MIPS: Fix GOT page counter in multi-got links
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2018 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_section_options;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_la25_stub;
71
72 template<int size, bool big_endian>
73 class Mips_output_data_mips_stubs;
74
75 template<int size>
76 class Mips_symbol;
77
78 template<int size, bool big_endian>
79 class Mips_got_info;
80
81 template<int size, bool big_endian>
82 class Mips_relobj;
83
84 class Mips16_stub_section_base;
85
86 template<int size, bool big_endian>
87 class Mips16_stub_section;
88
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry. Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache. The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
95
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning. We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only". Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
101 // relocations only.
102
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values. Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
106
107 enum Global_got_area
108 {
109 GGA_NORMAL = 0,
110 GGA_RELOC_ONLY = 1,
111 GGA_NONE = 2
112 };
113
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
118 enum Got_type
119 {
120 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
121 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
122 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
123
124 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125 GOT_TYPE_STANDARD_MULTIGOT = 3,
126 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
127 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
128 };
129
130 // TLS type of GOT entry.
131 enum Got_tls_type
132 {
133 GOT_TLS_NONE = 0,
134 GOT_TLS_GD = 1,
135 GOT_TLS_LDM = 2,
136 GOT_TLS_IE = 4
137 };
138
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
141 {
142 RSS_UNDEF = 0, // None - value is zero.
143 RSS_GP = 1, // Value of GP.
144 RSS_GP0 = 2, // Value of GP in object being relocated.
145 RSS_LOC = 3 // Address of location being relocated.
146 };
147
148 // Whether the section is readonly.
149 static inline bool
150 is_readonly_section(Output_section* output_section)
151 {
152 elfcpp::Elf_Xword section_flags = output_section->flags();
153 elfcpp::Elf_Word section_type = output_section->type();
154
155 if (section_type == elfcpp::SHT_NOBITS)
156 return false;
157
158 if (section_flags & elfcpp::SHF_WRITE)
159 return false;
160
161 return true;
162 }
163
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub. See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size, bool big_endian>
168 static inline bool
169 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
170 unsigned int r_type, bool target_is_16_bit_code)
171 {
172 // We specifically ignore branches and jumps from EF_PIC objects,
173 // where the onus is on the compiler or programmer to perform any
174 // necessary initialization of $25. Sometimes such initialization
175 // is unnecessary; for example, -mno-shared functions do not use
176 // the incoming value of $25, and may therefore be called directly.
177 if (object->is_pic())
178 return false;
179
180 switch (r_type)
181 {
182 case elfcpp::R_MIPS_26:
183 case elfcpp::R_MIPS_PC16:
184 case elfcpp::R_MIPS_PC21_S2:
185 case elfcpp::R_MIPS_PC26_S2:
186 case elfcpp::R_MICROMIPS_26_S1:
187 case elfcpp::R_MICROMIPS_PC7_S1:
188 case elfcpp::R_MICROMIPS_PC10_S1:
189 case elfcpp::R_MICROMIPS_PC16_S1:
190 case elfcpp::R_MICROMIPS_PC23_S2:
191 return true;
192
193 case elfcpp::R_MIPS16_26:
194 return !target_is_16_bit_code;
195
196 default:
197 return false;
198 }
199 }
200
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid. Only non-MIPS16
205 // entry points are of interest here.
206 template<int size, bool big_endian>
207 static inline bool
208 local_pic_function(Mips_symbol<size>* sym)
209 {
210 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
211 && !sym->object()->is_dynamic()
212 && !sym->is_undefined());
213
214 if (sym->is_defined() && def_regular)
215 {
216 Mips_relobj<size, big_endian>* object =
217 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
218
219 if ((object->is_pic() || sym->is_pic())
220 && (!sym->is_mips16()
221 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
222 return true;
223 }
224 return false;
225 }
226
227 static inline bool
228 hi16_reloc(int r_type)
229 {
230 return (r_type == elfcpp::R_MIPS_HI16
231 || r_type == elfcpp::R_MIPS16_HI16
232 || r_type == elfcpp::R_MICROMIPS_HI16
233 || r_type == elfcpp::R_MIPS_PCHI16);
234 }
235
236 static inline bool
237 lo16_reloc(int r_type)
238 {
239 return (r_type == elfcpp::R_MIPS_LO16
240 || r_type == elfcpp::R_MIPS16_LO16
241 || r_type == elfcpp::R_MICROMIPS_LO16
242 || r_type == elfcpp::R_MIPS_PCLO16);
243 }
244
245 static inline bool
246 got16_reloc(unsigned int r_type)
247 {
248 return (r_type == elfcpp::R_MIPS_GOT16
249 || r_type == elfcpp::R_MIPS16_GOT16
250 || r_type == elfcpp::R_MICROMIPS_GOT16);
251 }
252
253 static inline bool
254 call_lo16_reloc(unsigned int r_type)
255 {
256 return (r_type == elfcpp::R_MIPS_CALL_LO16
257 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
258 }
259
260 static inline bool
261 got_lo16_reloc(unsigned int r_type)
262 {
263 return (r_type == elfcpp::R_MIPS_GOT_LO16
264 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
265 }
266
267 static inline bool
268 eh_reloc(unsigned int r_type)
269 {
270 return (r_type == elfcpp::R_MIPS_EH);
271 }
272
273 static inline bool
274 got_disp_reloc(unsigned int r_type)
275 {
276 return (r_type == elfcpp::R_MIPS_GOT_DISP
277 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
278 }
279
280 static inline bool
281 got_page_reloc(unsigned int r_type)
282 {
283 return (r_type == elfcpp::R_MIPS_GOT_PAGE
284 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
285 }
286
287 static inline bool
288 tls_gd_reloc(unsigned int r_type)
289 {
290 return (r_type == elfcpp::R_MIPS_TLS_GD
291 || r_type == elfcpp::R_MIPS16_TLS_GD
292 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
293 }
294
295 static inline bool
296 tls_gottprel_reloc(unsigned int r_type)
297 {
298 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
299 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
300 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
301 }
302
303 static inline bool
304 tls_ldm_reloc(unsigned int r_type)
305 {
306 return (r_type == elfcpp::R_MIPS_TLS_LDM
307 || r_type == elfcpp::R_MIPS16_TLS_LDM
308 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
309 }
310
311 static inline bool
312 mips16_call_reloc(unsigned int r_type)
313 {
314 return (r_type == elfcpp::R_MIPS16_26
315 || r_type == elfcpp::R_MIPS16_CALL16);
316 }
317
318 static inline bool
319 jal_reloc(unsigned int r_type)
320 {
321 return (r_type == elfcpp::R_MIPS_26
322 || r_type == elfcpp::R_MIPS16_26
323 || r_type == elfcpp::R_MICROMIPS_26_S1);
324 }
325
326 static inline bool
327 micromips_branch_reloc(unsigned int r_type)
328 {
329 return (r_type == elfcpp::R_MICROMIPS_26_S1
330 || r_type == elfcpp::R_MICROMIPS_PC16_S1
331 || r_type == elfcpp::R_MICROMIPS_PC10_S1
332 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
333 }
334
335 // Check if R_TYPE is a MIPS16 reloc.
336 static inline bool
337 mips16_reloc(unsigned int r_type)
338 {
339 switch (r_type)
340 {
341 case elfcpp::R_MIPS16_26:
342 case elfcpp::R_MIPS16_GPREL:
343 case elfcpp::R_MIPS16_GOT16:
344 case elfcpp::R_MIPS16_CALL16:
345 case elfcpp::R_MIPS16_HI16:
346 case elfcpp::R_MIPS16_LO16:
347 case elfcpp::R_MIPS16_TLS_GD:
348 case elfcpp::R_MIPS16_TLS_LDM:
349 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
351 case elfcpp::R_MIPS16_TLS_GOTTPREL:
352 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
353 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
354 return true;
355
356 default:
357 return false;
358 }
359 }
360
361 // Check if R_TYPE is a microMIPS reloc.
362 static inline bool
363 micromips_reloc(unsigned int r_type)
364 {
365 switch (r_type)
366 {
367 case elfcpp::R_MICROMIPS_26_S1:
368 case elfcpp::R_MICROMIPS_HI16:
369 case elfcpp::R_MICROMIPS_LO16:
370 case elfcpp::R_MICROMIPS_GPREL16:
371 case elfcpp::R_MICROMIPS_LITERAL:
372 case elfcpp::R_MICROMIPS_GOT16:
373 case elfcpp::R_MICROMIPS_PC7_S1:
374 case elfcpp::R_MICROMIPS_PC10_S1:
375 case elfcpp::R_MICROMIPS_PC16_S1:
376 case elfcpp::R_MICROMIPS_CALL16:
377 case elfcpp::R_MICROMIPS_GOT_DISP:
378 case elfcpp::R_MICROMIPS_GOT_PAGE:
379 case elfcpp::R_MICROMIPS_GOT_OFST:
380 case elfcpp::R_MICROMIPS_GOT_HI16:
381 case elfcpp::R_MICROMIPS_GOT_LO16:
382 case elfcpp::R_MICROMIPS_SUB:
383 case elfcpp::R_MICROMIPS_HIGHER:
384 case elfcpp::R_MICROMIPS_HIGHEST:
385 case elfcpp::R_MICROMIPS_CALL_HI16:
386 case elfcpp::R_MICROMIPS_CALL_LO16:
387 case elfcpp::R_MICROMIPS_SCN_DISP:
388 case elfcpp::R_MICROMIPS_JALR:
389 case elfcpp::R_MICROMIPS_HI0_LO16:
390 case elfcpp::R_MICROMIPS_TLS_GD:
391 case elfcpp::R_MICROMIPS_TLS_LDM:
392 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
394 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
395 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
396 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
397 case elfcpp::R_MICROMIPS_GPREL7_S2:
398 case elfcpp::R_MICROMIPS_PC23_S2:
399 return true;
400
401 default:
402 return false;
403 }
404 }
405
406 static inline bool
407 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
408 {
409 switch (high_reloc)
410 {
411 case elfcpp::R_MIPS_HI16:
412 case elfcpp::R_MIPS_GOT16:
413 return lo16_reloc == elfcpp::R_MIPS_LO16;
414 case elfcpp::R_MIPS_PCHI16:
415 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
416 case elfcpp::R_MIPS16_HI16:
417 case elfcpp::R_MIPS16_GOT16:
418 return lo16_reloc == elfcpp::R_MIPS16_LO16;
419 case elfcpp::R_MICROMIPS_HI16:
420 case elfcpp::R_MICROMIPS_GOT16:
421 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
422 default:
423 return false;
424 }
425 }
426
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
429 //
430 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 // (2) a SYMBOL address, where SYMBOL is not local to an input object
433 // (sym != NULL, symndx == -1)
434 // (3) a TLS LDM slot (there's only one of these per GOT.)
435 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
436
437 template<int size, bool big_endian>
438 class Mips_got_entry
439 {
440 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
441
442 public:
443 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
444 Mips_address addend, unsigned char tls_type,
445 unsigned int shndx, bool is_section_symbol)
446 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
447 is_section_symbol_(is_section_symbol), shndx_(shndx)
448 { this->d.object = object; }
449
450 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
451 : addend_(0), symndx_(-1U), tls_type_(tls_type),
452 is_section_symbol_(false), shndx_(-1U)
453 { this->d.sym = sym; }
454
455 // Return whether this entry is for a local symbol.
456 bool
457 is_for_local_symbol() const
458 { return this->symndx_ != -1U; }
459
460 // Return whether this entry is for a global symbol.
461 bool
462 is_for_global_symbol() const
463 { return this->symndx_ == -1U; }
464
465 // Return the hash of this entry.
466 size_t
467 hash() const
468 {
469 if (this->tls_type_ == GOT_TLS_LDM)
470 return this->symndx_ + (1 << 18);
471
472 size_t name_hash_value = gold::string_hash<char>(
473 (this->symndx_ != -1U)
474 ? this->d.object->name().c_str()
475 : this->d.sym->name());
476 size_t addend = this->addend_;
477 return name_hash_value ^ this->symndx_ ^ (addend << 16);
478 }
479
480 // Return whether this entry is equal to OTHER.
481 bool
482 equals(Mips_got_entry<size, big_endian>* other) const
483 {
484 if (this->symndx_ != other->symndx_
485 || this->tls_type_ != other->tls_type_)
486 return false;
487
488 if (this->tls_type_ == GOT_TLS_LDM)
489 return true;
490
491 return (((this->symndx_ != -1U)
492 ? (this->d.object == other->d.object)
493 : (this->d.sym == other->d.sym))
494 && (this->addend_ == other->addend_));
495 }
496
497 // Return input object that needs this GOT entry.
498 Mips_relobj<size, big_endian>*
499 object() const
500 {
501 gold_assert(this->symndx_ != -1U);
502 return this->d.object;
503 }
504
505 // Return local symbol index for local GOT entries.
506 unsigned int
507 symndx() const
508 {
509 gold_assert(this->symndx_ != -1U);
510 return this->symndx_;
511 }
512
513 // Return the relocation addend for local GOT entries.
514 Mips_address
515 addend() const
516 { return this->addend_; }
517
518 // Return global symbol for global GOT entries.
519 Mips_symbol<size>*
520 sym() const
521 {
522 gold_assert(this->symndx_ == -1U);
523 return this->d.sym;
524 }
525
526 // Return whether this is a TLS GOT entry.
527 bool
528 is_tls_entry() const
529 { return this->tls_type_ != GOT_TLS_NONE; }
530
531 // Return TLS type of this GOT entry.
532 unsigned char
533 tls_type() const
534 { return this->tls_type_; }
535
536 // Return section index of the local symbol for local GOT entries.
537 unsigned int
538 shndx() const
539 { return this->shndx_; }
540
541 // Return whether this is a STT_SECTION symbol.
542 bool
543 is_section_symbol() const
544 { return this->is_section_symbol_; }
545
546 private:
547 // The addend.
548 Mips_address addend_;
549
550 // The index of the symbol if we have a local symbol; -1 otherwise.
551 unsigned int symndx_;
552
553 union
554 {
555 // The input object for local symbols that needs the GOT entry.
556 Mips_relobj<size, big_endian>* object;
557 // If symndx == -1, the global symbol corresponding to this GOT entry. The
558 // symbol's entry is in the local area if mips_sym->global_got_area is
559 // GGA_NONE, otherwise it is in the global area.
560 Mips_symbol<size>* sym;
561 } d;
562
563 // The TLS type of this GOT entry. An LDM GOT entry will be a local
564 // symbol entry with r_symndx == 0.
565 unsigned char tls_type_;
566
567 // Whether this is a STT_SECTION symbol.
568 bool is_section_symbol_;
569
570 // For local GOT entries, section index of the local symbol.
571 unsigned int shndx_;
572 };
573
574 // Hash for Mips_got_entry.
575
576 template<int size, bool big_endian>
577 class Mips_got_entry_hash
578 {
579 public:
580 size_t
581 operator()(Mips_got_entry<size, big_endian>* entry) const
582 { return entry->hash(); }
583 };
584
585 // Equality for Mips_got_entry.
586
587 template<int size, bool big_endian>
588 class Mips_got_entry_eq
589 {
590 public:
591 bool
592 operator()(Mips_got_entry<size, big_endian>* e1,
593 Mips_got_entry<size, big_endian>* e2) const
594 { return e1->equals(e2); }
595 };
596
597 // Hash for Mips_symbol.
598
599 template<int size>
600 class Mips_symbol_hash
601 {
602 public:
603 size_t
604 operator()(Mips_symbol<size>* sym) const
605 { return sym->hash(); }
606 };
607
608 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
609 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
610 // increasing MIN_ADDEND.
611
612 struct Got_page_range
613 {
614 Got_page_range()
615 : next(NULL), min_addend(0), max_addend(0)
616 { }
617
618 Got_page_range* next;
619 int min_addend;
620 int max_addend;
621
622 // Return the maximum number of GOT page entries required.
623 int
624 get_max_pages()
625 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
626 };
627
628 // Got_page_entry. This class describes the range of addends that are applied
629 // to page relocations against a given symbol.
630
631 struct Got_page_entry
632 {
633 Got_page_entry()
634 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
635 { }
636
637 Got_page_entry(Object* object_, unsigned int symndx_)
638 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
639 { }
640
641 // The input object that needs the GOT page entry.
642 Object* object;
643 // The index of the symbol, as stored in the relocation r_info.
644 unsigned int symndx;
645 // The ranges for this page entry.
646 Got_page_range* ranges;
647 // The maximum number of page entries needed for RANGES.
648 unsigned int num_pages;
649 };
650
651 // Hash for Got_page_entry.
652
653 struct Got_page_entry_hash
654 {
655 size_t
656 operator()(Got_page_entry* entry) const
657 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
658 };
659
660 // Equality for Got_page_entry.
661
662 struct Got_page_entry_eq
663 {
664 bool
665 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
666 {
667 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
668 }
669 };
670
671 // This class is used to hold .got information when linking.
672
673 template<int size, bool big_endian>
674 class Mips_got_info
675 {
676 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
677 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
678 Reloc_section;
679 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
680
681 // Unordered set of GOT entries.
682 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
683 Mips_got_entry_hash<size, big_endian>,
684 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
685
686 // Unordered set of GOT page entries.
687 typedef Unordered_set<Got_page_entry*,
688 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
689
690 // Unordered set of global GOT entries.
691 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
692 Global_got_entry_set;
693
694 public:
695 Mips_got_info()
696 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
697 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
698 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
699 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
700 offset_(0)
701 { }
702
703 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
704 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
705 void
706 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
707 unsigned int symndx, Mips_address addend,
708 unsigned int r_type, unsigned int shndx,
709 bool is_section_symbol);
710
711 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
712 // in OBJECT. FOR_CALL is true if the caller is only interested in
713 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
714 // relocation.
715 void
716 record_global_got_symbol(Mips_symbol<size>* mips_sym,
717 Mips_relobj<size, big_endian>* object,
718 unsigned int r_type, bool dyn_reloc, bool for_call);
719
720 // Add ENTRY to master GOT and to OBJECT's GOT.
721 void
722 record_got_entry(Mips_got_entry<size, big_endian>* entry,
723 Mips_relobj<size, big_endian>* object);
724
725 // Record that OBJECT has a page relocation against symbol SYMNDX and
726 // that ADDEND is the addend for that relocation.
727 void
728 record_got_page_entry(Mips_relobj<size, big_endian>* object,
729 unsigned int symndx, int addend);
730
731 // Create all entries that should be in the local part of the GOT.
732 void
733 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
734
735 // Create GOT page entries.
736 void
737 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
738
739 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
740 void
741 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
742 unsigned int non_reloc_only_global_gotno);
743
744 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
745 void
746 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
747
748 // Create TLS GOT entries.
749 void
750 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
751
752 // Decide whether the symbol needs an entry in the global part of the primary
753 // GOT, setting global_got_area accordingly. Count the number of global
754 // symbols that are in the primary GOT only because they have dynamic
755 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
756 void
757 count_got_symbols(Symbol_table* symtab);
758
759 // Return the offset of GOT page entry for VALUE.
760 unsigned int
761 get_got_page_offset(Mips_address value,
762 Mips_output_data_got<size, big_endian>* got);
763
764 // Count the number of GOT entries required.
765 void
766 count_got_entries();
767
768 // Count the number of GOT entries required by ENTRY. Accumulate the result.
769 void
770 count_got_entry(Mips_got_entry<size, big_endian>* entry);
771
772 // Add FROM's GOT entries.
773 void
774 add_got_entries(Mips_got_info<size, big_endian>* from);
775
776 // Add FROM's GOT page entries.
777 void
778 add_got_page_entries(Mips_got_info<size, big_endian>* from);
779
780 // Return GOT size.
781 unsigned int
782 got_size() const
783 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
784 + this->tls_gotno_) * size/8);
785 }
786
787 // Return the number of local GOT entries.
788 unsigned int
789 local_gotno() const
790 { return this->local_gotno_; }
791
792 // Return the maximum number of page GOT entries needed.
793 unsigned int
794 page_gotno() const
795 { return this->page_gotno_; }
796
797 // Return the number of global GOT entries.
798 unsigned int
799 global_gotno() const
800 { return this->global_gotno_; }
801
802 // Set the number of global GOT entries.
803 void
804 set_global_gotno(unsigned int global_gotno)
805 { this->global_gotno_ = global_gotno; }
806
807 // Return the number of GGA_RELOC_ONLY global GOT entries.
808 unsigned int
809 reloc_only_gotno() const
810 { return this->reloc_only_gotno_; }
811
812 // Return the number of TLS GOT entries.
813 unsigned int
814 tls_gotno() const
815 { return this->tls_gotno_; }
816
817 // Return the GOT type for this GOT. Used for multi-GOT links only.
818 unsigned int
819 multigot_got_type(unsigned int got_type) const
820 {
821 switch (got_type)
822 {
823 case GOT_TYPE_STANDARD:
824 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
825 case GOT_TYPE_TLS_OFFSET:
826 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
827 case GOT_TYPE_TLS_PAIR:
828 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
829 default:
830 gold_unreachable();
831 }
832 }
833
834 // Remove lazy-binding stubs for global symbols in this GOT.
835 void
836 remove_lazy_stubs(Target_mips<size, big_endian>* target);
837
838 // Return offset of this GOT from the start of .got section.
839 unsigned int
840 offset() const
841 { return this->offset_; }
842
843 // Set offset of this GOT from the start of .got section.
844 void
845 set_offset(unsigned int offset)
846 { this->offset_ = offset; }
847
848 // Set index of this GOT in multi-GOT links.
849 void
850 set_index(unsigned int index)
851 { this->index_ = index; }
852
853 // Return next GOT in multi-GOT links.
854 Mips_got_info<size, big_endian>*
855 next() const
856 { return this->next_; }
857
858 // Set next GOT in multi-GOT links.
859 void
860 set_next(Mips_got_info<size, big_endian>* next)
861 { this->next_ = next; }
862
863 // Return the offset of TLS LDM entry for this GOT.
864 unsigned int
865 tls_ldm_offset() const
866 { return this->tls_ldm_offset_; }
867
868 // Set the offset of TLS LDM entry for this GOT.
869 void
870 set_tls_ldm_offset(unsigned int tls_ldm_offset)
871 { this->tls_ldm_offset_ = tls_ldm_offset; }
872
873 Global_got_entry_set&
874 global_got_symbols()
875 { return this->global_got_symbols_; }
876
877 // Return the GOT_TLS_* type required by relocation type R_TYPE.
878 static int
879 mips_elf_reloc_tls_type(unsigned int r_type)
880 {
881 if (tls_gd_reloc(r_type))
882 return GOT_TLS_GD;
883
884 if (tls_ldm_reloc(r_type))
885 return GOT_TLS_LDM;
886
887 if (tls_gottprel_reloc(r_type))
888 return GOT_TLS_IE;
889
890 return GOT_TLS_NONE;
891 }
892
893 // Return the number of GOT slots needed for GOT TLS type TYPE.
894 static int
895 mips_tls_got_entries(unsigned int type)
896 {
897 switch (type)
898 {
899 case GOT_TLS_GD:
900 case GOT_TLS_LDM:
901 return 2;
902
903 case GOT_TLS_IE:
904 return 1;
905
906 case GOT_TLS_NONE:
907 return 0;
908
909 default:
910 gold_unreachable();
911 }
912 }
913
914 private:
915 // The number of local GOT entries.
916 unsigned int local_gotno_;
917 // The maximum number of page GOT entries needed.
918 unsigned int page_gotno_;
919 // The number of global GOT entries.
920 unsigned int global_gotno_;
921 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
922 unsigned int reloc_only_gotno_;
923 // The number of TLS GOT entries.
924 unsigned int tls_gotno_;
925 // The offset of TLS LDM entry for this GOT.
926 unsigned int tls_ldm_offset_;
927 // All symbols that have global GOT entry.
928 Global_got_entry_set global_got_symbols_;
929 // A hash table holding GOT entries.
930 Got_entry_set got_entries_;
931 // A hash table of GOT page entries.
932 Got_page_entry_set got_page_entries_;
933 // The offset of first GOT page entry for this GOT.
934 unsigned int got_page_offset_start_;
935 // The offset of next available GOT page entry for this GOT.
936 unsigned int got_page_offset_next_;
937 // A hash table that maps GOT page entry value to the GOT offset where
938 // the entry is located.
939 Got_page_offsets got_page_offsets_;
940 // In multi-GOT links, a pointer to the next GOT.
941 Mips_got_info<size, big_endian>* next_;
942 // Index of this GOT in multi-GOT links.
943 unsigned int index_;
944 // The offset of this GOT in multi-GOT links.
945 unsigned int offset_;
946 };
947
948 // This is a helper class used during relocation scan. It records GOT16 addend.
949
950 template<int size, bool big_endian>
951 struct got16_addend
952 {
953 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
954
955 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
956 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
957 Mips_address _addend)
958 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
959 addend(_addend)
960 { }
961
962 const Sized_relobj_file<size, big_endian>* object;
963 unsigned int shndx;
964 unsigned int r_type;
965 unsigned int r_sym;
966 Mips_address addend;
967 };
968
969 // .MIPS.abiflags section content
970
971 template<bool big_endian>
972 struct Mips_abiflags
973 {
974 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
975 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
976 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
977
978 Mips_abiflags()
979 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
980 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
981 { }
982
983 // Version of flags structure.
984 Valtype16 version;
985 // The level of the ISA: 1-5, 32, 64.
986 Valtype8 isa_level;
987 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
988 Valtype8 isa_rev;
989 // The size of general purpose registers.
990 Valtype8 gpr_size;
991 // The size of co-processor 1 registers.
992 Valtype8 cpr1_size;
993 // The size of co-processor 2 registers.
994 Valtype8 cpr2_size;
995 // The floating-point ABI.
996 Valtype8 fp_abi;
997 // Processor-specific extension.
998 Valtype32 isa_ext;
999 // Mask of ASEs used.
1000 Valtype32 ases;
1001 // Mask of general flags.
1002 Valtype32 flags1;
1003 Valtype32 flags2;
1004 };
1005
1006 // Mips_symbol class. Holds additional symbol information needed for Mips.
1007
1008 template<int size>
1009 class Mips_symbol : public Sized_symbol<size>
1010 {
1011 public:
1012 Mips_symbol()
1013 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1014 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1015 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1016 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1017 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1018 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1019 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1020 { }
1021
1022 // Return whether this is a MIPS16 symbol.
