || (is_ordinary
6653 && shndx != elfcpp::SHN_UNDEF
6654 && !object->is_section_included(shndx)
6655 && !this->symbol_table_->is_section_folded(object, shndx)))
6656 {
6657 gold_error(_("undefined or discarded local symbol %u from "
6658 " object %s in GOT"),
6659 reloc.index(), reloc.relobj()->name().c_str());
6660 continue;
6661 }
6662
6663 value = psymval->value(object, 0);
6664 }
6665 else
6666 {
6667 const Mips_symbol<size>* gsym = reloc.symbol();
6668 gold_assert(gsym != NULL);
6669
6670 // We are doing static linking. Issue an error and skip this
6671 // relocation if the symbol is undefined or in a discarded_section
6672 // unless it is a weakly_undefined symbol.
6673 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6674 && !gsym->is_weak_undefined())
6675 {
6676 gold_error(_("undefined or discarded symbol %s in GOT"),
6677 gsym->name());
6678 continue;
6679 }
6680
6681 if (!gsym->is_weak_undefined())
6682 value = gsym->value();
6683 else
6684 value = 0;
6685 }
6686
6687 unsigned got_offset = reloc.got_offset();
6688 gold_assert(got_offset < oview_size);
6689
6690 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6691 Valtype x;
6692
6693 switch (reloc.r_type())
6694 {
6695 case elfcpp::R_MIPS_TLS_DTPMOD32:
6696 case elfcpp::R_MIPS_TLS_DTPMOD64:
6697 x = value;
6698 break;
6699 case elfcpp::R_MIPS_TLS_DTPREL32:
6700 case elfcpp::R_MIPS_TLS_DTPREL64:
6701 x = value - elfcpp::DTP_OFFSET;
6702 break;
6703 case elfcpp::R_MIPS_TLS_TPREL32:
6704 case elfcpp::R_MIPS_TLS_TPREL64:
6705 x = value - elfcpp::TP_OFFSET;
6706 break;
6707 default:
6708 gold_unreachable();
6709 break;
6710 }
6711
6712 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6713 }
6714
6715 of->write_output_view(offset, oview_size, oview);
6716 }
6717
6718 // Mips_relobj methods.
6719
6720 // Count the local symbols. The Mips backend needs to know if a symbol
6721 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6722 // because the Symbol object keeps the ELF symbol type and st_other field.
6723 // For local symbol it is harder because we cannot access this information.
6724 // So we override the do_count_local_symbol in parent and scan local symbols to
6725 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6726 // I do not want to slow down other ports by calling a per symbol target hook
6727 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6728
6729 template<int size, bool big_endian>
6730 void
6731 Mips_relobj<size, big_endian>::do_count_local_symbols(
6732 Stringpool_template<char>* pool,
6733 Stringpool_template<char>* dynpool)
6734 {
6735 // Ask parent to count the local symbols.
6736 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6737 const unsigned int loccount = this->local_symbol_count();
6738 if (loccount == 0)
6739 return;
6740
6741 // Initialize the mips16 and micromips function bit-vector.
6742 this->local_symbol_is_mips16_.resize(loccount, false);
6743 this->local_symbol_is_micromips_.resize(loccount, false);
6744
6745 // Read the symbol table section header.
6746 const unsigned int symtab_shndx = this->symtab_shndx();
6747 elfcpp::Shdr<size, big_endian>
6748 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6749 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6750
6751 // Read the local symbols.
6752 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6753 gold_assert(loccount == symtabshdr.get_sh_info());
6754 off_t locsize = loccount * sym_size;
6755 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6756 locsize, true, true);
6757
6758 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6759
6760 // Skip the first dummy symbol.
6761 psyms += sym_size;
6762 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6763 {
6764 elfcpp::Sym<size, big_endian> sym(psyms);
6765 unsigned char st_other = sym.get_st_other();
6766 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6767 this->local_symbol_is_micromips_[i] =
6768 elfcpp::elf_st_is_micromips(st_other);
6769 }
6770 }
6771
6772 // Read the symbol information.
6773
6774 template<int size, bool big_endian>
6775 void
6776 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6777 {
6778 // Call parent class to read symbol information.
6779 this->base_read_symbols(sd);
6780
6781 // Read processor-specific flags in ELF file header.
6782 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6783 elfcpp::Elf_sizes<size>::ehdr_size,
6784 true, false);
6785 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6786 this->processor_specific_flags_ = ehdr.get_e_flags();
6787
6788 // Get the section names.
6789 const unsigned char* pnamesu = sd->section_names->data();
6790 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6791
6792 // Initialize the mips16 stub section bit-vectors.
6793 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6794 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6795 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6796
6797 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6798 const unsigned char* pshdrs = sd->section_headers->data();
6799 const unsigned char* ps = pshdrs + shdr_size;
6800 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6801 {
6802 elfcpp::Shdr<size, big_endian> shdr(ps);
6803
6804 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6805 {
6806 this->has_reginfo_section_ = true;
6807 // Read the gp value that was used to create this object. We need the
6808 // gp value while processing relocs. The .reginfo section is not used
6809 // in the 64-bit MIPS ELF ABI.
6810 section_offset_type section_offset = shdr.get_sh_offset();
6811 section_size_type section_size =
6812 convert_to_section_size_type(shdr.get_sh_size());
6813 const unsigned char* view =
6814 this->get_view(section_offset, section_size, true, false);
6815
6816 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6817
6818 // Read the rest of .reginfo.
6819 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6820 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6821 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6822 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6823 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6824 }
6825
6826 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6827 {
6828 gold_assert(this->attributes_section_data_ == NULL);
6829 section_offset_type section_offset = shdr.get_sh_offset();
6830 section_size_type section_size =
6831 convert_to_section_size_type(shdr.get_sh_size());
6832 const unsigned char* view =
6833 this->get_view(section_offset, section_size, true, false);
6834 this->attributes_section_data_ =
6835 new Attributes_section_data(view, section_size);
6836 }
6837
6838 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6839 {
6840 gold_assert(this->abiflags_ == NULL);
6841 section_offset_type section_offset = shdr.get_sh_offset();
6842 section_size_type section_size =
6843 convert_to_section_size_type(shdr.get_sh_size());
6844 const unsigned char* view =
6845 this->get_view(section_offset, section_size, true, false);
6846 this->abiflags_ = new Mips_abiflags<big_endian>();
6847
6848 this->abiflags_->version =
6849 elfcpp::Swap<16, big_endian>::readval(view);
6850 if (this->abiflags_->version != 0)
6851 {
6852 gold_error(_("%s: .MIPS.abiflags section has "
6853 "unsupported version %u"),
6854 this->name().c_str(),
6855 this->abiflags_->version);
6856 break;
6857 }
6858 this->abiflags_->isa_level =
6859 elfcpp::Swap<8, big_endian>::readval(view + 2);
6860 this->abiflags_->isa_rev =
6861 elfcpp::Swap<8, big_endian>::readval(view + 3);
6862 this->abiflags_->gpr_size =
6863 elfcpp::Swap<8, big_endian>::readval(view + 4);
6864 this->abiflags_->cpr1_size =
6865 elfcpp::Swap<8, big_endian>::readval(view + 5);
6866 this->abiflags_->cpr2_size =
6867 elfcpp::Swap<8, big_endian>::readval(view + 6);
6868 this->abiflags_->fp_abi =
6869 elfcpp::Swap<8, big_endian>::readval(view + 7);
6870 this->abiflags_->isa_ext =
6871 elfcpp::Swap<32, big_endian>::readval(view + 8);
6872 this->abiflags_->ases =
6873 elfcpp::Swap<32, big_endian>::readval(view + 12);
6874 this->abiflags_->flags1 =
6875 elfcpp::Swap<32, big_endian>::readval(view + 16);
6876 this->abiflags_->flags2 =
6877 elfcpp::Swap<32, big_endian>::readval(view + 20);
6878 }
6879
6880 // In the 64-bit ABI, .MIPS.options section holds register information.
6881 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6882 // starts with this header:
6883 //
6884 // typedef struct
6885 // {
6886 // // Type of option.
6887 // unsigned char kind[1];
6888 // // Size of option descriptor, including header.
6889 // unsigned char size[1];
6890 // // Section index of affected section, or 0 for global option.
6891 // unsigned char section[2];
6892 // // Information specific to this kind of option.
6893 // unsigned char info[4];
6894 // };
6895 //
6896 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6897 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6898 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6899
6900 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6901 {
6902 section_offset_type section_offset = shdr.get_sh_offset();
6903 section_size_type section_size =
6904 convert_to_section_size_type(shdr.get_sh_size());
6905 const unsigned char* view =
6906 this->get_view(section_offset, section_size, true, false);
6907 const unsigned char* end = view + section_size;
6908
6909 while (view + 8 <= end)
6910 {
6911 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6912 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6913 if (sz < 8)
6914 {
6915 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6916 "than its header"),
6917 this->name().c_str(),
6918 this->mips_elf_options_section_name(), sz);
6919 break;
6920 }
6921
6922 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6923 {
6924 // In the 64 bit ABI, an ODK_REGINFO option is the following
6925 // structure. The info field of the options header is not
6926 // used.
6927 //
6928 // typedef struct
6929 // {
6930 // // Mask of general purpose registers used.
6931 // unsigned char ri_gprmask[4];
6932 // // Padding.
6933 // unsigned char ri_pad[4];
6934 // // Mask of co-processor registers used.
6935 // unsigned char ri_cprmask[4][4];
6936 // // GP register value for this object file.
6937 // unsigned char ri_gp_value[8];
6938 // };
6939
6940 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6941 + 32);
6942 }
6943 else if (kind == elfcpp::ODK_REGINFO)
6944 {
6945 // In the 32 bit ABI, an ODK_REGINFO option is the following
6946 // structure. The info field of the options header is not
6947 // used. The same structure is used in .reginfo section.
6948 //
6949 // typedef struct
6950 // {
6951 // unsigned char ri_gprmask[4];
6952 // unsigned char ri_cprmask[4][4];
6953 // unsigned char ri_gp_value[4];
6954 // };
6955
6956 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6957 + 28);
6958 }
6959 view += sz;
6960 }
6961 }
6962
6963 const char* name = pnames + shdr.get_sh_name();
6964 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6965 this->section_is_mips16_call_stub_[i] =
6966 is_prefix_of(".mips16.call.", name);
6967 this->section_is_mips16_call_fp_stub_[i] =
6968 is_prefix_of(".mips16.call.fp.", name);
6969
6970 if (strcmp(name, ".pdr") == 0)
6971 {
6972 gold_assert(this->pdr_shndx_ == -1U);
6973 this->pdr_shndx_ = i;
6974 }
6975 }
6976 }
6977
6978 // Discard MIPS16 stub secions that are not needed.
6979
6980 template<int size, bool big_endian>
6981 void
6982 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6983 {
6984 for (typename Mips16_stubs_int_map::const_iterator
6985 it = this->mips16_stub_sections_.begin();
6986 it != this->mips16_stub_sections_.end(); ++it)
6987 {
6988 Mips16_stub_section<size, big_endian>* stub_section = it->second;
6989 if (!stub_section->is_target_found())
6990 {
6991 gold_error(_("no relocation found in mips16 stub section '%s'"),
6992 stub_section->object()
6993 ->section_name(stub_section->shndx()).c_str());
6994 }
6995
6996 bool discard = false;
6997 if (stub_section->is_for_local_function())
6998 {
6999 if (stub_section->is_fn_stub())
7000 {
7001 // This stub is for a local symbol. This stub will only
7002 // be needed if there is some relocation in this object,
7003 // other than a 16 bit function call, which refers to this
7004 // symbol.
7005 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7006 discard = true;
7007 else
7008 this->add_local_mips16_fn_stub(stub_section);
7009 }
7010 else
7011 {
7012 // This stub is for a local symbol. This stub will only
7013 // be needed if there is some relocation (R_MIPS16_26) in
7014 // this object that refers to this symbol.
7015 gold_assert(stub_section->is_call_stub()
7016 || stub_section->is_call_fp_stub());
7017 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7018 discard = true;
7019 else
7020 this->add_local_mips16_call_stub(stub_section);
7021 }
7022 }
7023 else
7024 {
7025 Mips_symbol<size>* gsym = stub_section->gsym();
7026 if (stub_section->is_fn_stub())
7027 {
7028 if (gsym->has_mips16_fn_stub())
7029 // We already have a stub for this function.
7030 discard = true;
7031 else
7032 {
7033 gsym->set_mips16_fn_stub(stub_section);
7034 if (gsym->should_add_dynsym_entry(symtab))
7035 {
7036 // If we have a MIPS16 function with a stub, the
7037 // dynamic symbol must refer to the stub, since only
7038 // the stub uses the standard calling conventions.
7039 gsym->set_need_fn_stub();
7040 if (gsym->is_from_dynobj())
7041 gsym->set_needs_dynsym_value();
7042 }
7043 }
7044 if (!gsym->need_fn_stub())
7045 discard = true;
7046 }
7047 else if (stub_section->is_call_stub())
7048 {
7049 if (gsym->is_mips16())
7050 // We don't need the call_stub; this is a 16 bit
7051 // function, so calls from other 16 bit functions are
7052 // OK.
7053 discard = true;
7054 else if (gsym->has_mips16_call_stub())
7055 // We already have a stub for this function.
7056 discard = true;
7057 else
7058 gsym->set_mips16_call_stub(stub_section);
7059 }
7060 else
7061 {
7062 gold_assert(stub_section->is_call_fp_stub());
7063 if (gsym->is_mips16())
7064 // We don't need the call_stub; this is a 16 bit
7065 // function, so calls from other 16 bit functions are
7066 // OK.
7067 discard = true;
7068 else if (gsym->has_mips16_call_fp_stub())
7069 // We already have a stub for this function.
7070 discard = true;
7071 else
7072 gsym->set_mips16_call_fp_stub(stub_section);
7073 }
7074 }
7075 if (discard)
7076 this->set_output_section(stub_section->shndx(), NULL);
7077 }
7078 }
7079
7080 // Mips_output_data_la25_stub methods.
7081
7082 // Template for standard LA25 stub.
7083 template<int size, bool big_endian>
7084 const uint32_t
7085 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7086 {
7087 0x3c190000, // lui $25,%hi(func)
7088 0x08000000, // j func
7089 0x27390000, // add $25,$25,%lo(func)
7090 0x00000000 // nop
7091 };
7092
7093 // Template for microMIPS LA25 stub.
7094 template<int size, bool big_endian>
7095 const uint32_t
7096 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7097 {
7098 0x41b9, 0x0000, // lui t9,%hi(func)
7099 0xd400, 0x0000, // j func
7100 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7101 0x0000, 0x0000 // nop
7102 };
7103
7104 // Create la25 stub for a symbol.
7105
7106 template<int size, bool big_endian>
7107 void
7108 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7109 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7110 Mips_symbol<size>* gsym)
7111 {
7112 if (!gsym->has_la25_stub())
7113 {
7114 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7115 this->symbols_.push_back(gsym);
7116 this->create_stub_symbol(gsym, symtab, target, 16);
7117 }
7118 }
7119
7120 // Create a symbol for SYM stub's value and size, to help make the disassembly
7121 // easier to read.
7122
7123 template<int size, bool big_endian>
7124 void
7125 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7126 Mips_symbol<size>* sym, Symbol_table* symtab,
7127 Target_mips<size, big_endian>* target, uint64_t symsize)
7128 {
7129 std::string name(".pic.");
7130 name += sym->name();
7131
7132 unsigned int offset = sym->la25_stub_offset();
7133 if (sym->is_micromips())
7134 offset |= 1;
7135
7136 // Make it a local function.
7137 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7138 Symbol_table::PREDEFINED,
7139 target->la25_stub_section(),
7140 offset, symsize, elfcpp::STT_FUNC,
7141 elfcpp::STB_LOCAL,
7142 elfcpp::STV_DEFAULT, 0,
7143 false, false);
7144 new_sym->set_is_forced_local();
7145 }
7146
7147 // Write out la25 stubs. This uses the hand-coded instructions above,
7148 // and adjusts them as needed.
7149
7150 template<int size, bool big_endian>
7151 void
7152 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7153 {
7154 const off_t offset = this->offset();
7155 const section_size_type oview_size =
7156 convert_to_section_size_type(this->data_size());
7157 unsigned char* const oview = of->get_output_view(offset, oview_size);
7158
7159 for (typename std::vector<Mips_symbol<size>*>::iterator
7160 p = this->symbols_.begin();
7161 p != this->symbols_.end();
7162 ++p)
7163 {
7164 Mips_symbol<size>* sym = *p;
7165 unsigned char* pov = oview + sym->la25_stub_offset();
7166
7167 Mips_address target = sym->value();
7168 if (!sym->is_micromips())
7169 {
7170 elfcpp::Swap<32, big_endian>::writeval(pov,
7171 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7172 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7173 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7174 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7175 la25_stub_entry[2] | (target & 0xffff));
7176 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7177 }
7178 else
7179 {
7180 target |= 1;
7181 // First stub instruction. Paste high 16-bits of the target.
7182 elfcpp::Swap<16, big_endian>::writeval(pov,
7183 la25_stub_micromips_entry[0]);
7184 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7185 ((target + 0x8000) >> 16) & 0xffff);
7186 // Second stub instruction. Paste low 26-bits of the target, shifted
7187 // right by 1.
7188 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7189 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7190 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7191 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7192 // Third stub instruction. Paste low 16-bits of the target.
7193 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7194 la25_stub_micromips_entry[4]);
7195 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7196 // Fourth stub instruction.
7197 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7198 la25_stub_micromips_entry[6]);
7199 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7200 la25_stub_micromips_entry[7]);
7201 }
7202 }
7203
7204 of->write_output_view(offset, oview_size, oview);
7205 }
7206
7207 // Mips_output_data_plt methods.
7208
7209 // The format of the first PLT entry in an O32 executable.
7210 template<int size, bool big_endian>
7211 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7212 {
7213 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7214 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7215 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7216 0x031cc023, // subu $24, $24, $28
7217 0x03e07825, // or $15, $31, zero
7218 0x0018c082, // srl $24, $24, 2
7219 0x0320f809, // jalr $25
7220 0x2718fffe // subu $24, $24, 2
7221 };
7222
7223 // The format of the first PLT entry in an N32 executable. Different
7224 // because gp ($28) is not available; we use t2 ($14) instead.
7225 template<int size, bool big_endian>
7226 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7227 {
7228 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7229 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7230 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7231 0x030ec023, // subu $24, $24, $14
7232 0x03e07825, // or $15, $31, zero
7233 0x0018c082, // srl $24, $24, 2
7234 0x0320f809, // jalr $25
7235 0x2718fffe // subu $24, $24, 2
7236 };
7237
7238 // The format of the first PLT entry in an N64 executable. Different
7239 // from N32 because of the increased size of GOT entries.
7240 template<int size, bool big_endian>
7241 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7242 {
7243 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7244 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7245 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7246 0x030ec023, // subu $24, $24, $14
7247 0x03e07825, // or $15, $31, zero
7248 0x0018c0c2, // srl $24, $24, 3
7249 0x0320f809, // jalr $25
7250 0x2718fffe // subu $24, $24, 2
7251 };
7252
7253 // The format of the microMIPS first PLT entry in an O32 executable.
7254 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7255 // of the GOTPLT entry handled, so this stub may only be used when
7256 // all the subsequent PLT entries are microMIPS code too.
7257 //
7258 // The trailing NOP is for alignment and correct disassembly only.
7259 template<int size, bool big_endian>
7260 const uint32_t Mips_output_data_plt<size, big_endian>::
7261 plt0_entry_micromips_o32[] =
7262 {
7263 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7264 0xff23, 0x0000, // lw $25, 0($3)
7265 0x0535, // subu $2, $2, $3
7266 0x2525, // srl $2, $2, 2
7267 0x3302, 0xfffe, // subu $24, $2, 2
7268 0x0dff, // move $15, $31
7269 0x45f9, // jalrs $25
7270 0x0f83, // move $28, $3
7271 0x0c00 // nop
7272 };
7273
7274 // The format of the microMIPS first PLT entry in an O32 executable
7275 // in the insn32 mode.
7276 template<int size, bool big_endian>
7277 const uint32_t Mips_output_data_plt<size, big_endian>::
7278 plt0_entry_micromips32_o32[] =
7279 {
7280 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7281 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7282 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7283 0x0398, 0xc1d0, // subu $24, $24, $28
7284 0x001f, 0x7a90, // or $15, $31, zero
7285 0x0318, 0x1040, // srl $24, $24, 2
7286 0x03f9, 0x0f3c, // jalr $25
7287 0x3318, 0xfffe // subu $24, $24, 2
7288 };
7289
7290 // The format of subsequent standard entries in the PLT.
7291 template<int size, bool big_endian>
7292 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7293 {
7294 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7295 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7296 0x03200008, // jr $25
7297 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7298 };
7299
7300 // The format of subsequent R6 PLT entries.
7301 template<int size, bool big_endian>
7302 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7303 {
7304 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7305 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7306 0x03200009, // jr $25
7307 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7308 };
7309
7310 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7311 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7312 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7313 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7314 // target function address in register v0.
7315 template<int size, bool big_endian>
7316 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7317 {
7318 0xb303, // lw $3, 12($pc)
7319 0x651b, // move $24, $3
7320 0x9b60, // lw $3, 0($3)
7321 0xeb00, // jr $3
7322 0x653b, // move $25, $3
7323 0x6500, // nop
7324 0x0000, 0x0000 // .word (.got.plt entry)
7325 };
7326
7327 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7328 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7329 template<int size, bool big_endian>
7330 const uint32_t Mips_output_data_plt<size, big_endian>::
7331 plt_entry_micromips_o32[] =
7332 {
7333 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7334 0xff22, 0x0000, // lw $25, 0($2)
7335 0x4599, // jr $25
7336 0x0f02 // move $24, $2
7337 };
7338
7339 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7340 template<int size, bool big_endian>
7341 const uint32_t Mips_output_data_plt<size, big_endian>::
7342 plt_entry_micromips32_o32[] =
7343 {
7344 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7345 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7346 0x0019, 0x0f3c, // jr $25
7347 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7348 };
7349
7350 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7351
7352 template<int size, bool big_endian>
7353 void
7354 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7355 unsigned int r_type)
7356 {
7357 gold_assert(!gsym->has_plt_offset());
7358
7359 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7360 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7361 + sizeof(plt0_entry_o32));
7362 this->symbols_.push_back(gsym);
7363
7364 // Record whether the relocation requires a standard MIPS
7365 // or a compressed code entry.
7366 if (jal_reloc(r_type))
7367 {
7368 if (r_type == elfcpp::R_MIPS_26)
7369 gsym->set_needs_mips_plt(true);
7370 else
7371 gsym->set_needs_comp_plt(true);
7372 }
7373
7374 section_offset_type got_offset = this->got_plt_->current_data_size();
7375
7376 // Every PLT entry needs a GOT entry which points back to the PLT
7377 // entry (this will be changed by the dynamic linker, normally
7378 // lazily when the function is called).
7379 this->got_plt_->set_current_data_size(got_offset + size/8);
7380
7381 gsym->set_needs_dynsym_entry();
7382 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7383 got_offset);
7384 }
7385
7386 // Set final PLT offsets. For each symbol, determine whether standard or
7387 // compressed (MIPS16 or microMIPS) PLT entry is used.
