Add NaCl (NativeClient) specific classes Target_mips_nacl and
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2014 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "nacl.h"
48
49 namespace
50 {
51 using namespace gold;
52
53 template<int size, bool big_endian>
54 class Mips_output_data_plt;
55
56 template<int size, bool big_endian>
57 class Mips_output_data_got;
58
59 template<int size, bool big_endian>
60 class Target_mips;
61
62 template<int size, bool big_endian>
63 class Mips_output_section_reginfo;
64
65 template<int size, bool big_endian>
66 class Mips_output_data_la25_stub;
67
68 template<int size, bool big_endian>
69 class Mips_output_data_mips_stubs;
70
71 template<int size>
72 class Mips_symbol;
73
74 template<int size, bool big_endian>
75 class Mips_got_info;
76
77 template<int size, bool big_endian>
78 class Mips_relobj;
79
80 class Mips16_stub_section_base;
81
82 template<int size, bool big_endian>
83 class Mips16_stub_section;
84
85 // The ABI says that every symbol used by dynamic relocations must have
86 // a global GOT entry. Among other things, this provides the dynamic
87 // linker with a free, directly-indexed cache. The GOT can therefore
88 // contain symbols that are not referenced by GOT relocations themselves
89 // (in other words, it may have symbols that are not referenced by things
90 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
91
92 // GOT relocations are less likely to overflow if we put the associated
93 // GOT entries towards the beginning. We therefore divide the global
94 // GOT entries into two areas: "normal" and "reloc-only". Entries in
95 // the first area can be used for both dynamic relocations and GP-relative
96 // accesses, while those in the "reloc-only" area are for dynamic
97 // relocations only.
98
99 // These GGA_* ("Global GOT Area") values are organised so that lower
100 // values are more general than higher values. Also, non-GGA_NONE
101 // values are ordered by the position of the area in the GOT.
102
103 enum Global_got_area
104 {
105 GGA_NORMAL = 0,
106 GGA_RELOC_ONLY = 1,
107 GGA_NONE = 2
108 };
109
110 // The types of GOT entries needed for this platform.
111 // These values are exposed to the ABI in an incremental link.
112 // Do not renumber existing values without changing the version
113 // number of the .gnu_incremental_inputs section.
114 enum Got_type
115 {
116 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
117 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
118 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
119
120 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
121 GOT_TYPE_STANDARD_MULTIGOT = 3,
122 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
123 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
124 };
125
126 // TLS type of GOT entry.
127 enum Got_tls_type
128 {
129 GOT_TLS_NONE = 0,
130 GOT_TLS_GD = 1,
131 GOT_TLS_LDM = 2,
132 GOT_TLS_IE = 4
133 };
134
135 // Return TRUE if a relocation of type R_TYPE from OBJECT might
136 // require an la25 stub. See also local_pic_function, which determines
137 // whether the destination function ever requires a stub.
138 template<int size, bool big_endian>
139 static inline bool
140 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
141 unsigned int r_type, bool target_is_16_bit_code)
142 {
143 // We specifically ignore branches and jumps from EF_PIC objects,
144 // where the onus is on the compiler or programmer to perform any
145 // necessary initialization of $25. Sometimes such initialization
146 // is unnecessary; for example, -mno-shared functions do not use
147 // the incoming value of $25, and may therefore be called directly.
148 if (object->is_pic())
149 return false;
150
151 switch (r_type)
152 {
153 case elfcpp::R_MIPS_26:
154 case elfcpp::R_MIPS_PC16:
155 case elfcpp::R_MICROMIPS_26_S1:
156 case elfcpp::R_MICROMIPS_PC7_S1:
157 case elfcpp::R_MICROMIPS_PC10_S1:
158 case elfcpp::R_MICROMIPS_PC16_S1:
159 case elfcpp::R_MICROMIPS_PC23_S2:
160 return true;
161
162 case elfcpp::R_MIPS16_26:
163 return !target_is_16_bit_code;
164
165 default:
166 return false;
167 }
168 }
169
170 // Return true if SYM is a locally-defined PIC function, in the sense
171 // that it or its fn_stub might need $25 to be valid on entry.
172 // Note that MIPS16 functions set up $gp using PC-relative instructions,
173 // so they themselves never need $25 to be valid. Only non-MIPS16
174 // entry points are of interest here.
175 template<int size, bool big_endian>
176 static inline bool
177 local_pic_function(Mips_symbol<size>* sym)
178 {
179 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
180 && !sym->object()->is_dynamic()
181 && !sym->is_undefined());
182
183 if (sym->is_defined() && def_regular)
184 {
185 Mips_relobj<size, big_endian>* object =
186 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
187
188 if ((object->is_pic() || sym->is_pic())
189 && (!sym->is_mips16()
190 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
191 return true;
192 }
193 return false;
194 }
195
196 static inline bool
197 hi16_reloc(int r_type)
198 {
199 return (r_type == elfcpp::R_MIPS_HI16
200 || r_type == elfcpp::R_MIPS16_HI16
201 || r_type == elfcpp::R_MICROMIPS_HI16);
202 }
203
204 static inline bool
205 lo16_reloc(int r_type)
206 {
207 return (r_type == elfcpp::R_MIPS_LO16
208 || r_type == elfcpp::R_MIPS16_LO16
209 || r_type == elfcpp::R_MICROMIPS_LO16);
210 }
211
212 static inline bool
213 got16_reloc(unsigned int r_type)
214 {
215 return (r_type == elfcpp::R_MIPS_GOT16
216 || r_type == elfcpp::R_MIPS16_GOT16
217 || r_type == elfcpp::R_MICROMIPS_GOT16);
218 }
219
220 static inline bool
221 call_lo16_reloc(unsigned int r_type)
222 {
223 return (r_type == elfcpp::R_MIPS_CALL_LO16
224 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
225 }
226
227 static inline bool
228 got_lo16_reloc(unsigned int r_type)
229 {
230 return (r_type == elfcpp::R_MIPS_GOT_LO16
231 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
232 }
233
234 static inline bool
235 got_disp_reloc(unsigned int r_type)
236 {
237 return (r_type == elfcpp::R_MIPS_GOT_DISP
238 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
239 }
240
241 static inline bool
242 got_page_reloc(unsigned int r_type)
243 {
244 return (r_type == elfcpp::R_MIPS_GOT_PAGE
245 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
246 }
247
248 static inline bool
249 tls_gd_reloc(unsigned int r_type)
250 {
251 return (r_type == elfcpp::R_MIPS_TLS_GD
252 || r_type == elfcpp::R_MIPS16_TLS_GD
253 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
254 }
255
256 static inline bool
257 tls_gottprel_reloc(unsigned int r_type)
258 {
259 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
260 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
261 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
262 }
263
264 static inline bool
265 tls_ldm_reloc(unsigned int r_type)
266 {
267 return (r_type == elfcpp::R_MIPS_TLS_LDM
268 || r_type == elfcpp::R_MIPS16_TLS_LDM
269 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
270 }
271
272 static inline bool
273 mips16_call_reloc(unsigned int r_type)
274 {
275 return (r_type == elfcpp::R_MIPS16_26
276 || r_type == elfcpp::R_MIPS16_CALL16);
277 }
278
279 static inline bool
280 jal_reloc(unsigned int r_type)
281 {
282 return (r_type == elfcpp::R_MIPS_26
283 || r_type == elfcpp::R_MIPS16_26
284 || r_type == elfcpp::R_MICROMIPS_26_S1);
285 }
286
287 static inline bool
288 micromips_branch_reloc(unsigned int r_type)
289 {
290 return (r_type == elfcpp::R_MICROMIPS_26_S1
291 || r_type == elfcpp::R_MICROMIPS_PC16_S1
292 || r_type == elfcpp::R_MICROMIPS_PC10_S1
293 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
294 }
295
296 // Check if R_TYPE is a MIPS16 reloc.
297 static inline bool
298 mips16_reloc(unsigned int r_type)
299 {
300 switch (r_type)
301 {
302 case elfcpp::R_MIPS16_26:
303 case elfcpp::R_MIPS16_GPREL:
304 case elfcpp::R_MIPS16_GOT16:
305 case elfcpp::R_MIPS16_CALL16:
306 case elfcpp::R_MIPS16_HI16:
307 case elfcpp::R_MIPS16_LO16:
308 case elfcpp::R_MIPS16_TLS_GD:
309 case elfcpp::R_MIPS16_TLS_LDM:
310 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
311 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
312 case elfcpp::R_MIPS16_TLS_GOTTPREL:
313 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
314 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
315 return true;
316
317 default:
318 return false;
319 }
320 }
321
322 // Check if R_TYPE is a microMIPS reloc.
323 static inline bool
324 micromips_reloc(unsigned int r_type)
325 {
326 switch (r_type)
327 {
328 case elfcpp::R_MICROMIPS_26_S1:
329 case elfcpp::R_MICROMIPS_HI16:
330 case elfcpp::R_MICROMIPS_LO16:
331 case elfcpp::R_MICROMIPS_GPREL16:
332 case elfcpp::R_MICROMIPS_LITERAL:
333 case elfcpp::R_MICROMIPS_GOT16:
334 case elfcpp::R_MICROMIPS_PC7_S1:
335 case elfcpp::R_MICROMIPS_PC10_S1:
336 case elfcpp::R_MICROMIPS_PC16_S1:
337 case elfcpp::R_MICROMIPS_CALL16:
338 case elfcpp::R_MICROMIPS_GOT_DISP:
339 case elfcpp::R_MICROMIPS_GOT_PAGE:
340 case elfcpp::R_MICROMIPS_GOT_OFST:
341 case elfcpp::R_MICROMIPS_GOT_HI16:
342 case elfcpp::R_MICROMIPS_GOT_LO16:
343 case elfcpp::R_MICROMIPS_SUB:
344 case elfcpp::R_MICROMIPS_HIGHER:
345 case elfcpp::R_MICROMIPS_HIGHEST:
346 case elfcpp::R_MICROMIPS_CALL_HI16:
347 case elfcpp::R_MICROMIPS_CALL_LO16:
348 case elfcpp::R_MICROMIPS_SCN_DISP:
349 case elfcpp::R_MICROMIPS_JALR:
350 case elfcpp::R_MICROMIPS_HI0_LO16:
351 case elfcpp::R_MICROMIPS_TLS_GD:
352 case elfcpp::R_MICROMIPS_TLS_LDM:
353 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
354 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
355 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
356 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
357 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
358 case elfcpp::R_MICROMIPS_GPREL7_S2:
359 case elfcpp::R_MICROMIPS_PC23_S2:
360 return true;
361
362 default:
363 return false;
364 }
365 }
366
367 static inline bool
368 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
369 {
370 switch (high_reloc)
371 {
372 case elfcpp::R_MIPS_HI16:
373 case elfcpp::R_MIPS_GOT16:
374 return lo16_reloc == elfcpp::R_MIPS_LO16;
375 case elfcpp::R_MIPS16_HI16:
376 case elfcpp::R_MIPS16_GOT16:
377 return lo16_reloc == elfcpp::R_MIPS16_LO16;
378 case elfcpp::R_MICROMIPS_HI16:
379 case elfcpp::R_MICROMIPS_GOT16:
380 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
381 default:
382 return false;
383 }
384 }
385
386 // This class is used to hold information about one GOT entry.
387 // There are three types of entry:
388 //
389 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
390 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
391 // (2) a SYMBOL address, where SYMBOL is not local to an input object
392 // (object != NULL, symndx == -1)
393 // (3) a TLS LDM slot
394 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
395
396 template<int size, bool big_endian>
397 class Mips_got_entry
398 {
399 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
400
401 public:
402 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
403 Mips_address addend, unsigned char tls_type,
404 unsigned int shndx)
405 : object_(object), symndx_(symndx), tls_type_(tls_type), shndx_(shndx)
406 { this->d.addend = addend; }
407
408 Mips_got_entry(Mips_relobj<size, big_endian>* object, Mips_symbol<size>* sym,
409 unsigned char tls_type)
410 : object_(object), symndx_(-1U), tls_type_(tls_type), shndx_(-1U)
411 { this->d.sym = sym; }
412
413 // Return whether this entry is for a local symbol.
414 bool
415 is_for_local_symbol() const
416 { return this->symndx_ != -1U; }
417
418 // Return whether this entry is for a global symbol.
419 bool
420 is_for_global_symbol() const
421 { return this->symndx_ == -1U; }
422
423 // Return the hash of this entry.
424 size_t
425 hash() const
426 {
427 if (this->tls_type_ == GOT_TLS_LDM)
428 return this->symndx_ + (1 << 18);
429 if (this->symndx_ != -1U)
430 {
431 uintptr_t object_id = reinterpret_cast<uintptr_t>(this->object());
432 return this->symndx_ + object_id + this->d.addend;
433 }
434 else
435 {
436 uintptr_t sym_id = reinterpret_cast<uintptr_t>(this->d.sym);
437 return this->symndx_ + sym_id;
438 }
439 }
440
441 // Return whether this entry is equal to OTHER.
442 bool
443 equals(Mips_got_entry<size, big_endian>* other) const
444 {
445 if (this->symndx_ != other->symndx_
446 || this->tls_type_ != other->tls_type_)
447 return false;
448 if (this->tls_type_ == GOT_TLS_LDM)
449 return true;
450 if (this->symndx_ != -1U)
451 return (this->object() == other->object()
452 && this->d.addend == other->d.addend);
453 else
454 return this->d.sym == other->d.sym;
455 }
456
457 // Return input object that needs this GOT entry.
458 Mips_relobj<size, big_endian>*
459 object() const
460 {
461 gold_assert(this->object_ != NULL);
462 return this->object_;
463 }
464
465 // Return local symbol index for local GOT entries.
466 unsigned int
467 symndx() const
468 {
469 gold_assert(this->symndx_ != -1U);
470 return this->symndx_;
471 }
472
473 // Return the relocation addend for local GOT entries.
474 Mips_address
475 addend() const
476 {
477 gold_assert(this->symndx_ != -1U);
478 return this->d.addend;
479 }
480
481 // Return global symbol for global GOT entries.
482 Mips_symbol<size>*
483 sym() const
484 {
485 gold_assert(this->symndx_ == -1U);
486 return this->d.sym;
487 }
488
489 // Return whether this is a TLS GOT entry.
490 bool
491 is_tls_entry() const
492 { return this->tls_type_ != GOT_TLS_NONE; }
493
494 // Return TLS type of this GOT entry.
495 unsigned char
496 tls_type() const
497 { return this->tls_type_; }
498
499 // Return section index of the local symbol for local GOT entries.
500 unsigned int
501 shndx() const
502 { return this->shndx_; }
503
504 private:
505 // The input object that needs the GOT entry.
506 Mips_relobj<size, big_endian>* object_;
507 // The index of the symbol if we have a local symbol; -1 otherwise.
508 unsigned int symndx_;
509
510 union
511 {
512 // If symndx != -1, the addend of the relocation that should be added to the
513 // symbol value.
514 Mips_address addend;
515 // If symndx == -1, the global symbol corresponding to this GOT entry. The
516 // symbol's entry is in the local area if mips_sym->global_got_area is
517 // GGA_NONE, otherwise it is in the global area.
518 Mips_symbol<size>* sym;
519 } d;
520
521 // The TLS type of this GOT entry. An LDM GOT entry will be a local
522 // symbol entry with r_symndx == 0.
523 unsigned char tls_type_;
524
525 // For local GOT entries, section index of the local symbol.
526 unsigned int shndx_;
527 };
528
529 // Hash for Mips_got_entry.
530
531 template<int size, bool big_endian>
532 class Mips_got_entry_hash
533 {
534 public:
535 size_t
536 operator()(Mips_got_entry<size, big_endian>* entry) const
537 { return entry->hash(); }
538 };
539
540 // Equality for Mips_got_entry.
541
542 template<int size, bool big_endian>
543 class Mips_got_entry_eq
544 {
545 public:
546 bool
547 operator()(Mips_got_entry<size, big_endian>* e1,
548 Mips_got_entry<size, big_endian>* e2) const
549 { return e1->equals(e2); }
550 };
551
552 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
553 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
554 // increasing MIN_ADDEND.
555
556 struct Got_page_range
557 {
558 Got_page_range()
559 : next(NULL), min_addend(0), max_addend(0)
560 { }
561
562 Got_page_range* next;
563 int min_addend;
564 int max_addend;
565
566 // Return the maximum number of GOT page entries required.
567 int
568 get_max_pages()
569 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
570 };
571
572 // Got_page_entry. This class describes the range of addends that are applied
573 // to page relocations against a given symbol.
574
575 struct Got_page_entry
576 {
577 Got_page_entry()
578 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
579 { }
580
581 Got_page_entry(Object* object_, unsigned int symndx_)
582 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
583 { }
584
585 // The input object that needs the GOT page entry.
586 Object* object;
587 // The index of the symbol, as stored in the relocation r_info.
588 unsigned int symndx;
589 // The ranges for this page entry.
590 Got_page_range* ranges;
591 // The maximum number of page entries needed for RANGES.
592 unsigned int num_pages;
593 };
594
595 // Hash for Got_page_entry.
596
597 struct Got_page_entry_hash
598 {
599 size_t
600 operator()(Got_page_entry* entry) const
601 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
602 };
603
604 // Equality for Got_page_entry.
605
606 struct Got_page_entry_eq
607 {
608 bool
609 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
610 {
611 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
612 }
613 };
614
615 // This class is used to hold .got information when linking.
616
617 template<int size, bool big_endian>
618 class Mips_got_info
619 {
620 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
621 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
622 Reloc_section;
623 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
624
625 // Unordered set of GOT entries.
626 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
627 Mips_got_entry_hash<size, big_endian>,
628 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
629
630 // Unordered set of GOT page entries.
631 typedef Unordered_set<Got_page_entry*,
632 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
633
634 public:
635 Mips_got_info()
636 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
637 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
638 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
639 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
640 offset_(0)
641 { }
642
643 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
644 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
645 void
646 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
647 unsigned int symndx, Mips_address addend,
648 unsigned int r_type, unsigned int shndx);
649
650 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
651 // in OBJECT. FOR_CALL is true if the caller is only interested in
652 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
653 // relocation.
654 void
655 record_global_got_symbol(Mips_symbol<size>* mips_sym,
656 Mips_relobj<size, big_endian>* object,
657 unsigned int r_type, bool dyn_reloc, bool for_call);
658
659 // Add ENTRY to master GOT and to OBJECT's GOT.
660 void
661 record_got_entry(Mips_got_entry<size, big_endian>* entry,
662 Mips_relobj<size, big_endian>* object);
663
664 // Record that OBJECT has a page relocation against symbol SYMNDX and
665 // that ADDEND is the addend for that relocation.
666 void
667 record_got_page_entry(Mips_relobj<size, big_endian>* object,
668 unsigned int symndx, int addend);
669
670 // Create all entries that should be in the local part of the GOT.
671 void
672 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
673
674 // Create GOT page entries.
675 void
676 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
677
678 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
679 void
680 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
681 unsigned int non_reloc_only_global_gotno);
682
683 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
684 void
685 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
686
687 // Create TLS GOT entries.
688 void
689 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
690
691 // Decide whether the symbol needs an entry in the global part of the primary
692 // GOT, setting global_got_area accordingly. Count the number of global
693 // symbols that are in the primary GOT only because they have dynamic
694 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
695 void
696 count_got_symbols(Symbol_table* symtab);
697
698 // Return the offset of GOT page entry for VALUE.
699 unsigned int
700 get_got_page_offset(Mips_address value,
701 Mips_output_data_got<size, big_endian>* got);
702
703 // Count the number of GOT entries required.
704 void
705 count_got_entries();
706
707 // Count the number of GOT entries required by ENTRY. Accumulate the result.
708 void
709 count_got_entry(Mips_got_entry<size, big_endian>* entry);
710
711 // Add FROM's GOT entries.
712 void
713 add_got_entries(Mips_got_info<size, big_endian>* from);
714
715 // Add FROM's GOT page entries.
716 void
717 add_got_page_entries(Mips_got_info<size, big_endian>* from);
718
719 // Return GOT size.
720 unsigned int
721 got_size() const
722 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
723 + this->tls_gotno_) * size/8);
724 }
725
726 // Return the number of local GOT entries.
727 unsigned int
728 local_gotno() const
729 { return this->local_gotno_; }
730
731 // Return the maximum number of page GOT entries needed.
732 unsigned int
733 page_gotno() const
734 { return this->page_gotno_; }
735
736 // Return the number of global GOT entries.
737 unsigned int
738 global_gotno() const
739 { return this->global_gotno_; }
740
741 // Set the number of global GOT entries.
742 void
743 set_global_gotno(unsigned int global_gotno)
744 { this->global_gotno_ = global_gotno; }
745
746 // Return the number of GGA_RELOC_ONLY global GOT entries.
747 unsigned int
748 reloc_only_gotno() const
749 { return this->reloc_only_gotno_; }
750
751 // Return the number of TLS GOT entries.
752 unsigned int
753 tls_gotno() const
754 { return this->tls_gotno_; }
755
756 // Return the GOT type for this GOT. Used for multi-GOT links only.
757 unsigned int
758 multigot_got_type(unsigned int got_type) const
759 {
760 switch (got_type)
761 {
762 case GOT_TYPE_STANDARD:
763 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
764 case GOT_TYPE_TLS_OFFSET:
765 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
766 case GOT_TYPE_TLS_PAIR:
767 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
768 default:
769 gold_unreachable();
770 }
771 }
772
773 // Remove lazy-binding stubs for global symbols in this GOT.
774 void
775 remove_lazy_stubs(Target_mips<size, big_endian>* target);
776
777 // Return offset of this GOT from the start of .got section.
778 unsigned int
779 offset() const
780 { return this->offset_; }
781
782 // Set offset of this GOT from the start of .got section.
783 void
784 set_offset(unsigned int offset)
785 { this->offset_ = offset; }
786
787 // Set index of this GOT in multi-GOT links.
788 void
789 set_index(unsigned int index)
790 { this->index_ = index; }
791
792 // Return next GOT in multi-GOT links.
793 Mips_got_info<size, big_endian>*
794 next() const
795 { return this->next_; }
796
797 // Set next GOT in multi-GOT links.
798 void
799 set_next(Mips_got_info<size, big_endian>* next)
800 { this->next_ = next; }
801
802 // Return the offset of TLS LDM entry for this GOT.
803 unsigned int
804 tls_ldm_offset() const
805 { return this->tls_ldm_offset_; }
806
807 // Set the offset of TLS LDM entry for this GOT.
808 void
809 set_tls_ldm_offset(unsigned int tls_ldm_offset)
810 { this->tls_ldm_offset_ = tls_ldm_offset; }
811
812 Unordered_set<Mips_symbol<size>*>&
813 global_got_symbols()
814 { return this->global_got_symbols_; }
815
816 // Return the GOT_TLS_* type required by relocation type R_TYPE.
817 static int
818 mips_elf_reloc_tls_type(unsigned int r_type)
819 {
820 if (tls_gd_reloc(r_type))
821 return GOT_TLS_GD;
822
823 if (tls_ldm_reloc(r_type))
824 return GOT_TLS_LDM;
825
826 if (tls_gottprel_reloc(r_type))
827 return GOT_TLS_IE;
828
829 return GOT_TLS_NONE;
830 }
831
832 // Return the number of GOT slots needed for GOT TLS type TYPE.
833 static int
834 mips_tls_got_entries(unsigned int type)
835 {
836 switch (type)
837 {
838 case GOT_TLS_GD:
839 case GOT_TLS_LDM:
840 return 2;
841
842 case GOT_TLS_IE:
843 return 1;
844
845 case GOT_TLS_NONE:
846 return 0;
847
848 default:
849 gold_unreachable();
850 }
851 }
852
853 private:
854 // The number of local GOT entries.
855 unsigned int local_gotno_;
856 // The maximum number of page GOT entries needed.
857 unsigned int page_gotno_;
858 // The number of global GOT entries.
859 unsigned int global_gotno_;
860 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
861 unsigned int reloc_only_gotno_;
862 // The number of TLS GOT entries.
863 unsigned int tls_gotno_;
864 // The offset of TLS LDM entry for this GOT.
865 unsigned int tls_ldm_offset_;
866 // All symbols that have global GOT entry.
867 Unordered_set<Mips_symbol<size>*> global_got_symbols_;
868 // A hash table holding GOT entries.
869 Got_entry_set got_entries_;
870 // A hash table of GOT page entries.
871 Got_page_entry_set got_page_entries_;
872 // The offset of first GOT page entry for this GOT.
873 unsigned int got_page_offset_start_;
874 // The offset of next available GOT page entry for this GOT.
875 unsigned int got_page_offset_next_;
876 // A hash table that maps GOT page entry value to the GOT offset where
877 // the entry is located.
878 Got_page_offsets got_page_offsets_;
879 // In multi-GOT links, a pointer to the next GOT.
880 Mips_got_info<size, big_endian>* next_;
881 // Index of this GOT in multi-GOT links.
882 unsigned int index_;
883 // The offset of this GOT in multi-GOT links.
884 unsigned int offset_;
885 };
886
887 // This is a helper class used during relocation scan. It records GOT16 addend.
888
889 template<int size, bool big_endian>
890 struct got16_addend
891 {
892 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
893
894 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
895 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
896 Mips_address _addend)
897 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
898 addend(_addend)
899 { }
900
901 const Sized_relobj_file<size, big_endian>* object;
902 unsigned int shndx;
903 unsigned int r_type;
904 unsigned int r_sym;
905 Mips_address addend;
906 };
907
908 // Mips_symbol class. Holds additional symbol information needed for Mips.
909
910 template<int size>
911 class Mips_symbol : public Sized_symbol<size>
912 {
913 public:
914 Mips_symbol()
915 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
916 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
917 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
918 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
919 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
920 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
921 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
922 { }
923
924 // Return whether this is a MIPS16 symbol.
925 bool
926 is_mips16() const
927 {
928 // (st_other & STO_MIPS16) == STO_MIPS16
929 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
930 == elfcpp::STO_MIPS16 >> 2);
931 }
932
933 // Return whether this is a microMIPS symbol.
934 bool
935 is_micromips() const
936 {
937 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
938 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
939 == elfcpp::STO_MICROMIPS >> 2);
940 }
941
942 // Return whether the symbol needs MIPS16 fn_stub.
943 bool
944 need_fn_stub() const
945 { return this->need_fn_stub_; }
946
947 // Set that the symbol needs MIPS16 fn_stub.
948 void
949 set_need_fn_stub()
950 { this->need_fn_stub_ = true; }
951
952 // Return whether this symbol is referenced by branch relocations from
953 // any non-PIC input file.
954 bool
955 has_nonpic_branches() const
956 { return this->has_nonpic_branches_; }
957
958 // Set that this symbol is referenced by branch relocations from
959 // any non-PIC input file.
960 void
961 set_has_nonpic_branches()
962 { this->has_nonpic_branches_ = true; }
963
964 // Return the offset of the la25 stub for this symbol from the start of the
965 // la25 stub section.
966 unsigned int
967 la25_stub_offset() const
968 { return this->la25_stub_offset_; }
969
970 // Set the offset of the la25 stub for this symbol from the start of the
971 // la25 stub section.
972 void
973 set_la25_stub_offset(unsigned int offset)
974 { this->la25_stub_offset_ = offset; }
975
976 // Return whether the symbol has la25 stub. This is true if this symbol is
977 // for a PIC function, and there are non-PIC branches and jumps to it.
978 bool
979 has_la25_stub() const
980 { return this->la25_stub_offset_ != -1U; }
981
982 // Return whether there is a relocation against this symbol that must be
983 // resolved by the static linker (that is, the relocation cannot possibly
984 // be made dynamic).
985 bool
986 has_static_relocs() const
987 { return this->has_static_relocs_; }
988
989 // Set that there is a relocation against this symbol that must be resolved
990 // by the static linker (that is, the relocation cannot possibly be made
991 // dynamic).
992 void
993 set_has_static_relocs()
994 { this->has_static_relocs_ = true; }
995
996 // Return whether we must not create a lazy-binding stub for this symbol.
997 bool
998 no_lazy_stub() const
999 { return this->no_lazy_stub_; }
1000
1001 // Set that we must not create a lazy-binding stub for this symbol.
1002 void
1003 set_no_lazy_stub()
1004 { this->no_lazy_stub_ = true; }
1005
1006 // Return the offset of the lazy-binding stub for this symbol from the start
1007 // of .MIPS.stubs section.
1008 unsigned int
1009 lazy_stub_offset() const
1010 { return this->lazy_stub_offset_; }
1011
1012 // Set the offset of the lazy-binding stub for this symbol from the start
1013 // of .MIPS.stubs section.
1014 void
1015 set_lazy_stub_offset(unsigned int offset)
1016 { this->lazy_stub_offset_ = offset; }
1017
1018 // Return whether there are any relocations for this symbol where
1019 // pointer equality matters.
1020 bool
1021 pointer_equality_needed() const
1022 { return this->pointer_equality_needed_; }
1023
1024 // Set that there are relocations for this symbol where pointer equality
1025 // matters.
1026 void
1027 set_pointer_equality_needed()
1028 { this->pointer_equality_needed_ = true; }
1029
1030 // Return global GOT area where this symbol in located.
1031 Global_got_area
1032 global_got_area() const
1033 { return this->global_got_area_; }
1034
1035 // Set global GOT area where this symbol in located.
1036 void
1037 set_global_got_area(Global_got_area global_got_area)
1038 { this->global_got_area_ = global_got_area; }
1039
1040 // Return the global GOT offset for this symbol. For multi-GOT links, this
1041 // returns the offset from the start of .got section to the first GOT entry
1042 // for the symbol. Note that in multi-GOT links the symbol can have entry
1043 // in more than one GOT.
1044 unsigned int
1045 global_gotoffset() const
1046 { return this->global_gotoffset_; }
1047
1048 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1049 // the symbol can have entry in more than one GOT. This method will set
1050 // the offset only if it is less than current offset.
1051 void
1052 set_global_gotoffset(unsigned int offset)
1053 {
1054 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1055 this->global_gotoffset_ = offset;
1056 }
1057
1058 // Return whether all GOT relocations for this symbol are for calls.
1059 bool
1060 got_only_for_calls() const
1061 { return this->got_only_for_calls_; }
1062
1063 // Set that there is a GOT relocation for this symbol that is not for call.
1064 void
1065 set_got_not_only_for_calls()
1066 { this->got_only_for_calls_ = false; }
1067
1068 // Return whether this is a PIC symbol.
1069 bool
1070 is_pic() const
1071 {
1072 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1073 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1074 == (elfcpp::STO_MIPS_PIC >> 2));
1075 }
1076
1077 // Set the flag in st_other field that marks this symbol as PIC.
1078 void
1079 set_pic()
1080 {
1081 if (this->is_mips16())
1082 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1083 this->set_nonvis((this->nonvis()
1084 & ~((elfcpp::STO_MIPS16 >> 2)
1085 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1086 | (elfcpp::STO_MIPS_PIC >> 2));
1087 else
1088 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1089 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1090 | (elfcpp::STO_MIPS_PIC >> 2));
1091 }
1092
1093 // Set the flag in st_other field that marks this symbol as PLT.
1094 void
1095 set_mips_plt()
1096 {
1097 if (this->is_mips16())
1098 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1099 this->set_nonvis((this->nonvis()
1100 & ((elfcpp::STO_MIPS16 >> 2)
1101 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1102 | (elfcpp::STO_MIPS_PLT >> 2));
1103
1104 else
1105 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1106 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1107 | (elfcpp::STO_MIPS_PLT >> 2));
1108 }
1109
1110 // Downcast a base pointer to a Mips_symbol pointer.
1111 static Mips_symbol<size>*
1112 as_mips_sym(Symbol* sym)
1113 { return static_cast<Mips_symbol<size>*>(sym); }
1114
1115 // Downcast a base pointer to a Mips_symbol pointer.
1116 static const Mips_symbol<size>*
1117 as_mips_sym(const Symbol* sym)
1118 { return static_cast<const Mips_symbol<size>*>(sym); }
1119
1120 // Return whether the symbol has lazy-binding stub.
1121 bool
1122 has_lazy_stub() const
1123 { return this->has_lazy_stub_; }
1124
1125 // Set whether the symbol has lazy-binding stub.
1126 void
1127 set_has_lazy_stub(bool has_lazy_stub)
1128 { this->has_lazy_stub_ = has_lazy_stub; }
1129
1130 // Return whether the symbol needs a standard PLT entry.
1131 bool
1132 needs_mips_plt() const
1133 { return this->needs_mips_plt_; }
1134
1135 // Set whether the symbol needs a standard PLT entry.
1136 void
1137 set_needs_mips_plt(bool needs_mips_plt)
1138 { this->needs_mips_plt_ = needs_mips_plt; }
1139
1140 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1141 // entry.
1142 bool
1143 needs_comp_plt() const
1144 { return this->needs_comp_plt_; }
1145
1146 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1147 void
1148 set_needs_comp_plt(bool needs_comp_plt)
1149 { this->needs_comp_plt_ = needs_comp_plt; }
1150
1151 // Return standard PLT entry offset, or -1 if none.
1152 unsigned int
1153 mips_plt_offset() const
1154 { return this->mips_plt_offset_; }
1155
1156 // Set standard PLT entry offset.
1157 void
1158 set_mips_plt_offset(unsigned int mips_plt_offset)
1159 { this->mips_plt_offset_ = mips_plt_offset; }
1160
1161 // Return whether the symbol has standard PLT entry.
1162 bool
1163 has_mips_plt_offset() const
1164 { return this->mips_plt_offset_ != -1U; }
1165
1166 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1167 unsigned int
1168 comp_plt_offset() const
1169 { return this->comp_plt_offset_; }
1170
1171 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1172 void
1173 set_comp_plt_offset(unsigned int comp_plt_offset)
1174 { this->comp_plt_offset_ = comp_plt_offset; }
1175
1176 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1177 bool
1178 has_comp_plt_offset() const
1179 { return this->comp_plt_offset_ != -1U; }
1180
1181 // Return MIPS16 fn stub for a symbol.
1182 template<bool big_endian>
1183 Mips16_stub_section<size, big_endian>*
1184 get_mips16_fn_stub() const
1185 {
1186 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1187 }
1188
1189 // Set MIPS16 fn stub for a symbol.
1190 void
1191 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1192 { this->mips16_fn_stub_ = stub; }
1193
1194 // Return whether symbol has MIPS16 fn stub.
1195 bool
1196 has_mips16_fn_stub() const
1197 { return this->mips16_fn_stub_ != NULL; }
1198
1199 // Return MIPS16 call stub for a symbol.
1200 template<bool big_endian>
1201 Mips16_stub_section<size, big_endian>*
1202 get_mips16_call_stub() const
1203 {
1204 return static_cast<Mips16_stub_section<size, big_endian>*>(
1205 mips16_call_stub_);
1206 }
1207
1208 // Set MIPS16 call stub for a symbol.
1209 void
1210 set_mips16_call_stub(Mips16_stub_section_base* stub)
1211 { this->mips16_call_stub_ = stub; }
1212
1213 // Return whether symbol has MIPS16 call stub.
1214 bool
1215 has_mips16_call_stub() const
1216 { return this->mips16_call_stub_ != NULL; }
1217
1218 // Return MIPS16 call_fp stub for a symbol.
1219 template<bool big_endian>
1220 Mips16_stub_section<size, big_endian>*
1221 get_mips16_call_fp_stub() const
1222 {
1223 return static_cast<Mips16_stub_section<size, big_endian>*>(
1224 mips16_call_fp_stub_);
1225 }
1226
1227 // Set MIPS16 call_fp stub for a symbol.
1228 void
1229 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1230 { this->mips16_call_fp_stub_ = stub; }
1231
1232 // Return whether symbol has MIPS16 call_fp stub.
1233 bool
1234 has_mips16_call_fp_stub() const
1235 { return this->mips16_call_fp_stub_ != NULL; }
1236
1237 bool
1238 get_applied_secondary_got_fixup() const
1239 { return applied_secondary_got_fixup_; }
1240
1241 void
1242 set_applied_secondary_got_fixup()
1243 { this->applied_secondary_got_fixup_ = true; }
1244
1245 private:
1246 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1247 // appears in any relocs other than a 16 bit call.
1248 bool need_fn_stub_;
1249
1250 // True if this symbol is referenced by branch relocations from
1251 // any non-PIC input file. This is used to determine whether an
1252 // la25 stub is required.
1253 bool has_nonpic_branches_;
1254
1255 // The offset of the la25 stub for this symbol from the start of the
1256 // la25 stub section.
1257 unsigned int la25_stub_offset_;
1258
1259 // True if there is a relocation against this symbol that must be
1260 // resolved by the static linker (that is, the relocation cannot
1261 // possibly be made dynamic).
1262 bool has_static_relocs_;
1263
1264 // Whether we must not create a lazy-binding stub for this symbol.
1265 // This is true if the symbol has relocations related to taking the
1266 // function's address.
1267 bool no_lazy_stub_;
1268
1269 // The offset of the lazy-binding stub for this symbol from the start of
1270 // .MIPS.stubs section.
1271 unsigned int lazy_stub_offset_;
1272
1273 // True if there are any relocations for this symbol where pointer equality
1274 // matters.
1275 bool pointer_equality_needed_;
1276
1277 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1278 // in the global part of the GOT.
1279 Global_got_area global_got_area_;
1280
1281 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1282 // from the start of .got section to the first GOT entry for the symbol.
1283 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1284 unsigned int global_gotoffset_;
1285
1286 // Whether all GOT relocations for this symbol are for calls.
1287 bool got_only_for_calls_;
1288 // Whether the symbol has lazy-binding stub.
1289 bool has_lazy_stub_;
1290 // Whether the symbol needs a standard PLT entry.
1291 bool needs_mips_plt_;
1292 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1293 bool needs_comp_plt_;
1294 // Standard PLT entry offset, or -1 if none.
1295 unsigned int mips_plt_offset_;
1296 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1297 unsigned int comp_plt_offset_;
1298 // MIPS16 fn stub for a symbol.
1299 Mips16_stub_section_base* mips16_fn_stub_;
1300 // MIPS16 call stub for a symbol.
1301 Mips16_stub_section_base* mips16_call_stub_;
1302 // MIPS16 call_fp stub for a symbol.
1303 Mips16_stub_section_base* mips16_call_fp_stub_;
1304
1305 bool applied_secondary_got_fixup_;
1306 };
1307
1308 // Mips16_stub_section class.
1309
1310 // The mips16 compiler uses a couple of special sections to handle
1311 // floating point arguments.
1312
1313 // Section names that look like .mips16.fn.FNNAME contain stubs that
1314 // copy floating point arguments from the fp regs to the gp regs and
1315 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1316 // call should be redirected to the stub instead. If no 32 bit
1317 // function calls FNNAME, the stub should be discarded. We need to
1318 // consider any reference to the function, not just a call, because
1319 // if the address of the function is taken we will need the stub,
1320 // since the address might be passed to a 32 bit function.
1321
1322 // Section names that look like .mips16.call.FNNAME contain stubs
1323 // that copy floating point arguments from the gp regs to the fp
1324 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1325 // then any 16 bit function that calls FNNAME should be redirected
1326 // to the stub instead. If FNNAME is not a 32 bit function, the
1327 // stub should be discarded.
1328
1329 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1330 // which call FNNAME and then copy the return value from the fp regs
1331 // to the gp regs. These stubs store the return address in $18 while
1332 // calling FNNAME; any function which might call one of these stubs
1333 // must arrange to save $18 around the call. (This case is not
1334 // needed for 32 bit functions that call 16 bit functions, because
1335 // 16 bit functions always return floating point values in both
1336 // $f0/$f1 and $2/$3.)
1337
1338 // Note that in all cases FNNAME might be defined statically.
1339 // Therefore, FNNAME is not used literally. Instead, the relocation
1340 // information will indicate which symbol the section is for.
1341
1342 // We record any stubs that we find in the symbol table.
1343
1344 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1345
1346 class Mips16_stub_section_base { };
1347
1348 template<int size, bool big_endian>
1349 class Mips16_stub_section : public Mips16_stub_section_base
1350 {
1351 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1352
1353 public:
1354 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1355 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1356 found_r_mips_none_(false)
1357 {
1358 gold_assert(object->is_mips16_fn_stub_section(shndx)
1359 || object->is_mips16_call_stub_section(shndx)
1360 || object->is_mips16_call_fp_stub_section(shndx));
1361 }
1362
1363 // Return the object of this stub section.
1364 Mips_relobj<size, big_endian>*
1365 object() const
1366 { return this->object_; }
1367
1368 // Return the size of a section.
1369 uint64_t
1370 section_size() const
1371 { return this->object_->section_size(this->shndx_); }
1372
1373 // Return section index of this stub section.
1374 unsigned int
1375 shndx() const
1376 { return this->shndx_; }
1377
1378 // Return symbol index, if stub is for a local function.
1379 unsigned int
1380 r_sym() const
1381 { return this->r_sym_; }
1382
1383 // Return symbol, if stub is for a global function.
1384 Mips_symbol<size>*
1385 gsym() const
1386 { return this->gsym_; }
1387
1388 // Return whether stub is for a local function.
1389 bool
1390 is_for_local_function() const
1391 { return this->gsym_ == NULL; }
1392
1393 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1394 // is found in the stub section. Try to find stub target.
1395 void
1396 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1397 {
1398 // To find target symbol for this stub, trust the first R_MIPS_NONE
1399 // relocation, if any. Otherwise trust the first relocation, whatever
1400 // its kind.
1401 if (this->found_r_mips_none_)
1402 return;
1403 if (r_type == elfcpp::R_MIPS_NONE)
1404 {
1405 this->r_sym_ = r_sym;
1406 this->gsym_ = NULL;
1407 this->found_r_mips_none_ = true;
1408 }
1409 else if (!is_target_found())
1410 this->r_sym_ = r_sym;
1411 }
1412
1413 // This method is called when a new relocation R_TYPE for global symbol GSYM
1414 // is found in the stub section. Try to find stub target.
1415 void
1416 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1417 {
1418 // To find target symbol for this stub, trust the first R_MIPS_NONE
1419 // relocation, if any. Otherwise trust the first relocation, whatever
1420 // its kind.
1421 if (this->found_r_mips_none_)
1422 return;
1423 if (r_type == elfcpp::R_MIPS_NONE)
1424 {
1425 this->gsym_ = gsym;
1426 this->r_sym_ = 0;
1427 this->found_r_mips_none_ = true;
1428 }
1429 else if (!is_target_found())
1430 this->gsym_ = gsym;
1431 }
1432
1433 // Return whether we found the stub target.
1434 bool
1435 is_target_found() const
1436 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1437
1438 // Return whether this is a fn stub.