1023 bool
1024 is_mips16() const
1025 {
1026 // (st_other & STO_MIPS16) == STO_MIPS16
1027 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1028 == elfcpp::STO_MIPS16 >> 2);
1029 }
1030
1031 // Return whether this is a microMIPS symbol.
1032 bool
1033 is_micromips() const
1034 {
1035 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1036 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1037 == elfcpp::STO_MICROMIPS >> 2);
1038 }
1039
1040 // Return whether the symbol needs MIPS16 fn_stub.
1041 bool
1042 need_fn_stub() const
1043 { return this->need_fn_stub_; }
1044
1045 // Set that the symbol needs MIPS16 fn_stub.
1046 void
1047 set_need_fn_stub()
1048 { this->need_fn_stub_ = true; }
1049
1050 // Return whether this symbol is referenced by branch relocations from
1051 // any non-PIC input file.
1052 bool
1053 has_nonpic_branches() const
1054 { return this->has_nonpic_branches_; }
1055
1056 // Set that this symbol is referenced by branch relocations from
1057 // any non-PIC input file.
1058 void
1059 set_has_nonpic_branches()
1060 { this->has_nonpic_branches_ = true; }
1061
1062 // Return the offset of the la25 stub for this symbol from the start of the
1063 // la25 stub section.
1064 unsigned int
1065 la25_stub_offset() const
1066 { return this->la25_stub_offset_; }
1067
1068 // Set the offset of the la25 stub for this symbol from the start of the
1069 // la25 stub section.
1070 void
1071 set_la25_stub_offset(unsigned int offset)
1072 { this->la25_stub_offset_ = offset; }
1073
1074 // Return whether the symbol has la25 stub. This is true if this symbol is
1075 // for a PIC function, and there are non-PIC branches and jumps to it.
1076 bool
1077 has_la25_stub() const
1078 { return this->la25_stub_offset_ != -1U; }
1079
1080 // Return whether there is a relocation against this symbol that must be
1081 // resolved by the static linker (that is, the relocation cannot possibly
1082 // be made dynamic).
1083 bool
1084 has_static_relocs() const
1085 { return this->has_static_relocs_; }
1086
1087 // Set that there is a relocation against this symbol that must be resolved
1088 // by the static linker (that is, the relocation cannot possibly be made
1089 // dynamic).
1090 void
1091 set_has_static_relocs()
1092 { this->has_static_relocs_ = true; }
1093
1094 // Return whether we must not create a lazy-binding stub for this symbol.
1095 bool
1096 no_lazy_stub() const
1097 { return this->no_lazy_stub_; }
1098
1099 // Set that we must not create a lazy-binding stub for this symbol.
1100 void
1101 set_no_lazy_stub()
1102 { this->no_lazy_stub_ = true; }
1103
1104 // Return the offset of the lazy-binding stub for this symbol from the start
1105 // of .MIPS.stubs section.
1106 unsigned int
1107 lazy_stub_offset() const
1108 { return this->lazy_stub_offset_; }
1109
1110 // Set the offset of the lazy-binding stub for this symbol from the start
1111 // of .MIPS.stubs section.
1112 void
1113 set_lazy_stub_offset(unsigned int offset)
1114 { this->lazy_stub_offset_ = offset; }
1115
1116 // Return whether there are any relocations for this symbol where
1117 // pointer equality matters.
1118 bool
1119 pointer_equality_needed() const
1120 { return this->pointer_equality_needed_; }
1121
1122 // Set that there are relocations for this symbol where pointer equality
1123 // matters.
1124 void
1125 set_pointer_equality_needed()
1126 { this->pointer_equality_needed_ = true; }
1127
1128 // Return global GOT area where this symbol in located.
1129 Global_got_area
1130 global_got_area() const
1131 { return this->global_got_area_; }
1132
1133 // Set global GOT area where this symbol in located.
1134 void
1135 set_global_got_area(Global_got_area global_got_area)
1136 { this->global_got_area_ = global_got_area; }
1137
1138 // Return the global GOT offset for this symbol. For multi-GOT links, this
1139 // returns the offset from the start of .got section to the first GOT entry
1140 // for the symbol. Note that in multi-GOT links the symbol can have entry
1141 // in more than one GOT.
1142 unsigned int
1143 global_gotoffset() const
1144 { return this->global_gotoffset_; }
1145
1146 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1147 // the symbol can have entry in more than one GOT. This method will set
1148 // the offset only if it is less than current offset.
1149 void
1150 set_global_gotoffset(unsigned int offset)
1151 {
1152 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1153 this->global_gotoffset_ = offset;
1154 }
1155
1156 // Return whether all GOT relocations for this symbol are for calls.
1157 bool
1158 got_only_for_calls() const
1159 { return this->got_only_for_calls_; }
1160
1161 // Set that there is a GOT relocation for this symbol that is not for call.
1162 void
1163 set_got_not_only_for_calls()
1164 { this->got_only_for_calls_ = false; }
1165
1166 // Return whether this is a PIC symbol.
1167 bool
1168 is_pic() const
1169 {
1170 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1171 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1172 == (elfcpp::STO_MIPS_PIC >> 2));
1173 }
1174
1175 // Set the flag in st_other field that marks this symbol as PIC.
1176 void
1177 set_pic()
1178 {
1179 if (this->is_mips16())
1180 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1181 this->set_nonvis((this->nonvis()
1182 & ~((elfcpp::STO_MIPS16 >> 2)
1183 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1184 | (elfcpp::STO_MIPS_PIC >> 2));
1185 else
1186 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1187 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1188 | (elfcpp::STO_MIPS_PIC >> 2));
1189 }
1190
1191 // Set the flag in st_other field that marks this symbol as PLT.
1192 void
1193 set_mips_plt()
1194 {
1195 if (this->is_mips16())
1196 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1197 this->set_nonvis((this->nonvis()
1198 & ((elfcpp::STO_MIPS16 >> 2)
1199 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1200 | (elfcpp::STO_MIPS_PLT >> 2));
1201
1202 else
1203 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1204 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1205 | (elfcpp::STO_MIPS_PLT >> 2));
1206 }
1207
1208 // Downcast a base pointer to a Mips_symbol pointer.
1209 static Mips_symbol<size>*
1210 as_mips_sym(Symbol* sym)
1211 { return static_cast<Mips_symbol<size>*>(sym); }
1212
1213 // Downcast a base pointer to a Mips_symbol pointer.
1214 static const Mips_symbol<size>*
1215 as_mips_sym(const Symbol* sym)
1216 { return static_cast<const Mips_symbol<size>*>(sym); }
1217
1218 // Return whether the symbol has lazy-binding stub.
1219 bool
1220 has_lazy_stub() const
1221 { return this->has_lazy_stub_; }
1222
1223 // Set whether the symbol has lazy-binding stub.
1224 void
1225 set_has_lazy_stub(bool has_lazy_stub)
1226 { this->has_lazy_stub_ = has_lazy_stub; }
1227
1228 // Return whether the symbol needs a standard PLT entry.
1229 bool
1230 needs_mips_plt() const
1231 { return this->needs_mips_plt_; }
1232
1233 // Set whether the symbol needs a standard PLT entry.
1234 void
1235 set_needs_mips_plt(bool needs_mips_plt)
1236 { this->needs_mips_plt_ = needs_mips_plt; }
1237
1238 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1239 // entry.
1240 bool
1241 needs_comp_plt() const
1242 { return this->needs_comp_plt_; }
1243
1244 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1245 void
1246 set_needs_comp_plt(bool needs_comp_plt)
1247 { this->needs_comp_plt_ = needs_comp_plt; }
1248
1249 // Return standard PLT entry offset, or -1 if none.
1250 unsigned int
1251 mips_plt_offset() const
1252 { return this->mips_plt_offset_; }
1253
1254 // Set standard PLT entry offset.
1255 void
1256 set_mips_plt_offset(unsigned int mips_plt_offset)
1257 { this->mips_plt_offset_ = mips_plt_offset; }
1258
1259 // Return whether the symbol has standard PLT entry.
1260 bool
1261 has_mips_plt_offset() const
1262 { return this->mips_plt_offset_ != -1U; }
1263
1264 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1265 unsigned int
1266 comp_plt_offset() const
1267 { return this->comp_plt_offset_; }
1268
1269 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1270 void
1271 set_comp_plt_offset(unsigned int comp_plt_offset)
1272 { this->comp_plt_offset_ = comp_plt_offset; }
1273
1274 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1275 bool
1276 has_comp_plt_offset() const
1277 { return this->comp_plt_offset_ != -1U; }
1278
1279 // Return MIPS16 fn stub for a symbol.
1280 template<bool big_endian>
1281 Mips16_stub_section<size, big_endian>*
1282 get_mips16_fn_stub() const
1283 {
1284 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1285 }
1286
1287 // Set MIPS16 fn stub for a symbol.
1288 void
1289 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1290 { this->mips16_fn_stub_ = stub; }
1291
1292 // Return whether symbol has MIPS16 fn stub.
1293 bool
1294 has_mips16_fn_stub() const
1295 { return this->mips16_fn_stub_ != NULL; }
1296
1297 // Return MIPS16 call stub for a symbol.
1298 template<bool big_endian>
1299 Mips16_stub_section<size, big_endian>*
1300 get_mips16_call_stub() const
1301 {
1302 return static_cast<Mips16_stub_section<size, big_endian>*>(
1303 mips16_call_stub_);
1304 }
1305
1306 // Set MIPS16 call stub for a symbol.
1307 void
1308 set_mips16_call_stub(Mips16_stub_section_base* stub)
1309 { this->mips16_call_stub_ = stub; }
1310
1311 // Return whether symbol has MIPS16 call stub.
1312 bool
1313 has_mips16_call_stub() const
1314 { return this->mips16_call_stub_ != NULL; }
1315
1316 // Return MIPS16 call_fp stub for a symbol.
1317 template<bool big_endian>
1318 Mips16_stub_section<size, big_endian>*
1319 get_mips16_call_fp_stub() const
1320 {
1321 return static_cast<Mips16_stub_section<size, big_endian>*>(
1322 mips16_call_fp_stub_);
1323 }
1324
1325 // Set MIPS16 call_fp stub for a symbol.
1326 void
1327 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1328 { this->mips16_call_fp_stub_ = stub; }
1329
1330 // Return whether symbol has MIPS16 call_fp stub.
1331 bool
1332 has_mips16_call_fp_stub() const
1333 { return this->mips16_call_fp_stub_ != NULL; }
1334
1335 bool
1336 get_applied_secondary_got_fixup() const
1337 { return applied_secondary_got_fixup_; }
1338
1339 void
1340 set_applied_secondary_got_fixup()
1341 { this->applied_secondary_got_fixup_ = true; }
1342
1343 // Return the hash of this symbol.
1344 size_t
1345 hash() const
1346 {
1347 return gold::string_hash<char>(this->name());
1348 }
1349
1350 private:
1351 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1352 // appears in any relocs other than a 16 bit call.
1353 bool need_fn_stub_;
1354
1355 // True if this symbol is referenced by branch relocations from
1356 // any non-PIC input file. This is used to determine whether an
1357 // la25 stub is required.
1358 bool has_nonpic_branches_;
1359
1360 // The offset of the la25 stub for this symbol from the start of the
1361 // la25 stub section.
1362 unsigned int la25_stub_offset_;
1363
1364 // True if there is a relocation against this symbol that must be
1365 // resolved by the static linker (that is, the relocation cannot
1366 // possibly be made dynamic).
1367 bool has_static_relocs_;
1368
1369 // Whether we must not create a lazy-binding stub for this symbol.
1370 // This is true if the symbol has relocations related to taking the
1371 // function's address.
1372 bool no_lazy_stub_;
1373
1374 // The offset of the lazy-binding stub for this symbol from the start of
1375 // .MIPS.stubs section.
1376 unsigned int lazy_stub_offset_;
1377
1378 // True if there are any relocations for this symbol where pointer equality
1379 // matters.
1380 bool pointer_equality_needed_;
1381
1382 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1383 // in the global part of the GOT.
1384 Global_got_area global_got_area_;
1385
1386 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1387 // from the start of .got section to the first GOT entry for the symbol.
1388 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1389 unsigned int global_gotoffset_;
1390
1391 // Whether all GOT relocations for this symbol are for calls.
1392 bool got_only_for_calls_;
1393 // Whether the symbol has lazy-binding stub.
1394 bool has_lazy_stub_;
1395 // Whether the symbol needs a standard PLT entry.
1396 bool needs_mips_plt_;
1397 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1398 bool needs_comp_plt_;
1399 // Standard PLT entry offset, or -1 if none.
1400 unsigned int mips_plt_offset_;
1401 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1402 unsigned int comp_plt_offset_;
1403 // MIPS16 fn stub for a symbol.
1404 Mips16_stub_section_base* mips16_fn_stub_;
1405 // MIPS16 call stub for a symbol.
1406 Mips16_stub_section_base* mips16_call_stub_;
1407 // MIPS16 call_fp stub for a symbol.
1408 Mips16_stub_section_base* mips16_call_fp_stub_;
1409
1410 bool applied_secondary_got_fixup_;
1411 };
1412
1413 // Mips16_stub_section class.
1414
1415 // The mips16 compiler uses a couple of special sections to handle
1416 // floating point arguments.
1417
1418 // Section names that look like .mips16.fn.FNNAME contain stubs that
1419 // copy floating point arguments from the fp regs to the gp regs and
1420 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1421 // call should be redirected to the stub instead. If no 32 bit
1422 // function calls FNNAME, the stub should be discarded. We need to
1423 // consider any reference to the function, not just a call, because
1424 // if the address of the function is taken we will need the stub,
1425 // since the address might be passed to a 32 bit function.
1426
1427 // Section names that look like .mips16.call.FNNAME contain stubs
1428 // that copy floating point arguments from the gp regs to the fp
1429 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1430 // then any 16 bit function that calls FNNAME should be redirected
1431 // to the stub instead. If FNNAME is not a 32 bit function, the
1432 // stub should be discarded.
1433
1434 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1435 // which call FNNAME and then copy the return value from the fp regs
1436 // to the gp regs. These stubs store the return address in $18 while
1437 // calling FNNAME; any function which might call one of these stubs
1438 // must arrange to save $18 around the call. (This case is not
1439 // needed for 32 bit functions that call 16 bit functions, because
1440 // 16 bit functions always return floating point values in both
1441 // $f0/$f1 and $2/$3.)
1442
1443 // Note that in all cases FNNAME might be defined statically.
1444 // Therefore, FNNAME is not used literally. Instead, the relocation
1445 // information will indicate which symbol the section is for.
1446
1447 // We record any stubs that we find in the symbol table.
1448
1449 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1450
1451 class Mips16_stub_section_base { };
1452
1453 template<int size, bool big_endian>
1454 class Mips16_stub_section : public Mips16_stub_section_base
1455 {
1456 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1457
1458 public:
1459 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1460 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1461 found_r_mips_none_(false)
1462 {
1463 gold_assert(object->is_mips16_fn_stub_section(shndx)
1464 || object->is_mips16_call_stub_section(shndx)
1465 || object->is_mips16_call_fp_stub_section(shndx));
1466 }
1467
1468 // Return the object of this stub section.
1469 Mips_relobj<size, big_endian>*
1470 object() const
1471 { return this->object_; }
1472
1473 // Return the size of a section.
1474 uint64_t
1475 section_size() const
1476 { return this->object_->section_size(this->shndx_); }
1477
1478 // Return section index of this stub section.
1479 unsigned int
1480 shndx() const
1481 { return this->shndx_; }
1482
1483 // Return symbol index, if stub is for a local function.
1484 unsigned int
1485 r_sym() const
1486 { return this->r_sym_; }
1487
1488 // Return symbol, if stub is for a global function.
1489 Mips_symbol<size>*
1490 gsym() const
1491 { return this->gsym_; }
1492
1493 // Return whether stub is for a local function.
1494 bool
1495 is_for_local_function() const
1496 { return this->gsym_ == NULL; }
1497
1498 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1499 // is found in the stub section. Try to find stub target.
1500 void
1501 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1502 {
1503 // To find target symbol for this stub, trust the first R_MIPS_NONE
1504 // relocation, if any. Otherwise trust the first relocation, whatever
1505 // its kind.
1506 if (this->found_r_mips_none_)
1507 return;
1508 if (r_type == elfcpp::R_MIPS_NONE)
1509 {
1510 this->r_sym_ = r_sym;
1511 this->gsym_ = NULL;
1512 this->found_r_mips_none_ = true;
1513 }
1514 else if (!is_target_found())
1515 this->r_sym_ = r_sym;
1516 }
1517
1518 // This method is called when a new relocation R_TYPE for global symbol GSYM
1519 // is found in the stub section. Try to find stub target.
1520 void
1521 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1522 {
1523 // To find target symbol for this stub, trust the first R_MIPS_NONE
1524 // relocation, if any. Otherwise trust the first relocation, whatever
1525 // its kind.
1526 if (this->found_r_mips_none_)
1527 return;
1528 if (r_type == elfcpp::R_MIPS_NONE)
1529 {
1530 this->gsym_ = gsym;
1531 this->r_sym_ = 0;
1532 this->found_r_mips_none_ = true;
1533 }
1534 else if (!is_target_found())
1535 this->gsym_ = gsym;
1536 }
1537
1538 // Return whether we found the stub target.
1539 bool
1540 is_target_found() const
1541 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1542
1543 // Return whether this is a fn stub.
1544 bool
1545 is_fn_stub() const
1546 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1547
1548 // Return whether this is a call stub.
1549 bool
1550 is_call_stub() const
1551 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1552
1553 // Return whether this is a call_fp stub.
1554 bool
1555 is_call_fp_stub() const
1556 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1557
1558 // Return the output address.
1559 Mips_address
1560 output_address() const
1561 {
1562 return (this->object_->output_section(this->shndx_)->address()
1563 + this->object_->output_section_offset(this->shndx_));
1564 }
1565
1566 private:
1567 // The object of this stub section.
1568 Mips_relobj<size, big_endian>* object_;
1569 // The section index of this stub section.
1570 unsigned int shndx_;
1571 // The symbol index, if stub is for a local function.
1572 unsigned int r_sym_;
1573 // The symbol, if stub is for a global function.
1574 Mips_symbol<size>* gsym_;
1575 // True if we found R_MIPS_NONE relocation in this stub.
1576 bool found_r_mips_none_;
1577 };
1578
1579 // Mips_relobj class.
1580
1581 template<int size, bool big_endian>
1582 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1583 {
1584 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1585 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1586 Mips16_stubs_int_map;
1587 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1588
1589 public:
1590 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1591 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1592 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1593 processor_specific_flags_(0), local_symbol_is_mips16_(),
1594 local_symbol_is_micromips_(), mips16_stub_sections_(),
1595 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1596 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1597 merge_processor_specific_data_(true), got_info_(NULL),
1598 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1599 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U),
1600 attributes_section_data_(NULL), abiflags_(NULL), gprmask_(0),
1601 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1602 {
1603 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1604 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1605 }
1606
1607 ~Mips_relobj()
1608 { delete this->attributes_section_data_; }
1609
1610 // Downcast a base pointer to a Mips_relobj pointer. This is
1611 // not type-safe but we only use Mips_relobj not the base class.
1612 static Mips_relobj<size, big_endian>*
1613 as_mips_relobj(Relobj* relobj)
1614 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1615
1616 // Downcast a base pointer to a Mips_relobj pointer. This is
1617 // not type-safe but we only use Mips_relobj not the base class.
1618 static const Mips_relobj<size, big_endian>*
1619 as_mips_relobj(const Relobj* relobj)
1620 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1621
1622 // Processor-specific flags in ELF file header. This is valid only after
1623 // reading symbols.
1624 elfcpp::Elf_Word
1625 processor_specific_flags() const
1626 { return this->processor_specific_flags_; }
1627
1628 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1629 // index. This is only valid after do_count_local_symbol is called.
1630 bool
1631 local_symbol_is_mips16(unsigned int r_sym) const
1632 {
1633 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1634 return this->local_symbol_is_mips16_[r_sym];
1635 }
1636
1637 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1638 // index. This is only valid after do_count_local_symbol is called.
1639 bool
1640 local_symbol_is_micromips(unsigned int r_sym) const
1641 {
1642 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1643 return this->local_symbol_is_micromips_[r_sym];
1644 }
1645
1646 // Get or create MIPS16 stub section.
1647 Mips16_stub_section<size, big_endian>*
1648 get_mips16_stub_section(unsigned int shndx)
1649 {
1650 typename Mips16_stubs_int_map::const_iterator it =
1651 this->mips16_stub_sections_.find(shndx);
1652 if (it != this->mips16_stub_sections_.end())
1653 return (*it).second;
1654
1655 Mips16_stub_section<size, big_endian>* stub_section =
1656 new Mips16_stub_section<size, big_endian>(this, shndx);
1657 this->mips16_stub_sections_.insert(
1658 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1659 stub_section->shndx(), stub_section));
1660 return stub_section;
1661 }
1662
1663 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1664 // object doesn't have fn stub for R_SYM.
1665 Mips16_stub_section<size, big_endian>*
1666 get_local_mips16_fn_stub(unsigned int r_sym) const
1667 {
1668 typename Mips16_stubs_int_map::const_iterator it =
1669 this->local_mips16_fn_stubs_.find(r_sym);
1670 if (it != this->local_mips16_fn_stubs_.end())
1671 return (*it).second;
1672 return NULL;
1673 }
1674
1675 // Record that this object has MIPS16 fn stub for local symbol. This method
1676 // is only called if we decided not to discard the stub.
1677 void
1678 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1679 {
1680 gold_assert(stub->is_for_local_function());
1681 unsigned int r_sym = stub->r_sym();
1682 this->local_mips16_fn_stubs_.insert(
1683 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1684 r_sym, stub));
1685 }
1686
1687 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1688 // object doesn't have call stub for R_SYM.
1689 Mips16_stub_section<size, big_endian>*
1690 get_local_mips16_call_stub(unsigned int r_sym) const
1691 {
1692 typename Mips16_stubs_int_map::const_iterator it =
1693 this->local_mips16_call_stubs_.find(r_sym);
1694 if (it != this->local_mips16_call_stubs_.end())
1695 return (*it).second;
1696 return NULL;
1697 }
1698
1699 // Record that this object has MIPS16 call stub for local symbol. This method
1700 // is only called if we decided not to discard the stub.
1701 void
1702 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1703 {
1704 gold_assert(stub->is_for_local_function());
1705 unsigned int r_sym = stub->r_sym();
1706 this->local_mips16_call_stubs_.insert(
1707 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1708 r_sym, stub));
1709 }
1710
1711 // Record that we found "non 16-bit" call relocation against local symbol
1712 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1713 // is one.
1714 void
1715 add_local_non_16bit_call(unsigned int symndx)
1716 { this->local_non_16bit_calls_.insert(symndx); }
1717
1718 // Return true if there is any "non 16-bit" call relocation against local
1719 // symbol SYMNDX in this object.
1720 bool
1721 has_local_non_16bit_call_relocs(unsigned int symndx)
1722 {
1723 return (this->local_non_16bit_calls_.find(symndx)
1724 != this->local_non_16bit_calls_.end());
1725 }
1726
1727 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1728 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1729 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1730 void
1731 add_local_16bit_call(unsigned int symndx)
1732 { this->local_16bit_calls_.insert(symndx); }
1733
1734 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1735 // symbol SYMNDX in this object.
1736 bool
1737 has_local_16bit_call_relocs(unsigned int symndx)
1738 {
1739 return (this->local_16bit_calls_.find(symndx)
1740 != this->local_16bit_calls_.end());
1741 }
1742
1743 // Get gp value that was used to create this object.
1744 Mips_address
1745 gp_value() const
1746 { return this->gp_; }
1747
1748 // Return whether the object is a PIC object.
1749 bool
1750 is_pic() const
1751 { return this->is_pic_; }
1752
1753 // Return whether the object uses N32 ABI.
1754 bool
1755 is_n32() const
1756 { return this->is_n32_; }
1757
1758 // Return whether the object uses N64 ABI.
1759 bool
1760 is_n64() const
1761 { return size == 64; }
1762
1763 // Return whether the object uses NewABI conventions.
1764 bool
1765 is_newabi() const
1766 { return this->is_n32() || this->is_n64(); }
1767
1768 // Return Mips_got_info for this object.
1769 Mips_got_info<size, big_endian>*
1770 get_got_info() const
1771 { return this->got_info_; }
1772
1773 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1774 Mips_got_info<size, big_endian>*
1775 get_or_create_got_info()
1776 {
1777 if (!this->got_info_)
1778 this->got_info_ = new Mips_got_info<size, big_endian>();
1779 return this->got_info_;
1780 }
1781
1782 // Set Mips_got_info for this object.
1783 void
1784 set_got_info(Mips_got_info<size, big_endian>* got_info)
1785 { this->got_info_ = got_info; }
1786
1787 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1788 // after do_read_symbols is called.
1789 bool
1790 is_mips16_stub_section(unsigned int shndx)
1791 {
1792 return (is_mips16_fn_stub_section(shndx)
1793 || is_mips16_call_stub_section(shndx)
1794 || is_mips16_call_fp_stub_section(shndx));
1795 }
1796
1797 // Return TRUE if relocations in section SHNDX can refer directly to a
1798 // MIPS16 function rather than to a hard-float stub. This is only valid
1799 // after do_read_symbols is called.
1800 bool
1801 section_allows_mips16_refs(unsigned int shndx)
1802 {
1803 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1804 }
1805
1806 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1807 // after do_read_symbols is called.
1808 bool
1809 is_mips16_fn_stub_section(unsigned int shndx)
1810 {
1811 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1812 return this->section_is_mips16_fn_stub_[shndx];
1813 }
1814
1815 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1816 // after do_read_symbols is called.
1817 bool
1818 is_mips16_call_stub_section(unsigned int shndx)
1819 {
1820 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1821 return this->section_is_mips16_call_stub_[shndx];
1822 }
1823
1824 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1825 // valid after do_read_symbols is called.
1826 bool
1827 is_mips16_call_fp_stub_section(unsigned int shndx)
1828 {
1829 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1830 return this->section_is_mips16_call_fp_stub_[shndx];
1831 }
1832
1833 // Discard MIPS16 stub secions that are not needed.
1834 void
1835 discard_mips16_stub_sections(Symbol_table* symtab);
1836
1837 // Return whether there is a .reginfo section.
1838 bool
1839 has_reginfo_section() const
1840 { return this->has_reginfo_section_; }
1841
1842 // Return whether we want to merge processor-specific data.