7388
7389 template<int size, bool big_endian>
7390 void
7391 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7392 {
7393 // The sizes of individual PLT entries.
7394 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7395 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7396 ? this->compressed_plt_entry_size() : 0);
7397
7398 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7399 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7400 {
7401 Mips_symbol<size>* mips_sym = *p;
7402
7403 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7404 // so always use a standard entry there.
7405 //
7406 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7407 // all MIPS16 calls will go via that stub, and there is no benefit
7408 // to having a MIPS16 entry. And in the case of call_stub a
7409 // standard entry actually has to be used as the stub ends with a J
7410 // instruction.
7411 if (this->target_->is_output_newabi()
7412 || mips_sym->has_mips16_call_stub()
7413 || mips_sym->has_mips16_call_fp_stub())
7414 {
7415 mips_sym->set_needs_mips_plt(true);
7416 mips_sym->set_needs_comp_plt(false);
7417 }
7418
7419 // Otherwise, if there are no direct calls to the function, we
7420 // have a free choice of whether to use standard or compressed
7421 // entries. Prefer microMIPS entries if the object is known to
7422 // contain microMIPS code, so that it becomes possible to create
7423 // pure microMIPS binaries. Prefer standard entries otherwise,
7424 // because MIPS16 ones are no smaller and are usually slower.
7425 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7426 {
7427 if (this->target_->is_output_micromips())
7428 mips_sym->set_needs_comp_plt(true);
7429 else
7430 mips_sym->set_needs_mips_plt(true);
7431 }
7432
7433 if (mips_sym->needs_mips_plt())
7434 {
7435 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7436 this->plt_mips_offset_ += plt_mips_entry_size;
7437 }
7438 if (mips_sym->needs_comp_plt())
7439 {
7440 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7441 this->plt_comp_offset_ += plt_comp_entry_size;
7442 }
7443 }
7444
7445 // Figure out the size of the PLT header if we know that we are using it.
7446 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7447 this->plt_header_size_ = this->get_plt_header_size();
7448 }
7449
7450 // Write out the PLT. This uses the hand-coded instructions above,
7451 // and adjusts them as needed.
7452
7453 template<int size, bool big_endian>
7454 void
7455 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7456 {
7457 const off_t offset = this->offset();
7458 const section_size_type oview_size =
7459 convert_to_section_size_type(this->data_size());
7460 unsigned char* const oview = of->get_output_view(offset, oview_size);
7461
7462 const off_t gotplt_file_offset = this->got_plt_->offset();
7463 const section_size_type gotplt_size =
7464 convert_to_section_size_type(this->got_plt_->data_size());
7465 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7466 gotplt_size);
7467 unsigned char* pov = oview;
7468
7469 Mips_address plt_address = this->address();
7470
7471 // Calculate the address of .got.plt.
7472 Mips_address gotplt_addr = this->got_plt_->address();
7473 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7474 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7475
7476 // The PLT sequence is not safe for N64 if .got.plt's address can
7477 // not be loaded in two instructions.
7478 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7479 || ~(gotplt_addr | 0x7fffffff) == 0);
7480
7481 // Write the PLT header.
7482 const uint32_t* plt0_entry = this->get_plt_header_entry();
7483 if (plt0_entry == plt0_entry_micromips_o32)
7484 {
7485 // Write microMIPS PLT header.
7486 gold_assert(gotplt_addr % 4 == 0);
7487
7488 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7489
7490 // ADDIUPC has a span of +/-16MB, check we're in range.
7491 if (gotpc_offset + 0x1000000 >= 0x2000000)
7492 {
7493 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7494 "ADDIUPC"), (long)gotpc_offset);
7495 return;
7496 }
7497
7498 elfcpp::Swap<16, big_endian>::writeval(pov,
7499 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7500 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7501 (gotpc_offset >> 2) & 0xffff);
7502 pov += 4;
7503 for (unsigned int i = 2;
7504 i < (sizeof(plt0_entry_micromips_o32)
7505 / sizeof(plt0_entry_micromips_o32[0]));
7506 i++)
7507 {
7508 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7509 pov += 2;
7510 }
7511 }
7512 else if (plt0_entry == plt0_entry_micromips32_o32)
7513 {
7514 // Write microMIPS PLT header in insn32 mode.
7515 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7516 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7517 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7518 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7519 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7520 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7521 pov += 12;
7522 for (unsigned int i = 6;
7523 i < (sizeof(plt0_entry_micromips32_o32)
7524 / sizeof(plt0_entry_micromips32_o32[0]));
7525 i++)
7526 {
7527 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7528 pov += 2;
7529 }
7530 }
7531 else
7532 {
7533 // Write standard PLT header.
7534 elfcpp::Swap<32, big_endian>::writeval(pov,
7535 plt0_entry[0] | gotplt_addr_high);
7536 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7537 plt0_entry[1] | gotplt_addr_low);
7538 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7539 plt0_entry[2] | gotplt_addr_low);
7540 pov += 12;
7541 for (int i = 3; i < 8; i++)
7542 {
7543 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7544 pov += 4;
7545 }
7546 }
7547
7548
7549 unsigned char* gotplt_pov = gotplt_view;
7550 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7551
7552 // The first two entries in .got.plt are reserved.
7553 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7554 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7555
7556 unsigned int gotplt_offset = 2 * got_entry_size;
7557 gotplt_pov += 2 * got_entry_size;
7558
7559 // Calculate the address of the PLT header.
7560 Mips_address header_address = (plt_address
7561 + (this->is_plt_header_compressed() ? 1 : 0));
7562
7563 // Initialize compressed PLT area view.
7564 unsigned char* pov2 = pov + this->plt_mips_offset_;
7565
7566 // Write the PLT entries.
7567 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7568 p = this->symbols_.begin();
7569 p != this->symbols_.end();
7570 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7571 {
7572 Mips_symbol<size>* mips_sym = *p;
7573
7574 // Calculate the address of the .got.plt entry.
7575 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7576 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7577 & 0xffff);
7578 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7579
7580 // Initially point the .got.plt entry at the PLT header.
7581 if (this->target_->is_output_n64())
7582 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7583 else
7584 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7585
7586 // Now handle the PLT itself. First the standard entry.
7587 if (mips_sym->has_mips_plt_offset())
7588 {
7589 // Pick the load opcode (LW or LD).
7590 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7591 : 0x8c000000;
7592
7593 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7594 : plt_entry;
7595
7596 // Fill in the PLT entry itself.
7597 elfcpp::Swap<32, big_endian>::writeval(pov,
7598 entry[0] | gotplt_entry_addr_hi);
7599 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7600 entry[1] | gotplt_entry_addr_lo | load);
7601 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7602 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7603 entry[3] | gotplt_entry_addr_lo);
7604 pov += 16;
7605 }
7606
7607 // Now the compressed entry. They come after any standard ones.
7608 if (mips_sym->has_comp_plt_offset())
7609 {
7610 if (!this->target_->is_output_micromips())
7611 {
7612 // Write MIPS16 PLT entry.
7613 const uint32_t* plt_entry = plt_entry_mips16_o32;
7614
7615 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7616 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7617 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7618 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7619 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7620 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7621 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7622 gotplt_entry_addr);
7623 pov2 += 16;
7624 }
7625 else if (this->target_->use_32bit_micromips_instructions())
7626 {
7627 // Write microMIPS PLT entry in insn32 mode.
7628 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7629
7630 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7631 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7632 gotplt_entry_addr_hi);
7633 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7634 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7635 gotplt_entry_addr_lo);
7636 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7637 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7638 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7639 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7640 gotplt_entry_addr_lo);
7641 pov2 += 16;
7642 }
7643 else
7644 {
7645 // Write microMIPS PLT entry.
7646 const uint32_t* plt_entry = plt_entry_micromips_o32;
7647
7648 gold_assert(gotplt_entry_addr % 4 == 0);
7649
7650 Mips_address loc_address = plt_address + pov2 - oview;
7651 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7652
7653 // ADDIUPC has a span of +/-16MB, check we're in range.
7654 if (gotpc_offset + 0x1000000 >= 0x2000000)
7655 {
7656 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7657 "range of ADDIUPC"), (long)gotpc_offset);
7658 return;
7659 }
7660
7661 elfcpp::Swap<16, big_endian>::writeval(pov2,
7662 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7663 elfcpp::Swap<16, big_endian>::writeval(
7664 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7665 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7666 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7667 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7668 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7669 pov2 += 12;
7670 }
7671 }
7672 }
7673
7674 // Check the number of bytes written for standard entries.
7675 gold_assert(static_cast<section_size_type>(
7676 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7677 // Check the number of bytes written for compressed entries.
7678 gold_assert((static_cast<section_size_type>(pov2 - pov)
7679 == this->plt_comp_offset_));
7680 // Check the total number of bytes written.
7681 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7682
7683 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7684 == gotplt_size);
7685
7686 of->write_output_view(offset, oview_size, oview);
7687 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7688 }
7689
7690 // Mips_output_data_mips_stubs methods.
7691
7692 // The format of the lazy binding stub when dynamic symbol count is less than
7693 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7694 template<int size, bool big_endian>
7695 const uint32_t
7696 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7697 {
7698 0x8f998010, // lw t9,0x8010(gp)
7699 0x03e07825, // or t7,ra,zero
7700 0x0320f809, // jalr t9,ra
7701 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7702 };
7703
7704 // The format of the lazy binding stub when dynamic symbol count is less than
7705 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7706 template<int size, bool big_endian>
7707 const uint32_t
7708 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7709 {
7710 0xdf998010, // ld t9,0x8010(gp)
7711 0x03e07825, // or t7,ra,zero
7712 0x0320f809, // jalr t9,ra
7713 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7714 };
7715
7716 // The format of the lazy binding stub when dynamic symbol count is less than
7717 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7718 template<int size, bool big_endian>
7719 const uint32_t
7720 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7721 {
7722 0x8f998010, // lw t9,0x8010(gp)
7723 0x03e07825, // or t7,ra,zero
7724 0x0320f809, // jalr t9,ra
7725 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7726 };
7727
7728 // The format of the lazy binding stub when dynamic symbol count is less than
7729 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7730 template<int size, bool big_endian>
7731 const uint32_t
7732 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7733 {
7734 0xdf998010, // ld t9,0x8010(gp)
7735 0x03e07825, // or t7,ra,zero
7736 0x0320f809, // jalr t9,ra
7737 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7738 };
7739
7740 // The format of the lazy binding stub when dynamic symbol count is greater than
7741 // 64K, and ABI is not N64.
7742 template<int size, bool big_endian>
7743 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7744 {
7745 0x8f998010, // lw t9,0x8010(gp)
7746 0x03e07825, // or t7,ra,zero
7747 0x3c180000, // lui t8,DYN_INDEX
7748 0x0320f809, // jalr t9,ra
7749 0x37180000 // ori t8,t8,DYN_INDEX
7750 };
7751
7752 // The format of the lazy binding stub when dynamic symbol count is greater than
7753 // 64K, and ABI is N64.
7754 template<int size, bool big_endian>
7755 const uint32_t
7756 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7757 {
7758 0xdf998010, // ld t9,0x8010(gp)
7759 0x03e07825, // or t7,ra,zero
7760 0x3c180000, // lui t8,DYN_INDEX
7761 0x0320f809, // jalr t9,ra
7762 0x37180000 // ori t8,t8,DYN_INDEX
7763 };
7764
7765 // microMIPS stubs.
7766
7767 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7768 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7769 template<int size, bool big_endian>
7770 const uint32_t
7771 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7772 {
7773 0xff3c, 0x8010, // lw t9,0x8010(gp)
7774 0x0dff, // move t7,ra
7775 0x45d9, // jalr t9
7776 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7777 };
7778
7779 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7780 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7781 template<int size, bool big_endian>
7782 const uint32_t
7783 Mips_output_data_mips_stubs<size, big_endian>::
7784 lazy_stub_micromips_normal_1_n64[] =
7785 {
7786 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7787 0x0dff, // move t7,ra
7788 0x45d9, // jalr t9
7789 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7790 };
7791
7792 // The format of the microMIPS lazy binding stub when dynamic symbol
7793 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7794 // and ABI is not N64.
7795 template<int size, bool big_endian>
7796 const uint32_t
7797 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7798 {
7799 0xff3c, 0x8010, // lw t9,0x8010(gp)
7800 0x0dff, // move t7,ra
7801 0x45d9, // jalr t9
7802 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7803 };
7804
7805 // The format of the microMIPS lazy binding stub when dynamic symbol
7806 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7807 // and ABI is N64.
7808 template<int size, bool big_endian>
7809 const uint32_t
7810 Mips_output_data_mips_stubs<size, big_endian>::
7811 lazy_stub_micromips_normal_2_n64[] =
7812 {
7813 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7814 0x0dff, // move t7,ra
7815 0x45d9, // jalr t9
7816 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7817 };
7818
7819 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7820 // greater than 64K, and ABI is not N64.
7821 template<int size, bool big_endian>
7822 const uint32_t
7823 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7824 {
7825 0xff3c, 0x8010, // lw t9,0x8010(gp)
7826 0x0dff, // move t7,ra
7827 0x41b8, 0x0000, // lui t8,DYN_INDEX
7828 0x45d9, // jalr t9
7829 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7830 };
7831
7832 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7833 // greater than 64K, and ABI is N64.
7834 template<int size, bool big_endian>
7835 const uint32_t
7836 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7837 {
7838 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7839 0x0dff, // move t7,ra
7840 0x41b8, 0x0000, // lui t8,DYN_INDEX
7841 0x45d9, // jalr t9
7842 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7843 };
7844
7845 // 32-bit microMIPS stubs.
7846
7847 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7848 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7849 // can use only 32-bit instructions.
7850 template<int size, bool big_endian>
7851 const uint32_t
7852 Mips_output_data_mips_stubs<size, big_endian>::
7853 lazy_stub_micromips32_normal_1[] =
7854 {
7855 0xff3c, 0x8010, // lw t9,0x8010(gp)
7856 0x001f, 0x7a90, // or t7,ra,zero
7857 0x03f9, 0x0f3c, // jalr ra,t9
7858 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7859 };
7860
7861 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7862 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7863 // use only 32-bit instructions.
7864 template<int size, bool big_endian>
7865 const uint32_t
7866 Mips_output_data_mips_stubs<size, big_endian>::
7867 lazy_stub_micromips32_normal_1_n64[] =
7868 {
7869 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7870 0x001f, 0x7a90, // or t7,ra,zero
7871 0x03f9, 0x0f3c, // jalr ra,t9
7872 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7873 };
7874
7875 // The format of the microMIPS lazy binding stub when dynamic symbol
7876 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7877 // ABI is not N64, and we can use only 32-bit instructions.
7878 template<int size, bool big_endian>
7879 const uint32_t
7880 Mips_output_data_mips_stubs<size, big_endian>::
7881 lazy_stub_micromips32_normal_2[] =
7882 {
7883 0xff3c, 0x8010, // lw t9,0x8010(gp)
7884 0x001f, 0x7a90, // or t7,ra,zero
7885 0x03f9, 0x0f3c, // jalr ra,t9
7886 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7887 };
7888
7889 // The format of the microMIPS lazy binding stub when dynamic symbol
7890 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7891 // ABI is N64, and we can use only 32-bit instructions.
7892 template<int size, bool big_endian>
7893 const uint32_t
7894 Mips_output_data_mips_stubs<size, big_endian>::
7895 lazy_stub_micromips32_normal_2_n64[] =
7896 {
7897 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7898 0x001f, 0x7a90, // or t7,ra,zero
7899 0x03f9, 0x0f3c, // jalr ra,t9
7900 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7901 };
7902
7903 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7904 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7905 template<int size, bool big_endian>
7906 const uint32_t
7907 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7908 {
7909 0xff3c, 0x8010, // lw t9,0x8010(gp)
7910 0x001f, 0x7a90, // or t7,ra,zero
7911 0x41b8, 0x0000, // lui t8,DYN_INDEX
7912 0x03f9, 0x0f3c, // jalr ra,t9
7913 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7914 };
7915
7916 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7917 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7918 template<int size, bool big_endian>
7919 const uint32_t
7920 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7921 {
7922 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7923 0x001f, 0x7a90, // or t7,ra,zero
7924 0x41b8, 0x0000, // lui t8,DYN_INDEX
7925 0x03f9, 0x0f3c, // jalr ra,t9
7926 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7927 };
7928
7929 // Create entry for a symbol.
7930
7931 template<int size, bool big_endian>
7932 void
7933 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7934 Mips_symbol<size>* gsym)
7935 {
7936 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7937 {
7938 this->symbols_.insert(gsym);
7939 gsym->set_has_lazy_stub(true);
7940 }
7941 }
7942
7943 // Remove entry for a symbol.
7944
7945 template<int size, bool big_endian>
7946 void
7947 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7948 Mips_symbol<size>* gsym)
7949 {
7950 if (gsym->has_lazy_stub())
7951 {
7952 this->symbols_.erase(gsym);
7953 gsym->set_has_lazy_stub(false);
7954 }
7955 }
7956
7957 // Set stub offsets for symbols. This method expects that the number of
7958 // entries in dynamic symbol table is set.
7959
7960 template<int size, bool big_endian>
7961 void
7962 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7963 {
7964 gold_assert(this->dynsym_count_ != -1U);
7965
7966 if (this->stub_offsets_are_set_)
7967 return;
7968
7969 unsigned int stub_size = this->stub_size();
7970 unsigned int offset = 0;
7971 for (typename Mips_stubs_entry_set::const_iterator
7972 p = this->symbols_.begin();
7973 p != this->symbols_.end();
7974 ++p, offset += stub_size)
7975 {
7976 Mips_symbol<size>* mips_sym = *p;
7977 mips_sym->set_lazy_stub_offset(offset);
7978 }
7979 this->stub_offsets_are_set_ = true;
7980 }
7981
7982 template<int size, bool big_endian>
7983 void
7984 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7985 {
7986 for (typename Mips_stubs_entry_set::const_iterator
7987 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7988 {
7989 Mips_symbol<size>* sym = *p;
7990 if (sym->is_from_dynobj())
7991 sym->set_needs_dynsym_value();
7992 }
7993 }
7994
7995 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
7996 // adjusts them as needed.
7997
7998 template<int size, bool big_endian>
7999 void
8000 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8001 {
8002 const off_t offset = this->offset();
8003 const section_size_type oview_size =
8004 convert_to_section_size_type(this->data_size());
8005 unsigned char* const oview = of->get_output_view(offset, oview_size);
8006
8007 bool big_stub = this->dynsym_count_ > 0x10000;
8008
8009 unsigned char* pov = oview;
8010 for (typename Mips_stubs_entry_set::const_iterator
8011 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8012 {
8013 Mips_symbol<size>* sym = *p;
8014 const uint32_t* lazy_stub;
8015 bool n64 = this->target_->is_output_n64();
8016
8017 if (!this->target_->is_output_micromips())
8018 {
8019 // Write standard (non-microMIPS) stub.
8020 if (!big_stub)
8021 {
8022 if (sym->dynsym_index() & ~0x7fff)
8023 // Dynsym index is between 32K and 64K.
8024 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8025 else
8026 // Dynsym index is less than 32K.
8027 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8028 }
8029 else
8030 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8031
8032 unsigned int i = 0;
8033 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8034 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8035 pov += 8;
8036
8037 i += 2;
8038 if (big_stub)
8039 {
8040 // LUI instruction of the big stub. Paste high 16 bits of the
8041 // dynsym index.
8042 elfcpp::Swap<32, big_endian>::writeval(pov,
8043 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8044 pov += 4;
8045 i += 1;
8046 }
8047 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8048 // Last stub instruction. Paste low 16 bits of the dynsym index.
8049 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8050 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8051 pov += 8;
8052 }
8053 else if (this->target_->use_32bit_micromips_instructions())
8054 {
8055 // Write microMIPS stub in insn32 mode.
8056 if (!big_stub)
8057 {
8058 if (sym->dynsym_index() & ~0x7fff)
8059 // Dynsym index is between 32K and 64K.
8060 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8061 : lazy_stub_micromips32_normal_2;
8062 else
8063 // Dynsym index is less than 32K.
8064 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8065 : lazy_stub_micromips32_normal_1;
8066 }
8067 else
8068 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8069 : lazy_stub_micromips32_big;
8070
8071 unsigned int i = 0;
8072 // First stub instruction. We emit 32-bit microMIPS instructions by
8073 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8074 // the instruction where the opcode is must always come first, for
8075 // both little and big endian.
8076 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8077 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8078 // Second stub instruction.
8079 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8080 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8081 pov += 8;
8082 i += 4;
8083 if (big_stub)
8084 {
8085 // LUI instruction of the big stub. Paste high 16 bits of the
8086 // dynsym index.
8087 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8088 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8089 (sym->dynsym_index() >> 16) & 0x7fff);
8090 pov += 4;
8091 i += 2;
8092 }
8093 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8094 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8095 // Last stub instruction. Paste low 16 bits of the dynsym index.
8096 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8097 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8098 sym->dynsym_index() & 0xffff);
8099 pov += 8;
8100 }
8101 else
8102 {
8103 // Write microMIPS stub.
8104 if (!big_stub)
8105 {
8106 if (sym->dynsym_index() & ~0x7fff)
8107 // Dynsym index is between 32K and 64K.
8108 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8109 : lazy_stub_micromips_normal_2;
8110 else
8111 // Dynsym index is less than 32K.
8112 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8113 : lazy_stub_micromips_normal_1;
8114 }
8115 else
8116 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8117 : lazy_stub_micromips_big;
8118
8119 unsigned int i = 0;
8120 // First stub instruction. We emit 32-bit microMIPS instructions by
8121 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8122 // the instruction where the opcode is must always come first, for
8123 // both little and big endian.
8124 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8125 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8126 // Second stub instruction.
8127 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8128 pov += 6;
8129 i += 3;
8130 if (big_stub)
8131 {
8132 // LUI instruction of the big stub. Paste high 16 bits of the
8133 // dynsym index.
8134 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8135 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8136 (sym->dynsym_index() >> 16) & 0x7fff);
8137 pov += 4;
8138 i += 2;
8139 }
8140 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8141 // Last stub instruction. Paste low 16 bits of the dynsym index.
8142 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8143 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8144 sym->dynsym_index() & 0xffff);
8145 pov += 6;
8146 }
8147 }
8148
8149 // We always allocate 20 bytes for every stub, because final dynsym count is
8150 // not known in method do_finalize_sections. There are 4 unused bytes per
8151 // stub if final dynsym count is less than 0x10000.
8152 unsigned int used = pov - oview;
8153 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8154 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8155
8156 // Fill the unused space with zeroes.
8157 // TODO(sasa): Can we strip unused bytes during the relaxation?
8158 if (unused > 0)
8159 memset(pov, 0, unused);
8160
8161 of->write_output_view(offset, oview_size, oview);
8162 }
8163
8164 // Mips_output_section_reginfo methods.
8165
8166 template<int size, bool big_endian>
8167 void
8168 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8169 {
8170 off_t offset = this->offset();
8171 off_t data_size = this->data_size();
8172
8173 unsigned char* view = of->get_output_view(offset, data_size);
8174 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8175 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8176 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8177 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8178 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8179 // Write the gp value.