1439 bool
1440 is_fn_stub() const
1441 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1442
1443 // Return whether this is a call stub.
1444 bool
1445 is_call_stub() const
1446 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1447
1448 // Return whether this is a call_fp stub.
1449 bool
1450 is_call_fp_stub() const
1451 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1452
1453 // Return the output address.
1454 Mips_address
1455 output_address() const
1456 {
1457 return (this->object_->output_section(this->shndx_)->address()
1458 + this->object_->output_section_offset(this->shndx_));
1459 }
1460
1461 private:
1462 // The object of this stub section.
1463 Mips_relobj<size, big_endian>* object_;
1464 // The section index of this stub section.
1465 unsigned int shndx_;
1466 // The symbol index, if stub is for a local function.
1467 unsigned int r_sym_;
1468 // The symbol, if stub is for a global function.
1469 Mips_symbol<size>* gsym_;
1470 // True if we found R_MIPS_NONE relocation in this stub.
1471 bool found_r_mips_none_;
1472 };
1473
1474 // Mips_relobj class.
1475
1476 template<int size, bool big_endian>
1477 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1478 {
1479 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1480 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1481 Mips16_stubs_int_map;
1482 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1483
1484 public:
1485 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1486 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1487 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1488 processor_specific_flags_(0), local_symbol_is_mips16_(),
1489 local_symbol_is_micromips_(), mips16_stub_sections_(),
1490 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1491 local_mips16_call_stubs_(), gp_(0), got_info_(NULL),
1492 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1493 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), gprmask_(0),
1494 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1495 {
1496 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1497 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1498 this->is_n64_ = elfcpp::abi_64(ehdr.get_e_ident()[elfcpp::EI_CLASS]);
1499 }
1500
1501 ~Mips_relobj()
1502 { }
1503
1504 // Downcast a base pointer to a Mips_relobj pointer. This is
1505 // not type-safe but we only use Mips_relobj not the base class.
1506 static Mips_relobj<size, big_endian>*
1507 as_mips_relobj(Relobj* relobj)
1508 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1509
1510 // Downcast a base pointer to a Mips_relobj pointer. This is
1511 // not type-safe but we only use Mips_relobj not the base class.
1512 static const Mips_relobj<size, big_endian>*
1513 as_mips_relobj(const Relobj* relobj)
1514 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1515
1516 // Processor-specific flags in ELF file header. This is valid only after
1517 // reading symbols.
1518 elfcpp::Elf_Word
1519 processor_specific_flags() const
1520 { return this->processor_specific_flags_; }
1521
1522 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1523 // index. This is only valid after do_count_local_symbol is called.
1524 bool
1525 local_symbol_is_mips16(unsigned int r_sym) const
1526 {
1527 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1528 return this->local_symbol_is_mips16_[r_sym];
1529 }
1530
1531 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1532 // index. This is only valid after do_count_local_symbol is called.
1533 bool
1534 local_symbol_is_micromips(unsigned int r_sym) const
1535 {
1536 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1537 return this->local_symbol_is_micromips_[r_sym];
1538 }
1539
1540 // Get or create MIPS16 stub section.
1541 Mips16_stub_section<size, big_endian>*
1542 get_mips16_stub_section(unsigned int shndx)
1543 {
1544 typename Mips16_stubs_int_map::const_iterator it =
1545 this->mips16_stub_sections_.find(shndx);
1546 if (it != this->mips16_stub_sections_.end())
1547 return (*it).second;
1548
1549 Mips16_stub_section<size, big_endian>* stub_section =
1550 new Mips16_stub_section<size, big_endian>(this, shndx);
1551 this->mips16_stub_sections_.insert(
1552 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1553 stub_section->shndx(), stub_section));
1554 return stub_section;
1555 }
1556
1557 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1558 // object doesn't have fn stub for R_SYM.
1559 Mips16_stub_section<size, big_endian>*
1560 get_local_mips16_fn_stub(unsigned int r_sym) const
1561 {
1562 typename Mips16_stubs_int_map::const_iterator it =
1563 this->local_mips16_fn_stubs_.find(r_sym);
1564 if (it != this->local_mips16_fn_stubs_.end())
1565 return (*it).second;
1566 return NULL;
1567 }
1568
1569 // Record that this object has MIPS16 fn stub for local symbol. This method
1570 // is only called if we decided not to discard the stub.
1571 void
1572 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1573 {
1574 gold_assert(stub->is_for_local_function());
1575 unsigned int r_sym = stub->r_sym();
1576 this->local_mips16_fn_stubs_.insert(
1577 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1578 r_sym, stub));
1579 }
1580
1581 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1582 // object doesn't have call stub for R_SYM.
1583 Mips16_stub_section<size, big_endian>*
1584 get_local_mips16_call_stub(unsigned int r_sym) const
1585 {
1586 typename Mips16_stubs_int_map::const_iterator it =
1587 this->local_mips16_call_stubs_.find(r_sym);
1588 if (it != this->local_mips16_call_stubs_.end())
1589 return (*it).second;
1590 return NULL;
1591 }
1592
1593 // Record that this object has MIPS16 call stub for local symbol. This method
1594 // is only called if we decided not to discard the stub.
1595 void
1596 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1597 {
1598 gold_assert(stub->is_for_local_function());
1599 unsigned int r_sym = stub->r_sym();
1600 this->local_mips16_call_stubs_.insert(
1601 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1602 r_sym, stub));
1603 }
1604
1605 // Record that we found "non 16-bit" call relocation against local symbol
1606 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1607 // is one.
1608 void
1609 add_local_non_16bit_call(unsigned int symndx)
1610 { this->local_non_16bit_calls_.insert(symndx); }
1611
1612 // Return true if there is any "non 16-bit" call relocation against local
1613 // symbol SYMNDX in this object.
1614 bool
1615 has_local_non_16bit_call_relocs(unsigned int symndx)
1616 {
1617 return (this->local_non_16bit_calls_.find(symndx)
1618 != this->local_non_16bit_calls_.end());
1619 }
1620
1621 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1622 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1623 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1624 void
1625 add_local_16bit_call(unsigned int symndx)
1626 { this->local_16bit_calls_.insert(symndx); }
1627
1628 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1629 // symbol SYMNDX in this object.
1630 bool
1631 has_local_16bit_call_relocs(unsigned int symndx)
1632 {
1633 return (this->local_16bit_calls_.find(symndx)
1634 != this->local_16bit_calls_.end());
1635 }
1636
1637 // Get gp value that was used to create this object.
1638 Mips_address
1639 gp_value() const
1640 { return this->gp_; }
1641
1642 // Return whether the object is a PIC object.
1643 bool
1644 is_pic() const
1645 { return this->is_pic_; }
1646
1647 // Return whether the object uses N32 ABI.
1648 bool
1649 is_n32() const
1650 { return this->is_n32_; }
1651
1652 // Return whether the object uses N64 ABI.
1653 bool
1654 is_n64() const
1655 { return this->is_n64_; }
1656
1657 // Return whether the object uses NewABI conventions.
1658 bool
1659 is_newabi() const
1660 { return this->is_n32_ || this->is_n64_; }
1661
1662 // Return Mips_got_info for this object.
1663 Mips_got_info<size, big_endian>*
1664 get_got_info() const
1665 { return this->got_info_; }
1666
1667 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1668 Mips_got_info<size, big_endian>*
1669 get_or_create_got_info()
1670 {
1671 if (!this->got_info_)
1672 this->got_info_ = new Mips_got_info<size, big_endian>();
1673 return this->got_info_;
1674 }
1675
1676 // Set Mips_got_info for this object.
1677 void
1678 set_got_info(Mips_got_info<size, big_endian>* got_info)
1679 { this->got_info_ = got_info; }
1680
1681 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1682 // after do_read_symbols is called.
1683 bool
1684 is_mips16_stub_section(unsigned int shndx)
1685 {
1686 return (is_mips16_fn_stub_section(shndx)
1687 || is_mips16_call_stub_section(shndx)
1688 || is_mips16_call_fp_stub_section(shndx));
1689 }
1690
1691 // Return TRUE if relocations in section SHNDX can refer directly to a
1692 // MIPS16 function rather than to a hard-float stub. This is only valid
1693 // after do_read_symbols is called.
1694 bool
1695 section_allows_mips16_refs(unsigned int shndx)
1696 {
1697 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1698 }
1699
1700 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1701 // after do_read_symbols is called.
1702 bool
1703 is_mips16_fn_stub_section(unsigned int shndx)
1704 {
1705 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1706 return this->section_is_mips16_fn_stub_[shndx];
1707 }
1708
1709 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1710 // after do_read_symbols is called.
1711 bool
1712 is_mips16_call_stub_section(unsigned int shndx)
1713 {
1714 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1715 return this->section_is_mips16_call_stub_[shndx];
1716 }
1717
1718 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1719 // valid after do_read_symbols is called.
1720 bool
1721 is_mips16_call_fp_stub_section(unsigned int shndx)
1722 {
1723 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1724 return this->section_is_mips16_call_fp_stub_[shndx];
1725 }
1726
1727 // Discard MIPS16 stub secions that are not needed.
1728 void
1729 discard_mips16_stub_sections(Symbol_table* symtab);
1730
1731 // Return gprmask from the .reginfo section of this object.
1732 Valtype
1733 gprmask() const
1734 { return this->gprmask_; }
1735
1736 // Return cprmask1 from the .reginfo section of this object.
1737 Valtype
1738 cprmask1() const
1739 { return this->cprmask1_; }
1740
1741 // Return cprmask2 from the .reginfo section of this object.
1742 Valtype
1743 cprmask2() const
1744 { return this->cprmask2_; }
1745
1746 // Return cprmask3 from the .reginfo section of this object.
1747 Valtype
1748 cprmask3() const
1749 { return this->cprmask3_; }
1750
1751 // Return cprmask4 from the .reginfo section of this object.
1752 Valtype
1753 cprmask4() const
1754 { return this->cprmask4_; }
1755
1756 protected:
1757 // Count the local symbols.
1758 void
1759 do_count_local_symbols(Stringpool_template<char>*,
1760 Stringpool_template<char>*);
1761
1762 // Read the symbol information.
1763 void
1764 do_read_symbols(Read_symbols_data* sd);
1765
1766 private:
1767 // processor-specific flags in ELF file header.
1768 elfcpp::Elf_Word processor_specific_flags_;
1769
1770 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1771 // This is only valid after do_count_local_symbol is called.
1772 std::vector<bool> local_symbol_is_mips16_;
1773
1774 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1775 // This is only valid after do_count_local_symbol is called.
1776 std::vector<bool> local_symbol_is_micromips_;
1777
1778 // Map from section index to the MIPS16 stub for that section. This contains
1779 // all stubs found in this object.
1780 Mips16_stubs_int_map mips16_stub_sections_;
1781
1782 // Local symbols that have "non 16-bit" call relocation. This relocation
1783 // would need to refer to a MIPS16 fn stub, if there is one.
1784 std::set<unsigned int> local_non_16bit_calls_;
1785
1786 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1787 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1788 // relocation that refers to the stub symbol.
1789 std::set<unsigned int> local_16bit_calls_;
1790
1791 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1792 // This contains only the stubs that we decided not to discard.
1793 Mips16_stubs_int_map local_mips16_fn_stubs_;
1794
1795 // Map from local symbol index to the MIPS16 call stub for that symbol.
1796 // This contains only the stubs that we decided not to discard.
1797 Mips16_stubs_int_map local_mips16_call_stubs_;
1798
1799 // gp value that was used to create this object.
1800 Mips_address gp_;
1801 // Whether the object is a PIC object.
1802 bool is_pic_ : 1;
1803 // Whether the object uses N32 ABI.
1804 bool is_n32_ : 1;
1805 // Whether the object uses N64 ABI.
1806 bool is_n64_ : 1;
1807 // The Mips_got_info for this object.
1808 Mips_got_info<size, big_endian>* got_info_;
1809
1810 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1811 // This is only valid after do_read_symbols is called.
1812 std::vector<bool> section_is_mips16_fn_stub_;
1813
1814 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1815 // This is only valid after do_read_symbols is called.
1816 std::vector<bool> section_is_mips16_call_stub_;
1817
1818 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1819 // This is only valid after do_read_symbols is called.
1820 std::vector<bool> section_is_mips16_call_fp_stub_;
1821
1822 // .pdr section index.
1823 unsigned int pdr_shndx_;
1824
1825 // gprmask from the .reginfo section of this object.
1826 Valtype gprmask_;
1827 // cprmask1 from the .reginfo section of this object.
1828 Valtype cprmask1_;
1829 // cprmask2 from the .reginfo section of this object.
1830 Valtype cprmask2_;
1831 // cprmask3 from the .reginfo section of this object.
1832 Valtype cprmask3_;
1833 // cprmask4 from the .reginfo section of this object.
1834 Valtype cprmask4_;
1835 };
1836
1837 // Mips_output_data_got class.
1838
1839 template<int size, bool big_endian>
1840 class Mips_output_data_got : public Output_data_got<size, big_endian>
1841 {
1842 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1843 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1844 Reloc_section;
1845 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1846
1847 public:
1848 Mips_output_data_got(Target_mips<size, big_endian>* target,
1849 Symbol_table* symtab, Layout* layout)
1850 : Output_data_got<size, big_endian>(), target_(target),
1851 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1852 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1853 secondary_got_relocs_()
1854 {
1855 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1856 this->set_addralign(16);
1857 }
1858
1859 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1860 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1861 void
1862 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1863 unsigned int symndx, Mips_address addend,
1864 unsigned int r_type, unsigned int shndx)
1865 {
1866 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1867 r_type, shndx);
1868 }
1869
1870 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1871 // in OBJECT. FOR_CALL is true if the caller is only interested in
1872 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
1873 // relocation.
1874 void
1875 record_global_got_symbol(Mips_symbol<size>* mips_sym,
1876 Mips_relobj<size, big_endian>* object,
1877 unsigned int r_type, bool dyn_reloc, bool for_call)
1878 {
1879 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
1880 dyn_reloc, for_call);
1881 }
1882
1883 // Record that OBJECT has a page relocation against symbol SYMNDX and
1884 // that ADDEND is the addend for that relocation.
1885 void
1886 record_got_page_entry(Mips_relobj<size, big_endian>* object,
1887 unsigned int symndx, int addend)
1888 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
1889
1890 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1891 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1892 // applied in a static link.
1893 void
1894 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1895 Mips_symbol<size>* gsym)
1896 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1897
1898 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1899 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1900 // relocation that needs to be applied in a static link.
1901 void
1902 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1903 Sized_relobj_file<size, big_endian>* relobj,
1904 unsigned int index)
1905 {
1906 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1907 index));
1908 }
1909
1910 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
1911 // secondary GOT at OFFSET.
1912 void
1913 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
1914 Mips_symbol<size>* gsym)
1915 {
1916 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
1917 r_type, gsym));
1918 }
1919
1920 // Update GOT entry at OFFSET with VALUE.
1921 void
1922 update_got_entry(unsigned int offset, Mips_address value)
1923 {
1924 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
1925 }
1926
1927 // Return the number of entries in local part of the GOT. This includes
1928 // local entries, page entries and 2 reserved entries.
1929 unsigned int
1930 get_local_gotno() const
1931 {
1932 if (!this->multi_got())
1933 {
1934 return (2 + this->master_got_info_->local_gotno()
1935 + this->master_got_info_->page_gotno());
1936 }
1937 else
1938 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
1939 }
1940
1941 // Return dynamic symbol table index of the first symbol with global GOT
1942 // entry.
1943 unsigned int
1944 first_global_got_dynsym_index() const
1945 { return this->first_global_got_dynsym_index_; }
1946
1947 // Set dynamic symbol table index of the first symbol with global GOT entry.
1948 void
1949 set_first_global_got_dynsym_index(unsigned int index)
1950 { this->first_global_got_dynsym_index_ = index; }
1951
1952 // Lay out the GOT. Add local, global and TLS entries. If GOT is
1953 // larger than 64K, create multi-GOT.
1954 void
1955 lay_out_got(Layout* layout, Symbol_table* symtab,
1956 const Input_objects* input_objects);
1957
1958 // Create multi-GOT. For every GOT, add local, global and TLS entries.
1959 void
1960 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
1961
1962 // Attempt to merge GOTs of different input objects.
1963 void
1964 merge_gots(const Input_objects* input_objects);
1965
1966 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
1967 // this would lead to overflow, true if they were merged successfully.
1968 bool
1969 merge_got_with(Mips_got_info<size, big_endian>* from,
1970 Mips_relobj<size, big_endian>* object,
1971 Mips_got_info<size, big_endian>* to);
1972
1973 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
1974 // use OBJECT's GOT.
1975 unsigned int
1976 get_got_page_offset(Mips_address value,
1977 const Mips_relobj<size, big_endian>* object)
1978 {
1979 Mips_got_info<size, big_endian>* g = (!this->multi_got()
1980 ? this->master_got_info_
1981 : object->get_got_info());
1982 gold_assert(g != NULL);
1983 return g->get_got_page_offset(value, this);
1984 }
1985
1986 // Return the GOT offset of type GOT_TYPE of the global symbol
1987 // GSYM. For multi-GOT links, use OBJECT's GOT.
1988 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
1989 Mips_relobj<size, big_endian>* object) const
1990 {
1991 if (!this->multi_got())
1992 return gsym->got_offset(got_type);
1993 else
1994 {
1995 Mips_got_info<size, big_endian>* g = object->get_got_info();
1996 gold_assert(g != NULL);
1997 return gsym->got_offset(g->multigot_got_type(got_type));
1998 }
1999 }
2000
2001 // Return the GOT offset of type GOT_TYPE of the local symbol
2002 // SYMNDX.
2003 unsigned int
2004 got_offset(unsigned int symndx, unsigned int got_type,
2005 Sized_relobj_file<size, big_endian>* object) const
2006 { return object->local_got_offset(symndx, got_type); }
2007
2008 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2009 unsigned int
2010 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2011 {
2012 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2013 ? this->master_got_info_
2014 : object->get_got_info());
2015 gold_assert(g != NULL);
2016 return g->tls_ldm_offset();
2017 }
2018
2019 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2020 void
2021 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2022 Mips_relobj<size, big_endian>* object)
2023 {
2024 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2025 ? this->master_got_info_
2026 : object->get_got_info());
2027 gold_assert(g != NULL);
2028 g->set_tls_ldm_offset(tls_ldm_offset);
2029 }
2030
2031 // Return true for multi-GOT links.
2032 bool
2033 multi_got() const
2034 { return this->primary_got_ != NULL; }
2035
2036 // Return the offset of OBJECT's GOT from the start of .got section.
2037 unsigned int
2038 get_got_offset(const Mips_relobj<size, big_endian>* object)
2039 {
2040 if (!this->multi_got())
2041 return 0;
2042 else
2043 {
2044 Mips_got_info<size, big_endian>* g = object->get_got_info();
2045 return g != NULL ? g->offset() : 0;
2046 }
2047 }
2048
2049 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2050 void
2051 add_reloc_only_entries()
2052 { this->master_got_info_->add_reloc_only_entries(this); }
2053
2054 // Return offset of the primary GOT's entry for global symbol.
2055 unsigned int
2056 get_primary_got_offset(const Mips_symbol<size>* sym) const
2057 {
2058 gold_assert(sym->global_got_area() != GGA_NONE);
2059 return (this->get_local_gotno() + sym->dynsym_index()
2060 - this->first_global_got_dynsym_index()) * size/8;
2061 }
2062
2063 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2064 // Input argument GOT_OFFSET is always global offset from the start of
2065 // .got section, for both single and multi-GOT links.
2066 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2067 // links, the return value is object_got_offset - 0x7FF0, where
2068 // object_got_offset is offset in the OBJECT's GOT.
2069 int
2070 gp_offset(unsigned int got_offset,
2071 const Mips_relobj<size, big_endian>* object) const
2072 {
2073 return (this->address() + got_offset
2074 - this->target_->adjusted_gp_value(object));
2075 }
2076
2077 protected:
2078 // Write out the GOT table.
2079 void
2080 do_write(Output_file*);
2081
2082 private:
2083
2084 // This class represent dynamic relocations that need to be applied by
2085 // gold because we are using TLS relocations in a static link.
2086 class Static_reloc
2087 {
2088 public:
2089 Static_reloc(unsigned int got_offset, unsigned int r_type,
2090 Mips_symbol<size>* gsym)
2091 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2092 { this->u_.global.symbol = gsym; }
2093
2094 Static_reloc(unsigned int got_offset, unsigned int r_type,
2095 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2096 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2097 {
2098 this->u_.local.relobj = relobj;
2099 this->u_.local.index = index;
2100 }
2101
2102 // Return the GOT offset.
2103 unsigned int
2104 got_offset() const
2105 { return this->got_offset_; }
2106
2107 // Relocation type.
2108 unsigned int
2109 r_type() const
2110 { return this->r_type_; }
2111
2112 // Whether the symbol is global or not.
2113 bool
2114 symbol_is_global() const
2115 { return this->symbol_is_global_; }
2116
2117 // For a relocation against a global symbol, the global symbol.
2118 Mips_symbol<size>*
2119 symbol() const
2120 {
2121 gold_assert(this->symbol_is_global_);
2122 return this->u_.global.symbol;
2123 }
2124
2125 // For a relocation against a local symbol, the defining object.
2126 Sized_relobj_file<size, big_endian>*
2127 relobj() const
2128 {
2129 gold_assert(!this->symbol_is_global_);
2130 return this->u_.local.relobj;
2131 }
2132
2133 // For a relocation against a local symbol, the local symbol index.
2134 unsigned int
2135 index() const
2136 {
2137 gold_assert(!this->symbol_is_global_);
2138 return this->u_.local.index;
2139 }
2140
2141 private:
2142 // GOT offset of the entry to which this relocation is applied.
2143 unsigned int got_offset_;
2144 // Type of relocation.
2145 unsigned int r_type_;
2146 // Whether this relocation is against a global symbol.
2147 bool symbol_is_global_;
2148 // A global or local symbol.
2149 union
2150 {
2151 struct
2152 {
2153 // For a global symbol, the symbol itself.
2154 Mips_symbol<size>* symbol;
2155 } global;
2156 struct
2157 {
2158 // For a local symbol, the object defining object.
2159 Sized_relobj_file<size, big_endian>* relobj;
2160 // For a local symbol, the symbol index.
2161 unsigned int index;
2162 } local;
2163 } u_;
2164 };
2165
2166 // The target.
2167 Target_mips<size, big_endian>* target_;
2168 // The symbol table.
2169 Symbol_table* symbol_table_;
2170 // The layout.
2171 Layout* layout_;
2172 // Static relocs to be applied to the GOT.
2173 std::vector<Static_reloc> static_relocs_;
2174 // .got section view.
2175 unsigned char* got_view_;
2176 // The dynamic symbol table index of the first symbol with global GOT entry.
2177 unsigned int first_global_got_dynsym_index_;
2178 // The master GOT information.
2179 Mips_got_info<size, big_endian>* master_got_info_;
2180 // The primary GOT information.
2181 Mips_got_info<size, big_endian>* primary_got_;
2182 // Secondary GOT fixups.
2183 std::vector<Static_reloc> secondary_got_relocs_;
2184 };
2185
2186 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2187 // two ways of creating these interfaces. The first is to add:
2188 //
2189 // lui $25,%hi(func)
2190 // j func
2191 // addiu $25,$25,%lo(func)
2192 //
2193 // to a separate trampoline section. The second is to add:
2194 //
2195 // lui $25,%hi(func)
2196 // addiu $25,$25,%lo(func)
2197 //
2198 // immediately before a PIC function "func", but only if a function is at the
2199 // beginning of the section, and the section is not too heavily aligned (i.e we
2200 // would need to add no more than 2 nops before the stub.)
2201 //
2202 // We only create stubs of the first type.
2203
2204 template<int size, bool big_endian>
2205 class Mips_output_data_la25_stub : public Output_section_data
2206 {
2207 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2208
2209 public:
2210 Mips_output_data_la25_stub()
2211 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2212 { }
2213
2214 // Create LA25 stub for a symbol.
2215 void
2216 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2217 Mips_symbol<size>* gsym);
2218
2219 // Return output address of a stub.
2220 Mips_address
2221 stub_address(const Mips_symbol<size>* sym) const
2222 {
2223 gold_assert(sym->has_la25_stub());
2224 return this->address() + sym->la25_stub_offset();
2225 }
2226
2227 protected:
2228 void
2229 do_adjust_output_section(Output_section* os)
2230 { os->set_entsize(0); }
2231
2232 private:
2233 // Template for standard LA25 stub.
2234 static const uint32_t la25_stub_entry[];
2235 // Template for microMIPS LA25 stub.
2236 static const uint32_t la25_stub_micromips_entry[];
2237
2238 // Set the final size.
2239 void
2240 set_final_data_size()
2241 { this->set_data_size(this->symbols_.size() * 16); }
2242
2243 // Create a symbol for SYM stub's value and size, to help make the
2244 // disassembly easier to read.
2245 void
2246 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2247 Target_mips<size, big_endian>* target, uint64_t symsize);
2248
2249 // Write out the LA25 stub section.
2250 void
2251 do_write(Output_file*);
2252
2253 // Symbols that have LA25 stubs.
2254 Unordered_set<Mips_symbol<size>*> symbols_;
2255 };
2256
2257 // A class to handle the PLT data.
2258
2259 template<int size, bool big_endian>
2260 class Mips_output_data_plt : public Output_section_data
2261 {
2262 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2263 typedef Output_data_reloc<elfcpp::SHT_REL, true,
2264 size, big_endian> Reloc_section;
2265
2266 public:
2267 // Create the PLT section. The ordinary .got section is an argument,
2268 // since we need to refer to the start.
2269 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2270 Target_mips<size, big_endian>* target)
2271 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2272 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2273 target_(target)
2274 {
2275 this->rel_ = new Reloc_section(false);
2276 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2277 elfcpp::SHF_ALLOC, this->rel_,
2278 ORDER_DYNAMIC_PLT_RELOCS, false);
2279 }
2280
2281 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2282 void
2283 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2284
2285 // Return the .rel.plt section data.
2286 const Reloc_section*
2287 rel_plt() const
2288 { return this->rel_; }
2289
2290 // Return the number of PLT entries.
2291 unsigned int
2292 entry_count() const
2293 { return this->symbols_.size(); }
2294
2295 // Return the offset of the first non-reserved PLT entry.
2296 unsigned int
2297 first_plt_entry_offset() const
2298 { return sizeof(plt0_entry_o32); }
2299
2300 // Return the size of a PLT entry.
2301 unsigned int
2302 plt_entry_size() const
2303 { return sizeof(plt_entry); }
2304
2305 // Set final PLT offsets. For each symbol, determine whether standard or
2306 // compressed (MIPS16 or microMIPS) PLT entry is used.
2307 void
2308 set_plt_offsets();
2309
2310 // Return the offset of the first standard PLT entry.
2311 unsigned int
2312 first_mips_plt_offset() const
2313 { return this->plt_header_size_; }
2314
2315 // Return the offset of the first compressed PLT entry.
2316 unsigned int
2317 first_comp_plt_offset() const
2318 { return this->plt_header_size_ + this->plt_mips_offset_; }
2319
2320 // Return whether there are any standard PLT entries.
2321 bool
2322 has_standard_entries() const
2323 { return this->plt_mips_offset_ > 0; }
2324
2325 // Return the output address of standard PLT entry.
2326 Mips_address
2327 mips_entry_address(const Mips_symbol<size>* sym) const
2328 {
2329 gold_assert (sym->has_mips_plt_offset());
2330 return (this->address() + this->first_mips_plt_offset()
2331 + sym->mips_plt_offset());
2332 }
2333
2334 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2335 Mips_address
2336 comp_entry_address(const Mips_symbol<size>* sym) const
2337 {
2338 gold_assert (sym->has_comp_plt_offset());
2339 return (this->address() + this->first_comp_plt_offset()
2340 + sym->comp_plt_offset());
2341 }
2342
2343 protected:
2344 void
2345 do_adjust_output_section(Output_section* os)
2346 { os->set_entsize(0); }
2347
2348 // Write to a map file.
2349 void
2350 do_print_to_mapfile(Mapfile* mapfile) const
2351 { mapfile->print_output_data(this, _(".plt")); }
2352
2353 private:
2354 // Template for the first PLT entry.
2355 static const uint32_t plt0_entry_o32[];
2356 static const uint32_t plt0_entry_n32[];
2357 static const uint32_t plt0_entry_n64[];
2358 static const uint32_t plt0_entry_micromips_o32[];
2359 static const uint32_t plt0_entry_micromips32_o32[];
2360
2361 // Template for subsequent PLT entries.
2362 static const uint32_t plt_entry[];
2363 static const uint32_t plt_entry_mips16_o32[];
2364 static const uint32_t plt_entry_micromips_o32[];
2365 static const uint32_t plt_entry_micromips32_o32[];
2366
2367 // Set the final size.
2368 void
2369 set_final_data_size()
2370 {
2371 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2372 + this->plt_comp_offset_);
2373 }
2374
2375 // Write out the PLT data.
2376 void
2377 do_write(Output_file*);
2378
2379 // Return whether the plt header contains microMIPS code. For the sake of
2380 // cache alignment always use a standard header whenever any standard entries
2381 // are present even if microMIPS entries are present as well. This also lets
2382 // the microMIPS header rely on the value of $v0 only set by microMIPS
2383 // entries, for a small size reduction.
2384 bool
2385 is_plt_header_compressed() const
2386 {
2387 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2388 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2389 }
2390
2391 // Return the size of the PLT header.
2392 unsigned int
2393 get_plt_header_size() const
2394 {
2395 if (this->target_->is_output_n64())
2396 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2397 else if (this->target_->is_output_n32())
2398 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2399 else if (!this->is_plt_header_compressed())
2400 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2401 else if (this->target_->use_32bit_micromips_instructions())
2402 return (2 * sizeof(plt0_entry_micromips32_o32)
2403 / sizeof(plt0_entry_micromips32_o32[0]));
2404 else
2405 return (2 * sizeof(plt0_entry_micromips_o32)
2406 / sizeof(plt0_entry_micromips_o32[0]));
2407 }
2408
2409 // Return the PLT header entry.
2410 const uint32_t*
2411 get_plt_header_entry() const
2412 {
2413 if (this->target_->is_output_n64())
2414 return plt0_entry_n64;
2415 else if (this->target_->is_output_n32())
2416 return plt0_entry_n32;
2417 else if (!this->is_plt_header_compressed())
2418 return plt0_entry_o32;
2419 else if (this->target_->use_32bit_micromips_instructions())
2420 return plt0_entry_micromips32_o32;
2421 else
2422 return plt0_entry_micromips_o32;
2423 }
2424
2425 // Return the size of the standard PLT entry.
2426 unsigned int
2427 standard_plt_entry_size() const
2428 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2429
2430 // Return the size of the compressed PLT entry.
2431 unsigned int
2432 compressed_plt_entry_size() const
2433 {
2434 gold_assert(!this->target_->is_output_newabi());
2435
2436 if (!this->target_->is_output_micromips())
2437 return (2 * sizeof(plt_entry_mips16_o32)
2438 / sizeof(plt_entry_mips16_o32[0]));
2439 else if (this->target_->use_32bit_micromips_instructions())
2440 return (2 * sizeof(plt_entry_micromips32_o32)
2441 / sizeof(plt_entry_micromips32_o32[0]));
2442 else
2443 return (2 * sizeof(plt_entry_micromips_o32)
2444 / sizeof(plt_entry_micromips_o32[0]));
2445 }
2446
2447 // The reloc section.
2448 Reloc_section* rel_;
2449 // The .got.plt section.
2450 Output_data_space* got_plt_;
2451 // Symbols that have PLT entry.
2452 std::vector<Mips_symbol<size>*> symbols_;
2453 // The offset of the next standard PLT entry to create.
2454 unsigned int plt_mips_offset_;
2455 // The offset of the next compressed PLT entry to create.
2456 unsigned int plt_comp_offset_;
2457 // The size of the PLT header in bytes.
2458 unsigned int plt_header_size_;
2459 // The target.
2460 Target_mips<size, big_endian>* target_;
2461 };
2462
2463 // A class to handle the .MIPS.stubs data.
2464
2465 template<int size, bool big_endian>
2466 class Mips_output_data_mips_stubs : public Output_section_data
2467 {
2468 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2469
2470 public:
2471 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2472 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2473 stub_offsets_are_set_(false), target_(target)
2474 { }
2475
2476 // Create entry for a symbol.
2477 void
2478 make_entry(Mips_symbol<size>*);
2479
2480 // Remove entry for a symbol.
2481 void
2482 remove_entry(Mips_symbol<size>* gsym);
2483
2484 // Set stub offsets for symbols. This method expects that the number of
2485 // entries in dynamic symbol table is set.
2486 void
2487 set_lazy_stub_offsets();
2488
2489 void
2490 set_needs_dynsym_value();
2491
2492 // Set the number of entries in dynamic symbol table.
2493 void
2494 set_dynsym_count(unsigned int dynsym_count)
2495 { this->dynsym_count_ = dynsym_count; }
2496
2497 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2498 // count is greater than 0x10000. If the dynamic symbol count is less than
2499 // 0x10000, the stub will be 4 bytes smaller.
2500 // There's no disadvantage from using microMIPS code here, so for the sake of
2501 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2502 // output produced at all. This has a benefit of stubs being shorter by
2503 // 4 bytes each too, unless in the insn32 mode.
2504 unsigned int
2505 stub_max_size() const
2506 {
2507 if (!this->target_->is_output_micromips()
2508 || this->target_->use_32bit_micromips_instructions())
2509 return 20;
2510 else
2511 return 16;
2512 }
2513
2514 // Return the size of the stub. This method expects that the final dynsym
2515 // count is set.
2516 unsigned int
2517 stub_size() const
2518 {
2519 gold_assert(this->dynsym_count_ != -1U);
2520 if (this->dynsym_count_ > 0x10000)
2521 return this->stub_max_size();
2522 else
2523 return this->stub_max_size() - 4;
2524 }
2525
2526 // Return output address of a stub.
2527 Mips_address
2528 stub_address(const Mips_symbol<size>* sym) const
2529 {
2530 gold_assert(sym->has_lazy_stub());
2531 return this->address() + sym->lazy_stub_offset();
2532 }
2533
2534 protected:
2535 void
2536 do_adjust_output_section(Output_section* os)
2537 { os->set_entsize(0); }
2538
2539 // Write to a map file.
2540 void
2541 do_print_to_mapfile(Mapfile* mapfile) const
2542 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2543
2544 private:
2545 static const uint32_t lazy_stub_normal_1[];
2546 static const uint32_t lazy_stub_normal_1_n64[];
2547 static const uint32_t lazy_stub_normal_2[];
2548 static const uint32_t lazy_stub_normal_2_n64[];
2549 static const uint32_t lazy_stub_big[];
2550 static const uint32_t lazy_stub_big_n64[];
2551
2552 static const uint32_t lazy_stub_micromips_normal_1[];
2553 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2554 static const uint32_t lazy_stub_micromips_normal_2[];
2555 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2556 static const uint32_t lazy_stub_micromips_big[];
2557 static const uint32_t lazy_stub_micromips_big_n64[];
2558
2559 static const uint32_t lazy_stub_micromips32_normal_1[];
2560 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2561 static const uint32_t lazy_stub_micromips32_normal_2[];
2562 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2563 static const uint32_t lazy_stub_micromips32_big[];
2564 static const uint32_t lazy_stub_micromips32_big_n64[];
2565
2566 // Set the final size.
2567 void
2568 set_final_data_size()
2569 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2570
2571 // Write out the .MIPS.stubs data.
2572 void
2573 do_write(Output_file*);
2574
2575 // .MIPS.stubs symbols
2576 Unordered_set<Mips_symbol<size>*> symbols_;
2577 // Number of entries in dynamic symbol table.
2578 unsigned int dynsym_count_;
2579 // Whether the stub offsets are set.
2580 bool stub_offsets_are_set_;
2581 // The target.
2582 Target_mips<size, big_endian>* target_;
2583 };
2584
2585 // This class handles Mips .reginfo output section.
2586
2587 template<int size, bool big_endian>
2588 class Mips_output_section_reginfo : public Output_section
2589 {
2590 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2591
2592 public:
2593 Mips_output_section_reginfo(const char* name, elfcpp::Elf_Word type,
2594 elfcpp::Elf_Xword flags,
2595 Target_mips<size, big_endian>* target)
2596 : Output_section(name, type, flags), target_(target), gprmask_(0),
2597 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
2598 { }
2599
2600 // Downcast a base pointer to a Mips_output_section_reginfo pointer.
2601 static Mips_output_section_reginfo<size, big_endian>*
2602 as_mips_output_section_reginfo(Output_section* os)
2603 { return static_cast<Mips_output_section_reginfo<size, big_endian>*>(os); }
2604
2605 // Set masks of the output .reginfo section.
2606 void
2607 set_masks(Valtype gprmask, Valtype cprmask1, Valtype cprmask2,
2608 Valtype cprmask3, Valtype cprmask4)
2609 {
2610 this->gprmask_ = gprmask;
2611 this->cprmask1_ = cprmask1;
2612 this->cprmask2_ = cprmask2;
2613 this->cprmask3_ = cprmask3;
2614 this->cprmask4_ = cprmask4;
2615 }
2616
2617 protected:
2618 // Set the final data size.
2619 void
2620 set_final_data_size()
2621 { this->set_data_size(24); }
2622
2623 // Write out reginfo section.
2624 void
2625 do_write(Output_file* of);
2626
2627 private:
2628 Target_mips<size, big_endian>* target_;
2629
2630 // gprmask of the output .reginfo section.
2631 Valtype gprmask_;
2632 // cprmask1 of the output .reginfo section.
2633 Valtype cprmask1_;
2634 // cprmask2 of the output .reginfo section.
2635 Valtype cprmask2_;
2636 // cprmask3 of the output .reginfo section.
2637 Valtype cprmask3_;
2638 // cprmask4 of the output .reginfo section.
2639 Valtype cprmask4_;
2640 };
2641
2642 // The MIPS target has relocation types which default handling of relocatable
2643 // relocation cannot process. So we have to extend the default code.
2644
2645 template<bool big_endian, int sh_type, typename Classify_reloc>
2646 class Mips_scan_relocatable_relocs :
2647 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2648 {
2649 public:
2650 // Return the strategy to use for a local symbol which is a section
2651 // symbol, given the relocation type.
2652 inline Relocatable_relocs::Reloc_strategy
2653 local_section_strategy(unsigned int r_type, Relobj* object)
2654 {
2655 if (sh_type == elfcpp::SHT_RELA)
2656 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2657 else
2658 {
2659 switch (r_type)
2660 {
2661 case elfcpp::R_MIPS_26:
2662 return Relocatable_relocs::RELOC_SPECIAL;
2663
2664 default:
2665 return Default_scan_relocatable_relocs<sh_type, Classify_reloc>::
2666 local_section_strategy(r_type, object);
2667 }
2668 }
2669 }
2670 };
2671
2672 // Mips_copy_relocs class. The only difference from the base class is the
2673 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2674 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2675 // cannot be made dynamic, a COPY reloc is emitted.
2676
2677 template<int sh_type, int size, bool big_endian>
2678 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2679 {
2680 public:
2681 Mips_copy_relocs()
2682 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2683 { }
2684
2685 // Emit any saved relocations which turn out to be needed. This is
2686 // called after all the relocs have been scanned.
2687 void
2688 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2689 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2690
2691 private:
2692 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2693 Copy_reloc_entry;
2694
2695 // Emit this reloc if appropriate. This is called after we have
2696 // scanned all the relocations, so we know whether we emitted a
2697 // COPY relocation for SYM_.
2698 void
2699 emit_entry(Copy_reloc_entry& entry,
2700 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2701 Symbol_table* symtab, Layout* layout,
2702 Target_mips<size, big_endian>* target);
2703 };
2704
2705
2706 // Return true if the symbol SYM should be considered to resolve local
2707 // to the current module, and false otherwise. The logic is taken from
2708 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2709 static bool
2710 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2711 bool local_protected)
2712 {
2713 // If it's a local sym, of course we resolve locally.
2714 if (sym == NULL)
2715 return true;
2716
2717 // STV_HIDDEN or STV_INTERNAL ones must be local.
2718 if (sym->visibility() == elfcpp::STV_HIDDEN
2719 || sym->visibility() == elfcpp::STV_INTERNAL)
2720 return true;
2721
2722 // If we don't have a definition in a regular file, then we can't
2723 // resolve locally. The sym is either undefined or dynamic.
2724 if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2725 || sym->is_undefined())
2726 return false;
2727
2728 // Forced local symbols resolve locally.
2729 if (sym->is_forced_local())
2730 return true;
2731
2732 // As do non-dynamic symbols.
2733 if (!has_dynsym_entry)
2734 return true;
2735
2736 // At this point, we know the symbol is defined and dynamic. In an
2737 // executable it must resolve locally, likewise when building symbolic
2738 // shared libraries.
2739 if (parameters->options().output_is_executable()
2740 || parameters->options().Bsymbolic())
2741 return true;
2742
2743 // Now deal with defined dynamic symbols in shared libraries. Ones
2744 // with default visibility might not resolve locally.
2745 if (sym->visibility() == elfcpp::STV_DEFAULT)
2746 return false;
2747
2748 // STV_PROTECTED non-function symbols are local.
2749 if (sym->type() != elfcpp::STT_FUNC)
2750 return true;
2751
2752 // Function pointer equality tests may require that STV_PROTECTED
2753 // symbols be treated as dynamic symbols. If the address of a
2754 // function not defined in an executable is set to that function's
2755 // plt entry in the executable, then the address of the function in
2756 // a shared library must also be the plt entry in the executable.
2757 return local_protected;
2758 }
2759
2760 // Return TRUE if references to this symbol always reference the symbol in this
2761 // object.
2762 static bool
2763 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2764 {
2765 return symbol_refs_local(sym, has_dynsym_entry, false);
2766 }
2767
2768 // Return TRUE if calls to this symbol always call the version in this object.
2769 static bool
2770 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2771 {
2772 return symbol_refs_local(sym, has_dynsym_entry, true);
2773 }
2774
2775 // Compare GOT offsets of two symbols.
2776
2777 template<int size, bool big_endian>
2778 static bool
2779 got_offset_compare(Symbol* sym1, Symbol* sym2)
2780 {
2781 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2782 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2783 unsigned int area1 = mips_sym1->global_got_area();
2784 unsigned int area2 = mips_sym2->global_got_area();
2785 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2786
2787 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2788 if (area1 != area2)
2789 return area1 < area2;
2790
2791 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2792 }
2793
2794 // This method divides dynamic symbols into symbols that have GOT entry, and
2795 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
2796 // Mips ABI requires that symbols with the GOT entry must be at the end of
2797 // dynamic symbol table, and the order in dynamic symbol table must match the
2798 // order in GOT.