1843 bool
1844 merge_processor_specific_data() const
1845 { return this->merge_processor_specific_data_; }
1846
1847 // Return gprmask from the .reginfo section of this object.
1848 Valtype
1849 gprmask() const
1850 { return this->gprmask_; }
1851
1852 // Return cprmask1 from the .reginfo section of this object.
1853 Valtype
1854 cprmask1() const
1855 { return this->cprmask1_; }
1856
1857 // Return cprmask2 from the .reginfo section of this object.
1858 Valtype
1859 cprmask2() const
1860 { return this->cprmask2_; }
1861
1862 // Return cprmask3 from the .reginfo section of this object.
1863 Valtype
1864 cprmask3() const
1865 { return this->cprmask3_; }
1866
1867 // Return cprmask4 from the .reginfo section of this object.
1868 Valtype
1869 cprmask4() const
1870 { return this->cprmask4_; }
1871
1872 // This is the contents of the .MIPS.abiflags section if there is one.
1873 Mips_abiflags<big_endian>*
1874 abiflags()
1875 { return this->abiflags_; }
1876
1877 // This is the contents of the .gnu.attribute section if there is one.
1878 const Attributes_section_data*
1879 attributes_section_data() const
1880 { return this->attributes_section_data_; }
1881
1882 protected:
1883 // Count the local symbols.
1884 void
1885 do_count_local_symbols(Stringpool_template<char>*,
1886 Stringpool_template<char>*);
1887
1888 // Read the symbol information.
1889 void
1890 do_read_symbols(Read_symbols_data* sd);
1891
1892 private:
1893 // The name of the options section.
1894 const char* mips_elf_options_section_name()
1895 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1896
1897 // processor-specific flags in ELF file header.
1898 elfcpp::Elf_Word processor_specific_flags_;
1899
1900 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1901 // This is only valid after do_count_local_symbol is called.
1902 std::vector<bool> local_symbol_is_mips16_;
1903
1904 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1905 // This is only valid after do_count_local_symbol is called.
1906 std::vector<bool> local_symbol_is_micromips_;
1907
1908 // Map from section index to the MIPS16 stub for that section. This contains
1909 // all stubs found in this object.
1910 Mips16_stubs_int_map mips16_stub_sections_;
1911
1912 // Local symbols that have "non 16-bit" call relocation. This relocation
1913 // would need to refer to a MIPS16 fn stub, if there is one.
1914 std::set<unsigned int> local_non_16bit_calls_;
1915
1916 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1917 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1918 // relocation that refers to the stub symbol.
1919 std::set<unsigned int> local_16bit_calls_;
1920
1921 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1922 // This contains only the stubs that we decided not to discard.
1923 Mips16_stubs_int_map local_mips16_fn_stubs_;
1924
1925 // Map from local symbol index to the MIPS16 call stub for that symbol.
1926 // This contains only the stubs that we decided not to discard.
1927 Mips16_stubs_int_map local_mips16_call_stubs_;
1928
1929 // gp value that was used to create this object.
1930 Mips_address gp_;
1931 // Whether the object is a PIC object.
1932 bool is_pic_ : 1;
1933 // Whether the object uses N32 ABI.
1934 bool is_n32_ : 1;
1935 // Whether the object contains a .reginfo section.
1936 bool has_reginfo_section_ : 1;
1937 // Whether we merge processor-specific data of this object to output.
1938 bool merge_processor_specific_data_ : 1;
1939 // The Mips_got_info for this object.
1940 Mips_got_info<size, big_endian>* got_info_;
1941
1942 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1943 // This is only valid after do_read_symbols is called.
1944 std::vector<bool> section_is_mips16_fn_stub_;
1945
1946 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1947 // This is only valid after do_read_symbols is called.
1948 std::vector<bool> section_is_mips16_call_stub_;
1949
1950 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1951 // This is only valid after do_read_symbols is called.
1952 std::vector<bool> section_is_mips16_call_fp_stub_;
1953
1954 // .pdr section index.
1955 unsigned int pdr_shndx_;
1956
1957 // Object attributes if there is a .gnu.attributes section or NULL.
1958 Attributes_section_data* attributes_section_data_;
1959
1960 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1961 Mips_abiflags<big_endian>* abiflags_;
1962
1963 // gprmask from the .reginfo section of this object.
1964 Valtype gprmask_;
1965 // cprmask1 from the .reginfo section of this object.
1966 Valtype cprmask1_;
1967 // cprmask2 from the .reginfo section of this object.
1968 Valtype cprmask2_;
1969 // cprmask3 from the .reginfo section of this object.
1970 Valtype cprmask3_;
1971 // cprmask4 from the .reginfo section of this object.
1972 Valtype cprmask4_;
1973 };
1974
1975 // Mips_output_data_got class.
1976
1977 template<int size, bool big_endian>
1978 class Mips_output_data_got : public Output_data_got<size, big_endian>
1979 {
1980 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1981 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1982 Reloc_section;
1983 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1984
1985 public:
1986 Mips_output_data_got(Target_mips<size, big_endian>* target,
1987 Symbol_table* symtab, Layout* layout)
1988 : Output_data_got<size, big_endian>(), target_(target),
1989 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1990 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1991 secondary_got_relocs_()
1992 {
1993 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1994 this->set_addralign(16);
1995 }
1996
1997 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1998 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1999 void
2000 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
2001 unsigned int symndx, Mips_address addend,
2002 unsigned int r_type, unsigned int shndx,
2003 bool is_section_symbol)
2004 {
2005 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
2006 r_type, shndx,
2007 is_section_symbol);
2008 }
2009
2010 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2011 // in OBJECT. FOR_CALL is true if the caller is only interested in
2012 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2013 // relocation.
2014 void
2015 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2016 Mips_relobj<size, big_endian>* object,
2017 unsigned int r_type, bool dyn_reloc, bool for_call)
2018 {
2019 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2020 dyn_reloc, for_call);
2021 }
2022
2023 // Record that OBJECT has a page relocation against symbol SYMNDX and
2024 // that ADDEND is the addend for that relocation.
2025 void
2026 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2027 unsigned int symndx, int addend)
2028 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2029
2030 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2031 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2032 // applied in a static link.
2033 void
2034 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2035 Mips_symbol<size>* gsym)
2036 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2037
2038 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2039 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2040 // relocation that needs to be applied in a static link.
2041 void
2042 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2043 Sized_relobj_file<size, big_endian>* relobj,
2044 unsigned int index)
2045 {
2046 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2047 index));
2048 }
2049
2050 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2051 // secondary GOT at OFFSET.
2052 void
2053 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2054 Mips_symbol<size>* gsym)
2055 {
2056 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2057 r_type, gsym));
2058 }
2059
2060 // Update GOT entry at OFFSET with VALUE.
2061 void
2062 update_got_entry(unsigned int offset, Mips_address value)
2063 {
2064 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2065 }
2066
2067 // Return the number of entries in local part of the GOT. This includes
2068 // local entries, page entries and 2 reserved entries.
2069 unsigned int
2070 get_local_gotno() const
2071 {
2072 if (!this->multi_got())
2073 {
2074 return (2 + this->master_got_info_->local_gotno()
2075 + this->master_got_info_->page_gotno());
2076 }
2077 else
2078 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2079 }
2080
2081 // Return dynamic symbol table index of the first symbol with global GOT
2082 // entry.
2083 unsigned int
2084 first_global_got_dynsym_index() const
2085 { return this->first_global_got_dynsym_index_; }
2086
2087 // Set dynamic symbol table index of the first symbol with global GOT entry.
2088 void
2089 set_first_global_got_dynsym_index(unsigned int index)
2090 { this->first_global_got_dynsym_index_ = index; }
2091
2092 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2093 // larger than 64K, create multi-GOT.
2094 void
2095 lay_out_got(Layout* layout, Symbol_table* symtab,
2096 const Input_objects* input_objects);
2097
2098 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2099 void
2100 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2101
2102 // Attempt to merge GOTs of different input objects.
2103 void
2104 merge_gots(const Input_objects* input_objects);
2105
2106 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2107 // this would lead to overflow, true if they were merged successfully.
2108 bool
2109 merge_got_with(Mips_got_info<size, big_endian>* from,
2110 Mips_relobj<size, big_endian>* object,
2111 Mips_got_info<size, big_endian>* to);
2112
2113 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2114 // use OBJECT's GOT.
2115 unsigned int
2116 get_got_page_offset(Mips_address value,
2117 const Mips_relobj<size, big_endian>* object)
2118 {
2119 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2120 ? this->master_got_info_
2121 : object->get_got_info());
2122 gold_assert(g != NULL);
2123 return g->get_got_page_offset(value, this);
2124 }
2125
2126 // Return the GOT offset of type GOT_TYPE of the global symbol
2127 // GSYM. For multi-GOT links, use OBJECT's GOT.
2128 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2129 Mips_relobj<size, big_endian>* object) const
2130 {
2131 if (!this->multi_got())
2132 return gsym->got_offset(got_type);
2133 else
2134 {
2135 Mips_got_info<size, big_endian>* g = object->get_got_info();
2136 gold_assert(g != NULL);
2137 return gsym->got_offset(g->multigot_got_type(got_type));
2138 }
2139 }
2140
2141 // Return the GOT offset of type GOT_TYPE of the local symbol
2142 // SYMNDX.
2143 unsigned int
2144 got_offset(unsigned int symndx, unsigned int got_type,
2145 Sized_relobj_file<size, big_endian>* object,
2146 uint64_t addend) const
2147 { return object->local_got_offset(symndx, got_type, addend); }
2148
2149 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2150 unsigned int
2151 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2152 {
2153 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2154 ? this->master_got_info_
2155 : object->get_got_info());
2156 gold_assert(g != NULL);
2157 return g->tls_ldm_offset();
2158 }
2159
2160 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2161 void
2162 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2163 Mips_relobj<size, big_endian>* object)
2164 {
2165 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2166 ? this->master_got_info_
2167 : object->get_got_info());
2168 gold_assert(g != NULL);
2169 g->set_tls_ldm_offset(tls_ldm_offset);
2170 }
2171
2172 // Return true for multi-GOT links.
2173 bool
2174 multi_got() const
2175 { return this->primary_got_ != NULL; }
2176
2177 // Return the offset of OBJECT's GOT from the start of .got section.
2178 unsigned int
2179 get_got_offset(const Mips_relobj<size, big_endian>* object)
2180 {
2181 if (!this->multi_got())
2182 return 0;
2183 else
2184 {
2185 Mips_got_info<size, big_endian>* g = object->get_got_info();
2186 return g != NULL ? g->offset() : 0;
2187 }
2188 }
2189
2190 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2191 void
2192 add_reloc_only_entries()
2193 { this->master_got_info_->add_reloc_only_entries(this); }
2194
2195 // Return offset of the primary GOT's entry for global symbol.
2196 unsigned int
2197 get_primary_got_offset(const Mips_symbol<size>* sym) const
2198 {
2199 gold_assert(sym->global_got_area() != GGA_NONE);
2200 return (this->get_local_gotno() + sym->dynsym_index()
2201 - this->first_global_got_dynsym_index()) * size/8;
2202 }
2203
2204 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2205 // Input argument GOT_OFFSET is always global offset from the start of
2206 // .got section, for both single and multi-GOT links.
2207 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2208 // links, the return value is object_got_offset - 0x7FF0, where
2209 // object_got_offset is offset in the OBJECT's GOT.
2210 int
2211 gp_offset(unsigned int got_offset,
2212 const Mips_relobj<size, big_endian>* object) const
2213 {
2214 return (this->address() + got_offset
2215 - this->target_->adjusted_gp_value(object));
2216 }
2217
2218 protected:
2219 // Write out the GOT table.
2220 void
2221 do_write(Output_file*);
2222
2223 private:
2224
2225 // This class represent dynamic relocations that need to be applied by
2226 // gold because we are using TLS relocations in a static link.
2227 class Static_reloc
2228 {
2229 public:
2230 Static_reloc(unsigned int got_offset, unsigned int r_type,
2231 Mips_symbol<size>* gsym)
2232 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2233 { this->u_.global.symbol = gsym; }
2234
2235 Static_reloc(unsigned int got_offset, unsigned int r_type,
2236 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2237 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2238 {
2239 this->u_.local.relobj = relobj;
2240 this->u_.local.index = index;
2241 }
2242
2243 // Return the GOT offset.
2244 unsigned int
2245 got_offset() const
2246 { return this->got_offset_; }
2247
2248 // Relocation type.
2249 unsigned int
2250 r_type() const
2251 { return this->r_type_; }
2252
2253 // Whether the symbol is global or not.
2254 bool
2255 symbol_is_global() const
2256 { return this->symbol_is_global_; }
2257
2258 // For a relocation against a global symbol, the global symbol.
2259 Mips_symbol<size>*
2260 symbol() const
2261 {
2262 gold_assert(this->symbol_is_global_);
2263 return this->u_.global.symbol;
2264 }
2265
2266 // For a relocation against a local symbol, the defining object.
2267 Sized_relobj_file<size, big_endian>*
2268 relobj() const
2269 {
2270 gold_assert(!this->symbol_is_global_);
2271 return this->u_.local.relobj;
2272 }
2273
2274 // For a relocation against a local symbol, the local symbol index.
2275 unsigned int
2276 index() const
2277 {
2278 gold_assert(!this->symbol_is_global_);
2279 return this->u_.local.index;
2280 }
2281
2282 private:
2283 // GOT offset of the entry to which this relocation is applied.
2284 unsigned int got_offset_;
2285 // Type of relocation.
2286 unsigned int r_type_;
2287 // Whether this relocation is against a global symbol.
2288 bool symbol_is_global_;
2289 // A global or local symbol.
2290 union
2291 {
2292 struct
2293 {
2294 // For a global symbol, the symbol itself.
2295 Mips_symbol<size>* symbol;
2296 } global;
2297 struct
2298 {
2299 // For a local symbol, the object defining object.
2300 Sized_relobj_file<size, big_endian>* relobj;
2301 // For a local symbol, the symbol index.
2302 unsigned int index;
2303 } local;
2304 } u_;
2305 };
2306
2307 // The target.
2308 Target_mips<size, big_endian>* target_;
2309 // The symbol table.
2310 Symbol_table* symbol_table_;
2311 // The layout.
2312 Layout* layout_;
2313 // Static relocs to be applied to the GOT.
2314 std::vector<Static_reloc> static_relocs_;
2315 // .got section view.
2316 unsigned char* got_view_;
2317 // The dynamic symbol table index of the first symbol with global GOT entry.
2318 unsigned int first_global_got_dynsym_index_;
2319 // The master GOT information.
2320 Mips_got_info<size, big_endian>* master_got_info_;
2321 // The primary GOT information.
2322 Mips_got_info<size, big_endian>* primary_got_;
2323 // Secondary GOT fixups.
2324 std::vector<Static_reloc> secondary_got_relocs_;
2325 };
2326
2327 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2328 // two ways of creating these interfaces. The first is to add:
2329 //
2330 // lui $25,%hi(func)
2331 // j func
2332 // addiu $25,$25,%lo(func)
2333 //
2334 // to a separate trampoline section. The second is to add:
2335 //
2336 // lui $25,%hi(func)
2337 // addiu $25,$25,%lo(func)
2338 //
2339 // immediately before a PIC function "func", but only if a function is at the
2340 // beginning of the section, and the section is not too heavily aligned (i.e we
2341 // would need to add no more than 2 nops before the stub.)
2342 //
2343 // We only create stubs of the first type.
2344
2345 template<int size, bool big_endian>
2346 class Mips_output_data_la25_stub : public Output_section_data
2347 {
2348 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2349
2350 public:
2351 Mips_output_data_la25_stub()
2352 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2353 { }
2354
2355 // Create LA25 stub for a symbol.
2356 void
2357 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2358 Mips_symbol<size>* gsym);
2359
2360 // Return output address of a stub.
2361 Mips_address
2362 stub_address(const Mips_symbol<size>* sym) const
2363 {
2364 gold_assert(sym->has_la25_stub());
2365 return this->address() + sym->la25_stub_offset();
2366 }
2367
2368 protected:
2369 void
2370 do_adjust_output_section(Output_section* os)
2371 { os->set_entsize(0); }
2372
2373 private:
2374 // Template for standard LA25 stub.
2375 static const uint32_t la25_stub_entry[];
2376 // Template for microMIPS LA25 stub.
2377 static const uint32_t la25_stub_micromips_entry[];
2378
2379 // Set the final size.
2380 void
2381 set_final_data_size()
2382 { this->set_data_size(this->symbols_.size() * 16); }
2383
2384 // Create a symbol for SYM stub's value and size, to help make the
2385 // disassembly easier to read.
2386 void
2387 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2388 Target_mips<size, big_endian>* target, uint64_t symsize);
2389
2390 // Write to a map file.
2391 void
2392 do_print_to_mapfile(Mapfile* mapfile) const
2393 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2394
2395 // Write out the LA25 stub section.
2396 void
2397 do_write(Output_file*);
2398
2399 // Symbols that have LA25 stubs.
2400 std::vector<Mips_symbol<size>*> symbols_;
2401 };
2402
2403 // MIPS-specific relocation writer.
2404
2405 template<int sh_type, bool dynamic, int size, bool big_endian>
2406 struct Mips_output_reloc_writer;
2407
2408 template<int sh_type, bool dynamic, bool big_endian>
2409 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2410 {
2411 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2412 typedef std::vector<Output_reloc_type> Relocs;
2413
2414 static void
2415 write(typename Relocs::const_iterator p, unsigned char* pov)
2416 { p->write(pov); }
2417 };
2418
2419 template<int sh_type, bool dynamic, bool big_endian>
2420 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2421 {
2422 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2423 typedef std::vector<Output_reloc_type> Relocs;
2424
2425 static void
2426 write(typename Relocs::const_iterator p, unsigned char* pov)
2427 {
2428 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2429 orel.put_r_offset(p->get_address());
2430 orel.put_r_sym(p->get_symbol_index());
2431 orel.put_r_ssym(RSS_UNDEF);
2432 orel.put_r_type(p->type());
2433 if (p->type() == elfcpp::R_MIPS_REL32)
2434 orel.put_r_type2(elfcpp::R_MIPS_64);
2435 else
2436 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2437 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2438 }
2439 };
2440
2441 template<int sh_type, bool dynamic, int size, bool big_endian>
2442 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2443 size, big_endian>
2444 {
2445 public:
2446 Mips_output_data_reloc(bool sort_relocs)
2447 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2448 { }
2449
2450 protected:
2451 // Write out the data.
2452 void
2453 do_write(Output_file* of)
2454 {
2455 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2456 big_endian> Writer;
2457 this->template do_write_generic<Writer>(of);
2458 }
2459 };
2460
2461
2462 // A class to handle the PLT data.
2463
2464 template<int size, bool big_endian>
2465 class Mips_output_data_plt : public Output_section_data
2466 {
2467 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2468 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2469 size, big_endian> Reloc_section;
2470
2471 public:
2472 // Create the PLT section. The ordinary .got section is an argument,
2473 // since we need to refer to the start.
2474 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2475 Target_mips<size, big_endian>* target)
2476 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2477 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2478 target_(target)
2479 {
2480 this->rel_ = new Reloc_section(false);
2481 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2482 elfcpp::SHF_ALLOC, this->rel_,
2483 ORDER_DYNAMIC_PLT_RELOCS, false);
2484 }
2485
2486 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2487 void
2488 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2489
2490 // Return the .rel.plt section data.
2491 Reloc_section*
2492 rel_plt() const
2493 { return this->rel_; }
2494
2495 // Return the number of PLT entries.
2496 unsigned int
2497 entry_count() const
2498 { return this->symbols_.size(); }
2499
2500 // Return the offset of the first non-reserved PLT entry.
2501 unsigned int
2502 first_plt_entry_offset() const
2503 { return sizeof(plt0_entry_o32); }
2504
2505 // Return the size of a PLT entry.
2506 unsigned int
2507 plt_entry_size() const
2508 { return sizeof(plt_entry); }
2509
2510 // Set final PLT offsets. For each symbol, determine whether standard or
2511 // compressed (MIPS16 or microMIPS) PLT entry is used.
2512 void
2513 set_plt_offsets();
2514
2515 // Return the offset of the first standard PLT entry.
2516 unsigned int
2517 first_mips_plt_offset() const
2518 { return this->plt_header_size_; }
2519
2520 // Return the offset of the first compressed PLT entry.
2521 unsigned int
2522 first_comp_plt_offset() const
2523 { return this->plt_header_size_ + this->plt_mips_offset_; }
2524
2525 // Return whether there are any standard PLT entries.
2526 bool
2527 has_standard_entries() const
2528 { return this->plt_mips_offset_ > 0; }
2529
2530 // Return the output address of standard PLT entry.
2531 Mips_address
2532 mips_entry_address(const Mips_symbol<size>* sym) const
2533 {
2534 gold_assert (sym->has_mips_plt_offset());
2535 return (this->address() + this->first_mips_plt_offset()
2536 + sym->mips_plt_offset());
2537 }
2538
2539 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2540 Mips_address
2541 comp_entry_address(const Mips_symbol<size>* sym) const
2542 {
2543 gold_assert (sym->has_comp_plt_offset());
2544 return (this->address() + this->first_comp_plt_offset()
2545 + sym->comp_plt_offset());
2546 }
2547
2548 protected:
2549 void
2550 do_adjust_output_section(Output_section* os)
2551 { os->set_entsize(0); }
2552
2553 // Write to a map file.
2554 void
2555 do_print_to_mapfile(Mapfile* mapfile) const
2556 { mapfile->print_output_data(this, _(".plt")); }
2557
2558 private:
2559 // Template for the first PLT entry.
2560 static const uint32_t plt0_entry_o32[];
2561 static const uint32_t plt0_entry_n32[];
2562 static const uint32_t plt0_entry_n64[];
2563 static const uint32_t plt0_entry_micromips_o32[];
2564 static const uint32_t plt0_entry_micromips32_o32[];
2565
2566 // Template for subsequent PLT entries.
2567 static const uint32_t plt_entry[];
2568 static const uint32_t plt_entry_r6[];
2569 static const uint32_t plt_entry_mips16_o32[];
2570 static const uint32_t plt_entry_micromips_o32[];
2571 static const uint32_t plt_entry_micromips32_o32[];
2572
2573 // Set the final size.
2574 void
2575 set_final_data_size()
2576 {
2577 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2578 + this->plt_comp_offset_);
2579 }
2580
2581 // Write out the PLT data.
2582 void
2583 do_write(Output_file*);
2584
2585 // Return whether the plt header contains microMIPS code. For the sake of
2586 // cache alignment always use a standard header whenever any standard entries
2587 // are present even if microMIPS entries are present as well. This also lets
2588 // the microMIPS header rely on the value of $v0 only set by microMIPS
2589 // entries, for a small size reduction.
2590 bool
2591 is_plt_header_compressed() const
2592 {
2593 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2594 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2595 }
2596
2597 // Return the size of the PLT header.
2598 unsigned int
2599 get_plt_header_size() const
2600 {
2601 if (this->target_->is_output_n64())
2602 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2603 else if (this->target_->is_output_n32())
2604 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2605 else if (!this->is_plt_header_compressed())
2606 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2607 else if (this->target_->use_32bit_micromips_instructions())
2608 return (2 * sizeof(plt0_entry_micromips32_o32)
2609 / sizeof(plt0_entry_micromips32_o32[0]));
2610 else
2611 return (2 * sizeof(plt0_entry_micromips_o32)
2612 / sizeof(plt0_entry_micromips_o32[0]));
2613 }
2614
2615 // Return the PLT header entry.
2616 const uint32_t*
2617 get_plt_header_entry() const
2618 {
2619 if (this->target_->is_output_n64())
2620 return plt0_entry_n64;
2621 else if (this->target_->is_output_n32())
2622 return plt0_entry_n32;
2623 else if (!this->is_plt_header_compressed())
2624 return plt0_entry_o32;
2625 else if (this->target_->use_32bit_micromips_instructions())
2626 return plt0_entry_micromips32_o32;
2627 else
2628 return plt0_entry_micromips_o32;
2629 }
2630
2631 // Return the size of the standard PLT entry.
2632 unsigned int
2633 standard_plt_entry_size() const
2634 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2635
2636 // Return the size of the compressed PLT entry.
2637 unsigned int
2638 compressed_plt_entry_size() const
2639 {
2640 gold_assert(!this->target_->is_output_newabi());
2641
2642 if (!this->target_->is_output_micromips())
2643 return (2 * sizeof(plt_entry_mips16_o32)
2644 / sizeof(plt_entry_mips16_o32[0]));
2645 else if (this->target_->use_32bit_micromips_instructions())
2646 return (2 * sizeof(plt_entry_micromips32_o32)
2647 / sizeof(plt_entry_micromips32_o32[0]));
2648 else
2649 return (2 * sizeof(plt_entry_micromips_o32)
2650 / sizeof(plt_entry_micromips_o32[0]));
2651 }
2652
2653 // The reloc section.
2654 Reloc_section* rel_;
2655 // The .got.plt section.
2656 Output_data_space* got_plt_;
2657 // Symbols that have PLT entry.
2658 std::vector<Mips_symbol<size>*> symbols_;
2659 // The offset of the next standard PLT entry to create.
2660 unsigned int plt_mips_offset_;
2661 // The offset of the next compressed PLT entry to create.
2662 unsigned int plt_comp_offset_;
2663 // The size of the PLT header in bytes.
2664 unsigned int plt_header_size_;
2665 // The target.
2666 Target_mips<size, big_endian>* target_;
2667 };
2668
2669 // A class to handle the .MIPS.stubs data.
2670
2671 template<int size, bool big_endian>
2672 class Mips_output_data_mips_stubs : public Output_section_data
2673 {
2674 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2675
2676 // Unordered set of .MIPS.stubs entries.
2677 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2678 Mips_stubs_entry_set;
2679
2680 public:
2681 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2682 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2683 stub_offsets_are_set_(false), target_(target)
2684 { }
2685
2686 // Create entry for a symbol.
2687 void
2688 make_entry(Mips_symbol<size>*);
2689
2690 // Remove entry for a symbol.
2691 void
2692 remove_entry(Mips_symbol<size>* gsym);
2693
2694 // Set stub offsets for symbols. This method expects that the number of
2695 // entries in dynamic symbol table is set.