8180 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8181 this->target_->gp_value());
8182
8183 of->write_output_view(offset, data_size, view);
8184 }
8185
8186 // Mips_output_section_abiflags methods.
8187
8188 template<int size, bool big_endian>
8189 void
8190 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8191 {
8192 off_t offset = this->offset();
8193 off_t data_size = this->data_size();
8194
8195 unsigned char* view = of->get_output_view(offset, data_size);
8196 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8197 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8198 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8199 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8200 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8201 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8202 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8203 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8204 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8205 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8206 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8207
8208 of->write_output_view(offset, data_size, view);
8209 }
8210
8211 // Mips_copy_relocs methods.
8212
8213 // Emit any saved relocs.
8214
8215 template<int sh_type, int size, bool big_endian>
8216 void
8217 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8218 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8219 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8220 {
8221 for (typename Copy_relocs<sh_type, size, big_endian>::
8222 Copy_reloc_entries::iterator p = this->entries_.begin();
8223 p != this->entries_.end();
8224 ++p)
8225 emit_entry(*p, reloc_section, symtab, layout, target);
8226
8227 // We no longer need the saved information.
8228 this->entries_.clear();
8229 }
8230
8231 // Emit the reloc if appropriate.
8232
8233 template<int sh_type, int size, bool big_endian>
8234 void
8235 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8236 Copy_reloc_entry& entry,
8237 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8238 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8239 {
8240 // If the symbol is no longer defined in a dynamic object, then we
8241 // emitted a COPY relocation, and we do not want to emit this
8242 // dynamic relocation.
8243 if (!entry.sym_->is_from_dynobj())
8244 return;
8245
8246 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8247 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8248 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8249
8250 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8251 if (can_make_dynamic && !sym->has_static_relocs())
8252 {
8253 Mips_relobj<size, big_endian>* object =
8254 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8255 target->got_section(symtab, layout)->record_global_got_symbol(
8256 sym, object, entry.reloc_type_, true, false);
8257 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8258 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8259 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8260 else
8261 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8262 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8263 entry.shndx_, entry.address_);
8264 }
8265 else
8266 this->make_copy_reloc(symtab, layout,
8267 static_cast<Sized_symbol<size>*>(entry.sym_),
8268 entry.relobj_,
8269 reloc_section);
8270 }
8271
8272 // Target_mips methods.
8273
8274 // Return the value to use for a dynamic symbol which requires special
8275 // treatment. This is how we support equality comparisons of function
8276 // pointers across shared library boundaries, as described in the
8277 // processor specific ABI supplement.
8278
8279 template<int size, bool big_endian>
8280 uint64_t
8281 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8282 {
8283 uint64_t value = 0;
8284 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8285
8286 if (!mips_sym->has_lazy_stub())
8287 {
8288 if (mips_sym->has_plt_offset())
8289 {
8290 // We distinguish between PLT entries and lazy-binding stubs by
8291 // giving the former an st_other value of STO_MIPS_PLT. Set the
8292 // value to the stub address if there are any relocations in the
8293 // binary where pointer equality matters.
8294 if (mips_sym->pointer_equality_needed())
8295 {
8296 // Prefer a standard MIPS PLT entry.
8297 if (mips_sym->has_mips_plt_offset())
8298 value = this->plt_section()->mips_entry_address(mips_sym);
8299 else
8300 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8301 }
8302 else
8303 value = 0;
8304 }
8305 }
8306 else
8307 {
8308 // First, set stub offsets for symbols. This method expects that the
8309 // number of entries in dynamic symbol table is set.
8310 this->mips_stubs_section()->set_lazy_stub_offsets();
8311
8312 // The run-time linker uses the st_value field of the symbol
8313 // to reset the global offset table entry for this external
8314 // to its stub address when unlinking a shared object.
8315 value = this->mips_stubs_section()->stub_address(mips_sym);
8316 }
8317
8318 if (mips_sym->has_mips16_fn_stub())
8319 {
8320 // If we have a MIPS16 function with a stub, the dynamic symbol must
8321 // refer to the stub, since only the stub uses the standard calling
8322 // conventions.
8323 value = mips_sym->template
8324 get_mips16_fn_stub<big_endian>()->output_address();
8325 }
8326
8327 return value;
8328 }
8329
8330 // Get the dynamic reloc section, creating it if necessary. It's always
8331 // .rel.dyn, even for MIPS64.
8332
8333 template<int size, bool big_endian>
8334 typename Target_mips<size, big_endian>::Reloc_section*
8335 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8336 {
8337 if (this->rel_dyn_ == NULL)
8338 {
8339 gold_assert(layout != NULL);
8340 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8341 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8342 elfcpp::SHF_ALLOC, this->rel_dyn_,
8343 ORDER_DYNAMIC_RELOCS, false);
8344
8345 // First entry in .rel.dyn has to be null.
8346 // This is hack - we define dummy output data and set its address to 0,
8347 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8348 // This ensures that the entry is null.
8349 Output_data* od = new Output_data_zero_fill(0, 0);
8350 od->set_address(0);
8351 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8352 }
8353 return this->rel_dyn_;
8354 }
8355
8356 // Get the GOT section, creating it if necessary.
8357
8358 template<int size, bool big_endian>
8359 Mips_output_data_got<size, big_endian>*
8360 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8361 Layout* layout)
8362 {
8363 if (this->got_ == NULL)
8364 {
8365 gold_assert(symtab != NULL && layout != NULL);
8366
8367 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8368 layout);
8369 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8370 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8371 elfcpp::SHF_MIPS_GPREL),
8372 this->got_, ORDER_DATA, false);
8373
8374 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8375 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8376 Symbol_table::PREDEFINED,
8377 this->got_,
8378 0, 0, elfcpp::STT_OBJECT,
8379 elfcpp::STB_GLOBAL,
8380 elfcpp::STV_HIDDEN, 0,
8381 false, false);
8382 }
8383
8384 return this->got_;
8385 }
8386
8387 // Calculate value of _gp symbol.
8388
8389 template<int size, bool big_endian>
8390 void
8391 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8392 {
8393 gold_assert(this->gp_ == NULL);
8394
8395 Sized_symbol<size>* gp =
8396 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8397
8398 // Set _gp symbol if the linker script hasn't created it.
8399 if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8400 {
8401 // If there is no .got section, gp should be based on .sdata.
8402 Output_data* gp_section = (this->got_ != NULL
8403 ? this->got_->output_section()
8404 : layout->find_output_section(".sdata"));
8405
8406 if (gp_section != NULL)
8407 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8408 "_gp", NULL, Symbol_table::PREDEFINED,
8409 gp_section, MIPS_GP_OFFSET, 0,
8410 elfcpp::STT_NOTYPE,
8411 elfcpp::STB_LOCAL,
8412 elfcpp::STV_DEFAULT,
8413 0, false, false));
8414 }
8415
8416 this->gp_ = gp;
8417 }
8418
8419 // Set the dynamic symbol indexes. INDEX is the index of the first
8420 // global dynamic symbol. Pointers to the symbols are stored into the
8421 // vector SYMS. The names are added to DYNPOOL. This returns an
8422 // updated dynamic symbol index.
8423
8424 template<int size, bool big_endian>
8425 unsigned int
8426 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8427 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8428 std::vector<Symbol*>* syms, Stringpool* dynpool,
8429 Versions* versions, Symbol_table* symtab) const
8430 {
8431 std::vector<Symbol*> non_got_symbols;
8432 std::vector<Symbol*> got_symbols;
8433
8434 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8435 &got_symbols);
8436
8437 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8438 p != non_got_symbols.end();
8439 ++p)
8440 {
8441 Symbol* sym = *p;
8442
8443 // Note that SYM may already have a dynamic symbol index, since
8444 // some symbols appear more than once in the symbol table, with
8445 // and without a version.
8446
8447 if (!sym->has_dynsym_index())
8448 {
8449 sym->set_dynsym_index(index);
8450 ++index;
8451 syms->push_back(sym);
8452 dynpool->add(sym->name(), false, NULL);
8453
8454 // Record any version information.
8455 if (sym->version() != NULL)
8456 versions->record_version(symtab, dynpool, sym);
8457
8458 // If the symbol is defined in a dynamic object and is
8459 // referenced in a regular object, then mark the dynamic
8460 // object as needed. This is used to implement --as-needed.
8461 if (sym->is_from_dynobj() && sym->in_reg())
8462 sym->object()->set_is_needed();
8463 }
8464 }
8465
8466 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8467 p != got_symbols.end();
8468 ++p)
8469 {
8470 Symbol* sym = *p;
8471 if (!sym->has_dynsym_index())
8472 {
8473 // Record any version information.
8474 if (sym->version() != NULL)
8475 versions->record_version(symtab, dynpool, sym);
8476 }
8477 }
8478
8479 index = versions->finalize(symtab, index, syms);
8480
8481 int got_sym_count = 0;
8482 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8483 p != got_symbols.end();
8484 ++p)
8485 {
8486 Symbol* sym = *p;
8487
8488 if (!sym->has_dynsym_index())
8489 {
8490 ++got_sym_count;
8491 sym->set_dynsym_index(index);
8492 ++index;
8493 syms->push_back(sym);
8494 dynpool->add(sym->name(), false, NULL);
8495
8496 // If the symbol is defined in a dynamic object and is
8497 // referenced in a regular object, then mark the dynamic
8498 // object as needed. This is used to implement --as-needed.
8499 if (sym->is_from_dynobj() && sym->in_reg())
8500 sym->object()->set_is_needed();
8501 }
8502 }
8503
8504 // Set index of the first symbol that has .got entry.
8505 this->got_->set_first_global_got_dynsym_index(
8506 got_sym_count > 0 ? index - got_sym_count : -1U);
8507
8508 if (this->mips_stubs_ != NULL)
8509 this->mips_stubs_->set_dynsym_count(index);
8510
8511 return index;
8512 }
8513
8514 // Create a PLT entry for a global symbol referenced by r_type relocation.
8515
8516 template<int size, bool big_endian>
8517 void
8518 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8519 Layout* layout,
8520 Mips_symbol<size>* gsym,
8521 unsigned int r_type)
8522 {
8523 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8524 return;
8525
8526 if (this->plt_ == NULL)
8527 {
8528 // Create the GOT section first.
8529 this->got_section(symtab, layout);
8530
8531 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8532 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8533 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8534 this->got_plt_, ORDER_DATA, false);
8535
8536 // The first two entries are reserved.
8537 this->got_plt_->set_current_data_size(2 * size/8);
8538
8539 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8540 this->got_plt_,
8541 this);
8542 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8543 (elfcpp::SHF_ALLOC
8544 | elfcpp::SHF_EXECINSTR),
8545 this->plt_, ORDER_PLT, false);
8546
8547 // Make the sh_info field of .rel.plt point to .plt.
8548 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8549 rel_plt_os->set_info_section(this->plt_->output_section());
8550 }
8551
8552 this->plt_->add_entry(gsym, r_type);
8553 }
8554
8555
8556 // Get the .MIPS.stubs section, creating it if necessary.
8557
8558 template<int size, bool big_endian>
8559 Mips_output_data_mips_stubs<size, big_endian>*
8560 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8561 {
8562 if (this->mips_stubs_ == NULL)
8563 {
8564 this->mips_stubs_ =
8565 new Mips_output_data_mips_stubs<size, big_endian>(this);
8566 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8567 (elfcpp::SHF_ALLOC
8568 | elfcpp::SHF_EXECINSTR),
8569 this->mips_stubs_, ORDER_PLT, false);
8570 }
8571 return this->mips_stubs_;
8572 }
8573
8574 // Get the LA25 stub section, creating it if necessary.
8575
8576 template<int size, bool big_endian>
8577 Mips_output_data_la25_stub<size, big_endian>*
8578 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8579 {
8580 if (this->la25_stub_ == NULL)
8581 {
8582 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8583 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8584 (elfcpp::SHF_ALLOC
8585 | elfcpp::SHF_EXECINSTR),
8586 this->la25_stub_, ORDER_TEXT, false);
8587 }
8588 return this->la25_stub_;
8589 }
8590
8591 // Process the relocations to determine unreferenced sections for
8592 // garbage collection.
8593
8594 template<int size, bool big_endian>
8595 void
8596 Target_mips<size, big_endian>::gc_process_relocs(
8597 Symbol_table* symtab,
8598 Layout* layout,
8599 Sized_relobj_file<size, big_endian>* object,
8600 unsigned int data_shndx,
8601 unsigned int sh_type,
8602 const unsigned char* prelocs,
8603 size_t reloc_count,
8604 Output_section* output_section,
8605 bool needs_special_offset_handling,
8606 size_t local_symbol_count,
8607 const unsigned char* plocal_symbols)
8608 {
8609 typedef Target_mips<size, big_endian> Mips;
8610
8611 if (sh_type == elfcpp::SHT_REL)
8612 {
8613 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8614 Classify_reloc;
8615
8616 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8617 symtab,
8618 layout,
8619 this,
8620 object,
8621 data_shndx,
8622 prelocs,
8623 reloc_count,
8624 output_section,
8625 needs_special_offset_handling,
8626 local_symbol_count,
8627 plocal_symbols);
8628 }
8629 else if (sh_type == elfcpp::SHT_RELA)
8630 {
8631 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8632 Classify_reloc;
8633
8634 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8635 symtab,
8636 layout,
8637 this,
8638 object,
8639 data_shndx,
8640 prelocs,
8641 reloc_count,
8642 output_section,
8643 needs_special_offset_handling,
8644 local_symbol_count,
8645 plocal_symbols);
8646 }
8647 else
8648 gold_unreachable();
8649 }
8650
8651 // Scan relocations for a section.
8652
8653 template<int size, bool big_endian>
8654 void
8655 Target_mips<size, big_endian>::scan_relocs(
8656 Symbol_table* symtab,
8657 Layout* layout,
8658 Sized_relobj_file<size, big_endian>* object,
8659 unsigned int data_shndx,
8660 unsigned int sh_type,
8661 const unsigned char* prelocs,
8662 size_t reloc_count,
8663 Output_section* output_section,
8664 bool needs_special_offset_handling,
8665 size_t local_symbol_count,
8666 const unsigned char* plocal_symbols)
8667 {
8668 typedef Target_mips<size, big_endian> Mips;
8669
8670 if (sh_type == elfcpp::SHT_REL)
8671 {
8672 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8673 Classify_reloc;
8674
8675 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8676 symtab,
8677 layout,
8678 this,
8679 object,
8680 data_shndx,
8681 prelocs,
8682 reloc_count,
8683 output_section,
8684 needs_special_offset_handling,
8685 local_symbol_count,
8686 plocal_symbols);
8687 }
8688 else if (sh_type == elfcpp::SHT_RELA)
8689 {
8690 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8691 Classify_reloc;
8692
8693 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8694 symtab,
8695 layout,
8696 this,
8697 object,
8698 data_shndx,
8699 prelocs,
8700 reloc_count,
8701 output_section,
8702 needs_special_offset_handling,
8703 local_symbol_count,
8704 plocal_symbols);
8705 }
8706 }
8707
8708 template<int size, bool big_endian>
8709 bool
8710 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8711 {
8712 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8713 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8714 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8715 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8716 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8717 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8718 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8719 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8720 }
8721
8722 // Return the MACH for a MIPS e_flags value.
8723 template<int size, bool big_endian>
8724 unsigned int
8725 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8726 {
8727 switch (flags & elfcpp::EF_MIPS_MACH)
8728 {
8729 case elfcpp::E_MIPS_MACH_3900:
8730 return mach_mips3900;
8731
8732 case elfcpp::E_MIPS_MACH_4010:
8733 return mach_mips4010;
8734
8735 case elfcpp::E_MIPS_MACH_4100:
8736 return mach_mips4100;
8737
8738 case elfcpp::E_MIPS_MACH_4111:
8739 return mach_mips4111;
8740
8741 case elfcpp::E_MIPS_MACH_4120:
8742 return mach_mips4120;
8743
8744 case elfcpp::E_MIPS_MACH_4650:
8745 return mach_mips4650;
8746
8747 case elfcpp::E_MIPS_MACH_5400:
8748 return mach_mips5400;
8749
8750 case elfcpp::E_MIPS_MACH_5500:
8751 return mach_mips5500;
8752
8753 case elfcpp::E_MIPS_MACH_5900:
8754 return mach_mips5900;
8755
8756 case elfcpp::E_MIPS_MACH_9000:
8757 return mach_mips9000;
8758
8759 case elfcpp::E_MIPS_MACH_SB1:
8760 return mach_mips_sb1;
8761
8762 case elfcpp::E_MIPS_MACH_LS2E:
8763 return mach_mips_loongson_2e;
8764
8765 case elfcpp::E_MIPS_MACH_LS2F:
8766 return mach_mips_loongson_2f;
8767
8768 case elfcpp::E_MIPS_MACH_LS3A:
8769 return mach_mips_loongson_3a;
8770
8771 case elfcpp::E_MIPS_MACH_OCTEON3:
8772 return mach_mips_octeon3;
8773
8774 case elfcpp::E_MIPS_MACH_OCTEON2:
8775 return mach_mips_octeon2;
8776
8777 case elfcpp::E_MIPS_MACH_OCTEON:
8778 return mach_mips_octeon;
8779
8780 case elfcpp::E_MIPS_MACH_XLR:
8781 return mach_mips_xlr;
8782
8783 default:
8784 switch (flags & elfcpp::EF_MIPS_ARCH)
8785 {
8786 default:
8787 case elfcpp::E_MIPS_ARCH_1:
8788 return mach_mips3000;
8789
8790 case elfcpp::E_MIPS_ARCH_2:
8791 return mach_mips6000;
8792
8793 case elfcpp::E_MIPS_ARCH_3:
8794 return mach_mips4000;
8795
8796 case elfcpp::E_MIPS_ARCH_4:
8797 return mach_mips8000;
8798
8799 case elfcpp::E_MIPS_ARCH_5:
8800 return mach_mips5;
8801
8802 case elfcpp::E_MIPS_ARCH_32:
8803 return mach_mipsisa32;
8804
8805 case elfcpp::E_MIPS_ARCH_64:
8806 return mach_mipsisa64;
8807
8808 case elfcpp::E_MIPS_ARCH_32R2:
8809 return mach_mipsisa32r2;
8810
8811 case elfcpp::E_MIPS_ARCH_32R6:
8812 return mach_mipsisa32r6;
8813
8814 case elfcpp::E_MIPS_ARCH_64R2:
8815 return mach_mipsisa64r2;
8816
8817 case elfcpp::E_MIPS_ARCH_64R6:
8818 return mach_mipsisa64r6;
8819 }
8820 }
8821
8822 return 0;
8823 }
8824
8825 // Return the MACH for each .MIPS.abiflags ISA Extension.
8826
8827 template<int size, bool big_endian>
8828 unsigned int
8829 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8830 {
8831 switch (isa_ext)
8832 {
8833 case elfcpp::AFL_EXT_3900:
8834 return mach_mips3900;
8835
8836 case elfcpp::AFL_EXT_4010:
8837 return mach_mips4010;
8838
8839 case elfcpp::AFL_EXT_4100:
8840 return mach_mips4100;
8841
8842 case elfcpp::AFL_EXT_4111:
8843 return mach_mips4111;
8844
8845 case elfcpp::AFL_EXT_4120:
8846 return mach_mips4120;
8847
8848 case elfcpp::AFL_EXT_4650:
8849 return mach_mips4650;
8850
8851 case elfcpp::AFL_EXT_5400:
8852 return mach_mips5400;
8853
8854 case elfcpp::AFL_EXT_5500:
8855 return mach_mips5500;
8856
8857 case elfcpp::AFL_EXT_5900:
8858 return mach_mips5900;
8859
8860 case elfcpp::AFL_EXT_10000:
8861 return mach_mips10000;
8862
8863 case elfcpp::AFL_EXT_LOONGSON_2E:
8864 return mach_mips_loongson_2e;
8865
8866 case elfcpp::AFL_EXT_LOONGSON_2F:
8867 return mach_mips_loongson_2f;
8868
8869 case elfcpp::AFL_EXT_LOONGSON_3A:
8870 return mach_mips_loongson_3a;
8871
8872 case elfcpp::AFL_EXT_SB1:
8873 return mach_mips_sb1;
8874
8875 case elfcpp::AFL_EXT_OCTEON:
8876 return mach_mips_octeon;
8877
8878 case elfcpp::AFL_EXT_OCTEONP:
8879 return mach_mips_octeonp;
8880
8881 case elfcpp::AFL_EXT_OCTEON2:
8882 return mach_mips_octeon2;
8883
8884 case elfcpp::AFL_EXT_XLR:
8885 return mach_mips_xlr;
8886
8887 default:
8888 return mach_mips3000;
8889 }
8890 }
8891
8892 // Return the .MIPS.abiflags value representing each ISA Extension.
8893
8894 template<int size, bool big_endian>
8895 unsigned int
8896 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8897 {
8898 switch (mips_mach)
8899 {
8900 case mach_mips3900:
8901 return elfcpp::AFL_EXT_3900;
8902
8903 case mach_mips4010:
8904 return elfcpp::AFL_EXT_4010;
8905
8906 case mach_mips4100:
8907 return elfcpp::AFL_EXT_4100;
8908
8909 case mach_mips4111:
8910 return elfcpp::AFL_EXT_4111;
8911
8912 case mach_mips4120:
8913 return elfcpp::AFL_EXT_4120;
8914
8915 case mach_mips4650:
8916 return elfcpp::AFL_EXT_4650;
8917
8918 case mach_mips5400:
8919 return elfcpp::AFL_EXT_5400;
8920
8921 case mach_mips5500:
8922 return elfcpp::AFL_EXT_5500;
8923
8924 case mach_mips5900:
8925 return elfcpp::AFL_EXT_5900;
8926
8927 case mach_mips10000:
8928 return elfcpp::AFL_EXT_10000;
8929
8930 case mach_mips_loongson_2e:
8931 return elfcpp::AFL_EXT_LOONGSON_2E;
8932
8933 case mach_mips_loongson_2f:
8934 return elfcpp::AFL_EXT_LOONGSON_2F;
8935
8936 case mach_mips_loongson_3a:
8937 return elfcpp::AFL_EXT_LOONGSON_3A;
8938
8939 case mach_mips_sb1:
8940 return elfcpp::AFL_EXT_SB1;
8941
8942 case mach_mips_octeon:
8943 return elfcpp::AFL_EXT_OCTEON;
8944
8945 case mach_mips_octeonp:
8946 return elfcpp::AFL_EXT_OCTEONP;
8947
8948 case mach_mips_octeon3:
8949 return elfcpp::AFL_EXT_OCTEON3;
8950
8951 case mach_mips_octeon2:
8952 return elfcpp::AFL_EXT_OCTEON2;
8953
8954 case mach_mips_xlr:
8955 return elfcpp::AFL_EXT_XLR;
8956
8957 default:
8958 return 0;
8959 }
8960 }
8961
8962 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
8963
8964 template<int size, bool big_endian>
8965 void
8966 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
8967 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
8968 {
8969 int new_isa = 0;
8970 switch (e_flags & elfcpp::EF_MIPS_ARCH)
8971 {
8972 case elfcpp::E_MIPS_ARCH_1:
8973 new_isa = this->level_rev(1, 0);
8974 break;
8975 case elfcpp::E_MIPS_ARCH_2:
8976 new_isa = this->level_rev(2, 0);
8977 break;
8978 case elfcpp::E_MIPS_ARCH_3:
8979 new_isa = this->level_rev(3, 0);
8980 break;
8981 case elfcpp::E_MIPS_ARCH_4:
8982 new_isa = this->level_rev(4, 0);
8983 break;
8984 case elfcpp::E_MIPS_ARCH_5:
8985 new_isa = this->level_rev(5, 0);
8986 break;
8987 case elfcpp::E_MIPS_ARCH_32:
8988 new_isa = this->level_rev(32, 1);
8989 break;
8990 case elfcpp::E_MIPS_ARCH_32R2:
8991 new_isa = this->level_rev(32, 2);
8992 break;
8993 case elfcpp::E_MIPS_ARCH_32R6:
8994 new_isa = this->level_rev(32, 6);
8995 break;
8996 case elfcpp::E_MIPS_ARCH_64:
8997 new_isa = this->level_rev(64, 1);
8998 break;
8999 case elfcpp::E_MIPS_ARCH_64R2:
9000 new_isa = this->level_rev(64, 2);
9001 break;
9002 case elfcpp::E_MIPS_ARCH_64R6:
9003 new_isa = this->level_rev(64, 6);
9004 break;
9005 default:
9006 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9007 this->elf_mips_mach_name(e_flags));
9008 }
9009
9010 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9011 {
9012 // Decode a single value into level and revision.