2799
2800 template<int size, bool big_endian>
2801 static void
2802 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
2803 std::vector<Symbol*>* non_got_symbols,
2804 std::vector<Symbol*>* got_symbols)
2805 {
2806 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
2807 p != dyn_symbols->end();
2808 ++p)
2809 {
2810 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
2811 if (mips_sym->global_got_area() == GGA_NORMAL
2812 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
2813 got_symbols->push_back(mips_sym);
2814 else
2815 non_got_symbols->push_back(mips_sym);
2816 }
2817
2818 std::sort(got_symbols->begin(), got_symbols->end(),
2819 got_offset_compare<size, big_endian>);
2820 }
2821
2822 // Functor class for processing the global symbol table.
2823
2824 template<int size, bool big_endian>
2825 class Symbol_visitor_check_symbols
2826 {
2827 public:
2828 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
2829 Layout* layout, Symbol_table* symtab)
2830 : target_(target), layout_(layout), symtab_(symtab)
2831 { }
2832
2833 void
2834 operator()(Sized_symbol<size>* sym)
2835 {
2836 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
2837 if (local_pic_function<size, big_endian>(mips_sym))
2838 {
2839 // SYM is a function that might need $25 to be valid on entry.
2840 // If we're creating a non-PIC relocatable object, mark SYM as
2841 // being PIC. If we're creating a non-relocatable object with
2842 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
2843 // stub.
2844 if (parameters->options().relocatable())
2845 {
2846 if (!parameters->options().output_is_position_independent())
2847 mips_sym->set_pic();
2848 }
2849 else if (mips_sym->has_nonpic_branches())
2850 {
2851 this->target_->la25_stub_section(layout_)
2852 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
2853 }
2854 }
2855 }
2856
2857 private:
2858 Target_mips<size, big_endian>* target_;
2859 Layout* layout_;
2860 Symbol_table* symtab_;
2861 };
2862
2863 template<int size, bool big_endian>
2864 class Target_mips : public Sized_target<size, big_endian>
2865 {
2866 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2867 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
2868 Reloc_section;
2869 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2870 Reloca_section;
2871 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
2872 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2873
2874 public:
2875 Target_mips(const Target::Target_info* info = &mips_info)
2876 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
2877 got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(),
2878 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
2879 mips_stubs_(NULL), ei_class_(0), mach_(0), layout_(NULL),
2880 got16_addends_(), entry_symbol_is_compressed_(false), insn32_(false)
2881 {
2882 this->add_machine_extensions();
2883 }
2884
2885 // The offset of $gp from the beginning of the .got section.
2886 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
2887
2888 // The maximum size of the GOT for it to be addressable using 16-bit
2889 // offsets from $gp.
2890 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
2891
2892 // Make a new symbol table entry for the Mips target.
2893 Sized_symbol<size>*
2894 make_symbol() const
2895 { return new Mips_symbol<size>(); }
2896
2897 // Process the relocations to determine unreferenced sections for
2898 // garbage collection.
2899 void
2900 gc_process_relocs(Symbol_table* symtab,
2901 Layout* layout,
2902 Sized_relobj_file<size, big_endian>* object,
2903 unsigned int data_shndx,
2904 unsigned int sh_type,
2905 const unsigned char* prelocs,
2906 size_t reloc_count,
2907 Output_section* output_section,
2908 bool needs_special_offset_handling,
2909 size_t local_symbol_count,
2910 const unsigned char* plocal_symbols);
2911
2912 // Scan the relocations to look for symbol adjustments.
2913 void
2914 scan_relocs(Symbol_table* symtab,
2915 Layout* layout,
2916 Sized_relobj_file<size, big_endian>* object,
2917 unsigned int data_shndx,
2918 unsigned int sh_type,
2919 const unsigned char* prelocs,
2920 size_t reloc_count,
2921 Output_section* output_section,
2922 bool needs_special_offset_handling,
2923 size_t local_symbol_count,
2924 const unsigned char* plocal_symbols);
2925
2926 // Finalize the sections.
2927 void
2928 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2929
2930 // Relocate a section.
2931 void
2932 relocate_section(const Relocate_info<size, big_endian>*,
2933 unsigned int sh_type,
2934 const unsigned char* prelocs,
2935 size_t reloc_count,
2936 Output_section* output_section,
2937 bool needs_special_offset_handling,
2938 unsigned char* view,
2939 Mips_address view_address,
2940 section_size_type view_size,
2941 const Reloc_symbol_changes*);
2942
2943 // Scan the relocs during a relocatable link.
2944 void
2945 scan_relocatable_relocs(Symbol_table* symtab,
2946 Layout* layout,
2947 Sized_relobj_file<size, big_endian>* object,
2948 unsigned int data_shndx,
2949 unsigned int sh_type,
2950 const unsigned char* prelocs,
2951 size_t reloc_count,
2952 Output_section* output_section,
2953 bool needs_special_offset_handling,
2954 size_t local_symbol_count,
2955 const unsigned char* plocal_symbols,
2956 Relocatable_relocs*);
2957
2958 // Emit relocations for a section.
2959 void
2960 relocate_relocs(const Relocate_info<size, big_endian>*,
2961 unsigned int sh_type,
2962 const unsigned char* prelocs,
2963 size_t reloc_count,
2964 Output_section* output_section,
2965 typename elfcpp::Elf_types<size>::Elf_Off
2966 offset_in_output_section,
2967 const Relocatable_relocs*,
2968 unsigned char* view,
2969 Mips_address view_address,
2970 section_size_type view_size,
2971 unsigned char* reloc_view,
2972 section_size_type reloc_view_size);
2973
2974 // Perform target-specific processing in a relocatable link. This is
2975 // only used if we use the relocation strategy RELOC_SPECIAL.
2976 void
2977 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
2978 unsigned int sh_type,
2979 const unsigned char* preloc_in,
2980 size_t relnum,
2981 Output_section* output_section,
2982 typename elfcpp::Elf_types<size>::Elf_Off
2983 offset_in_output_section,
2984 unsigned char* view,
2985 Mips_address view_address,
2986 section_size_type view_size,
2987 unsigned char* preloc_out);
2988
2989 // Return whether SYM is defined by the ABI.
2990 bool
2991 do_is_defined_by_abi(const Symbol* sym) const
2992 {
2993 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
2994 || (strcmp(sym->name(), "_gp_disp") == 0)
2995 || (strcmp(sym->name(), "___tls_get_addr") == 0));
2996 }
2997
2998 // Return the number of entries in the GOT.
2999 unsigned int
3000 got_entry_count() const
3001 {
3002 if (!this->has_got_section())
3003 return 0;
3004 return this->got_size() / (size/8);
3005 }
3006
3007 // Return the number of entries in the PLT.
3008 unsigned int
3009 plt_entry_count() const
3010 {
3011 if (this->plt_ == NULL)
3012 return 0;
3013 return this->plt_->entry_count();
3014 }
3015
3016 // Return the offset of the first non-reserved PLT entry.
3017 unsigned int
3018 first_plt_entry_offset() const
3019 { return this->plt_->first_plt_entry_offset(); }
3020
3021 // Return the size of each PLT entry.
3022 unsigned int
3023 plt_entry_size() const
3024 { return this->plt_->plt_entry_size(); }
3025
3026 // Get the GOT section, creating it if necessary.
3027 Mips_output_data_got<size, big_endian>*
3028 got_section(Symbol_table*, Layout*);
3029
3030 // Get the GOT section.
3031 Mips_output_data_got<size, big_endian>*
3032 got_section() const
3033 {
3034 gold_assert(this->got_ != NULL);
3035 return this->got_;
3036 }
3037
3038 // Get the .MIPS.stubs section, creating it if necessary.
3039 Mips_output_data_mips_stubs<size, big_endian>*
3040 mips_stubs_section(Layout* layout);
3041
3042 // Get the .MIPS.stubs section.
3043 Mips_output_data_mips_stubs<size, big_endian>*
3044 mips_stubs_section() const
3045 {
3046 gold_assert(this->mips_stubs_ != NULL);
3047 return this->mips_stubs_;
3048 }
3049
3050 // Get the LA25 stub section, creating it if necessary.
3051 Mips_output_data_la25_stub<size, big_endian>*
3052 la25_stub_section(Layout*);
3053
3054 // Get the LA25 stub section.
3055 Mips_output_data_la25_stub<size, big_endian>*
3056 la25_stub_section()
3057 {
3058 gold_assert(this->la25_stub_ != NULL);
3059 return this->la25_stub_;
3060 }
3061
3062 // Get gp value. It has the value of .got + 0x7FF0.
3063 Mips_address
3064 gp_value() const
3065 {
3066 if (this->gp_ != NULL)
3067 return this->gp_->value();
3068 return 0;
3069 }
3070
3071 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3072 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3073 Mips_address
3074 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3075 {
3076 if (this->gp_ == NULL)
3077 return 0;
3078
3079 bool multi_got = false;
3080 if (this->has_got_section())
3081 multi_got = this->got_section()->multi_got();
3082 if (!multi_got)
3083 return this->gp_->value();
3084 else
3085 return this->gp_->value() + this->got_section()->get_got_offset(object);
3086 }
3087
3088 // Get the dynamic reloc section, creating it if necessary.
3089 Reloc_section*
3090 rel_dyn_section(Layout*);
3091
3092 bool
3093 do_has_custom_set_dynsym_indexes() const
3094 { return true; }
3095
3096 // Don't emit input .reginfo sections to output .reginfo.
3097 bool
3098 do_should_include_section(elfcpp::Elf_Word sh_type) const
3099 { return sh_type != elfcpp::SHT_MIPS_REGINFO; }
3100
3101 // Set the dynamic symbol indexes. INDEX is the index of the first
3102 // global dynamic symbol. Pointers to the symbols are stored into the
3103 // vector SYMS. The names are added to DYNPOOL. This returns an
3104 // updated dynamic symbol index.
3105 unsigned int
3106 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3107 std::vector<Symbol*>* syms, Stringpool* dynpool,
3108 Versions* versions, Symbol_table* symtab) const;
3109
3110 // Remove .MIPS.stubs entry for a symbol.
3111 void
3112 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3113 {
3114 if (this->mips_stubs_ != NULL)
3115 this->mips_stubs_->remove_entry(sym);
3116 }
3117
3118 // The value to write into got[1] for SVR4 targets, to identify it is
3119 // a GNU object. The dynamic linker can then use got[1] to store the
3120 // module pointer.
3121 uint64_t
3122 mips_elf_gnu_got1_mask()
3123 {
3124 if (this->is_output_n64())
3125 return (uint64_t)1 << 63;
3126 else
3127 return 1 << 31;
3128 }
3129
3130 // Whether the output has microMIPS code. This is valid only after
3131 // merge_processor_specific_flags() is called.
3132 bool
3133 is_output_micromips() const
3134 {
3135 gold_assert(this->are_processor_specific_flags_set());
3136 return elfcpp::is_micromips(this->processor_specific_flags());
3137 }
3138
3139 // Whether the output uses N32 ABI. This is valid only after
3140 // merge_processor_specific_flags() is called.
3141 bool
3142 is_output_n32() const
3143 {
3144 gold_assert(this->are_processor_specific_flags_set());
3145 return elfcpp::abi_n32(this->processor_specific_flags());
3146 }
3147
3148 // Whether the output uses N64 ABI. This is valid only after
3149 // merge_processor_specific_flags() is called.
3150 bool
3151 is_output_n64() const
3152 {
3153 gold_assert(this->are_processor_specific_flags_set());
3154 return elfcpp::abi_64(this->ei_class_);
3155 }
3156
3157 // Whether the output uses NEWABI. This is valid only after
3158 // merge_processor_specific_flags() is called.
3159 bool
3160 is_output_newabi() const
3161 { return this->is_output_n32() || this->is_output_n64(); }
3162
3163 // Whether we can only use 32-bit microMIPS instructions.
3164 bool
3165 use_32bit_micromips_instructions() const
3166 { return this->insn32_; }
3167
3168 protected:
3169 // Return the value to use for a dynamic symbol which requires special
3170 // treatment. This is how we support equality comparisons of function
3171 // pointers across shared library boundaries, as described in the
3172 // processor specific ABI supplement.
3173 uint64_t
3174 do_dynsym_value(const Symbol* gsym) const;
3175
3176 // Make an ELF object.
3177 Object*
3178 do_make_elf_object(const std::string&, Input_file*, off_t,
3179 const elfcpp::Ehdr<size, big_endian>& ehdr);
3180
3181 Object*
3182 do_make_elf_object(const std::string&, Input_file*, off_t,
3183 const elfcpp::Ehdr<size, !big_endian>&)
3184 { gold_unreachable(); }
3185
3186 // Make an output section.
3187 Output_section*
3188 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3189 elfcpp::Elf_Xword flags)
3190 {
3191 if (type == elfcpp::SHT_MIPS_REGINFO)
3192 return new Mips_output_section_reginfo<size, big_endian>(name, type,
3193 flags, this);
3194 else
3195 return new Output_section(name, type, flags);
3196 }
3197
3198 // Adjust ELF file header.
3199 void
3200 do_adjust_elf_header(unsigned char* view, int len);
3201
3202 // Get the custom dynamic tag value.
3203 unsigned int
3204 do_dynamic_tag_custom_value(elfcpp::DT) const;
3205
3206 // Adjust the value written to the dynamic symbol table.
3207 virtual void
3208 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3209 {
3210 elfcpp::Sym<size, big_endian> isym(view);
3211 elfcpp::Sym_write<size, big_endian> osym(view);
3212 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3213
3214 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3215 // to treat compressed symbols like any other.
3216 Mips_address value = isym.get_st_value();
3217 if (mips_sym->is_mips16() && value != 0)
3218 {
3219 if (!mips_sym->has_mips16_fn_stub())
3220 value |= 1;
3221 else
3222 {
3223 // If we have a MIPS16 function with a stub, the dynamic symbol
3224 // must refer to the stub, since only the stub uses the standard
3225 // calling conventions. Stub contains MIPS32 code, so don't add +1
3226 // in this case.
3227
3228 // There is a code which does this in the method
3229 // Target_mips::do_dynsym_value, but that code will only be
3230 // executed if the symbol is from dynobj.
3231 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3232 // table.
3233
3234 Mips16_stub_section<size, big_endian>* fn_stub =
3235 mips_sym->template get_mips16_fn_stub<big_endian>();
3236 value = fn_stub->output_address();
3237 osym.put_st_size(fn_stub->section_size());
3238 }
3239
3240 osym.put_st_value(value);
3241 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3242 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3243 }
3244 else if ((mips_sym->is_micromips()
3245 // Stubs are always microMIPS if there is any microMIPS code in
3246 // the output.
3247 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3248 && value != 0)
3249 {
3250 osym.put_st_value(value | 1);
3251 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3252 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3253 }
3254 }
3255
3256 private:
3257 // The class which scans relocations.
3258 class Scan
3259 {
3260 public:
3261 Scan()
3262 { }
3263
3264 static inline int
3265 get_reference_flags(unsigned int r_type);
3266
3267 inline void
3268 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3269 Sized_relobj_file<size, big_endian>* object,
3270 unsigned int data_shndx,
3271 Output_section* output_section,
3272 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3273 const elfcpp::Sym<size, big_endian>& lsym,
3274 bool is_discarded);
3275
3276 inline void
3277 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3278 Sized_relobj_file<size, big_endian>* object,
3279 unsigned int data_shndx,
3280 Output_section* output_section,
3281 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3282 const elfcpp::Sym<size, big_endian>& lsym,
3283 bool is_discarded);
3284
3285 inline void
3286 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3287 Sized_relobj_file<size, big_endian>* object,
3288 unsigned int data_shndx,
3289 Output_section* output_section,
3290 const elfcpp::Rela<size, big_endian>* rela,
3291 const elfcpp::Rel<size, big_endian>* rel,
3292 unsigned int rel_type,
3293 unsigned int r_type,
3294 const elfcpp::Sym<size, big_endian>& lsym,
3295 bool is_discarded);
3296
3297 inline void
3298 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3299 Sized_relobj_file<size, big_endian>* object,
3300 unsigned int data_shndx,
3301 Output_section* output_section,
3302 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3303 Symbol* gsym);
3304
3305 inline void
3306 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3307 Sized_relobj_file<size, big_endian>* object,
3308 unsigned int data_shndx,
3309 Output_section* output_section,
3310 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3311 Symbol* gsym);
3312
3313 inline void
3314 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3315 Sized_relobj_file<size, big_endian>* object,
3316 unsigned int data_shndx,
3317 Output_section* output_section,
3318 const elfcpp::Rela<size, big_endian>* rela,
3319 const elfcpp::Rel<size, big_endian>* rel,
3320 unsigned int rel_type,
3321 unsigned int r_type,
3322 Symbol* gsym);
3323
3324 inline bool
3325 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3326 Target_mips*,
3327 Sized_relobj_file<size, big_endian>*,
3328 unsigned int,
3329 Output_section*,
3330 const elfcpp::Rel<size, big_endian>&,
3331 unsigned int,
3332 const elfcpp::Sym<size, big_endian>&)
3333 { return false; }
3334
3335 inline bool
3336 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3337 Target_mips*,
3338 Sized_relobj_file<size, big_endian>*,
3339 unsigned int,
3340 Output_section*,
3341 const elfcpp::Rel<size, big_endian>&,
3342 unsigned int, Symbol*)
3343 { return false; }
3344
3345 inline bool
3346 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3347 Target_mips*,
3348 Sized_relobj_file<size, big_endian>*,
3349 unsigned int,
3350 Output_section*,
3351 const elfcpp::Rela<size, big_endian>&,
3352 unsigned int,
3353 const elfcpp::Sym<size, big_endian>&)
3354 { return false; }
3355
3356 inline bool
3357 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3358 Target_mips*,
3359 Sized_relobj_file<size, big_endian>*,
3360 unsigned int,
3361 Output_section*,
3362 const elfcpp::Rela<size, big_endian>&,
3363 unsigned int, Symbol*)
3364 { return false; }
3365 private:
3366 static void
3367 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3368 unsigned int r_type);
3369
3370 static void
3371 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3372 unsigned int r_type, Symbol*);
3373 };
3374
3375 // The class which implements relocation.
3376 class Relocate
3377 {
3378 public:
3379 Relocate()
3380 { }
3381
3382 ~Relocate()
3383 { }
3384
3385 // Return whether the R_MIPS_32 relocation needs to be applied.
3386 inline bool
3387 should_apply_r_mips_32_reloc(const Mips_symbol<size>* gsym,
3388 unsigned int r_type,
3389 Output_section* output_section,
3390 Target_mips* target);
3391
3392 // Do a relocation. Return false if the caller should not issue
3393 // any warnings about this relocation.
3394 inline bool
3395 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3396 Output_section*, size_t relnum,
3397 const elfcpp::Rela<size, big_endian>*,
3398 const elfcpp::Rel<size, big_endian>*,
3399 unsigned int,
3400 unsigned int, const Sized_symbol<size>*,
3401 const Symbol_value<size>*,
3402 unsigned char*,
3403 Mips_address,
3404 section_size_type);
3405
3406 inline bool
3407 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3408 Output_section*, size_t relnum,
3409 const elfcpp::Rel<size, big_endian>&,
3410 unsigned int, const Sized_symbol<size>*,
3411 const Symbol_value<size>*,
3412 unsigned char*,
3413 Mips_address,
3414 section_size_type);
3415
3416 inline bool
3417 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3418 Output_section*, size_t relnum,
3419 const elfcpp::Rela<size, big_endian>&,
3420 unsigned int, const Sized_symbol<size>*,
3421 const Symbol_value<size>*,
3422 unsigned char*,
3423 Mips_address,
3424 section_size_type);
3425 };
3426
3427 // A class which returns the size required for a relocation type,
3428 // used while scanning relocs during a relocatable link.
3429 class Relocatable_size_for_reloc
3430 {
3431 public:
3432 unsigned int
3433 get_size_for_reloc(unsigned int, Relobj*);
3434 };
3435
3436 // This POD class holds the dynamic relocations that should be emitted instead
3437 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3438 // relocations if it turns out that the symbol does not have static
3439 // relocations.
3440 class Dyn_reloc
3441 {
3442 public:
3443 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3444 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3445 Output_section* output_section, Mips_address r_offset)
3446 : sym_(sym), r_type_(r_type), relobj_(relobj),
3447 shndx_(shndx), output_section_(output_section),
3448 r_offset_(r_offset)
3449 { }
3450
3451 // Emit this reloc if appropriate. This is called after we have
3452 // scanned all the relocations, so we know whether the symbol has
3453 // static relocations.
3454 void
3455 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3456 Symbol_table* symtab)
3457 {
3458 if (!this->sym_->has_static_relocs())
3459 {
3460 got->record_global_got_symbol(this->sym_, this->relobj_,
3461 this->r_type_, true, false);
3462 if (!symbol_references_local(this->sym_,
3463 this->sym_->should_add_dynsym_entry(symtab)))
3464 rel_dyn->add_global(this->sym_, this->r_type_,
3465 this->output_section_, this->relobj_,
3466 this->shndx_, this->r_offset_);
3467 else
3468 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3469 this->output_section_, this->relobj_,
3470 this->shndx_, this->r_offset_);
3471 }
3472 }
3473
3474 private:
3475 Mips_symbol<size>* sym_;
3476 unsigned int r_type_;
3477 Mips_relobj<size, big_endian>* relobj_;
3478 unsigned int shndx_;
3479 Output_section* output_section_;
3480 Mips_address r_offset_;
3481 };
3482
3483 // Adjust TLS relocation type based on the options and whether this
3484 // is a local symbol.
3485 static tls::Tls_optimization
3486 optimize_tls_reloc(bool is_final, int r_type);
3487
3488 // Return whether there is a GOT section.
3489 bool
3490 has_got_section() const
3491 { return this->got_ != NULL; }
3492
3493 // Check whether the given ELF header flags describe a 32-bit binary.
3494 bool
3495 mips_32bit_flags(elfcpp::Elf_Word);
3496
3497 enum Mips_mach {
3498 mach_mips3000 = 3000,
3499 mach_mips3900 = 3900,
3500 mach_mips4000 = 4000,
3501 mach_mips4010 = 4010,
3502 mach_mips4100 = 4100,
3503 mach_mips4111 = 4111,
3504 mach_mips4120 = 4120,
3505 mach_mips4300 = 4300,
3506 mach_mips4400 = 4400,
3507 mach_mips4600 = 4600,
3508 mach_mips4650 = 4650,
3509 mach_mips5000 = 5000,
3510 mach_mips5400 = 5400,
3511 mach_mips5500 = 5500,
3512 mach_mips6000 = 6000,
3513 mach_mips7000 = 7000,
3514 mach_mips8000 = 8000,
3515 mach_mips9000 = 9000,
3516 mach_mips10000 = 10000,
3517 mach_mips12000 = 12000,
3518 mach_mips14000 = 14000,
3519 mach_mips16000 = 16000,
3520 mach_mips16 = 16,
3521 mach_mips5 = 5,
3522 mach_mips_loongson_2e = 3001,
3523 mach_mips_loongson_2f = 3002,
3524 mach_mips_loongson_3a = 3003,
3525 mach_mips_sb1 = 12310201, // octal 'SB', 01
3526 mach_mips_octeon = 6501,
3527 mach_mips_octeonp = 6601,
3528 mach_mips_octeon2 = 6502,
3529 mach_mips_xlr = 887682, // decimal 'XLR'
3530 mach_mipsisa32 = 32,
3531 mach_mipsisa32r2 = 33,
3532 mach_mipsisa64 = 64,
3533 mach_mipsisa64r2 = 65,
3534 mach_mips_micromips = 96
3535 };
3536
3537 // Return the MACH for a MIPS e_flags value.
3538 unsigned int
3539 elf_mips_mach(elfcpp::Elf_Word);
3540
3541 // Check whether machine EXTENSION is an extension of machine BASE.
3542 bool
3543 mips_mach_extends(unsigned int, unsigned int);
3544
3545 // Merge processor specific flags.
3546 void
3547 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word,
3548 unsigned char, bool);
3549
3550 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
3551 static inline bool
3552 jal_to_bal()
3553 { return false; }
3554
3555 // True if we are linking for CPUs that are faster if JALR is converted to
3556 // BAL. This should be safe for all architectures. We enable this predicate
3557 // for all CPUs.
3558 static inline bool
3559 jalr_to_bal()
3560 { return true; }
3561
3562 // True if we are linking for CPUs that are faster if JR is converted to B.
3563 // This should be safe for all architectures. We enable this predicate for
3564 // all CPUs.
3565 static inline bool
3566 jr_to_b()
3567 { return true; }
3568
3569 // Return the size of the GOT section.
3570 section_size_type
3571 got_size() const
3572 {
3573 gold_assert(this->got_ != NULL);
3574 return this->got_->data_size();
3575 }
3576
3577 // Create a PLT entry for a global symbol referenced by r_type relocation.
3578 void
3579 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
3580 unsigned int r_type);
3581
3582 // Get the PLT section.
3583 Mips_output_data_plt<size, big_endian>*
3584 plt_section() const
3585 {
3586 gold_assert(this->plt_ != NULL);
3587 return this->plt_;
3588 }
3589
3590 // Get the GOT PLT section.
3591 const Mips_output_data_plt<size, big_endian>*
3592 got_plt_section() const
3593 {
3594 gold_assert(this->got_plt_ != NULL);
3595 return this->got_plt_;
3596 }
3597
3598 // Copy a relocation against a global symbol.
3599 void
3600 copy_reloc(Symbol_table* symtab, Layout* layout,
3601 Sized_relobj_file<size, big_endian>* object,
3602 unsigned int shndx, Output_section* output_section,
3603 Symbol* sym, const elfcpp::Rel<size, big_endian>& reloc)
3604 {
3605 this->copy_relocs_.copy_reloc(symtab, layout,
3606 symtab->get_sized_symbol<size>(sym),
3607 object, shndx, output_section,
3608 reloc, this->rel_dyn_section(layout));
3609 }
3610
3611 void
3612 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3613 Mips_relobj<size, big_endian>* relobj,
3614 unsigned int shndx, Output_section* output_section,
3615 Mips_address r_offset)
3616 {
3617 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
3618 output_section, r_offset));
3619 }
3620
3621 // Calculate value of _gp symbol.
3622 void
3623 set_gp(Layout*, Symbol_table*);
3624
3625 const char*
3626 elf_mips_abi_name(elfcpp::Elf_Word e_flags, unsigned char ei_class);
3627 const char*
3628 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
3629
3630 // Adds entries that describe how machines relate to one another. The entries
3631 // are ordered topologically with MIPS I extensions listed last. First
3632 // element is extension, second element is base.
3633 void
3634 add_machine_extensions()
3635 {
3636 // MIPS64r2 extensions.
3637 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
3638 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
3639 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
3640
3641 // MIPS64 extensions.
3642 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
3643 this->add_extension(mach_mips_sb1, mach_mipsisa64);
3644 this->add_extension(mach_mips_xlr, mach_mipsisa64);
3645 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64);
3646
3647 // MIPS V extensions.
3648 this->add_extension(mach_mipsisa64, mach_mips5);
3649
3650 // R10000 extensions.
3651 this->add_extension(mach_mips12000, mach_mips10000);
3652 this->add_extension(mach_mips14000, mach_mips10000);
3653 this->add_extension(mach_mips16000, mach_mips10000);
3654
3655 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
3656 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
3657 // better to allow vr5400 and vr5500 code to be merged anyway, since
3658 // many libraries will just use the core ISA. Perhaps we could add
3659 // some sort of ASE flag if this ever proves a problem.
3660 this->add_extension(mach_mips5500, mach_mips5400);
3661 this->add_extension(mach_mips5400, mach_mips5000);
3662
3663 // MIPS IV extensions.
3664 this->add_extension(mach_mips5, mach_mips8000);
3665 this->add_extension(mach_mips10000, mach_mips8000);
3666 this->add_extension(mach_mips5000, mach_mips8000);
3667 this->add_extension(mach_mips7000, mach_mips8000);
3668 this->add_extension(mach_mips9000, mach_mips8000);
3669
3670 // VR4100 extensions.
3671 this->add_extension(mach_mips4120, mach_mips4100);
3672 this->add_extension(mach_mips4111, mach_mips4100);
3673
3674 // MIPS III extensions.
3675 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
3676 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
3677 this->add_extension(mach_mips8000, mach_mips4000);
3678 this->add_extension(mach_mips4650, mach_mips4000);
3679 this->add_extension(mach_mips4600, mach_mips4000);
3680 this->add_extension(mach_mips4400, mach_mips4000);
3681 this->add_extension(mach_mips4300, mach_mips4000);
3682 this->add_extension(mach_mips4100, mach_mips4000);
3683 this->add_extension(mach_mips4010, mach_mips4000);
3684
3685 // MIPS32 extensions.
3686 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
3687
3688 // MIPS II extensions.
3689 this->add_extension(mach_mips4000, mach_mips6000);
3690 this->add_extension(mach_mipsisa32, mach_mips6000);
3691
3692 // MIPS I extensions.
3693 this->add_extension(mach_mips6000, mach_mips3000);
3694 this->add_extension(mach_mips3900, mach_mips3000);
3695 }
3696
3697 // Add value to MIPS extenstions.
3698 void
3699 add_extension(unsigned int base, unsigned int extension)
3700 {
3701 std::pair<unsigned int, unsigned int> ext(base, extension);
3702 this->mips_mach_extensions_.push_back(ext);
3703 }
3704
3705 // Return the number of entries in the .dynsym section.
3706 unsigned int get_dt_mips_symtabno() const
3707 {
3708 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
3709 / elfcpp::Elf_sizes<size>::sym_size));
3710 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
3711 }
3712
3713 // Information about this specific target which we pass to the
3714 // general Target structure.
3715 static const Target::Target_info mips_info;
3716 // The GOT section.
3717 Mips_output_data_got<size, big_endian>* got_;
3718 // gp symbol. It has the value of .got + 0x7FF0.
3719 Sized_symbol<size>* gp_;
3720 // The PLT section.
3721 Mips_output_data_plt<size, big_endian>* plt_;
3722 // The GOT PLT section.
3723 Output_data_space* got_plt_;
3724 // The dynamic reloc section.
3725 Reloc_section* rel_dyn_;
3726 // Relocs saved to avoid a COPY reloc.
3727 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
3728
3729 // A list of dyn relocs to be saved.
3730 std::vector<Dyn_reloc> dyn_relocs_;
3731
3732 // The LA25 stub section.
3733 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
3734 // Architecture extensions.
3735 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
3736 // .MIPS.stubs
3737 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
3738
3739 unsigned char ei_class_;
3740 unsigned int mach_;
3741 Layout* layout_;
3742
3743 typename std::list<got16_addend<size, big_endian> > got16_addends_;
3744
3745 // Whether the entry symbol is mips16 or micromips.
3746 bool entry_symbol_is_compressed_;
3747
3748 // Whether we can use only 32-bit microMIPS instructions.
3749 // TODO(sasa): This should be a linker option.
3750 bool insn32_;
3751 };
3752
3753
3754 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
3755 // It records high part of the relocation pair.
3756
3757 template<int size, bool big_endian>
3758 struct reloc_high
3759 {
3760 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3761
3762 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
3763 const Symbol_value<size>* _psymval, Mips_address _addend,
3764 unsigned int _r_type, bool _extract_addend,
3765 Mips_address _address = 0, bool _gp_disp = false)
3766 : view(_view), object(_object), psymval(_psymval), addend(_addend),
3767 r_type(_r_type), extract_addend(_extract_addend), address(_address),
3768 gp_disp(_gp_disp)
3769 { }
3770
3771 unsigned char* view;
3772 const Mips_relobj<size, big_endian>* object;
3773 const Symbol_value<size>* psymval;
3774 Mips_address addend;
3775 unsigned int r_type;
3776 bool extract_addend;
3777 Mips_address address;
3778 bool gp_disp;
3779 };
3780
3781 template<int size, bool big_endian>
3782 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
3783 {
3784 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3785 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
3786 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3787
3788 public:
3789 typedef enum
3790 {
3791 STATUS_OKAY, // No error during relocation.
3792 STATUS_OVERFLOW, // Relocation overflow.
3793 STATUS_BAD_RELOC // Relocation cannot be applied.
3794 } Status;
3795
3796 private:
3797 typedef Relocate_functions<size, big_endian> Base;
3798 typedef Mips_relocate_functions<size, big_endian> This;
3799
3800 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
3801 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
3802
3803 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3804 // Most mips16 instructions are 16 bits, but these instructions
3805 // are 32 bits.
3806 //
3807 // The format of these instructions is:
3808 //
3809 // +--------------+--------------------------------+
3810 // | JALX | X| Imm 20:16 | Imm 25:21 |
3811 // +--------------+--------------------------------+
3812 // | Immediate 15:0 |
3813 // +-----------------------------------------------+
3814 //
3815 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3816 // Note that the immediate value in the first word is swapped.
3817 //
3818 // When producing a relocatable object file, R_MIPS16_26 is
3819 // handled mostly like R_MIPS_26. In particular, the addend is
3820 // stored as a straight 26-bit value in a 32-bit instruction.
3821 // (gas makes life simpler for itself by never adjusting a
3822 // R_MIPS16_26 reloc to be against a section, so the addend is
3823 // always zero). However, the 32 bit instruction is stored as 2
3824 // 16-bit values, rather than a single 32-bit value. In a
3825 // big-endian file, the result is the same; in a little-endian
3826 // file, the two 16-bit halves of the 32 bit value are swapped.
3827 // This is so that a disassembler can recognize the jal
3828 // instruction.
3829 //
3830 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
3831 // instruction stored as two 16-bit values. The addend A is the
3832 // contents of the targ26 field. The calculation is the same as
3833 // R_MIPS_26. When storing the calculated value, reorder the
3834 // immediate value as shown above, and don't forget to store the
3835 // value as two 16-bit values.
3836 //
3837 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3838 // defined as
3839 //
3840 // big-endian:
3841 // +--------+----------------------+
3842 // | | |
3843 // | | targ26-16 |
3844 // |31 26|25 0|
3845 // +--------+----------------------+
3846 //
3847 // little-endian:
3848 // +----------+------+-------------+
3849 // | | | |
3850 // | sub1 | | sub2 |
3851 // |0 9|10 15|16 31|
3852 // +----------+--------------------+
3853 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3854 // ((sub1 << 16) | sub2)).
3855 //
3856 // When producing a relocatable object file, the calculation is
3857 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3858 // When producing a fully linked file, the calculation is
3859 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3860 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
3861 //
3862 // The table below lists the other MIPS16 instruction relocations.
3863 // Each one is calculated in the same way as the non-MIPS16 relocation
3864 // given on the right, but using the extended MIPS16 layout of 16-bit
3865 // immediate fields:
3866 //
3867 // R_MIPS16_GPREL R_MIPS_GPREL16
3868 // R_MIPS16_GOT16 R_MIPS_GOT16
3869 // R_MIPS16_CALL16 R_MIPS_CALL16
3870 // R_MIPS16_HI16 R_MIPS_HI16
3871 // R_MIPS16_LO16 R_MIPS_LO16
3872 //
3873 // A typical instruction will have a format like this:
3874 //
3875 // +--------------+--------------------------------+
3876 // | EXTEND | Imm 10:5 | Imm 15:11 |
3877 // +--------------+--------------------------------+
3878 // | Major | rx | ry | Imm 4:0 |
3879 // +--------------+--------------------------------+
3880 //
3881 // EXTEND is the five bit value 11110. Major is the instruction
3882 // opcode.
3883 //
3884 // All we need to do here is shuffle the bits appropriately.
3885 // As above, the two 16-bit halves must be swapped on a
3886 // little-endian system.
3887
3888 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
3889 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
3890 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
3891
3892 static inline bool
3893 should_shuffle_micromips_reloc(unsigned int r_type)
3894 {
3895 return (micromips_reloc(r_type)
3896 && r_type != elfcpp::R_MICROMIPS_PC7_S1
3897 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
3898 }
3899
3900 static void
3901 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
3902 bool jal_shuffle)
3903 {
3904 if (!mips16_reloc(r_type)
3905 && !should_shuffle_micromips_reloc(r_type))
3906 return;
3907
3908 // Pick up the first and second halfwords of the instruction.
3909 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
3910 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
3911 Valtype32 val;
3912
3913 if (micromips_reloc(r_type)
3914 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3915 val = first << 16 | second;
3916 else if (r_type != elfcpp::R_MIPS16_26)
3917 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
3918 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
3919 else
3920 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
3921 | ((first & 0x1f) << 21) | second);
3922
3923 elfcpp::Swap<32, big_endian>::writeval(view, val);
3924 }
3925
3926 static void
3927 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
3928 {
3929 if (!mips16_reloc(r_type)
3930 && !should_shuffle_micromips_reloc(r_type))
3931 return;
3932
3933 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
3934 Valtype16 first, second;
3935
3936 if (micromips_reloc(r_type)
3937 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3938 {
3939 second = val & 0xffff;
3940 first = val >> 16;
3941 }
3942 else if (r_type != elfcpp::R_MIPS16_26)
3943 {
3944 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
3945 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
3946 }
3947 else
3948 {
3949 second = val & 0xffff;
3950 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
3951 | ((val >> 21) & 0x1f);
3952 }
3953
3954 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
3955 elfcpp::Swap<16, big_endian>::writeval(view, first);
3956 }
3957
3958 public:
3959 // R_MIPS_16: S + sign-extend(A)
3960 static inline typename This::Status
3961 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3962 const Symbol_value<size>* psymval, Mips_address addend_a,
3963 bool extract_addend, unsigned int r_type)
3964 {
3965 mips_reloc_unshuffle(view, r_type, false);
3966 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
3967 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
3968
3969 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val)
3970 : Bits<16>::sign_extend32(addend_a));
3971
3972 Valtype32 x = psymval->value(object, addend);
3973 val = Bits<16>::bit_select32(val, x, 0xffffU);
3974 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3975 mips_reloc_shuffle(view, r_type, false);
3976 return (Bits<16>::has_overflow32(x)
3977 ? This::STATUS_OVERFLOW
3978 : This::STATUS_OKAY);
3979 }
3980
3981 // R_MIPS_32: S + A
3982 static inline typename This::Status
3983 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3984 const Symbol_value<size>* psymval, Mips_address addend_a,
3985 bool extract_addend, unsigned int r_type)
3986 {
3987 mips_reloc_unshuffle(view, r_type, false);
3988 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
3989 Valtype32 addend = (extract_addend
3990 ? elfcpp::Swap<32, big_endian>::readval(wv)
3991 : Bits<32>::sign_extend32(addend_a));
3992 Valtype32 x = psymval->value(object, addend);
3993 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3994 mips_reloc_shuffle(view, r_type, false);
3995 return This::STATUS_OKAY;
3996 }
3997
3998 // R_MIPS_JALR, R_MICROMIPS_JALR
3999 static inline typename This::Status
4000 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4001 const Symbol_value<size>* psymval, Mips_address address,
4002 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4003 unsigned int r_type, bool jalr_to_bal, bool jr_to_b)
4004 {
4005 mips_reloc_unshuffle(view, r_type, false);
4006 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4007 Valtype32 addend = extract_addend ? 0 : addend_a;
4008 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4009
4010 // Try converting J(AL)R to B(AL), if the target is in range.
4011 if (!parameters->options().relocatable()
4012 && r_type == elfcpp::R_MIPS_JALR
4013 && !cross_mode_jump
4014 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4015 || (jr_to_b && val == 0x03200008))) // jr t9
4016 {
4017 int offset = psymval->value(object, addend) - (address + 4);
4018 if (!Bits<18>::has_overflow32(offset))
4019 {
4020 if (val == 0x03200008) // jr t9
4021 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4022 else
4023 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4024 }
4025 }
4026
4027 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4028 mips_reloc_shuffle(view, r_type, false);
4029 return This::STATUS_OKAY;
4030 }
4031
4032 // R_MIPS_PC32: S + A - P
4033 static inline typename This::Status
4034 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4035 const Symbol_value<size>* psymval, Mips_address address,
4036 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4037 {
4038 mips_reloc_unshuffle(view, r_type, false);
4039 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4040 Valtype32 addend = (extract_addend
4041 ? elfcpp::Swap<32, big_endian>::readval(wv)
4042 : Bits<32>::sign_extend32(addend_a));
4043 Valtype32 x = psymval->value(object, addend) - address;
4044 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4045 mips_reloc_shuffle(view, r_type, false);
4046 return This::STATUS_OKAY;
4047 }
4048
4049 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4050 static inline typename This::Status
4051 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4052 const Symbol_value<size>* psymval, Mips_address address,
4053 bool local, Mips_address addend_a, bool extract_addend,
4054 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4055 bool jal_to_bal)
4056 {
4057 mips_reloc_unshuffle(view, r_type, false);
4058 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4059 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4060
4061 Valtype32 addend;
4062 if (extract_addend)
4063 {
4064 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4065 addend = (val & 0x03ffffff) << 1;
4066 else
4067 addend = (val & 0x03ffffff) << 2;
4068 }
4069 else
4070 addend = addend_a;
4071
4072 // Make sure the target of JALX is word-aligned. Bit 0 must be
4073 // the correct ISA mode selector and bit 1 must be 0.
4074 if (cross_mode_jump
4075 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4076 {
4077 gold_warning(_("JALX to a non-word-aligned address"));
4078 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4079 return This::STATUS_BAD_RELOC;
4080 }
4081
4082 // Shift is 2, unusually, for microMIPS JALX.
4083 unsigned int shift =
4084 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4085
4086 Valtype32 x;
4087 if (local)
4088 x = addend | ((address + 4) & (0xfc000000 << shift));
4089 else
4090 {
4091 if (shift == 1)
4092 x = Bits<27>::sign_extend32(addend);
4093 else
4094 x = Bits<28>::sign_extend32(addend);
4095 }
4096 x = psymval->value(object, x) >> shift;
4097
4098 if (!local && !gsym->is_weak_undefined())
4099 {
4100 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4101 {
4102 gold_error(_("relocation truncated to fit: %u against '%s'"),
4103 r_type, gsym->name());
4104 return This::STATUS_OVERFLOW;
4105 }
4106 }
4107
4108 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4109
4110 // If required, turn JAL into JALX.
4111 if (cross_mode_jump)
4112 {
4113 bool ok;
4114 Valtype32 opcode = val >> 26;
4115 Valtype32 jalx_opcode;
4116
4117 // Check to see if the opcode is already JAL or JALX.