2696 void
2697 set_lazy_stub_offsets();
2698
2699 void
2700 set_needs_dynsym_value();
2701
2702 // Set the number of entries in dynamic symbol table.
2703 void
2704 set_dynsym_count(unsigned int dynsym_count)
2705 { this->dynsym_count_ = dynsym_count; }
2706
2707 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2708 // count is greater than 0x10000. If the dynamic symbol count is less than
2709 // 0x10000, the stub will be 4 bytes smaller.
2710 // There's no disadvantage from using microMIPS code here, so for the sake of
2711 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2712 // output produced at all. This has a benefit of stubs being shorter by
2713 // 4 bytes each too, unless in the insn32 mode.
2714 unsigned int
2715 stub_max_size() const
2716 {
2717 if (!this->target_->is_output_micromips()
2718 || this->target_->use_32bit_micromips_instructions())
2719 return 20;
2720 else
2721 return 16;
2722 }
2723
2724 // Return the size of the stub. This method expects that the final dynsym
2725 // count is set.
2726 unsigned int
2727 stub_size() const
2728 {
2729 gold_assert(this->dynsym_count_ != -1U);
2730 if (this->dynsym_count_ > 0x10000)
2731 return this->stub_max_size();
2732 else
2733 return this->stub_max_size() - 4;
2734 }
2735
2736 // Return output address of a stub.
2737 Mips_address
2738 stub_address(const Mips_symbol<size>* sym) const
2739 {
2740 gold_assert(sym->has_lazy_stub());
2741 return this->address() + sym->lazy_stub_offset();
2742 }
2743
2744 protected:
2745 void
2746 do_adjust_output_section(Output_section* os)
2747 { os->set_entsize(0); }
2748
2749 // Write to a map file.
2750 void
2751 do_print_to_mapfile(Mapfile* mapfile) const
2752 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2753
2754 private:
2755 static const uint32_t lazy_stub_normal_1[];
2756 static const uint32_t lazy_stub_normal_1_n64[];
2757 static const uint32_t lazy_stub_normal_2[];
2758 static const uint32_t lazy_stub_normal_2_n64[];
2759 static const uint32_t lazy_stub_big[];
2760 static const uint32_t lazy_stub_big_n64[];
2761
2762 static const uint32_t lazy_stub_micromips_normal_1[];
2763 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2764 static const uint32_t lazy_stub_micromips_normal_2[];
2765 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2766 static const uint32_t lazy_stub_micromips_big[];
2767 static const uint32_t lazy_stub_micromips_big_n64[];
2768
2769 static const uint32_t lazy_stub_micromips32_normal_1[];
2770 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2771 static const uint32_t lazy_stub_micromips32_normal_2[];
2772 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2773 static const uint32_t lazy_stub_micromips32_big[];
2774 static const uint32_t lazy_stub_micromips32_big_n64[];
2775
2776 // Set the final size.
2777 void
2778 set_final_data_size()
2779 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2780
2781 // Write out the .MIPS.stubs data.
2782 void
2783 do_write(Output_file*);
2784
2785 // .MIPS.stubs symbols
2786 Mips_stubs_entry_set symbols_;
2787 // Number of entries in dynamic symbol table.
2788 unsigned int dynsym_count_;
2789 // Whether the stub offsets are set.
2790 bool stub_offsets_are_set_;
2791 // The target.
2792 Target_mips<size, big_endian>* target_;
2793 };
2794
2795 // This class handles Mips .reginfo output section.
2796
2797 template<int size, bool big_endian>
2798 class Mips_output_section_reginfo : public Output_section_data
2799 {
2800 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2801
2802 public:
2803 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2804 Valtype gprmask, Valtype cprmask1,
2805 Valtype cprmask2, Valtype cprmask3,
2806 Valtype cprmask4)
2807 : Output_section_data(24, 4, true), target_(target),
2808 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2809 cprmask3_(cprmask3), cprmask4_(cprmask4)
2810 { }
2811
2812 protected:
2813 // Write to a map file.
2814 void
2815 do_print_to_mapfile(Mapfile* mapfile) const
2816 { mapfile->print_output_data(this, _(".reginfo")); }
2817
2818 // Write out reginfo section.
2819 void
2820 do_write(Output_file* of);
2821
2822 private:
2823 Target_mips<size, big_endian>* target_;
2824
2825 // gprmask of the output .reginfo section.
2826 Valtype gprmask_;
2827 // cprmask1 of the output .reginfo section.
2828 Valtype cprmask1_;
2829 // cprmask2 of the output .reginfo section.
2830 Valtype cprmask2_;
2831 // cprmask3 of the output .reginfo section.
2832 Valtype cprmask3_;
2833 // cprmask4 of the output .reginfo section.
2834 Valtype cprmask4_;
2835 };
2836
2837 // This class handles .MIPS.options output section.
2838
2839 template<int size, bool big_endian>
2840 class Mips_output_section_options : public Output_section
2841 {
2842 public:
2843 Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
2844 elfcpp::Elf_Xword flags,
2845 Target_mips<size, big_endian>* target)
2846 : Output_section(name, type, flags), target_(target)
2847 {
2848 // After the input sections are written, we only need to update
2849 // ri_gp_value field of ODK_REGINFO entries.
2850 this->set_after_input_sections();
2851 }
2852
2853 protected:
2854 // Write out option section.
2855 void
2856 do_write(Output_file* of);
2857
2858 private:
2859 Target_mips<size, big_endian>* target_;
2860 };
2861
2862 // This class handles .MIPS.abiflags output section.
2863
2864 template<int size, bool big_endian>
2865 class Mips_output_section_abiflags : public Output_section_data
2866 {
2867 public:
2868 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2869 : Output_section_data(24, 8, true), abiflags_(abiflags)
2870 { }
2871
2872 protected:
2873 // Write to a map file.
2874 void
2875 do_print_to_mapfile(Mapfile* mapfile) const
2876 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2877
2878 void
2879 do_write(Output_file* of);
2880
2881 private:
2882 const Mips_abiflags<big_endian>& abiflags_;
2883 };
2884
2885 // The MIPS target has relocation types which default handling of relocatable
2886 // relocation cannot process. So we have to extend the default code.
2887
2888 template<bool big_endian, typename Classify_reloc>
2889 class Mips_scan_relocatable_relocs :
2890 public Default_scan_relocatable_relocs<Classify_reloc>
2891 {
2892 public:
2893 // Return the strategy to use for a local symbol which is a section
2894 // symbol, given the relocation type.
2895 inline Relocatable_relocs::Reloc_strategy
2896 local_section_strategy(unsigned int r_type, Relobj* object)
2897 {
2898 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2899 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2900 else
2901 {
2902 switch (r_type)
2903 {
2904 case elfcpp::R_MIPS_26:
2905 return Relocatable_relocs::RELOC_SPECIAL;
2906
2907 default:
2908 return Default_scan_relocatable_relocs<Classify_reloc>::
2909 local_section_strategy(r_type, object);
2910 }
2911 }
2912 }
2913 };
2914
2915 // Mips_copy_relocs class. The only difference from the base class is the
2916 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2917 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2918 // cannot be made dynamic, a COPY reloc is emitted.
2919
2920 template<int sh_type, int size, bool big_endian>
2921 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2922 {
2923 public:
2924 Mips_copy_relocs()
2925 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2926 { }
2927
2928 // Emit any saved relocations which turn out to be needed. This is
2929 // called after all the relocs have been scanned.
2930 void
2931 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2932 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2933
2934 private:
2935 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2936 Copy_reloc_entry;
2937
2938 // Emit this reloc if appropriate. This is called after we have
2939 // scanned all the relocations, so we know whether we emitted a
2940 // COPY relocation for SYM_.
2941 void
2942 emit_entry(Copy_reloc_entry& entry,
2943 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2944 Symbol_table* symtab, Layout* layout,
2945 Target_mips<size, big_endian>* target);
2946 };
2947
2948
2949 // Return true if the symbol SYM should be considered to resolve local
2950 // to the current module, and false otherwise. The logic is taken from
2951 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2952 static bool
2953 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2954 bool local_protected)
2955 {
2956 // If it's a local sym, of course we resolve locally.
2957 if (sym == NULL)
2958 return true;
2959
2960 // STV_HIDDEN or STV_INTERNAL ones must be local.
2961 if (sym->visibility() == elfcpp::STV_HIDDEN
2962 || sym->visibility() == elfcpp::STV_INTERNAL)
2963 return true;
2964
2965 // If we don't have a definition in a regular file, then we can't
2966 // resolve locally. The sym is either undefined or dynamic.
2967 if (sym->is_from_dynobj() || sym->is_undefined())
2968 return false;
2969
2970 // Forced local symbols resolve locally.
2971 if (sym->is_forced_local())
2972 return true;
2973
2974 // As do non-dynamic symbols.
2975 if (!has_dynsym_entry)
2976 return true;
2977
2978 // At this point, we know the symbol is defined and dynamic. In an
2979 // executable it must resolve locally, likewise when building symbolic
2980 // shared libraries.
2981 if (parameters->options().output_is_executable()
2982 || parameters->options().Bsymbolic())
2983 return true;
2984
2985 // Now deal with defined dynamic symbols in shared libraries. Ones
2986 // with default visibility might not resolve locally.
2987 if (sym->visibility() == elfcpp::STV_DEFAULT)
2988 return false;
2989
2990 // STV_PROTECTED non-function symbols are local.
2991 if (sym->type() != elfcpp::STT_FUNC)
2992 return true;
2993
2994 // Function pointer equality tests may require that STV_PROTECTED
2995 // symbols be treated as dynamic symbols. If the address of a
2996 // function not defined in an executable is set to that function's
2997 // plt entry in the executable, then the address of the function in
2998 // a shared library must also be the plt entry in the executable.
2999 return local_protected;
3000 }
3001
3002 // Return TRUE if references to this symbol always reference the symbol in this
3003 // object.
3004 static bool
3005 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
3006 {
3007 return symbol_refs_local(sym, has_dynsym_entry, false);
3008 }
3009
3010 // Return TRUE if calls to this symbol always call the version in this object.
3011 static bool
3012 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
3013 {
3014 return symbol_refs_local(sym, has_dynsym_entry, true);
3015 }
3016
3017 // Compare GOT offsets of two symbols.
3018
3019 template<int size, bool big_endian>
3020 static bool
3021 got_offset_compare(Symbol* sym1, Symbol* sym2)
3022 {
3023 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
3024 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
3025 unsigned int area1 = mips_sym1->global_got_area();
3026 unsigned int area2 = mips_sym2->global_got_area();
3027 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
3028
3029 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3030 if (area1 != area2)
3031 return area1 < area2;
3032
3033 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
3034 }
3035
3036 // This method divides dynamic symbols into symbols that have GOT entry, and
3037 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3038 // Mips ABI requires that symbols with the GOT entry must be at the end of
3039 // dynamic symbol table, and the order in dynamic symbol table must match the
3040 // order in GOT.
3041
3042 template<int size, bool big_endian>
3043 static void
3044 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3045 std::vector<Symbol*>* non_got_symbols,
3046 std::vector<Symbol*>* got_symbols)
3047 {
3048 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3049 p != dyn_symbols->end();
3050 ++p)
3051 {
3052 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3053 if (mips_sym->global_got_area() == GGA_NORMAL
3054 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3055 got_symbols->push_back(mips_sym);
3056 else
3057 non_got_symbols->push_back(mips_sym);
3058 }
3059
3060 std::sort(got_symbols->begin(), got_symbols->end(),
3061 got_offset_compare<size, big_endian>);
3062 }
3063
3064 // Functor class for processing the global symbol table.
3065
3066 template<int size, bool big_endian>
3067 class Symbol_visitor_check_symbols
3068 {
3069 public:
3070 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3071 Layout* layout, Symbol_table* symtab)
3072 : target_(target), layout_(layout), symtab_(symtab)
3073 { }
3074
3075 void
3076 operator()(Sized_symbol<size>* sym)
3077 {
3078 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3079 if (local_pic_function<size, big_endian>(mips_sym))
3080 {
3081 // SYM is a function that might need $25 to be valid on entry.
3082 // If we're creating a non-PIC relocatable object, mark SYM as
3083 // being PIC. If we're creating a non-relocatable object with
3084 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3085 // stub.
3086 if (parameters->options().relocatable())
3087 {
3088 if (!parameters->options().output_is_position_independent())
3089 mips_sym->set_pic();
3090 }
3091 else if (mips_sym->has_nonpic_branches())
3092 {
3093 this->target_->la25_stub_section(layout_)
3094 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3095 }
3096 }
3097 }
3098
3099 private:
3100 Target_mips<size, big_endian>* target_;
3101 Layout* layout_;
3102 Symbol_table* symtab_;
3103 };
3104
3105 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3106 // and endianness. The relocation format for MIPS-64 is non-standard.
3107
3108 template<int sh_type, int size, bool big_endian>
3109 struct Mips_reloc_types;
3110
3111 template<bool big_endian>
3112 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3113 {
3114 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3115 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3116
3117 static typename elfcpp::Elf_types<32>::Elf_Swxword
3118 get_r_addend(const Reloc*)
3119 { return 0; }
3120
3121 static inline void
3122 set_reloc_addend(Reloc_write*,
3123 typename elfcpp::Elf_types<32>::Elf_Swxword)
3124 { gold_unreachable(); }
3125 };
3126
3127 template<bool big_endian>
3128 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3129 {
3130 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3131 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3132
3133 static typename elfcpp::Elf_types<32>::Elf_Swxword
3134 get_r_addend(const Reloc* reloc)
3135 { return reloc->get_r_addend(); }
3136
3137 static inline void
3138 set_reloc_addend(Reloc_write* p,
3139 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3140 { p->put_r_addend(val); }
3141 };
3142
3143 template<bool big_endian>
3144 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3145 {
3146 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3147 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3148
3149 static typename elfcpp::Elf_types<64>::Elf_Swxword
3150 get_r_addend(const Reloc*)
3151 { return 0; }
3152
3153 static inline void
3154 set_reloc_addend(Reloc_write*,
3155 typename elfcpp::Elf_types<64>::Elf_Swxword)
3156 { gold_unreachable(); }
3157 };
3158
3159 template<bool big_endian>
3160 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3161 {
3162 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3163 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3164
3165 static typename elfcpp::Elf_types<64>::Elf_Swxword
3166 get_r_addend(const Reloc* reloc)
3167 { return reloc->get_r_addend(); }
3168
3169 static inline void
3170 set_reloc_addend(Reloc_write* p,
3171 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3172 { p->put_r_addend(val); }
3173 };
3174
3175 // Forward declaration.
3176 static unsigned int
3177 mips_get_size_for_reloc(unsigned int, Relobj*);
3178
3179 // A class for inquiring about properties of a relocation,
3180 // used while scanning relocs during a relocatable link and
3181 // garbage collection.
3182
3183 template<int sh_type_, int size, bool big_endian>
3184 class Mips_classify_reloc;
3185
3186 template<int sh_type_, bool big_endian>
3187 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3188 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3189 {
3190 public:
3191 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3192 Reltype;
3193 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3194 Reltype_write;
3195
3196 // Return the symbol referred to by the relocation.
3197 static inline unsigned int
3198 get_r_sym(const Reltype* reloc)
3199 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3200
3201 // Return the type of the relocation.
3202 static inline unsigned int
3203 get_r_type(const Reltype* reloc)
3204 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3205
3206 static inline unsigned int
3207 get_r_type2(const Reltype*)
3208 { return 0; }
3209
3210 static inline unsigned int
3211 get_r_type3(const Reltype*)
3212 { return 0; }
3213
3214 static inline unsigned int
3215 get_r_ssym(const Reltype*)
3216 { return 0; }
3217
3218 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3219 static inline unsigned int
3220 get_r_addend(const Reltype* reloc)
3221 {
3222 if (sh_type_ == elfcpp::SHT_REL)
3223 return 0;
3224 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3225 }
3226
3227 // Write the r_info field to a new reloc, using the r_info field from
3228 // the original reloc, replacing the r_sym field with R_SYM.
3229 static inline void
3230 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3231 {
3232 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3233 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3234 }
3235
3236 // Write the r_addend field to a new reloc.
3237 static inline void
3238 put_r_addend(Reltype_write* to,
3239 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3240 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3241
3242 // Return the size of the addend of the relocation (only used for SHT_REL).
3243 static unsigned int
3244 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3245 { return mips_get_size_for_reloc(r_type, obj); }
3246 };
3247
3248 template<int sh_type_, bool big_endian>
3249 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3250 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3251 {
3252 public:
3253 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3254 Reltype;
3255 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3256 Reltype_write;
3257
3258 // Return the symbol referred to by the relocation.
3259 static inline unsigned int
3260 get_r_sym(const Reltype* reloc)
3261 { return reloc->get_r_sym(); }
3262
3263 // Return the r_type of the relocation.
3264 static inline unsigned int
3265 get_r_type(const Reltype* reloc)
3266 { return reloc->get_r_type(); }
3267
3268 // Return the r_type2 of the relocation.
3269 static inline unsigned int
3270 get_r_type2(const Reltype* reloc)
3271 { return reloc->get_r_type2(); }
3272
3273 // Return the r_type3 of the relocation.
3274 static inline unsigned int
3275 get_r_type3(const Reltype* reloc)
3276 { return reloc->get_r_type3(); }
3277
3278 // Return the special symbol of the relocation.
3279 static inline unsigned int
3280 get_r_ssym(const Reltype* reloc)
3281 { return reloc->get_r_ssym(); }
3282
3283 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3284 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3285 get_r_addend(const Reltype* reloc)
3286 {
3287 if (sh_type_ == elfcpp::SHT_REL)
3288 return 0;
3289 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3290 }
3291
3292 // Write the r_info field to a new reloc, using the r_info field from
3293 // the original reloc, replacing the r_sym field with R_SYM.
3294 static inline void
3295 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3296 {
3297 new_reloc->put_r_sym(r_sym);
3298 new_reloc->put_r_ssym(reloc->get_r_ssym());
3299 new_reloc->put_r_type3(reloc->get_r_type3());
3300 new_reloc->put_r_type2(reloc->get_r_type2());
3301 new_reloc->put_r_type(reloc->get_r_type());
3302 }
3303
3304 // Write the r_addend field to a new reloc.
3305 static inline void
3306 put_r_addend(Reltype_write* to,
3307 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3308 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3309
3310 // Return the size of the addend of the relocation (only used for SHT_REL).
3311 static unsigned int
3312 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3313 { return mips_get_size_for_reloc(r_type, obj); }
3314 };
3315
3316 template<int size, bool big_endian>
3317 class Target_mips : public Sized_target<size, big_endian>
3318 {
3319 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3320 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3321 Reloc_section;
3322 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3323 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3324 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3325 Reltype;
3326 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3327 Relatype;
3328
3329 public:
3330 Target_mips(const Target::Target_info* info = &mips_info)
3331 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3332 got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3333 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3334 mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3335 mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3336 entry_symbol_is_compressed_(false), insn32_(false)
3337 {
3338 this->add_machine_extensions();
3339 }
3340
3341 // The offset of $gp from the beginning of the .got section.
3342 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3343
3344 // The maximum size of the GOT for it to be addressable using 16-bit
3345 // offsets from $gp.
3346 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3347
3348 // Make a new symbol table entry for the Mips target.
3349 Sized_symbol<size>*
3350 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3351 { return new Mips_symbol<size>(); }
3352
3353 // Process the relocations to determine unreferenced sections for
3354 // garbage collection.
3355 void
3356 gc_process_relocs(Symbol_table* symtab,
3357 Layout* layout,
3358 Sized_relobj_file<size, big_endian>* object,
3359 unsigned int data_shndx,
3360 unsigned int sh_type,
3361 const unsigned char* prelocs,
3362 size_t reloc_count,
3363 Output_section* output_section,
3364 bool needs_special_offset_handling,
3365 size_t local_symbol_count,
3366 const unsigned char* plocal_symbols);
3367
3368 // Scan the relocations to look for symbol adjustments.
3369 void
3370 scan_relocs(Symbol_table* symtab,
3371 Layout* layout,
3372 Sized_relobj_file<size, big_endian>* object,
3373 unsigned int data_shndx,
3374 unsigned int sh_type,
3375 const unsigned char* prelocs,
3376 size_t reloc_count,
3377 Output_section* output_section,
3378 bool needs_special_offset_handling,
3379 size_t local_symbol_count,
3380 const unsigned char* plocal_symbols);
3381
3382 // Finalize the sections.
3383 void
3384 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3385
3386 // Relocate a section.
3387 void
3388 relocate_section(const Relocate_info<size, big_endian>*,
3389 unsigned int sh_type,
3390 const unsigned char* prelocs,
3391 size_t reloc_count,
3392 Output_section* output_section,
3393 bool needs_special_offset_handling,
3394 unsigned char* view,
3395 Mips_address view_address,
3396 section_size_type view_size,
3397 const Reloc_symbol_changes*);
3398
3399 // Scan the relocs during a relocatable link.
3400 void
3401 scan_relocatable_relocs(Symbol_table* symtab,
3402 Layout* layout,
3403 Sized_relobj_file<size, big_endian>* object,
3404 unsigned int data_shndx,
3405 unsigned int sh_type,
3406 const unsigned char* prelocs,
3407 size_t reloc_count,
3408 Output_section* output_section,
3409 bool needs_special_offset_handling,
3410 size_t local_symbol_count,
3411 const unsigned char* plocal_symbols,
3412 Relocatable_relocs*);
3413
3414 // Scan the relocs for --emit-relocs.
3415 void
3416 emit_relocs_scan(Symbol_table* symtab,
3417 Layout* layout,
3418 Sized_relobj_file<size, big_endian>* object,
3419 unsigned int data_shndx,
3420 unsigned int sh_type,
3421 const unsigned char* prelocs,
3422 size_t reloc_count,
3423 Output_section* output_section,
3424 bool needs_special_offset_handling,
3425 size_t local_symbol_count,
3426 const unsigned char* plocal_syms,
3427 Relocatable_relocs* rr);
3428
3429 // Emit relocations for a section.
3430 void
3431 relocate_relocs(const Relocate_info<size, big_endian>*,
3432 unsigned int sh_type,
3433 const unsigned char* prelocs,
3434 size_t reloc_count,
3435 Output_section* output_section,
3436 typename elfcpp::Elf_types<size>::Elf_Off
3437 offset_in_output_section,
3438 unsigned char* view,
3439 Mips_address view_address,
3440 section_size_type view_size,
3441 unsigned char* reloc_view,
3442 section_size_type reloc_view_size);
3443
3444 // Perform target-specific processing in a relocatable link. This is
3445 // only used if we use the relocation strategy RELOC_SPECIAL.
3446 void
3447 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3448 unsigned int sh_type,
3449 const unsigned char* preloc_in,
3450 size_t relnum,
3451 Output_section* output_section,
3452 typename elfcpp::Elf_types<size>::Elf_Off
3453 offset_in_output_section,
3454 unsigned char* view,
3455 Mips_address view_address,
3456 section_size_type view_size,
3457 unsigned char* preloc_out);
3458
3459 // Return whether SYM is defined by the ABI.
3460 bool
3461 do_is_defined_by_abi(const Symbol* sym) const
3462 {
3463 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3464 || (strcmp(sym->name(), "_gp_disp") == 0)
3465 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3466 }
3467
3468 // Return the number of entries in the GOT.
3469 unsigned int
3470 got_entry_count() const
3471 {
3472 if (!this->has_got_section())
3473 return 0;
3474 return this->got_size() / (size/8);
3475 }
3476
3477 // Return the number of entries in the PLT.
3478 unsigned int
3479 plt_entry_count() const
3480 {
3481 if (this->plt_ == NULL)
3482 return 0;
3483 return this->plt_->entry_count();
3484 }
3485
3486 // Return the offset of the first non-reserved PLT entry.
3487 unsigned int
3488 first_plt_entry_offset() const
3489 { return this->plt_->first_plt_entry_offset(); }
3490
3491 // Return the size of each PLT entry.
3492 unsigned int
3493 plt_entry_size() const
3494 { return this->plt_->plt_entry_size(); }
3495
3496 // Get the GOT section, creating it if necessary.
3497 Mips_output_data_got<size, big_endian>*
3498 got_section(Symbol_table*, Layout*);
3499
3500 // Get the GOT section.
3501 Mips_output_data_got<size, big_endian>*
3502 got_section() const
3503 {
3504 gold_assert(this->got_ != NULL);
3505 return this->got_;
3506 }
3507
3508 // Get the .MIPS.stubs section, creating it if necessary.
3509 Mips_output_data_mips_stubs<size, big_endian>*
3510 mips_stubs_section(Layout* layout);
3511
3512 // Get the .MIPS.stubs section.
3513 Mips_output_data_mips_stubs<size, big_endian>*
3514 mips_stubs_section() const
3515 {
3516 gold_assert(this->mips_stubs_ != NULL);
3517 return this->mips_stubs_;
3518 }
3519
3520 // Get the LA25 stub section, creating it if necessary.
3521 Mips_output_data_la25_stub<size, big_endian>*
3522 la25_stub_section(Layout*);
3523
3524 // Get the LA25 stub section.
3525 Mips_output_data_la25_stub<size, big_endian>*
3526 la25_stub_section()
3527 {
3528 gold_assert(this->la25_stub_ != NULL);
3529 return this->la25_stub_;
3530 }
3531
3532 // Get gp value. It has the value of .got + 0x7FF0.
3533 Mips_address
3534 gp_value() const
3535 {
3536 if (this->gp_ != NULL)
3537 return this->gp_->value();
3538 return 0;
3539 }
3540
3541 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3542 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3543 Mips_address
3544 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3545 {
3546 if (this->gp_ == NULL)
3547 return 0;
3548
3549 bool multi_got = false;
3550 if (this->has_got_section())
3551 multi_got = this->got_section()->multi_got();
3552 if (!multi_got)
3553 return this->gp_->value();
3554 else
3555 return this->gp_->value() + this->got_section()->get_got_offset(object);
3556 }
3557
3558 // Get the dynamic reloc section, creating it if necessary.
3559 Reloc_section*
3560 rel_dyn_section(Layout*);
3561
3562 bool
3563 do_has_custom_set_dynsym_indexes() const
3564 { return true; }
3565
3566 // Don't emit input .reginfo/.MIPS.abiflags sections to
3567 // output .reginfo/.MIPS.abiflags.