9013 abiflags->isa_level = new_isa >> 3;
9014 abiflags->isa_rev = new_isa & 0x7;
9015 }
9016
9017 // Update the isa_ext if needed.
9018 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9019 this->elf_mips_mach(e_flags)))
9020 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9021 }
9022
9023 // Infer the content of the ABI flags based on the elf header.
9024
9025 template<int size, bool big_endian>
9026 void
9027 Target_mips<size, big_endian>::infer_abiflags(
9028 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9029 {
9030 const Attributes_section_data* pasd = relobj->attributes_section_data();
9031 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9032 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9033
9034 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9035 if (pasd != NULL)
9036 {
9037 // Read fp_abi from the .gnu.attribute section.
9038 const Object_attribute* attr =
9039 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9040 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9041 }
9042
9043 abiflags->fp_abi = attr_fp_abi;
9044 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9045 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9046 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9047 : elfcpp::AFL_REG_64;
9048
9049 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9050 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9051 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9052 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9053 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9054 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9055 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9056 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9057 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9058
9059 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9060 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9061 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9062 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9063 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9064 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9065
9066 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9067 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9068 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9069 && abiflags->isa_level >= 32
9070 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9071 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9072 }
9073
9074 // Create abiflags from elf header or from .MIPS.abiflags section.
9075
9076 template<int size, bool big_endian>
9077 void
9078 Target_mips<size, big_endian>::create_abiflags(
9079 Mips_relobj<size, big_endian>* relobj,
9080 Mips_abiflags<big_endian>* abiflags)
9081 {
9082 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9083 Mips_abiflags<big_endian> header_abiflags;
9084
9085 this->infer_abiflags(relobj, &header_abiflags);
9086
9087 if (sec_abiflags == NULL)
9088 {
9089 // If there is no input .MIPS.abiflags section, use abiflags created
9090 // from elf header.
9091 *abiflags = header_abiflags;
9092 return;
9093 }
9094
9095 this->has_abiflags_section_ = true;
9096
9097 // It is not possible to infer the correct ISA revision for R3 or R5
9098 // so drop down to R2 for the checks.
9099 unsigned char isa_rev = sec_abiflags->isa_rev;
9100 if (isa_rev == 3 || isa_rev == 5)
9101 isa_rev = 2;
9102
9103 // Check compatibility between abiflags created from elf header
9104 // and abiflags from .MIPS.abiflags section in this object file.
9105 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9106 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9107 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9108 relobj->name().c_str());
9109 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9110 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9111 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9112 ".MIPS.abiflags"), relobj->name().c_str());
9113 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9114 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9115 relobj->name().c_str());
9116 // The isa_ext is allowed to be an extension of what can be inferred
9117 // from e_flags.
9118 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9119 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9120 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9121 ".MIPS.abiflags"), relobj->name().c_str());
9122 if (sec_abiflags->flags2 != 0)
9123 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9124 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9125 sec_abiflags->flags2);
9126 // Use abiflags from .MIPS.abiflags section.
9127 *abiflags = *sec_abiflags;
9128 }
9129
9130 // Return the meaning of fp_abi, or "unknown" if not known.
9131
9132 template<int size, bool big_endian>
9133 const char*
9134 Target_mips<size, big_endian>::fp_abi_string(int fp)
9135 {
9136 switch (fp)
9137 {
9138 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9139 return "-mdouble-float";
9140 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9141 return "-msingle-float";
9142 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9143 return "-msoft-float";
9144 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9145 return _("-mips32r2 -mfp64 (12 callee-saved)");
9146 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9147 return "-mfpxx";
9148 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9149 return "-mgp32 -mfp64";
9150 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9151 return "-mgp32 -mfp64 -mno-odd-spreg";
9152 default:
9153 return "unknown";
9154 }
9155 }
9156
9157 // Select fp_abi.
9158
9159 template<int size, bool big_endian>
9160 int
9161 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9162 int out_fp)
9163 {
9164 if (in_fp == out_fp)
9165 return out_fp;
9166
9167 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9168 return in_fp;
9169 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9170 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9171 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9172 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9173 return in_fp;
9174 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9175 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9176 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9177 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9178 return out_fp; // Keep the current setting.
9179 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9180 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9181 return in_fp;
9182 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9183 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9184 return out_fp; // Keep the current setting.
9185 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9186 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9187 fp_abi_string(in_fp), fp_abi_string(out_fp));
9188 return out_fp;
9189 }
9190
9191 // Merge attributes from input object.
9192
9193 template<int size, bool big_endian>
9194 void
9195 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9196 const Attributes_section_data* pasd)
9197 {
9198 // Return if there is no attributes section data.
9199 if (pasd == NULL)
9200 return;
9201
9202 // If output has no object attributes, just copy.
9203 if (this->attributes_section_data_ == NULL)
9204 {
9205 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9206 return;
9207 }
9208
9209 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9210 Object_attribute::OBJ_ATTR_GNU);
9211
9212 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9213 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9214
9215 // Merge Tag_compatibility attributes and any common GNU ones.
9216 this->attributes_section_data_->merge(name.c_str(), pasd);
9217 }
9218
9219 // Merge abiflags from input object.
9220
9221 template<int size, bool big_endian>
9222 void
9223 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9224 Mips_abiflags<big_endian>* in_abiflags)
9225 {
9226 // If output has no abiflags, just copy.
9227 if (this->abiflags_ == NULL)
9228 {
9229 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9230 return;
9231 }
9232
9233 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9234 this->abiflags_->fp_abi);
9235
9236 // Merge abiflags.
9237 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9238 in_abiflags->isa_level);
9239 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9240 in_abiflags->isa_rev);
9241 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9242 in_abiflags->gpr_size);
9243 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9244 in_abiflags->cpr1_size);
9245 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9246 in_abiflags->cpr2_size);
9247 this->abiflags_->ases |= in_abiflags->ases;
9248 this->abiflags_->flags1 |= in_abiflags->flags1;
9249 }
9250
9251 // Check whether machine EXTENSION is an extension of machine BASE.
9252 template<int size, bool big_endian>
9253 bool
9254 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9255 unsigned int extension)
9256 {
9257 if (extension == base)
9258 return true;
9259
9260 if ((base == mach_mipsisa32)
9261 && this->mips_mach_extends(mach_mipsisa64, extension))
9262 return true;
9263
9264 if ((base == mach_mipsisa32r2)
9265 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9266 return true;
9267
9268 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9269 if (extension == this->mips_mach_extensions_[i].first)
9270 {
9271 extension = this->mips_mach_extensions_[i].second;
9272 if (extension == base)
9273 return true;
9274 }
9275
9276 return false;
9277 }
9278
9279 // Merge file header flags from input object.
9280
9281 template<int size, bool big_endian>
9282 void
9283 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9284 elfcpp::Elf_Word in_flags)
9285 {
9286 // If flags are not set yet, just copy them.
9287 if (!this->are_processor_specific_flags_set())
9288 {
9289 this->set_processor_specific_flags(in_flags);
9290 this->mach_ = this->elf_mips_mach(in_flags);
9291 return;
9292 }
9293
9294 elfcpp::Elf_Word new_flags = in_flags;
9295 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9296 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9297 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9298
9299 // Check flag compatibility.
9300 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9301 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9302
9303 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9304 // doesn't seem to matter.
9305 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9306 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9307
9308 // MIPSpro generates ucode info in n64 objects. Again, we should
9309 // just be able to ignore this.
9310 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9311 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9312
9313 if (new_flags == old_flags)
9314 {
9315 this->set_processor_specific_flags(merged_flags);
9316 return;
9317 }
9318
9319 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9320 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9321 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9322 name.c_str());
9323
9324 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9325 merged_flags |= elfcpp::EF_MIPS_CPIC;
9326 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9327 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9328
9329 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9330 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9331
9332 // Compare the ISAs.
9333 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9334 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9335 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9336 {
9337 // Output ISA isn't the same as, or an extension of, input ISA.
9338 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9339 {
9340 // Copy the architecture info from input object to output. Also copy
9341 // the 32-bit flag (if set) so that we continue to recognise
9342 // output as a 32-bit binary.
9343 this->mach_ = this->elf_mips_mach(in_flags);
9344 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9345 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9346 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9347
9348 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9349 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9350
9351 // Copy across the ABI flags if output doesn't use them
9352 // and if that was what caused us to treat input object as 32-bit.
9353 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9354 && this->mips_32bit_flags(new_flags)
9355 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9356 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9357 }
9358 else
9359 // The ISAs aren't compatible.
9360 gold_error(_("%s: linking %s module with previous %s modules"),
9361 name.c_str(), this->elf_mips_mach_name(in_flags),
9362 this->elf_mips_mach_name(merged_flags));
9363 }
9364
9365 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9366 | elfcpp::EF_MIPS_32BITMODE));
9367 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9368 | elfcpp::EF_MIPS_32BITMODE));
9369
9370 // Compare ABIs.
9371 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9372 {
9373 // Only error if both are set (to different values).
9374 if ((new_flags & elfcpp::EF_MIPS_ABI)
9375 && (old_flags & elfcpp::EF_MIPS_ABI))
9376 gold_error(_("%s: ABI mismatch: linking %s module with "
9377 "previous %s modules"), name.c_str(),
9378 this->elf_mips_abi_name(in_flags),
9379 this->elf_mips_abi_name(merged_flags));
9380
9381 new_flags &= ~elfcpp::EF_MIPS_ABI;
9382 old_flags &= ~elfcpp::EF_MIPS_ABI;
9383 }
9384
9385 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9386 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9387 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9388 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9389 {
9390 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9391 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9392 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9393 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9394 int micro_mis = old_m16 && new_micro;
9395 int m16_mis = old_micro && new_m16;
9396
9397 if (m16_mis || micro_mis)
9398 gold_error(_("%s: ASE mismatch: linking %s module with "
9399 "previous %s modules"), name.c_str(),
9400 m16_mis ? "MIPS16" : "microMIPS",
9401 m16_mis ? "microMIPS" : "MIPS16");
9402
9403 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9404
9405 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9406 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9407 }
9408
9409 // Compare NaN encodings.
9410 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9411 {
9412 gold_error(_("%s: linking %s module with previous %s modules"),
9413 name.c_str(),
9414 (new_flags & elfcpp::EF_MIPS_NAN2008
9415 ? "-mnan=2008" : "-mnan=legacy"),
9416 (old_flags & elfcpp::EF_MIPS_NAN2008
9417 ? "-mnan=2008" : "-mnan=legacy"));
9418
9419 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9420 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9421 }
9422
9423 // Compare FP64 state.
9424 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9425 {
9426 gold_error(_("%s: linking %s module with previous %s modules"),
9427 name.c_str(),
9428 (new_flags & elfcpp::EF_MIPS_FP64
9429 ? "-mfp64" : "-mfp32"),
9430 (old_flags & elfcpp::EF_MIPS_FP64
9431 ? "-mfp64" : "-mfp32"));
9432
9433 new_flags &= ~elfcpp::EF_MIPS_FP64;
9434 old_flags &= ~elfcpp::EF_MIPS_FP64;
9435 }
9436
9437 // Warn about any other mismatches.
9438 if (new_flags != old_flags)
9439 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9440 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9441
9442 this->set_processor_specific_flags(merged_flags);
9443 }
9444
9445 // Adjust ELF file header.
9446
9447 template<int size, bool big_endian>
9448 void
9449 Target_mips<size, big_endian>::do_adjust_elf_header(
9450 unsigned char* view,
9451 int len)
9452 {
9453 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9454
9455 elfcpp::Ehdr<size, big_endian> ehdr(view);
9456 unsigned char e_ident[elfcpp::EI_NIDENT];
9457 elfcpp::Elf_Word flags = this->processor_specific_flags();
9458 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9459
9460 unsigned char ei_abiversion = 0;
9461 elfcpp::Elf_Half type = ehdr.get_e_type();
9462 if (type == elfcpp::ET_EXEC
9463 && parameters->options().copyreloc()
9464 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9465 == elfcpp::EF_MIPS_CPIC)
9466 ei_abiversion = 1;
9467
9468 if (this->abiflags_ != NULL
9469 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9470 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9471 ei_abiversion = 3;
9472
9473 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9474 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9475 oehdr.put_e_ident(e_ident);
9476
9477 if (this->entry_symbol_is_compressed_)
9478 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9479 }
9480
9481 // do_make_elf_object to override the same function in the base class.
9482 // We need to use a target-specific sub-class of
9483 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9484 // Hence we need to have our own ELF object creation.
9485
9486 template<int size, bool big_endian>
9487 Object*
9488 Target_mips<size, big_endian>::do_make_elf_object(
9489 const std::string& name,
9490 Input_file* input_file,
9491 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9492 {
9493 int et = ehdr.get_e_type();
9494 // ET_EXEC files are valid input for --just-symbols/-R,
9495 // and we treat them as relocatable objects.
9496 if (et == elfcpp::ET_REL
9497 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9498 {
9499 Mips_relobj<size, big_endian>* obj =
9500 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9501 obj->setup();
9502 return obj;
9503 }
9504 else if (et == elfcpp::ET_DYN)
9505 {
9506 // TODO(sasa): Should we create Mips_dynobj?
9507 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9508 }
9509 else
9510 {
9511 gold_error(_("%s: unsupported ELF file type %d"),
9512 name.c_str(), et);
9513 return NULL;
9514 }
9515 }
9516
9517 // Finalize the sections.
9518
9519 template <int size, bool big_endian>
9520 void
9521 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9522 const Input_objects* input_objects,
9523 Symbol_table* symtab)
9524 {
9525 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9526 // DT_FINI have correct values.
9527 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9528 symtab->lookup(parameters->options().init()));
9529 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9530 init->set_value(init->value() | 1);
9531 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9532 symtab->lookup(parameters->options().fini()));
9533 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9534 fini->set_value(fini->value() | 1);
9535
9536 // Check whether the entry symbol is mips16 or micromips. This is needed to
9537 // adjust entry address in ELF header.
9538 Mips_symbol<size>* entry =
9539 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9540 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9541 || entry->is_micromips()));
9542
9543 if (!parameters->doing_static_link()
9544 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9545 || strcmp(parameters->options().hash_style(), "both") == 0))
9546 {
9547 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9548 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9549 // MIPS ABI requires a mapping between the GOT and the symbol table.
9550 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9551 }
9552
9553 // Check whether the final section that was scanned has HI16 or GOT16
9554 // relocations without the corresponding LO16 part.
9555 if (this->got16_addends_.size() > 0)
9556 gold_error("Can't find matching LO16 reloc");
9557
9558 // Check for any mips16 stub sections that we can discard.
9559 if (!parameters->options().relocatable())
9560 {
9561 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9562 p != input_objects->relobj_end();
9563 ++p)
9564 {
9565 Mips_relobj<size, big_endian>* object =
9566 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9567 object->discard_mips16_stub_sections(symtab);
9568 }
9569 }
9570
9571 Valtype gprmask = 0;
9572 Valtype cprmask1 = 0;
9573 Valtype cprmask2 = 0;
9574 Valtype cprmask3 = 0;
9575 Valtype cprmask4 = 0;
9576 bool has_reginfo_section = false;
9577
9578 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9579 p != input_objects->relobj_end();
9580 ++p)
9581 {
9582 Mips_relobj<size, big_endian>* relobj =
9583 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9584
9585 // Merge .reginfo contents of input objects.
9586 if (relobj->has_reginfo_section())
9587 {
9588 has_reginfo_section = true;
9589 gprmask |= relobj->gprmask();
9590 cprmask1 |= relobj->cprmask1();
9591 cprmask2 |= relobj->cprmask2();
9592 cprmask3 |= relobj->cprmask3();
9593 cprmask4 |= relobj->cprmask4();
9594 }
9595
9596 Input_file::Format format = relobj->input_file()->format();
9597 if (format != Input_file::FORMAT_ELF)
9598 continue;
9599
9600 // If all input sections will be discarded, don't use this object
9601 // file for merging processor specific flags.
9602 bool should_merge_processor_specific_flags = false;
9603
9604 for (unsigned int i = 1; i < relobj->shnum(); ++i)
9605 if (relobj->output_section(i) != NULL)
9606 {
9607 should_merge_processor_specific_flags = true;
9608 break;
9609 }
9610
9611 if (!should_merge_processor_specific_flags)
9612 continue;
9613
9614 // Merge processor specific flags.
9615 Mips_abiflags<big_endian> in_abiflags;
9616
9617 this->create_abiflags(relobj, &in_abiflags);
9618 this->merge_obj_e_flags(relobj->name(),
9619 relobj->processor_specific_flags());
9620 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9621 this->merge_obj_attributes(relobj->name(),
9622 relobj->attributes_section_data());
9623 }
9624
9625 // Create a .gnu.attributes section if we have merged any attributes
9626 // from inputs.
9627 if (this->attributes_section_data_ != NULL)
9628 {
9629 Output_attributes_section_data* attributes_section =
9630 new Output_attributes_section_data(*this->attributes_section_data_);
9631 layout->add_output_section_data(".gnu.attributes",
9632 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9633 attributes_section, ORDER_INVALID, false);
9634 }
9635
9636 // Create .MIPS.abiflags output section if there is an input section.
9637 if (this->has_abiflags_section_)
9638 {
9639 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9640 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9641
9642 Output_section* os =
9643 layout->add_output_section_data(".MIPS.abiflags",
9644 elfcpp::SHT_MIPS_ABIFLAGS,
9645 elfcpp::SHF_ALLOC,
9646 abiflags_section, ORDER_INVALID, false);
9647
9648 if (!parameters->options().relocatable() && os != NULL)
9649 {
9650 Output_segment* abiflags_segment =
9651 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9652 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9653 }
9654 }
9655
9656 if (has_reginfo_section && !parameters->options().gc_sections())
9657 {
9658 // Create .reginfo output section.
9659 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9660 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9661 cprmask1, cprmask2,
9662 cprmask3, cprmask4);
9663
9664 Output_section* os =
9665 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9666 elfcpp::SHF_ALLOC, reginfo_section,
9667 ORDER_INVALID, false);
9668
9669 if (!parameters->options().relocatable() && os != NULL)
9670 {
9671 Output_segment* reginfo_segment =
9672 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9673 elfcpp::PF_R);
9674 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9675 }
9676 }
9677
9678 if (this->plt_ != NULL)
9679 {
9680 // Set final PLT offsets for symbols.
9681 this->plt_section()->set_plt_offsets();
9682
9683 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9684 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9685 // there are no standard PLT entries present.
9686 unsigned char nonvis = 0;
9687 if (this->is_output_micromips()
9688 && !this->plt_section()->has_standard_entries())
9689 nonvis = elfcpp::STO_MICROMIPS >> 2;
9690 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9691 Symbol_table::PREDEFINED,
9692 this->plt_,
9693 0, 0, elfcpp::STT_FUNC,
9694 elfcpp::STB_LOCAL,
9695 elfcpp::STV_DEFAULT, nonvis,
9696 false, false);
9697 }
9698
9699 if (this->mips_stubs_ != NULL)
9700 {
9701 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9702 unsigned char nonvis = 0;
9703 if (this->is_output_micromips())
9704 nonvis = elfcpp::STO_MICROMIPS >> 2;
9705 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9706 Symbol_table::PREDEFINED,
9707 this->mips_stubs_,
9708 0, 0, elfcpp::STT_FUNC,
9709 elfcpp::STB_LOCAL,
9710 elfcpp::STV_DEFAULT, nonvis,
9711 false, false);
9712 }
9713
9714 if (!parameters->options().relocatable() && !parameters->doing_static_link())
9715 // In case there is no .got section, create one.
9716 this->got_section(symtab, layout);
9717
9718 // Emit any relocs we saved in an attempt to avoid generating COPY
9719 // relocs.
9720 if (this->copy_relocs_.any_saved_relocs())
9721 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9722 this);
9723
9724 // Set _gp value.
9725 this->set_gp(layout, symtab);
9726
9727 // Emit dynamic relocs.
9728 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9729 p != this->dyn_relocs_.end();
9730 ++p)
9731 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9732
9733 if (this->has_got_section())
9734 this->got_section()->lay_out_got(layout, symtab, input_objects);
9735
9736 if (this->mips_stubs_ != NULL)
9737 this->mips_stubs_->set_needs_dynsym_value();
9738
9739 // Check for functions that might need $25 to be valid on entry.
9740 // TODO(sasa): Can we do this without iterating over all symbols?
9741 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9742 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9743 symtab));
9744
9745 // Add NULL segment.
9746 if (!parameters->options().relocatable())
9747 layout->make_output_segment(elfcpp::PT_NULL, 0);
9748
9749 // Fill in some more dynamic tags.
9750 // TODO(sasa): Add more dynamic tags.
9751 const Reloc_section* rel_plt = (this->plt_ == NULL
9752 ? NULL : this->plt_->rel_plt());
9753 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9754 this->rel_dyn_, true, false);
9755
9756 Output_data_dynamic* const odyn = layout->dynamic_data();
9757 if (odyn != NULL
9758 && !parameters->options().relocatable()
9759 && !parameters->doing_static_link())
9760 {
9761 unsigned int d_val;
9762 // This element holds a 32-bit version id for the Runtime
9763 // Linker Interface. This will start at integer value 1.
9764 d_val = 0x01;
9765 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9766
9767 // Dynamic flags
9768 d_val = elfcpp::RHF_NOTPOT;
9769 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9770
9771 // Save layout for using when emitting custom dynamic tags.
9772 this->layout_ = layout;
9773
9774 // This member holds the base address of the segment.
9775 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9776
9777 // This member holds the number of entries in the .dynsym section.
9778 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9779
9780 // This member holds the index of the first dynamic symbol
9781 // table entry that corresponds to an entry in the global offset table.
9782 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9783
9784 // This member holds the number of local GOT entries.