4118 if (r_type == elfcpp::R_MIPS16_26)
4119 {
4120 ok = (opcode == 0x6) || (opcode == 0x7);
4121 jalx_opcode = 0x7;
4122 }
4123 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4124 {
4125 ok = (opcode == 0x3d) || (opcode == 0x3c);
4126 jalx_opcode = 0x3c;
4127 }
4128 else
4129 {
4130 ok = (opcode == 0x3) || (opcode == 0x1d);
4131 jalx_opcode = 0x1d;
4132 }
4133
4134 // If the opcode is not JAL or JALX, there's a problem. We cannot
4135 // convert J or JALS to JALX.
4136 if (!ok)
4137 {
4138 gold_error(_("Unsupported jump between ISA modes; consider "
4139 "recompiling with interlinking enabled."));
4140 return This::STATUS_BAD_RELOC;
4141 }
4142
4143 // Make this the JALX opcode.
4144 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4145 }
4146
4147 // Try converting JAL to BAL, if the target is in range.
4148 if (!parameters->options().relocatable()
4149 && !cross_mode_jump
4150 && ((jal_to_bal
4151 && r_type == elfcpp::R_MIPS_26
4152 && (val >> 26) == 0x3))) // jal addr
4153 {
4154 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4155 int offset = dest - (address + 4);
4156 if (!Bits<18>::has_overflow32(offset))
4157 {
4158 if (val == 0x03200008) // jr t9
4159 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4160 else
4161 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4162 }
4163 }
4164
4165 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4166 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4167 return This::STATUS_OKAY;
4168 }
4169
4170 // R_MIPS_PC16
4171 static inline typename This::Status
4172 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4173 const Symbol_value<size>* psymval, Mips_address address,
4174 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4175 {
4176 mips_reloc_unshuffle(view, r_type, false);
4177 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4178 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4179
4180 Valtype32 addend = extract_addend ? (val & 0xffff) << 2 : addend_a;
4181 addend = Bits<18>::sign_extend32(addend);
4182
4183 Valtype32 x = psymval->value(object, addend) - address;
4184 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4185 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4186 mips_reloc_shuffle(view, r_type, false);
4187 return (Bits<18>::has_overflow32(x)
4188 ? This::STATUS_OVERFLOW
4189 : This::STATUS_OKAY);
4190 }
4191
4192 // R_MICROMIPS_PC7_S1
4193 static inline typename This::Status
4194 relmicromips_pc7_s1(unsigned char* view,
4195 const Mips_relobj<size, big_endian>* object,
4196 const Symbol_value<size>* psymval, Mips_address address,
4197 Mips_address addend_a, bool extract_addend,
4198 unsigned int r_type)
4199 {
4200 mips_reloc_unshuffle(view, r_type, false);
4201 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4202 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4203
4204 Valtype32 addend = extract_addend ? (val & 0x7f) << 1 : addend_a;
4205 addend = Bits<8>::sign_extend32(addend);
4206
4207 Valtype32 x = psymval->value(object, addend) - address;
4208 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4209 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4210 mips_reloc_shuffle(view, r_type, false);
4211 return (Bits<8>::has_overflow32(x)
4212 ? This::STATUS_OVERFLOW
4213 : This::STATUS_OKAY);
4214 }
4215
4216 // R_MICROMIPS_PC10_S1
4217 static inline typename This::Status
4218 relmicromips_pc10_s1(unsigned char* view,
4219 const Mips_relobj<size, big_endian>* object,
4220 const Symbol_value<size>* psymval, Mips_address address,
4221 Mips_address addend_a, bool extract_addend,
4222 unsigned int r_type)
4223 {
4224 mips_reloc_unshuffle(view, r_type, false);
4225 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4226 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4227
4228 Valtype32 addend = extract_addend ? (val & 0x3ff) << 1 : addend_a;
4229 addend = Bits<11>::sign_extend32(addend);
4230
4231 Valtype32 x = psymval->value(object, addend) - address;
4232 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4233 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4234 mips_reloc_shuffle(view, r_type, false);
4235 return (Bits<11>::has_overflow32(x)
4236 ? This::STATUS_OVERFLOW
4237 : This::STATUS_OKAY);
4238 }
4239
4240 // R_MICROMIPS_PC16_S1
4241 static inline typename This::Status
4242 relmicromips_pc16_s1(unsigned char* view,
4243 const Mips_relobj<size, big_endian>* object,
4244 const Symbol_value<size>* psymval, Mips_address address,
4245 Mips_address addend_a, bool extract_addend,
4246 unsigned int r_type)
4247 {
4248 mips_reloc_unshuffle(view, r_type, false);
4249 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4250 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4251
4252 Valtype32 addend = extract_addend ? (val & 0xffff) << 1 : addend_a;
4253 addend = Bits<17>::sign_extend32(addend);
4254
4255 Valtype32 x = psymval->value(object, addend) - address;
4256 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4257 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4258 mips_reloc_shuffle(view, r_type, false);
4259 return (Bits<17>::has_overflow32(x)
4260 ? This::STATUS_OVERFLOW
4261 : This::STATUS_OKAY);
4262 }
4263
4264 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4265 static inline typename This::Status
4266 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4267 const Symbol_value<size>* psymval, Mips_address addend,
4268 Mips_address address, bool gp_disp, unsigned int r_type,
4269 bool extract_addend)
4270 {
4271 // Record the relocation. It will be resolved when we find lo16 part.
4272 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4273 addend, r_type, extract_addend, address, gp_disp));
4274 return This::STATUS_OKAY;
4275 }
4276
4277 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4278 static inline typename This::Status
4279 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4280 const Symbol_value<size>* psymval, Mips_address addend_hi,
4281 Mips_address address, bool is_gp_disp, unsigned int r_type,
4282 bool extract_addend, Valtype32 addend_lo,
4283 Target_mips<size, big_endian>* target)
4284 {
4285 mips_reloc_unshuffle(view, r_type, false);
4286 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4287 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4288
4289 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4290 : addend_hi);
4291
4292 Valtype32 value;
4293 if (!is_gp_disp)
4294 value = psymval->value(object, addend);
4295 else
4296 {
4297 // For MIPS16 ABI code we generate this sequence
4298 // 0: li $v0,%hi(_gp_disp)
4299 // 4: addiupc $v1,%lo(_gp_disp)
4300 // 8: sll $v0,16
4301 // 12: addu $v0,$v1
4302 // 14: move $gp,$v0
4303 // So the offsets of hi and lo relocs are the same, but the
4304 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
4305 // ADDIUPC clears the low two bits of the instruction address,
4306 // so the base is ($t9 + 4) & ~3.
4307 Valtype32 gp_disp;
4308 if (r_type == elfcpp::R_MIPS16_HI16)
4309 gp_disp = (target->adjusted_gp_value(object)
4310 - ((address + 4) & ~0x3));
4311 // The microMIPS .cpload sequence uses the same assembly
4312 // instructions as the traditional psABI version, but the
4313 // incoming $t9 has the low bit set.
4314 else if (r_type == elfcpp::R_MICROMIPS_HI16)
4315 gp_disp = target->adjusted_gp_value(object) - address - 1;
4316 else
4317 gp_disp = target->adjusted_gp_value(object) - address;
4318 value = gp_disp + addend;
4319 }
4320 Valtype32 x = ((value + 0x8000) >> 16) & 0xffff;
4321 val = Bits<32>::bit_select32(val, x, 0xffff);
4322 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4323 mips_reloc_shuffle(view, r_type, false);
4324 return (is_gp_disp && Bits<16>::has_overflow32(x)
4325 ? This::STATUS_OVERFLOW
4326 : This::STATUS_OKAY);
4327 }
4328
4329 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4330 static inline typename This::Status
4331 relgot16_local(unsigned char* view,
4332 const Mips_relobj<size, big_endian>* object,
4333 const Symbol_value<size>* psymval, Mips_address addend_a,
4334 bool extract_addend, unsigned int r_type)
4335 {
4336 // Record the relocation. It will be resolved when we find lo16 part.
4337 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4338 addend_a, r_type, extract_addend));
4339 return This::STATUS_OKAY;
4340 }
4341
4342 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4343 static inline typename This::Status
4344 do_relgot16_local(unsigned char* view,
4345 const Mips_relobj<size, big_endian>* object,
4346 const Symbol_value<size>* psymval, Mips_address addend_hi,
4347 unsigned int r_type, bool extract_addend,
4348 Valtype32 addend_lo, Target_mips<size, big_endian>* target)
4349 {
4350 mips_reloc_unshuffle(view, r_type, false);
4351 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4352 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4353
4354 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4355 : addend_hi);
4356
4357 // Find GOT page entry.
4358 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
4359 & 0xffff;
4360 value <<= 16;
4361 unsigned int got_offset =
4362 target->got_section()->get_got_page_offset(value, object);
4363
4364 // Resolve the relocation.
4365 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4366 val = Bits<32>::bit_select32(val, x, 0xffff);
4367 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4368 mips_reloc_shuffle(view, r_type, false);
4369 return (Bits<16>::has_overflow32(x)
4370 ? This::STATUS_OVERFLOW
4371 : This::STATUS_OKAY);
4372 }
4373
4374 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
4375 static inline typename This::Status
4376 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
4377 const Mips_relobj<size, big_endian>* object,
4378 const Symbol_value<size>* psymval, Mips_address addend_a,
4379 bool extract_addend, Mips_address address, bool is_gp_disp,
4380 unsigned int r_type)
4381 {
4382 mips_reloc_unshuffle(view, r_type, false);
4383 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4384 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4385
4386 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4387 : addend_a);
4388
4389 // Resolve pending R_MIPS_HI16 relocations.
4390 typename std::list<reloc_high<size, big_endian> >::iterator it =
4391 hi16_relocs.begin();
4392 while (it != hi16_relocs.end())
4393 {
4394 reloc_high<size, big_endian> hi16 = *it;
4395 if (hi16.psymval->value(hi16.object, 0) == psymval->value(object, 0))
4396 {
4397 if (do_relhi16(hi16.view, hi16.object, hi16.psymval, hi16.addend,
4398 hi16.address, hi16.gp_disp, hi16.r_type,
4399 hi16.extract_addend, addend, target)
4400 == This::STATUS_OVERFLOW)
4401 return This::STATUS_OVERFLOW;
4402 it = hi16_relocs.erase(it);
4403 }
4404 else
4405 ++it;
4406 }
4407
4408 // Resolve pending local R_MIPS_GOT16 relocations.
4409 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
4410 got16_relocs.begin();
4411 while (it2 != got16_relocs.end())
4412 {
4413 reloc_high<size, big_endian> got16 = *it2;
4414 if (got16.psymval->value(got16.object, 0) == psymval->value(object, 0))
4415 {
4416 if (do_relgot16_local(got16.view, got16.object, got16.psymval,
4417 got16.addend, got16.r_type,
4418 got16.extract_addend, addend,
4419 target) == This::STATUS_OVERFLOW)
4420 return This::STATUS_OVERFLOW;
4421 it2 = got16_relocs.erase(it2);
4422 }
4423 else
4424 ++it2;
4425 }
4426
4427 // Resolve R_MIPS_LO16 relocation.
4428 Valtype32 x;
4429 if (!is_gp_disp)
4430 x = psymval->value(object, addend);
4431 else
4432 {
4433 // See the comment for R_MIPS16_HI16 above for the reason
4434 // for this conditional.
4435 Valtype32 gp_disp;
4436 if (r_type == elfcpp::R_MIPS16_LO16)
4437 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
4438 else if (r_type == elfcpp::R_MICROMIPS_LO16
4439 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
4440 gp_disp = target->adjusted_gp_value(object) - address + 3;
4441 else
4442 gp_disp = target->adjusted_gp_value(object) - address + 4;
4443 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
4444 // for overflow. Relocations against _gp_disp are normally
4445 // generated from the .cpload pseudo-op. It generates code
4446 // that normally looks like this:
4447
4448 // lui $gp,%hi(_gp_disp)
4449 // addiu $gp,$gp,%lo(_gp_disp)
4450 // addu $gp,$gp,$t9
4451
4452 // Here $t9 holds the address of the function being called,
4453 // as required by the MIPS ELF ABI. The R_MIPS_LO16
4454 // relocation can easily overflow in this situation, but the
4455 // R_MIPS_HI16 relocation will handle the overflow.
4456 // Therefore, we consider this a bug in the MIPS ABI, and do
4457 // not check for overflow here.
4458 x = gp_disp + addend;
4459 }
4460 val = Bits<32>::bit_select32(val, x, 0xffff);
4461 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4462 mips_reloc_shuffle(view, r_type, false);
4463 return This::STATUS_OKAY;
4464 }
4465
4466 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
4467 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4468 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
4469 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
4470 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
4471 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
4472 static inline typename This::Status
4473 relgot(unsigned char* view, int gp_offset, unsigned int r_type)
4474 {
4475 mips_reloc_unshuffle(view, r_type, false);
4476 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4477 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4478 Valtype32 x = gp_offset;
4479 val = Bits<32>::bit_select32(val, x, 0xffff);
4480 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4481 mips_reloc_shuffle(view, r_type, false);
4482 return (Bits<16>::has_overflow32(x)
4483 ? This::STATUS_OVERFLOW
4484 : This::STATUS_OKAY);
4485 }
4486
4487 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
4488 static inline typename This::Status
4489 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
4490 const Mips_relobj<size, big_endian>* object,
4491 const Symbol_value<size>* psymval, Mips_address addend_a,
4492 bool extract_addend, unsigned int r_type)
4493 {
4494 mips_reloc_unshuffle(view, r_type, false);
4495 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4496 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4497 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4498
4499 // Find a GOT page entry that points to within 32KB of symbol + addend.
4500 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
4501 unsigned int got_offset =
4502 target->got_section()->get_got_page_offset(value, object);
4503
4504 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4505 val = Bits<32>::bit_select32(val, x, 0xffff);
4506 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4507 mips_reloc_shuffle(view, r_type, false);
4508 return (Bits<16>::has_overflow32(x)
4509 ? This::STATUS_OVERFLOW
4510 : This::STATUS_OKAY);
4511 }
4512
4513 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
4514 static inline typename This::Status
4515 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
4516 const Mips_relobj<size, big_endian>* object,
4517 const Symbol_value<size>* psymval, Mips_address addend_a,
4518 bool extract_addend, bool local, unsigned int r_type)
4519 {
4520 mips_reloc_unshuffle(view, r_type, false);
4521 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4522 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4523 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4524
4525 // For a local symbol, find a GOT page entry that points to within 32KB of
4526 // symbol + addend. Relocation value is the offset of the GOT page entry's
4527 // value from symbol + addend.
4528 // For a global symbol, relocation value is addend.
4529 Valtype32 x;
4530 if (local)
4531 {
4532 // Find GOT page entry.
4533 Mips_address value = ((psymval->value(object, addend) + 0x8000)
4534 & ~0xffff);
4535 target->got_section()->get_got_page_offset(value, object);
4536
4537 x = psymval->value(object, addend) - value;
4538 }
4539 else
4540 x = addend;
4541 val = Bits<32>::bit_select32(val, x, 0xffff);
4542 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4543 mips_reloc_shuffle(view, r_type, false);
4544 return (Bits<16>::has_overflow32(x)
4545 ? This::STATUS_OVERFLOW
4546 : This::STATUS_OKAY);
4547 }
4548
4549 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
4550 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
4551 static inline typename This::Status
4552 relgot_hi16(unsigned char* view, int gp_offset, unsigned int r_type)
4553 {
4554 mips_reloc_unshuffle(view, r_type, false);
4555 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4556 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4557 Valtype32 x = gp_offset;
4558 x = ((x + 0x8000) >> 16) & 0xffff;
4559 val = Bits<32>::bit_select32(val, x, 0xffff);
4560 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4561 mips_reloc_shuffle(view, r_type, false);
4562 return This::STATUS_OKAY;
4563 }
4564
4565 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
4566 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
4567 static inline typename This::Status
4568 relgot_lo16(unsigned char* view, int gp_offset, unsigned int r_type)
4569 {
4570 mips_reloc_unshuffle(view, r_type, false);
4571 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4572 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4573 Valtype32 x = gp_offset;
4574 val = Bits<32>::bit_select32(val, x, 0xffff);
4575 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4576 mips_reloc_shuffle(view, r_type, false);
4577 return This::STATUS_OKAY;
4578 }
4579
4580 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
4581 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
4582 static inline typename This::Status
4583 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4584 const Symbol_value<size>* psymval, Mips_address gp,
4585 Mips_address addend_a, bool extract_addend, bool local,
4586 unsigned int r_type)
4587 {
4588 mips_reloc_unshuffle(view, r_type, false);
4589 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4590 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4591
4592 Valtype32 addend;
4593 if (extract_addend)
4594 {
4595 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4596 addend = (val & 0x7f) << 2;
4597 else
4598 addend = val & 0xffff;
4599 // Only sign-extend the addend if it was extracted from the
4600 // instruction. If the addend was separate, leave it alone,
4601 // otherwise we may lose significant bits.
4602 addend = Bits<16>::sign_extend32(addend);
4603 }
4604 else
4605 addend = addend_a;
4606
4607 Valtype32 x = psymval->value(object, addend) - gp;
4608
4609 // If the symbol was local, any earlier relocatable links will
4610 // have adjusted its addend with the gp offset, so compensate
4611 // for that now. Don't do it for symbols forced local in this
4612 // link, though, since they won't have had the gp offset applied
4613 // to them before.
4614 if (local)
4615 x += object->gp_value();
4616
4617 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4618 val = Bits<32>::bit_select32(val, x, 0x7f);
4619 else
4620 val = Bits<32>::bit_select32(val, x, 0xffff);
4621 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4622 mips_reloc_shuffle(view, r_type, false);
4623 if (Bits<16>::has_overflow32(x))
4624 {
4625 gold_error(_("small-data section exceeds 64KB; lower small-data size "
4626 "limit (see option -G)"));
4627 return This::STATUS_OVERFLOW;
4628 }
4629 return This::STATUS_OKAY;
4630 }
4631
4632 // R_MIPS_GPREL32
4633 static inline typename This::Status
4634 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4635 const Symbol_value<size>* psymval, Mips_address gp,
4636 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4637 {
4638 mips_reloc_unshuffle(view, r_type, false);
4639 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4640 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4641 Valtype32 addend = extract_addend ? val : addend_a;
4642
4643 // R_MIPS_GPREL32 relocations are defined for local symbols only.
4644 Valtype32 x = psymval->value(object, addend) + object->gp_value() - gp;
4645 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4646 mips_reloc_shuffle(view, r_type, false);
4647 return This::STATUS_OKAY;
4648 }
4649
4650 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
4651 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
4652 // R_MICROMIPS_TLS_DTPREL_HI16
4653 static inline typename This::Status
4654 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4655 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4656 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4657 {
4658 mips_reloc_unshuffle(view, r_type, false);
4659 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4660 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4661 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4662
4663 // tls symbol values are relative to tls_segment()->vaddr()
4664 Valtype32 x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
4665 val = Bits<32>::bit_select32(val, x, 0xffff);
4666 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4667 mips_reloc_shuffle(view, r_type, false);
4668 return This::STATUS_OKAY;
4669 }
4670
4671 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
4672 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
4673 // R_MICROMIPS_TLS_DTPREL_LO16,
4674 static inline typename This::Status
4675 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4676 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4677 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4678 {
4679 mips_reloc_unshuffle(view, r_type, false);
4680 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4681 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4682 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4683
4684 // tls symbol values are relative to tls_segment()->vaddr()
4685 Valtype32 x = psymval->value(object, addend) - tp_offset;
4686 val = Bits<32>::bit_select32(val, x, 0xffff);
4687 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4688 mips_reloc_shuffle(view, r_type, false);
4689 return This::STATUS_OKAY;
4690 }
4691
4692 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
4693 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
4694 static inline typename This::Status
4695 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4696 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4697 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4698 {
4699 mips_reloc_unshuffle(view, r_type, false);
4700 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4701 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4702 Valtype32 addend = extract_addend ? val : addend_a;
4703
4704 // tls symbol values are relative to tls_segment()->vaddr()
4705 Valtype32 x = psymval->value(object, addend) - tp_offset;
4706 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4707 mips_reloc_shuffle(view, r_type, false);
4708 return This::STATUS_OKAY;
4709 }
4710
4711 // R_MIPS_SUB, R_MICROMIPS_SUB
4712 static inline typename This::Status
4713 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4714 const Symbol_value<size>* psymval, Mips_address addend_a,
4715 bool extract_addend, unsigned int r_type)
4716 {
4717 mips_reloc_unshuffle(view, r_type, false);
4718 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4719 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4720 Valtype32 addend = extract_addend ? val : addend_a;
4721
4722 Valtype32 x = psymval->value(object, -addend);
4723 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4724 mips_reloc_shuffle(view, r_type, false);
4725 return This::STATUS_OKAY;
4726 }
4727 };
4728
4729 template<int size, bool big_endian>
4730 typename std::list<reloc_high<size, big_endian> >
4731 Mips_relocate_functions<size, big_endian>::hi16_relocs;
4732
4733 template<int size, bool big_endian>
4734 typename std::list<reloc_high<size, big_endian> >
4735 Mips_relocate_functions<size, big_endian>::got16_relocs;
4736
4737 // Mips_got_info methods.
4738
4739 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
4740 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
4741
4742 template<int size, bool big_endian>
4743 void
4744 Mips_got_info<size, big_endian>::record_local_got_symbol(
4745 Mips_relobj<size, big_endian>* object, unsigned int symndx,
4746 Mips_address addend, unsigned int r_type, unsigned int shndx)
4747 {
4748 Mips_got_entry<size, big_endian>* entry =
4749 new Mips_got_entry<size, big_endian>(object, symndx, addend,
4750 mips_elf_reloc_tls_type(r_type),
4751 shndx);
4752 this->record_got_entry(entry, object);
4753 }
4754
4755 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
4756 // in OBJECT. FOR_CALL is true if the caller is only interested in
4757 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
4758 // relocation.
4759
4760 template<int size, bool big_endian>
4761 void
4762 Mips_got_info<size, big_endian>::record_global_got_symbol(
4763 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
4764 unsigned int r_type, bool dyn_reloc, bool for_call)
4765 {
4766 if (!for_call)
4767 mips_sym->set_got_not_only_for_calls();
4768
4769 // A global symbol in the GOT must also be in the dynamic symbol table.
4770 if (!mips_sym->needs_dynsym_entry())
4771 {
4772 switch (mips_sym->visibility())
4773 {
4774 case elfcpp::STV_INTERNAL:
4775 case elfcpp::STV_HIDDEN:
4776 mips_sym->set_is_forced_local();
4777 break;
4778 default:
4779 mips_sym->set_needs_dynsym_entry();
4780 break;
4781 }
4782 }
4783
4784 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
4785 if (tls_type == GOT_TLS_NONE)
4786 this->global_got_symbols_.insert(mips_sym);
4787
4788 if (dyn_reloc)
4789 {
4790 if (mips_sym->global_got_area() == GGA_NONE)
4791 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
4792 return;
4793 }
4794
4795 Mips_got_entry<size, big_endian>* entry =
4796 new Mips_got_entry<size, big_endian>(object, mips_sym, tls_type);
4797
4798 this->record_got_entry(entry, object);
4799 }
4800
4801 // Add ENTRY to master GOT and to OBJECT's GOT.
4802
4803 template<int size, bool big_endian>
4804 void
4805 Mips_got_info<size, big_endian>::record_got_entry(
4806 Mips_got_entry<size, big_endian>* entry,
4807 Mips_relobj<size, big_endian>* object)
4808 {
4809 if (this->got_entries_.find(entry) == this->got_entries_.end())
4810 this->got_entries_.insert(entry);
4811
4812 // Create the GOT entry for the OBJECT's GOT.
4813 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
4814 Mips_got_entry<size, big_endian>* entry2 =
4815 new Mips_got_entry<size, big_endian>(*entry);
4816
4817 if (g->got_entries_.find(entry2) == g->got_entries_.end())
4818 g->got_entries_.insert(entry2);
4819 }
4820
4821 // Record that OBJECT has a page relocation against symbol SYMNDX and
4822 // that ADDEND is the addend for that relocation.
4823 // This function creates an upper bound on the number of GOT slots
4824 // required; no attempt is made to combine references to non-overridable
4825 // global symbols across multiple input files.
4826
4827 template<int size, bool big_endian>
4828 void
4829 Mips_got_info<size, big_endian>::record_got_page_entry(
4830 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
4831 {
4832 struct Got_page_range **range_ptr, *range;
4833 int old_pages, new_pages;
4834
4835 // Find the Got_page_entry for this symbol.
4836 Got_page_entry* entry = new Got_page_entry(object, symndx);
4837 typename Got_page_entry_set::iterator it =
4838 this->got_page_entries_.find(entry);
4839 if (it != this->got_page_entries_.end())
4840 entry = *it;
4841 else
4842 this->got_page_entries_.insert(entry);
4843
4844 // Add the same entry to the OBJECT's GOT.
4845 Got_page_entry* entry2 = NULL;
4846 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
4847 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
4848 {
4849 entry2 = new Got_page_entry(*entry);
4850 g2->got_page_entries_.insert(entry2);
4851 }
4852
4853 // Skip over ranges whose maximum extent cannot share a page entry
4854 // with ADDEND.
4855 range_ptr = &entry->ranges;
4856 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4857 range_ptr = &(*range_ptr)->next;
4858
4859 // If we scanned to the end of the list, or found a range whose
4860 // minimum extent cannot share a page entry with ADDEND, create
4861 // a new singleton range.
4862 range = *range_ptr;
4863 if (!range || addend < range->min_addend - 0xffff)
4864 {
4865 range = new Got_page_range();
4866 range->next = *range_ptr;
4867 range->min_addend = addend;
4868 range->max_addend = addend;
4869
4870 *range_ptr = range;
4871 ++entry->num_pages;
4872 if (entry2 != NULL)
4873 ++entry2->num_pages;
4874 ++this->page_gotno_;
4875 ++g2->page_gotno_;
4876 return;
4877 }
4878
4879 // Remember how many pages the old range contributed.
4880 old_pages = range->get_max_pages();
4881
4882 // Update the ranges.
4883 if (addend < range->min_addend)
4884 range->min_addend = addend;
4885 else if (addend > range->max_addend)
4886 {
4887 if (range->next && addend >= range->next->min_addend - 0xffff)
4888 {
4889 old_pages += range->next->get_max_pages();
4890 range->max_addend = range->next->max_addend;
4891 range->next = range->next->next;
4892 }
4893 else
4894 range->max_addend = addend;
4895 }
4896
4897 // Record any change in the total estimate.
4898 new_pages = range->get_max_pages();
4899 if (old_pages != new_pages)
4900 {
4901 entry->num_pages += new_pages - old_pages;
4902 if (entry2 != NULL)
4903 entry2->num_pages += new_pages - old_pages;
4904 this->page_gotno_ += new_pages - old_pages;
4905 g2->page_gotno_ += new_pages - old_pages;
4906 }
4907 }
4908
4909 // Create all entries that should be in the local part of the GOT.
4910
4911 template<int size, bool big_endian>
4912 void
4913 Mips_got_info<size, big_endian>::add_local_entries(
4914 Target_mips<size, big_endian>* target, Layout* layout)
4915 {
4916 Mips_output_data_got<size, big_endian>* got = target->got_section();
4917 // First two GOT entries are reserved. The first entry will be filled at
4918 // runtime. The second entry will be used by some runtime loaders.
4919 got->add_constant(0);
4920 got->add_constant(target->mips_elf_gnu_got1_mask());
4921
4922 for (typename Got_entry_set::iterator
4923 p = this->got_entries_.begin();
4924 p != this->got_entries_.end();
4925 ++p)
4926 {
4927 Mips_got_entry<size, big_endian>* entry = *p;
4928 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
4929 {
4930 got->add_local(entry->object(), entry->symndx(),
4931 GOT_TYPE_STANDARD);
4932 unsigned int got_offset = entry->object()->local_got_offset(
4933 entry->symndx(), GOT_TYPE_STANDARD);
4934 if (got->multi_got() && this->index_ > 0
4935 && parameters->options().output_is_position_independent())
4936 target->rel_dyn_section(layout)->add_local(entry->object(),
4937 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
4938 }
4939 }
4940
4941 this->add_page_entries(target, layout);
4942
4943 // Add global entries that should be in the local area.
4944 for (typename Got_entry_set::iterator
4945 p = this->got_entries_.begin();
4946 p != this->got_entries_.end();
4947 ++p)
4948 {
4949 Mips_got_entry<size, big_endian>* entry = *p;
4950 if (!entry->is_for_global_symbol())
4951 continue;
4952
4953 Mips_symbol<size>* mips_sym = entry->sym();
4954 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
4955 {
4956 unsigned int got_type;
4957 if (!got->multi_got())
4958 got_type = GOT_TYPE_STANDARD;
4959 else
4960 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
4961 if (got->add_global(mips_sym, got_type))
4962 {
4963 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
4964 if (got->multi_got() && this->index_ > 0
4965 && parameters->options().output_is_position_independent())
4966 target->rel_dyn_section(layout)->add_symbolless_global_addend(
4967 mips_sym, elfcpp::R_MIPS_REL32, got,
4968 mips_sym->got_offset(got_type));
4969 }
4970 }
4971 }
4972 }
4973
4974 // Create GOT page entries.
4975
4976 template<int size, bool big_endian>
4977 void
4978 Mips_got_info<size, big_endian>::add_page_entries(
4979 Target_mips<size, big_endian>* target, Layout* layout)
4980 {
4981 if (this->page_gotno_ == 0)
4982 return;
4983
4984 Mips_output_data_got<size, big_endian>* got = target->got_section();
4985 this->got_page_offset_start_ = got->add_constant(0);
4986 if (got->multi_got() && this->index_ > 0
4987 && parameters->options().output_is_position_independent())
4988 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4989 this->got_page_offset_start_);
4990 int num_entries = this->page_gotno_;
4991 unsigned int prev_offset = this->got_page_offset_start_;
4992 while (--num_entries > 0)
4993 {
4994 unsigned int next_offset = got->add_constant(0);
4995 if (got->multi_got() && this->index_ > 0
4996 && parameters->options().output_is_position_independent())
4997 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4998 next_offset);
4999 gold_assert(next_offset == prev_offset + size/8);
5000 prev_offset = next_offset;
5001 }
5002 this->got_page_offset_next_ = this->got_page_offset_start_;
5003 }
5004
5005 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5006
5007 template<int size, bool big_endian>
5008 void
5009 Mips_got_info<size, big_endian>::add_global_entries(
5010 Target_mips<size, big_endian>* target, Layout* layout,
5011 unsigned int non_reloc_only_global_gotno)
5012 {
5013 Mips_output_data_got<size, big_endian>* got = target->got_section();
5014 // Add GGA_NORMAL entries.
5015 unsigned int count = 0;
5016 for (typename Got_entry_set::iterator
5017 p = this->got_entries_.begin();
5018 p != this->got_entries_.end();
5019 ++p)
5020 {
5021 Mips_got_entry<size, big_endian>* entry = *p;
5022 if (!entry->is_for_global_symbol())
5023 continue;
5024
5025 Mips_symbol<size>* mips_sym = entry->sym();
5026 if (mips_sym->global_got_area() != GGA_NORMAL)
5027 continue;
5028
5029 unsigned int got_type;
5030 if (!got->multi_got())
5031 got_type = GOT_TYPE_STANDARD;
5032 else
5033 // In multi-GOT links, global symbol can be in both primary and
5034 // secondary GOT(s). By creating custom GOT type
5035 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5036 // is added to secondary GOT(s).
5037 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5038 if (!got->add_global(mips_sym, got_type))
5039 continue;
5040
5041 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5042 if (got->multi_got() && this->index_ == 0)
5043 count++;
5044 if (got->multi_got() && this->index_ > 0)
5045 {
5046 if (parameters->options().output_is_position_independent()
5047 || (!parameters->doing_static_link()
5048 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5049 {
5050 target->rel_dyn_section(layout)->add_global(
5051 mips_sym, elfcpp::R_MIPS_REL32, got,
5052 mips_sym->got_offset(got_type));
5053 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5054 elfcpp::R_MIPS_REL32, mips_sym);
5055 }
5056 }
5057 }
5058
5059 if (!got->multi_got() || this->index_ == 0)
5060 {
5061 if (got->multi_got())
5062 {
5063 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5064 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5065 // entries correspond to dynamic symbol indexes.
5066 while (count < non_reloc_only_global_gotno)
5067 {
5068 got->add_constant(0);
5069 ++count;
5070 }
5071 }
5072
5073 // Add GGA_RELOC_ONLY entries.
5074 got->add_reloc_only_entries();
5075 }
5076 }
5077
5078 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5079
5080 template<int size, bool big_endian>
5081 void
5082 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5083 Mips_output_data_got<size, big_endian>* got)
5084 {
5085 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5086 p = this->global_got_symbols_.begin();
5087 p != this->global_got_symbols_.end();
5088 ++p)
5089 {
5090 Mips_symbol<size>* mips_sym = *p;
5091 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5092 {
5093 unsigned int got_type;
5094 if (!got->multi_got())
5095 got_type = GOT_TYPE_STANDARD;
5096 else
5097 got_type = GOT_TYPE_STANDARD_MULTIGOT;
5098 if (got->add_global(mips_sym, got_type))
5099 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5100 }
5101 }
5102 }
5103
5104 // Create TLS GOT entries.
5105
5106 template<int size, bool big_endian>
5107 void
5108 Mips_got_info<size, big_endian>::add_tls_entries(
5109 Target_mips<size, big_endian>* target, Layout* layout)
5110 {
5111 Mips_output_data_got<size, big_endian>* got = target->got_section();
5112 // Add local tls entries.
5113 for (typename Got_entry_set::iterator
5114 p = this->got_entries_.begin();
5115 p != this->got_entries_.end();
5116 ++p)
5117 {
5118 Mips_got_entry<size, big_endian>* entry = *p;
5119 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5120 continue;
5121
5122 if (entry->tls_type() == GOT_TLS_GD)
5123 {
5124 unsigned int got_type = GOT_TYPE_TLS_PAIR;
5125 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5126 : elfcpp::R_MIPS_TLS_DTPMOD64);
5127 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5128 : elfcpp::R_MIPS_TLS_DTPREL64);
5129
5130 if (!parameters->doing_static_link())
5131 {
5132 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5133 entry->shndx(), got_type,
5134 target->rel_dyn_section(layout),
5135 r_type1);
5136 unsigned int got_offset =
5137 entry->object()->local_got_offset(entry->symndx(), got_type);
5138 got->add_static_reloc(got_offset + size/8, r_type2,
5139 entry->object(), entry->symndx());
5140 }
5141 else
5142 {
5143 // We are doing a static link. Mark it as belong to module 1,
5144 // the executable.
5145 unsigned int got_offset = got->add_constant(1);
5146 entry->object()->set_local_got_offset(entry->symndx(), got_type,
5147 got_offset);
5148 got->add_constant(0);
5149 got->add_static_reloc(got_offset + size/8, r_type2,
5150 entry->object(), entry->symndx());
5151 }
5152 }
5153 else if (entry->tls_type() == GOT_TLS_IE)
5154 {
5155 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
5156 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5157 : elfcpp::R_MIPS_TLS_TPREL64);
5158 if (!parameters->doing_static_link())
5159 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
5160 target->rel_dyn_section(layout), r_type);
5161 else
5162 {
5163 got->add_local(entry->object(), entry->symndx(), got_type);
5164 unsigned int got_offset =
5165 entry->object()->local_got_offset(entry->symndx(), got_type);
5166 got->add_static_reloc(got_offset, r_type, entry->object(),
5167 entry->symndx());
5168 }
5169 }
5170 else if (entry->tls_type() == GOT_TLS_LDM)
5171 {
5172 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5173 : elfcpp::R_MIPS_TLS_DTPMOD64);
5174 unsigned int got_offset;
5175 if (!parameters->doing_static_link())
5176 {
5177 got_offset = got->add_constant(0);
5178 target->rel_dyn_section(layout)->add_local(
5179 entry->object(), 0, r_type, got, got_offset);
5180 }
5181 else
5182 // We are doing a static link. Just mark it as belong to module 1,
5183 // the executable.
5184 got_offset = got->add_constant(1);
5185
5186 got->add_constant(0);
5187 got->set_tls_ldm_offset(got_offset, entry->object());
5188 }
5189 else
5190 gold_unreachable();
5191 }
5192
5193 // Add global tls entries.
5194 for (typename Got_entry_set::iterator
5195 p = this->got_entries_.begin();
5196 p != this->got_entries_.end();
5197 ++p)
5198 {
5199 Mips_got_entry<size, big_endian>* entry = *p;
5200 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
5201 continue;
5202
5203 Mips_symbol<size>* mips_sym = entry->sym();
5204 if (entry->tls_type() == GOT_TLS_GD)
5205 {
5206 unsigned int got_type;
5207 if (!got->multi_got())
5208 got_type = GOT_TYPE_TLS_PAIR;
5209 else
5210 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
5211 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5212 : elfcpp::R_MIPS_TLS_DTPMOD64);
5213 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5214 : elfcpp::R_MIPS_TLS_DTPREL64);
5215 if (!parameters->doing_static_link())
5216 got->add_global_pair_with_rel(mips_sym, got_type,
5217 target->rel_dyn_section(layout), r_type1, r_type2);
5218 else
5219 {
5220 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
5221 // GOT entries. The first one is initialized to be 1, which is the
5222 // module index for the main executable and the second one 0. A
5223 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
5224 // the second GOT entry and will be applied by gold.
5225 unsigned int got_offset = got->add_constant(1);
5226 mips_sym->set_got_offset(got_type, got_offset);
5227 got->add_constant(0);
5228 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
5229 }
5230 }
5231 else if (entry->tls_type() == GOT_TLS_IE)
5232 {
5233 unsigned int got_type;
5234 if (!got->multi_got())
5235 got_type = GOT_TYPE_TLS_OFFSET;
5236 else
5237 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
5238 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5239 : elfcpp::R_MIPS_TLS_TPREL64);
5240 if (!parameters->doing_static_link())
5241 got->add_global_with_rel(mips_sym, got_type,
5242 target->rel_dyn_section(layout), r_type);
5243 else
5244 {
5245 got->add_global(mips_sym, got_type);
5246 unsigned int got_offset = mips_sym->got_offset(got_type);
5247 got->add_static_reloc(got_offset, r_type, mips_sym);
5248 }
5249 }
5250 else
5251 gold_unreachable();
5252 }
5253 }
5254
5255 // Decide whether the symbol needs an entry in the global part of the primary
5256 // GOT, setting global_got_area accordingly. Count the number of global
5257 // symbols that are in the primary GOT only because they have dynamic
5258 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
5259
5260 template<int size, bool big_endian>
5261 void
5262 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
5263 {
5264 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5265 p = this->global_got_symbols_.begin();
5266 p != this->global_got_symbols_.end();
5267 ++p)
5268 {
5269 Mips_symbol<size>* sym = *p;
5270 // Make a final decision about whether the symbol belongs in the
5271 // local or global GOT. Symbols that bind locally can (and in the
5272 // case of forced-local symbols, must) live in the local GOT.
5273 // Those that are aren't in the dynamic symbol table must also
5274 // live in the local GOT.
5275
5276 if (!sym->should_add_dynsym_entry(symtab)
5277 || (sym->got_only_for_calls()
5278 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
5279 : symbol_references_local(sym,
5280 sym->should_add_dynsym_entry(symtab))))
5281 // The symbol belongs in the local GOT. We no longer need this
5282 // entry if it was only used for relocations; those relocations
5283 // will be against the null or section symbol instead.
5284 sym->set_global_got_area(GGA_NONE);
5285 else if (sym->global_got_area() == GGA_RELOC_ONLY)
5286 {
5287 ++this->reloc_only_gotno_;
5288 ++this->global_gotno_ ;
5289 }
5290 }
5291 }
5292
5293 // Return the offset of GOT page entry for VALUE. Initialize the entry with
5294 // VALUE if it is not initialized.
5295
5296 template<int size, bool big_endian>
5297 unsigned int
5298 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
5299 Mips_output_data_got<size, big_endian>* got)
5300 {
5301 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
5302 if (it != this->got_page_offsets_.end())
5303 return it->second;
5304
5305 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
5306 + (size/8) * this->page_gotno_);
5307
5308 unsigned int got_offset = this->got_page_offset_next_;
5309 this->got_page_offsets_[value] = got_offset;
5310 this->got_page_offset_next_ += size/8;
5311 got->update_got_entry(got_offset, value);
5312 return got_offset;
5313 }
5314
5315 // Remove lazy-binding stubs for global symbols in this GOT.
5316
5317 template<int size, bool big_endian>
5318 void
5319 Mips_got_info<size, big_endian>::remove_lazy_stubs(
5320 Target_mips<size, big_endian>* target)
5321 {
5322 for (typename Got_entry_set::iterator
5323 p = this->got_entries_.begin();
5324 p != this->got_entries_.end();
5325 ++p)
5326 {
5327 Mips_got_entry<size, big_endian>* entry = *p;
5328 if (entry->is_for_global_symbol())
5329 target->remove_lazy_stub_entry(entry->sym());
5330 }
5331 }
5332
5333 // Count the number of GOT entries required.
5334
5335 template<int size, bool big_endian>
5336 void
5337 Mips_got_info<size, big_endian>::count_got_entries()
5338 {
5339 for (typename Got_entry_set::iterator
5340 p = this->got_entries_.begin();
5341 p != this->got_entries_.end();
5342 ++p)
5343 {
5344 this->count_got_entry(*p);
5345 }
5346 }
5347
5348 // Count the number of GOT entries required by ENTRY. Accumulate the result.
5349
5350 template<int size, bool big_endian>
5351 void
5352 Mips_got_info<size, big_endian>::count_got_entry(
5353 Mips_got_entry<size, big_endian>* entry)
5354 {
5355 if (entry->is_tls_entry())
5356 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
5357 else if (entry->is_for_local_symbol()
5358 || entry->sym()->global_got_area() == GGA_NONE)
5359 ++this->local_gotno_;
5360 else
5361 ++this->global_gotno_;
5362 }
5363
5364 // Add FROM's GOT entries.
5365
5366 template<int size, bool big_endian>
5367 void
5368 Mips_got_info<size, big_endian>::add_got_entries(
5369 Mips_got_info<size, big_endian>* from)
5370 {
5371 for (typename Got_entry_set::iterator
5372 p = from->got_entries_.begin();
5373 p != from->got_entries_.end();
5374 ++p)
5375 {
5376 Mips_got_entry<size, big_endian>* entry = *p;
5377 if (this->got_entries_.find(entry) == this->got_entries_.end())
5378 {
5379 Mips_got_entry<size, big_endian>* entry2 =
5380 new Mips_got_entry<size, big_endian>(*entry);
5381 this->got_entries_.insert(entry2);
5382 this->count_got_entry(entry);
5383 }
5384 }
5385 }
5386
5387 // Add FROM's GOT page entries.