3568 bool
3569 do_should_include_section(elfcpp::Elf_Word sh_type) const
3570 {
3571 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3572 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3573 }
3574
3575 // Set the dynamic symbol indexes. INDEX is the index of the first
3576 // global dynamic symbol. Pointers to the symbols are stored into the
3577 // vector SYMS. The names are added to DYNPOOL. This returns an
3578 // updated dynamic symbol index.
3579 unsigned int
3580 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3581 std::vector<Symbol*>* syms, Stringpool* dynpool,
3582 Versions* versions, Symbol_table* symtab) const;
3583
3584 // Remove .MIPS.stubs entry for a symbol.
3585 void
3586 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3587 {
3588 if (this->mips_stubs_ != NULL)
3589 this->mips_stubs_->remove_entry(sym);
3590 }
3591
3592 // The value to write into got[1] for SVR4 targets, to identify it is
3593 // a GNU object. The dynamic linker can then use got[1] to store the
3594 // module pointer.
3595 uint64_t
3596 mips_elf_gnu_got1_mask()
3597 {
3598 if (this->is_output_n64())
3599 return (uint64_t)1 << 63;
3600 else
3601 return 1 << 31;
3602 }
3603
3604 // Whether the output has microMIPS code. This is valid only after
3605 // merge_obj_e_flags() is called.
3606 bool
3607 is_output_micromips() const
3608 {
3609 gold_assert(this->are_processor_specific_flags_set());
3610 return elfcpp::is_micromips(this->processor_specific_flags());
3611 }
3612
3613 // Whether the output uses N32 ABI. This is valid only after
3614 // merge_obj_e_flags() is called.
3615 bool
3616 is_output_n32() const
3617 {
3618 gold_assert(this->are_processor_specific_flags_set());
3619 return elfcpp::abi_n32(this->processor_specific_flags());
3620 }
3621
3622 // Whether the output uses R6 ISA. This is valid only after
3623 // merge_obj_e_flags() is called.
3624 bool
3625 is_output_r6() const
3626 {
3627 gold_assert(this->are_processor_specific_flags_set());
3628 return elfcpp::r6_isa(this->processor_specific_flags());
3629 }
3630
3631 // Whether the output uses N64 ABI.
3632 bool
3633 is_output_n64() const
3634 { return size == 64; }
3635
3636 // Whether the output uses NEWABI. This is valid only after
3637 // merge_obj_e_flags() is called.
3638 bool
3639 is_output_newabi() const
3640 { return this->is_output_n32() || this->is_output_n64(); }
3641
3642 // Whether we can only use 32-bit microMIPS instructions.
3643 bool
3644 use_32bit_micromips_instructions() const
3645 { return this->insn32_; }
3646
3647 // Return the r_sym field from a relocation.
3648 unsigned int
3649 get_r_sym(const unsigned char* preloc) const
3650 {
3651 // Since REL and RELA relocs share the same structure through
3652 // the r_info field, we can just use REL here.
3653 Reltype rel(preloc);
3654 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3655 get_r_sym(&rel);
3656 }
3657
3658 protected:
3659 // Return the value to use for a dynamic symbol which requires special
3660 // treatment. This is how we support equality comparisons of function
3661 // pointers across shared library boundaries, as described in the
3662 // processor specific ABI supplement.
3663 uint64_t
3664 do_dynsym_value(const Symbol* gsym) const;
3665
3666 // Make an ELF object.
3667 Object*
3668 do_make_elf_object(const std::string&, Input_file*, off_t,
3669 const elfcpp::Ehdr<size, big_endian>& ehdr);
3670
3671 Object*
3672 do_make_elf_object(const std::string&, Input_file*, off_t,
3673 const elfcpp::Ehdr<size, !big_endian>&)
3674 { gold_unreachable(); }
3675
3676 // Make an output section.
3677 Output_section*
3678 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3679 elfcpp::Elf_Xword flags)
3680 {
3681 if (type == elfcpp::SHT_MIPS_OPTIONS)
3682 return new Mips_output_section_options<size, big_endian>(name, type,
3683 flags, this);
3684 else
3685 return new Output_section(name, type, flags);
3686 }
3687
3688 // Adjust ELF file header.
3689 void
3690 do_adjust_elf_header(unsigned char* view, int len);
3691
3692 // Get the custom dynamic tag value.
3693 unsigned int
3694 do_dynamic_tag_custom_value(elfcpp::DT) const;
3695
3696 // Adjust the value written to the dynamic symbol table.
3697 virtual void
3698 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3699 {
3700 elfcpp::Sym<size, big_endian> isym(view);
3701 elfcpp::Sym_write<size, big_endian> osym(view);
3702 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3703
3704 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3705 // to treat compressed symbols like any other.
3706 Mips_address value = isym.get_st_value();
3707 if (mips_sym->is_mips16() && value != 0)
3708 {
3709 if (!mips_sym->has_mips16_fn_stub())
3710 value |= 1;
3711 else
3712 {
3713 // If we have a MIPS16 function with a stub, the dynamic symbol
3714 // must refer to the stub, since only the stub uses the standard
3715 // calling conventions. Stub contains MIPS32 code, so don't add +1
3716 // in this case.
3717
3718 // There is a code which does this in the method
3719 // Target_mips::do_dynsym_value, but that code will only be
3720 // executed if the symbol is from dynobj.
3721 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3722 // table.
3723
3724 Mips16_stub_section<size, big_endian>* fn_stub =
3725 mips_sym->template get_mips16_fn_stub<big_endian>();
3726 value = fn_stub->output_address();
3727 osym.put_st_size(fn_stub->section_size());
3728 }
3729
3730 osym.put_st_value(value);
3731 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3732 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3733 }
3734 else if ((mips_sym->is_micromips()
3735 // Stubs are always microMIPS if there is any microMIPS code in
3736 // the output.
3737 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3738 && value != 0)
3739 {
3740 osym.put_st_value(value | 1);
3741 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3742 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3743 }
3744 }
3745
3746 private:
3747 // The class which scans relocations.
3748 class Scan
3749 {
3750 public:
3751 Scan()
3752 { }
3753
3754 static inline int
3755 get_reference_flags(unsigned int r_type);
3756
3757 inline void
3758 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3759 Sized_relobj_file<size, big_endian>* object,
3760 unsigned int data_shndx,
3761 Output_section* output_section,
3762 const Reltype& reloc, unsigned int r_type,
3763 const elfcpp::Sym<size, big_endian>& lsym,
3764 bool is_discarded);
3765
3766 inline void
3767 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3768 Sized_relobj_file<size, big_endian>* object,
3769 unsigned int data_shndx,
3770 Output_section* output_section,
3771 const Relatype& reloc, unsigned int r_type,
3772 const elfcpp::Sym<size, big_endian>& lsym,
3773 bool is_discarded);
3774
3775 inline void
3776 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3777 Sized_relobj_file<size, big_endian>* object,
3778 unsigned int data_shndx,
3779 Output_section* output_section,
3780 const Relatype* rela,
3781 const Reltype* rel,
3782 unsigned int rel_type,
3783 unsigned int r_type,
3784 const elfcpp::Sym<size, big_endian>& lsym,
3785 bool is_discarded);
3786
3787 inline void
3788 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3789 Sized_relobj_file<size, big_endian>* object,
3790 unsigned int data_shndx,
3791 Output_section* output_section,
3792 const Reltype& reloc, unsigned int r_type,
3793 Symbol* gsym);
3794
3795 inline void
3796 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3797 Sized_relobj_file<size, big_endian>* object,
3798 unsigned int data_shndx,
3799 Output_section* output_section,
3800 const Relatype& reloc, unsigned int r_type,
3801 Symbol* gsym);
3802
3803 inline void
3804 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3805 Sized_relobj_file<size, big_endian>* object,
3806 unsigned int data_shndx,
3807 Output_section* output_section,
3808 const Relatype* rela,
3809 const Reltype* rel,
3810 unsigned int rel_type,
3811 unsigned int r_type,
3812 Symbol* gsym);
3813
3814 inline bool
3815 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3816 Target_mips*,
3817 Sized_relobj_file<size, big_endian>*,
3818 unsigned int,
3819 Output_section*,
3820 const Reltype&,
3821 unsigned int,
3822 const elfcpp::Sym<size, big_endian>&)
3823 { return false; }
3824
3825 inline bool
3826 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3827 Target_mips*,
3828 Sized_relobj_file<size, big_endian>*,
3829 unsigned int,
3830 Output_section*,
3831 const Reltype&,
3832 unsigned int, Symbol*)
3833 { return false; }
3834
3835 inline bool
3836 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3837 Target_mips*,
3838 Sized_relobj_file<size, big_endian>*,
3839 unsigned int,
3840 Output_section*,
3841 const Relatype&,
3842 unsigned int,
3843 const elfcpp::Sym<size, big_endian>&)
3844 { return false; }
3845
3846 inline bool
3847 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3848 Target_mips*,
3849 Sized_relobj_file<size, big_endian>*,
3850 unsigned int,
3851 Output_section*,
3852 const Relatype&,
3853 unsigned int, Symbol*)
3854 { return false; }
3855 private:
3856 static void
3857 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3858 unsigned int r_type);
3859
3860 static void
3861 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3862 unsigned int r_type, Symbol*);
3863 };
3864
3865 // The class which implements relocation.
3866 class Relocate
3867 {
3868 public:
3869 Relocate()
3870 : calculated_value_(0), calculate_only_(false)
3871 { }
3872
3873 ~Relocate()
3874 { }
3875
3876 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3877 inline bool
3878 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3879 unsigned int r_type,
3880 Output_section* output_section,
3881 Target_mips* target);
3882
3883 // Do a relocation. Return false if the caller should not issue
3884 // any warnings about this relocation.
3885 inline bool
3886 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3887 Target_mips*, Output_section*, size_t, const unsigned char*,
3888 const Sized_symbol<size>*, const Symbol_value<size>*,
3889 unsigned char*, Mips_address, section_size_type);
3890
3891 private:
3892 // Result of the relocation.
3893 Valtype calculated_value_;
3894 // Whether we have to calculate relocation instead of applying it.
3895 bool calculate_only_;
3896 };
3897
3898 // This POD class holds the dynamic relocations that should be emitted instead
3899 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3900 // relocations if it turns out that the symbol does not have static
3901 // relocations.
3902 class Dyn_reloc
3903 {
3904 public:
3905 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3906 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3907 Output_section* output_section, Mips_address r_offset)
3908 : sym_(sym), r_type_(r_type), relobj_(relobj),
3909 shndx_(shndx), output_section_(output_section),
3910 r_offset_(r_offset)
3911 { }
3912
3913 // Emit this reloc if appropriate. This is called after we have
3914 // scanned all the relocations, so we know whether the symbol has
3915 // static relocations.
3916 void
3917 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3918 Symbol_table* symtab)
3919 {
3920 if (!this->sym_->has_static_relocs())
3921 {
3922 got->record_global_got_symbol(this->sym_, this->relobj_,
3923 this->r_type_, true, false);
3924 if (!symbol_references_local(this->sym_,
3925 this->sym_->should_add_dynsym_entry(symtab)))
3926 rel_dyn->add_global(this->sym_, this->r_type_,
3927 this->output_section_, this->relobj_,
3928 this->shndx_, this->r_offset_);
3929 else
3930 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3931 this->output_section_, this->relobj_,
3932 this->shndx_, this->r_offset_);
3933 }
3934 }
3935
3936 private:
3937 Mips_symbol<size>* sym_;
3938 unsigned int r_type_;
3939 Mips_relobj<size, big_endian>* relobj_;
3940 unsigned int shndx_;
3941 Output_section* output_section_;
3942 Mips_address r_offset_;
3943 };
3944
3945 // Adjust TLS relocation type based on the options and whether this
3946 // is a local symbol.
3947 static tls::Tls_optimization
3948 optimize_tls_reloc(bool is_final, int r_type);
3949
3950 // Return whether there is a GOT section.
3951 bool
3952 has_got_section() const
3953 { return this->got_ != NULL; }
3954
3955 // Check whether the given ELF header flags describe a 32-bit binary.
3956 bool
3957 mips_32bit_flags(elfcpp::Elf_Word);
3958
3959 enum Mips_mach {
3960 mach_mips3000 = 3000,
3961 mach_mips3900 = 3900,
3962 mach_mips4000 = 4000,
3963 mach_mips4010 = 4010,
3964 mach_mips4100 = 4100,
3965 mach_mips4111 = 4111,
3966 mach_mips4120 = 4120,
3967 mach_mips4300 = 4300,
3968 mach_mips4400 = 4400,
3969 mach_mips4600 = 4600,
3970 mach_mips4650 = 4650,
3971 mach_mips5000 = 5000,
3972 mach_mips5400 = 5400,
3973 mach_mips5500 = 5500,
3974 mach_mips5900 = 5900,
3975 mach_mips6000 = 6000,
3976 mach_mips7000 = 7000,
3977 mach_mips8000 = 8000,
3978 mach_mips9000 = 9000,
3979 mach_mips10000 = 10000,
3980 mach_mips12000 = 12000,
3981 mach_mips14000 = 14000,
3982 mach_mips16000 = 16000,
3983 mach_mips16 = 16,
3984 mach_mips5 = 5,
3985 mach_mips_loongson_2e = 3001,
3986 mach_mips_loongson_2f = 3002,
3987 mach_mips_loongson_3a = 3003,
3988 mach_mips_sb1 = 12310201, // octal 'SB', 01
3989 mach_mips_octeon = 6501,
3990 mach_mips_octeonp = 6601,
3991 mach_mips_octeon2 = 6502,
3992 mach_mips_octeon3 = 6503,
3993 mach_mips_xlr = 887682, // decimal 'XLR'
3994 mach_mipsisa32 = 32,
3995 mach_mipsisa32r2 = 33,
3996 mach_mipsisa32r3 = 34,
3997 mach_mipsisa32r5 = 36,
3998 mach_mipsisa32r6 = 37,
3999 mach_mipsisa64 = 64,
4000 mach_mipsisa64r2 = 65,
4001 mach_mipsisa64r3 = 66,
4002 mach_mipsisa64r5 = 68,
4003 mach_mipsisa64r6 = 69,
4004 mach_mips_micromips = 96
4005 };
4006
4007 // Return the MACH for a MIPS e_flags value.
4008 unsigned int
4009 elf_mips_mach(elfcpp::Elf_Word);
4010
4011 // Return the MACH for each .MIPS.abiflags ISA Extension.
4012 unsigned int
4013 mips_isa_ext_mach(unsigned int);
4014
4015 // Return the .MIPS.abiflags value representing each ISA Extension.
4016 unsigned int
4017 mips_isa_ext(unsigned int);
4018
4019 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4020 void
4021 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
4022 Mips_abiflags<big_endian>*);
4023
4024 // Infer the content of the ABI flags based on the elf header.
4025 void
4026 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4027
4028 // Create abiflags from elf header or from .MIPS.abiflags section.
4029 void
4030 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4031
4032 // Return the meaning of fp_abi, or "unknown" if not known.
4033 const char*
4034 fp_abi_string(int);
4035
4036 // Select fp_abi.
4037 int
4038 select_fp_abi(const std::string&, int, int);
4039
4040 // Merge attributes from input object.
4041 void
4042 merge_obj_attributes(const std::string&, const Attributes_section_data*);
4043
4044 // Merge abiflags from input object.
4045 void
4046 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
4047
4048 // Check whether machine EXTENSION is an extension of machine BASE.
4049 bool
4050 mips_mach_extends(unsigned int, unsigned int);
4051
4052 // Merge file header flags from input object.
4053 void
4054 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4055
4056 // Encode ISA level and revision as a single value.
4057 int
4058 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4059 { return (isa_level << 3) | isa_rev; }
4060
4061 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4062 static inline bool
4063 jal_to_bal()
4064 { return false; }
4065
4066 // True if we are linking for CPUs that are faster if JALR is converted to
4067 // BAL. This should be safe for all architectures. We enable this predicate
4068 // for all CPUs.
4069 static inline bool
4070 jalr_to_bal()
4071 { return true; }
4072
4073 // True if we are linking for CPUs that are faster if JR is converted to B.
4074 // This should be safe for all architectures. We enable this predicate for
4075 // all CPUs.
4076 static inline bool
4077 jr_to_b()
4078 { return true; }
4079
4080 // Return the size of the GOT section.
4081 section_size_type
4082 got_size() const
4083 {
4084 gold_assert(this->got_ != NULL);
4085 return this->got_->data_size();
4086 }
4087
4088 // Create a PLT entry for a global symbol referenced by r_type relocation.
4089 void
4090 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4091 unsigned int r_type);
4092
4093 // Get the PLT section.
4094 Mips_output_data_plt<size, big_endian>*
4095 plt_section() const
4096 {
4097 gold_assert(this->plt_ != NULL);
4098 return this->plt_;
4099 }
4100
4101 // Get the GOT PLT section.
4102 const Mips_output_data_plt<size, big_endian>*
4103 got_plt_section() const
4104 {
4105 gold_assert(this->got_plt_ != NULL);
4106 return this->got_plt_;
4107 }
4108
4109 // Copy a relocation against a global symbol.
4110 void
4111 copy_reloc(Symbol_table* symtab, Layout* layout,
4112 Sized_relobj_file<size, big_endian>* object,
4113 unsigned int shndx, Output_section* output_section,
4114 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4115 {
4116 this->copy_relocs_.copy_reloc(symtab, layout,
4117 symtab->get_sized_symbol<size>(sym),
4118 object, shndx, output_section,
4119 r_type, r_offset, 0,
4120 this->rel_dyn_section(layout));
4121 }
4122
4123 void
4124 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4125 Mips_relobj<size, big_endian>* relobj,
4126 unsigned int shndx, Output_section* output_section,
4127 Mips_address r_offset)
4128 {
4129 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4130 output_section, r_offset));
4131 }
4132
4133 // Calculate value of _gp symbol.
4134 void
4135 set_gp(Layout*, Symbol_table*);
4136
4137 const char*
4138 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4139 const char*
4140 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4141
4142 // Adds entries that describe how machines relate to one another. The entries
4143 // are ordered topologically with MIPS I extensions listed last. First
4144 // element is extension, second element is base.
4145 void
4146 add_machine_extensions()
4147 {
4148 // MIPS64r2 extensions.
4149 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4150 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4151 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4152 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4153 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4154
4155 // MIPS64 extensions.
4156 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4157 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4158 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4159
4160 // MIPS V extensions.
4161 this->add_extension(mach_mipsisa64, mach_mips5);
4162
4163 // R10000 extensions.
4164 this->add_extension(mach_mips12000, mach_mips10000);
4165 this->add_extension(mach_mips14000, mach_mips10000);
4166 this->add_extension(mach_mips16000, mach_mips10000);
4167
4168 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4169 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4170 // better to allow vr5400 and vr5500 code to be merged anyway, since
4171 // many libraries will just use the core ISA. Perhaps we could add
4172 // some sort of ASE flag if this ever proves a problem.
4173 this->add_extension(mach_mips5500, mach_mips5400);
4174 this->add_extension(mach_mips5400, mach_mips5000);
4175
4176 // MIPS IV extensions.
4177 this->add_extension(mach_mips5, mach_mips8000);
4178 this->add_extension(mach_mips10000, mach_mips8000);
4179 this->add_extension(mach_mips5000, mach_mips8000);
4180 this->add_extension(mach_mips7000, mach_mips8000);
4181 this->add_extension(mach_mips9000, mach_mips8000);
4182
4183 // VR4100 extensions.
4184 this->add_extension(mach_mips4120, mach_mips4100);
4185 this->add_extension(mach_mips4111, mach_mips4100);
4186
4187 // MIPS III extensions.
4188 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4189 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4190 this->add_extension(mach_mips8000, mach_mips4000);
4191 this->add_extension(mach_mips4650, mach_mips4000);
4192 this->add_extension(mach_mips4600, mach_mips4000);
4193 this->add_extension(mach_mips4400, mach_mips4000);
4194 this->add_extension(mach_mips4300, mach_mips4000);
4195 this->add_extension(mach_mips4100, mach_mips4000);
4196 this->add_extension(mach_mips4010, mach_mips4000);
4197 this->add_extension(mach_mips5900, mach_mips4000);
4198
4199 // MIPS32 extensions.
4200 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4201
4202 // MIPS II extensions.
4203 this->add_extension(mach_mips4000, mach_mips6000);
4204 this->add_extension(mach_mipsisa32, mach_mips6000);
4205
4206 // MIPS I extensions.
4207 this->add_extension(mach_mips6000, mach_mips3000);
4208 this->add_extension(mach_mips3900, mach_mips3000);
4209 }
4210
4211 // Add value to MIPS extenstions.
4212 void
4213 add_extension(unsigned int base, unsigned int extension)
4214 {
4215 std::pair<unsigned int, unsigned int> ext(base, extension);
4216 this->mips_mach_extensions_.push_back(ext);
4217 }
4218
4219 // Return the number of entries in the .dynsym section.
4220 unsigned int get_dt_mips_symtabno() const
4221 {
4222 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4223 / elfcpp::Elf_sizes<size>::sym_size));
4224 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4225 }
4226
4227 // Information about this specific target which we pass to the
4228 // general Target structure.
4229 static const Target::Target_info mips_info;
4230 // The GOT section.
4231 Mips_output_data_got<size, big_endian>* got_;
4232 // gp symbol. It has the value of .got + 0x7FF0.
4233 Sized_symbol<size>* gp_;
4234 // The PLT section.
4235 Mips_output_data_plt<size, big_endian>* plt_;
4236 // The GOT PLT section.
4237 Output_data_space* got_plt_;
4238 // The dynamic reloc section.
4239 Reloc_section* rel_dyn_;
4240 // The .rld_map section.
4241 Output_data_zero_fill* rld_map_;
4242 // Relocs saved to avoid a COPY reloc.
4243 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4244
4245 // A list of dyn relocs to be saved.
4246 std::vector<Dyn_reloc> dyn_relocs_;
4247
4248 // The LA25 stub section.
4249 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4250 // Architecture extensions.
4251 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4252 // .MIPS.stubs
4253 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4254
4255 // Attributes section data in output.
4256 Attributes_section_data* attributes_section_data_;
4257 // .MIPS.abiflags section data in output.
4258 Mips_abiflags<big_endian>* abiflags_;
4259
4260 unsigned int mach_;
4261 Layout* layout_;
4262
4263 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4264
4265 // Whether there is an input .MIPS.abiflags section.
4266 bool has_abiflags_section_;
4267
4268 // Whether the entry symbol is mips16 or micromips.
4269 bool entry_symbol_is_compressed_;
4270
4271 // Whether we can use only 32-bit microMIPS instructions.
4272 // TODO(sasa): This should be a linker option.
4273 bool insn32_;
4274 };
4275
4276 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4277 // It records high part of the relocation pair.
4278
4279 template<int size, bool big_endian>
4280 struct reloc_high
4281 {
4282 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4283
4284 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4285 const Symbol_value<size>* _psymval, Mips_address _addend,
4286 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4287 Mips_address _address = 0, bool _gp_disp = false)
4288 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4289 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4290 address(_address), gp_disp(_gp_disp)
4291 { }
4292
4293 unsigned char* view;
4294 const Mips_relobj<size, big_endian>* object;
4295 const Symbol_value<size>* psymval;
4296 Mips_address addend;
4297 unsigned int r_type;
4298 unsigned int r_sym;
4299 bool extract_addend;
4300 Mips_address address;
4301 bool gp_disp;
4302 };
4303
4304 template<int size, bool big_endian>
4305 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4306 {
4307 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4308 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4309 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4310 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4311 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4312
4313 public:
4314 typedef enum
4315 {
4316 STATUS_OKAY, // No error during relocation.
4317 STATUS_OVERFLOW, // Relocation overflow.
4318 STATUS_BAD_RELOC, // Relocation cannot be applied.
4319 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4320 } Status;
4321
4322 private:
4323 typedef Relocate_functions<size, big_endian> Base;
4324 typedef Mips_relocate_functions<size, big_endian> This;
4325
4326 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4327 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4328 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4329
4330 template<int valsize>
4331 static inline typename This::Status
4332 check_overflow(Valtype value)
4333 {
4334 if (size == 32)
4335 return (Bits<valsize>::has_overflow32(value)
4336 ? This::STATUS_OVERFLOW
4337 : This::STATUS_OKAY);
4338
4339 return (Bits<valsize>::has_overflow(value)
4340 ? This::STATUS_OVERFLOW
4341 : This::STATUS_OKAY);
4342 }
4343
4344 static inline bool
4345 should_shuffle_micromips_reloc(unsigned int r_type)
4346 {
4347 return (micromips_reloc(r_type)
4348 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4349 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4350 }
4351
4352 public:
4353 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4354 // Most mips16 instructions are 16 bits, but these instructions
4355 // are 32 bits.
4356 //
4357 // The format of these instructions is:
4358 //
4359 // +--------------+--------------------------------+
4360 // | JALX | X| Imm 20:16 | Imm 25:21 |
4361 // +--------------+--------------------------------+
4362 // | Immediate 15:0 |
4363 // +-----------------------------------------------+
4364 //
4365 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4366 // Note that the immediate value in the first word is swapped.
4367 //
4368 // When producing a relocatable object file, R_MIPS16_26 is
4369 // handled mostly like R_MIPS_26. In particular, the addend is
4370 // stored as a straight 26-bit value in a 32-bit instruction.
4371 // (gas makes life simpler for itself by never adjusting a
4372 // R_MIPS16_26 reloc to be against a section, so the addend is
4373 // always zero). However, the 32 bit instruction is stored as 2
4374 // 16-bit values, rather than a single 32-bit value. In a
4375 // big-endian file, the result is the same; in a little-endian
4376 // file, the two 16-bit halves of the 32 bit value are swapped.
4377 // This is so that a disassembler can recognize the jal
4378 // instruction.
4379 //
4380 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4381 // instruction stored as two 16-bit values. The addend A is the
4382 // contents of the targ26 field. The calculation is the same as
4383 // R_MIPS_26. When storing the calculated value, reorder the
4384 // immediate value as shown above, and don't forget to store the
4385 // value as two 16-bit values.
4386 //
4387 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4388 // defined as
4389 //
4390 // big-endian:
4391 // +--------+----------------------+
4392 // | | |
4393 // | | targ26-16 |
4394 // |31 26|25 0|
4395 // +--------+----------------------+
4396 //
4397 // little-endian:
4398 // +----------+------+-------------+
4399 // | | | |
4400 // | sub1 | | sub2 |
4401 // |0 9|10 15|16 31|
4402 // +----------+--------------------+
4403 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4404 // ((sub1 << 16) | sub2)).