9785 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9786 this->got_->get_local_gotno());
9787
9788 if (this->plt_ != NULL)
9789 // DT_MIPS_PLTGOT dynamic tag
9790 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9791
9792 if (!parameters->options().shared())
9793 {
9794 this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9795
9796 layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9797 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9798 this->rld_map_, ORDER_INVALID, false);
9799
9800 // __RLD_MAP will be filled in by the runtime loader to contain
9801 // a pointer to the _r_debug structure.
9802 Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9803 Symbol_table::PREDEFINED,
9804 this->rld_map_,
9805 0, 0, elfcpp::STT_OBJECT,
9806 elfcpp::STB_GLOBAL,
9807 elfcpp::STV_DEFAULT, 0,
9808 false, false);
9809
9810 if (!rld_map->is_forced_local())
9811 rld_map->set_needs_dynsym_entry();
9812
9813 if (!parameters->options().pie())
9814 // This member holds the absolute address of the debug pointer.
9815 odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9816 else
9817 // This member holds the offset to the debug pointer,
9818 // relative to the address of the tag.
9819 odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9820 }
9821 }
9822 }
9823
9824 // Get the custom dynamic tag value.
9825 template<int size, bool big_endian>
9826 unsigned int
9827 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9828 {
9829 switch (tag)
9830 {
9831 case elfcpp::DT_MIPS_BASE_ADDRESS:
9832 {
9833 // The base address of the segment.
9834 // At this point, the segment list has been sorted into final order,
9835 // so just return vaddr of the first readable PT_LOAD segment.
9836 Output_segment* seg =
9837 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9838 gold_assert(seg != NULL);
9839 return seg->vaddr();
9840 }
9841
9842 case elfcpp::DT_MIPS_SYMTABNO:
9843 // The number of entries in the .dynsym section.
9844 return this->get_dt_mips_symtabno();
9845
9846 case elfcpp::DT_MIPS_GOTSYM:
9847 {
9848 // The index of the first dynamic symbol table entry that corresponds
9849 // to an entry in the GOT.
9850 if (this->got_->first_global_got_dynsym_index() != -1U)
9851 return this->got_->first_global_got_dynsym_index();
9852 else
9853 // In case if we don't have global GOT symbols we default to setting
9854 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9855 return this->get_dt_mips_symtabno();
9856 }
9857
9858 case elfcpp::DT_MIPS_RLD_MAP_REL:
9859 {
9860 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9861 // relative to the address of the tag.
9862 Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9863 unsigned int entry_offset =
9864 odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9865 gold_assert(entry_offset != -1U);
9866 return this->rld_map_->address() - (odyn->address() + entry_offset);
9867 }
9868 default:
9869 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9870 }
9871
9872 return (unsigned int)-1;
9873 }
9874
9875 // Relocate section data.
9876
9877 template<int size, bool big_endian>
9878 void
9879 Target_mips<size, big_endian>::relocate_section(
9880 const Relocate_info<size, big_endian>* relinfo,
9881 unsigned int sh_type,
9882 const unsigned char* prelocs,
9883 size_t reloc_count,
9884 Output_section* output_section,
9885 bool needs_special_offset_handling,
9886 unsigned char* view,
9887 Mips_address address,
9888 section_size_type view_size,
9889 const Reloc_symbol_changes* reloc_symbol_changes)
9890 {
9891 typedef Target_mips<size, big_endian> Mips;
9892 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9893
9894 if (sh_type == elfcpp::SHT_REL)
9895 {
9896 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9897 Classify_reloc;
9898
9899 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9900 gold::Default_comdat_behavior, Classify_reloc>(
9901 relinfo,
9902 this,
9903 prelocs,
9904 reloc_count,
9905 output_section,
9906 needs_special_offset_handling,
9907 view,
9908 address,
9909 view_size,
9910 reloc_symbol_changes);
9911 }
9912 else if (sh_type == elfcpp::SHT_RELA)
9913 {
9914 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9915 Classify_reloc;
9916
9917 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9918 gold::Default_comdat_behavior, Classify_reloc>(
9919 relinfo,
9920 this,
9921 prelocs,
9922 reloc_count,
9923 output_section,
9924 needs_special_offset_handling,
9925 view,
9926 address,
9927 view_size,
9928 reloc_symbol_changes);
9929 }
9930 }
9931
9932 // Return the size of a relocation while scanning during a relocatable
9933 // link.
9934
9935 unsigned int
9936 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
9937 {
9938 switch (r_type)
9939 {
9940 case elfcpp::R_MIPS_NONE:
9941 case elfcpp::R_MIPS_TLS_DTPMOD64:
9942 case elfcpp::R_MIPS_TLS_DTPREL64:
9943 case elfcpp::R_MIPS_TLS_TPREL64:
9944 return 0;
9945
9946 case elfcpp::R_MIPS_32:
9947 case elfcpp::R_MIPS_TLS_DTPMOD32:
9948 case elfcpp::R_MIPS_TLS_DTPREL32:
9949 case elfcpp::R_MIPS_TLS_TPREL32:
9950 case elfcpp::R_MIPS_REL32:
9951 case elfcpp::R_MIPS_PC32:
9952 case elfcpp::R_MIPS_GPREL32:
9953 case elfcpp::R_MIPS_JALR:
9954 case elfcpp::R_MIPS_EH:
9955 return 4;
9956
9957 case elfcpp::R_MIPS_16:
9958 case elfcpp::R_MIPS_HI16:
9959 case elfcpp::R_MIPS_LO16:
9960 case elfcpp::R_MIPS_HIGHER:
9961 case elfcpp::R_MIPS_HIGHEST:
9962 case elfcpp::R_MIPS_GPREL16:
9963 case elfcpp::R_MIPS16_HI16:
9964 case elfcpp::R_MIPS16_LO16:
9965 case elfcpp::R_MIPS_PC16:
9966 case elfcpp::R_MIPS_PCHI16:
9967 case elfcpp::R_MIPS_PCLO16:
9968 case elfcpp::R_MIPS_GOT16:
9969 case elfcpp::R_MIPS16_GOT16:
9970 case elfcpp::R_MIPS_CALL16:
9971 case elfcpp::R_MIPS16_CALL16:
9972 case elfcpp::R_MIPS_GOT_HI16:
9973 case elfcpp::R_MIPS_CALL_HI16:
9974 case elfcpp::R_MIPS_GOT_LO16:
9975 case elfcpp::R_MIPS_CALL_LO16:
9976 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
9977 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
9978 case elfcpp::R_MIPS_TLS_TPREL_HI16:
9979 case elfcpp::R_MIPS_TLS_TPREL_LO16:
9980 case elfcpp::R_MIPS16_GPREL:
9981 case elfcpp::R_MIPS_GOT_DISP:
9982 case elfcpp::R_MIPS_LITERAL:
9983 case elfcpp::R_MIPS_GOT_PAGE:
9984 case elfcpp::R_MIPS_GOT_OFST:
9985 case elfcpp::R_MIPS_TLS_GD:
9986 case elfcpp::R_MIPS_TLS_LDM:
9987 case elfcpp::R_MIPS_TLS_GOTTPREL:
9988 return 2;
9989
9990 // These relocations are not byte sized
9991 case elfcpp::R_MIPS_26:
9992 case elfcpp::R_MIPS16_26:
9993 case elfcpp::R_MIPS_PC21_S2:
9994 case elfcpp::R_MIPS_PC26_S2:
9995 case elfcpp::R_MIPS_PC18_S3:
9996 case elfcpp::R_MIPS_PC19_S2:
9997 return 4;
9998
9999 case elfcpp::R_MIPS_COPY:
10000 case elfcpp::R_MIPS_JUMP_SLOT:
10001 object->error(_("unexpected reloc %u in object file"), r_type);
10002 return 0;
10003
10004 default:
10005 object->error(_("unsupported reloc %u in object file"), r_type);
10006 return 0;
10007 }
10008 }
10009
10010 // Scan the relocs during a relocatable link.
10011
10012 template<int size, bool big_endian>
10013 void
10014 Target_mips<size, big_endian>::scan_relocatable_relocs(
10015 Symbol_table* symtab,
10016 Layout* layout,
10017 Sized_relobj_file<size, big_endian>* object,
10018 unsigned int data_shndx,
10019 unsigned int sh_type,
10020 const unsigned char* prelocs,
10021 size_t reloc_count,
10022 Output_section* output_section,
10023 bool needs_special_offset_handling,
10024 size_t local_symbol_count,
10025 const unsigned char* plocal_symbols,
10026 Relocatable_relocs* rr)
10027 {
10028 if (sh_type == elfcpp::SHT_REL)
10029 {
10030 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10031 Classify_reloc;
10032 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10033 Scan_relocatable_relocs;
10034
10035 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10036 symtab,
10037 layout,
10038 object,
10039 data_shndx,
10040 prelocs,
10041 reloc_count,
10042 output_section,
10043 needs_special_offset_handling,
10044 local_symbol_count,
10045 plocal_symbols,
10046 rr);
10047 }
10048 else if (sh_type == elfcpp::SHT_RELA)
10049 {
10050 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10051 Classify_reloc;
10052 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10053 Scan_relocatable_relocs;
10054
10055 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10056 symtab,
10057 layout,
10058 object,
10059 data_shndx,
10060 prelocs,
10061 reloc_count,
10062 output_section,
10063 needs_special_offset_handling,
10064 local_symbol_count,
10065 plocal_symbols,
10066 rr);
10067 }
10068 else
10069 gold_unreachable();
10070 }
10071
10072 // Scan the relocs for --emit-relocs.
10073
10074 template<int size, bool big_endian>
10075 void
10076 Target_mips<size, big_endian>::emit_relocs_scan(
10077 Symbol_table* symtab,
10078 Layout* layout,
10079 Sized_relobj_file<size, big_endian>* object,
10080 unsigned int data_shndx,
10081 unsigned int sh_type,
10082 const unsigned char* prelocs,
10083 size_t reloc_count,
10084 Output_section* output_section,
10085 bool needs_special_offset_handling,
10086 size_t local_symbol_count,
10087 const unsigned char* plocal_syms,
10088 Relocatable_relocs* rr)
10089 {
10090 if (sh_type == elfcpp::SHT_REL)
10091 {
10092 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10093 Classify_reloc;
10094 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10095 Emit_relocs_strategy;
10096
10097 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10098 symtab,
10099 layout,
10100 object,
10101 data_shndx,
10102 prelocs,
10103 reloc_count,
10104 output_section,
10105 needs_special_offset_handling,
10106 local_symbol_count,
10107 plocal_syms,
10108 rr);
10109 }
10110 else if (sh_type == elfcpp::SHT_RELA)
10111 {
10112 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10113 Classify_reloc;
10114 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10115 Emit_relocs_strategy;
10116
10117 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10118 symtab,
10119 layout,
10120 object,
10121 data_shndx,
10122 prelocs,
10123 reloc_count,
10124 output_section,
10125 needs_special_offset_handling,
10126 local_symbol_count,
10127 plocal_syms,
10128 rr);
10129 }
10130 else
10131 gold_unreachable();
10132 }
10133
10134 // Emit relocations for a section.
10135
10136 template<int size, bool big_endian>
10137 void
10138 Target_mips<size, big_endian>::relocate_relocs(
10139 const Relocate_info<size, big_endian>* relinfo,
10140 unsigned int sh_type,
10141 const unsigned char* prelocs,
10142 size_t reloc_count,
10143 Output_section* output_section,
10144 typename elfcpp::Elf_types<size>::Elf_Off
10145 offset_in_output_section,
10146 unsigned char* view,
10147 Mips_address view_address,
10148 section_size_type view_size,
10149 unsigned char* reloc_view,
10150 section_size_type reloc_view_size)
10151 {
10152 if (sh_type == elfcpp::SHT_REL)
10153 {
10154 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10155 Classify_reloc;
10156
10157 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10158 relinfo,
10159 prelocs,
10160 reloc_count,
10161 output_section,
10162 offset_in_output_section,
10163 view,
10164 view_address,
10165 view_size,
10166 reloc_view,
10167 reloc_view_size);
10168 }
10169 else if (sh_type == elfcpp::SHT_RELA)
10170 {
10171 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10172 Classify_reloc;
10173
10174 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10175 relinfo,
10176 prelocs,
10177 reloc_count,
10178 output_section,
10179 offset_in_output_section,
10180 view,
10181 view_address,
10182 view_size,
10183 reloc_view,
10184 reloc_view_size);
10185 }
10186 else
10187 gold_unreachable();
10188 }
10189
10190 // Perform target-specific processing in a relocatable link. This is
10191 // only used if we use the relocation strategy RELOC_SPECIAL.
10192
10193 template<int size, bool big_endian>
10194 void
10195 Target_mips<size, big_endian>::relocate_special_relocatable(
10196 const Relocate_info<size, big_endian>* relinfo,
10197 unsigned int sh_type,
10198 const unsigned char* preloc_in,
10199 size_t relnum,
10200 Output_section* output_section,
10201 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10202 unsigned char* view,
10203 Mips_address view_address,
10204 section_size_type,
10205 unsigned char* preloc_out)
10206 {
10207 // We can only handle REL type relocation sections.
10208 gold_assert(sh_type == elfcpp::SHT_REL);
10209
10210 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10211 Reltype;
10212 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10213 Reltype_write;
10214
10215 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10216
10217 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10218
10219 Mips_relobj<size, big_endian>* object =
10220 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10221 const unsigned int local_count = object->local_symbol_count();
10222
10223 Reltype reloc(preloc_in);
10224 Reltype_write reloc_write(preloc_out);
10225
10226 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10227 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10228 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10229
10230 // Get the new symbol index.
10231 // We only use RELOC_SPECIAL strategy in local relocations.
10232 gold_assert(r_sym < local_count);
10233
10234 // We are adjusting a section symbol. We need to find
10235 // the symbol table index of the section symbol for
10236 // the output section corresponding to input section
10237 // in which this symbol is defined.
10238 bool is_ordinary;
10239 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10240 gold_assert(is_ordinary);
10241 Output_section* os = object->output_section(shndx);
10242 gold_assert(os != NULL);
10243 gold_assert(os->needs_symtab_index());
10244 unsigned int new_symndx = os->symtab_index();
10245
10246 // Get the new offset--the location in the output section where
10247 // this relocation should be applied.
10248
10249 Mips_address offset = reloc.get_r_offset();
10250 Mips_address new_offset;
10251 if (offset_in_output_section != invalid_address)
10252 new_offset = offset + offset_in_output_section;
10253 else
10254 {
10255 section_offset_type sot_offset =
10256 convert_types<section_offset_type, Mips_address>(offset);
10257 section_offset_type new_sot_offset =
10258 output_section->output_offset(object, relinfo->data_shndx,
10259 sot_offset);
10260 gold_assert(new_sot_offset != -1);
10261 new_offset = new_sot_offset;
10262 }
10263
10264 // In an object file, r_offset is an offset within the section.
10265 // In an executable or dynamic object, generated by
10266 // --emit-relocs, r_offset is an absolute address.
10267 if (!parameters->options().relocatable())
10268 {
10269 new_offset += view_address;
10270 if (offset_in_output_section != invalid_address)
10271 new_offset -= offset_in_output_section;
10272 }
10273
10274 reloc_write.put_r_offset(new_offset);
10275 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10276
10277 // Handle the reloc addend.
10278 // The relocation uses a section symbol in the input file.
10279 // We are adjusting it to use a section symbol in the output
10280 // file. The input section symbol refers to some address in
10281 // the input section. We need the relocation in the output
10282 // file to refer to that same address. This adjustment to
10283 // the addend is the same calculation we use for a simple
10284 // absolute relocation for the input section symbol.
10285 Valtype calculated_value = 0;
10286 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10287
10288 unsigned char* paddend = view + offset;
10289 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10290 switch (r_type)
10291 {
10292 case elfcpp::R_MIPS_26:
10293 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10294 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10295 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10296 false, &calculated_value);
10297 break;
10298
10299 default:
10300 gold_unreachable();
10301 }
10302
10303 // Report any errors.
10304 switch (reloc_status)
10305 {
10306 case Reloc_funcs::STATUS_OKAY:
10307 break;
10308 case Reloc_funcs::STATUS_OVERFLOW:
10309 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10310 _("relocation overflow"));
10311 break;
10312 case Reloc_funcs::STATUS_BAD_RELOC:
10313 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10314 _("unexpected opcode while processing relocation"));
10315 break;
10316 default:
10317 gold_unreachable();
10318 }
10319 }
10320
10321 // Optimize the TLS relocation type based on what we know about the
10322 // symbol. IS_FINAL is true if the final address of this symbol is
10323 // known at link time.
10324
10325 template<int size, bool big_endian>
10326 tls::Tls_optimization
10327 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10328 {
10329 // FIXME: Currently we do not do any TLS optimization.
10330 return tls::TLSOPT_NONE;
10331 }
10332
10333 // Scan a relocation for a local symbol.
10334
10335 template<int size, bool big_endian>
10336 inline void
10337 Target_mips<size, big_endian>::Scan::local(
10338 Symbol_table* symtab,
10339 Layout* layout,
10340 Target_mips<size, big_endian>* target,
10341 Sized_relobj_file<size, big_endian>* object,
10342 unsigned int data_shndx,
10343 Output_section* output_section,
10344 const Relatype* rela,
10345 const Reltype* rel,
10346 unsigned int rel_type,
10347 unsigned int r_type,
10348 const elfcpp::Sym<size, big_endian>& lsym,
10349 bool is_discarded)
10350 {
10351 if (is_discarded)
10352 return;
10353
10354 Mips_address r_offset;
10355 unsigned int r_sym;
10356 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10357
10358 if (rel_type == elfcpp::SHT_RELA)
10359 {
10360 r_offset = rela->get_r_offset();
10361 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10362 get_r_sym(rela);
10363 r_addend = rela->get_r_addend();
10364 }
10365 else
10366 {
10367 r_offset = rel->get_r_offset();
10368 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10369 get_r_sym(rel);
10370 r_addend = 0;
10371 }
10372
10373 Mips_relobj<size, big_endian>* mips_obj =
10374 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10375
10376 if (mips_obj->is_mips16_stub_section(data_shndx))
10377 {
10378 mips_obj->get_mips16_stub_section(data_shndx)
10379 ->new_local_reloc_found(r_type, r_sym);
10380 }
10381
10382 if (r_type == elfcpp::R_MIPS_NONE)
10383 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10384 // mips16 stub.
10385 return;
10386
10387 if (!mips16_call_reloc(r_type)
10388 && !mips_obj->section_allows_mips16_refs(data_shndx))
10389 // This reloc would need to refer to a MIPS16 hard-float stub, if
10390 // there is one. We ignore MIPS16 stub sections and .pdr section when
10391 // looking for relocs that would need to refer to MIPS16 stubs.
10392 mips_obj->add_local_non_16bit_call(r_sym);
10393
10394 if (r_type == elfcpp::R_MIPS16_26
10395 && !mips_obj->section_allows_mips16_refs(data_shndx))
10396 mips_obj->add_local_16bit_call(r_sym);
10397
10398 switch (r_type)
10399 {
10400 case elfcpp::R_MIPS_GOT16:
10401 case elfcpp::R_MIPS_CALL16:
10402 case elfcpp::R_MIPS_CALL_HI16:
10403 case elfcpp::R_MIPS_CALL_LO16:
10404 case elfcpp::R_MIPS_GOT_HI16:
10405 case elfcpp::R_MIPS_GOT_LO16:
10406 case elfcpp::R_MIPS_GOT_PAGE:
10407 case elfcpp::R_MIPS_GOT_OFST:
10408 case elfcpp::R_MIPS_GOT_DISP:
10409 case elfcpp::R_MIPS_TLS_GOTTPREL:
10410 case elfcpp::R_MIPS_TLS_GD:
10411 case elfcpp::R_MIPS_TLS_LDM:
10412 case elfcpp::R_MIPS16_GOT16:
10413 case elfcpp::R_MIPS16_CALL16:
10414 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10415 case elfcpp::R_MIPS16_TLS_GD:
10416 case elfcpp::R_MIPS16_TLS_LDM:
10417 case elfcpp::R_MICROMIPS_GOT16:
10418 case elfcpp::R_MICROMIPS_CALL16:
10419 case elfcpp::R_MICROMIPS_CALL_HI16:
10420 case elfcpp::R_MICROMIPS_CALL_LO16:
10421 case elfcpp::R_MICROMIPS_GOT_HI16:
10422 case elfcpp::R_MICROMIPS_GOT_LO16:
10423 case elfcpp::R_MICROMIPS_GOT_PAGE:
10424 case elfcpp::R_MICROMIPS_GOT_OFST:
10425 case elfcpp::R_MICROMIPS_GOT_DISP:
10426 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10427 case elfcpp::R_MICROMIPS_TLS_GD:
10428 case elfcpp::R_MICROMIPS_TLS_LDM:
10429 case elfcpp::R_MIPS_EH:
10430 // We need a GOT section.
10431 target->got_section(symtab, layout);
10432 break;
10433
10434 default:
10435 break;
10436 }
10437
10438 if (call_lo16_reloc(r_type)
10439 || got_lo16_reloc(r_type)
10440 || got_disp_reloc(r_type)
10441 || eh_reloc(r_type))
10442 {
10443 // We may need a local GOT entry for this relocation. We
10444 // don't count R_MIPS_GOT_PAGE because we can estimate the
10445 // maximum number of pages needed by looking at the size of
10446 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10447 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10448 // R_MIPS_CALL_HI16 because these are always followed by an
10449 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10450 Mips_output_data_got<size, big_endian>* got =
10451 target->got_section(symtab, layout);
10452 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10453 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10454 is_section_symbol);
10455 }
10456
10457 switch (r_type)
10458 {
10459 case elfcpp::R_MIPS_CALL16:
10460 case elfcpp::R_MIPS16_CALL16:
10461 case elfcpp::R_MICROMIPS_CALL16:
10462 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10463 (unsigned long)r_offset);
10464 return;
10465
10466 case elfcpp::R_MIPS_GOT_PAGE:
10467 case elfcpp::R_MICROMIPS_GOT_PAGE:
10468 case elfcpp::R_MIPS16_GOT16:
10469 case elfcpp::R_MIPS_GOT16:
10470 case elfcpp::R_MIPS_GOT_HI16:
10471 case elfcpp::R_MIPS_GOT_LO16:
10472 case elfcpp::R_MICROMIPS_GOT16:
10473 case elfcpp::R_MICROMIPS_GOT_HI16:
10474 case elfcpp::R_MICROMIPS_GOT_LO16:
10475 {
10476 // This relocation needs a page entry in the GOT.
10477 // Get the section contents.
10478 section_size_type view_size = 0;
10479 const unsigned char* view = object->section_contents(data_shndx,
10480 &view_size, false);
10481 view += r_offset;
10482
10483 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10484 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10485 : r_addend);
10486
10487 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10488 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10489 object, data_shndx, r_type, r_sym, addend));
10490 else
10491 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10492 break;
10493 }
10494
10495 case elfcpp::R_MIPS_HI16:
10496 case elfcpp::R_MIPS_PCHI16:
10497 case elfcpp::R_MIPS16_HI16:
10498 case elfcpp::R_MICROMIPS_HI16:
10499 // Record the reloc so that we can check whether the corresponding LO16
10500 // part exists.