5388
5389 template<int size, bool big_endian>
5390 void
5391 Mips_got_info<size, big_endian>::add_got_page_entries(
5392 Mips_got_info<size, big_endian>* from)
5393 {
5394 for (typename Got_page_entry_set::iterator
5395 p = from->got_page_entries_.begin();
5396 p != from->got_page_entries_.end();
5397 ++p)
5398 {
5399 Got_page_entry* entry = *p;
5400 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
5401 {
5402 Got_page_entry* entry2 = new Got_page_entry(*entry);
5403 this->got_page_entries_.insert(entry2);
5404 this->page_gotno_ += entry->num_pages;
5405 }
5406 }
5407 }
5408
5409 // Mips_output_data_got methods.
5410
5411 // Lay out the GOT. Add local, global and TLS entries. If GOT is
5412 // larger than 64K, create multi-GOT.
5413
5414 template<int size, bool big_endian>
5415 void
5416 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
5417 Symbol_table* symtab, const Input_objects* input_objects)
5418 {
5419 // Decide which symbols need to go in the global part of the GOT and
5420 // count the number of reloc-only GOT symbols.
5421 this->master_got_info_->count_got_symbols(symtab);
5422
5423 // Count the number of GOT entries.
5424 this->master_got_info_->count_got_entries();
5425
5426 unsigned int got_size = this->master_got_info_->got_size();
5427 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
5428 this->lay_out_multi_got(layout, input_objects);
5429 else
5430 {
5431 // Record that all objects use single GOT.
5432 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5433 p != input_objects->relobj_end();
5434 ++p)
5435 {
5436 Mips_relobj<size, big_endian>* object =
5437 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5438 if (object->get_got_info() != NULL)
5439 object->set_got_info(this->master_got_info_);
5440 }
5441
5442 this->master_got_info_->add_local_entries(this->target_, layout);
5443 this->master_got_info_->add_global_entries(this->target_, layout,
5444 /*not used*/-1U);
5445 this->master_got_info_->add_tls_entries(this->target_, layout);
5446 }
5447 }
5448
5449 // Create multi-GOT. For every GOT, add local, global and TLS entries.
5450
5451 template<int size, bool big_endian>
5452 void
5453 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
5454 const Input_objects* input_objects)
5455 {
5456 // Try to merge the GOTs of input objects together, as long as they
5457 // don't seem to exceed the maximum GOT size, choosing one of them
5458 // to be the primary GOT.
5459 this->merge_gots(input_objects);
5460
5461 // Every symbol that is referenced in a dynamic relocation must be
5462 // present in the primary GOT.
5463 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
5464
5465 // Add GOT entries.
5466 unsigned int i = 0;
5467 unsigned int offset = 0;
5468 Mips_got_info<size, big_endian>* g = this->primary_got_;
5469 do
5470 {
5471 g->set_index(i);
5472 g->set_offset(offset);
5473
5474 g->add_local_entries(this->target_, layout);
5475 if (i == 0)
5476 g->add_global_entries(this->target_, layout,
5477 (this->master_got_info_->global_gotno()
5478 - this->master_got_info_->reloc_only_gotno()));
5479 else
5480 g->add_global_entries(this->target_, layout, /*not used*/-1U);
5481 g->add_tls_entries(this->target_, layout);
5482
5483 // Forbid global symbols in every non-primary GOT from having
5484 // lazy-binding stubs.
5485 if (i > 0)
5486 g->remove_lazy_stubs(this->target_);
5487
5488 ++i;
5489 offset += g->got_size();
5490 g = g->next();
5491 }
5492 while (g);
5493 }
5494
5495 // Attempt to merge GOTs of different input objects. Try to use as much as
5496 // possible of the primary GOT, since it doesn't require explicit dynamic
5497 // relocations, but don't use objects that would reference global symbols
5498 // out of the addressable range. Failing the primary GOT, attempt to merge
5499 // with the current GOT, or finish the current GOT and then make make the new
5500 // GOT current.
5501
5502 template<int size, bool big_endian>
5503 void
5504 Mips_output_data_got<size, big_endian>::merge_gots(
5505 const Input_objects* input_objects)
5506 {
5507 gold_assert(this->primary_got_ == NULL);
5508 Mips_got_info<size, big_endian>* current = NULL;
5509
5510 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5511 p != input_objects->relobj_end();
5512 ++p)
5513 {
5514 Mips_relobj<size, big_endian>* object =
5515 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5516
5517 Mips_got_info<size, big_endian>* g = object->get_got_info();
5518 if (g == NULL)
5519 continue;
5520
5521 g->count_got_entries();
5522
5523 // Work out the number of page, local and TLS entries.
5524 unsigned int estimate = this->master_got_info_->page_gotno();
5525 if (estimate > g->page_gotno())
5526 estimate = g->page_gotno();
5527 estimate += g->local_gotno() + g->tls_gotno();
5528
5529 // We place TLS GOT entries after both locals and globals. The globals
5530 // for the primary GOT may overflow the normal GOT size limit, so be
5531 // sure not to merge a GOT which requires TLS with the primary GOT in that
5532 // case. This doesn't affect non-primary GOTs.
5533 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
5534 : g->global_gotno());
5535
5536 unsigned int max_count =
5537 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5538 if (estimate <= max_count)
5539 {
5540 // If we don't have a primary GOT, use it as
5541 // a starting point for the primary GOT.
5542 if (!this->primary_got_)
5543 {
5544 this->primary_got_ = g;
5545 continue;
5546 }
5547
5548 // Try merging with the primary GOT.
5549 if (this->merge_got_with(g, object, this->primary_got_))
5550 continue;
5551 }
5552
5553 // If we can merge with the last-created GOT, do it.
5554 if (current && this->merge_got_with(g, object, current))
5555 continue;
5556
5557 // Well, we couldn't merge, so create a new GOT. Don't check if it
5558 // fits; if it turns out that it doesn't, we'll get relocation
5559 // overflows anyway.
5560 g->set_next(current);
5561 current = g;
5562 }
5563
5564 // If we do not find any suitable primary GOT, create an empty one.
5565 if (this->primary_got_ == NULL)
5566 this->primary_got_ = new Mips_got_info<size, big_endian>();
5567
5568 // Link primary GOT with secondary GOTs.
5569 this->primary_got_->set_next(current);
5570 }
5571
5572 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
5573 // this would lead to overflow, true if they were merged successfully.
5574
5575 template<int size, bool big_endian>
5576 bool
5577 Mips_output_data_got<size, big_endian>::merge_got_with(
5578 Mips_got_info<size, big_endian>* from,
5579 Mips_relobj<size, big_endian>* object,
5580 Mips_got_info<size, big_endian>* to)
5581 {
5582 // Work out how many page entries we would need for the combined GOT.
5583 unsigned int estimate = this->master_got_info_->page_gotno();
5584 if (estimate >= from->page_gotno() + to->page_gotno())
5585 estimate = from->page_gotno() + to->page_gotno();
5586
5587 // Conservatively estimate how many local and TLS entries would be needed.
5588 estimate += from->local_gotno() + to->local_gotno();
5589 estimate += from->tls_gotno() + to->tls_gotno();
5590
5591 // If we're merging with the primary got, any TLS relocations will
5592 // come after the full set of global entries. Otherwise estimate those
5593 // conservatively as well.
5594 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
5595 estimate += this->master_got_info_->global_gotno();
5596 else
5597 estimate += from->global_gotno() + to->global_gotno();
5598
5599 // Bail out if the combined GOT might be too big.
5600 unsigned int max_count =
5601 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5602 if (estimate > max_count)
5603 return false;
5604
5605 // Transfer the object's GOT information from FROM to TO.
5606 to->add_got_entries(from);
5607 to->add_got_page_entries(from);
5608
5609 // Record that OBJECT should use output GOT TO.
5610 object->set_got_info(to);
5611
5612 return true;
5613 }
5614
5615 // Write out the GOT.
5616
5617 template<int size, bool big_endian>
5618 void
5619 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
5620 {
5621 // Call parent to write out GOT.
5622 Output_data_got<size, big_endian>::do_write(of);
5623
5624 const off_t offset = this->offset();
5625 const section_size_type oview_size =
5626 convert_to_section_size_type(this->data_size());
5627 unsigned char* const oview = of->get_output_view(offset, oview_size);
5628
5629 // Needed for fixing values of .got section.
5630 this->got_view_ = oview;
5631
5632 // Write lazy stub addresses.
5633 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5634 p = this->master_got_info_->global_got_symbols().begin();
5635 p != this->master_got_info_->global_got_symbols().end();
5636 ++p)
5637 {
5638 Mips_symbol<size>* mips_sym = *p;
5639 if (mips_sym->has_lazy_stub())
5640 {
5641 Valtype* wv = reinterpret_cast<Valtype*>(
5642 oview + this->get_primary_got_offset(mips_sym));
5643 Valtype value =
5644 this->target_->mips_stubs_section()->stub_address(mips_sym);
5645 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5646 }
5647 }
5648
5649 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
5650 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5651 p = this->master_got_info_->global_got_symbols().begin();
5652 p != this->master_got_info_->global_got_symbols().end();
5653 ++p)
5654 {
5655 Mips_symbol<size>* mips_sym = *p;
5656 if (!this->multi_got()
5657 && (mips_sym->is_mips16() || mips_sym->is_micromips())
5658 && mips_sym->global_got_area() == GGA_NONE
5659 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
5660 {
5661 Valtype* wv = reinterpret_cast<Valtype*>(
5662 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
5663 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
5664 if (value != 0)
5665 {
5666 value |= 1;
5667 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5668 }
5669 }
5670 }
5671
5672 if (!this->secondary_got_relocs_.empty())
5673 {
5674 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
5675 // secondary GOT entries with non-zero initial value copy the value
5676 // to the corresponding primary GOT entry, and set the secondary GOT
5677 // entry to zero.
5678 // TODO(sasa): This is workaround. It needs to be investigated further.
5679
5680 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
5681 {
5682 Static_reloc& reloc(this->secondary_got_relocs_[i]);
5683 if (reloc.symbol_is_global())
5684 {
5685 Mips_symbol<size>* gsym = reloc.symbol();
5686 gold_assert(gsym != NULL);
5687
5688 unsigned got_offset = reloc.got_offset();
5689 gold_assert(got_offset < oview_size);
5690
5691 // Find primary GOT entry.
5692 Valtype* wv_prim = reinterpret_cast<Valtype*>(
5693 oview + this->get_primary_got_offset(gsym));
5694
5695 // Find secondary GOT entry.
5696 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
5697
5698 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
5699 if (value != 0)
5700 {
5701 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
5702 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
5703 gsym->set_applied_secondary_got_fixup();
5704 }
5705 }
5706 }
5707
5708 of->write_output_view(offset, oview_size, oview);
5709 }
5710
5711 // We are done if there is no fix up.
5712 if (this->static_relocs_.empty())
5713 return;
5714
5715 Output_segment* tls_segment = this->layout_->tls_segment();
5716 gold_assert(tls_segment != NULL);
5717
5718 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
5719 {
5720 Static_reloc& reloc(this->static_relocs_[i]);
5721
5722 Mips_address value;
5723 if (!reloc.symbol_is_global())
5724 {
5725 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
5726 const Symbol_value<size>* psymval =
5727 object->local_symbol(reloc.index());
5728
5729 // We are doing static linking. Issue an error and skip this
5730 // relocation if the symbol is undefined or in a discarded_section.
5731 bool is_ordinary;
5732 unsigned int shndx = psymval->input_shndx(&is_ordinary);
5733 if ((shndx == elfcpp::SHN_UNDEF)
5734 || (is_ordinary
5735 && shndx != elfcpp::SHN_UNDEF
5736 && !object->is_section_included(shndx)
5737 && !this->symbol_table_->is_section_folded(object, shndx)))
5738 {
5739 gold_error(_("undefined or discarded local symbol %u from "
5740 " object %s in GOT"),
5741 reloc.index(), reloc.relobj()->name().c_str());
5742 continue;
5743 }
5744
5745 value = psymval->value(object, 0);
5746 }
5747 else
5748 {
5749 const Mips_symbol<size>* gsym = reloc.symbol();
5750 gold_assert(gsym != NULL);
5751
5752 // We are doing static linking. Issue an error and skip this
5753 // relocation if the symbol is undefined or in a discarded_section
5754 // unless it is a weakly_undefined symbol.
5755 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
5756 && !gsym->is_weak_undefined())
5757 {
5758 gold_error(_("undefined or discarded symbol %s in GOT"),
5759 gsym->name());
5760 continue;
5761 }
5762
5763 if (!gsym->is_weak_undefined())
5764 value = gsym->value();
5765 else
5766 value = 0;
5767 }
5768
5769 unsigned got_offset = reloc.got_offset();
5770 gold_assert(got_offset < oview_size);
5771
5772 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
5773 Valtype x;
5774
5775 switch (reloc.r_type())
5776 {
5777 case elfcpp::R_MIPS_TLS_DTPMOD32:
5778 case elfcpp::R_MIPS_TLS_DTPMOD64:
5779 x = value;
5780 break;
5781 case elfcpp::R_MIPS_TLS_DTPREL32:
5782 case elfcpp::R_MIPS_TLS_DTPREL64:
5783 x = value - elfcpp::DTP_OFFSET;
5784 break;
5785 case elfcpp::R_MIPS_TLS_TPREL32:
5786 case elfcpp::R_MIPS_TLS_TPREL64:
5787 x = value - elfcpp::TP_OFFSET;
5788 break;
5789 default:
5790 gold_unreachable();
5791 break;
5792 }
5793
5794 elfcpp::Swap<size, big_endian>::writeval(wv, x);
5795 }
5796
5797 of->write_output_view(offset, oview_size, oview);
5798 }
5799
5800 // Mips_relobj methods.
5801
5802 // Count the local symbols. The Mips backend needs to know if a symbol
5803 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
5804 // because the Symbol object keeps the ELF symbol type and st_other field.
5805 // For local symbol it is harder because we cannot access this information.
5806 // So we override the do_count_local_symbol in parent and scan local symbols to
5807 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
5808 // I do not want to slow down other ports by calling a per symbol target hook
5809 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
5810
5811 template<int size, bool big_endian>
5812 void
5813 Mips_relobj<size, big_endian>::do_count_local_symbols(
5814 Stringpool_template<char>* pool,
5815 Stringpool_template<char>* dynpool)
5816 {
5817 // Ask parent to count the local symbols.
5818 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
5819 const unsigned int loccount = this->local_symbol_count();
5820 if (loccount == 0)
5821 return;
5822
5823 // Initialize the mips16 and micromips function bit-vector.
5824 this->local_symbol_is_mips16_.resize(loccount, false);
5825 this->local_symbol_is_micromips_.resize(loccount, false);
5826
5827 // Read the symbol table section header.
5828 const unsigned int symtab_shndx = this->symtab_shndx();
5829 elfcpp::Shdr<size, big_endian>
5830 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
5831 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
5832
5833 // Read the local symbols.
5834 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
5835 gold_assert(loccount == symtabshdr.get_sh_info());
5836 off_t locsize = loccount * sym_size;
5837 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
5838 locsize, true, true);
5839
5840 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
5841
5842 // Skip the first dummy symbol.
5843 psyms += sym_size;
5844 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
5845 {
5846 elfcpp::Sym<size, big_endian> sym(psyms);
5847 unsigned char st_other = sym.get_st_other();
5848 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
5849 this->local_symbol_is_micromips_[i] =
5850 elfcpp::elf_st_is_micromips(st_other);
5851 }
5852 }
5853
5854 // Read the symbol information.
5855
5856 template<int size, bool big_endian>
5857 void
5858 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
5859 {
5860 // Call parent class to read symbol information.
5861 this->base_read_symbols(sd);
5862
5863 // Read processor-specific flags in ELF file header.
5864 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
5865 elfcpp::Elf_sizes<size>::ehdr_size,
5866 true, false);
5867 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
5868 this->processor_specific_flags_ = ehdr.get_e_flags();
5869
5870 // Get the section names.
5871 const unsigned char* pnamesu = sd->section_names->data();
5872 const char* pnames = reinterpret_cast<const char*>(pnamesu);
5873
5874 // Initialize the mips16 stub section bit-vectors.
5875 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
5876 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
5877 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
5878
5879 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
5880 const unsigned char* pshdrs = sd->section_headers->data();
5881 const unsigned char* ps = pshdrs + shdr_size;
5882 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
5883 {
5884 elfcpp::Shdr<size, big_endian> shdr(ps);
5885
5886 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
5887 {
5888 // Read the gp value that was used to create this object. We need the
5889 // gp value while processing relocs. The .reginfo section is not used
5890 // in the 64-bit MIPS ELF ABI.
5891 section_offset_type section_offset = shdr.get_sh_offset();
5892 section_size_type section_size =
5893 convert_to_section_size_type(shdr.get_sh_size());
5894 const unsigned char* view =
5895 this->get_view(section_offset, section_size, true, false);
5896
5897 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
5898
5899 // Read the rest of .reginfo.
5900 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
5901 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
5902 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
5903 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
5904 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
5905 }
5906
5907 const char* name = pnames + shdr.get_sh_name();
5908 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
5909 this->section_is_mips16_call_stub_[i] =
5910 is_prefix_of(".mips16.call.", name);
5911 this->section_is_mips16_call_fp_stub_[i] =
5912 is_prefix_of(".mips16.call.fp.", name);
5913
5914 if (strcmp(name, ".pdr") == 0)
5915 {
5916 gold_assert(this->pdr_shndx_ == -1U);
5917 this->pdr_shndx_ = i;
5918 }
5919 }
5920 }
5921
5922 // Discard MIPS16 stub secions that are not needed.
5923
5924 template<int size, bool big_endian>
5925 void
5926 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
5927 {
5928 for (typename Mips16_stubs_int_map::const_iterator
5929 it = this->mips16_stub_sections_.begin();
5930 it != this->mips16_stub_sections_.end(); ++it)
5931 {
5932 Mips16_stub_section<size, big_endian>* stub_section = it->second;
5933 if (!stub_section->is_target_found())
5934 {
5935 gold_error(_("no relocation found in mips16 stub section '%s'"),
5936 stub_section->object()
5937 ->section_name(stub_section->shndx()).c_str());
5938 }
5939
5940 bool discard = false;
5941 if (stub_section->is_for_local_function())
5942 {
5943 if (stub_section->is_fn_stub())
5944 {
5945 // This stub is for a local symbol. This stub will only
5946 // be needed if there is some relocation in this object,
5947 // other than a 16 bit function call, which refers to this
5948 // symbol.
5949 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
5950 discard = true;
5951 else
5952 this->add_local_mips16_fn_stub(stub_section);
5953 }
5954 else
5955 {
5956 // This stub is for a local symbol. This stub will only
5957 // be needed if there is some relocation (R_MIPS16_26) in
5958 // this object that refers to this symbol.
5959 gold_assert(stub_section->is_call_stub()
5960 || stub_section->is_call_fp_stub());
5961 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
5962 discard = true;
5963 else
5964 this->add_local_mips16_call_stub(stub_section);
5965 }
5966 }
5967 else
5968 {
5969 Mips_symbol<size>* gsym = stub_section->gsym();
5970 if (stub_section->is_fn_stub())
5971 {
5972 if (gsym->has_mips16_fn_stub())
5973 // We already have a stub for this function.
5974 discard = true;
5975 else
5976 {
5977 gsym->set_mips16_fn_stub(stub_section);
5978 if (gsym->should_add_dynsym_entry(symtab))
5979 {
5980 // If we have a MIPS16 function with a stub, the
5981 // dynamic symbol must refer to the stub, since only
5982 // the stub uses the standard calling conventions.
5983 gsym->set_need_fn_stub();
5984 if (gsym->is_from_dynobj())
5985 gsym->set_needs_dynsym_value();
5986 }
5987 }
5988 if (!gsym->need_fn_stub())
5989 discard = true;
5990 }
5991 else if (stub_section->is_call_stub())
5992 {
5993 if (gsym->is_mips16())
5994 // We don't need the call_stub; this is a 16 bit
5995 // function, so calls from other 16 bit functions are
5996 // OK.
5997 discard = true;
5998 else if (gsym->has_mips16_call_stub())
5999 // We already have a stub for this function.
6000 discard = true;
6001 else
6002 gsym->set_mips16_call_stub(stub_section);
6003 }
6004 else
6005 {
6006 gold_assert(stub_section->is_call_fp_stub());
6007 if (gsym->is_mips16())
6008 // We don't need the call_stub; this is a 16 bit
6009 // function, so calls from other 16 bit functions are
6010 // OK.
6011 discard = true;
6012 else if (gsym->has_mips16_call_fp_stub())
6013 // We already have a stub for this function.
6014 discard = true;
6015 else
6016 gsym->set_mips16_call_fp_stub(stub_section);
6017 }
6018 }
6019 if (discard)
6020 this->set_output_section(stub_section->shndx(), NULL);
6021 }
6022 }
6023
6024 // Mips_output_data_la25_stub methods.
6025
6026 // Template for standard LA25 stub.
6027 template<int size, bool big_endian>
6028 const uint32_t
6029 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
6030 {
6031 0x3c190000, // lui $25,%hi(func)
6032 0x08000000, // j func
6033 0x27390000, // add $25,$25,%lo(func)
6034 0x00000000 // nop
6035 };
6036
6037 // Template for microMIPS LA25 stub.
6038 template<int size, bool big_endian>
6039 const uint32_t
6040 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
6041 {
6042 0x41b9, 0x0000, // lui t9,%hi(func)
6043 0xd400, 0x0000, // j func
6044 0x3339, 0x0000, // addiu t9,t9,%lo(func)
6045 0x0000, 0x0000 // nop
6046 };
6047
6048 // Create la25 stub for a symbol.
6049
6050 template<int size, bool big_endian>
6051 void
6052 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
6053 Symbol_table* symtab, Target_mips<size, big_endian>* target,
6054 Mips_symbol<size>* gsym)
6055 {
6056 if (!gsym->has_la25_stub())
6057 {
6058 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
6059 this->symbols_.insert(gsym);
6060 this->create_stub_symbol(gsym, symtab, target, 16);
6061 }
6062 }
6063
6064 // Create a symbol for SYM stub's value and size, to help make the disassembly
6065 // easier to read.
6066
6067 template<int size, bool big_endian>
6068 void
6069 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
6070 Mips_symbol<size>* sym, Symbol_table* symtab,
6071 Target_mips<size, big_endian>* target, uint64_t symsize)
6072 {
6073 std::string name(".pic.");
6074 name += sym->name();
6075
6076 unsigned int offset = sym->la25_stub_offset();
6077 if (sym->is_micromips())
6078 offset |= 1;
6079
6080 // Make it a local function.
6081 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
6082 Symbol_table::PREDEFINED,
6083 target->la25_stub_section(),
6084 offset, symsize, elfcpp::STT_FUNC,
6085 elfcpp::STB_LOCAL,
6086 elfcpp::STV_DEFAULT, 0,
6087 false, false);
6088 new_sym->set_is_forced_local();
6089 }
6090
6091 // Write out la25 stubs. This uses the hand-coded instructions above,
6092 // and adjusts them as needed.
6093
6094 template<int size, bool big_endian>
6095 void
6096 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
6097 {
6098 const off_t offset = this->offset();
6099 const section_size_type oview_size =
6100 convert_to_section_size_type(this->data_size());
6101 unsigned char* const oview = of->get_output_view(offset, oview_size);
6102
6103 for (typename Unordered_set<Mips_symbol<size>*>::iterator
6104 p = this->symbols_.begin();
6105 p != this->symbols_.end();
6106 ++p)
6107 {
6108 Mips_symbol<size>* sym = *p;
6109 unsigned char* pov = oview + sym->la25_stub_offset();
6110
6111 Mips_address target = sym->value();
6112 if (!sym->is_micromips())
6113 {
6114 elfcpp::Swap<32, big_endian>::writeval(pov,
6115 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
6116 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6117 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
6118 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6119 la25_stub_entry[2] | (target & 0xffff));
6120 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
6121 }
6122 else
6123 {
6124 target |= 1;
6125 // First stub instruction. Paste high 16-bits of the target.
6126 elfcpp::Swap<16, big_endian>::writeval(pov,
6127 la25_stub_micromips_entry[0]);
6128 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6129 ((target + 0x8000) >> 16) & 0xffff);
6130 // Second stub instruction. Paste low 26-bits of the target, shifted
6131 // right by 1.
6132 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
6133 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
6134 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
6135 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
6136 // Third stub instruction. Paste low 16-bits of the target.
6137 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
6138 la25_stub_micromips_entry[4]);
6139 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
6140 // Fourth stub instruction.
6141 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
6142 la25_stub_micromips_entry[6]);
6143 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
6144 la25_stub_micromips_entry[7]);
6145 }
6146 }
6147
6148 of->write_output_view(offset, oview_size, oview);
6149 }
6150
6151 // Mips_output_data_plt methods.
6152
6153 // The format of the first PLT entry in an O32 executable.
6154 template<int size, bool big_endian>
6155 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
6156 {
6157 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
6158 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
6159 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
6160 0x031cc023, // subu $24, $24, $28
6161 0x03e07821, // move $15, $31 # 32-bit move (addu)
6162 0x0018c082, // srl $24, $24, 2
6163 0x0320f809, // jalr $25
6164 0x2718fffe // subu $24, $24, 2
6165 };
6166
6167 // The format of the first PLT entry in an N32 executable. Different
6168 // because gp ($28) is not available; we use t2 ($14) instead.
6169 template<int size, bool big_endian>
6170 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
6171 {
6172 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6173 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
6174 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6175 0x030ec023, // subu $24, $24, $14
6176 0x03e07821, // move $15, $31 # 32-bit move (addu)
6177 0x0018c082, // srl $24, $24, 2
6178 0x0320f809, // jalr $25
6179 0x2718fffe // subu $24, $24, 2
6180 };
6181
6182 // The format of the first PLT entry in an N64 executable. Different
6183 // from N32 because of the increased size of GOT entries.
6184 template<int size, bool big_endian>
6185 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
6186 {
6187 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6188 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
6189 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6190 0x030ec023, // subu $24, $24, $14
6191 0x03e07821, // move $15, $31 # 64-bit move (daddu)
6192 0x0018c0c2, // srl $24, $24, 3
6193 0x0320f809, // jalr $25
6194 0x2718fffe // subu $24, $24, 2
6195 };
6196
6197 // The format of the microMIPS first PLT entry in an O32 executable.
6198 // We rely on v0 ($2) rather than t8 ($24) to contain the address
6199 // of the GOTPLT entry handled, so this stub may only be used when
6200 // all the subsequent PLT entries are microMIPS code too.
6201 //
6202 // The trailing NOP is for alignment and correct disassembly only.
6203 template<int size, bool big_endian>
6204 const uint32_t Mips_output_data_plt<size, big_endian>::
6205 plt0_entry_micromips_o32[] =
6206 {
6207 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
6208 0xff23, 0x0000, // lw $25, 0($3)
6209 0x0535, // subu $2, $2, $3
6210 0x2525, // srl $2, $2, 2
6211 0x3302, 0xfffe, // subu $24, $2, 2
6212 0x0dff, // move $15, $31
6213 0x45f9, // jalrs $25
6214 0x0f83, // move $28, $3
6215 0x0c00 // nop
6216 };
6217
6218 // The format of the microMIPS first PLT entry in an O32 executable
6219 // in the insn32 mode.
6220 template<int size, bool big_endian>
6221 const uint32_t Mips_output_data_plt<size, big_endian>::
6222 plt0_entry_micromips32_o32[] =
6223 {
6224 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
6225 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
6226 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
6227 0x0398, 0xc1d0, // subu $24, $24, $28
6228 0x001f, 0x7950, // move $15, $31
6229 0x0318, 0x1040, // srl $24, $24, 2
6230 0x03f9, 0x0f3c, // jalr $25
6231 0x3318, 0xfffe // subu $24, $24, 2
6232 };
6233
6234 // The format of subsequent standard entries in the PLT.
6235 template<int size, bool big_endian>
6236 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
6237 {
6238 0x3c0f0000, // lui $15, %hi(.got.plt entry)
6239 0x8df90000, // l[wd] $25, %lo(.got.plt entry)($15)
6240 0x03200008, // jr $25
6241 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
6242 };
6243
6244 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
6245 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
6246 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
6247 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
6248 // target function address in register v0.
6249 template<int size, bool big_endian>
6250 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
6251 {
6252 0xb303, // lw $3, 12($pc)
6253 0x651b, // move $24, $3
6254 0x9b60, // lw $3, 0($3)
6255 0xeb00, // jr $3
6256 0x653b, // move $25, $3
6257 0x6500, // nop
6258 0x0000, 0x0000 // .word (.got.plt entry)
6259 };
6260
6261 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
6262 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
6263 template<int size, bool big_endian>
6264 const uint32_t Mips_output_data_plt<size, big_endian>::
6265 plt_entry_micromips_o32[] =
6266 {
6267 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
6268 0xff22, 0x0000, // lw $25, 0($2)
6269 0x4599, // jr $25
6270 0x0f02 // move $24, $2
6271 };
6272
6273 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
6274 template<int size, bool big_endian>
6275 const uint32_t Mips_output_data_plt<size, big_endian>::
6276 plt_entry_micromips32_o32[] =
6277 {
6278 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
6279 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
6280 0x0019, 0x0f3c, // jr $25
6281 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
6282 };
6283
6284 // Add an entry to the PLT for a symbol referenced by r_type relocation.
6285
6286 template<int size, bool big_endian>
6287 void
6288 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
6289 unsigned int r_type)
6290 {
6291 gold_assert(!gsym->has_plt_offset());
6292
6293 // Final PLT offset for a symbol will be set in method set_plt_offsets().
6294 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
6295 + sizeof(plt0_entry_o32));
6296 this->symbols_.push_back(gsym);
6297
6298 // Record whether the relocation requires a standard MIPS
6299 // or a compressed code entry.
6300 if (jal_reloc(r_type))
6301 {
6302 if (r_type == elfcpp::R_MIPS_26)
6303 gsym->set_needs_mips_plt(true);
6304 else
6305 gsym->set_needs_comp_plt(true);
6306 }
6307
6308 section_offset_type got_offset = this->got_plt_->current_data_size();
6309
6310 // Every PLT entry needs a GOT entry which points back to the PLT
6311 // entry (this will be changed by the dynamic linker, normally
6312 // lazily when the function is called).
6313 this->got_plt_->set_current_data_size(got_offset + size/8);
6314
6315 gsym->set_needs_dynsym_entry();
6316 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
6317 got_offset);
6318 }
6319
6320 // Set final PLT offsets. For each symbol, determine whether standard or
6321 // compressed (MIPS16 or microMIPS) PLT entry is used.
6322
6323 template<int size, bool big_endian>
6324 void
6325 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
6326 {
6327 // The sizes of individual PLT entries.
6328 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
6329 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
6330 ? this->compressed_plt_entry_size() : 0);
6331
6332 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6333 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6334 {
6335 Mips_symbol<size>* mips_sym = *p;
6336
6337 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
6338 // so always use a standard entry there.
6339 //
6340 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
6341 // all MIPS16 calls will go via that stub, and there is no benefit
6342 // to having a MIPS16 entry. And in the case of call_stub a
6343 // standard entry actually has to be used as the stub ends with a J
6344 // instruction.
6345 if (this->target_->is_output_newabi()
6346 || mips_sym->has_mips16_call_stub()
6347 || mips_sym->has_mips16_call_fp_stub())
6348 {
6349 mips_sym->set_needs_mips_plt(true);
6350 mips_sym->set_needs_comp_plt(false);
6351 }
6352
6353 // Otherwise, if there are no direct calls to the function, we
6354 // have a free choice of whether to use standard or compressed
6355 // entries. Prefer microMIPS entries if the object is known to
6356 // contain microMIPS code, so that it becomes possible to create
6357 // pure microMIPS binaries. Prefer standard entries otherwise,
6358 // because MIPS16 ones are no smaller and are usually slower.
6359 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
6360 {
6361 if (this->target_->is_output_micromips())
6362 mips_sym->set_needs_comp_plt(true);
6363 else
6364 mips_sym->set_needs_mips_plt(true);
6365 }
6366
6367 if (mips_sym->needs_mips_plt())
6368 {
6369 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
6370 this->plt_mips_offset_ += plt_mips_entry_size;
6371 }
6372 if (mips_sym->needs_comp_plt())
6373 {
6374 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
6375 this->plt_comp_offset_ += plt_comp_entry_size;
6376 }
6377 }
6378
6379 // Figure out the size of the PLT header if we know that we are using it.
6380 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
6381 this->plt_header_size_ = this->get_plt_header_size();
6382 }
6383
6384 // Write out the PLT. This uses the hand-coded instructions above,
6385 // and adjusts them as needed.
6386
6387 template<int size, bool big_endian>
6388 void
6389 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
6390 {
6391 const off_t offset = this->offset();
6392 const section_size_type oview_size =
6393 convert_to_section_size_type(this->data_size());
6394 unsigned char* const oview = of->get_output_view(offset, oview_size);
6395
6396 const off_t gotplt_file_offset = this->got_plt_->offset();
6397 const section_size_type gotplt_size =
6398 convert_to_section_size_type(this->got_plt_->data_size());
6399 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
6400 gotplt_size);
6401 unsigned char* pov = oview;
6402
6403 Mips_address plt_address = this->address();
6404
6405 // Calculate the address of .got.plt.
6406 Mips_address gotplt_addr = this->got_plt_->address();
6407 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
6408 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
6409
6410 // The PLT sequence is not safe for N64 if .got.plt's address can
6411 // not be loaded in two instructions.
6412 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
6413 || ~(gotplt_addr | 0x7fffffff) == 0);
6414
6415 // Write the PLT header.
6416 const uint32_t* plt0_entry = this->get_plt_header_entry();
6417 if (plt0_entry == plt0_entry_micromips_o32)
6418 {
6419 // Write microMIPS PLT header.
6420 gold_assert(gotplt_addr % 4 == 0);
6421
6422 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
6423
6424 // ADDIUPC has a span of +/-16MB, check we're in range.
6425 if (gotpc_offset + 0x1000000 >= 0x2000000)
6426 {
6427 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
6428 "ADDIUPC"), (long)gotpc_offset);
6429 return;
6430 }
6431
6432 elfcpp::Swap<16, big_endian>::writeval(pov,
6433 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6434 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6435 (gotpc_offset >> 2) & 0xffff);
6436 pov += 4;
6437 for (unsigned int i = 2;
6438 i < (sizeof(plt0_entry_micromips_o32)
6439 / sizeof(plt0_entry_micromips_o32[0]));
6440 i++)
6441 {
6442 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6443 pov += 2;
6444 }
6445 }
6446 else if (plt0_entry == plt0_entry_micromips32_o32)
6447 {
6448 // Write microMIPS PLT header in insn32 mode.
6449 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
6450 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
6451 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
6452 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
6453 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
6454 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
6455 pov += 12;
6456 for (unsigned int i = 6;
6457 i < (sizeof(plt0_entry_micromips32_o32)
6458 / sizeof(plt0_entry_micromips32_o32[0]));
6459 i++)
6460 {
6461 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6462 pov += 2;
6463 }
6464 }
6465 else
6466 {
6467 // Write standard PLT header.
6468 elfcpp::Swap<32, big_endian>::writeval(pov,
6469 plt0_entry[0] | gotplt_addr_high);
6470 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6471 plt0_entry[1] | gotplt_addr_low);
6472 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6473 plt0_entry[2] | gotplt_addr_low);
6474 pov += 12;
6475 for (int i = 3; i < 8; i++)
6476 {
6477 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
6478 pov += 4;
6479 }
6480 }
6481
6482
6483 unsigned char* gotplt_pov = gotplt_view;
6484 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
6485
6486 // The first two entries in .got.plt are reserved.
6487 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
6488 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
6489
6490 unsigned int gotplt_offset = 2 * got_entry_size;
6491 gotplt_pov += 2 * got_entry_size;
6492
6493 // Calculate the address of the PLT header.
6494 Mips_address header_address = (plt_address
6495 + (this->is_plt_header_compressed() ? 1 : 0));
6496
6497 // Initialize compressed PLT area view.
6498 unsigned char* pov2 = pov + this->plt_mips_offset_;
6499
6500 // Write the PLT entries.
6501 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6502 p = this->symbols_.begin();
6503 p != this->symbols_.end();
6504 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
6505 {
6506 Mips_symbol<size>* mips_sym = *p;
6507
6508 // Calculate the address of the .got.plt entry.
6509 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
6510 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
6511 & 0xffff);
6512 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
6513
6514 // Initially point the .got.plt entry at the PLT header.
6515 if (this->target_->is_output_n64())
6516 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
6517 else
6518 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
6519
6520 // Now handle the PLT itself. First the standard entry.
6521 if (mips_sym->has_mips_plt_offset())
6522 {
6523 // Pick the load opcode (LW or LD).
6524 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
6525 : 0x8c000000;
6526
6527 // Fill in the PLT entry itself.
6528 elfcpp::Swap<32, big_endian>::writeval(pov,
6529 plt_entry[0] | gotplt_entry_addr_hi);
6530 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6531 plt_entry[1] | gotplt_entry_addr_lo | load);
6532 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]);
6533 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
6534 plt_entry[3] | gotplt_entry_addr_lo);
6535 pov += 16;
6536 }
6537
6538 // Now the compressed entry. They come after any standard ones.
6539 if (mips_sym->has_comp_plt_offset())
6540 {
6541 if (!this->target_->is_output_micromips())
6542 {
6543 // Write MIPS16 PLT entry.
6544 const uint32_t* plt_entry = plt_entry_mips16_o32;
6545
6546 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6547 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
6548 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6549 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6550 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6551 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6552 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
6553 gotplt_entry_addr);
6554 pov2 += 16;
6555 }
6556 else if (this->target_->use_32bit_micromips_instructions())
6557 {
6558 // Write microMIPS PLT entry in insn32 mode.
6559 const uint32_t* plt_entry = plt_entry_micromips32_o32;
6560
6561 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6562 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
6563 gotplt_entry_addr_hi);
6564 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6565 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
6566 gotplt_entry_addr_lo);
6567 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6568 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6569 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
6570 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
6571 gotplt_entry_addr_lo);
6572 pov2 += 16;
6573 }
6574 else
6575 {
6576 // Write microMIPS PLT entry.
6577 const uint32_t* plt_entry = plt_entry_micromips_o32;
6578
6579 gold_assert(gotplt_entry_addr % 4 == 0);
6580
6581 Mips_address loc_address = plt_address + pov2 - oview;
6582 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
6583
6584 // ADDIUPC has a span of +/-16MB, check we're in range.
6585 if (gotpc_offset + 0x1000000 >= 0x2000000)
6586 {
6587 gold_error(_(".got.plt offset of %ld from .plt beyond the "
6588 "range of ADDIUPC"), (long)gotpc_offset);
6589 return;
6590 }
6591
6592 elfcpp::Swap<16, big_endian>::writeval(pov2,
6593 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6594 elfcpp::Swap<16, big_endian>::writeval(
6595 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
6596 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6597 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6598 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6599 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6600 pov2 += 12;
6601 }
6602 }
6603 }
6604
6605 // Check the number of bytes written for standard entries.
6606 gold_assert(static_cast<section_size_type>(
6607 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
6608 // Check the number of bytes written for compressed entries.
6609 gold_assert((static_cast<section_size_type>(pov2 - pov)
6610 == this->plt_comp_offset_));
6611 // Check the total number of bytes written.
6612 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
6613
6614 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
6615 == gotplt_size);
6616
6617 of->write_output_view(offset, oview_size, oview);
6618 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
6619 }
6620
6621 // Mips_output_data_mips_stubs methods.
6622
6623 // The format of the lazy binding stub when dynamic symbol count is less than
6624 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6625 template<int size, bool big_endian>
6626 const uint32_t
6627 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
6628 {
6629 0x8f998010, // lw t9,0x8010(gp)
6630 0x03e07821, // addu t7,ra,zero
6631 0x0320f809, // jalr t9,ra
6632 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
6633 };
6634
6635 // The format of the lazy binding stub when dynamic symbol count is less than
6636 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
6637 template<int size, bool big_endian>
6638 const uint32_t
6639 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
6640 {
6641 0xdf998010, // ld t9,0x8010(gp)
6642 0x03e0782d, // daddu t7,ra,zero
6643 0x0320f809, // jalr t9,ra
6644 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
6645 };
6646
6647 // The format of the lazy binding stub when dynamic symbol count is less than
6648 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
6649 template<int size, bool big_endian>
6650 const uint32_t
6651 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
6652 {
6653 0x8f998010, // lw t9,0x8010(gp)
6654 0x03e07821, // addu t7,ra,zero
6655 0x0320f809, // jalr t9,ra
6656 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6657 };
6658
6659 // The format of the lazy binding stub when dynamic symbol count is less than
6660 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
6661 template<int size, bool big_endian>
6662 const uint32_t
6663 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
6664 {
6665 0xdf998010, // ld t9,0x8010(gp)
6666 0x03e0782d, // daddu t7,ra,zero
6667 0x0320f809, // jalr t9,ra
6668 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6669 };
6670
6671 // The format of the lazy binding stub when dynamic symbol count is greater than
6672 // 64K, and ABI is not N64.
6673 template<int size, bool big_endian>
6674 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
6675 {
6676 0x8f998010, // lw t9,0x8010(gp)
6677 0x03e07821, // addu t7,ra,zero
6678 0x3c180000, // lui t8,DYN_INDEX
6679 0x0320f809, // jalr t9,ra
6680 0x37180000 // ori t8,t8,DYN_INDEX
6681 };
6682
6683 // The format of the lazy binding stub when dynamic symbol count is greater than
6684 // 64K, and ABI is N64.
6685 template<int size, bool big_endian>
6686 const uint32_t
6687 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
6688 {
6689 0xdf998010, // ld t9,0x8010(gp)
6690 0x03e0782d, // daddu t7,ra,zero
6691 0x3c180000, // lui t8,DYN_INDEX
6692 0x0320f809, // jalr t9,ra
6693 0x37180000 // ori t8,t8,DYN_INDEX
6694 };
6695
6696 // microMIPS stubs.