4405 //
4406 // When producing a relocatable object file, the calculation is
4407 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4408 // When producing a fully linked file, the calculation is
4409 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4410 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4411 //
4412 // The table below lists the other MIPS16 instruction relocations.
4413 // Each one is calculated in the same way as the non-MIPS16 relocation
4414 // given on the right, but using the extended MIPS16 layout of 16-bit
4415 // immediate fields:
4416 //
4417 // R_MIPS16_GPREL R_MIPS_GPREL16
4418 // R_MIPS16_GOT16 R_MIPS_GOT16
4419 // R_MIPS16_CALL16 R_MIPS_CALL16
4420 // R_MIPS16_HI16 R_MIPS_HI16
4421 // R_MIPS16_LO16 R_MIPS_LO16
4422 //
4423 // A typical instruction will have a format like this:
4424 //
4425 // +--------------+--------------------------------+
4426 // | EXTEND | Imm 10:5 | Imm 15:11 |
4427 // +--------------+--------------------------------+
4428 // | Major | rx | ry | Imm 4:0 |
4429 // +--------------+--------------------------------+
4430 //
4431 // EXTEND is the five bit value 11110. Major is the instruction
4432 // opcode.
4433 //
4434 // All we need to do here is shuffle the bits appropriately.
4435 // As above, the two 16-bit halves must be swapped on a
4436 // little-endian system.
4437
4438 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4439 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4440 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4441
4442 static void
4443 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4444 bool jal_shuffle)
4445 {
4446 if (!mips16_reloc(r_type)
4447 && !should_shuffle_micromips_reloc(r_type))
4448 return;
4449
4450 // Pick up the first and second halfwords of the instruction.
4451 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4452 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4453 Valtype32 val;
4454
4455 if (micromips_reloc(r_type)
4456 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4457 val = first << 16 | second;
4458 else if (r_type != elfcpp::R_MIPS16_26)
4459 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4460 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4461 else
4462 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4463 | ((first & 0x1f) << 21) | second);
4464
4465 elfcpp::Swap<32, big_endian>::writeval(view, val);
4466 }
4467
4468 static void
4469 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4470 {
4471 if (!mips16_reloc(r_type)
4472 && !should_shuffle_micromips_reloc(r_type))
4473 return;
4474
4475 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4476 Valtype16 first, second;
4477
4478 if (micromips_reloc(r_type)
4479 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4480 {
4481 second = val & 0xffff;
4482 first = val >> 16;
4483 }
4484 else if (r_type != elfcpp::R_MIPS16_26)
4485 {
4486 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4487 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4488 }
4489 else
4490 {
4491 second = val & 0xffff;
4492 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4493 | ((val >> 21) & 0x1f);
4494 }
4495
4496 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4497 elfcpp::Swap<16, big_endian>::writeval(view, first);
4498 }
4499
4500 // R_MIPS_16: S + sign-extend(A)
4501 static inline typename This::Status
4502 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4503 const Symbol_value<size>* psymval, Mips_address addend_a,
4504 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4505 {
4506 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4507 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4508
4509 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4510 : addend_a);
4511
4512 Valtype x = psymval->value(object, addend);
4513 val = Bits<16>::bit_select32(val, x, 0xffffU);
4514
4515 if (calculate_only)
4516 {
4517 *calculated_value = x;
4518 return This::STATUS_OKAY;
4519 }
4520 else
4521 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4522
4523 return check_overflow<16>(x);
4524 }
4525
4526 // R_MIPS_32: S + A
4527 static inline typename This::Status
4528 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4529 const Symbol_value<size>* psymval, Mips_address addend_a,
4530 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4531 {
4532 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4533 Valtype addend = (extract_addend
4534 ? elfcpp::Swap<32, big_endian>::readval(wv)
4535 : addend_a);
4536 Valtype x = psymval->value(object, addend);
4537
4538 if (calculate_only)
4539 *calculated_value = x;
4540 else
4541 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4542
4543 return This::STATUS_OKAY;
4544 }
4545
4546 // R_MIPS_JALR, R_MICROMIPS_JALR
4547 static inline typename This::Status
4548 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4549 const Symbol_value<size>* psymval, Mips_address address,
4550 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4551 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4552 bool calculate_only, Valtype* calculated_value)
4553 {
4554 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4555 Valtype addend = extract_addend ? 0 : addend_a;
4556 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4557
4558 // Try converting J(AL)R to B(AL), if the target is in range.
4559 if (r_type == elfcpp::R_MIPS_JALR
4560 && !cross_mode_jump
4561 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4562 || (jr_to_b && val == 0x03200008))) // jr t9
4563 {
4564 int offset = psymval->value(object, addend) - (address + 4);
4565 if (!Bits<18>::has_overflow32(offset))
4566 {
4567 if (val == 0x03200008) // jr t9
4568 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4569 else
4570 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4571 }
4572 }
4573
4574 if (calculate_only)
4575 *calculated_value = val;
4576 else
4577 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4578
4579 return This::STATUS_OKAY;
4580 }
4581
4582 // R_MIPS_PC32: S + A - P
4583 static inline typename This::Status
4584 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4585 const Symbol_value<size>* psymval, Mips_address address,
4586 Mips_address addend_a, bool extract_addend, bool calculate_only,
4587 Valtype* calculated_value)
4588 {
4589 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4590 Valtype addend = (extract_addend
4591 ? elfcpp::Swap<32, big_endian>::readval(wv)
4592 : addend_a);
4593 Valtype x = psymval->value(object, addend) - address;
4594
4595 if (calculate_only)
4596 *calculated_value = x;
4597 else
4598 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4599
4600 return This::STATUS_OKAY;
4601 }
4602
4603 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4604 static inline typename This::Status
4605 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4606 const Symbol_value<size>* psymval, Mips_address address,
4607 bool local, Mips_address addend_a, bool extract_addend,
4608 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4609 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4610 {
4611 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4612 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4613
4614 Valtype addend;
4615 if (extract_addend)
4616 {
4617 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4618 addend = (val & 0x03ffffff) << 1;
4619 else
4620 addend = (val & 0x03ffffff) << 2;
4621 }
4622 else
4623 addend = addend_a;
4624
4625 // Make sure the target of JALX is word-aligned. Bit 0 must be
4626 // the correct ISA mode selector and bit 1 must be 0.
4627 if (!calculate_only && cross_mode_jump
4628 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4629 {
4630 gold_warning(_("JALX to a non-word-aligned address"));
4631 return This::STATUS_BAD_RELOC;
4632 }
4633
4634 // Shift is 2, unusually, for microMIPS JALX.
4635 unsigned int shift =
4636 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4637
4638 Valtype x;
4639 if (local)
4640 x = addend | ((address + 4) & (0xfc000000 << shift));
4641 else
4642 {
4643 if (shift == 1)
4644 x = Bits<27>::sign_extend32(addend);
4645 else
4646 x = Bits<28>::sign_extend32(addend);
4647 }
4648 x = psymval->value(object, x) >> shift;
4649
4650 if (!calculate_only && !local && !gsym->is_weak_undefined()
4651 && ((x >> 26) != ((address + 4) >> (26 + shift))))
4652 return This::STATUS_OVERFLOW;
4653
4654 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4655
4656 // If required, turn JAL into JALX.
4657 if (cross_mode_jump)
4658 {
4659 bool ok;
4660 Valtype32 opcode = val >> 26;
4661 Valtype32 jalx_opcode;
4662
4663 // Check to see if the opcode is already JAL or JALX.
4664 if (r_type == elfcpp::R_MIPS16_26)
4665 {
4666 ok = (opcode == 0x6) || (opcode == 0x7);
4667 jalx_opcode = 0x7;
4668 }
4669 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4670 {
4671 ok = (opcode == 0x3d) || (opcode == 0x3c);
4672 jalx_opcode = 0x3c;
4673 }
4674 else
4675 {
4676 ok = (opcode == 0x3) || (opcode == 0x1d);
4677 jalx_opcode = 0x1d;
4678 }
4679
4680 // If the opcode is not JAL or JALX, there's a problem. We cannot
4681 // convert J or JALS to JALX.
4682 if (!calculate_only && !ok)
4683 {
4684 gold_error(_("Unsupported jump between ISA modes; consider "
4685 "recompiling with interlinking enabled."));
4686 return This::STATUS_BAD_RELOC;
4687 }
4688
4689 // Make this the JALX opcode.
4690 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4691 }
4692
4693 // Try converting JAL to BAL, if the target is in range.
4694 if (!parameters->options().relocatable()
4695 && !cross_mode_jump
4696 && ((jal_to_bal
4697 && r_type == elfcpp::R_MIPS_26
4698 && (val >> 26) == 0x3))) // jal addr
4699 {
4700 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4701 int offset = dest - (address + 4);
4702 if (!Bits<18>::has_overflow32(offset))
4703 {
4704 if (val == 0x03200008) // jr t9
4705 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4706 else
4707 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4708 }
4709 }
4710
4711 if (calculate_only)
4712 *calculated_value = val;
4713 else
4714 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4715
4716 return This::STATUS_OKAY;
4717 }
4718
4719 // R_MIPS_PC16
4720 static inline typename This::Status
4721 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4722 const Symbol_value<size>* psymval, Mips_address address,
4723 Mips_address addend_a, bool extract_addend, bool calculate_only,
4724 Valtype* calculated_value)
4725 {
4726 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4727 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4728
4729 Valtype addend = (extract_addend
4730 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4731 : addend_a);
4732
4733 Valtype x = psymval->value(object, addend) - address;
4734 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4735
4736 if (calculate_only)
4737 {
4738 *calculated_value = x >> 2;
4739 return This::STATUS_OKAY;
4740 }
4741 else
4742 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4743
4744 if (psymval->value(object, addend) & 3)
4745 return This::STATUS_PCREL_UNALIGNED;
4746
4747 return check_overflow<18>(x);
4748 }
4749
4750 // R_MIPS_PC21_S2
4751 static inline typename This::Status
4752 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4753 const Symbol_value<size>* psymval, Mips_address address,
4754 Mips_address addend_a, bool extract_addend, bool calculate_only,
4755 Valtype* calculated_value)
4756 {
4757 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4758 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4759
4760 Valtype addend = (extract_addend
4761 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4762 : addend_a);
4763
4764 Valtype x = psymval->value(object, addend) - address;
4765 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4766
4767 if (calculate_only)
4768 {
4769 *calculated_value = x >> 2;
4770 return This::STATUS_OKAY;
4771 }
4772 else
4773 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4774
4775 if (psymval->value(object, addend) & 3)
4776 return This::STATUS_PCREL_UNALIGNED;
4777
4778 return check_overflow<23>(x);
4779 }
4780
4781 // R_MIPS_PC26_S2
4782 static inline typename This::Status
4783 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4784 const Symbol_value<size>* psymval, Mips_address address,
4785 Mips_address addend_a, bool extract_addend, bool calculate_only,
4786 Valtype* calculated_value)
4787 {
4788 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4789 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4790
4791 Valtype addend = (extract_addend
4792 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4793 : addend_a);
4794
4795 Valtype x = psymval->value(object, addend) - address;
4796 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4797
4798 if (calculate_only)
4799 {
4800 *calculated_value = x >> 2;
4801 return This::STATUS_OKAY;
4802 }
4803 else
4804 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4805
4806 if (psymval->value(object, addend) & 3)
4807 return This::STATUS_PCREL_UNALIGNED;
4808
4809 return check_overflow<28>(x);
4810 }
4811
4812 // R_MIPS_PC18_S3
4813 static inline typename This::Status
4814 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4815 const Symbol_value<size>* psymval, Mips_address address,
4816 Mips_address addend_a, bool extract_addend, bool calculate_only,
4817 Valtype* calculated_value)
4818 {
4819 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4820 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4821
4822 Valtype addend = (extract_addend
4823 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4824 : addend_a);
4825
4826 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4827 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4828
4829 if (calculate_only)
4830 {
4831 *calculated_value = x >> 3;
4832 return This::STATUS_OKAY;
4833 }
4834 else
4835 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4836
4837 if (psymval->value(object, addend) & 7)
4838 return This::STATUS_PCREL_UNALIGNED;
4839
4840 return check_overflow<21>(x);
4841 }
4842
4843 // R_MIPS_PC19_S2
4844 static inline typename This::Status
4845 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4846 const Symbol_value<size>* psymval, Mips_address address,
4847 Mips_address addend_a, bool extract_addend, bool calculate_only,
4848 Valtype* calculated_value)
4849 {
4850 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4851 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4852
4853 Valtype addend = (extract_addend
4854 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4855 : addend_a);
4856
4857 Valtype x = psymval->value(object, addend) - address;
4858 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4859
4860 if (calculate_only)
4861 {
4862 *calculated_value = x >> 2;
4863 return This::STATUS_OKAY;
4864 }
4865 else
4866 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4867
4868 if (psymval->value(object, addend) & 3)
4869 return This::STATUS_PCREL_UNALIGNED;
4870
4871 return check_overflow<21>(x);
4872 }
4873
4874 // R_MIPS_PCHI16
4875 static inline typename This::Status
4876 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4877 const Symbol_value<size>* psymval, Mips_address addend,
4878 Mips_address address, unsigned int r_sym, bool extract_addend)
4879 {
4880 // Record the relocation. It will be resolved when we find pclo16 part.
4881 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4882 addend, 0, r_sym, extract_addend, address));
4883 return This::STATUS_OKAY;
4884 }
4885
4886 // R_MIPS_PCHI16
4887 static inline typename This::Status
4888 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4889 const Symbol_value<size>* psymval, Mips_address addend_hi,
4890 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4891 bool calculate_only, Valtype* calculated_value)
4892 {
4893 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4894 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4895
4896 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4897 : addend_hi);
4898
4899 Valtype value = psymval->value(object, addend) - address;
4900 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4901 val = Bits<32>::bit_select32(val, x, 0xffff);
4902
4903 if (calculate_only)
4904 *calculated_value = x;
4905 else
4906 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4907
4908 return This::STATUS_OKAY;
4909 }
4910
4911 // R_MIPS_PCLO16
4912 static inline typename This::Status
4913 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4914 const Symbol_value<size>* psymval, Mips_address addend_a,
4915 bool extract_addend, Mips_address address, unsigned int r_sym,
4916 unsigned int rel_type, bool calculate_only,
4917 Valtype* calculated_value)
4918 {
4919 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4920 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4921
4922 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4923 : addend_a);
4924
4925 if (rel_type == elfcpp::SHT_REL)
4926 {
4927 // Resolve pending R_MIPS_PCHI16 relocations.
4928 typename std::list<reloc_high<size, big_endian> >::iterator it =
4929 pchi16_relocs.begin();
4930 while (it != pchi16_relocs.end())
4931 {
4932 reloc_high<size, big_endian> pchi16 = *it;
4933 if (pchi16.r_sym == r_sym)
4934 {
4935 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4936 pchi16.addend, pchi16.address,
4937 pchi16.extract_addend, addend, calculate_only,
4938 calculated_value);
4939 it = pchi16_relocs.erase(it);
4940 }
4941 else
4942 ++it;
4943 }
4944 }
4945
4946 // Resolve R_MIPS_PCLO16 relocation.
4947 Valtype x = psymval->value(object, addend) - address;
4948 val = Bits<32>::bit_select32(val, x, 0xffff);
4949
4950 if (calculate_only)
4951 *calculated_value = x;
4952 else
4953 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4954
4955 return This::STATUS_OKAY;
4956 }
4957
4958 // R_MICROMIPS_PC7_S1
4959 static inline typename This::Status
4960 relmicromips_pc7_s1(unsigned char* view,
4961 const Mips_relobj<size, big_endian>* object,
4962 const Symbol_value<size>* psymval, Mips_address address,
4963 Mips_address addend_a, bool extract_addend,
4964 bool calculate_only, Valtype* calculated_value)
4965 {
4966 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4967 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4968
4969 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4970 : addend_a;
4971
4972 Valtype x = psymval->value(object, addend) - address;
4973 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4974
4975 if (calculate_only)
4976 {
4977 *calculated_value = x >> 1;
4978 return This::STATUS_OKAY;
4979 }
4980 else
4981 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4982
4983 return check_overflow<8>(x);
4984 }
4985
4986 // R_MICROMIPS_PC10_S1
4987 static inline typename This::Status
4988 relmicromips_pc10_s1(unsigned char* view,
4989 const Mips_relobj<size, big_endian>* object,
4990 const Symbol_value<size>* psymval, Mips_address address,
4991 Mips_address addend_a, bool extract_addend,
4992 bool calculate_only, Valtype* calculated_value)
4993 {
4994 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4995 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4996
4997 Valtype addend = (extract_addend
4998 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4999 : addend_a);
5000
5001 Valtype x = psymval->value(object, addend) - address;
5002 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
5003
5004 if (calculate_only)
5005 {
5006 *calculated_value = x >> 1;
5007 return This::STATUS_OKAY;
5008 }
5009 else
5010 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5011
5012 return check_overflow<11>(x);
5013 }
5014
5015 // R_MICROMIPS_PC16_S1
5016 static inline typename This::Status
5017 relmicromips_pc16_s1(unsigned char* view,
5018 const Mips_relobj<size, big_endian>* object,
5019 const Symbol_value<size>* psymval, Mips_address address,
5020 Mips_address addend_a, bool extract_addend,
5021 bool calculate_only, Valtype* calculated_value)
5022 {
5023 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5024 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5025
5026 Valtype addend = (extract_addend
5027 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
5028 : addend_a);
5029
5030 Valtype x = psymval->value(object, addend) - address;
5031 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
5032
5033 if (calculate_only)
5034 {
5035 *calculated_value = x >> 1;
5036 return This::STATUS_OKAY;
5037 }
5038 else
5039 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5040
5041 return check_overflow<17>(x);
5042 }
5043
5044 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5045 static inline typename This::Status
5046 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5047 const Symbol_value<size>* psymval, Mips_address addend,
5048 Mips_address address, bool gp_disp, unsigned int r_type,
5049 unsigned int r_sym, bool extract_addend)
5050 {
5051 // Record the relocation. It will be resolved when we find lo16 part.
5052 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5053 addend, r_type, r_sym, extract_addend, address,
5054 gp_disp));
5055 return This::STATUS_OKAY;
5056 }
5057
5058 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5059 static inline typename This::Status
5060 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5061 const Symbol_value<size>* psymval, Mips_address addend_hi,
5062 Mips_address address, bool is_gp_disp, unsigned int r_type,
5063 bool extract_addend, Valtype32 addend_lo,
5064 Target_mips<size, big_endian>* target, bool calculate_only,
5065 Valtype* calculated_value)
5066 {
5067 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5068 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5069
5070 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5071 : addend_hi);
5072
5073 Valtype32 value;
5074 if (!is_gp_disp)
5075 value = psymval->value(object, addend);
5076 else
5077 {
5078 // For MIPS16 ABI code we generate this sequence
5079 // 0: li $v0,%hi(_gp_disp)
5080 // 4: addiupc $v1,%lo(_gp_disp)
5081 // 8: sll $v0,16
5082 // 12: addu $v0,$v1
5083 // 14: move $gp,$v0
5084 // So the offsets of hi and lo relocs are the same, but the
5085 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5086 // ADDIUPC clears the low two bits of the instruction address,
5087 // so the base is ($t9 + 4) & ~3.
5088 Valtype32 gp_disp;
5089 if (r_type == elfcpp::R_MIPS16_HI16)
5090 gp_disp = (target->adjusted_gp_value(object)
5091 - ((address + 4) & ~0x3));
5092 // The microMIPS .cpload sequence uses the same assembly
5093 // instructions as the traditional psABI version, but the
5094 // incoming $t9 has the low bit set.
5095 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5096 gp_disp = target->adjusted_gp_value(object) - address - 1;
5097 else
5098 gp_disp = target->adjusted_gp_value(object) - address;
5099 value = gp_disp + addend;
5100 }
5101 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5102 val = Bits<32>::bit_select32(val, x, 0xffff);
5103
5104 if (calculate_only)
5105 {
5106 *calculated_value = x;
5107 return This::STATUS_OKAY;
5108 }
5109 else
5110 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5111
5112 return (is_gp_disp ? check_overflow<16>(x)
5113 : This::STATUS_OKAY);
5114 }
5115
5116 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5117 static inline typename This::Status
5118 relgot16_local(unsigned char* view,
5119 const Mips_relobj<size, big_endian>* object,
5120 const Symbol_value<size>* psymval, Mips_address addend_a,
5121 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5122 {
5123 // Record the relocation. It will be resolved when we find lo16 part.
5124 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5125 addend_a, r_type, r_sym, extract_addend));
5126 return This::STATUS_OKAY;
5127 }
5128
5129 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5130 static inline typename This::Status
5131 do_relgot16_local(unsigned char* view,
5132 const Mips_relobj<size, big_endian>* object,
5133 const Symbol_value<size>* psymval, Mips_address addend_hi,
5134 bool extract_addend, Valtype32 addend_lo,
5135 Target_mips<size, big_endian>* target, bool calculate_only,
5136 Valtype* calculated_value)
5137 {
5138 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5139 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5140
5141 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5142 : addend_hi);
5143
5144 // Find GOT page entry.
5145 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5146 & 0xffff;
5147 value <<= 16;
5148 unsigned int got_offset =
5149 target->got_section()->get_got_page_offset(value, object);
5150
5151 // Resolve the relocation.
5152 Valtype x = target->got_section()->gp_offset(got_offset, object);
5153 val = Bits<32>::bit_select32(val, x, 0xffff);
5154
5155 if (calculate_only)
5156 {
5157 *calculated_value = x;
5158 return This::STATUS_OKAY;
5159 }
5160 else
5161 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5162
5163 return check_overflow<16>(x);
5164 }
5165
5166 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5167 static inline typename This::Status
5168 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5169 const Mips_relobj<size, big_endian>* object,
5170 const Symbol_value<size>* psymval, Mips_address addend_a,
5171 bool extract_addend, Mips_address address, bool is_gp_disp,
5172 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5173 bool calculate_only, Valtype* calculated_value)
5174 {
5175 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5176 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5177
5178 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5179 : addend_a);
5180
5181 if (rel_type == elfcpp::SHT_REL)
5182 {
5183 typename This::Status reloc_status = This::STATUS_OKAY;
5184 // Resolve pending R_MIPS_HI16 relocations.
5185 typename std::list<reloc_high<size, big_endian> >::iterator it =
5186 hi16_relocs.begin();
5187 while (it != hi16_relocs.end())
5188 {
5189 reloc_high<size, big_endian> hi16 = *it;
5190 if (hi16.r_sym == r_sym
5191 && is_matching_lo16_reloc(hi16.r_type, r_type))
5192 {
5193 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5194 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5195 hi16.addend, hi16.address, hi16.gp_disp,
5196 hi16.r_type, hi16.extract_addend, addend,
5197 target, calculate_only, calculated_value);
5198 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5199 if (reloc_status == This::STATUS_OVERFLOW)
5200 return This::STATUS_OVERFLOW;
5201 it = hi16_relocs.erase(it);
5202 }
5203 else
5204 ++it;
5205 }
5206
5207 // Resolve pending local R_MIPS_GOT16 relocations.
5208 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5209 got16_relocs.begin();
5210 while (it2 != got16_relocs.end())
5211 {
5212 reloc_high<size, big_endian> got16 = *it2;
5213 if (got16.r_sym == r_sym
5214 && is_matching_lo16_reloc(got16.r_type, r_type))
5215 {
5216 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5217
5218 reloc_status = do_relgot16_local(got16.view, got16.object,
5219 got16.psymval, got16.addend,
5220 got16.extract_addend, addend, target,
5221 calculate_only, calculated_value);
5222
5223 mips_reloc_shuffle(got16.view, got16.r_type, false);
5224 if (reloc_status == This::STATUS_OVERFLOW)
5225 return This::STATUS_OVERFLOW;
5226 it2 = got16_relocs.erase(it2);
5227 }
5228 else
5229 ++it2;
5230 }
5231 }
5232
5233 // Resolve R_MIPS_LO16 relocation.
5234 Valtype x;
5235 if (!is_gp_disp)
5236 x = psymval->value(object, addend);
5237 else
5238 {
5239 // See the comment for R_MIPS16_HI16 above for the reason
5240 // for this conditional.
5241 Valtype32 gp_disp;
5242 if (r_type == elfcpp::R_MIPS16_LO16)
5243 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5244 else if (r_type == elfcpp::R_MICROMIPS_LO16
5245 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5246 gp_disp = target->adjusted_gp_value(object) - address + 3;
5247 else
5248 gp_disp = target->adjusted_gp_value(object) - address + 4;
5249 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5250 // for overflow. Relocations against _gp_disp are normally
5251 // generated from the .cpload pseudo-op. It generates code
5252 // that normally looks like this:
5253
5254 // lui $gp,%hi(_gp_disp)
5255 // addiu $gp,$gp,%lo(_gp_disp)
5256 // addu $gp,$gp,$t9
5257
5258 // Here $t9 holds the address of the function being called,
5259 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5260 // relocation can easily overflow in this situation, but the
5261 // R_MIPS_HI16 relocation will handle the overflow.
5262 // Therefore, we consider this a bug in the MIPS ABI, and do
5263 // not check for overflow here.
5264 x = gp_disp + addend;
5265 }
5266 val = Bits<32>::bit_select32(val, x, 0xffff);
5267
5268 if (calculate_only)
5269 *calculated_value = x;
5270 else
5271 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5272
5273 return This::STATUS_OKAY;
5274 }
5275
5276 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5277 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5278 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5279 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5280 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5281 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5282 static inline typename This::Status
5283 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5284 Valtype* calculated_value)
5285 {
5286 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5287 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5288 Valtype x = gp_offset;
5289 val = Bits<32>::bit_select32(val, x, 0xffff);
5290
5291 if (calculate_only)
5292 {
5293 *calculated_value = x;
5294 return This::STATUS_OKAY;
5295 }
5296 else
5297 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5298
5299 return check_overflow<16>(x);
5300 }
5301
5302 // R_MIPS_EH
5303 static inline typename This::Status
5304 releh(unsigned char* view, int gp_offset, bool calculate_only,
5305 Valtype* calculated_value)
5306 {
5307 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5308 Valtype x = gp_offset;
5309
5310 if (calculate_only)
5311 {
5312 *calculated_value = x;
5313 return This::STATUS_OKAY;
5314 }
5315 else
5316 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5317
5318 return check_overflow<32>(x);
5319 }
5320
5321 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5322 static inline typename This::Status
5323 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5324 const Mips_relobj<size, big_endian>* object,
5325 const Symbol_value<size>* psymval, Mips_address addend_a,
5326 bool extract_addend, bool calculate_only,
5327 Valtype* calculated_value)
5328 {
5329 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5330 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5331 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5332
5333 // Find a GOT page entry that points to within 32KB of symbol + addend.