10501 if (rel_type == elfcpp::SHT_REL)
10502 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10503 object, data_shndx, r_type, r_sym, 0));
10504 break;
10505
10506 case elfcpp::R_MIPS_LO16:
10507 case elfcpp::R_MIPS_PCLO16:
10508 case elfcpp::R_MIPS16_LO16:
10509 case elfcpp::R_MICROMIPS_LO16:
10510 {
10511 if (rel_type != elfcpp::SHT_REL)
10512 break;
10513
10514 // Find corresponding GOT16/HI16 relocation.
10515
10516 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10517 // be immediately following. However, for the IRIX6 ABI, the next
10518 // relocation may be a composed relocation consisting of several
10519 // relocations for the same address. In that case, the R_MIPS_LO16
10520 // relocation may occur as one of these. We permit a similar
10521 // extension in general, as that is useful for GCC.
10522
10523 // In some cases GCC dead code elimination removes the LO16 but
10524 // keeps the corresponding HI16. This is strictly speaking a
10525 // violation of the ABI but not immediately harmful.
10526
10527 typename std::list<got16_addend<size, big_endian> >::iterator it =
10528 target->got16_addends_.begin();
10529 while (it != target->got16_addends_.end())
10530 {
10531 got16_addend<size, big_endian> _got16_addend = *it;
10532
10533 // TODO(sasa): Split got16_addends_ list into two lists - one for
10534 // GOT16 relocs and the other for HI16 relocs.
10535
10536 // Report an error if we find HI16 or GOT16 reloc from the
10537 // previous section without the matching LO16 part.
10538 if (_got16_addend.object != object
10539 || _got16_addend.shndx != data_shndx)
10540 {
10541 gold_error("Can't find matching LO16 reloc");
10542 break;
10543 }
10544
10545 if (_got16_addend.r_sym != r_sym
10546 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10547 {
10548 ++it;
10549 continue;
10550 }
10551
10552 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10553 // For GOT16, we need to calculate combined addend and record GOT page
10554 // entry.
10555 if (got16_reloc(_got16_addend.r_type))
10556 {
10557
10558 section_size_type view_size = 0;
10559 const unsigned char* view = object->section_contents(data_shndx,
10560 &view_size,
10561 false);
10562 view += r_offset;
10563
10564 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10565 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10566
10567 addend = (_got16_addend.addend << 16) + addend;
10568 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10569 addend);
10570 }
10571
10572 it = target->got16_addends_.erase(it);
10573 }
10574 break;
10575 }
10576 }
10577
10578 switch (r_type)
10579 {
10580 case elfcpp::R_MIPS_32:
10581 case elfcpp::R_MIPS_REL32:
10582 case elfcpp::R_MIPS_64:
10583 {
10584 if (parameters->options().output_is_position_independent())
10585 {
10586 // If building a shared library (or a position-independent
10587 // executable), we need to create a dynamic relocation for
10588 // this location.
10589 if (is_readonly_section(output_section))
10590 break;
10591 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10592 rel_dyn->add_symbolless_local_addend(object, r_sym,
10593 elfcpp::R_MIPS_REL32,
10594 output_section, data_shndx,
10595 r_offset);
10596 }
10597 break;
10598 }
10599
10600 case elfcpp::R_MIPS_TLS_GOTTPREL:
10601 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10602 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10603 case elfcpp::R_MIPS_TLS_LDM:
10604 case elfcpp::R_MIPS16_TLS_LDM:
10605 case elfcpp::R_MICROMIPS_TLS_LDM:
10606 case elfcpp::R_MIPS_TLS_GD:
10607 case elfcpp::R_MIPS16_TLS_GD:
10608 case elfcpp::R_MICROMIPS_TLS_GD:
10609 {
10610 bool output_is_shared = parameters->options().shared();
10611 const tls::Tls_optimization optimized_type
10612 = Target_mips<size, big_endian>::optimize_tls_reloc(
10613 !output_is_shared, r_type);
10614 switch (r_type)
10615 {
10616 case elfcpp::R_MIPS_TLS_GD:
10617 case elfcpp::R_MIPS16_TLS_GD:
10618 case elfcpp::R_MICROMIPS_TLS_GD:
10619 if (optimized_type == tls::TLSOPT_NONE)
10620 {
10621 // Create a pair of GOT entries for the module index and
10622 // dtv-relative offset.
10623 Mips_output_data_got<size, big_endian>* got =
10624 target->got_section(symtab, layout);
10625 unsigned int shndx = lsym.get_st_shndx();
10626 bool is_ordinary;
10627 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10628 if (!is_ordinary)
10629 {
10630 object->error(_("local symbol %u has bad shndx %u"),
10631 r_sym, shndx);
10632 break;
10633 }
10634 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10635 shndx, false);
10636 }
10637 else
10638 {
10639 // FIXME: TLS optimization not supported yet.
10640 gold_unreachable();
10641 }
10642 break;
10643
10644 case elfcpp::R_MIPS_TLS_LDM:
10645 case elfcpp::R_MIPS16_TLS_LDM:
10646 case elfcpp::R_MICROMIPS_TLS_LDM:
10647 if (optimized_type == tls::TLSOPT_NONE)
10648 {
10649 // We always record LDM symbols as local with index 0.
10650 target->got_section()->record_local_got_symbol(mips_obj, 0,
10651 r_addend, r_type,
10652 -1U, false);
10653 }
10654 else
10655 {
10656 // FIXME: TLS optimization not supported yet.
10657 gold_unreachable();
10658 }
10659 break;
10660 case elfcpp::R_MIPS_TLS_GOTTPREL:
10661 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10662 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10663 layout->set_has_static_tls();
10664 if (optimized_type == tls::TLSOPT_NONE)
10665 {
10666 // Create a GOT entry for the tp-relative offset.
10667 Mips_output_data_got<size, big_endian>* got =
10668 target->got_section(symtab, layout);
10669 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10670 -1U, false);
10671 }
10672 else
10673 {
10674 // FIXME: TLS optimization not supported yet.
10675 gold_unreachable();
10676 }
10677 break;
10678
10679 default:
10680 gold_unreachable();
10681 }
10682 }
10683 break;
10684
10685 default:
10686 break;
10687 }
10688
10689 // Refuse some position-dependent relocations when creating a
10690 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10691 // not PIC, but we can create dynamic relocations and the result
10692 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10693 // combined with R_MIPS_GOT16.
10694 if (parameters->options().shared())
10695 {
10696 switch (r_type)
10697 {
10698 case elfcpp::R_MIPS16_HI16:
10699 case elfcpp::R_MIPS_HI16:
10700 case elfcpp::R_MIPS_HIGHER:
10701 case elfcpp::R_MIPS_HIGHEST:
10702 case elfcpp::R_MICROMIPS_HI16:
10703 case elfcpp::R_MICROMIPS_HIGHER:
10704 case elfcpp::R_MICROMIPS_HIGHEST:
10705 // Don't refuse a high part relocation if it's against
10706 // no symbol (e.g. part of a compound relocation).
10707 if (r_sym == 0)
10708 break;
10709 // Fall through.
10710
10711 case elfcpp::R_MIPS16_26:
10712 case elfcpp::R_MIPS_26:
10713 case elfcpp::R_MICROMIPS_26_S1:
10714 gold_error(_("%s: relocation %u against `%s' can not be used when "
10715 "making a shared object; recompile with -fPIC"),
10716 object->name().c_str(), r_type, "a local symbol");
10717 default:
10718 break;
10719 }
10720 }
10721 }
10722
10723 template<int size, bool big_endian>
10724 inline void
10725 Target_mips<size, big_endian>::Scan::local(
10726 Symbol_table* symtab,
10727 Layout* layout,
10728 Target_mips<size, big_endian>* target,
10729 Sized_relobj_file<size, big_endian>* object,
10730 unsigned int data_shndx,
10731 Output_section* output_section,
10732 const Reltype& reloc,
10733 unsigned int r_type,
10734 const elfcpp::Sym<size, big_endian>& lsym,
10735 bool is_discarded)
10736 {
10737 if (is_discarded)
10738 return;
10739
10740 local(
10741 symtab,
10742 layout,
10743 target,
10744 object,
10745 data_shndx,
10746 output_section,
10747 (const Relatype*) NULL,
10748 &reloc,
10749 elfcpp::SHT_REL,
10750 r_type,
10751 lsym, is_discarded);
10752 }
10753
10754
10755 template<int size, bool big_endian>
10756 inline void
10757 Target_mips<size, big_endian>::Scan::local(
10758 Symbol_table* symtab,
10759 Layout* layout,
10760 Target_mips<size, big_endian>* target,
10761 Sized_relobj_file<size, big_endian>* object,
10762 unsigned int data_shndx,
10763 Output_section* output_section,
10764 const Relatype& reloc,
10765 unsigned int r_type,
10766 const elfcpp::Sym<size, big_endian>& lsym,
10767 bool is_discarded)
10768 {
10769 if (is_discarded)
10770 return;
10771
10772 local(
10773 symtab,
10774 layout,
10775 target,
10776 object,
10777 data_shndx,
10778 output_section,
10779 &reloc,
10780 (const Reltype*) NULL,
10781 elfcpp::SHT_RELA,
10782 r_type,
10783 lsym, is_discarded);
10784 }
10785
10786 // Scan a relocation for a global symbol.
10787
10788 template<int size, bool big_endian>
10789 inline void
10790 Target_mips<size, big_endian>::Scan::global(
10791 Symbol_table* symtab,
10792 Layout* layout,
10793 Target_mips<size, big_endian>* target,
10794 Sized_relobj_file<size, big_endian>* object,
10795 unsigned int data_shndx,
10796 Output_section* output_section,
10797 const Relatype* rela,
10798 const Reltype* rel,
10799 unsigned int rel_type,
10800 unsigned int r_type,
10801 Symbol* gsym)
10802 {
10803 Mips_address r_offset;
10804 unsigned int r_sym;
10805 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10806
10807 if (rel_type == elfcpp::SHT_RELA)
10808 {
10809 r_offset = rela->get_r_offset();
10810 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10811 get_r_sym(rela);
10812 r_addend = rela->get_r_addend();
10813 }
10814 else
10815 {
10816 r_offset = rel->get_r_offset();
10817 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10818 get_r_sym(rel);
10819 r_addend = 0;
10820 }
10821
10822 Mips_relobj<size, big_endian>* mips_obj =
10823 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10824 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10825
10826 if (mips_obj->is_mips16_stub_section(data_shndx))
10827 {
10828 mips_obj->get_mips16_stub_section(data_shndx)
10829 ->new_global_reloc_found(r_type, mips_sym);
10830 }
10831
10832 if (r_type == elfcpp::R_MIPS_NONE)
10833 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10834 // mips16 stub.
10835 return;
10836
10837 if (!mips16_call_reloc(r_type)
10838 && !mips_obj->section_allows_mips16_refs(data_shndx))
10839 // This reloc would need to refer to a MIPS16 hard-float stub, if
10840 // there is one. We ignore MIPS16 stub sections and .pdr section when
10841 // looking for relocs that would need to refer to MIPS16 stubs.
10842 mips_sym->set_need_fn_stub();
10843
10844 // We need PLT entries if there are static-only relocations against
10845 // an externally-defined function. This can technically occur for
10846 // shared libraries if there are branches to the symbol, although it
10847 // is unlikely that this will be used in practice due to the short
10848 // ranges involved. It can occur for any relative or absolute relocation
10849 // in executables; in that case, the PLT entry becomes the function's
10850 // canonical address.
10851 bool static_reloc = false;
10852
10853 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10854 // relocation into a dynamic one.
10855 bool can_make_dynamic = false;
10856 switch (r_type)
10857 {
10858 case elfcpp::R_MIPS_GOT16:
10859 case elfcpp::R_MIPS_CALL16:
10860 case elfcpp::R_MIPS_CALL_HI16:
10861 case elfcpp::R_MIPS_CALL_LO16:
10862 case elfcpp::R_MIPS_GOT_HI16:
10863 case elfcpp::R_MIPS_GOT_LO16:
10864 case elfcpp::R_MIPS_GOT_PAGE:
10865 case elfcpp::R_MIPS_GOT_OFST:
10866 case elfcpp::R_MIPS_GOT_DISP:
10867 case elfcpp::R_MIPS_TLS_GOTTPREL:
10868 case elfcpp::R_MIPS_TLS_GD:
10869 case elfcpp::R_MIPS_TLS_LDM:
10870 case elfcpp::R_MIPS16_GOT16:
10871 case elfcpp::R_MIPS16_CALL16:
10872 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10873 case elfcpp::R_MIPS16_TLS_GD:
10874 case elfcpp::R_MIPS16_TLS_LDM:
10875 case elfcpp::R_MICROMIPS_GOT16:
10876 case elfcpp::R_MICROMIPS_CALL16:
10877 case elfcpp::R_MICROMIPS_CALL_HI16:
10878 case elfcpp::R_MICROMIPS_CALL_LO16:
10879 case elfcpp::R_MICROMIPS_GOT_HI16:
10880 case elfcpp::R_MICROMIPS_GOT_LO16:
10881 case elfcpp::R_MICROMIPS_GOT_PAGE:
10882 case elfcpp::R_MICROMIPS_GOT_OFST:
10883 case elfcpp::R_MICROMIPS_GOT_DISP:
10884 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10885 case elfcpp::R_MICROMIPS_TLS_GD:
10886 case elfcpp::R_MICROMIPS_TLS_LDM:
10887 case elfcpp::R_MIPS_EH:
10888 // We need a GOT section.
10889 target->got_section(symtab, layout);
10890 break;
10891
10892 // This is just a hint; it can safely be ignored. Don't set
10893 // has_static_relocs for the corresponding symbol.
10894 case elfcpp::R_MIPS_JALR:
10895 case elfcpp::R_MICROMIPS_JALR:
10896 break;
10897
10898 case elfcpp::R_MIPS_GPREL16:
10899 case elfcpp::R_MIPS_GPREL32:
10900 case elfcpp::R_MIPS16_GPREL:
10901 case elfcpp::R_MICROMIPS_GPREL16:
10902 // TODO(sasa)
10903 // GP-relative relocations always resolve to a definition in a
10904 // regular input file, ignoring the one-definition rule. This is
10905 // important for the GP setup sequence in NewABI code, which
10906 // always resolves to a local function even if other relocations
10907 // against the symbol wouldn't.
10908 //constrain_symbol_p = FALSE;
10909 break;
10910
10911 case elfcpp::R_MIPS_32:
10912 case elfcpp::R_MIPS_REL32:
10913 case elfcpp::R_MIPS_64:
10914 if ((parameters->options().shared()
10915 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10916 && (!is_readonly_section(output_section)
10917 || mips_obj->is_pic())))
10918 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10919 {
10920 if (r_type != elfcpp::R_MIPS_REL32)
10921 mips_sym->set_pointer_equality_needed();
10922 can_make_dynamic = true;
10923 break;
10924 }
10925 // Fall through.
10926
10927 default:
10928 // Most static relocations require pointer equality, except
10929 // for branches.
10930 mips_sym->set_pointer_equality_needed();
10931 // Fall through.
10932
10933 case elfcpp::R_MIPS_26:
10934 case elfcpp::R_MIPS_PC16:
10935 case elfcpp::R_MIPS_PC21_S2:
10936 case elfcpp::R_MIPS_PC26_S2:
10937 case elfcpp::R_MIPS16_26:
10938 case elfcpp::R_MICROMIPS_26_S1:
10939 case elfcpp::R_MICROMIPS_PC7_S1:
10940 case elfcpp::R_MICROMIPS_PC10_S1:
10941 case elfcpp::R_MICROMIPS_PC16_S1:
10942 case elfcpp::R_MICROMIPS_PC23_S2:
10943 static_reloc = true;
10944 mips_sym->set_has_static_relocs();
10945 break;
10946 }
10947
10948 // If there are call relocations against an externally-defined symbol,
10949 // see whether we can create a MIPS lazy-binding stub for it. We can
10950 // only do this if all references to the function are through call
10951 // relocations, and in that case, the traditional lazy-binding stubs
10952 // are much more efficient than PLT entries.
10953 switch (r_type)
10954 {
10955 case elfcpp::R_MIPS16_CALL16:
10956 case elfcpp::R_MIPS_CALL16:
10957 case elfcpp::R_MIPS_CALL_HI16:
10958 case elfcpp::R_MIPS_CALL_LO16:
10959 case elfcpp::R_MIPS_JALR:
10960 case elfcpp::R_MICROMIPS_CALL16:
10961 case elfcpp::R_MICROMIPS_CALL_HI16:
10962 case elfcpp::R_MICROMIPS_CALL_LO16:
10963 case elfcpp::R_MICROMIPS_JALR:
10964 if (!mips_sym->no_lazy_stub())
10965 {
10966 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
10967 // Calls from shared objects to undefined symbols of type
10968 // STT_NOTYPE need lazy-binding stub.
10969 || (mips_sym->is_undefined() && parameters->options().shared()))
10970 target->mips_stubs_section(layout)->make_entry(mips_sym);
10971 }
10972 break;
10973 default:
10974 {
10975 // We must not create a stub for a symbol that has relocations
10976 // related to taking the function's address.
10977 mips_sym->set_no_lazy_stub();
10978 target->remove_lazy_stub_entry(mips_sym);
10979 break;
10980 }
10981 }
10982
10983 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
10984 mips_sym->is_mips16()))
10985 mips_sym->set_has_nonpic_branches();
10986
10987 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
10988 // and has a special meaning.
10989 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
10990 && strcmp(gsym->name(), "_gp_disp") == 0
10991 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
10992 if (static_reloc && gsym->needs_plt_entry())
10993 {
10994 target->make_plt_entry(symtab, layout, mips_sym, r_type);
10995
10996 // Since this is not a PC-relative relocation, we may be
10997 // taking the address of a function. In that case we need to
10998 // set the entry in the dynamic symbol table to the address of
10999 // the PLT entry.
11000 if (gsym->is_from_dynobj() && !parameters->options().shared())
11001 {
11002 gsym->set_needs_dynsym_value();
11003 // We distinguish between PLT entries and lazy-binding stubs by
11004 // giving the former an st_other value of STO_MIPS_PLT. Set the
11005 // flag if there are any relocations in the binary where pointer
11006 // equality matters.
11007 if (mips_sym->pointer_equality_needed())
11008 mips_sym->set_mips_plt();
11009 }
11010 }
11011 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11012 {
11013 // Absolute addressing relocations.
11014 // Make a dynamic relocation if necessary.
11015 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11016 {
11017 if (gsym->may_need_copy_reloc())
11018 {
11019 target->copy_reloc(symtab, layout, object, data_shndx,
11020 output_section, gsym, r_type, r_offset);
11021 }
11022 else if (can_make_dynamic)
11023 {
11024 // Create .rel.dyn section.
11025 target->rel_dyn_section(layout);
11026 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11027 data_shndx, output_section, r_offset);
11028 }
11029 else
11030 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11031 gsym->name());
11032 }
11033 }
11034
11035 bool for_call = false;
11036 switch (r_type)
11037 {
11038 case elfcpp::R_MIPS_CALL16:
11039 case elfcpp::R_MIPS16_CALL16:
11040 case elfcpp::R_MICROMIPS_CALL16:
11041 case elfcpp::R_MIPS_CALL_HI16:
11042 case elfcpp::R_MIPS_CALL_LO16:
11043 case elfcpp::R_MICROMIPS_CALL_HI16:
11044 case elfcpp::R_MICROMIPS_CALL_LO16:
11045 for_call = true;
11046 // Fall through.
11047
11048 case elfcpp::R_MIPS16_GOT16:
11049 case elfcpp::R_MIPS_GOT16:
11050 case elfcpp::R_MIPS_GOT_HI16:
11051 case elfcpp::R_MIPS_GOT_LO16:
11052 case elfcpp::R_MICROMIPS_GOT16:
11053 case elfcpp::R_MICROMIPS_GOT_HI16:
11054 case elfcpp::R_MICROMIPS_GOT_LO16:
11055 case elfcpp::R_MIPS_GOT_DISP:
11056 case elfcpp::R_MICROMIPS_GOT_DISP:
11057 case elfcpp::R_MIPS_EH:
11058 {
11059 // The symbol requires a GOT entry.
11060 Mips_output_data_got<size, big_endian>* got =
11061 target->got_section(symtab, layout);
11062 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11063 for_call);
11064 mips_sym->set_global_got_area(GGA_NORMAL);
11065 }
11066 break;
11067
11068 case elfcpp::R_MIPS_GOT_PAGE:
11069 case elfcpp::R_MICROMIPS_GOT_PAGE:
11070 {
11071 // This relocation needs a page entry in the GOT.
11072 // Get the section contents.
11073 section_size_type view_size = 0;
11074 const unsigned char* view =
11075 object->section_contents(data_shndx, &view_size, false);
11076 view += r_offset;
11077
11078 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11079 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11080 : r_addend);
11081 Mips_output_data_got<size, big_endian>* got =
11082 target->got_section(symtab, layout);
11083 got->record_got_page_entry(mips_obj, r_sym, addend);
11084
11085 // If this is a global, overridable symbol, GOT_PAGE will
11086 // decay to GOT_DISP, so we'll need a GOT entry for it.
11087 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11088 && !mips_sym->object()->is_dynamic()
11089 && !mips_sym->is_undefined());
11090 if (!def_regular
11091 || (parameters->options().output_is_position_independent()
11092 && !parameters->options().Bsymbolic()
11093 && !mips_sym->is_forced_local()))
11094 {
11095 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11096 for_call);
11097 mips_sym->set_global_got_area(GGA_NORMAL);
11098 }
11099 }
11100 break;
11101
11102 case elfcpp::R_MIPS_TLS_GOTTPREL:
11103 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11104 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11105 case elfcpp::R_MIPS_TLS_LDM:
11106 case elfcpp::R_MIPS16_TLS_LDM:
11107 case elfcpp::R_MICROMIPS_TLS_LDM:
11108 case elfcpp::R_MIPS_TLS_GD:
11109 case elfcpp::R_MIPS16_TLS_GD:
11110 case elfcpp::R_MICROMIPS_TLS_GD:
11111 {
11112 const bool is_final = gsym->final_value_is_known();
11113 const tls::Tls_optimization optimized_type =
11114 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11115
11116 switch (r_type)
11117 {
11118 case elfcpp::R_MIPS_TLS_GD:
11119 case elfcpp::R_MIPS16_TLS_GD:
11120 case elfcpp::R_MICROMIPS_TLS_GD:
11121 if (optimized_type == tls::TLSOPT_NONE)
11122 {
11123 // Create a pair of GOT entries for the module index and
11124 // dtv-relative offset.
11125 Mips_output_data_got<size, big_endian>* got =
11126 target->got_section(symtab, layout);
11127 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11128 false);
11129 }
11130 else
11131 {
11132 // FIXME: TLS optimization not supported yet.
11133 gold_unreachable();
11134 }
11135 break;
11136
11137 case elfcpp::R_MIPS_TLS_LDM:
11138 case elfcpp::R_MIPS16_TLS_LDM:
11139 case elfcpp::R_MICROMIPS_TLS_LDM:
11140 if (optimized_type == tls::TLSOPT_NONE)
11141 {
11142 // We always record LDM symbols as local with index 0.
11143 target->got_section()->record_local_got_symbol(mips_obj, 0,
11144 r_addend, r_type,
11145 -1U, false);
11146 }
11147 else
11148 {
11149 // FIXME: TLS optimization not supported yet.