6697
6698 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6699 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6700 template<int size, bool big_endian>
6701 const uint32_t
6702 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
6703 {
6704 0xff3c, 0x8010, // lw t9,0x8010(gp)
6705 0x0dff, // move t7,ra
6706 0x45d9, // jalr t9
6707 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6708 };
6709
6710 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6711 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
6712 template<int size, bool big_endian>
6713 const uint32_t
6714 Mips_output_data_mips_stubs<size, big_endian>::
6715 lazy_stub_micromips_normal_1_n64[] =
6716 {
6717 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6718 0x0dff, // move t7,ra
6719 0x45d9, // jalr t9
6720 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6721 };
6722
6723 // The format of the microMIPS lazy binding stub when dynamic symbol
6724 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6725 // and ABI is not N64.
6726 template<int size, bool big_endian>
6727 const uint32_t
6728 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
6729 {
6730 0xff3c, 0x8010, // lw t9,0x8010(gp)
6731 0x0dff, // move t7,ra
6732 0x45d9, // jalr t9
6733 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6734 };
6735
6736 // The format of the microMIPS lazy binding stub when dynamic symbol
6737 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6738 // and ABI is N64.
6739 template<int size, bool big_endian>
6740 const uint32_t
6741 Mips_output_data_mips_stubs<size, big_endian>::
6742 lazy_stub_micromips_normal_2_n64[] =
6743 {
6744 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6745 0x0dff, // move t7,ra
6746 0x45d9, // jalr t9
6747 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6748 };
6749
6750 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6751 // greater than 64K, and ABI is not N64.
6752 template<int size, bool big_endian>
6753 const uint32_t
6754 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
6755 {
6756 0xff3c, 0x8010, // lw t9,0x8010(gp)
6757 0x0dff, // move t7,ra
6758 0x41b8, 0x0000, // lui t8,DYN_INDEX
6759 0x45d9, // jalr t9
6760 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6761 };
6762
6763 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6764 // greater than 64K, and ABI is N64.
6765 template<int size, bool big_endian>
6766 const uint32_t
6767 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
6768 {
6769 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6770 0x0dff, // move t7,ra
6771 0x41b8, 0x0000, // lui t8,DYN_INDEX
6772 0x45d9, // jalr t9
6773 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6774 };
6775
6776 // 32-bit microMIPS stubs.
6777
6778 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6779 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
6780 // can use only 32-bit instructions.
6781 template<int size, bool big_endian>
6782 const uint32_t
6783 Mips_output_data_mips_stubs<size, big_endian>::
6784 lazy_stub_micromips32_normal_1[] =
6785 {
6786 0xff3c, 0x8010, // lw t9,0x8010(gp)
6787 0x001f, 0x7950, // addu t7,ra,zero
6788 0x03f9, 0x0f3c, // jalr ra,t9
6789 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6790 };
6791
6792 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6793 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
6794 // use only 32-bit instructions.
6795 template<int size, bool big_endian>
6796 const uint32_t
6797 Mips_output_data_mips_stubs<size, big_endian>::
6798 lazy_stub_micromips32_normal_1_n64[] =
6799 {
6800 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6801 0x581f, 0x7950, // daddu t7,ra,zero
6802 0x03f9, 0x0f3c, // jalr ra,t9
6803 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6804 };
6805
6806 // The format of the microMIPS lazy binding stub when dynamic symbol
6807 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6808 // ABI is not N64, and we can use only 32-bit instructions.
6809 template<int size, bool big_endian>
6810 const uint32_t
6811 Mips_output_data_mips_stubs<size, big_endian>::
6812 lazy_stub_micromips32_normal_2[] =
6813 {
6814 0xff3c, 0x8010, // lw t9,0x8010(gp)
6815 0x001f, 0x7950, // addu t7,ra,zero
6816 0x03f9, 0x0f3c, // jalr ra,t9
6817 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6818 };
6819
6820 // The format of the microMIPS lazy binding stub when dynamic symbol
6821 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6822 // ABI is N64, and we can use only 32-bit instructions.
6823 template<int size, bool big_endian>
6824 const uint32_t
6825 Mips_output_data_mips_stubs<size, big_endian>::
6826 lazy_stub_micromips32_normal_2_n64[] =
6827 {
6828 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6829 0x581f, 0x7950, // daddu t7,ra,zero
6830 0x03f9, 0x0f3c, // jalr ra,t9
6831 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6832 };
6833
6834 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6835 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
6836 template<int size, bool big_endian>
6837 const uint32_t
6838 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
6839 {
6840 0xff3c, 0x8010, // lw t9,0x8010(gp)
6841 0x001f, 0x7950, // addu t7,ra,zero
6842 0x41b8, 0x0000, // lui t8,DYN_INDEX
6843 0x03f9, 0x0f3c, // jalr ra,t9
6844 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6845 };
6846
6847 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6848 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
6849 template<int size, bool big_endian>
6850 const uint32_t
6851 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
6852 {
6853 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6854 0x581f, 0x7950, // daddu t7,ra,zero
6855 0x41b8, 0x0000, // lui t8,DYN_INDEX
6856 0x03f9, 0x0f3c, // jalr ra,t9
6857 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6858 };
6859
6860 // Create entry for a symbol.
6861
6862 template<int size, bool big_endian>
6863 void
6864 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
6865 Mips_symbol<size>* gsym)
6866 {
6867 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
6868 {
6869 this->symbols_.insert(gsym);
6870 gsym->set_has_lazy_stub(true);
6871 }
6872 }
6873
6874 // Remove entry for a symbol.
6875
6876 template<int size, bool big_endian>
6877 void
6878 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
6879 Mips_symbol<size>* gsym)
6880 {
6881 if (gsym->has_lazy_stub())
6882 {
6883 this->symbols_.erase(gsym);
6884 gsym->set_has_lazy_stub(false);
6885 }
6886 }
6887
6888 // Set stub offsets for symbols. This method expects that the number of
6889 // entries in dynamic symbol table is set.
6890
6891 template<int size, bool big_endian>
6892 void
6893 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
6894 {
6895 gold_assert(this->dynsym_count_ != -1U);
6896
6897 if (this->stub_offsets_are_set_)
6898 return;
6899
6900 unsigned int stub_size = this->stub_size();
6901 unsigned int offset = 0;
6902 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6903 p = this->symbols_.begin();
6904 p != this->symbols_.end();
6905 ++p, offset += stub_size)
6906 {
6907 Mips_symbol<size>* mips_sym = *p;
6908 mips_sym->set_lazy_stub_offset(offset);
6909 }
6910 this->stub_offsets_are_set_ = true;
6911 }
6912
6913 template<int size, bool big_endian>
6914 void
6915 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
6916 {
6917 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6918 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6919 {
6920 Mips_symbol<size>* sym = *p;
6921 if (sym->is_from_dynobj())
6922 sym->set_needs_dynsym_value();
6923 }
6924 }
6925
6926 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
6927 // adjusts them as needed.
6928
6929 template<int size, bool big_endian>
6930 void
6931 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
6932 {
6933 const off_t offset = this->offset();
6934 const section_size_type oview_size =
6935 convert_to_section_size_type(this->data_size());
6936 unsigned char* const oview = of->get_output_view(offset, oview_size);
6937
6938 bool big_stub = this->dynsym_count_ > 0x10000;
6939
6940 unsigned char* pov = oview;
6941 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6942 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6943 {
6944 Mips_symbol<size>* sym = *p;
6945 const uint32_t* lazy_stub;
6946 bool n64 = this->target_->is_output_n64();
6947
6948 if (!this->target_->is_output_micromips())
6949 {
6950 // Write standard (non-microMIPS) stub.
6951 if (!big_stub)
6952 {
6953 if (sym->dynsym_index() & ~0x7fff)
6954 // Dynsym index is between 32K and 64K.
6955 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
6956 else
6957 // Dynsym index is less than 32K.
6958 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
6959 }
6960 else
6961 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
6962
6963 unsigned int i = 0;
6964 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6965 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
6966 pov += 8;
6967
6968 i += 2;
6969 if (big_stub)
6970 {
6971 // LUI instruction of the big stub. Paste high 16 bits of the
6972 // dynsym index.
6973 elfcpp::Swap<32, big_endian>::writeval(pov,
6974 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
6975 pov += 4;
6976 i += 1;
6977 }
6978 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6979 // Last stub instruction. Paste low 16 bits of the dynsym index.
6980 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6981 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
6982 pov += 8;
6983 }
6984 else if (this->target_->use_32bit_micromips_instructions())
6985 {
6986 // Write microMIPS stub in insn32 mode.
6987 if (!big_stub)
6988 {
6989 if (sym->dynsym_index() & ~0x7fff)
6990 // Dynsym index is between 32K and 64K.
6991 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
6992 : lazy_stub_micromips32_normal_2;
6993 else
6994 // Dynsym index is less than 32K.
6995 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
6996 : lazy_stub_micromips32_normal_1;
6997 }
6998 else
6999 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
7000 : lazy_stub_micromips32_big;
7001
7002 unsigned int i = 0;
7003 // First stub instruction. We emit 32-bit microMIPS instructions by
7004 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7005 // the instruction where the opcode is must always come first, for
7006 // both little and big endian.
7007 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7008 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7009 // Second stub instruction.
7010 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7011 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
7012 pov += 8;
7013 i += 4;
7014 if (big_stub)
7015 {
7016 // LUI instruction of the big stub. Paste high 16 bits of the
7017 // dynsym index.
7018 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7019 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7020 (sym->dynsym_index() >> 16) & 0x7fff);
7021 pov += 4;
7022 i += 2;
7023 }
7024 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7025 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7026 // Last stub instruction. Paste low 16 bits of the dynsym index.
7027 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7028 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7029 sym->dynsym_index() & 0xffff);
7030 pov += 8;
7031 }
7032 else
7033 {
7034 // Write microMIPS stub.
7035 if (!big_stub)
7036 {
7037 if (sym->dynsym_index() & ~0x7fff)
7038 // Dynsym index is between 32K and 64K.
7039 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
7040 : lazy_stub_micromips_normal_2;
7041 else
7042 // Dynsym index is less than 32K.
7043 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
7044 : lazy_stub_micromips_normal_1;
7045 }
7046 else
7047 lazy_stub = n64 ? lazy_stub_micromips_big_n64
7048 : lazy_stub_micromips_big;
7049
7050 unsigned int i = 0;
7051 // First stub instruction. We emit 32-bit microMIPS instructions by
7052 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7053 // the instruction where the opcode is must always come first, for
7054 // both little and big endian.
7055 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7056 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7057 // Second stub instruction.
7058 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7059 pov += 6;
7060 i += 3;
7061 if (big_stub)
7062 {
7063 // LUI instruction of the big stub. Paste high 16 bits of the
7064 // dynsym index.
7065 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7066 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7067 (sym->dynsym_index() >> 16) & 0x7fff);
7068 pov += 4;
7069 i += 2;
7070 }
7071 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7072 // Last stub instruction. Paste low 16 bits of the dynsym index.
7073 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7074 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7075 sym->dynsym_index() & 0xffff);
7076 pov += 6;
7077 }
7078 }
7079
7080 // We always allocate 20 bytes for every stub, because final dynsym count is
7081 // not known in method do_finalize_sections. There are 4 unused bytes per
7082 // stub if final dynsym count is less than 0x10000.
7083 unsigned int used = pov - oview;
7084 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
7085 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
7086
7087 // Fill the unused space with zeroes.
7088 // TODO(sasa): Can we strip unused bytes during the relaxation?
7089 if (unused > 0)
7090 memset(pov, 0, unused);
7091
7092 of->write_output_view(offset, oview_size, oview);
7093 }
7094
7095 // Mips_output_section_reginfo methods.
7096
7097 template<int size, bool big_endian>
7098 void
7099 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
7100 {
7101 off_t offset = this->offset();
7102 off_t data_size = this->data_size();
7103
7104 unsigned char* view = of->get_output_view(offset, data_size);
7105 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
7106 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
7107 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
7108 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
7109 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
7110 // Write the gp value.
7111 elfcpp::Swap<size, big_endian>::writeval(view + 20,
7112 this->target_->gp_value());
7113
7114 of->write_output_view(offset, data_size, view);
7115 }
7116
7117 // Mips_copy_relocs methods.
7118
7119 // Emit any saved relocs.
7120
7121 template<int sh_type, int size, bool big_endian>
7122 void
7123 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
7124 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7125 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7126 {
7127 for (typename Copy_relocs<sh_type, size, big_endian>::
7128 Copy_reloc_entries::iterator p = this->entries_.begin();
7129 p != this->entries_.end();
7130 ++p)
7131 emit_entry(*p, reloc_section, symtab, layout, target);
7132
7133 // We no longer need the saved information.
7134 this->entries_.clear();
7135 }
7136
7137 // Emit the reloc if appropriate.
7138
7139 template<int sh_type, int size, bool big_endian>
7140 void
7141 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
7142 Copy_reloc_entry& entry,
7143 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7144 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7145 {
7146 // If the symbol is no longer defined in a dynamic object, then we
7147 // emitted a COPY relocation, and we do not want to emit this
7148 // dynamic relocation.
7149 if (!entry.sym_->is_from_dynobj())
7150 return;
7151
7152 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
7153 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
7154 || entry.reloc_type_ == elfcpp::R_MIPS_64);
7155
7156 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
7157 if (can_make_dynamic && !sym->has_static_relocs())
7158 {
7159 Mips_relobj<size, big_endian>* object =
7160 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
7161 target->got_section(symtab, layout)->record_global_got_symbol(
7162 sym, object, entry.reloc_type_, true, false);
7163 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
7164 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
7165 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
7166 else
7167 target->rel_dyn_section(layout)->add_symbolless_global_addend(
7168 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
7169 entry.shndx_, entry.address_);
7170 }
7171 else
7172 this->make_copy_reloc(symtab, layout,
7173 static_cast<Sized_symbol<size>*>(entry.sym_),
7174 reloc_section);
7175 }
7176
7177 // Target_mips methods.
7178
7179 // Return the value to use for a dynamic symbol which requires special
7180 // treatment. This is how we support equality comparisons of function
7181 // pointers across shared library boundaries, as described in the
7182 // processor specific ABI supplement.
7183
7184 template<int size, bool big_endian>
7185 uint64_t
7186 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7187 {
7188 uint64_t value = 0;
7189 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
7190
7191 if (!mips_sym->has_lazy_stub())
7192 {
7193 if (mips_sym->has_plt_offset())
7194 {
7195 // We distinguish between PLT entries and lazy-binding stubs by
7196 // giving the former an st_other value of STO_MIPS_PLT. Set the
7197 // value to the stub address if there are any relocations in the
7198 // binary where pointer equality matters.
7199 if (mips_sym->pointer_equality_needed())
7200 {
7201 // Prefer a standard MIPS PLT entry.
7202 if (mips_sym->has_mips_plt_offset())
7203 value = this->plt_section()->mips_entry_address(mips_sym);
7204 else
7205 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
7206 }
7207 else
7208 value = 0;
7209 }
7210 }
7211 else
7212 {
7213 // First, set stub offsets for symbols. This method expects that the
7214 // number of entries in dynamic symbol table is set.
7215 this->mips_stubs_section()->set_lazy_stub_offsets();
7216
7217 // The run-time linker uses the st_value field of the symbol
7218 // to reset the global offset table entry for this external
7219 // to its stub address when unlinking a shared object.
7220 value = this->mips_stubs_section()->stub_address(mips_sym);
7221 }
7222
7223 if (mips_sym->has_mips16_fn_stub())
7224 {
7225 // If we have a MIPS16 function with a stub, the dynamic symbol must
7226 // refer to the stub, since only the stub uses the standard calling
7227 // conventions.
7228 value = mips_sym->template
7229 get_mips16_fn_stub<big_endian>()->output_address();
7230 }
7231
7232 return value;
7233 }
7234
7235 // Get the dynamic reloc section, creating it if necessary. It's always
7236 // .rel.dyn, even for MIPS64.
7237
7238 template<int size, bool big_endian>
7239 typename Target_mips<size, big_endian>::Reloc_section*
7240 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
7241 {
7242 if (this->rel_dyn_ == NULL)
7243 {
7244 gold_assert(layout != NULL);
7245 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
7246 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
7247 elfcpp::SHF_ALLOC, this->rel_dyn_,
7248 ORDER_DYNAMIC_RELOCS, false);
7249
7250 // First entry in .rel.dyn has to be null.
7251 // This is hack - we define dummy output data and set its address to 0,
7252 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
7253 // This ensures that the entry is null.
7254 Output_data* od = new Output_data_zero_fill(0, 0);
7255 od->set_address(0);
7256 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
7257 }
7258 return this->rel_dyn_;
7259 }
7260
7261 // Get the GOT section, creating it if necessary.
7262
7263 template<int size, bool big_endian>
7264 Mips_output_data_got<size, big_endian>*
7265 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
7266 Layout* layout)
7267 {
7268 if (this->got_ == NULL)
7269 {
7270 gold_assert(symtab != NULL && layout != NULL);
7271
7272 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
7273 layout);
7274 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
7275 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
7276 elfcpp::SHF_MIPS_GPREL),
7277 this->got_, ORDER_DATA, false);
7278
7279 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
7280 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
7281 Symbol_table::PREDEFINED,
7282 this->got_,
7283 0, 0, elfcpp::STT_OBJECT,
7284 elfcpp::STB_GLOBAL,
7285 elfcpp::STV_DEFAULT, 0,
7286 false, false);
7287 }
7288
7289 return this->got_;
7290 }
7291
7292 // Calculate value of _gp symbol.
7293
7294 template<int size, bool big_endian>
7295 void
7296 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
7297 {
7298 if (this->gp_ != NULL)
7299 return;
7300
7301 Output_data* section = layout->find_output_section(".got");
7302 if (section == NULL)
7303 {
7304 // If there is no .got section, gp should be based on .sdata.
7305 // TODO(sasa): This is probably not needed. This was needed for older
7306 // MIPS architectures which accessed both GOT and .sdata section using
7307 // gp-relative addressing. Modern Mips Linux ELF architectures don't
7308 // access .sdata using gp-relative addressing.
7309 for (Layout::Section_list::const_iterator
7310 p = layout->section_list().begin();
7311 p != layout->section_list().end();
7312 ++p)
7313 {
7314 if (strcmp((*p)->name(), ".sdata") == 0)
7315 {
7316 section = *p;
7317 break;
7318 }
7319 }
7320 }
7321
7322 Sized_symbol<size>* gp =
7323 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
7324 if (gp != NULL)
7325 {
7326 if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
7327 gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
7328 elfcpp::STT_OBJECT,
7329 elfcpp::STB_GLOBAL,
7330 elfcpp::STV_DEFAULT, 0,
7331 false, false);
7332 this->gp_ = gp;
7333 }
7334 else if (section != NULL)
7335 {
7336 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
7337 "_gp", NULL, Symbol_table::PREDEFINED,
7338 section, MIPS_GP_OFFSET, 0,
7339 elfcpp::STT_OBJECT,
7340 elfcpp::STB_GLOBAL,
7341 elfcpp::STV_DEFAULT,
7342 0, false, false));
7343 this->gp_ = gp;
7344 }
7345 }
7346
7347 // Set the dynamic symbol indexes. INDEX is the index of the first
7348 // global dynamic symbol. Pointers to the symbols are stored into the
7349 // vector SYMS. The names are added to DYNPOOL. This returns an
7350 // updated dynamic symbol index.
7351
7352 template<int size, bool big_endian>
7353 unsigned int
7354 Target_mips<size, big_endian>::do_set_dynsym_indexes(
7355 std::vector<Symbol*>* dyn_symbols, unsigned int index,
7356 std::vector<Symbol*>* syms, Stringpool* dynpool,
7357 Versions* versions, Symbol_table* symtab) const
7358 {
7359 std::vector<Symbol*> non_got_symbols;
7360 std::vector<Symbol*> got_symbols;
7361
7362 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
7363 &got_symbols);
7364
7365 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
7366 p != non_got_symbols.end();
7367 ++p)
7368 {
7369 Symbol* sym = *p;
7370
7371 // Note that SYM may already have a dynamic symbol index, since
7372 // some symbols appear more than once in the symbol table, with
7373 // and without a version.
7374
7375 if (!sym->has_dynsym_index())
7376 {
7377 sym->set_dynsym_index(index);
7378 ++index;
7379 syms->push_back(sym);
7380 dynpool->add(sym->name(), false, NULL);
7381
7382 // Record any version information.
7383 if (sym->version() != NULL)
7384 versions->record_version(symtab, dynpool, sym);
7385
7386 // If the symbol is defined in a dynamic object and is
7387 // referenced in a regular object, then mark the dynamic
7388 // object as needed. This is used to implement --as-needed.
7389 if (sym->is_from_dynobj() && sym->in_reg())
7390 sym->object()->set_is_needed();
7391 }
7392 }
7393
7394 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7395 p != got_symbols.end();
7396 ++p)
7397 {
7398 Symbol* sym = *p;
7399 if (!sym->has_dynsym_index())
7400 {
7401 // Record any version information.
7402 if (sym->version() != NULL)
7403 versions->record_version(symtab, dynpool, sym);
7404 }
7405 }
7406
7407 index = versions->finalize(symtab, index, syms);
7408
7409 int got_sym_count = 0;
7410 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7411 p != got_symbols.end();
7412 ++p)
7413 {
7414 Symbol* sym = *p;
7415
7416 if (!sym->has_dynsym_index())
7417 {
7418 ++got_sym_count;
7419 sym->set_dynsym_index(index);
7420 ++index;
7421 syms->push_back(sym);
7422 dynpool->add(sym->name(), false, NULL);
7423
7424 // If the symbol is defined in a dynamic object and is
7425 // referenced in a regular object, then mark the dynamic
7426 // object as needed. This is used to implement --as-needed.
7427 if (sym->is_from_dynobj() && sym->in_reg())
7428 sym->object()->set_is_needed();
7429 }
7430 }
7431
7432 // Set index of the first symbol that has .got entry.
7433 this->got_->set_first_global_got_dynsym_index(
7434 got_sym_count > 0 ? index - got_sym_count : -1U);
7435
7436 if (this->mips_stubs_ != NULL)
7437 this->mips_stubs_->set_dynsym_count(index);
7438
7439 return index;
7440 }
7441
7442 // Create a PLT entry for a global symbol referenced by r_type relocation.
7443
7444 template<int size, bool big_endian>
7445 void
7446 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7447 Layout* layout,
7448 Mips_symbol<size>* gsym,
7449 unsigned int r_type)
7450 {
7451 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
7452 return;
7453
7454 if (this->plt_ == NULL)
7455 {
7456 // Create the GOT section first.
7457 this->got_section(symtab, layout);
7458
7459 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
7460 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
7461 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7462 this->got_plt_, ORDER_DATA, false);
7463
7464 // The first two entries are reserved.
7465 this->got_plt_->set_current_data_size(2 * size/8);
7466
7467 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
7468 this->got_plt_,
7469 this);
7470 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7471 (elfcpp::SHF_ALLOC
7472 | elfcpp::SHF_EXECINSTR),
7473 this->plt_, ORDER_PLT, false);
7474 }
7475
7476 this->plt_->add_entry(gsym, r_type);
7477 }
7478
7479
7480 // Get the .MIPS.stubs section, creating it if necessary.
7481
7482 template<int size, bool big_endian>
7483 Mips_output_data_mips_stubs<size, big_endian>*
7484 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
7485 {
7486 if (this->mips_stubs_ == NULL)
7487 {
7488 this->mips_stubs_ =
7489 new Mips_output_data_mips_stubs<size, big_endian>(this);
7490 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
7491 (elfcpp::SHF_ALLOC
7492 | elfcpp::SHF_EXECINSTR),
7493 this->mips_stubs_, ORDER_PLT, false);
7494 }
7495 return this->mips_stubs_;
7496 }
7497
7498 // Get the LA25 stub section, creating it if necessary.
7499
7500 template<int size, bool big_endian>
7501 Mips_output_data_la25_stub<size, big_endian>*
7502 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
7503 {
7504 if (this->la25_stub_ == NULL)
7505 {
7506 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
7507 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7508 (elfcpp::SHF_ALLOC
7509 | elfcpp::SHF_EXECINSTR),
7510 this->la25_stub_, ORDER_TEXT, false);
7511 }
7512 return this->la25_stub_;
7513 }
7514
7515 // Process the relocations to determine unreferenced sections for
7516 // garbage collection.
7517
7518 template<int size, bool big_endian>
7519 void
7520 Target_mips<size, big_endian>::gc_process_relocs(
7521 Symbol_table* symtab,
7522 Layout* layout,
7523 Sized_relobj_file<size, big_endian>* object,
7524 unsigned int data_shndx,
7525 unsigned int,
7526 const unsigned char* prelocs,
7527 size_t reloc_count,
7528 Output_section* output_section,
7529 bool needs_special_offset_handling,
7530 size_t local_symbol_count,
7531 const unsigned char* plocal_symbols)
7532 {
7533 typedef Target_mips<size, big_endian> Mips;
7534 typedef typename Target_mips<size, big_endian>::Scan Scan;
7535
7536 gold::gc_process_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan,
7537 typename Target_mips::Relocatable_size_for_reloc>(
7538 symtab,
7539 layout,
7540 this,
7541 object,
7542 data_shndx,
7543 prelocs,
7544 reloc_count,
7545 output_section,
7546 needs_special_offset_handling,
7547 local_symbol_count,
7548 plocal_symbols);
7549 }
7550
7551 // Scan relocations for a section.
7552
7553 template<int size, bool big_endian>
7554 void
7555 Target_mips<size, big_endian>::scan_relocs(
7556 Symbol_table* symtab,
7557 Layout* layout,
7558 Sized_relobj_file<size, big_endian>* object,
7559 unsigned int data_shndx,
7560 unsigned int sh_type,
7561 const unsigned char* prelocs,
7562 size_t reloc_count,
7563 Output_section* output_section,
7564 bool needs_special_offset_handling,
7565 size_t local_symbol_count,
7566 const unsigned char* plocal_symbols)
7567 {
7568 typedef Target_mips<size, big_endian> Mips;
7569 typedef typename Target_mips<size, big_endian>::Scan Scan;
7570
7571 if (sh_type == elfcpp::SHT_REL)
7572 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan>(
7573 symtab,
7574 layout,
7575 this,
7576 object,
7577 data_shndx,
7578 prelocs,
7579 reloc_count,
7580 output_section,
7581 needs_special_offset_handling,
7582 local_symbol_count,
7583 plocal_symbols);
7584 else if (sh_type == elfcpp::SHT_RELA)
7585 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_RELA, Scan>(
7586 symtab,
7587 layout,
7588 this,
7589 object,
7590 data_shndx,
7591 prelocs,
7592 reloc_count,
7593 output_section,
7594 needs_special_offset_handling,
7595 local_symbol_count,
7596 plocal_symbols);
7597 }
7598
7599 template<int size, bool big_endian>
7600 bool
7601 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
7602 {
7603 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
7604 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
7605 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
7606 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
7607 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
7608 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
7609 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2);
7610 }
7611
7612 // Return the MACH for a MIPS e_flags value.
7613 template<int size, bool big_endian>
7614 unsigned int
7615 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
7616 {
7617 switch (flags & elfcpp::EF_MIPS_MACH)
7618 {
7619 case elfcpp::E_MIPS_MACH_3900:
7620 return mach_mips3900;
7621
7622 case elfcpp::E_MIPS_MACH_4010:
7623 return mach_mips4010;
7624
7625 case elfcpp::E_MIPS_MACH_4100:
7626 return mach_mips4100;
7627
7628 case elfcpp::E_MIPS_MACH_4111:
7629 return mach_mips4111;
7630
7631 case elfcpp::E_MIPS_MACH_4120:
7632 return mach_mips4120;
7633
7634 case elfcpp::E_MIPS_MACH_4650:
7635 return mach_mips4650;
7636
7637 case elfcpp::E_MIPS_MACH_5400:
7638 return mach_mips5400;
7639
7640 case elfcpp::E_MIPS_MACH_5500:
7641 return mach_mips5500;
7642
7643 case elfcpp::E_MIPS_MACH_9000:
7644 return mach_mips9000;
7645
7646 case elfcpp::E_MIPS_MACH_SB1:
7647 return mach_mips_sb1;
7648
7649 case elfcpp::E_MIPS_MACH_LS2E:
7650 return mach_mips_loongson_2e;
7651
7652 case elfcpp::E_MIPS_MACH_LS2F:
7653 return mach_mips_loongson_2f;
7654
7655 case elfcpp::E_MIPS_MACH_LS3A:
7656 return mach_mips_loongson_3a;
7657
7658 case elfcpp::E_MIPS_MACH_OCTEON2:
7659 return mach_mips_octeon2;
7660
7661 case elfcpp::E_MIPS_MACH_OCTEON:
7662 return mach_mips_octeon;
7663
7664 case elfcpp::E_MIPS_MACH_XLR:
7665 return mach_mips_xlr;
7666
7667 default:
7668 switch (flags & elfcpp::EF_MIPS_ARCH)
7669 {
7670 default:
7671 case elfcpp::E_MIPS_ARCH_1:
7672 return mach_mips3000;
7673
7674 case elfcpp::E_MIPS_ARCH_2:
7675 return mach_mips6000;
7676
7677 case elfcpp::E_MIPS_ARCH_3:
7678 return mach_mips4000;
7679
7680 case elfcpp::E_MIPS_ARCH_4:
7681 return mach_mips8000;
7682
7683 case elfcpp::E_MIPS_ARCH_5:
7684 return mach_mips5;
7685
7686 case elfcpp::E_MIPS_ARCH_32:
7687 return mach_mipsisa32;
7688
7689 case elfcpp::E_MIPS_ARCH_64:
7690 return mach_mipsisa64;
7691
7692 case elfcpp::E_MIPS_ARCH_32R2:
7693 return mach_mipsisa32r2;
7694
7695 case elfcpp::E_MIPS_ARCH_64R2:
7696 return mach_mipsisa64r2;
7697 }
7698 }
7699
7700 return 0;
7701 }
7702
7703 // Check whether machine EXTENSION is an extension of machine BASE.
7704 template<int size, bool big_endian>
7705 bool
7706 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
7707 unsigned int extension)
7708 {
7709 if (extension == base)
7710 return true;
7711
7712 if ((base == mach_mipsisa32)
7713 && this->mips_mach_extends(mach_mipsisa64, extension))
7714 return true;
7715
7716 if ((base == mach_mipsisa32r2)
7717 && this->mips_mach_extends(mach_mipsisa64r2, extension))
7718 return true;
7719
7720 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
7721 if (extension == this->mips_mach_extensions_[i].first)
7722 {
7723 extension = this->mips_mach_extensions_[i].second;
7724 if (extension == base)
7725 return true;
7726 }
7727
7728 return false;
7729 }
7730
7731 template<int size, bool big_endian>
7732 void
7733 Target_mips<size, big_endian>::merge_processor_specific_flags(
7734 const std::string& name, elfcpp::Elf_Word in_flags,
7735 unsigned char in_ei_class, bool dyn_obj)
7736 {
7737 // If flags are not set yet, just copy them.
7738 if (!this->are_processor_specific_flags_set())
7739 {
7740 this->set_processor_specific_flags(in_flags);
7741 this->ei_class_ = in_ei_class;
7742 this->mach_ = this->elf_mips_mach(in_flags);
7743 return;
7744 }
7745
7746 elfcpp::Elf_Word new_flags = in_flags;
7747 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
7748 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
7749 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
7750
7751 // Check flag compatibility.
7752 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7753 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7754
7755 // Some IRIX 6 BSD-compatibility objects have this bit set. It
7756 // doesn't seem to matter.
7757 new_flags &= ~elfcpp::EF_MIPS_XGOT;
7758 old_flags &= ~elfcpp::EF_MIPS_XGOT;
7759
7760 // MIPSpro generates ucode info in n64 objects. Again, we should
7761 // just be able to ignore this.
7762 new_flags &= ~elfcpp::EF_MIPS_UCODE;
7763 old_flags &= ~elfcpp::EF_MIPS_UCODE;
7764
7765 // DSOs should only be linked with CPIC code.
7766 if (dyn_obj)
7767 new_flags |= elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC;
7768
7769 if (new_flags == old_flags)
7770 {
7771 this->set_processor_specific_flags(merged_flags);
7772 return;
7773 }
7774
7775 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
7776 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
7777 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
7778 name.c_str());
7779
7780 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
7781 merged_flags |= elfcpp::EF_MIPS_CPIC;
7782 if (!(new_flags & elfcpp::EF_MIPS_PIC))
7783 merged_flags &= ~elfcpp::EF_MIPS_PIC;
7784
7785 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7786 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7787
7788 // Compare the ISAs.
7789 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
7790 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
7791 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
7792 {
7793 // Output ISA isn't the same as, or an extension of, input ISA.
7794 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
7795 {
7796 // Copy the architecture info from input object to output. Also copy
7797 // the 32-bit flag (if set) so that we continue to recognise
7798 // output as a 32-bit binary.
7799 this->mach_ = this->elf_mips_mach(in_flags);
7800 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
7801 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
7802 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
7803
7804 // Copy across the ABI flags if output doesn't use them
7805 // and if that was what caused us to treat input object as 32-bit.
7806 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
7807 && this->mips_32bit_flags(new_flags)
7808 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
7809 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
7810 }
7811 else
7812 // The ISAs aren't compatible.
7813 gold_error(_("%s: linking %s module with previous %s modules"),
7814 name.c_str(), this->elf_mips_mach_name(in_flags),
7815 this->elf_mips_mach_name(merged_flags));
7816 }
7817
7818 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7819 | elfcpp::EF_MIPS_32BITMODE));
7820 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7821 | elfcpp::EF_MIPS_32BITMODE));
7822
7823 // Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it does set
7824 // EI_CLASS differently from any 32-bit ABI.
7825 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)
7826 || (in_ei_class != this->ei_class_))
7827 {
7828 // Only error if both are set (to different values).
7829 if (((new_flags & elfcpp::EF_MIPS_ABI)
7830 && (old_flags & elfcpp::EF_MIPS_ABI))
7831 || (in_ei_class != this->ei_class_))
7832 gold_error(_("%s: ABI mismatch: linking %s module with "
7833 "previous %s modules"), name.c_str(),
7834 this->elf_mips_abi_name(in_flags, in_ei_class),
7835 this->elf_mips_abi_name(merged_flags, this->ei_class_));
7836
7837 new_flags &= ~elfcpp::EF_MIPS_ABI;
7838 old_flags &= ~elfcpp::EF_MIPS_ABI;
7839 }
7840
7841 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
7842 // and allow arbitrary mixing of the remaining ASEs (retain the union).
7843 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
7844 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
7845 {
7846 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7847 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7848 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7849 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7850 int micro_mis = old_m16 && new_micro;
7851 int m16_mis = old_micro && new_m16;
7852
7853 if (m16_mis || micro_mis)
7854 gold_error(_("%s: ASE mismatch: linking %s module with "
7855 "previous %s modules"), name.c_str(),
7856 m16_mis ? "MIPS16" : "microMIPS",
7857 m16_mis ? "microMIPS" : "MIPS16");
7858
7859 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
7860
7861 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7862 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7863 }
7864
7865 // Warn about any other mismatches.
7866 if (new_flags != old_flags)
7867 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
7868 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
7869
7870 this->set_processor_specific_flags(merged_flags);
7871 }
7872
7873 // Adjust ELF file header.
7874
7875 template<int size, bool big_endian>
7876 void
7877 Target_mips<size, big_endian>::do_adjust_elf_header(
7878 unsigned char* view,
7879 int len)
7880 {
7881 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
7882
7883 elfcpp::Ehdr<size, big_endian> ehdr(view);
7884 unsigned char e_ident[elfcpp::EI_NIDENT];
7885 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
7886
7887 e_ident[elfcpp::EI_CLASS] = this->ei_class_;
7888
7889 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
7890 oehdr.put_e_ident(e_ident);
7891 if (this->entry_symbol_is_compressed_)
7892 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
7893 }
7894
7895 // do_make_elf_object to override the same function in the base class.
7896 // We need to use a target-specific sub-class of
7897 // Sized_relobj_file<size, big_endian> to store Mips specific information.
7898 // Hence we need to have our own ELF object creation.
7899
7900 template<int size, bool big_endian>
7901 Object*
7902 Target_mips<size, big_endian>::do_make_elf_object(
7903 const std::string& name,
7904 Input_file* input_file,
7905 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
7906 {
7907 int et = ehdr.get_e_type();
7908 // ET_EXEC files are valid input for --just-symbols/-R,
7909 // and we treat them as relocatable objects.
7910 if (et == elfcpp::ET_REL
7911 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
7912 {
7913 Mips_relobj<size, big_endian>* obj =
7914 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
7915 obj->setup();
7916 return obj;
7917 }
7918 else if (et == elfcpp::ET_DYN)
7919 {
7920 // TODO(sasa): Should we create Mips_dynobj?
7921 return Target::do_make_elf_object(name, input_file, offset, ehdr);
7922 }
7923 else
7924 {
7925 gold_error(_("%s: unsupported ELF file type %d"),
7926 name.c_str(), et);
7927 return NULL;
7928 }
7929 }
7930
7931 // Finalize the sections.
7932
7933 template <int size, bool big_endian>
7934 void
7935 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
7936 const Input_objects* input_objects,
7937 Symbol_table* symtab)
7938 {
7939 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
7940 // DT_FINI have correct values.
7941 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
7942 symtab->lookup(parameters->options().init()));
7943 if (init != NULL && (init->is_mips16() || init->is_micromips()))
7944 init->set_value(init->value() | 1);
7945 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
7946 symtab->lookup(parameters->options().fini()));
7947 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
7948 fini->set_value(fini->value() | 1);
7949
7950 // Check whether the entry symbol is mips16 or micromips. This is needed to
7951 // adjust entry address in ELF header.
7952 Mips_symbol<size>* entry =
7953 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
7954 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
7955 || entry->is_micromips()));
7956
7957 if (!parameters->doing_static_link()
7958 && (strcmp(parameters->options().hash_style(), "gnu") == 0
7959 || strcmp(parameters->options().hash_style(), "both") == 0))
7960 {
7961 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
7962 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
7963 // MIPS ABI requires a mapping between the GOT and the symbol table.
7964 gold_error(".gnu.hash is incompatible with the MIPS ABI");
7965 }
7966
7967 // Check whether the final section that was scanned has HI16 or GOT16
7968 // relocations without the corresponding LO16 part.
7969 if (this->got16_addends_.size() > 0)
7970 gold_error("Can't find matching LO16 reloc");
7971
7972 // Set _gp value.
7973 this->set_gp(layout, symtab);
7974
7975 // Check for any mips16 stub sections that we can discard.
7976 if (!parameters->options().relocatable())
7977 {
7978 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7979 p != input_objects->relobj_end();
7980 ++p)
7981 {
7982 Mips_relobj<size, big_endian>* object =
7983 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7984 object->discard_mips16_stub_sections(symtab);
7985 }
7986 }
7987
7988 // Merge processor-specific flags.
7989 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7990 p != input_objects->relobj_end();
7991 ++p)
7992 {
7993 Mips_relobj<size, big_endian>* relobj =
7994 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7995
7996 Input_file::Format format = relobj->input_file()->format();
7997 if (format == Input_file::FORMAT_ELF)
7998 {
7999 // Read processor-specific flags in ELF file header.
8000 const unsigned char* pehdr = relobj->get_view(
8001 elfcpp::file_header_offset,
8002 elfcpp::Elf_sizes<size>::ehdr_size,
8003 true, false);
8004
8005 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8006 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8007 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8008
8009 this->merge_processor_specific_flags(relobj->name(), in_flags,
8010 ei_class, false);
8011 }
8012 }
8013
8014 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8015 p != input_objects->dynobj_end();
8016 ++p)
8017 {
8018 Sized_dynobj<size, big_endian>* dynobj =
8019 static_cast<Sized_dynobj<size, big_endian>*>(*p);
8020
8021 // Read processor-specific flags.
8022 const unsigned char* pehdr = dynobj->get_view(elfcpp::file_header_offset,
8023 elfcpp::Elf_sizes<size>::ehdr_size,
8024 true, false);
8025
8026 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8027 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8028 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8029
8030 this->merge_processor_specific_flags(dynobj->name(), in_flags, ei_class,
8031 true);
8032 }
8033
8034 // Merge .reginfo contents of input objects.
8035 Valtype gprmask = 0;
8036 Valtype cprmask1 = 0;
8037 Valtype cprmask2 = 0;
8038 Valtype cprmask3 = 0;
8039 Valtype cprmask4 = 0;
8040 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8041 p != input_objects->relobj_end();
8042 ++p)
8043 {
8044 Mips_relobj<size, big_endian>* relobj =
8045 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8046
8047 gprmask |= relobj->gprmask();
8048 cprmask1 |= relobj->cprmask1();
8049 cprmask2 |= relobj->cprmask2();
8050 cprmask3 |= relobj->cprmask3();
8051 cprmask4 |= relobj->cprmask4();
8052 }
8053
8054 if (this->plt_ != NULL)
8055 {
8056 // Set final PLT offsets for symbols.
8057 this->plt_section()->set_plt_offsets();
8058
8059 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
8060 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
8061 // there are no standard PLT entries present.
8062 unsigned char nonvis = 0;
8063 if (this->is_output_micromips()
8064 && !this->plt_section()->has_standard_entries())
8065 nonvis = elfcpp::STO_MICROMIPS >> 2;
8066 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
8067 Symbol_table::PREDEFINED,
8068 this->plt_,
8069 0, 0, elfcpp::STT_FUNC,
8070 elfcpp::STB_LOCAL,
8071 elfcpp::STV_DEFAULT, nonvis,
8072 false, false);
8073 }
8074
8075 if (this->mips_stubs_ != NULL)
8076 {
8077 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
8078 unsigned char nonvis = 0;
8079 if (this->is_output_micromips())
8080 nonvis = elfcpp::STO_MICROMIPS >> 2;
8081 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
8082 Symbol_table::PREDEFINED,
8083 this->mips_stubs_,
8084 0, 0, elfcpp::STT_FUNC,
8085 elfcpp::STB_LOCAL,
8086 elfcpp::STV_DEFAULT, nonvis,
8087 false, false);
8088 }
8089
8090 if (!parameters->options().relocatable() && !parameters->doing_static_link())
8091 // In case there is no .got section, create one.
8092 this->got_section(symtab, layout);
8093
8094 // Emit any relocs we saved in an attempt to avoid generating COPY
8095 // relocs.
8096 if (this->copy_relocs_.any_saved_relocs())
8097 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
8098 this);
8099
8100 // Emit dynamic relocs.
8101 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
8102 p != this->dyn_relocs_.end();
8103 ++p)
8104 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
8105
8106 if (this->has_got_section())
8107 this->got_section()->lay_out_got(layout, symtab, input_objects);
8108
8109 if (this->mips_stubs_ != NULL)
8110 this->mips_stubs_->set_needs_dynsym_value();
8111
8112 // Check for functions that might need $25 to be valid on entry.