5334 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5335 unsigned int got_offset =
5336 target->got_section()->get_got_page_offset(value, object);
5337
5338 Valtype x = target->got_section()->gp_offset(got_offset, object);
5339 val = Bits<32>::bit_select32(val, x, 0xffff);
5340
5341 if (calculate_only)
5342 {
5343 *calculated_value = x;
5344 return This::STATUS_OKAY;
5345 }
5346 else
5347 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5348
5349 return check_overflow<16>(x);
5350 }
5351
5352 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5353 static inline typename This::Status
5354 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5355 const Mips_relobj<size, big_endian>* object,
5356 const Symbol_value<size>* psymval, Mips_address addend_a,
5357 bool extract_addend, bool local, bool calculate_only,
5358 Valtype* calculated_value)
5359 {
5360 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5361 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5362 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5363
5364 // For a local symbol, find a GOT page entry that points to within 32KB of
5365 // symbol + addend. Relocation value is the offset of the GOT page entry's
5366 // value from symbol + addend.
5367 // For a global symbol, relocation value is addend.
5368 Valtype x;
5369 if (local)
5370 {
5371 // Find GOT page entry.
5372 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5373 & ~0xffff);
5374 target->got_section()->get_got_page_offset(value, object);
5375
5376 x = psymval->value(object, addend) - value;
5377 }
5378 else
5379 x = addend;
5380 val = Bits<32>::bit_select32(val, x, 0xffff);
5381
5382 if (calculate_only)
5383 {
5384 *calculated_value = x;
5385 return This::STATUS_OKAY;
5386 }
5387 else
5388 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5389
5390 return check_overflow<16>(x);
5391 }
5392
5393 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5394 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5395 static inline typename This::Status
5396 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5397 Valtype* calculated_value)
5398 {
5399 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5400 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5401 Valtype x = gp_offset;
5402 x = ((x + 0x8000) >> 16) & 0xffff;
5403 val = Bits<32>::bit_select32(val, x, 0xffff);
5404
5405 if (calculate_only)
5406 *calculated_value = x;
5407 else
5408 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5409
5410 return This::STATUS_OKAY;
5411 }
5412
5413 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5414 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5415 static inline typename This::Status
5416 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5417 Valtype* calculated_value)
5418 {
5419 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5420 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5421 Valtype x = gp_offset;
5422 val = Bits<32>::bit_select32(val, x, 0xffff);
5423
5424 if (calculate_only)
5425 *calculated_value = x;
5426 else
5427 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5428
5429 return This::STATUS_OKAY;
5430 }
5431
5432 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5433 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5434 static inline typename This::Status
5435 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5436 const Symbol_value<size>* psymval, Mips_address gp,
5437 Mips_address addend_a, bool extract_addend, bool local,
5438 unsigned int r_type, bool calculate_only,
5439 Valtype* calculated_value)
5440 {
5441 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5442 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5443
5444 Valtype addend;
5445 if (extract_addend)
5446 {
5447 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5448 addend = (val & 0x7f) << 2;
5449 else
5450 addend = val & 0xffff;
5451 // Only sign-extend the addend if it was extracted from the
5452 // instruction. If the addend was separate, leave it alone,
5453 // otherwise we may lose significant bits.
5454 addend = Bits<16>::sign_extend32(addend);
5455 }
5456 else
5457 addend = addend_a;
5458
5459 Valtype x = psymval->value(object, addend) - gp;
5460
5461 // If the symbol was local, any earlier relocatable links will
5462 // have adjusted its addend with the gp offset, so compensate
5463 // for that now. Don't do it for symbols forced local in this
5464 // link, though, since they won't have had the gp offset applied
5465 // to them before.
5466 if (local)
5467 x += object->gp_value();
5468
5469 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5470 val = Bits<32>::bit_select32(val, x, 0x7f);
5471 else
5472 val = Bits<32>::bit_select32(val, x, 0xffff);
5473
5474 if (calculate_only)
5475 {
5476 *calculated_value = x;
5477 return This::STATUS_OKAY;
5478 }
5479 else
5480 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5481
5482 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5483 {
5484 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5485 "limit (see option -G)"));
5486 return This::STATUS_OVERFLOW;
5487 }
5488 return This::STATUS_OKAY;
5489 }
5490
5491 // R_MIPS_GPREL32
5492 static inline typename This::Status
5493 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5494 const Symbol_value<size>* psymval, Mips_address gp,
5495 Mips_address addend_a, bool extract_addend, bool calculate_only,
5496 Valtype* calculated_value)
5497 {
5498 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5499 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5500 Valtype addend = extract_addend ? val : addend_a;
5501
5502 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5503 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5504
5505 if (calculate_only)
5506 *calculated_value = x;
5507 else
5508 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5509
5510 return This::STATUS_OKAY;
5511 }
5512
5513 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5514 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5515 // R_MICROMIPS_TLS_DTPREL_HI16
5516 static inline typename This::Status
5517 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5518 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5519 Mips_address addend_a, bool extract_addend, bool calculate_only,
5520 Valtype* calculated_value)
5521 {
5522 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5523 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5524 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5525
5526 // tls symbol values are relative to tls_segment()->vaddr()
5527 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5528 val = Bits<32>::bit_select32(val, x, 0xffff);
5529
5530 if (calculate_only)
5531 *calculated_value = x;
5532 else
5533 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5534
5535 return This::STATUS_OKAY;
5536 }
5537
5538 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5539 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5540 // R_MICROMIPS_TLS_DTPREL_LO16,
5541 static inline typename This::Status
5542 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5543 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5544 Mips_address addend_a, bool extract_addend, bool calculate_only,
5545 Valtype* calculated_value)
5546 {
5547 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5548 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5549 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5550
5551 // tls symbol values are relative to tls_segment()->vaddr()
5552 Valtype x = psymval->value(object, addend) - tp_offset;
5553 val = Bits<32>::bit_select32(val, x, 0xffff);
5554
5555 if (calculate_only)
5556 *calculated_value = x;
5557 else
5558 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5559
5560 return This::STATUS_OKAY;
5561 }
5562
5563 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5564 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5565 static inline typename This::Status
5566 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5567 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5568 Mips_address addend_a, bool extract_addend, bool calculate_only,
5569 Valtype* calculated_value)
5570 {
5571 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5572 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5573 Valtype addend = extract_addend ? val : addend_a;
5574
5575 // tls symbol values are relative to tls_segment()->vaddr()
5576 Valtype x = psymval->value(object, addend) - tp_offset;
5577
5578 if (calculate_only)
5579 *calculated_value = x;
5580 else
5581 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5582
5583 return This::STATUS_OKAY;
5584 }
5585
5586 // R_MIPS_SUB, R_MICROMIPS_SUB
5587 static inline typename This::Status
5588 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5589 const Symbol_value<size>* psymval, Mips_address addend_a,
5590 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5591 {
5592 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5593 Valtype64 addend = (extract_addend
5594 ? elfcpp::Swap<64, big_endian>::readval(wv)
5595 : addend_a);
5596
5597 Valtype64 x = psymval->value(object, -addend);
5598 if (calculate_only)
5599 *calculated_value = x;
5600 else
5601 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5602
5603 return This::STATUS_OKAY;
5604 }
5605
5606 // R_MIPS_64: S + A
5607 static inline typename This::Status
5608 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5609 const Symbol_value<size>* psymval, Mips_address addend_a,
5610 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5611 bool apply_addend_only)
5612 {
5613 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5614 Valtype64 addend = (extract_addend
5615 ? elfcpp::Swap<64, big_endian>::readval(wv)
5616 : addend_a);
5617
5618 Valtype64 x = psymval->value(object, addend);
5619 if (calculate_only)
5620 *calculated_value = x;
5621 else
5622 {
5623 if (apply_addend_only)
5624 x = addend;
5625 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5626 }
5627
5628 return This::STATUS_OKAY;
5629 }
5630
5631 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5632 static inline typename This::Status
5633 relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5634 const Symbol_value<size>* psymval, Mips_address addend_a,
5635 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5636 {
5637 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5638 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5639 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5640 : addend_a);
5641
5642 Valtype x = psymval->value(object, addend);
5643 x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5644 val = Bits<32>::bit_select32(val, x, 0xffff);
5645
5646 if (calculate_only)
5647 *calculated_value = x;
5648 else
5649 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5650
5651 return This::STATUS_OKAY;
5652 }
5653
5654 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5655 static inline typename This::Status
5656 relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5657 const Symbol_value<size>* psymval, Mips_address addend_a,
5658 bool extract_addend, bool calculate_only,
5659 Valtype* calculated_value)
5660 {
5661 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5662 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5663 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5664 : addend_a);
5665
5666 Valtype x = psymval->value(object, addend);
5667 x = ((x + (uint64_t) 0x800080008000llu) >> 48) & 0xffff;
5668 val = Bits<32>::bit_select32(val, x, 0xffff);
5669
5670 if (calculate_only)
5671 *calculated_value = x;
5672 else
5673 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5674
5675 return This::STATUS_OKAY;
5676 }
5677 };
5678
5679 template<int size, bool big_endian>
5680 typename std::list<reloc_high<size, big_endian> >
5681 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5682
5683 template<int size, bool big_endian>
5684 typename std::list<reloc_high<size, big_endian> >
5685 Mips_relocate_functions<size, big_endian>::got16_relocs;
5686
5687 template<int size, bool big_endian>
5688 typename std::list<reloc_high<size, big_endian> >
5689 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5690
5691 // Mips_got_info methods.
5692
5693 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5694 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5695
5696 template<int size, bool big_endian>
5697 void
5698 Mips_got_info<size, big_endian>::record_local_got_symbol(
5699 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5700 Mips_address addend, unsigned int r_type, unsigned int shndx,
5701 bool is_section_symbol)
5702 {
5703 Mips_got_entry<size, big_endian>* entry =
5704 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5705 mips_elf_reloc_tls_type(r_type),
5706 shndx, is_section_symbol);
5707 this->record_got_entry(entry, object);
5708 }
5709
5710 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5711 // in OBJECT. FOR_CALL is true if the caller is only interested in
5712 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5713 // relocation.
5714
5715 template<int size, bool big_endian>
5716 void
5717 Mips_got_info<size, big_endian>::record_global_got_symbol(
5718 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5719 unsigned int r_type, bool dyn_reloc, bool for_call)
5720 {
5721 if (!for_call)
5722 mips_sym->set_got_not_only_for_calls();
5723
5724 // A global symbol in the GOT must also be in the dynamic symbol table.
5725 if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5726 {
5727 switch (mips_sym->visibility())
5728 {
5729 case elfcpp::STV_INTERNAL:
5730 case elfcpp::STV_HIDDEN:
5731 mips_sym->set_is_forced_local();
5732 break;
5733 default:
5734 mips_sym->set_needs_dynsym_entry();
5735 break;
5736 }
5737 }
5738
5739 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5740 if (tls_type == GOT_TLS_NONE)
5741 this->global_got_symbols_.insert(mips_sym);
5742
5743 if (dyn_reloc)
5744 {
5745 if (mips_sym->global_got_area() == GGA_NONE)
5746 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5747 return;
5748 }
5749
5750 Mips_got_entry<size, big_endian>* entry =
5751 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5752
5753 this->record_got_entry(entry, object);
5754 }
5755
5756 // Add ENTRY to master GOT and to OBJECT's GOT.
5757
5758 template<int size, bool big_endian>
5759 void
5760 Mips_got_info<size, big_endian>::record_got_entry(
5761 Mips_got_entry<size, big_endian>* entry,
5762 Mips_relobj<size, big_endian>* object)
5763 {
5764 this->got_entries_.insert(entry);
5765
5766 // Create the GOT entry for the OBJECT's GOT.
5767 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5768 Mips_got_entry<size, big_endian>* entry2 =
5769 new Mips_got_entry<size, big_endian>(*entry);
5770
5771 g->got_entries_.insert(entry2);
5772 }
5773
5774 // Record that OBJECT has a page relocation against symbol SYMNDX and
5775 // that ADDEND is the addend for that relocation.
5776 // This function creates an upper bound on the number of GOT slots
5777 // required; no attempt is made to combine references to non-overridable
5778 // global symbols across multiple input files.
5779
5780 template<int size, bool big_endian>
5781 void
5782 Mips_got_info<size, big_endian>::record_got_page_entry(
5783 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5784 {
5785 struct Got_page_range **range_ptr, *range;
5786 int old_pages, new_pages;
5787
5788 // Find the Got_page_entry for this symbol.
5789 Got_page_entry* entry = new Got_page_entry(object, symndx);
5790 typename Got_page_entry_set::iterator it =
5791 this->got_page_entries_.find(entry);
5792 if (it != this->got_page_entries_.end())
5793 entry = *it;
5794 else
5795 this->got_page_entries_.insert(entry);
5796
5797 // Add the same entry to the OBJECT's GOT.
5798 Got_page_entry* entry2 = new Got_page_entry(*entry);
5799 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5800 typename Got_page_entry_set::iterator it2 =
5801 g2->got_page_entries_.find(entry);
5802 if (it2 != g2->got_page_entries_.end())
5803 entry2 = *it2;
5804 else
5805 g2->got_page_entries_.insert(entry2);
5806
5807 // Skip over ranges whose maximum extent cannot share a page entry
5808 // with ADDEND.
5809 range_ptr = &entry->ranges;
5810 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5811 range_ptr = &(*range_ptr)->next;
5812
5813 // If we scanned to the end of the list, or found a range whose
5814 // minimum extent cannot share a page entry with ADDEND, create
5815 // a new singleton range.
5816 range = *range_ptr;
5817 if (!range || addend < range->min_addend - 0xffff)
5818 {
5819 range = new Got_page_range();
5820 range->next = *range_ptr;
5821 range->min_addend = addend;
5822 range->max_addend = addend;
5823
5824 *range_ptr = range;
5825 ++entry->num_pages;
5826 ++entry2->num_pages;
5827 ++this->page_gotno_;
5828 ++g2->page_gotno_;
5829 return;
5830 }
5831
5832 // Remember how many pages the old range contributed.
5833 old_pages = range->get_max_pages();
5834
5835 // Update the ranges.
5836 if (addend < range->min_addend)
5837 range->min_addend = addend;
5838 else if (addend > range->max_addend)
5839 {
5840 if (range->next && addend >= range->next->min_addend - 0xffff)
5841 {
5842 old_pages += range->next->get_max_pages();
5843 range->max_addend = range->next->max_addend;
5844 range->next = range->next->next;
5845 }
5846 else
5847 range->max_addend = addend;
5848 }
5849
5850 // Record any change in the total estimate.
5851 new_pages = range->get_max_pages();
5852 if (old_pages != new_pages)
5853 {
5854 entry->num_pages += new_pages - old_pages;
5855 entry2->num_pages += new_pages - old_pages;
5856 this->page_gotno_ += new_pages - old_pages;
5857 g2->page_gotno_ += new_pages - old_pages;
5858 }
5859 }
5860
5861 // Create all entries that should be in the local part of the GOT.
5862
5863 template<int size, bool big_endian>
5864 void
5865 Mips_got_info<size, big_endian>::add_local_entries(
5866 Target_mips<size, big_endian>* target, Layout* layout)
5867 {
5868 Mips_output_data_got<size, big_endian>* got = target->got_section();
5869 // First two GOT entries are reserved. The first entry will be filled at
5870 // runtime. The second entry will be used by some runtime loaders.
5871 got->add_constant(0);
5872 got->add_constant(target->mips_elf_gnu_got1_mask());
5873
5874 for (typename Got_entry_set::iterator
5875 p = this->got_entries_.begin();
5876 p != this->got_entries_.end();
5877 ++p)
5878 {
5879 Mips_got_entry<size, big_endian>* entry = *p;
5880 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5881 {
5882 got->add_local(entry->object(), entry->symndx(),
5883 GOT_TYPE_STANDARD, entry->addend());
5884 unsigned int got_offset = entry->object()->local_got_offset(
5885 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5886 if (got->multi_got() && this->index_ > 0
5887 && parameters->options().output_is_position_independent())
5888 {
5889 if (!entry->is_section_symbol())
5890 target->rel_dyn_section(layout)->add_local(entry->object(),
5891 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5892 else
5893 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5894 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5895 got, got_offset);
5896 }
5897 }
5898 }
5899
5900 this->add_page_entries(target, layout);
5901
5902 // Add global entries that should be in the local area.
5903 for (typename Got_entry_set::iterator
5904 p = this->got_entries_.begin();
5905 p != this->got_entries_.end();
5906 ++p)
5907 {
5908 Mips_got_entry<size, big_endian>* entry = *p;
5909 if (!entry->is_for_global_symbol())
5910 continue;
5911
5912 Mips_symbol<size>* mips_sym = entry->sym();
5913 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5914 {
5915 unsigned int got_type;
5916 if (!got->multi_got())
5917 got_type = GOT_TYPE_STANDARD;
5918 else
5919 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5920 if (got->add_global(mips_sym, got_type))
5921 {
5922 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5923 if (got->multi_got() && this->index_ > 0
5924 && parameters->options().output_is_position_independent())
5925 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5926 mips_sym, elfcpp::R_MIPS_REL32, got,
5927 mips_sym->got_offset(got_type));
5928 }
5929 }
5930 }
5931 }
5932
5933 // Create GOT page entries.
5934
5935 template<int size, bool big_endian>
5936 void
5937 Mips_got_info<size, big_endian>::add_page_entries(
5938 Target_mips<size, big_endian>* target, Layout* layout)
5939 {
5940 if (this->page_gotno_ == 0)
5941 return;
5942
5943 Mips_output_data_got<size, big_endian>* got = target->got_section();
5944 this->got_page_offset_start_ = got->add_constant(0);
5945 if (got->multi_got() && this->index_ > 0
5946 && parameters->options().output_is_position_independent())
5947 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5948 this->got_page_offset_start_);
5949 int num_entries = this->page_gotno_;
5950 unsigned int prev_offset = this->got_page_offset_start_;
5951 while (--num_entries > 0)
5952 {
5953 unsigned int next_offset = got->add_constant(0);
5954 if (got->multi_got() && this->index_ > 0
5955 && parameters->options().output_is_position_independent())
5956 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5957 next_offset);
5958 gold_assert(next_offset == prev_offset + size/8);
5959 prev_offset = next_offset;
5960 }
5961 this->got_page_offset_next_ = this->got_page_offset_start_;
5962 }
5963
5964 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5965
5966 template<int size, bool big_endian>
5967 void
5968 Mips_got_info<size, big_endian>::add_global_entries(
5969 Target_mips<size, big_endian>* target, Layout* layout,
5970 unsigned int non_reloc_only_global_gotno)
5971 {
5972 Mips_output_data_got<size, big_endian>* got = target->got_section();
5973 // Add GGA_NORMAL entries.
5974 unsigned int count = 0;
5975 for (typename Got_entry_set::iterator
5976 p = this->got_entries_.begin();
5977 p != this->got_entries_.end();
5978 ++p)
5979 {
5980 Mips_got_entry<size, big_endian>* entry = *p;
5981 if (!entry->is_for_global_symbol())
5982 continue;
5983
5984 Mips_symbol<size>* mips_sym = entry->sym();
5985 if (mips_sym->global_got_area() != GGA_NORMAL)
5986 continue;
5987
5988 unsigned int got_type;
5989 if (!got->multi_got())
5990 got_type = GOT_TYPE_STANDARD;
5991 else
5992 // In multi-GOT links, global symbol can be in both primary and
5993 // secondary GOT(s). By creating custom GOT type
5994 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5995 // is added to secondary GOT(s).
5996 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5997 if (!got->add_global(mips_sym, got_type))
5998 continue;
5999
6000 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6001 if (got->multi_got() && this->index_ == 0)
6002 count++;
6003 if (got->multi_got() && this->index_ > 0)
6004 {
6005 if (parameters->options().output_is_position_independent()
6006 || (!parameters->doing_static_link()
6007 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
6008 {
6009 target->rel_dyn_section(layout)->add_global(
6010 mips_sym, elfcpp::R_MIPS_REL32, got,
6011 mips_sym->got_offset(got_type));
6012 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
6013 elfcpp::R_MIPS_REL32, mips_sym);
6014 }
6015 }
6016 }
6017
6018 if (!got->multi_got() || this->index_ == 0)
6019 {
6020 if (got->multi_got())
6021 {
6022 // We need to allocate space in the primary GOT for GGA_NORMAL entries
6023 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6024 // entries correspond to dynamic symbol indexes.
6025 while (count < non_reloc_only_global_gotno)
6026 {
6027 got->add_constant(0);
6028 ++count;
6029 }
6030 }
6031
6032 // Add GGA_RELOC_ONLY entries.
6033 got->add_reloc_only_entries();
6034 }
6035 }
6036
6037 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6038
6039 template<int size, bool big_endian>
6040 void
6041 Mips_got_info<size, big_endian>::add_reloc_only_entries(
6042 Mips_output_data_got<size, big_endian>* got)
6043 {
6044 for (typename Global_got_entry_set::iterator
6045 p = this->global_got_symbols_.begin();
6046 p != this->global_got_symbols_.end();
6047 ++p)
6048 {
6049 Mips_symbol<size>* mips_sym = *p;
6050 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6051 {
6052 unsigned int got_type;
6053 if (!got->multi_got())
6054 got_type = GOT_TYPE_STANDARD;
6055 else
6056 got_type = GOT_TYPE_STANDARD_MULTIGOT;
6057 if (got->add_global(mips_sym, got_type))
6058 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6059 }
6060 }
6061 }
6062
6063 // Create TLS GOT entries.
6064
6065 template<int size, bool big_endian>
6066 void
6067 Mips_got_info<size, big_endian>::add_tls_entries(
6068 Target_mips<size, big_endian>* target, Layout* layout)
6069 {
6070 Mips_output_data_got<size, big_endian>* got = target->got_section();
6071 // Add local tls entries.
6072 for (typename Got_entry_set::iterator
6073 p = this->got_entries_.begin();
6074 p != this->got_entries_.end();
6075 ++p)
6076 {
6077 Mips_got_entry<size, big_endian>* entry = *p;
6078 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6079 continue;
6080
6081 if (entry->tls_type() == GOT_TLS_GD)
6082 {
6083 unsigned int got_type = GOT_TYPE_TLS_PAIR;
6084 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6085 : elfcpp::R_MIPS_TLS_DTPMOD64);
6086 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6087 : elfcpp::R_MIPS_TLS_DTPREL64);
6088
6089 if (!parameters->doing_static_link())
6090 {
6091 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6092 entry->shndx(), got_type,
6093 target->rel_dyn_section(layout),
6094 r_type1, entry->addend());
6095 unsigned int got_offset =
6096 entry->object()->local_got_offset(entry->symndx(), got_type,
6097 entry->addend());
6098 got->add_static_reloc(got_offset + size/8, r_type2,
6099 entry->object(), entry->symndx());
6100 }
6101 else
6102 {
6103 // We are doing a static link. Mark it as belong to module 1,
6104 // the executable.
6105 unsigned int got_offset = got->add_constant(1);
6106 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6107 got_offset,
6108 entry->addend());
6109 got->add_constant(0);
6110 got->add_static_reloc(got_offset + size/8, r_type2,
6111 entry->object(), entry->symndx());
6112 }
6113 }
6114 else if (entry->tls_type() == GOT_TLS_IE)
6115 {
6116 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6117 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6118 : elfcpp::R_MIPS_TLS_TPREL64);
6119 if (!parameters->doing_static_link())
6120 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6121 target->rel_dyn_section(layout), r_type,
6122 entry->addend());
6123 else
6124 {
6125 got->add_local(entry->object(), entry->symndx(), got_type,
6126 entry->addend());
6127 unsigned int got_offset =
6128 entry->object()->local_got_offset(entry->symndx(), got_type,
6129 entry->addend());
6130 got->add_static_reloc(got_offset, r_type, entry->object(),
6131 entry->symndx());
6132 }
6133 }
6134 else if (entry->tls_type() == GOT_TLS_LDM)
6135 {
6136 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6137 : elfcpp::R_MIPS_TLS_DTPMOD64);
6138 unsigned int got_offset;
6139 if (!parameters->doing_static_link())
6140 {
6141 got_offset = got->add_constant(0);
6142 target->rel_dyn_section(layout)->add_local(
6143 entry->object(), 0, r_type, got, got_offset);
6144 }
6145 else
6146 // We are doing a static link. Just mark it as belong to module 1,
6147 // the executable.
6148 got_offset = got->add_constant(1);
6149
6150 got->add_constant(0);
6151 got->set_tls_ldm_offset(got_offset, entry->object());
6152 }
6153 else
6154 gold_unreachable();
6155 }
6156
6157 // Add global tls entries.
6158 for (typename Got_entry_set::iterator
6159 p = this->got_entries_.begin();
6160 p != this->got_entries_.end();
6161 ++p)
6162 {
6163 Mips_got_entry<size, big_endian>* entry = *p;
6164 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6165 continue;
6166
6167 Mips_symbol<size>* mips_sym = entry->sym();
6168 if (entry->tls_type() == GOT_TLS_GD)
6169 {
6170 unsigned int got_type;
6171 if (!got->multi_got())
6172 got_type = GOT_TYPE_TLS_PAIR;
6173 else
6174 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6175 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6176 : elfcpp::R_MIPS_TLS_DTPMOD64);
6177 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6178 : elfcpp::R_MIPS_TLS_DTPREL64);
6179 if (!parameters->doing_static_link())
6180 got->add_global_pair_with_rel(mips_sym, got_type,
6181 target->rel_dyn_section(layout), r_type1, r_type2);
6182 else
6183 {
6184 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6185 // GOT entries. The first one is initialized to be 1, which is the
6186 // module index for the main executable and the second one 0. A
6187 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6188 // the second GOT entry and will be applied by gold.