11150 gold_unreachable();
11151 }
11152 break;
11153 case elfcpp::R_MIPS_TLS_GOTTPREL:
11154 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11155 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11156 layout->set_has_static_tls();
11157 if (optimized_type == tls::TLSOPT_NONE)
11158 {
11159 // Create a GOT entry for the tp-relative offset.
11160 Mips_output_data_got<size, big_endian>* got =
11161 target->got_section(symtab, layout);
11162 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11163 false);
11164 }
11165 else
11166 {
11167 // FIXME: TLS optimization not supported yet.
11168 gold_unreachable();
11169 }
11170 break;
11171
11172 default:
11173 gold_unreachable();
11174 }
11175 }
11176 break;
11177 case elfcpp::R_MIPS_COPY:
11178 case elfcpp::R_MIPS_JUMP_SLOT:
11179 // These are relocations which should only be seen by the
11180 // dynamic linker, and should never be seen here.
11181 gold_error(_("%s: unexpected reloc %u in object file"),
11182 object->name().c_str(), r_type);
11183 break;
11184
11185 default:
11186 break;
11187 }
11188
11189 // Refuse some position-dependent relocations when creating a
11190 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11191 // not PIC, but we can create dynamic relocations and the result
11192 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11193 // combined with R_MIPS_GOT16.
11194 if (parameters->options().shared())
11195 {
11196 switch (r_type)
11197 {
11198 case elfcpp::R_MIPS16_HI16:
11199 case elfcpp::R_MIPS_HI16:
11200 case elfcpp::R_MIPS_HIGHER:
11201 case elfcpp::R_MIPS_HIGHEST:
11202 case elfcpp::R_MICROMIPS_HI16:
11203 case elfcpp::R_MICROMIPS_HIGHER:
11204 case elfcpp::R_MICROMIPS_HIGHEST:
11205 // Don't refuse a high part relocation if it's against
11206 // no symbol (e.g. part of a compound relocation).
11207 if (r_sym == 0)
11208 break;
11209
11210 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11211 // and has a special meaning.
11212 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11213 break;
11214 // Fall through.
11215
11216 case elfcpp::R_MIPS16_26:
11217 case elfcpp::R_MIPS_26:
11218 case elfcpp::R_MICROMIPS_26_S1:
11219 gold_error(_("%s: relocation %u against `%s' can not be used when "
11220 "making a shared object; recompile with -fPIC"),
11221 object->name().c_str(), r_type, gsym->name());
11222 default:
11223 break;
11224 }
11225 }
11226 }
11227
11228 template<int size, bool big_endian>
11229 inline void
11230 Target_mips<size, big_endian>::Scan::global(
11231 Symbol_table* symtab,
11232 Layout* layout,
11233 Target_mips<size, big_endian>* target,
11234 Sized_relobj_file<size, big_endian>* object,
11235 unsigned int data_shndx,
11236 Output_section* output_section,
11237 const Relatype& reloc,
11238 unsigned int r_type,
11239 Symbol* gsym)
11240 {
11241 global(
11242 symtab,
11243 layout,
11244 target,
11245 object,
11246 data_shndx,
11247 output_section,
11248 &reloc,
11249 (const Reltype*) NULL,
11250 elfcpp::SHT_RELA,
11251 r_type,
11252 gsym);
11253 }
11254
11255 template<int size, bool big_endian>
11256 inline void
11257 Target_mips<size, big_endian>::Scan::global(
11258 Symbol_table* symtab,
11259 Layout* layout,
11260 Target_mips<size, big_endian>* target,
11261 Sized_relobj_file<size, big_endian>* object,
11262 unsigned int data_shndx,
11263 Output_section* output_section,
11264 const Reltype& reloc,
11265 unsigned int r_type,
11266 Symbol* gsym)
11267 {
11268 global(
11269 symtab,
11270 layout,
11271 target,
11272 object,
11273 data_shndx,
11274 output_section,
11275 (const Relatype*) NULL,
11276 &reloc,
11277 elfcpp::SHT_REL,
11278 r_type,
11279 gsym);
11280 }
11281
11282 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11283 // In cases where Scan::local() or Scan::global() has created
11284 // a dynamic relocation, the addend of the relocation is carried
11285 // in the data, and we must not apply the static relocation.
11286
11287 template<int size, bool big_endian>
11288 inline bool
11289 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11290 const Mips_symbol<size>* gsym,
11291 unsigned int r_type,
11292 Output_section* output_section,
11293 Target_mips* target)
11294 {
11295 // If the output section is not allocated, then we didn't call
11296 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11297 // the reloc here.
11298 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11299 return true;
11300
11301 if (gsym == NULL)
11302 return true;
11303 else
11304 {
11305 // For global symbols, we use the same helper routines used in the
11306 // scan pass.
11307 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11308 && !gsym->may_need_copy_reloc())
11309 {
11310 // We have generated dynamic reloc (R_MIPS_REL32).
11311
11312 bool multi_got = false;
11313 if (target->has_got_section())
11314 multi_got = target->got_section()->multi_got();
11315 bool has_got_offset;
11316 if (!multi_got)
11317 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11318 else
11319 has_got_offset = gsym->global_gotoffset() != -1U;
11320 if (!has_got_offset)
11321 return true;
11322 else
11323 // Apply the relocation only if the symbol is in the local got.
11324 // Do not apply the relocation if the symbol is in the global
11325 // got.
11326 return symbol_references_local(gsym, gsym->has_dynsym_index());
11327 }
11328 else
11329 // We have not generated dynamic reloc.
11330 return true;
11331 }
11332 }
11333
11334 // Perform a relocation.
11335
11336 template<int size, bool big_endian>
11337 inline bool
11338 Target_mips<size, big_endian>::Relocate::relocate(
11339 const Relocate_info<size, big_endian>* relinfo,
11340 unsigned int rel_type,
11341 Target_mips* target,
11342 Output_section* output_section,
11343 size_t relnum,
11344 const unsigned char* preloc,
11345 const Sized_symbol<size>* gsym,
11346 const Symbol_value<size>* psymval,
11347 unsigned char* view,
11348 Mips_address address,
11349 section_size_type)
11350 {
11351 Mips_address r_offset;
11352 unsigned int r_sym;
11353 unsigned int r_type;
11354 unsigned int r_type2;
11355 unsigned int r_type3;
11356 unsigned char r_ssym;
11357 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11358
11359 if (rel_type == elfcpp::SHT_RELA)
11360 {
11361 const Relatype rela(preloc);
11362 r_offset = rela.get_r_offset();
11363 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11364 get_r_sym(&rela);
11365 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11366 get_r_type(&rela);
11367 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11368 get_r_type2(&rela);
11369 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11370 get_r_type3(&rela);
11371 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11372 get_r_ssym(&rela);
11373 r_addend = rela.get_r_addend();
11374 }
11375 else
11376 {
11377 const Reltype rel(preloc);
11378 r_offset = rel.get_r_offset();
11379 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11380 get_r_sym(&rel);
11381 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11382 get_r_type(&rel);
11383 r_ssym = 0;
11384 r_type2 = 0;
11385 r_type3 = 0;
11386 r_addend = 0;
11387 }
11388
11389 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11390 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11391
11392 Mips_relobj<size, big_endian>* object =
11393 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11394
11395 bool target_is_16_bit_code = false;
11396 bool target_is_micromips_code = false;
11397 bool cross_mode_jump;
11398
11399 Symbol_value<size> symval;
11400
11401 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11402
11403 bool changed_symbol_value = false;
11404 if (gsym == NULL)
11405 {
11406 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11407 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11408 if (target_is_16_bit_code || target_is_micromips_code)
11409 {
11410 // MIPS16/microMIPS text labels should be treated as odd.
11411 symval.set_output_value(psymval->value(object, 1));
11412 psymval = &symval;
11413 changed_symbol_value = true;
11414 }
11415 }
11416 else
11417 {
11418 target_is_16_bit_code = mips_sym->is_mips16();
11419 target_is_micromips_code = mips_sym->is_micromips();
11420
11421 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11422 // it odd. This will cause something like .word SYM to come up with
11423 // the right value when it is loaded into the PC.
11424
11425 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11426 && psymval->value(object, 0) != 0)
11427 {
11428 symval.set_output_value(psymval->value(object, 0) | 1);
11429 psymval = &symval;
11430 changed_symbol_value = true;
11431 }
11432
11433 // Pick the value to use for symbols defined in shared objects.
11434 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11435 || mips_sym->has_lazy_stub())
11436 {
11437 Mips_address value;
11438 if (!mips_sym->has_lazy_stub())
11439 {
11440 // Prefer a standard MIPS PLT entry.
11441 if (mips_sym->has_mips_plt_offset())
11442 {
11443 value = target->plt_section()->mips_entry_address(mips_sym);
11444 target_is_micromips_code = false;
11445 target_is_16_bit_code = false;
11446 }
11447 else
11448 {
11449 value = (target->plt_section()->comp_entry_address(mips_sym)
11450 + 1);
11451 if (target->is_output_micromips())
11452 target_is_micromips_code = true;
11453 else
11454 target_is_16_bit_code = true;
11455 }
11456 }
11457 else
11458 value = target->mips_stubs_section()->stub_address(mips_sym);
11459
11460 symval.set_output_value(value);
11461 psymval = &symval;
11462 }
11463 }
11464
11465 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11466 // Note that such a symbol must always be a global symbol.
11467 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11468 && !object->is_newabi());
11469
11470 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11471 // Note that such a symbol must always be a global symbol.
11472 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11473
11474
11475 if (gp_disp)
11476 {
11477 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11478 gold_error_at_location(relinfo, relnum, r_offset,
11479 _("relocations against _gp_disp are permitted only"
11480 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11481 }
11482 else if (gnu_local_gp)
11483 {
11484 // __gnu_local_gp is _gp symbol.
11485 symval.set_output_value(target->adjusted_gp_value(object));
11486 psymval = &symval;
11487 }
11488
11489 // If this is a reference to a 16-bit function with a stub, we need
11490 // to redirect the relocation to the stub unless:
11491 //
11492 // (a) the relocation is for a MIPS16 JAL;
11493 //
11494 // (b) the relocation is for a MIPS16 PIC call, and there are no
11495 // non-MIPS16 uses of the GOT slot; or
11496 //
11497 // (c) the section allows direct references to MIPS16 functions.
11498 if (r_type != elfcpp::R_MIPS16_26
11499 && !parameters->options().relocatable()
11500 && ((mips_sym != NULL
11501 && mips_sym->has_mips16_fn_stub()
11502 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11503 || (mips_sym == NULL
11504 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11505 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11506 {
11507 // This is a 32- or 64-bit call to a 16-bit function. We should
11508 // have already noticed that we were going to need the
11509 // stub.
11510 Mips_address value;
11511 if (mips_sym == NULL)
11512 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11513 else
11514 {
11515 gold_assert(mips_sym->need_fn_stub());
11516 if (mips_sym->has_la25_stub())
11517 value = target->la25_stub_section()->stub_address(mips_sym);
11518 else
11519 {
11520 value = mips_sym->template
11521 get_mips16_fn_stub<big_endian>()->output_address();
11522 }
11523 }
11524 symval.set_output_value(value);
11525 psymval = &symval;
11526 changed_symbol_value = true;
11527
11528 // The target is 16-bit, but the stub isn't.
11529 target_is_16_bit_code = false;
11530 }
11531 // If this is a MIPS16 call with a stub, that is made through the PLT or
11532 // to a standard MIPS function, we need to redirect the call to the stub.
11533 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11534 // indirect calls should use an indirect stub instead.
11535 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
11536 && ((mips_sym != NULL
11537 && (mips_sym->has_mips16_call_stub()
11538 || mips_sym->has_mips16_call_fp_stub()))
11539 || (mips_sym == NULL
11540 && object->get_local_mips16_call_stub(r_sym) != NULL))
11541 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11542 || !target_is_16_bit_code))
11543 {
11544 Mips16_stub_section<size, big_endian>* call_stub;
11545 if (mips_sym == NULL)
11546 call_stub = object->get_local_mips16_call_stub(r_sym);
11547 else
11548 {
11549 // If both call_stub and call_fp_stub are defined, we can figure
11550 // out which one to use by checking which one appears in the input
11551 // file.
11552 if (mips_sym->has_mips16_call_stub()
11553 && mips_sym->has_mips16_call_fp_stub())
11554 {
11555 call_stub = NULL;
11556 for (unsigned int i = 1; i < object->shnum(); ++i)
11557 {
11558 if (object->is_mips16_call_fp_stub_section(i))
11559 {
11560 call_stub = mips_sym->template
11561 get_mips16_call_fp_stub<big_endian>();
11562 break;
11563 }
11564
11565 }
11566 if (call_stub == NULL)
11567 call_stub =
11568 mips_sym->template get_mips16_call_stub<big_endian>();
11569 }
11570 else if (mips_sym->has_mips16_call_stub())
11571 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11572 else
11573 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11574 }
11575
11576 symval.set_output_value(call_stub->output_address());
11577 psymval = &symval;
11578 changed_symbol_value = true;
11579 }
11580 // If this is a direct call to a PIC function, redirect to the
11581 // non-PIC stub.
11582 else if (mips_sym != NULL
11583 && mips_sym->has_la25_stub()
11584 && relocation_needs_la25_stub<size, big_endian>(
11585 object, r_type, target_is_16_bit_code))
11586 {
11587 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11588 if (mips_sym->is_micromips())
11589 value += 1;
11590 symval.set_output_value(value);
11591 psymval = &symval;
11592 }
11593 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11594 // entry is used if a standard PLT entry has also been made.
11595 else if ((r_type == elfcpp::R_MIPS16_26
11596 || r_type == elfcpp::R_MICROMIPS_26_S1)
11597 && !parameters->options().relocatable()
11598 && mips_sym != NULL
11599 && mips_sym->has_plt_offset()
11600 && mips_sym->has_comp_plt_offset()
11601 && mips_sym->has_mips_plt_offset())
11602 {
11603 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11604 + 1);
11605 symval.set_output_value(value);
11606 psymval = &symval;
11607
11608 target_is_16_bit_code = !target->is_output_micromips();
11609 target_is_micromips_code = target->is_output_micromips();
11610 }
11611
11612 // Make sure MIPS16 and microMIPS are not used together.
11613 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11614 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11615 {
11616 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11617 }
11618
11619 // Calls from 16-bit code to 32-bit code and vice versa require the
11620 // mode change. However, we can ignore calls to undefined weak symbols,
11621 // which should never be executed at runtime. This exception is important
11622 // because the assembly writer may have "known" that any definition of the
11623 // symbol would be 16-bit code, and that direct jumps were therefore
11624 // acceptable.
11625 cross_mode_jump =
11626 (!parameters->options().relocatable()
11627 && !(gsym != NULL && gsym->is_weak_undefined())
11628 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11629 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11630 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11631 && (target_is_16_bit_code || target_is_micromips_code))));
11632
11633 bool local = (mips_sym == NULL
11634 || (mips_sym->got_only_for_calls()
11635 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11636 : symbol_references_local(mips_sym,
11637 mips_sym->has_dynsym_index())));
11638
11639 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11640 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11641 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11642 if (got_page_reloc(r_type) && !local)
11643 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11644 : elfcpp::R_MIPS_GOT_DISP);
11645
11646 unsigned int got_offset = 0;
11647 int gp_offset = 0;
11648
11649 bool calculate_only = false;
11650 Valtype calculated_value = 0;
11651 bool extract_addend = rel_type == elfcpp::SHT_REL;
11652 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11653
11654 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11655
11656 // For Mips64 N64 ABI, there may be up to three operations specified per
11657 // record, by the fields r_type, r_type2, and r_type3. The first operation
11658 // takes its addend from the relocation record. Each subsequent operation
11659 // takes as its addend the result of the previous operation.
11660 // The first operation in a record which references a symbol uses the symbol
11661 // implied by r_sym. The next operation in a record which references a symbol
11662 // uses the special symbol value given by the r_ssym field. A third operation
11663 // in a record which references a symbol will assume a NULL symbol,
11664 // i.e. value zero.
11665
11666 // TODO(Vladimir)
11667 // Check if a record references to a symbol.
11668 for (unsigned int i = 0; i < 3; ++i)
11669 {
11670 if (r_types[i] == elfcpp::R_MIPS_NONE)
11671 break;
11672
11673 // TODO(Vladimir)
11674 // Check if the next relocation is for the same instruction.
11675 calculate_only = i == 2 ? false
11676 : r_types[i+1] != elfcpp::R_MIPS_NONE;
11677
11678 if (object->is_n64())
11679 {
11680 if (i == 1)
11681 {
11682 // Handle special symbol for r_type2 relocation type.
11683 switch (r_ssym)
11684 {
11685 case RSS_UNDEF:
11686 symval.set_output_value(0);
11687 break;
11688 case RSS_GP:
11689 symval.set_output_value(target->gp_value());
11690 break;
11691 case RSS_GP0:
11692 symval.set_output_value(object->gp_value());
11693 break;
11694 case RSS_LOC:
11695 symval.set_output_value(address);
11696 break;
11697 default:
11698 gold_unreachable();
11699 }
11700 psymval = &symval;
11701 }
11702 else if (i == 2)
11703 {
11704 // For r_type3 symbol value is 0.
11705 symval.set_output_value(0);
11706 }
11707 }
11708
11709 bool update_got_entry = false;
11710 switch (r_types[i])
11711 {
11712 case elfcpp::R_MIPS_NONE:
11713 break;
11714 case elfcpp::R_MIPS_16:
11715 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11716 extract_addend, calculate_only,
11717 &calculated_value);
11718 break;
11719
11720 case elfcpp::R_MIPS_32:
11721 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11722 target))
11723 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11724 extract_addend, calculate_only,
11725 &calculated_value);
11726 if (mips_sym != NULL
11727 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11728 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11729 {
11730 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11731 // already updated by adding +1.
11732 if (mips_sym->has_mips16_fn_stub())
11733 {
11734 gold_assert(mips_sym->need_fn_stub());
11735 Mips16_stub_section<size, big_endian>* fn_stub =
11736 mips_sym->template get_mips16_fn_stub<big_endian>();
11737
11738 symval.set_output_value(fn_stub->output_address());
11739 psymval = &symval;
11740 }
11741 got_offset = mips_sym->global_gotoffset();
11742 update_got_entry = true;
11743 }
11744 break;
11745
11746 case elfcpp::R_MIPS_64:
11747 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11748 target))
11749 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11750 extract_addend, calculate_only,
11751 &calculated_value, false);
11752 else if (target->is_output_n64() && r_addend != 0)
11753 // Only apply the addend. The static relocation was RELA, but the
11754 // dynamic relocation is REL, so we need to apply the addend.
11755 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11756 extract_addend, calculate_only,
11757 &calculated_value, true);
11758 break;
11759 case elfcpp::R_MIPS_REL32:
11760 gold_unreachable();
11761
11762 case elfcpp::R_MIPS_PC32:
11763 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11764 r_addend, extract_addend,
11765 calculate_only,
11766 &calculated_value);
11767 break;
11768
11769 case elfcpp::R_MIPS16_26:
11770 // The calculation for R_MIPS16_26 is just the same as for an
11771 // R_MIPS_26. It's only the storage of the relocated field into
11772 // the output file that's different. So, we just fall through to the
11773 // R_MIPS_26 case here.
11774 case elfcpp::R_MIPS_26:
11775 case elfcpp::R_MICROMIPS_26_S1:
11776 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11777 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11778 r_types[i], target->jal_to_bal(), calculate_only,
11779 &calculated_value);
11780 break;
11781
11782 case elfcpp::R_MIPS_HI16:
11783 case elfcpp::R_MIPS16_HI16:
11784 case elfcpp::R_MICROMIPS_HI16:
11785 if (rel_type == elfcpp::SHT_RELA)
11786 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11787 r_addend, address,
11788 gp_disp, r_types[i],
11789 extract_addend, 0,
11790 target, calculate_only,
11791 &calculated_value);
11792 else if (rel_type == elfcpp::SHT_REL)
11793 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11794 address, gp_disp, r_types[i],
11795 r_sym, extract_addend);
11796 else
11797 gold_unreachable();
11798 break;
11799
11800 case elfcpp::R_MIPS_LO16:
11801 case elfcpp::R_MIPS16_LO16:
11802 case elfcpp::R_MICROMIPS_LO16:
11803 case elfcpp::R_MICROMIPS_HI0_LO16:
11804 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11805 r_addend, extract_addend, address,
11806 gp_disp, r_types[i], r_sym,
11807 rel_type, calculate_only,
11808 &calculated_value);
11809 break;
11810
11811 case elfcpp::R_MIPS_LITERAL:
11812 case elfcpp::R_MICROMIPS_LITERAL:
11813 // Because we don't merge literal sections, we can handle this
11814 // just like R_MIPS_GPREL16. In the long run, we should merge
11815 // shared literals, and then we will need to additional work
11816 // here.
11817
11818 // Fall through.