8113 // TODO(sasa): Can we do this without iterating over all symbols?
8114 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
8115 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
8116 symtab));
8117
8118 // Add NULL segment.
8119 if (!parameters->options().relocatable())
8120 layout->make_output_segment(elfcpp::PT_NULL, 0);
8121
8122 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8123 p != layout->section_list().end();
8124 ++p)
8125 {
8126 if ((*p)->type() == elfcpp::SHT_MIPS_REGINFO)
8127 {
8128 Mips_output_section_reginfo<size, big_endian>* reginfo =
8129 Mips_output_section_reginfo<size, big_endian>::
8130 as_mips_output_section_reginfo(*p);
8131
8132 reginfo->set_masks(gprmask, cprmask1, cprmask2, cprmask3, cprmask4);
8133
8134 if (!parameters->options().relocatable())
8135 {
8136 Output_segment* reginfo_segment =
8137 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
8138 elfcpp::PF_R);
8139 reginfo_segment->add_output_section_to_nonload(reginfo,
8140 elfcpp::PF_R);
8141 }
8142 }
8143 }
8144
8145 // Fill in some more dynamic tags.
8146 // TODO(sasa): Add more dynamic tags.
8147 const Reloc_section* rel_plt = (this->plt_ == NULL
8148 ? NULL : this->plt_->rel_plt());
8149 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
8150 this->rel_dyn_, true, false);
8151
8152 Output_data_dynamic* const odyn = layout->dynamic_data();
8153 if (odyn != NULL
8154 && !parameters->options().relocatable()
8155 && !parameters->doing_static_link())
8156 {
8157 unsigned int d_val;
8158 // This element holds a 32-bit version id for the Runtime
8159 // Linker Interface. This will start at integer value 1.
8160 d_val = 0x01;
8161 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
8162
8163 // Dynamic flags
8164 d_val = elfcpp::RHF_NOTPOT;
8165 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
8166
8167 // Save layout for using when emiting custom dynamic tags.
8168 this->layout_ = layout;
8169
8170 // This member holds the base address of the segment.
8171 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
8172
8173 // This member holds the number of entries in the .dynsym section.
8174 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
8175
8176 // This member holds the index of the first dynamic symbol
8177 // table entry that corresponds to an entry in the global offset table.
8178 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
8179
8180 // This member holds the number of local GOT entries.
8181 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
8182 this->got_->get_local_gotno());
8183
8184 if (this->plt_ != NULL)
8185 // DT_MIPS_PLTGOT dynamic tag
8186 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
8187 }
8188 }
8189
8190 // Get the custom dynamic tag value.
8191 template<int size, bool big_endian>
8192 unsigned int
8193 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
8194 {
8195 switch (tag)
8196 {
8197 case elfcpp::DT_MIPS_BASE_ADDRESS:
8198 {
8199 // The base address of the segment.
8200 // At this point, the segment list has been sorted into final order,
8201 // so just return vaddr of the first readable PT_LOAD segment.
8202 Output_segment* seg =
8203 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
8204 gold_assert(seg != NULL);
8205 return seg->vaddr();
8206 }
8207
8208 case elfcpp::DT_MIPS_SYMTABNO:
8209 // The number of entries in the .dynsym section.
8210 return this->get_dt_mips_symtabno();
8211
8212 case elfcpp::DT_MIPS_GOTSYM:
8213 {
8214 // The index of the first dynamic symbol table entry that corresponds
8215 // to an entry in the GOT.
8216 if (this->got_->first_global_got_dynsym_index() != -1U)
8217 return this->got_->first_global_got_dynsym_index();
8218 else
8219 // In case if we don't have global GOT symbols we default to setting
8220 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
8221 return this->get_dt_mips_symtabno();
8222 }
8223
8224 default:
8225 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
8226 }
8227
8228 return (unsigned int)-1;
8229 }
8230
8231 // Relocate section data.
8232
8233 template<int size, bool big_endian>
8234 void
8235 Target_mips<size, big_endian>::relocate_section(
8236 const Relocate_info<size, big_endian>* relinfo,
8237 unsigned int sh_type,
8238 const unsigned char* prelocs,
8239 size_t reloc_count,
8240 Output_section* output_section,
8241 bool needs_special_offset_handling,
8242 unsigned char* view,
8243 Mips_address address,
8244 section_size_type view_size,
8245 const Reloc_symbol_changes* reloc_symbol_changes)
8246 {
8247 typedef Target_mips<size, big_endian> Mips;
8248 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
8249
8250 if (sh_type == elfcpp::SHT_REL)
8251 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_REL,
8252 Mips_relocate, gold::Default_comdat_behavior>(
8253 relinfo,
8254 this,
8255 prelocs,
8256 reloc_count,
8257 output_section,
8258 needs_special_offset_handling,
8259 view,
8260 address,
8261 view_size,
8262 reloc_symbol_changes);
8263 else if (sh_type == elfcpp::SHT_RELA)
8264 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_RELA,
8265 Mips_relocate, gold::Default_comdat_behavior>(
8266 relinfo,
8267 this,
8268 prelocs,
8269 reloc_count,
8270 output_section,
8271 needs_special_offset_handling,
8272 view,
8273 address,
8274 view_size,
8275 reloc_symbol_changes);
8276 }
8277
8278 // Return the size of a relocation while scanning during a relocatable
8279 // link.
8280
8281 template<int size, bool big_endian>
8282 unsigned int
8283 Target_mips<size, big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8284 unsigned int r_type,
8285 Relobj* object)
8286 {
8287 switch (r_type)
8288 {
8289 case elfcpp::R_MIPS_NONE:
8290 case elfcpp::R_MIPS_TLS_DTPMOD64:
8291 case elfcpp::R_MIPS_TLS_DTPREL64:
8292 case elfcpp::R_MIPS_TLS_TPREL64:
8293 return 0;
8294
8295 case elfcpp::R_MIPS_32:
8296 case elfcpp::R_MIPS_TLS_DTPMOD32:
8297 case elfcpp::R_MIPS_TLS_DTPREL32:
8298 case elfcpp::R_MIPS_TLS_TPREL32:
8299 case elfcpp::R_MIPS_REL32:
8300 case elfcpp::R_MIPS_PC32:
8301 case elfcpp::R_MIPS_GPREL32:
8302 case elfcpp::R_MIPS_JALR:
8303 return 4;
8304
8305 case elfcpp::R_MIPS_16:
8306 case elfcpp::R_MIPS_HI16:
8307 case elfcpp::R_MIPS_LO16:
8308 case elfcpp::R_MIPS_GPREL16:
8309 case elfcpp::R_MIPS16_HI16:
8310 case elfcpp::R_MIPS16_LO16:
8311 case elfcpp::R_MIPS_PC16:
8312 case elfcpp::R_MIPS_GOT16:
8313 case elfcpp::R_MIPS16_GOT16:
8314 case elfcpp::R_MIPS_CALL16:
8315 case elfcpp::R_MIPS16_CALL16:
8316 case elfcpp::R_MIPS_GOT_HI16:
8317 case elfcpp::R_MIPS_CALL_HI16:
8318 case elfcpp::R_MIPS_GOT_LO16:
8319 case elfcpp::R_MIPS_CALL_LO16:
8320 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
8321 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
8322 case elfcpp::R_MIPS_TLS_TPREL_HI16:
8323 case elfcpp::R_MIPS_TLS_TPREL_LO16:
8324 case elfcpp::R_MIPS16_GPREL:
8325 case elfcpp::R_MIPS_GOT_DISP:
8326 case elfcpp::R_MIPS_LITERAL:
8327 case elfcpp::R_MIPS_GOT_PAGE:
8328 case elfcpp::R_MIPS_GOT_OFST:
8329 case elfcpp::R_MIPS_TLS_GD:
8330 case elfcpp::R_MIPS_TLS_LDM:
8331 case elfcpp::R_MIPS_TLS_GOTTPREL:
8332 return 2;
8333
8334 // These relocations are not byte sized
8335 case elfcpp::R_MIPS_26:
8336 case elfcpp::R_MIPS16_26:
8337 return 4;
8338
8339 case elfcpp::R_MIPS_COPY:
8340 case elfcpp::R_MIPS_JUMP_SLOT:
8341 object->error(_("unexpected reloc %u in object file"), r_type);
8342 return 0;
8343
8344 default:
8345 object->error(_("unsupported reloc %u in object file"), r_type);
8346 return 0;
8347 }
8348 }
8349
8350 // Scan the relocs during a relocatable link.
8351
8352 template<int size, bool big_endian>
8353 void
8354 Target_mips<size, big_endian>::scan_relocatable_relocs(
8355 Symbol_table* symtab,
8356 Layout* layout,
8357 Sized_relobj_file<size, big_endian>* object,
8358 unsigned int data_shndx,
8359 unsigned int sh_type,
8360 const unsigned char* prelocs,
8361 size_t reloc_count,
8362 Output_section* output_section,
8363 bool needs_special_offset_handling,
8364 size_t local_symbol_count,
8365 const unsigned char* plocal_symbols,
8366 Relocatable_relocs* rr)
8367 {
8368 gold_assert(sh_type == elfcpp::SHT_REL);
8369
8370 typedef Mips_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
8371 Relocatable_size_for_reloc> Scan_relocatable_relocs;
8372
8373 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_REL,
8374 Scan_relocatable_relocs>(
8375 symtab,
8376 layout,
8377 object,
8378 data_shndx,
8379 prelocs,
8380 reloc_count,
8381 output_section,
8382 needs_special_offset_handling,
8383 local_symbol_count,
8384 plocal_symbols,
8385 rr);
8386 }
8387
8388 // Emit relocations for a section.
8389
8390 template<int size, bool big_endian>
8391 void
8392 Target_mips<size, big_endian>::relocate_relocs(
8393 const Relocate_info<size, big_endian>* relinfo,
8394 unsigned int sh_type,
8395 const unsigned char* prelocs,
8396 size_t reloc_count,
8397 Output_section* output_section,
8398 typename elfcpp::Elf_types<size>::Elf_Off
8399 offset_in_output_section,
8400 const Relocatable_relocs* rr,
8401 unsigned char* view,
8402 Mips_address view_address,
8403 section_size_type view_size,
8404 unsigned char* reloc_view,
8405 section_size_type reloc_view_size)
8406 {
8407 gold_assert(sh_type == elfcpp::SHT_REL);
8408
8409 gold::relocate_relocs<size, big_endian, elfcpp::SHT_REL>(
8410 relinfo,
8411 prelocs,
8412 reloc_count,
8413 output_section,
8414 offset_in_output_section,
8415 rr,
8416 view,
8417 view_address,
8418 view_size,
8419 reloc_view,
8420 reloc_view_size);
8421 }
8422
8423 // Perform target-specific processing in a relocatable link. This is
8424 // only used if we use the relocation strategy RELOC_SPECIAL.
8425
8426 template<int size, bool big_endian>
8427 void
8428 Target_mips<size, big_endian>::relocate_special_relocatable(
8429 const Relocate_info<size, big_endian>* relinfo,
8430 unsigned int sh_type,
8431 const unsigned char* preloc_in,
8432 size_t relnum,
8433 Output_section* output_section,
8434 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8435 unsigned char* view,
8436 Mips_address view_address,
8437 section_size_type,
8438 unsigned char* preloc_out)
8439 {
8440 // We can only handle REL type relocation sections.
8441 gold_assert(sh_type == elfcpp::SHT_REL);
8442
8443 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
8444 Reltype;
8445 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
8446 Reltype_write;
8447
8448 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
8449
8450 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
8451
8452 Mips_relobj<size, big_endian>* object =
8453 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
8454 const unsigned int local_count = object->local_symbol_count();
8455
8456 Reltype reloc(preloc_in);
8457 Reltype_write reloc_write(preloc_out);
8458
8459 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
8460 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8461 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8462
8463 // Get the new symbol index.
8464 // We only use RELOC_SPECIAL strategy in local relocations.
8465 gold_assert(r_sym < local_count);
8466
8467 // We are adjusting a section symbol. We need to find
8468 // the symbol table index of the section symbol for
8469 // the output section corresponding to input section
8470 // in which this symbol is defined.
8471 bool is_ordinary;
8472 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
8473 gold_assert(is_ordinary);
8474 Output_section* os = object->output_section(shndx);
8475 gold_assert(os != NULL);
8476 gold_assert(os->needs_symtab_index());
8477 unsigned int new_symndx = os->symtab_index();
8478
8479 // Get the new offset--the location in the output section where
8480 // this relocation should be applied.
8481
8482 Mips_address offset = reloc.get_r_offset();
8483 Mips_address new_offset;
8484 if (offset_in_output_section != invalid_address)
8485 new_offset = offset + offset_in_output_section;
8486 else
8487 {
8488 section_offset_type sot_offset =
8489 convert_types<section_offset_type, Mips_address>(offset);
8490 section_offset_type new_sot_offset =
8491 output_section->output_offset(object, relinfo->data_shndx,
8492 sot_offset);
8493 gold_assert(new_sot_offset != -1);
8494 new_offset = new_sot_offset;
8495 }
8496
8497 // In an object file, r_offset is an offset within the section.
8498 // In an executable or dynamic object, generated by
8499 // --emit-relocs, r_offset is an absolute address.
8500 if (!parameters->options().relocatable())
8501 {
8502 new_offset += view_address;
8503 if (offset_in_output_section != invalid_address)
8504 new_offset -= offset_in_output_section;
8505 }
8506
8507 reloc_write.put_r_offset(new_offset);
8508 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
8509
8510 // Handle the reloc addend.
8511 // The relocation uses a section symbol in the input file.
8512 // We are adjusting it to use a section symbol in the output
8513 // file. The input section symbol refers to some address in
8514 // the input section. We need the relocation in the output
8515 // file to refer to that same address. This adjustment to
8516 // the addend is the same calculation we use for a simple
8517 // absolute relocation for the input section symbol.
8518
8519 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
8520
8521 unsigned char* paddend = view + offset;
8522 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
8523 switch (r_type)
8524 {
8525 case elfcpp::R_MIPS_26:
8526 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
8527 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
8528 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal());
8529 break;
8530
8531 default:
8532 gold_unreachable();
8533 }
8534
8535 // Report any errors.
8536 switch (reloc_status)
8537 {
8538 case Reloc_funcs::STATUS_OKAY:
8539 break;
8540 case Reloc_funcs::STATUS_OVERFLOW:
8541 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8542 _("relocation overflow"));
8543 break;
8544 case Reloc_funcs::STATUS_BAD_RELOC:
8545 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8546 _("unexpected opcode while processing relocation"));
8547 break;
8548 default:
8549 gold_unreachable();
8550 }
8551 }
8552
8553 // Optimize the TLS relocation type based on what we know about the
8554 // symbol. IS_FINAL is true if the final address of this symbol is
8555 // known at link time.
8556
8557 template<int size, bool big_endian>
8558 tls::Tls_optimization
8559 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
8560 {
8561 // FIXME: Currently we do not do any TLS optimization.
8562 return tls::TLSOPT_NONE;
8563 }
8564
8565 // Scan a relocation for a local symbol.
8566
8567 template<int size, bool big_endian>
8568 inline void
8569 Target_mips<size, big_endian>::Scan::local(
8570 Symbol_table* symtab,
8571 Layout* layout,
8572 Target_mips<size, big_endian>* target,
8573 Sized_relobj_file<size, big_endian>* object,
8574 unsigned int data_shndx,
8575 Output_section* output_section,
8576 const elfcpp::Rela<size, big_endian>* rela,
8577 const elfcpp::Rel<size, big_endian>* rel,
8578 unsigned int rel_type,
8579 unsigned int r_type,
8580 const elfcpp::Sym<size, big_endian>& lsym,
8581 bool is_discarded)
8582 {
8583 if (is_discarded)
8584 return;
8585
8586 Mips_address r_offset;
8587 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
8588 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
8589
8590 if (rel_type == elfcpp::SHT_RELA)
8591 {
8592 r_offset = rela->get_r_offset();
8593 r_info = rela->get_r_info();
8594 r_addend = rela->get_r_addend();
8595 }
8596 else
8597 {
8598 r_offset = rel->get_r_offset();
8599 r_info = rel->get_r_info();
8600 r_addend = 0;
8601 }
8602
8603 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8604 Mips_relobj<size, big_endian>* mips_obj =
8605 Mips_relobj<size, big_endian>::as_mips_relobj(object);
8606
8607 if (mips_obj->is_mips16_stub_section(data_shndx))
8608 {
8609 mips_obj->get_mips16_stub_section(data_shndx)
8610 ->new_local_reloc_found(r_type, r_sym);
8611 }
8612
8613 if (r_type == elfcpp::R_MIPS_NONE)
8614 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
8615 // mips16 stub.
8616 return;
8617
8618 if (!mips16_call_reloc(r_type)
8619 && !mips_obj->section_allows_mips16_refs(data_shndx))
8620 // This reloc would need to refer to a MIPS16 hard-float stub, if
8621 // there is one. We ignore MIPS16 stub sections and .pdr section when
8622 // looking for relocs that would need to refer to MIPS16 stubs.
8623 mips_obj->add_local_non_16bit_call(r_sym);
8624
8625 if (r_type == elfcpp::R_MIPS16_26
8626 && !mips_obj->section_allows_mips16_refs(data_shndx))
8627 mips_obj->add_local_16bit_call(r_sym);
8628
8629 switch (r_type)
8630 {
8631 case elfcpp::R_MIPS_GOT16:
8632 case elfcpp::R_MIPS_CALL16:
8633 case elfcpp::R_MIPS_CALL_HI16:
8634 case elfcpp::R_MIPS_CALL_LO16:
8635 case elfcpp::R_MIPS_GOT_HI16:
8636 case elfcpp::R_MIPS_GOT_LO16:
8637 case elfcpp::R_MIPS_GOT_PAGE:
8638 case elfcpp::R_MIPS_GOT_OFST:
8639 case elfcpp::R_MIPS_GOT_DISP:
8640 case elfcpp::R_MIPS_TLS_GOTTPREL:
8641 case elfcpp::R_MIPS_TLS_GD:
8642 case elfcpp::R_MIPS_TLS_LDM:
8643 case elfcpp::R_MIPS16_GOT16:
8644 case elfcpp::R_MIPS16_CALL16:
8645 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8646 case elfcpp::R_MIPS16_TLS_GD:
8647 case elfcpp::R_MIPS16_TLS_LDM:
8648 case elfcpp::R_MICROMIPS_GOT16:
8649 case elfcpp::R_MICROMIPS_CALL16:
8650 case elfcpp::R_MICROMIPS_CALL_HI16:
8651 case elfcpp::R_MICROMIPS_CALL_LO16:
8652 case elfcpp::R_MICROMIPS_GOT_HI16:
8653 case elfcpp::R_MICROMIPS_GOT_LO16:
8654 case elfcpp::R_MICROMIPS_GOT_PAGE:
8655 case elfcpp::R_MICROMIPS_GOT_OFST:
8656 case elfcpp::R_MICROMIPS_GOT_DISP:
8657 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8658 case elfcpp::R_MICROMIPS_TLS_GD:
8659 case elfcpp::R_MICROMIPS_TLS_LDM:
8660 // We need a GOT section.
8661 target->got_section(symtab, layout);
8662 break;
8663
8664 default:
8665 break;
8666 }
8667
8668 if (call_lo16_reloc(r_type)
8669 || got_lo16_reloc(r_type)
8670 || got_disp_reloc(r_type))
8671 {
8672 // We may need a local GOT entry for this relocation. We
8673 // don't count R_MIPS_GOT_PAGE because we can estimate the
8674 // maximum number of pages needed by looking at the size of
8675 // the segment. Similar comments apply to R_MIPS*_GOT16 and
8676 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
8677 // R_MIPS_CALL_HI16 because these are always followed by an
8678 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8679 Mips_output_data_got<size, big_endian>* got =
8680 target->got_section(symtab, layout);
8681 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8682 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U);
8683 }
8684
8685 switch (r_type)
8686 {
8687 case elfcpp::R_MIPS_CALL16:
8688 case elfcpp::R_MIPS16_CALL16:
8689 case elfcpp::R_MICROMIPS_CALL16:
8690 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
8691 (unsigned long)r_offset);
8692 return;
8693
8694 case elfcpp::R_MIPS_GOT_PAGE:
8695 case elfcpp::R_MICROMIPS_GOT_PAGE:
8696 case elfcpp::R_MIPS16_GOT16:
8697 case elfcpp::R_MIPS_GOT16:
8698 case elfcpp::R_MIPS_GOT_HI16:
8699 case elfcpp::R_MIPS_GOT_LO16:
8700 case elfcpp::R_MICROMIPS_GOT16:
8701 case elfcpp::R_MICROMIPS_GOT_HI16:
8702 case elfcpp::R_MICROMIPS_GOT_LO16:
8703 {
8704 // This relocation needs a page entry in the GOT.
8705 // Get the section contents.
8706 section_size_type view_size = 0;
8707 const unsigned char* view = object->section_contents(data_shndx,
8708 &view_size, false);
8709 view += r_offset;
8710
8711 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8712 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
8713 : r_addend);
8714
8715 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
8716 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8717 object, data_shndx, r_type, r_sym, addend));
8718 else
8719 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
8720 break;
8721 }
8722
8723 case elfcpp::R_MIPS_HI16:
8724 case elfcpp::R_MIPS16_HI16:
8725 case elfcpp::R_MICROMIPS_HI16:
8726 // Record the reloc so that we can check whether the corresponding LO16
8727 // part exists.
8728 if (rel_type == elfcpp::SHT_REL)
8729 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8730 object, data_shndx, r_type, r_sym, 0));
8731 break;
8732
8733 case elfcpp::R_MIPS_LO16:
8734 case elfcpp::R_MIPS16_LO16:
8735 case elfcpp::R_MICROMIPS_LO16:
8736 {
8737 if (rel_type != elfcpp::SHT_REL)
8738 break;
8739
8740 // Find corresponding GOT16/HI16 relocation.
8741
8742 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8743 // be immediately following. However, for the IRIX6 ABI, the next
8744 // relocation may be a composed relocation consisting of several
8745 // relocations for the same address. In that case, the R_MIPS_LO16
8746 // relocation may occur as one of these. We permit a similar
8747 // extension in general, as that is useful for GCC.
8748
8749 // In some cases GCC dead code elimination removes the LO16 but
8750 // keeps the corresponding HI16. This is strictly speaking a
8751 // violation of the ABI but not immediately harmful.
8752
8753 typename std::list<got16_addend<size, big_endian> >::iterator it =
8754 target->got16_addends_.begin();
8755 while (it != target->got16_addends_.end())
8756 {
8757 got16_addend<size, big_endian> _got16_addend = *it;
8758
8759 // TODO(sasa): Split got16_addends_ list into two lists - one for
8760 // GOT16 relocs and the other for HI16 relocs.
8761
8762 // Report an error if we find HI16 or GOT16 reloc from the
8763 // previous section without the matching LO16 part.
8764 if (_got16_addend.object != object
8765 || _got16_addend.shndx != data_shndx)
8766 {
8767 gold_error("Can't find matching LO16 reloc");
8768 break;
8769 }
8770
8771 if (_got16_addend.r_sym != r_sym
8772 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
8773 {
8774 ++it;
8775 continue;
8776 }
8777
8778 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
8779 // For GOT16, we need to calculate combined addend and record GOT page
8780 // entry.
8781 if (got16_reloc(_got16_addend.r_type))
8782 {
8783
8784 section_size_type view_size = 0;
8785 const unsigned char* view = object->section_contents(data_shndx,
8786 &view_size,
8787 false);
8788 view += r_offset;
8789
8790 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8791 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
8792
8793 addend = (_got16_addend.addend << 16) + addend;
8794 target->got_section()->record_got_page_entry(mips_obj, r_sym,
8795 addend);
8796 }
8797
8798 it = target->got16_addends_.erase(it);
8799 }
8800 break;
8801 }
8802 }
8803
8804 switch (r_type)
8805 {
8806 case elfcpp::R_MIPS_32:
8807 case elfcpp::R_MIPS_REL32:
8808 case elfcpp::R_MIPS_64:
8809 {
8810 if (parameters->options().output_is_position_independent())
8811 {
8812 // If building a shared library (or a position-independent
8813 // executable), we need to create a dynamic relocation for
8814 // this location.
8815 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8816 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8817 rel_dyn->add_symbolless_local_addend(object, r_sym,
8818 elfcpp::R_MIPS_REL32,
8819 output_section, data_shndx,
8820 r_offset);
8821 }
8822 break;
8823 }
8824
8825 case elfcpp::R_MIPS_TLS_GOTTPREL:
8826 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8827 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8828 case elfcpp::R_MIPS_TLS_LDM:
8829 case elfcpp::R_MIPS16_TLS_LDM:
8830 case elfcpp::R_MICROMIPS_TLS_LDM:
8831 case elfcpp::R_MIPS_TLS_GD:
8832 case elfcpp::R_MIPS16_TLS_GD:
8833 case elfcpp::R_MICROMIPS_TLS_GD:
8834 {
8835 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8836 bool output_is_shared = parameters->options().shared();
8837 const tls::Tls_optimization optimized_type
8838 = Target_mips<size, big_endian>::optimize_tls_reloc(
8839 !output_is_shared, r_type);
8840 switch (r_type)
8841 {
8842 case elfcpp::R_MIPS_TLS_GD:
8843 case elfcpp::R_MIPS16_TLS_GD:
8844 case elfcpp::R_MICROMIPS_TLS_GD:
8845 if (optimized_type == tls::TLSOPT_NONE)
8846 {
8847 // Create a pair of GOT entries for the module index and
8848 // dtv-relative offset.
8849 Mips_output_data_got<size, big_endian>* got =
8850 target->got_section(symtab, layout);
8851 unsigned int shndx = lsym.get_st_shndx();
8852 bool is_ordinary;
8853 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8854 if (!is_ordinary)
8855 {
8856 object->error(_("local symbol %u has bad shndx %u"),
8857 r_sym, shndx);
8858 break;
8859 }
8860 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8861 shndx);
8862 }
8863 else
8864 {
8865 // FIXME: TLS optimization not supported yet.
8866 gold_unreachable();
8867 }
8868 break;
8869
8870 case elfcpp::R_MIPS_TLS_LDM:
8871 case elfcpp::R_MIPS16_TLS_LDM:
8872 case elfcpp::R_MICROMIPS_TLS_LDM:
8873 if (optimized_type == tls::TLSOPT_NONE)
8874 {
8875 // We always record LDM symbols as local with index 0.
8876 target->got_section()->record_local_got_symbol(mips_obj, 0,
8877 r_addend, r_type,
8878 -1U);
8879 }
8880 else
8881 {
8882 // FIXME: TLS optimization not supported yet.
8883 gold_unreachable();
8884 }
8885 break;
8886 case elfcpp::R_MIPS_TLS_GOTTPREL:
8887 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8888 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8889 layout->set_has_static_tls();
8890 if (optimized_type == tls::TLSOPT_NONE)
8891 {
8892 // Create a GOT entry for the tp-relative offset.
8893 Mips_output_data_got<size, big_endian>* got =
8894 target->got_section(symtab, layout);
8895 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8896 -1U);
8897 }
8898 else
8899 {
8900 // FIXME: TLS optimization not supported yet.
8901 gold_unreachable();
8902 }
8903 break;
8904
8905 default:
8906 gold_unreachable();
8907 }
8908 }
8909 break;
8910
8911 default:
8912 break;
8913 }
8914
8915 // Refuse some position-dependent relocations when creating a
8916 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8917 // not PIC, but we can create dynamic relocations and the result
8918 // will be fine. Also do not refuse R_MIPS_LO16, which can be
8919 // combined with R_MIPS_GOT16.
8920 if (parameters->options().shared())
8921 {
8922 switch (r_type)
8923 {
8924 case elfcpp::R_MIPS16_HI16:
8925 case elfcpp::R_MIPS_HI16:
8926 case elfcpp::R_MICROMIPS_HI16:
8927 // Don't refuse a high part relocation if it's against
8928 // no symbol (e.g. part of a compound relocation).
8929 if (r_sym == 0)
8930 break;
8931
8932 // FALLTHROUGH
8933
8934 case elfcpp::R_MIPS16_26:
8935 case elfcpp::R_MIPS_26:
8936 case elfcpp::R_MICROMIPS_26_S1:
8937 gold_error(_("%s: relocation %u against `%s' can not be used when "
8938 "making a shared object; recompile with -fPIC"),
8939 object->name().c_str(), r_type, "a local symbol");
8940 default:
8941 break;
8942 }
8943 }
8944 }
8945
8946 template<int size, bool big_endian>
8947 inline void
8948 Target_mips<size, big_endian>::Scan::local(
8949 Symbol_table* symtab,
8950 Layout* layout,
8951 Target_mips<size, big_endian>* target,
8952 Sized_relobj_file<size, big_endian>* object,
8953 unsigned int data_shndx,
8954 Output_section* output_section,
8955 const elfcpp::Rel<size, big_endian>& reloc,
8956 unsigned int r_type,
8957 const elfcpp::Sym<size, big_endian>& lsym,
8958 bool is_discarded)
8959 {
8960 if (is_discarded)
8961 return;
8962
8963 local(
8964 symtab,
8965 layout,
8966 target,
8967 object,
8968 data_shndx,
8969 output_section,
8970 (const elfcpp::Rela<size, big_endian>*) NULL,
8971 &reloc,
8972 elfcpp::SHT_REL,
8973 r_type,
8974 lsym, is_discarded);
8975 }
8976
8977
8978 template<int size, bool big_endian>
8979 inline void
8980 Target_mips<size, big_endian>::Scan::local(
8981 Symbol_table* symtab,
8982 Layout* layout,
8983 Target_mips<size, big_endian>* target,
8984 Sized_relobj_file<size, big_endian>* object,
8985 unsigned int data_shndx,
8986 Output_section* output_section,
8987 const elfcpp::Rela<size, big_endian>& reloc,
8988 unsigned int r_type,
8989 const elfcpp::Sym<size, big_endian>& lsym,
8990 bool is_discarded)
8991 {
8992 if (is_discarded)
8993 return;
8994
8995 local(
8996 symtab,
8997 layout,
8998 target,
8999 object,
9000 data_shndx,
9001 output_section,
9002 &reloc,
9003 (const elfcpp::Rel<size, big_endian>*) NULL,
9004 elfcpp::SHT_RELA,
9005 r_type,
9006 lsym, is_discarded);
9007 }
9008
9009 // Scan a relocation for a global symbol.
9010
9011 template<int size, bool big_endian>
9012 inline void
9013 Target_mips<size, big_endian>::Scan::global(
9014 Symbol_table* symtab,
9015 Layout* layout,
9016 Target_mips<size, big_endian>* target,
9017 Sized_relobj_file<size, big_endian>* object,
9018 unsigned int data_shndx,
9019 Output_section* output_section,
9020 const elfcpp::Rela<size, big_endian>* rela,
9021 const elfcpp::Rel<size, big_endian>* rel,
9022 unsigned int rel_type,
9023 unsigned int r_type,
9024 Symbol* gsym)
9025 {
9026 Mips_address r_offset;
9027 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9028 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9029
9030 if (rel_type == elfcpp::SHT_RELA)
9031 {
9032 r_offset = rela->get_r_offset();
9033 r_info = rela->get_r_info();
9034 r_addend = rela->get_r_addend();
9035 }
9036 else
9037 {
9038 r_offset = rel->get_r_offset();
9039 r_info = rel->get_r_info();
9040 r_addend = 0;
9041 }
9042
9043 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9044 Mips_relobj<size, big_endian>* mips_obj =
9045 Mips_relobj<size, big_endian>::as_mips_relobj(object);
9046 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9047
9048 if (mips_obj->is_mips16_stub_section(data_shndx))
9049 {
9050 mips_obj->get_mips16_stub_section(data_shndx)
9051 ->new_global_reloc_found(r_type, mips_sym);
9052 }
9053
9054 if (r_type == elfcpp::R_MIPS_NONE)
9055 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9056 // mips16 stub.
9057 return;
9058
9059 if (!mips16_call_reloc(r_type)
9060 && !mips_obj->section_allows_mips16_refs(data_shndx))
9061 // This reloc would need to refer to a MIPS16 hard-float stub, if
9062 // there is one. We ignore MIPS16 stub sections and .pdr section when
9063 // looking for relocs that would need to refer to MIPS16 stubs.
9064 mips_sym->set_need_fn_stub();
9065
9066 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
9067 // section. We check here to avoid creating a dynamic reloc against
9068 // _GLOBAL_OFFSET_TABLE_.
9069 if (!target->has_got_section()
9070 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9071 target->got_section(symtab, layout);
9072
9073 // We need PLT entries if there are static-only relocations against
9074 // an externally-defined function. This can technically occur for
9075 // shared libraries if there are branches to the symbol, although it
9076 // is unlikely that this will be used in practice due to the short
9077 // ranges involved. It can occur for any relative or absolute relocation
9078 // in executables; in that case, the PLT entry becomes the function's
9079 // canonical address.
9080 bool static_reloc = false;
9081
9082 // Set CAN_MAKE_DYNAMIC to true if we can convert this
9083 // relocation into a dynamic one.
9084 bool can_make_dynamic = false;
9085 switch (r_type)
9086 {
9087 case elfcpp::R_MIPS_GOT16:
9088 case elfcpp::R_MIPS_CALL16:
9089 case elfcpp::R_MIPS_CALL_HI16:
9090 case elfcpp::R_MIPS_CALL_LO16:
9091 case elfcpp::R_MIPS_GOT_HI16:
9092 case elfcpp::R_MIPS_GOT_LO16:
9093 case elfcpp::R_MIPS_GOT_PAGE:
9094 case elfcpp::R_MIPS_GOT_OFST:
9095 case elfcpp::R_MIPS_GOT_DISP:
9096 case elfcpp::R_MIPS_TLS_GOTTPREL:
9097 case elfcpp::R_MIPS_TLS_GD:
9098 case elfcpp::R_MIPS_TLS_LDM:
9099 case elfcpp::R_MIPS16_GOT16:
9100 case elfcpp::R_MIPS16_CALL16:
9101 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9102 case elfcpp::R_MIPS16_TLS_GD:
9103 case elfcpp::R_MIPS16_TLS_LDM:
9104 case elfcpp::R_MICROMIPS_GOT16:
9105 case elfcpp::R_MICROMIPS_CALL16:
9106 case elfcpp::R_MICROMIPS_CALL_HI16:
9107 case elfcpp::R_MICROMIPS_CALL_LO16:
9108 case elfcpp::R_MICROMIPS_GOT_HI16:
9109 case elfcpp::R_MICROMIPS_GOT_LO16:
9110 case elfcpp::R_MICROMIPS_GOT_PAGE:
9111 case elfcpp::R_MICROMIPS_GOT_OFST:
9112 case elfcpp::R_MICROMIPS_GOT_DISP:
9113 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9114 case elfcpp::R_MICROMIPS_TLS_GD:
9115 case elfcpp::R_MICROMIPS_TLS_LDM:
9116 // We need a GOT section.
9117 target->got_section(symtab, layout);
9118 break;
9119
9120 // This is just a hint; it can safely be ignored. Don't set
9121 // has_static_relocs for the corresponding symbol.
9122 case elfcpp::R_MIPS_JALR:
9123 case elfcpp::R_MICROMIPS_JALR:
9124 break;
9125
9126 case elfcpp::R_MIPS_GPREL16:
9127 case elfcpp::R_MIPS_GPREL32:
9128 case elfcpp::R_MIPS16_GPREL:
9129 case elfcpp::R_MICROMIPS_GPREL16:
9130 // TODO(sasa)
9131 // GP-relative relocations always resolve to a definition in a
9132 // regular input file, ignoring the one-definition rule. This is
9133 // important for the GP setup sequence in NewABI code, which
9134 // always resolves to a local function even if other relocations
9135 // against the symbol wouldn't.
9136 //constrain_symbol_p = FALSE;
9137 break;
9138
9139 case elfcpp::R_MIPS_32:
9140 case elfcpp::R_MIPS_REL32:
9141 case elfcpp::R_MIPS_64:
9142 if (parameters->options().shared()
9143 || strcmp(gsym->name(), "__gnu_local_gp") != 0)
9144 {
9145 if (r_type != elfcpp::R_MIPS_REL32)
9146 {
9147 static_reloc = true;
9148 mips_sym->set_pointer_equality_needed();
9149 }
9150 can_make_dynamic = true;
9151 break;
9152 }
9153 // Fall through.
9154
9155 default:
9156 // Most static relocations require pointer equality, except
9157 // for branches.
9158 mips_sym->set_pointer_equality_needed();
9159
9160 // Fall through.
9161
9162 case elfcpp::R_MIPS_26:
9163 case elfcpp::R_MIPS_PC16:
9164 case elfcpp::R_MIPS16_26:
9165 case elfcpp::R_MICROMIPS_26_S1:
9166 case elfcpp::R_MICROMIPS_PC7_S1:
9167 case elfcpp::R_MICROMIPS_PC10_S1:
9168 case elfcpp::R_MICROMIPS_PC16_S1:
9169 case elfcpp::R_MICROMIPS_PC23_S2:
9170 static_reloc = true;
9171 mips_sym->set_has_static_relocs();
9172 break;
9173 }
9174
9175 // If there are call relocations against an externally-defined symbol,
9176 // see whether we can create a MIPS lazy-binding stub for it. We can
9177 // only do this if all references to the function are through call
9178 // relocations, and in that case, the traditional lazy-binding stubs
9179 // are much more efficient than PLT entries.
9180 switch (r_type)
9181 {
9182 case elfcpp::R_MIPS16_CALL16:
9183 case elfcpp::R_MIPS_CALL16:
9184 case elfcpp::R_MIPS_CALL_HI16:
9185 case elfcpp::R_MIPS_CALL_LO16:
9186 case elfcpp::R_MIPS_JALR:
9187 case elfcpp::R_MICROMIPS_CALL16:
9188 case elfcpp::R_MICROMIPS_CALL_HI16:
9189 case elfcpp::R_MICROMIPS_CALL_LO16:
9190 case elfcpp::R_MICROMIPS_JALR:
9191 if (!mips_sym->no_lazy_stub())
9192 {
9193 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
9194 // Calls from shared objects to undefined symbols of type
9195 // STT_NOTYPE need lazy-binding stub.
9196 || (mips_sym->is_undefined() && parameters->options().shared()))
9197 target->mips_stubs_section(layout)->make_entry(mips_sym);
9198 }
9199 break;
9200 default:
9201 {
9202 // We must not create a stub for a symbol that has relocations
9203 // related to taking the function's address.
9204 mips_sym->set_no_lazy_stub();
9205 target->remove_lazy_stub_entry(mips_sym);
9206 break;
9207 }
9208 }
9209
9210 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
9211 mips_sym->is_mips16()))
9212 mips_sym->set_has_nonpic_branches();
9213
9214 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9215 // and has a special meaning.
9216 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
9217 && strcmp(gsym->name(), "_gp_disp") == 0
9218 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
9219 if (static_reloc && gsym->needs_plt_entry())
9220 {
9221 target->make_plt_entry(symtab, layout, mips_sym, r_type);
9222
9223 // Since this is not a PC-relative relocation, we may be
9224 // taking the address of a function. In that case we need to
9225 // set the entry in the dynamic symbol table to the address of
9226 // the PLT entry.
9227 if (gsym->is_from_dynobj() && !parameters->options().shared())
9228 {
9229 gsym->set_needs_dynsym_value();
9230 // We distinguish between PLT entries and lazy-binding stubs by
9231 // giving the former an st_other value of STO_MIPS_PLT. Set the
9232 // flag if there are any relocations in the binary where pointer
9233 // equality matters.
9234 if (mips_sym->pointer_equality_needed())
9235 mips_sym->set_mips_plt();
9236 }
9237 }
9238 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
9239 {
9240 // Absolute addressing relocations.
9241 // Make a dynamic relocation if necessary.
9242 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9243 {
9244 if (gsym->may_need_copy_reloc())
9245 {
9246 target->copy_reloc(symtab, layout, object,
9247 data_shndx, output_section, gsym, *rel);
9248 }
9249 else if (can_make_dynamic)
9250 {
9251 // Create .rel.dyn section.
9252 target->rel_dyn_section(layout);
9253 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
9254 data_shndx, output_section, r_offset);
9255 }
9256 else
9257 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
9258 gsym->name());
9259 }
9260 }
9261
9262 bool for_call = false;
9263 switch (r_type)
9264 {
9265 case elfcpp::R_MIPS_CALL16:
9266 case elfcpp::R_MIPS16_CALL16:
9267 case elfcpp::R_MICROMIPS_CALL16:
9268 case elfcpp::R_MIPS_CALL_HI16:
9269 case elfcpp::R_MIPS_CALL_LO16:
9270 case elfcpp::R_MICROMIPS_CALL_HI16:
9271 case elfcpp::R_MICROMIPS_CALL_LO16:
9272 for_call = true;
9273 // Fall through.
9274
9275 case elfcpp::R_MIPS16_GOT16:
9276 case elfcpp::R_MIPS_GOT16:
9277 case elfcpp::R_MIPS_GOT_HI16:
9278 case elfcpp::R_MIPS_GOT_LO16:
9279 case elfcpp::R_MICROMIPS_GOT16:
9280 case elfcpp::R_MICROMIPS_GOT_HI16:
9281 case elfcpp::R_MICROMIPS_GOT_LO16:
9282 case elfcpp::R_MIPS_GOT_DISP:
9283 case elfcpp::R_MICROMIPS_GOT_DISP:
9284 {
9285 // The symbol requires a GOT entry.
9286 Mips_output_data_got<size, big_endian>* got =
9287 target->got_section(symtab, layout);
9288 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9289 for_call);
9290 mips_sym->set_global_got_area(GGA_NORMAL);
9291 }
9292 break;
9293
9294 case elfcpp::R_MIPS_GOT_PAGE:
9295 case elfcpp::R_MICROMIPS_GOT_PAGE:
9296 {
9297 // This relocation needs a page entry in the GOT.
9298 // Get the section contents.
9299 section_size_type view_size = 0;
9300 const unsigned char* view =
9301 object->section_contents(data_shndx, &view_size, false);
9302 view += r_offset;
9303
9304 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9305 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
9306 : r_addend);
9307 Mips_output_data_got<size, big_endian>* got =
9308 target->got_section(symtab, layout);
9309 got->record_got_page_entry(mips_obj, r_sym, addend);
9310
9311 // If this is a global, overridable symbol, GOT_PAGE will
9312 // decay to GOT_DISP, so we'll need a GOT entry for it.