11819
11820 case elfcpp::R_MIPS_GPREL16:
11821 case elfcpp::R_MIPS16_GPREL:
11822 case elfcpp::R_MICROMIPS_GPREL7_S2:
11823 case elfcpp::R_MICROMIPS_GPREL16:
11824 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11825 target->adjusted_gp_value(object),
11826 r_addend, extract_addend,
11827 gsym == NULL, r_types[i],
11828 calculate_only, &calculated_value);
11829 break;
11830
11831 case elfcpp::R_MIPS_PC16:
11832 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11833 r_addend, extract_addend,
11834 calculate_only,
11835 &calculated_value);
11836 break;
11837
11838 case elfcpp::R_MIPS_PC21_S2:
11839 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11840 r_addend, extract_addend,
11841 calculate_only,
11842 &calculated_value);
11843 break;
11844
11845 case elfcpp::R_MIPS_PC26_S2:
11846 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11847 r_addend, extract_addend,
11848 calculate_only,
11849 &calculated_value);
11850 break;
11851
11852 case elfcpp::R_MIPS_PC18_S3:
11853 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11854 r_addend, extract_addend,
11855 calculate_only,
11856 &calculated_value);
11857 break;
11858
11859 case elfcpp::R_MIPS_PC19_S2:
11860 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11861 r_addend, extract_addend,
11862 calculate_only,
11863 &calculated_value);
11864 break;
11865
11866 case elfcpp::R_MIPS_PCHI16:
11867 if (rel_type == elfcpp::SHT_RELA)
11868 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11869 r_addend, address,
11870 extract_addend, 0,
11871 calculate_only,
11872 &calculated_value);
11873 else if (rel_type == elfcpp::SHT_REL)
11874 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11875 r_addend, address, r_sym,
11876 extract_addend);
11877 else
11878 gold_unreachable();
11879 break;
11880
11881 case elfcpp::R_MIPS_PCLO16:
11882 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11883 extract_addend, address, r_sym,
11884 rel_type, calculate_only,
11885 &calculated_value);
11886 break;
11887 case elfcpp::R_MICROMIPS_PC7_S1:
11888 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11889 address, r_addend,
11890 extract_addend,
11891 calculate_only,
11892 &calculated_value);
11893 break;
11894 case elfcpp::R_MICROMIPS_PC10_S1:
11895 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11896 psymval, address,
11897 r_addend, extract_addend,
11898 calculate_only,
11899 &calculated_value);
11900 break;
11901 case elfcpp::R_MICROMIPS_PC16_S1:
11902 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11903 psymval, address,
11904 r_addend, extract_addend,
11905 calculate_only,
11906 &calculated_value);
11907 break;
11908 case elfcpp::R_MIPS_GPREL32:
11909 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11910 target->adjusted_gp_value(object),
11911 r_addend, extract_addend,
11912 calculate_only,
11913 &calculated_value);
11914 break;
11915 case elfcpp::R_MIPS_GOT_HI16:
11916 case elfcpp::R_MIPS_CALL_HI16:
11917 case elfcpp::R_MICROMIPS_GOT_HI16:
11918 case elfcpp::R_MICROMIPS_CALL_HI16:
11919 if (gsym != NULL)
11920 got_offset = target->got_section()->got_offset(gsym,
11921 GOT_TYPE_STANDARD,
11922 object);
11923 else
11924 got_offset = target->got_section()->got_offset(r_sym,
11925 GOT_TYPE_STANDARD,
11926 object, r_addend);
11927 gp_offset = target->got_section()->gp_offset(got_offset, object);
11928 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11929 calculate_only,
11930 &calculated_value);
11931 update_got_entry = changed_symbol_value;
11932 break;
11933
11934 case elfcpp::R_MIPS_GOT_LO16:
11935 case elfcpp::R_MIPS_CALL_LO16:
11936 case elfcpp::R_MICROMIPS_GOT_LO16:
11937 case elfcpp::R_MICROMIPS_CALL_LO16:
11938 if (gsym != NULL)
11939 got_offset = target->got_section()->got_offset(gsym,
11940 GOT_TYPE_STANDARD,
11941 object);
11942 else
11943 got_offset = target->got_section()->got_offset(r_sym,
11944 GOT_TYPE_STANDARD,
11945 object, r_addend);
11946 gp_offset = target->got_section()->gp_offset(got_offset, object);
11947 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
11948 calculate_only,
11949 &calculated_value);
11950 update_got_entry = changed_symbol_value;
11951 break;
11952
11953 case elfcpp::R_MIPS_GOT_DISP:
11954 case elfcpp::R_MICROMIPS_GOT_DISP:
11955 case elfcpp::R_MIPS_EH:
11956 if (gsym != NULL)
11957 got_offset = target->got_section()->got_offset(gsym,
11958 GOT_TYPE_STANDARD,
11959 object);
11960 else
11961 got_offset = target->got_section()->got_offset(r_sym,
11962 GOT_TYPE_STANDARD,
11963 object, r_addend);
11964 gp_offset = target->got_section()->gp_offset(got_offset, object);
11965 if (eh_reloc(r_types[i]))
11966 reloc_status = Reloc_funcs::releh(view, gp_offset,
11967 calculate_only,
11968 &calculated_value);
11969 else
11970 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11971 calculate_only,
11972 &calculated_value);
11973 break;
11974 case elfcpp::R_MIPS_CALL16:
11975 case elfcpp::R_MIPS16_CALL16:
11976 case elfcpp::R_MICROMIPS_CALL16:
11977 gold_assert(gsym != NULL);
11978 got_offset = target->got_section()->got_offset(gsym,
11979 GOT_TYPE_STANDARD,
11980 object);
11981 gp_offset = target->got_section()->gp_offset(got_offset, object);
11982 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11983 calculate_only, &calculated_value);
11984 // TODO(sasa): We should also initialize update_got_entry
11985 // in other place swhere relgot is called.
11986 update_got_entry = changed_symbol_value;
11987 break;
11988
11989 case elfcpp::R_MIPS_GOT16:
11990 case elfcpp::R_MIPS16_GOT16:
11991 case elfcpp::R_MICROMIPS_GOT16:
11992 if (gsym != NULL)
11993 {
11994 got_offset = target->got_section()->got_offset(gsym,
11995 GOT_TYPE_STANDARD,
11996 object);
11997 gp_offset = target->got_section()->gp_offset(got_offset, object);
11998 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11999 calculate_only,
12000 &calculated_value);
12001 }
12002 else
12003 {
12004 if (rel_type == elfcpp::SHT_RELA)
12005 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12006 psymval, r_addend,
12007 extract_addend, 0,
12008 target,
12009 calculate_only,
12010 &calculated_value);
12011 else if (rel_type == elfcpp::SHT_REL)
12012 reloc_status = Reloc_funcs::relgot16_local(view, object,
12013 psymval, r_addend,
12014 extract_addend,
12015 r_types[i], r_sym);
12016 else
12017 gold_unreachable();
12018 }
12019 update_got_entry = changed_symbol_value;
12020 break;
12021
12022 case elfcpp::R_MIPS_TLS_GD:
12023 case elfcpp::R_MIPS16_TLS_GD:
12024 case elfcpp::R_MICROMIPS_TLS_GD:
12025 if (gsym != NULL)
12026 got_offset = target->got_section()->got_offset(gsym,
12027 GOT_TYPE_TLS_PAIR,
12028 object);
12029 else
12030 got_offset = target->got_section()->got_offset(r_sym,
12031 GOT_TYPE_TLS_PAIR,
12032 object, r_addend);
12033 gp_offset = target->got_section()->gp_offset(got_offset, object);
12034 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12035 &calculated_value);
12036 break;
12037
12038 case elfcpp::R_MIPS_TLS_GOTTPREL:
12039 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12040 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12041 if (gsym != NULL)
12042 got_offset = target->got_section()->got_offset(gsym,
12043 GOT_TYPE_TLS_OFFSET,
12044 object);
12045 else
12046 got_offset = target->got_section()->got_offset(r_sym,
12047 GOT_TYPE_TLS_OFFSET,
12048 object, r_addend);
12049 gp_offset = target->got_section()->gp_offset(got_offset, object);
12050 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12051 &calculated_value);
12052 break;
12053
12054 case elfcpp::R_MIPS_TLS_LDM:
12055 case elfcpp::R_MIPS16_TLS_LDM:
12056 case elfcpp::R_MICROMIPS_TLS_LDM:
12057 // Relocate the field with the offset of the GOT entry for
12058 // the module index.
12059 got_offset = target->got_section()->tls_ldm_offset(object);
12060 gp_offset = target->got_section()->gp_offset(got_offset, object);
12061 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12062 &calculated_value);
12063 break;
12064
12065 case elfcpp::R_MIPS_GOT_PAGE:
12066 case elfcpp::R_MICROMIPS_GOT_PAGE:
12067 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12068 r_addend, extract_addend,
12069 calculate_only,
12070 &calculated_value);
12071 break;
12072
12073 case elfcpp::R_MIPS_GOT_OFST:
12074 case elfcpp::R_MICROMIPS_GOT_OFST:
12075 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12076 r_addend, extract_addend,
12077 local, calculate_only,
12078 &calculated_value);
12079 break;
12080
12081 case elfcpp::R_MIPS_JALR:
12082 case elfcpp::R_MICROMIPS_JALR:
12083 // This relocation is only a hint. In some cases, we optimize
12084 // it into a bal instruction. But we don't try to optimize
12085 // when the symbol does not resolve locally.
12086 if (gsym == NULL
12087 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12088 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12089 r_addend, extract_addend,
12090 cross_mode_jump, r_types[i],
12091 target->jalr_to_bal(),
12092 target->jr_to_b(),
12093 calculate_only,
12094 &calculated_value);
12095 break;
12096
12097 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12098 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12099 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12100 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12101 elfcpp::DTP_OFFSET, r_addend,
12102 extract_addend, calculate_only,
12103 &calculated_value);
12104 break;
12105 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12106 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12107 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12108 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12109 elfcpp::DTP_OFFSET, r_addend,
12110 extract_addend, calculate_only,
12111 &calculated_value);
12112 break;
12113 case elfcpp::R_MIPS_TLS_DTPREL32:
12114 case elfcpp::R_MIPS_TLS_DTPREL64:
12115 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12116 elfcpp::DTP_OFFSET, r_addend,
12117 extract_addend, calculate_only,
12118 &calculated_value);
12119 break;
12120 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12121 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12122 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12123 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12124 elfcpp::TP_OFFSET, r_addend,
12125 extract_addend, calculate_only,
12126 &calculated_value);
12127 break;
12128 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12129 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12130 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12131 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12132 elfcpp::TP_OFFSET, r_addend,
12133 extract_addend, calculate_only,
12134 &calculated_value);
12135 break;
12136 case elfcpp::R_MIPS_TLS_TPREL32:
12137 case elfcpp::R_MIPS_TLS_TPREL64:
12138 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12139 elfcpp::TP_OFFSET, r_addend,
12140 extract_addend, calculate_only,
12141 &calculated_value);
12142 break;
12143 case elfcpp::R_MIPS_SUB:
12144 case elfcpp::R_MICROMIPS_SUB:
12145 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12146 extract_addend,
12147 calculate_only, &calculated_value);
12148 break;
12149 case elfcpp::R_MIPS_HIGHER:
12150 case elfcpp::R_MICROMIPS_HIGHER:
12151 reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12152 extract_addend, calculate_only,
12153 &calculated_value);
12154 break;
12155 case elfcpp::R_MIPS_HIGHEST:
12156 case elfcpp::R_MICROMIPS_HIGHEST:
12157 reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12158 r_addend, extract_addend,
12159 calculate_only,
12160 &calculated_value);
12161 break;
12162 default:
12163 gold_error_at_location(relinfo, relnum, r_offset,
12164 _("unsupported reloc %u"), r_types[i]);
12165 break;
12166 }
12167
12168 if (update_got_entry)
12169 {
12170 Mips_output_data_got<size, big_endian>* got = target->got_section();
12171 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12172 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12173 psymval->value(object, 0));
12174 else
12175 got->update_got_entry(got_offset, psymval->value(object, 0));
12176 }
12177
12178 r_addend = calculated_value;
12179 }
12180
12181 bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable()
12182 : false;
12183 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12184
12185 // Report any errors.
12186 switch (reloc_status)
12187 {
12188 case Reloc_funcs::STATUS_OKAY:
12189 break;
12190 case Reloc_funcs::STATUS_OVERFLOW:
12191 gold_error_at_location(relinfo, relnum, r_offset,
12192 _("relocation overflow"));
12193 break;
12194 case Reloc_funcs::STATUS_BAD_RELOC:
12195 gold_error_at_location(relinfo, relnum, r_offset,
12196 _("unexpected opcode while processing relocation"));
12197 break;
12198 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12199 gold_error_at_location(relinfo, relnum, r_offset,
12200 _("unaligned PC-relative relocation"));
12201 break;
12202 default:
12203 gold_unreachable();
12204 }
12205
12206 return true;
12207 }
12208
12209 // Get the Reference_flags for a particular relocation.
12210
12211 template<int size, bool big_endian>
12212 int
12213 Target_mips<size, big_endian>::Scan::get_reference_flags(
12214 unsigned int r_type)
12215 {
12216 switch (r_type)
12217 {
12218 case elfcpp::R_MIPS_NONE:
12219 // No symbol reference.
12220 return 0;
12221
12222 case elfcpp::R_MIPS_16:
12223 case elfcpp::R_MIPS_32:
12224 case elfcpp::R_MIPS_64:
12225 case elfcpp::R_MIPS_HI16:
12226 case elfcpp::R_MIPS_LO16:
12227 case elfcpp::R_MIPS_HIGHER:
12228 case elfcpp::R_MIPS_HIGHEST:
12229 case elfcpp::R_MIPS16_HI16:
12230 case elfcpp::R_MIPS16_LO16:
12231 case elfcpp::R_MICROMIPS_HI16:
12232 case elfcpp::R_MICROMIPS_LO16:
12233 case elfcpp::R_MICROMIPS_HIGHER:
12234 case elfcpp::R_MICROMIPS_HIGHEST:
12235 return Symbol::ABSOLUTE_REF;
12236
12237 case elfcpp::R_MIPS_26:
12238 case elfcpp::R_MIPS16_26:
12239 case elfcpp::R_MICROMIPS_26_S1:
12240 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12241
12242 case elfcpp::R_MIPS_PC18_S3:
12243 case elfcpp::R_MIPS_PC19_S2:
12244 case elfcpp::R_MIPS_PCHI16:
12245 case elfcpp::R_MIPS_PCLO16:
12246 case elfcpp::R_MIPS_GPREL32:
12247 case elfcpp::R_MIPS_GPREL16:
12248 case elfcpp::R_MIPS_REL32:
12249 case elfcpp::R_MIPS16_GPREL:
12250 return Symbol::RELATIVE_REF;
12251
12252 case elfcpp::R_MIPS_PC16:
12253 case elfcpp::R_MIPS_PC32:
12254 case elfcpp::R_MIPS_PC21_S2:
12255 case elfcpp::R_MIPS_PC26_S2:
12256 case elfcpp::R_MIPS_JALR:
12257 case elfcpp::R_MICROMIPS_JALR:
12258 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12259
12260 case elfcpp::R_MIPS_GOT16:
12261 case elfcpp::R_MIPS_CALL16:
12262 case elfcpp::R_MIPS_GOT_DISP:
12263 case elfcpp::R_MIPS_GOT_HI16:
12264 case elfcpp::R_MIPS_GOT_LO16:
12265 case elfcpp::R_MIPS_CALL_HI16:
12266 case elfcpp::R_MIPS_CALL_LO16:
12267 case elfcpp::R_MIPS_LITERAL:
12268 case elfcpp::R_MIPS_GOT_PAGE:
12269 case elfcpp::R_MIPS_GOT_OFST:
12270 case elfcpp::R_MIPS16_GOT16:
12271 case elfcpp::R_MIPS16_CALL16:
12272 case elfcpp::R_MICROMIPS_GOT16:
12273 case elfcpp::R_MICROMIPS_CALL16:
12274 case elfcpp::R_MICROMIPS_GOT_HI16:
12275 case elfcpp::R_MICROMIPS_GOT_LO16:
12276 case elfcpp::R_MICROMIPS_CALL_HI16:
12277 case elfcpp::R_MICROMIPS_CALL_LO16:
12278 case elfcpp::R_MIPS_EH:
12279 // Absolute in GOT.
12280 return Symbol::RELATIVE_REF;
12281
12282 case elfcpp::R_MIPS_TLS_DTPMOD32:
12283 case elfcpp::R_MIPS_TLS_DTPREL32:
12284 case elfcpp::R_MIPS_TLS_DTPMOD64:
12285 case elfcpp::R_MIPS_TLS_DTPREL64:
12286 case elfcpp::R_MIPS_TLS_GD:
12287 case elfcpp::R_MIPS_TLS_LDM:
12288 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12289 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12290 case elfcpp::R_MIPS_TLS_GOTTPREL:
12291 case elfcpp::R_MIPS_TLS_TPREL32:
12292 case elfcpp::R_MIPS_TLS_TPREL64:
12293 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12294 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12295 case elfcpp::R_MIPS16_TLS_GD:
12296 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12297 case elfcpp::R_MICROMIPS_TLS_GD:
12298 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12299 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12300 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12301 return Symbol::TLS_REF;
12302
12303 case elfcpp::R_MIPS_COPY:
12304 case elfcpp::R_MIPS_JUMP_SLOT:
12305 default:
12306 // Not expected. We will give an error later.
12307 return 0;
12308 }
12309 }
12310
12311 // Report an unsupported relocation against a local symbol.
12312
12313 template<int size, bool big_endian>
12314 void
12315 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12316 Sized_relobj_file<size, big_endian>* object,
12317 unsigned int r_type)
12318 {
12319 gold_error(_("%s: unsupported reloc %u against local symbol"),
12320 object->name().c_str(), r_type);
12321 }
12322
12323 // Report an unsupported relocation against a global symbol.
12324
12325 template<int size, bool big_endian>
12326 void
12327 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12328 Sized_relobj_file<size, big_endian>* object,
12329 unsigned int r_type,
12330 Symbol* gsym)
12331 {
12332 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12333 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12334 }
12335
12336 // Return printable name for ABI.
12337 template<int size, bool big_endian>
12338 const char*
12339 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12340 {
12341 switch (e_flags & elfcpp::EF_MIPS_ABI)
12342 {
12343 case 0:
12344 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12345 return "N32";
12346 else if (size == 64)
12347 return "64";
12348 else
12349 return "none";
12350 case elfcpp::E_MIPS_ABI_O32:
12351 return "O32";
12352 case elfcpp::E_MIPS_ABI_O64:
12353 return "O64";
12354 case elfcpp::E_MIPS_ABI_EABI32:
12355 return "EABI32";
12356 case elfcpp::E_MIPS_ABI_EABI64:
12357 return "EABI64";
12358 default:
12359 return "unknown abi";
12360 }
12361 }
12362
12363 template<int size, bool big_endian>
12364 const char*
12365 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12366 {
12367 switch (e_flags & elfcpp::EF_MIPS_MACH)
12368 {
12369 case elfcpp::E_MIPS_MACH_3900:
12370 return "mips:3900";
12371 case elfcpp::E_MIPS_MACH_4010:
12372 return "mips:4010";
12373 case elfcpp::E_MIPS_MACH_4100:
12374 return "mips:4100";
12375 case elfcpp::E_MIPS_MACH_4111:
12376 return "mips:4111";
12377 case elfcpp::E_MIPS_MACH_4120:
12378 return "mips:4120";
12379 case elfcpp::E_MIPS_MACH_4650:
12380 return "mips:4650";
12381 case elfcpp::E_MIPS_MACH_5400:
12382 return "mips:5400";
12383 case elfcpp::E_MIPS_MACH_5500:
12384 return "mips:5500";
12385 case elfcpp::E_MIPS_MACH_5900:
12386 return "mips:5900";
12387 case elfcpp::E_MIPS_MACH_SB1:
12388 return "mips:sb1";
12389 case elfcpp::E_MIPS_MACH_9000:
12390 return "mips:9000";
12391 case elfcpp::E_MIPS_MACH_LS2E:
12392 return "mips:loongson_2e";
12393 case elfcpp::E_MIPS_MACH_LS2F:
12394 return "mips:loongson_2f";
12395 case elfcpp::E_MIPS_MACH_LS3A:
12396 return "mips:loongson_3a";
12397 case elfcpp::E_MIPS_MACH_OCTEON:
12398 return "mips:octeon";
12399 case elfcpp::E_MIPS_MACH_OCTEON2:
12400 return "mips:octeon2";
12401 case elfcpp::E_MIPS_MACH_OCTEON3:
12402 return "mips:octeon3";
12403 case elfcpp::E_MIPS_MACH_XLR:
12404 return "mips:xlr";
12405 default:
12406 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12407 {
12408 default:
12409 case elfcpp::E_MIPS_ARCH_1:
12410 return "mips:3000";
12411
12412 case elfcpp::E_MIPS_ARCH_2:
12413 return "mips:6000";
12414
12415 case elfcpp::E_MIPS_ARCH_3:
12416 return "mips:4000";
12417
12418 case elfcpp::E_MIPS_ARCH_4:
12419 return "mips:8000";
12420
12421 case elfcpp::E_MIPS_ARCH_5:
12422 return "mips:mips5";
12423
12424 case elfcpp::E_MIPS_ARCH_32:
12425 return "mips:isa32";
12426
12427 case elfcpp::E_MIPS_ARCH_64:
12428 return "mips:isa64";
12429
12430 case elfcpp::E_MIPS_ARCH_32R2:
12431 return "mips:isa32r2";
12432
12433 case elfcpp::E_MIPS_ARCH_32R6:
12434 return "mips:isa32r6";
12435
12436 case elfcpp::E_MIPS_ARCH_64R2:
12437 return "mips:isa64r2";
12438
12439 case elfcpp::E_MIPS_ARCH_64R6:
12440 return "mips:isa64r6";
12441 }
12442 }
12443 return "unknown CPU";
12444 }
12445
12446 template<int size, bool big_endian>
12447 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12448 {
12449 size, // size
12450 big_endian, // is_big_endian
12451 elfcpp::EM_MIPS, // machine_code
12452 true, // has_make_symbol
12453 false, // has_resolve
12454 false, // has_code_fill
12455 true, // is_default_stack_executable
12456 false, // can_icf_inline_merge_sections
12457 '\0', // wrap_char
12458 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12459 0x400000, // default_text_segment_address
12460 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12461 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12462 false, // isolate_execinstr
12463 0, // rosegment_gap
12464 elfcpp::SHN_UNDEF, // small_common_shndx
12465 elfcpp::SHN_UNDEF, // large_common_shndx
12466 0, // small_common_section_flags
12467 0, // large_common_section_flags
12468 NULL, // attributes_section
12469 NULL, // attributes_vendor
12470 "__start", // entry_symbol_name
12471 32, // hash_entry_size
12472 };
12473
12474 template<int size, bool big_endian>
12475 class Target_mips_nacl : public Target_mips<size, big_endian>
12476 {
12477 public:
12478 Target_mips_nacl()
12479 : Target_mips<size, big_endian>(&mips_nacl_info)
12480 { }
12481
12482 private:
12483 static const Target::Target_info mips_nacl_info;
12484 };
12485
12486 template<int size, bool big_endian>
12487 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12488 {
12489 size, // size
12490 big_endian, // is_big_endian
12491 elfcpp::EM_MIPS, // machine_code
12492 true, // has_make_symbol
12493 false, // has_resolve
12494 false, // has_code_fill
12495 true, // is_default_stack_executable
12496 false, // can_icf_inline_merge_sections
12497 '\0', // wrap_char
12498 "/lib/ld.so.1", // dynamic_linker
12499 0x20000, // default_text_segment_address
12500 0x10000, // abi_pagesize (overridable by -z max-page-size)
12501 0x10000, // common_pagesize (overridable by -z common-page-size)
12502 true, // isolate_execinstr
12503 0x10000000, // rosegment_gap
12504 elfcpp::SHN_UNDEF, // small_common_shndx
12505 elfcpp::SHN_UNDEF, // large_common_shndx
12506 0, // small_common_section_flags
12507 0, // large_common_section_flags
12508 NULL, // attributes_section
12509 NULL, // attributes_vendor
12510 "_start", // entry_symbol_name
12511 32, // hash_entry_size
12512 };
12513
12514 // Target selector for Mips. Note this is never instantiated directly.
12515 // It's only used in Target_selector_mips_nacl, below.
12516
12517 template<int size, bool big_endian>
12518 class Target_selector_mips : public Target_selector
12519 {
12520 public:
12521 Target_selector_mips()
12522 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12523 (size == 64 ?
12524 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12525 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12526 (size == 64 ?
12527 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12528 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12529 { }
12530
12531 Target* do_instantiate_target()
12532 { return new Target_mips<size, big_endian>(); }
12533 };
12534
12535 template<int size, bool big_endian>
12536 class Target_selector_mips_nacl
12537 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12538 Target_mips_nacl<size, big_endian> >
12539 {
12540 public:
12541 Target_selector_mips_nacl()
12542 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12543 Target_mips_nacl<size, big_endian> >(
12544 // NaCl currently supports only MIPS32 little-endian.
12545 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12546 { }
12547 };
12548
12549 Target_selector_mips_nacl<32, true> target_selector_mips32;
12550 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12551 Target_selector_mips_nacl<64, true> target_selector_mips64;
12552 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12553
12554 } // End anonymous namespace.
This page took 0.416131 seconds and 5 git commands to generate.