9313 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
9314 && !mips_sym->object()->is_dynamic()
9315 && !mips_sym->is_undefined());
9316 if (!def_regular
9317 || (parameters->options().output_is_position_independent()
9318 && !parameters->options().Bsymbolic()
9319 && !mips_sym->is_forced_local()))
9320 {
9321 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9322 for_call);
9323 mips_sym->set_global_got_area(GGA_NORMAL);
9324 }
9325 }
9326 break;
9327
9328 case elfcpp::R_MIPS_TLS_GOTTPREL:
9329 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9330 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9331 case elfcpp::R_MIPS_TLS_LDM:
9332 case elfcpp::R_MIPS16_TLS_LDM:
9333 case elfcpp::R_MICROMIPS_TLS_LDM:
9334 case elfcpp::R_MIPS_TLS_GD:
9335 case elfcpp::R_MIPS16_TLS_GD:
9336 case elfcpp::R_MICROMIPS_TLS_GD:
9337 {
9338 const bool is_final = gsym->final_value_is_known();
9339 const tls::Tls_optimization optimized_type =
9340 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
9341
9342 switch (r_type)
9343 {
9344 case elfcpp::R_MIPS_TLS_GD:
9345 case elfcpp::R_MIPS16_TLS_GD:
9346 case elfcpp::R_MICROMIPS_TLS_GD:
9347 if (optimized_type == tls::TLSOPT_NONE)
9348 {
9349 // Create a pair of GOT entries for the module index and
9350 // dtv-relative offset.
9351 Mips_output_data_got<size, big_endian>* got =
9352 target->got_section(symtab, layout);
9353 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9354 false);
9355 }
9356 else
9357 {
9358 // FIXME: TLS optimization not supported yet.
9359 gold_unreachable();
9360 }
9361 break;
9362
9363 case elfcpp::R_MIPS_TLS_LDM:
9364 case elfcpp::R_MIPS16_TLS_LDM:
9365 case elfcpp::R_MICROMIPS_TLS_LDM:
9366 if (optimized_type == tls::TLSOPT_NONE)
9367 {
9368 // We always record LDM symbols as local with index 0.
9369 target->got_section()->record_local_got_symbol(mips_obj, 0,
9370 r_addend, r_type,
9371 -1U);
9372 }
9373 else
9374 {
9375 // FIXME: TLS optimization not supported yet.
9376 gold_unreachable();
9377 }
9378 break;
9379 case elfcpp::R_MIPS_TLS_GOTTPREL:
9380 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9381 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9382 layout->set_has_static_tls();
9383 if (optimized_type == tls::TLSOPT_NONE)
9384 {
9385 // Create a GOT entry for the tp-relative offset.
9386 Mips_output_data_got<size, big_endian>* got =
9387 target->got_section(symtab, layout);
9388 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9389 false);
9390 }
9391 else
9392 {
9393 // FIXME: TLS optimization not supported yet.
9394 gold_unreachable();
9395 }
9396 break;
9397
9398 default:
9399 gold_unreachable();
9400 }
9401 }
9402 break;
9403 case elfcpp::R_MIPS_COPY:
9404 case elfcpp::R_MIPS_JUMP_SLOT:
9405 // These are relocations which should only be seen by the
9406 // dynamic linker, and should never be seen here.
9407 gold_error(_("%s: unexpected reloc %u in object file"),
9408 object->name().c_str(), r_type);
9409 break;
9410
9411 default:
9412 break;
9413 }
9414
9415 // Refuse some position-dependent relocations when creating a
9416 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9417 // not PIC, but we can create dynamic relocations and the result
9418 // will be fine. Also do not refuse R_MIPS_LO16, which can be
9419 // combined with R_MIPS_GOT16.
9420 if (parameters->options().shared())
9421 {
9422 switch (r_type)
9423 {
9424 case elfcpp::R_MIPS16_HI16:
9425 case elfcpp::R_MIPS_HI16:
9426 case elfcpp::R_MICROMIPS_HI16:
9427 // Don't refuse a high part relocation if it's against
9428 // no symbol (e.g. part of a compound relocation).
9429 if (r_sym == 0)
9430 break;
9431
9432 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9433 // and has a special meaning.
9434 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
9435 break;
9436
9437 // FALLTHROUGH
9438
9439 case elfcpp::R_MIPS16_26:
9440 case elfcpp::R_MIPS_26:
9441 case elfcpp::R_MICROMIPS_26_S1:
9442 gold_error(_("%s: relocation %u against `%s' can not be used when "
9443 "making a shared object; recompile with -fPIC"),
9444 object->name().c_str(), r_type, gsym->name());
9445 default:
9446 break;
9447 }
9448 }
9449 }
9450
9451 template<int size, bool big_endian>
9452 inline void
9453 Target_mips<size, big_endian>::Scan::global(
9454 Symbol_table* symtab,
9455 Layout* layout,
9456 Target_mips<size, big_endian>* target,
9457 Sized_relobj_file<size, big_endian>* object,
9458 unsigned int data_shndx,
9459 Output_section* output_section,
9460 const elfcpp::Rela<size, big_endian>& reloc,
9461 unsigned int r_type,
9462 Symbol* gsym)
9463 {
9464 global(
9465 symtab,
9466 layout,
9467 target,
9468 object,
9469 data_shndx,
9470 output_section,
9471 &reloc,
9472 (const elfcpp::Rel<size, big_endian>*) NULL,
9473 elfcpp::SHT_RELA,
9474 r_type,
9475 gsym);
9476 }
9477
9478 template<int size, bool big_endian>
9479 inline void
9480 Target_mips<size, big_endian>::Scan::global(
9481 Symbol_table* symtab,
9482 Layout* layout,
9483 Target_mips<size, big_endian>* target,
9484 Sized_relobj_file<size, big_endian>* object,
9485 unsigned int data_shndx,
9486 Output_section* output_section,
9487 const elfcpp::Rel<size, big_endian>& reloc,
9488 unsigned int r_type,
9489 Symbol* gsym)
9490 {
9491 global(
9492 symtab,
9493 layout,
9494 target,
9495 object,
9496 data_shndx,
9497 output_section,
9498 (const elfcpp::Rela<size, big_endian>*) NULL,
9499 &reloc,
9500 elfcpp::SHT_REL,
9501 r_type,
9502 gsym);
9503 }
9504
9505 // Return whether a R_MIPS_32 relocation needs to be applied.
9506
9507 template<int size, bool big_endian>
9508 inline bool
9509 Target_mips<size, big_endian>::Relocate::should_apply_r_mips_32_reloc(
9510 const Mips_symbol<size>* gsym,
9511 unsigned int r_type,
9512 Output_section* output_section,
9513 Target_mips* target)
9514 {
9515 // If the output section is not allocated, then we didn't call
9516 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9517 // the reloc here.
9518 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9519 return true;
9520
9521 if (gsym == NULL)
9522 return true;
9523 else
9524 {
9525 // For global symbols, we use the same helper routines used in the
9526 // scan pass.
9527 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
9528 && !gsym->may_need_copy_reloc())
9529 {
9530 // We have generated dynamic reloc (R_MIPS_REL32).
9531
9532 bool multi_got = false;
9533 if (target->has_got_section())
9534 multi_got = target->got_section()->multi_got();
9535 bool has_got_offset;
9536 if (!multi_got)
9537 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
9538 else
9539 has_got_offset = gsym->global_gotoffset() != -1U;
9540 if (!has_got_offset)
9541 return true;
9542 else
9543 // Apply the relocation only if the symbol is in the local got.
9544 // Do not apply the relocation if the symbol is in the global
9545 // got.
9546 return symbol_references_local(gsym, gsym->has_dynsym_index());
9547 }
9548 else
9549 // We have not generated dynamic reloc.
9550 return true;
9551 }
9552 }
9553
9554 // Perform a relocation.
9555
9556 template<int size, bool big_endian>
9557 inline bool
9558 Target_mips<size, big_endian>::Relocate::relocate(
9559 const Relocate_info<size, big_endian>* relinfo,
9560 Target_mips* target,
9561 Output_section* output_section,
9562 size_t relnum,
9563 const elfcpp::Rela<size, big_endian>* rela,
9564 const elfcpp::Rel<size, big_endian>* rel,
9565 unsigned int rel_type,
9566 unsigned int r_type,
9567 const Sized_symbol<size>* gsym,
9568 const Symbol_value<size>* psymval,
9569 unsigned char* view,
9570 Mips_address address,
9571 section_size_type)
9572 {
9573 Mips_address r_offset;
9574 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9575 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9576
9577 if (rel_type == elfcpp::SHT_RELA)
9578 {
9579 r_offset = rela->get_r_offset();
9580 r_info = rela->get_r_info();
9581 r_addend = rela->get_r_addend();
9582 }
9583 else
9584 {
9585 r_offset = rel->get_r_offset();
9586 r_info = rel->get_r_info();
9587 r_addend = 0;
9588 }
9589
9590 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
9591 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
9592
9593 Mips_relobj<size, big_endian>* object =
9594 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
9595
9596 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9597 bool target_is_16_bit_code = false;
9598 bool target_is_micromips_code = false;
9599 bool cross_mode_jump;
9600
9601 Symbol_value<size> symval;
9602
9603 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9604
9605 bool changed_symbol_value = false;
9606 if (gsym == NULL)
9607 {
9608 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
9609 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
9610 if (target_is_16_bit_code || target_is_micromips_code)
9611 {
9612 // MIPS16/microMIPS text labels should be treated as odd.
9613 symval.set_output_value(psymval->value(object, 1));
9614 psymval = &symval;
9615 changed_symbol_value = true;
9616 }
9617 }
9618 else
9619 {
9620 target_is_16_bit_code = mips_sym->is_mips16();
9621 target_is_micromips_code = mips_sym->is_micromips();
9622
9623 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
9624 // it odd. This will cause something like .word SYM to come up with
9625 // the right value when it is loaded into the PC.
9626
9627 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
9628 && psymval->value(object, 0) != 0)
9629 {
9630 symval.set_output_value(psymval->value(object, 0) | 1);
9631 psymval = &symval;
9632 changed_symbol_value = true;
9633 }
9634
9635 // Pick the value to use for symbols defined in shared objects.
9636 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
9637 || mips_sym->has_lazy_stub())
9638 {
9639 Mips_address value;
9640 if (!mips_sym->has_lazy_stub())
9641 {
9642 // Prefer a standard MIPS PLT entry.
9643 if (mips_sym->has_mips_plt_offset())
9644 {
9645 value = target->plt_section()->mips_entry_address(mips_sym);
9646 target_is_micromips_code = false;
9647 target_is_16_bit_code = false;
9648 }
9649 else
9650 {
9651 value = (target->plt_section()->comp_entry_address(mips_sym)
9652 + 1);
9653 if (target->is_output_micromips())
9654 target_is_micromips_code = true;
9655 else
9656 target_is_16_bit_code = true;
9657 }
9658 }
9659 else
9660 value = target->mips_stubs_section()->stub_address(mips_sym);
9661
9662 symval.set_output_value(value);
9663 psymval = &symval;
9664 }
9665 }
9666
9667 // TRUE if the symbol referred to by this relocation is "_gp_disp".
9668 // Note that such a symbol must always be a global symbol.
9669 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
9670 && !object->is_newabi());
9671
9672 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
9673 // Note that such a symbol must always be a global symbol.
9674 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
9675
9676
9677 if (gp_disp)
9678 {
9679 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
9680 gold_error_at_location(relinfo, relnum, r_offset,
9681 _("relocations against _gp_disp are permitted only"
9682 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
9683 }
9684 else if (gnu_local_gp)
9685 {
9686 // __gnu_local_gp is _gp symbol.
9687 symval.set_output_value(target->adjusted_gp_value(object));
9688 psymval = &symval;
9689 }
9690
9691 // If this is a reference to a 16-bit function with a stub, we need
9692 // to redirect the relocation to the stub unless:
9693 //
9694 // (a) the relocation is for a MIPS16 JAL;
9695 //
9696 // (b) the relocation is for a MIPS16 PIC call, and there are no
9697 // non-MIPS16 uses of the GOT slot; or
9698 //
9699 // (c) the section allows direct references to MIPS16 functions.
9700 if (r_type != elfcpp::R_MIPS16_26
9701 && !parameters->options().relocatable()
9702 && ((mips_sym != NULL
9703 && mips_sym->has_mips16_fn_stub()
9704 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
9705 || (mips_sym == NULL
9706 && object->get_local_mips16_fn_stub(r_sym) != NULL))
9707 && !object->section_allows_mips16_refs(relinfo->data_shndx))
9708 {
9709 // This is a 32- or 64-bit call to a 16-bit function. We should
9710 // have already noticed that we were going to need the
9711 // stub.
9712 Mips_address value;
9713 if (mips_sym == NULL)
9714 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
9715 else
9716 {
9717 gold_assert(mips_sym->need_fn_stub());
9718 if (mips_sym->has_la25_stub())
9719 value = target->la25_stub_section()->stub_address(mips_sym);
9720 else
9721 {
9722 value = mips_sym->template
9723 get_mips16_fn_stub<big_endian>()->output_address();
9724 }
9725 }
9726 symval.set_output_value(value);
9727 psymval = &symval;
9728 changed_symbol_value = true;
9729
9730 // The target is 16-bit, but the stub isn't.
9731 target_is_16_bit_code = false;
9732 }
9733 // If this is a MIPS16 call with a stub, that is made through the PLT or
9734 // to a standard MIPS function, we need to redirect the call to the stub.
9735 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
9736 // indirect calls should use an indirect stub instead.
9737 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
9738 && ((mips_sym != NULL
9739 && (mips_sym->has_mips16_call_stub()
9740 || mips_sym->has_mips16_call_fp_stub()))
9741 || (mips_sym == NULL
9742 && object->get_local_mips16_call_stub(r_sym) != NULL))
9743 && ((mips_sym != NULL && mips_sym->has_plt_offset())
9744 || !target_is_16_bit_code))
9745 {
9746 Mips16_stub_section<size, big_endian>* call_stub;
9747 if (mips_sym == NULL)
9748 call_stub = object->get_local_mips16_call_stub(r_sym);
9749 else
9750 {
9751 // If both call_stub and call_fp_stub are defined, we can figure
9752 // out which one to use by checking which one appears in the input
9753 // file.
9754 if (mips_sym->has_mips16_call_stub()
9755 && mips_sym->has_mips16_call_fp_stub())
9756 {
9757 call_stub = NULL;
9758 for (unsigned int i = 1; i < object->shnum(); ++i)
9759 {
9760 if (object->is_mips16_call_fp_stub_section(i))
9761 {
9762 call_stub = mips_sym->template
9763 get_mips16_call_fp_stub<big_endian>();
9764 break;
9765 }
9766
9767 }
9768 if (call_stub == NULL)
9769 call_stub =
9770 mips_sym->template get_mips16_call_stub<big_endian>();
9771 }
9772 else if (mips_sym->has_mips16_call_stub())
9773 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
9774 else
9775 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
9776 }
9777
9778 symval.set_output_value(call_stub->output_address());
9779 psymval = &symval;
9780 changed_symbol_value = true;
9781 }
9782 // If this is a direct call to a PIC function, redirect to the
9783 // non-PIC stub.
9784 else if (mips_sym != NULL
9785 && mips_sym->has_la25_stub()
9786 && relocation_needs_la25_stub<size, big_endian>(
9787 object, r_type, target_is_16_bit_code))
9788 {
9789 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
9790 if (mips_sym->is_micromips())
9791 value += 1;
9792 symval.set_output_value(value);
9793 psymval = &symval;
9794 }
9795 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
9796 // entry is used if a standard PLT entry has also been made.
9797 else if ((r_type == elfcpp::R_MIPS16_26
9798 || r_type == elfcpp::R_MICROMIPS_26_S1)
9799 && !parameters->options().relocatable()
9800 && mips_sym != NULL
9801 && mips_sym->has_plt_offset()
9802 && mips_sym->has_comp_plt_offset()
9803 && mips_sym->has_mips_plt_offset())
9804 {
9805 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
9806 + 1);
9807 symval.set_output_value(value);
9808 psymval = &symval;
9809
9810 target_is_16_bit_code = !target->is_output_micromips();
9811 target_is_micromips_code = target->is_output_micromips();
9812 }
9813
9814 // Make sure MIPS16 and microMIPS are not used together.
9815 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
9816 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
9817 {
9818 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
9819 }
9820
9821 // Calls from 16-bit code to 32-bit code and vice versa require the
9822 // mode change. However, we can ignore calls to undefined weak symbols,
9823 // which should never be executed at runtime. This exception is important
9824 // because the assembly writer may have "known" that any definition of the
9825 // symbol would be 16-bit code, and that direct jumps were therefore
9826 // acceptable.
9827 cross_mode_jump =
9828 (!parameters->options().relocatable()
9829 && !(gsym != NULL && gsym->is_weak_undefined())
9830 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
9831 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
9832 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
9833 && (target_is_16_bit_code || target_is_micromips_code))));
9834
9835 bool local = (mips_sym == NULL
9836 || (mips_sym->got_only_for_calls()
9837 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
9838 : symbol_references_local(mips_sym,
9839 mips_sym->has_dynsym_index())));
9840
9841 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
9842 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
9843 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
9844 if (got_page_reloc(r_type) && !local)
9845 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
9846 : elfcpp::R_MIPS_GOT_DISP);
9847
9848 unsigned int got_offset = 0;
9849 int gp_offset = 0;
9850
9851 bool update_got_entry = false;
9852 bool extract_addend = rel_type == elfcpp::SHT_REL;
9853 switch (r_type)
9854 {
9855 case elfcpp::R_MIPS_NONE:
9856 break;
9857 case elfcpp::R_MIPS_16:
9858 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
9859 extract_addend, r_type);
9860 break;
9861
9862 case elfcpp::R_MIPS_32:
9863 if (should_apply_r_mips_32_reloc(mips_sym, r_type, output_section,
9864 target))
9865 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
9866 extract_addend, r_type);
9867 if (mips_sym != NULL
9868 && (mips_sym->is_mips16() || mips_sym->is_micromips())
9869 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
9870 {
9871 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
9872 // already updated by adding +1.
9873 if (mips_sym->has_mips16_fn_stub())
9874 {
9875 gold_assert(mips_sym->need_fn_stub());
9876 Mips16_stub_section<size, big_endian>* fn_stub =
9877 mips_sym->template get_mips16_fn_stub<big_endian>();
9878
9879 symval.set_output_value(fn_stub->output_address());
9880 psymval = &symval;
9881 }
9882 got_offset = mips_sym->global_gotoffset();
9883 update_got_entry = true;
9884 }
9885 break;
9886
9887 case elfcpp::R_MIPS_REL32:
9888 gold_unreachable();
9889
9890 case elfcpp::R_MIPS_PC32:
9891 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
9892 r_addend, extract_addend, r_type);
9893 break;
9894
9895 case elfcpp::R_MIPS16_26:
9896 // The calculation for R_MIPS16_26 is just the same as for an
9897 // R_MIPS_26. It's only the storage of the relocated field into
9898 // the output file that's different. So, we just fall through to the
9899 // R_MIPS_26 case here.
9900 case elfcpp::R_MIPS_26:
9901 case elfcpp::R_MICROMIPS_26_S1:
9902 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
9903 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, r_type,
9904 target->jal_to_bal());
9905 break;
9906
9907 case elfcpp::R_MIPS_HI16:
9908 case elfcpp::R_MIPS16_HI16:
9909 case elfcpp::R_MICROMIPS_HI16:
9910 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
9911 address, gp_disp, r_type,
9912 extract_addend);
9913 break;
9914
9915 case elfcpp::R_MIPS_LO16:
9916 case elfcpp::R_MIPS16_LO16:
9917 case elfcpp::R_MICROMIPS_LO16:
9918 case elfcpp::R_MICROMIPS_HI0_LO16:
9919 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
9920 r_addend, extract_addend, address,
9921 gp_disp, r_type);
9922 break;
9923
9924 case elfcpp::R_MIPS_LITERAL:
9925 case elfcpp::R_MICROMIPS_LITERAL:
9926 // Because we don't merge literal sections, we can handle this
9927 // just like R_MIPS_GPREL16. In the long run, we should merge
9928 // shared literals, and then we will need to additional work
9929 // here.
9930
9931 // Fall through.
9932
9933 case elfcpp::R_MIPS_GPREL16:
9934 case elfcpp::R_MIPS16_GPREL:
9935 case elfcpp::R_MICROMIPS_GPREL7_S2:
9936 case elfcpp::R_MICROMIPS_GPREL16:
9937 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
9938 target->adjusted_gp_value(object),
9939 r_addend, extract_addend,
9940 gsym == NULL, r_type);
9941 break;
9942
9943 case elfcpp::R_MIPS_PC16:
9944 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
9945 r_addend, extract_addend, r_type);
9946 break;
9947 case elfcpp::R_MICROMIPS_PC7_S1:
9948 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
9949 address, r_addend,
9950 extract_addend, r_type);
9951 break;
9952 case elfcpp::R_MICROMIPS_PC10_S1:
9953 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, psymval,
9954 address, r_addend,
9955 extract_addend, r_type);
9956 break;
9957 case elfcpp::R_MICROMIPS_PC16_S1:
9958 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, psymval,
9959 address, r_addend,
9960 extract_addend, r_type);
9961 break;
9962 case elfcpp::R_MIPS_GPREL32:
9963 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
9964 target->adjusted_gp_value(object),
9965 r_addend, extract_addend, r_type);
9966 break;
9967 case elfcpp::R_MIPS_GOT_HI16:
9968 case elfcpp::R_MIPS_CALL_HI16:
9969 case elfcpp::R_MICROMIPS_GOT_HI16:
9970 case elfcpp::R_MICROMIPS_CALL_HI16:
9971 if (gsym != NULL)
9972 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9973 object);
9974 else
9975 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9976 object);
9977 gp_offset = target->got_section()->gp_offset(got_offset, object);
9978 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, r_type);
9979 update_got_entry = changed_symbol_value;
9980 break;
9981
9982 case elfcpp::R_MIPS_GOT_LO16:
9983 case elfcpp::R_MIPS_CALL_LO16:
9984 case elfcpp::R_MICROMIPS_GOT_LO16:
9985 case elfcpp::R_MICROMIPS_CALL_LO16:
9986 if (gsym != NULL)
9987 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9988 object);
9989 else
9990 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9991 object);
9992 gp_offset = target->got_section()->gp_offset(got_offset, object);
9993 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, r_type);
9994 update_got_entry = changed_symbol_value;
9995 break;
9996
9997 case elfcpp::R_MIPS_GOT_DISP:
9998 case elfcpp::R_MICROMIPS_GOT_DISP:
9999 if (gsym != NULL)
10000 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10001 object);
10002 else
10003 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10004 object);
10005 gp_offset = target->got_section()->gp_offset(got_offset, object);
10006 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10007 break;
10008
10009 case elfcpp::R_MIPS_CALL16:
10010 case elfcpp::R_MIPS16_CALL16:
10011 case elfcpp::R_MICROMIPS_CALL16:
10012 gold_assert(gsym != NULL);
10013 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10014 object);
10015 gp_offset = target->got_section()->gp_offset(got_offset, object);
10016 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10017 // TODO(sasa): We should also initialize update_got_entry in other places
10018 // where relgot is called.
10019 update_got_entry = changed_symbol_value;
10020 break;
10021
10022 case elfcpp::R_MIPS_GOT16:
10023 case elfcpp::R_MIPS16_GOT16:
10024 case elfcpp::R_MICROMIPS_GOT16:
10025 if (gsym != NULL)
10026 {
10027 got_offset = target->got_section()->got_offset(gsym,
10028 GOT_TYPE_STANDARD,
10029 object);
10030 gp_offset = target->got_section()->gp_offset(got_offset, object);
10031 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10032 }
10033 else
10034 reloc_status = Reloc_funcs::relgot16_local(view, object, psymval,
10035 r_addend, extract_addend,
10036 r_type);
10037 update_got_entry = changed_symbol_value;
10038 break;
10039
10040 case elfcpp::R_MIPS_TLS_GD:
10041 case elfcpp::R_MIPS16_TLS_GD:
10042 case elfcpp::R_MICROMIPS_TLS_GD:
10043 if (gsym != NULL)
10044 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_PAIR,
10045 object);
10046 else
10047 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_PAIR,
10048 object);
10049 gp_offset = target->got_section()->gp_offset(got_offset, object);
10050 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10051 break;
10052
10053 case elfcpp::R_MIPS_TLS_GOTTPREL:
10054 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10055 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10056 if (gsym != NULL)
10057 got_offset = target->got_section()->got_offset(gsym,
10058 GOT_TYPE_TLS_OFFSET,
10059 object);
10060 else
10061 got_offset = target->got_section()->got_offset(r_sym,
10062 GOT_TYPE_TLS_OFFSET,
10063 object);
10064 gp_offset = target->got_section()->gp_offset(got_offset, object);
10065 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10066 break;
10067
10068 case elfcpp::R_MIPS_TLS_LDM:
10069 case elfcpp::R_MIPS16_TLS_LDM:
10070 case elfcpp::R_MICROMIPS_TLS_LDM:
10071 // Relocate the field with the offset of the GOT entry for
10072 // the module index.
10073 got_offset = target->got_section()->tls_ldm_offset(object);
10074 gp_offset = target->got_section()->gp_offset(got_offset, object);
10075 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10076 break;
10077
10078 case elfcpp::R_MIPS_GOT_PAGE:
10079 case elfcpp::R_MICROMIPS_GOT_PAGE:
10080 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
10081 r_addend, extract_addend, r_type);
10082 break;
10083
10084 case elfcpp::R_MIPS_GOT_OFST:
10085 case elfcpp::R_MICROMIPS_GOT_OFST:
10086 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
10087 r_addend, extract_addend, local,
10088 r_type);
10089 break;
10090
10091 case elfcpp::R_MIPS_JALR:
10092 case elfcpp::R_MICROMIPS_JALR:
10093 // This relocation is only a hint. In some cases, we optimize
10094 // it into a bal instruction. But we don't try to optimize
10095 // when the symbol does not resolve locally.
10096 if (gsym == NULL || symbol_calls_local(gsym, gsym->has_dynsym_index()))
10097 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
10098 r_addend, extract_addend,
10099 cross_mode_jump, r_type,
10100 target->jalr_to_bal(),
10101 target->jr_to_b());
10102 break;
10103
10104 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10105 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
10106 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
10107 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10108 elfcpp::DTP_OFFSET, r_addend,
10109 extract_addend, r_type);
10110 break;
10111 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10112 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
10113 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
10114 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10115 elfcpp::DTP_OFFSET, r_addend,
10116 extract_addend, r_type);
10117 break;
10118 case elfcpp::R_MIPS_TLS_DTPREL32:
10119 case elfcpp::R_MIPS_TLS_DTPREL64:
10120 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10121 elfcpp::DTP_OFFSET, r_addend,
10122 extract_addend, r_type);
10123 break;
10124 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10125 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
10126 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10127 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10128 elfcpp::TP_OFFSET, r_addend,
10129 extract_addend, r_type);
10130 break;
10131 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10132 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
10133 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10134 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10135 elfcpp::TP_OFFSET, r_addend,
10136 extract_addend, r_type);
10137 break;
10138 case elfcpp::R_MIPS_TLS_TPREL32:
10139 case elfcpp::R_MIPS_TLS_TPREL64:
10140 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10141 elfcpp::TP_OFFSET, r_addend,
10142 extract_addend, r_type);
10143 break;
10144 case elfcpp::R_MIPS_SUB:
10145 case elfcpp::R_MICROMIPS_SUB:
10146 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
10147 extract_addend, r_type);
10148 break;
10149 default:
10150 gold_error_at_location(relinfo, relnum, r_offset,
10151 _("unsupported reloc %u"), r_type);
10152 break;
10153 }
10154
10155 if (update_got_entry)
10156 {
10157 Mips_output_data_got<size, big_endian>* got = target->got_section();
10158 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
10159 got->update_got_entry(got->get_primary_got_offset(mips_sym),
10160 psymval->value(object, 0));
10161 else
10162 got->update_got_entry(got_offset, psymval->value(object, 0));
10163 }
10164
10165 // Report any errors.
10166 switch (reloc_status)
10167 {
10168 case Reloc_funcs::STATUS_OKAY:
10169 break;
10170 case Reloc_funcs::STATUS_OVERFLOW:
10171 gold_error_at_location(relinfo, relnum, r_offset,
10172 _("relocation overflow"));
10173 break;
10174 case Reloc_funcs::STATUS_BAD_RELOC:
10175 gold_error_at_location(relinfo, relnum, r_offset,
10176 _("unexpected opcode while processing relocation"));
10177 break;
10178 default:
10179 gold_unreachable();
10180 }
10181
10182 return true;
10183 }
10184
10185 template<int size, bool big_endian>
10186 inline bool
10187 Target_mips<size, big_endian>::Relocate::relocate(
10188 const Relocate_info<size, big_endian>* relinfo,
10189 Target_mips* target,
10190 Output_section* output_section,
10191 size_t relnum,
10192 const elfcpp::Rela<size, big_endian>& reloc,
10193 unsigned int r_type,
10194 const Sized_symbol<size>* gsym,
10195 const Symbol_value<size>* psymval,
10196 unsigned char* view,
10197 Mips_address address,
10198 section_size_type view_size)
10199 {
10200 return relocate(
10201 relinfo,
10202 target,
10203 output_section,
10204 relnum,
10205 &reloc,
10206 (const elfcpp::Rel<size, big_endian>*) NULL,
10207 elfcpp::SHT_RELA,
10208 r_type,
10209 gsym,
10210 psymval,
10211 view,
10212 address,
10213 view_size);
10214 }
10215
10216 template<int size, bool big_endian>
10217 inline bool
10218 Target_mips<size, big_endian>::Relocate::relocate(
10219 const Relocate_info<size, big_endian>* relinfo,
10220 Target_mips* target,
10221 Output_section* output_section,
10222 size_t relnum,
10223 const elfcpp::Rel<size, big_endian>& reloc,
10224 unsigned int r_type,
10225 const Sized_symbol<size>* gsym,
10226 const Symbol_value<size>* psymval,
10227 unsigned char* view,
10228 Mips_address address,
10229 section_size_type view_size)
10230 {
10231 return relocate(
10232 relinfo,
10233 target,
10234 output_section,
10235 relnum,
10236 (const elfcpp::Rela<size, big_endian>*) NULL,
10237 &reloc,
10238 elfcpp::SHT_REL,
10239 r_type,
10240 gsym,
10241 psymval,
10242 view,
10243 address,
10244 view_size);
10245 }
10246
10247 // Get the Reference_flags for a particular relocation.
10248
10249 template<int size, bool big_endian>
10250 int
10251 Target_mips<size, big_endian>::Scan::get_reference_flags(
10252 unsigned int r_type)
10253 {
10254 switch (r_type)
10255 {
10256 case elfcpp::R_MIPS_NONE:
10257 // No symbol reference.
10258 return 0;
10259
10260 case elfcpp::R_MIPS_16:
10261 case elfcpp::R_MIPS_32:
10262 case elfcpp::R_MIPS_64:
10263 case elfcpp::R_MIPS_HI16:
10264 case elfcpp::R_MIPS_LO16:
10265 case elfcpp::R_MIPS16_HI16:
10266 case elfcpp::R_MIPS16_LO16:
10267 case elfcpp::R_MICROMIPS_HI16:
10268 case elfcpp::R_MICROMIPS_LO16:
10269 return Symbol::ABSOLUTE_REF;
10270
10271 case elfcpp::R_MIPS_26:
10272 case elfcpp::R_MIPS16_26:
10273 case elfcpp::R_MICROMIPS_26_S1:
10274 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
10275
10276 case elfcpp::R_MIPS_GPREL32:
10277 case elfcpp::R_MIPS_GPREL16:
10278 case elfcpp::R_MIPS_REL32:
10279 case elfcpp::R_MIPS16_GPREL:
10280 return Symbol::RELATIVE_REF;
10281
10282 case elfcpp::R_MIPS_PC16:
10283 case elfcpp::R_MIPS_PC32:
10284 case elfcpp::R_MIPS_JALR:
10285 case elfcpp::R_MICROMIPS_JALR:
10286 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
10287
10288 case elfcpp::R_MIPS_GOT16:
10289 case elfcpp::R_MIPS_CALL16:
10290 case elfcpp::R_MIPS_GOT_DISP:
10291 case elfcpp::R_MIPS_GOT_HI16:
10292 case elfcpp::R_MIPS_GOT_LO16:
10293 case elfcpp::R_MIPS_CALL_HI16:
10294 case elfcpp::R_MIPS_CALL_LO16:
10295 case elfcpp::R_MIPS_LITERAL:
10296 case elfcpp::R_MIPS_GOT_PAGE:
10297 case elfcpp::R_MIPS_GOT_OFST:
10298 case elfcpp::R_MIPS16_GOT16:
10299 case elfcpp::R_MIPS16_CALL16:
10300 case elfcpp::R_MICROMIPS_GOT16:
10301 case elfcpp::R_MICROMIPS_CALL16:
10302 case elfcpp::R_MICROMIPS_GOT_HI16:
10303 case elfcpp::R_MICROMIPS_GOT_LO16:
10304 case elfcpp::R_MICROMIPS_CALL_HI16:
10305 case elfcpp::R_MICROMIPS_CALL_LO16:
10306 // Absolute in GOT.
10307 return Symbol::RELATIVE_REF;
10308
10309 case elfcpp::R_MIPS_TLS_DTPMOD32:
10310 case elfcpp::R_MIPS_TLS_DTPREL32:
10311 case elfcpp::R_MIPS_TLS_DTPMOD64:
10312 case elfcpp::R_MIPS_TLS_DTPREL64:
10313 case elfcpp::R_MIPS_TLS_GD:
10314 case elfcpp::R_MIPS_TLS_LDM:
10315 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10316 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10317 case elfcpp::R_MIPS_TLS_GOTTPREL:
10318 case elfcpp::R_MIPS_TLS_TPREL32:
10319 case elfcpp::R_MIPS_TLS_TPREL64:
10320 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10321 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10322 case elfcpp::R_MIPS16_TLS_GD:
10323 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10324 case elfcpp::R_MICROMIPS_TLS_GD:
10325 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10326 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10327 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10328 return Symbol::TLS_REF;
10329
10330 case elfcpp::R_MIPS_COPY:
10331 case elfcpp::R_MIPS_JUMP_SLOT:
10332 default:
10333 gold_unreachable();
10334 // Not expected. We will give an error later.
10335 return 0;
10336 }
10337 }
10338
10339 // Report an unsupported relocation against a local symbol.
10340
10341 template<int size, bool big_endian>
10342 void
10343 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
10344 Sized_relobj_file<size, big_endian>* object,
10345 unsigned int r_type)
10346 {
10347 gold_error(_("%s: unsupported reloc %u against local symbol"),
10348 object->name().c_str(), r_type);
10349 }
10350
10351 // Report an unsupported relocation against a global symbol.
10352
10353 template<int size, bool big_endian>
10354 void
10355 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
10356 Sized_relobj_file<size, big_endian>* object,
10357 unsigned int r_type,
10358 Symbol* gsym)
10359 {
10360 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
10361 object->name().c_str(), r_type, gsym->demangled_name().c_str());
10362 }
10363
10364 // Return printable name for ABI.
10365 template<int size, bool big_endian>
10366 const char*
10367 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags,
10368 unsigned char ei_class)
10369 {
10370 switch (e_flags & elfcpp::EF_MIPS_ABI)
10371 {
10372 case 0:
10373 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
10374 return "N32";
10375 else if (elfcpp::abi_64(ei_class))
10376 return "64";
10377 else
10378 return "none";
10379 case elfcpp::E_MIPS_ABI_O32:
10380 return "O32";
10381 case elfcpp::E_MIPS_ABI_O64:
10382 return "O64";
10383 case elfcpp::E_MIPS_ABI_EABI32:
10384 return "EABI32";
10385 case elfcpp::E_MIPS_ABI_EABI64:
10386 return "EABI64";
10387 default:
10388 return "unknown abi";
10389 }
10390 }
10391
10392 template<int size, bool big_endian>
10393 const char*
10394 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
10395 {
10396 switch (e_flags & elfcpp::EF_MIPS_MACH)
10397 {
10398 case elfcpp::E_MIPS_MACH_3900:
10399 return "mips:3900";
10400 case elfcpp::E_MIPS_MACH_4010:
10401 return "mips:4010";
10402 case elfcpp::E_MIPS_MACH_4100:
10403 return "mips:4100";
10404 case elfcpp::E_MIPS_MACH_4111:
10405 return "mips:4111";
10406 case elfcpp::E_MIPS_MACH_4120:
10407 return "mips:4120";
10408 case elfcpp::E_MIPS_MACH_4650:
10409 return "mips:4650";
10410 case elfcpp::E_MIPS_MACH_5400:
10411 return "mips:5400";
10412 case elfcpp::E_MIPS_MACH_5500:
10413 return "mips:5500";
10414 case elfcpp::E_MIPS_MACH_SB1:
10415 return "mips:sb1";
10416 case elfcpp::E_MIPS_MACH_9000:
10417 return "mips:9000";
10418 case elfcpp::E_MIPS_MACH_LS2E:
10419 return "mips:loongson-2e";
10420 case elfcpp::E_MIPS_MACH_LS2F:
10421 return "mips:loongson-2f";
10422 case elfcpp::E_MIPS_MACH_LS3A:
10423 return "mips:loongson-3a";
10424 case elfcpp::E_MIPS_MACH_OCTEON:
10425 return "mips:octeon";
10426 case elfcpp::E_MIPS_MACH_OCTEON2:
10427 return "mips:octeon2";
10428 case elfcpp::E_MIPS_MACH_XLR:
10429 return "mips:xlr";
10430 default:
10431 switch (e_flags & elfcpp::EF_MIPS_ARCH)
10432 {
10433 default:
10434 case elfcpp::E_MIPS_ARCH_1:
10435 return "mips:3000";
10436
10437 case elfcpp::E_MIPS_ARCH_2:
10438 return "mips:6000";
10439
10440 case elfcpp::E_MIPS_ARCH_3:
10441 return "mips:4000";
10442
10443 case elfcpp::E_MIPS_ARCH_4:
10444 return "mips:8000";
10445
10446 case elfcpp::E_MIPS_ARCH_5:
10447 return "mips:mips5";
10448
10449 case elfcpp::E_MIPS_ARCH_32:
10450 return "mips:isa32";
10451
10452 case elfcpp::E_MIPS_ARCH_64:
10453 return "mips:isa64";
10454
10455 case elfcpp::E_MIPS_ARCH_32R2:
10456 return "mips:isa32r2";
10457
10458 case elfcpp::E_MIPS_ARCH_64R2:
10459 return "mips:isa64r2";
10460 }
10461 }
10462 return "unknown CPU";
10463 }
10464
10465 template<int size, bool big_endian>
10466 const Target::Target_info Target_mips<size, big_endian>::mips_info =
10467 {
10468 size, // size
10469 big_endian, // is_big_endian
10470 elfcpp::EM_MIPS, // machine_code
10471 true, // has_make_symbol
10472 false, // has_resolve
10473 false, // has_code_fill
10474 true, // is_default_stack_executable
10475 false, // can_icf_inline_merge_sections
10476 '\0', // wrap_char
10477 "/lib/ld.so.1", // dynamic_linker
10478 0x400000, // default_text_segment_address
10479 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
10480 4 * 1024, // common_pagesize (overridable by -z common-page-size)
10481 false, // isolate_execinstr
10482 0, // rosegment_gap
10483 elfcpp::SHN_UNDEF, // small_common_shndx
10484 elfcpp::SHN_UNDEF, // large_common_shndx
10485 0, // small_common_section_flags
10486 0, // large_common_section_flags
10487 NULL, // attributes_section
10488 NULL, // attributes_vendor
10489 "__start" // entry_symbol_name
10490 };
10491
10492 template<int size, bool big_endian>
10493 class Target_mips_nacl : public Target_mips<size, big_endian>
10494 {
10495 public:
10496 Target_mips_nacl()
10497 : Target_mips<size, big_endian>(&mips_nacl_info)
10498 { }
10499
10500 private:
10501 static const Target::Target_info mips_nacl_info;
10502 };
10503
10504 template<int size, bool big_endian>
10505 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
10506 {
10507 size, // size
10508 big_endian, // is_big_endian
10509 elfcpp::EM_MIPS, // machine_code
10510 true, // has_make_symbol
10511 false, // has_resolve
10512 false, // has_code_fill
10513 true, // is_default_stack_executable
10514 false, // can_icf_inline_merge_sections
10515 '\0', // wrap_char
10516 "/lib/ld.so.1", // dynamic_linker
10517 0x20000, // default_text_segment_address
10518 0x10000, // abi_pagesize (overridable by -z max-page-size)
10519 0x10000, // common_pagesize (overridable by -z common-page-size)
10520 true, // isolate_execinstr
10521 0x10000000, // rosegment_gap
10522 elfcpp::SHN_UNDEF, // small_common_shndx
10523 elfcpp::SHN_UNDEF, // large_common_shndx
10524 0, // small_common_section_flags
10525 0, // large_common_section_flags
10526 NULL, // attributes_section
10527 NULL, // attributes_vendor
10528 "_start" // entry_symbol_name
10529 };
10530
10531 // Target selector for Mips. Note this is never instantiated directly.
10532 // It's only used in Target_selector_mips_nacl, below.
10533
10534 template<int size, bool big_endian>
10535 class Target_selector_mips : public Target_selector
10536 {
10537 public:
10538 Target_selector_mips()
10539 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
10540 (size == 64 ?
10541 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10542 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
10543 (size == 64 ?
10544 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10545 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")))
10546 { }
10547
10548 Target* do_instantiate_target()
10549 { return new Target_mips<size, big_endian>(); }
10550 };
10551
10552 template<int size, bool big_endian>
10553 class Target_selector_mips_nacl
10554 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
10555 Target_mips_nacl<size, big_endian> >
10556 {
10557 public:
10558 Target_selector_mips_nacl()
10559 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
10560 Target_mips_nacl<size, big_endian> >(
10561 // NaCl currently supports only MIPS32 little-endian.
10562 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
10563 { }
10564 };
10565
10566 Target_selector_mips_nacl<32, true> target_selector_mips32;
10567 Target_selector_mips_nacl<32, false> target_selector_mips32el;
10568 Target_selector_mips_nacl<64, true> target_selector_mips64;
10569 Target_selector_mips_nacl<64, false> target_selector_mips64el;
10570
10571 } // End anonymous namespace.
This page took 0.267435 seconds and 5 git commands to generate.