6189 unsigned int got_offset = got->add_constant(1);
6190 mips_sym->set_got_offset(got_type, got_offset);
6191 got->add_constant(0);
6192 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6193 }
6194 }
6195 else if (entry->tls_type() == GOT_TLS_IE)
6196 {
6197 unsigned int got_type;
6198 if (!got->multi_got())
6199 got_type = GOT_TYPE_TLS_OFFSET;
6200 else
6201 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6202 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6203 : elfcpp::R_MIPS_TLS_TPREL64);
6204 if (!parameters->doing_static_link())
6205 got->add_global_with_rel(mips_sym, got_type,
6206 target->rel_dyn_section(layout), r_type);
6207 else
6208 {
6209 got->add_global(mips_sym, got_type);
6210 unsigned int got_offset = mips_sym->got_offset(got_type);
6211 got->add_static_reloc(got_offset, r_type, mips_sym);
6212 }
6213 }
6214 else
6215 gold_unreachable();
6216 }
6217 }
6218
6219 // Decide whether the symbol needs an entry in the global part of the primary
6220 // GOT, setting global_got_area accordingly. Count the number of global
6221 // symbols that are in the primary GOT only because they have dynamic
6222 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6223
6224 template<int size, bool big_endian>
6225 void
6226 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6227 {
6228 for (typename Global_got_entry_set::iterator
6229 p = this->global_got_symbols_.begin();
6230 p != this->global_got_symbols_.end();
6231 ++p)
6232 {
6233 Mips_symbol<size>* sym = *p;
6234 // Make a final decision about whether the symbol belongs in the
6235 // local or global GOT. Symbols that bind locally can (and in the
6236 // case of forced-local symbols, must) live in the local GOT.
6237 // Those that are aren't in the dynamic symbol table must also
6238 // live in the local GOT.
6239
6240 if (!sym->should_add_dynsym_entry(symtab)
6241 || (sym->got_only_for_calls()
6242 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6243 : symbol_references_local(sym,
6244 sym->should_add_dynsym_entry(symtab))))
6245 // The symbol belongs in the local GOT. We no longer need this
6246 // entry if it was only used for relocations; those relocations
6247 // will be against the null or section symbol instead.
6248 sym->set_global_got_area(GGA_NONE);
6249 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6250 {
6251 ++this->reloc_only_gotno_;
6252 ++this->global_gotno_ ;
6253 }
6254 }
6255 }
6256
6257 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6258 // VALUE if it is not initialized.
6259
6260 template<int size, bool big_endian>
6261 unsigned int
6262 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6263 Mips_output_data_got<size, big_endian>* got)
6264 {
6265 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6266 if (it != this->got_page_offsets_.end())
6267 return it->second;
6268
6269 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6270 + (size/8) * this->page_gotno_);
6271
6272 unsigned int got_offset = this->got_page_offset_next_;
6273 this->got_page_offsets_[value] = got_offset;
6274 this->got_page_offset_next_ += size/8;
6275 got->update_got_entry(got_offset, value);
6276 return got_offset;
6277 }
6278
6279 // Remove lazy-binding stubs for global symbols in this GOT.
6280
6281 template<int size, bool big_endian>
6282 void
6283 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6284 Target_mips<size, big_endian>* target)
6285 {
6286 for (typename Got_entry_set::iterator
6287 p = this->got_entries_.begin();
6288 p != this->got_entries_.end();
6289 ++p)
6290 {
6291 Mips_got_entry<size, big_endian>* entry = *p;
6292 if (entry->is_for_global_symbol())
6293 target->remove_lazy_stub_entry(entry->sym());
6294 }
6295 }
6296
6297 // Count the number of GOT entries required.
6298
6299 template<int size, bool big_endian>
6300 void
6301 Mips_got_info<size, big_endian>::count_got_entries()
6302 {
6303 for (typename Got_entry_set::iterator
6304 p = this->got_entries_.begin();
6305 p != this->got_entries_.end();
6306 ++p)
6307 {
6308 this->count_got_entry(*p);
6309 }
6310 }
6311
6312 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6313
6314 template<int size, bool big_endian>
6315 void
6316 Mips_got_info<size, big_endian>::count_got_entry(
6317 Mips_got_entry<size, big_endian>* entry)
6318 {
6319 if (entry->is_tls_entry())
6320 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6321 else if (entry->is_for_local_symbol()
6322 || entry->sym()->global_got_area() == GGA_NONE)
6323 ++this->local_gotno_;
6324 else
6325 ++this->global_gotno_;
6326 }
6327
6328 // Add FROM's GOT entries.
6329
6330 template<int size, bool big_endian>
6331 void
6332 Mips_got_info<size, big_endian>::add_got_entries(
6333 Mips_got_info<size, big_endian>* from)
6334 {
6335 for (typename Got_entry_set::iterator
6336 p = from->got_entries_.begin();
6337 p != from->got_entries_.end();
6338 ++p)
6339 {
6340 Mips_got_entry<size, big_endian>* entry = *p;
6341 if (this->got_entries_.find(entry) == this->got_entries_.end())
6342 {
6343 Mips_got_entry<size, big_endian>* entry2 =
6344 new Mips_got_entry<size, big_endian>(*entry);
6345 this->got_entries_.insert(entry2);
6346 this->count_got_entry(entry);
6347 }
6348 }
6349 }
6350
6351 // Add FROM's GOT page entries.
6352
6353 template<int size, bool big_endian>
6354 void
6355 Mips_got_info<size, big_endian>::add_got_page_entries(
6356 Mips_got_info<size, big_endian>* from)
6357 {
6358 for (typename Got_page_entry_set::iterator
6359 p = from->got_page_entries_.begin();
6360 p != from->got_page_entries_.end();
6361 ++p)
6362 {
6363 Got_page_entry* entry = *p;
6364 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6365 {
6366 Got_page_entry* entry2 = new Got_page_entry(*entry);
6367 this->got_page_entries_.insert(entry2);
6368 this->page_gotno_ += entry->num_pages;
6369 }
6370 }
6371 }
6372
6373 // Mips_output_data_got methods.
6374
6375 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6376 // larger than 64K, create multi-GOT.
6377
6378 template<int size, bool big_endian>
6379 void
6380 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6381 Symbol_table* symtab, const Input_objects* input_objects)
6382 {
6383 // Decide which symbols need to go in the global part of the GOT and
6384 // count the number of reloc-only GOT symbols.
6385 this->master_got_info_->count_got_symbols(symtab);
6386
6387 // Count the number of GOT entries.
6388 this->master_got_info_->count_got_entries();
6389
6390 unsigned int got_size = this->master_got_info_->got_size();
6391 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6392 this->lay_out_multi_got(layout, input_objects);
6393 else
6394 {
6395 // Record that all objects use single GOT.
6396 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6397 p != input_objects->relobj_end();
6398 ++p)
6399 {
6400 Mips_relobj<size, big_endian>* object =
6401 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6402 if (object->get_got_info() != NULL)
6403 object->set_got_info(this->master_got_info_);
6404 }
6405
6406 this->master_got_info_->add_local_entries(this->target_, layout);
6407 this->master_got_info_->add_global_entries(this->target_, layout,
6408 /*not used*/-1U);
6409 this->master_got_info_->add_tls_entries(this->target_, layout);
6410 }
6411 }
6412
6413 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6414
6415 template<int size, bool big_endian>
6416 void
6417 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6418 const Input_objects* input_objects)
6419 {
6420 // Try to merge the GOTs of input objects together, as long as they
6421 // don't seem to exceed the maximum GOT size, choosing one of them
6422 // to be the primary GOT.
6423 this->merge_gots(input_objects);
6424
6425 // Every symbol that is referenced in a dynamic relocation must be
6426 // present in the primary GOT.
6427 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6428
6429 // Add GOT entries.
6430 unsigned int i = 0;
6431 unsigned int offset = 0;
6432 Mips_got_info<size, big_endian>* g = this->primary_got_;
6433 do
6434 {
6435 g->set_index(i);
6436 g->set_offset(offset);
6437
6438 g->add_local_entries(this->target_, layout);
6439 if (i == 0)
6440 g->add_global_entries(this->target_, layout,
6441 (this->master_got_info_->global_gotno()
6442 - this->master_got_info_->reloc_only_gotno()));
6443 else
6444 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6445 g->add_tls_entries(this->target_, layout);
6446
6447 // Forbid global symbols in every non-primary GOT from having
6448 // lazy-binding stubs.
6449 if (i > 0)
6450 g->remove_lazy_stubs(this->target_);
6451
6452 ++i;
6453 offset += g->got_size();
6454 g = g->next();
6455 }
6456 while (g);
6457 }
6458
6459 // Attempt to merge GOTs of different input objects. Try to use as much as
6460 // possible of the primary GOT, since it doesn't require explicit dynamic
6461 // relocations, but don't use objects that would reference global symbols
6462 // out of the addressable range. Failing the primary GOT, attempt to merge
6463 // with the current GOT, or finish the current GOT and then make make the new
6464 // GOT current.
6465
6466 template<int size, bool big_endian>
6467 void
6468 Mips_output_data_got<size, big_endian>::merge_gots(
6469 const Input_objects* input_objects)
6470 {
6471 gold_assert(this->primary_got_ == NULL);
6472 Mips_got_info<size, big_endian>* current = NULL;
6473
6474 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6475 p != input_objects->relobj_end();
6476 ++p)
6477 {
6478 Mips_relobj<size, big_endian>* object =
6479 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6480
6481 Mips_got_info<size, big_endian>* g = object->get_got_info();
6482 if (g == NULL)
6483 continue;
6484
6485 g->count_got_entries();
6486
6487 // Work out the number of page, local and TLS entries.
6488 unsigned int estimate = this->master_got_info_->page_gotno();
6489 if (estimate > g->page_gotno())
6490 estimate = g->page_gotno();
6491 estimate += g->local_gotno() + g->tls_gotno();
6492
6493 // We place TLS GOT entries after both locals and globals. The globals
6494 // for the primary GOT may overflow the normal GOT size limit, so be
6495 // sure not to merge a GOT which requires TLS with the primary GOT in that
6496 // case. This doesn't affect non-primary GOTs.
6497 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6498 : g->global_gotno());
6499
6500 unsigned int max_count =
6501 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6502 if (estimate <= max_count)
6503 {
6504 // If we don't have a primary GOT, use it as
6505 // a starting point for the primary GOT.
6506 if (!this->primary_got_)
6507 {
6508 this->primary_got_ = g;
6509 continue;
6510 }
6511
6512 // Try merging with the primary GOT.
6513 if (this->merge_got_with(g, object, this->primary_got_))
6514 continue;
6515 }
6516
6517 // If we can merge with the last-created GOT, do it.
6518 if (current && this->merge_got_with(g, object, current))
6519 continue;
6520
6521 // Well, we couldn't merge, so create a new GOT. Don't check if it
6522 // fits; if it turns out that it doesn't, we'll get relocation
6523 // overflows anyway.
6524 g->set_next(current);
6525 current = g;
6526 }
6527
6528 // If we do not find any suitable primary GOT, create an empty one.
6529 if (this->primary_got_ == NULL)
6530 this->primary_got_ = new Mips_got_info<size, big_endian>();
6531
6532 // Link primary GOT with secondary GOTs.
6533 this->primary_got_->set_next(current);
6534 }
6535
6536 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6537 // this would lead to overflow, true if they were merged successfully.
6538
6539 template<int size, bool big_endian>
6540 bool
6541 Mips_output_data_got<size, big_endian>::merge_got_with(
6542 Mips_got_info<size, big_endian>* from,
6543 Mips_relobj<size, big_endian>* object,
6544 Mips_got_info<size, big_endian>* to)
6545 {
6546 // Work out how many page entries we would need for the combined GOT.
6547 unsigned int estimate = this->master_got_info_->page_gotno();
6548 if (estimate >= from->page_gotno() + to->page_gotno())
6549 estimate = from->page_gotno() + to->page_gotno();
6550
6551 // Conservatively estimate how many local and TLS entries would be needed.
6552 estimate += from->local_gotno() + to->local_gotno();
6553 estimate += from->tls_gotno() + to->tls_gotno();
6554
6555 // If we're merging with the primary got, any TLS relocations will
6556 // come after the full set of global entries. Otherwise estimate those
6557 // conservatively as well.
6558 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6559 estimate += this->master_got_info_->global_gotno();
6560 else
6561 estimate += from->global_gotno() + to->global_gotno();
6562
6563 // Bail out if the combined GOT might be too big.
6564 unsigned int max_count =
6565 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6566 if (estimate > max_count)
6567 return false;
6568
6569 // Transfer the object's GOT information from FROM to TO.
6570 to->add_got_entries(from);
6571 to->add_got_page_entries(from);
6572
6573 // Record that OBJECT should use output GOT TO.
6574 object->set_got_info(to);
6575
6576 return true;
6577 }
6578
6579 // Write out the GOT.
6580
6581 template<int size, bool big_endian>
6582 void
6583 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6584 {
6585 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6586 Mips_stubs_entry_set;
6587
6588 // Call parent to write out GOT.
6589 Output_data_got<size, big_endian>::do_write(of);
6590
6591 const off_t offset = this->offset();
6592 const section_size_type oview_size =
6593 convert_to_section_size_type(this->data_size());
6594 unsigned char* const oview = of->get_output_view(offset, oview_size);
6595
6596 // Needed for fixing values of .got section.
6597 this->got_view_ = oview;
6598
6599 // Write lazy stub addresses.
6600 for (typename Mips_stubs_entry_set::iterator
6601 p = this->master_got_info_->global_got_symbols().begin();
6602 p != this->master_got_info_->global_got_symbols().end();
6603 ++p)
6604 {
6605 Mips_symbol<size>* mips_sym = *p;
6606 if (mips_sym->has_lazy_stub())
6607 {
6608 Valtype* wv = reinterpret_cast<Valtype*>(
6609 oview + this->get_primary_got_offset(mips_sym));
6610 Valtype value =
6611 this->target_->mips_stubs_section()->stub_address(mips_sym);
6612 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6613 }
6614 }
6615
6616 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6617 for (typename Mips_stubs_entry_set::iterator
6618 p = this->master_got_info_->global_got_symbols().begin();
6619 p != this->master_got_info_->global_got_symbols().end();
6620 ++p)
6621 {
6622 Mips_symbol<size>* mips_sym = *p;
6623 if (!this->multi_got()
6624 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6625 && mips_sym->global_got_area() == GGA_NONE
6626 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6627 {
6628 Valtype* wv = reinterpret_cast<Valtype*>(
6629 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6630 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6631 if (value != 0)
6632 {
6633 value |= 1;
6634 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6635 }
6636 }
6637 }
6638
6639 if (!this->secondary_got_relocs_.empty())
6640 {
6641 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6642 // secondary GOT entries with non-zero initial value copy the value
6643 // to the corresponding primary GOT entry, and set the secondary GOT
6644 // entry to zero.
6645 // TODO(sasa): This is workaround. It needs to be investigated further.
6646
6647 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6648 {
6649 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6650 if (reloc.symbol_is_global())
6651 {
6652 Mips_symbol<size>* gsym = reloc.symbol();
6653 gold_assert(gsym != NULL);
6654
6655 unsigned got_offset = reloc.got_offset();
6656 gold_assert(got_offset < oview_size);
6657
6658 // Find primary GOT entry.
6659 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6660 oview + this->get_primary_got_offset(gsym));
6661
6662 // Find secondary GOT entry.
6663 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6664
6665 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6666 if (value != 0)
6667 {
6668 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6669 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6670 gsym->set_applied_secondary_got_fixup();
6671 }
6672 }
6673 }
6674
6675 of->write_output_view(offset, oview_size, oview);
6676 }
6677
6678 // We are done if there is no fix up.
6679 if (this->static_relocs_.empty())
6680 return;
6681
6682 Output_segment* tls_segment = this->layout_->tls_segment();
6683 gold_assert(tls_segment != NULL);
6684
6685 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6686 {
6687 Static_reloc& reloc(this->static_relocs_[i]);
6688
6689 Mips_address value;
6690 if (!reloc.symbol_is_global())
6691 {
6692 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6693 const Symbol_value<size>* psymval =
6694 object->local_symbol(reloc.index());
6695
6696 // We are doing static linking. Issue an error and skip this
6697 // relocation if the symbol is undefined or in a discarded_section.
6698 bool is_ordinary;
6699 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6700 if ((shndx == elfcpp::SHN_UNDEF)
6701 || (is_ordinary
6702 && shndx != elfcpp::SHN_UNDEF
6703 && !object->is_section_included(shndx)
6704 && !this->symbol_table_->is_section_folded(object, shndx)))
6705 {
6706 gold_error(_("undefined or discarded local symbol %u from "
6707 " object %s in GOT"),
6708 reloc.index(), reloc.relobj()->name().c_str());
6709 continue;
6710 }
6711
6712 value = psymval->value(object, 0);
6713 }
6714 else
6715 {
6716 const Mips_symbol<size>* gsym = reloc.symbol();
6717 gold_assert(gsym != NULL);
6718
6719 // We are doing static linking. Issue an error and skip this
6720 // relocation if the symbol is undefined or in a discarded_section
6721 // unless it is a weakly_undefined symbol.
6722 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6723 && !gsym->is_weak_undefined())
6724 {
6725 gold_error(_("undefined or discarded symbol %s in GOT"),
6726 gsym->name());
6727 continue;
6728 }
6729
6730 if (!gsym->is_weak_undefined())
6731 value = gsym->value();
6732 else
6733 value = 0;
6734 }
6735
6736 unsigned got_offset = reloc.got_offset();
6737 gold_assert(got_offset < oview_size);
6738
6739 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6740 Valtype x;
6741
6742 switch (reloc.r_type())
6743 {
6744 case elfcpp::R_MIPS_TLS_DTPMOD32:
6745 case elfcpp::R_MIPS_TLS_DTPMOD64:
6746 x = value;
6747 break;
6748 case elfcpp::R_MIPS_TLS_DTPREL32:
6749 case elfcpp::R_MIPS_TLS_DTPREL64:
6750 x = value - elfcpp::DTP_OFFSET;
6751 break;
6752 case elfcpp::R_MIPS_TLS_TPREL32:
6753 case elfcpp::R_MIPS_TLS_TPREL64:
6754 x = value - elfcpp::TP_OFFSET;
6755 break;
6756 default:
6757 gold_unreachable();
6758 break;
6759 }
6760
6761 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6762 }
6763
6764 of->write_output_view(offset, oview_size, oview);
6765 }
6766
6767 // Mips_relobj methods.
6768
6769 // Count the local symbols. The Mips backend needs to know if a symbol
6770 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6771 // because the Symbol object keeps the ELF symbol type and st_other field.
6772 // For local symbol it is harder because we cannot access this information.
6773 // So we override the do_count_local_symbol in parent and scan local symbols to
6774 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6775 // I do not want to slow down other ports by calling a per symbol target hook
6776 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6777
6778 template<int size, bool big_endian>
6779 void
6780 Mips_relobj<size, big_endian>::do_count_local_symbols(
6781 Stringpool_template<char>* pool,
6782 Stringpool_template<char>* dynpool)
6783 {
6784 // Ask parent to count the local symbols.
6785 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6786 const unsigned int loccount = this->local_symbol_count();
6787 if (loccount == 0)
6788 return;
6789
6790 // Initialize the mips16 and micromips function bit-vector.
6791 this->local_symbol_is_mips16_.resize(loccount, false);
6792 this->local_symbol_is_micromips_.resize(loccount, false);
6793
6794 // Read the symbol table section header.
6795 const unsigned int symtab_shndx = this->symtab_shndx();
6796 elfcpp::Shdr<size, big_endian>
6797 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6798 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6799
6800 // Read the local symbols.
6801 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6802 gold_assert(loccount == symtabshdr.get_sh_info());
6803 off_t locsize = loccount * sym_size;
6804 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6805 locsize, true, true);
6806
6807 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6808
6809 // Skip the first dummy symbol.
6810 psyms += sym_size;
6811 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6812 {
6813 elfcpp::Sym<size, big_endian> sym(psyms);
6814 unsigned char st_other = sym.get_st_other();
6815 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6816 this->local_symbol_is_micromips_[i] =
6817 elfcpp::elf_st_is_micromips(st_other);
6818 }
6819 }
6820
6821 // Read the symbol information.
6822
6823 template<int size, bool big_endian>
6824 void
6825 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6826 {
6827 // Call parent class to read symbol information.
6828 this->base_read_symbols(sd);
6829
6830 // If this input file is a binary file, it has no processor
6831 // specific data.
6832 Input_file::Format format = this->input_file()->format();
6833 if (format != Input_file::FORMAT_ELF)
6834 {
6835 gold_assert(format == Input_file::FORMAT_BINARY);
6836 this->merge_processor_specific_data_ = false;
6837 return;
6838 }
6839
6840 // Read processor-specific flags in ELF file header.
6841 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6842 elfcpp::Elf_sizes<size>::ehdr_size,
6843 true, false);
6844 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6845 this->processor_specific_flags_ = ehdr.get_e_flags();
6846
6847 // Get the section names.
6848 const unsigned char* pnamesu = sd->section_names->data();
6849 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6850
6851 // Initialize the mips16 stub section bit-vectors.
6852 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6853 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6854 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6855
6856 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6857 const unsigned char* pshdrs = sd->section_headers->data();
6858 const unsigned char* ps = pshdrs + shdr_size;
6859 bool must_merge_processor_specific_data = false;
6860 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6861 {
6862 elfcpp::Shdr<size, big_endian> shdr(ps);
6863
6864 // Sometimes an object has no contents except the section name string
6865 // table and an empty symbol table with the undefined symbol. We
6866 // don't want to merge processor-specific data from such an object.
6867 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6868 {
6869 // Symbol table is not empty.
6870 const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
6871 elfcpp::Elf_sizes<size>::sym_size;
6872 if (shdr.get_sh_size() > sym_size)
6873 must_merge_processor_specific_data = true;
6874 }
6875 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6876 // If this is neither an empty symbol table nor a string table,
6877 // be conservative.
6878 must_merge_processor_specific_data = true;
6879
6880 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6881 {
6882 this->has_reginfo_section_ = true;
6883 // Read the gp value that was used to create this object. We need the
6884 // gp value while processing relocs. The .reginfo section is not used
6885 // in the 64-bit MIPS ELF ABI.
6886 section_offset_type section_offset = shdr.get_sh_offset();
6887 section_size_type section_size =
6888 convert_to_section_size_type(shdr.get_sh_size());
6889 const unsigned char* view =
6890 this->get_view(section_offset, section_size, true, false);
6891
6892 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6893
6894 // Read the rest of .reginfo.
6895 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6896 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6897 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6898 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6899 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6900 }
6901
6902 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6903 {
6904 gold_assert(this->attributes_section_data_ == NULL);
6905 section_offset_type section_offset = shdr.get_sh_offset();
6906 section_size_type section_size =
6907 convert_to_section_size_type(shdr.get_sh_size());
6908 const unsigned char* view =
6909 this->get_view(section_offset, section_size, true, false);
6910 this->attributes_section_data_ =
6911 new Attributes_section_data(view, section_size);
6912 }
6913
6914 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6915 {
6916 gold_assert(this->abiflags_ == NULL);
6917 section_offset_type section_offset = shdr.get_sh_offset();
6918 section_size_type section_size =
6919 convert_to_section_size_type(shdr.get_sh_size());
6920 const unsigned char* view =
6921 this->get_view(section_offset, section_size, true, false);
6922 this->abiflags_ = new Mips_abiflags<big_endian>();
6923
6924 this->abiflags_->version =
6925 elfcpp::Swap<16, big_endian>::readval(view);
6926 if (this->abiflags_->version != 0)
6927 {
6928 gold_error(_("%s: .MIPS.abiflags section has "
6929 "unsupported version %u"),
6930 this->name().c_str(),
6931 this->abiflags_->version);
6932 break;
6933 }
6934 this->abiflags_->isa_level =
6935 elfcpp::Swap<8, big_endian>::readval(view + 2);
6936 this->abiflags_->isa_rev =
6937 elfcpp::Swap<8, big_endian>::readval(view + 3);
6938 this->abiflags_->gpr_size =
6939 elfcpp::Swap<8, big_endian>::readval(view + 4);
6940 this->abiflags_->cpr1_size =
6941 elfcpp::Swap<8, big_endian>::readval(view + 5);
6942 this->abiflags_->cpr2_size =
6943 elfcpp::Swap<8, big_endian>::readval(view + 6);
6944 this->abiflags_->fp_abi =
6945 elfcpp::Swap<8, big_endian>::readval(view + 7);
6946 this->abiflags_->isa_ext =
6947 elfcpp::Swap<32, big_endian>::readval(view + 8);
6948 this->abiflags_->ases =
6949 elfcpp::Swap<32, big_endian>::readval(view + 12);
6950 this->abiflags_->flags1 =
6951 elfcpp::Swap<32, big_endian>::readval(view + 16);
6952 this->abiflags_->flags2 =
6953 elfcpp::Swap<32, big_endian>::readval(view + 20);
6954 }
6955
6956 // In the 64-bit ABI, .MIPS.options section holds register information.
6957 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6958 // starts with this header:
6959 //
6960 // typedef struct
6961 // {
6962 // // Type of option.
6963 // unsigned char kind[1];
6964 // // Size of option descriptor, including header.
6965 // unsigned char size[1];
6966 // // Section index of affected section, or 0 for global option.
6967 // unsigned char section[2];
6968 // // Information specific to this kind of option.
6969 // unsigned char info[4];
6970 // };
6971 //
6972 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6973 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6974 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6975
6976 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6977 {
6978 section_offset_type section_offset = shdr.get_sh_offset();
6979 section_size_type section_size =
6980 convert_to_section_size_type(shdr.get_sh_size());
6981 const unsigned char* view =
6982 this->get_view(section_offset, section_size, true, false);
6983 const unsigned char* end = view + section_size;
6984
6985 while (view + 8 <= end)
6986 {
6987 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6988 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6989 if (sz < 8)
6990 {
6991 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6992 "than its header"),
6993 this->name().c_str(),
6994 this->mips_elf_options_section_name(), sz);
6995 break;
6996 }
6997
6998 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6999 {
7000 // In the 64 bit ABI, an ODK_REGINFO option is the following
7001 // structure. The info field of the options header is not
7002 // used.
7003 //
7004 // typedef struct
7005 // {
7006 // // Mask of general purpose registers used.
7007 // unsigned char ri_gprmask[4];
7008 // // Padding.
7009 // unsigned char ri_pad[4];
7010 // // Mask of co-processor registers used.
7011 // unsigned char ri_cprmask[4][4];
7012 // // GP register value for this object file.
7013 // unsigned char ri_gp_value[8];
7014 // };
7015
7016 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
7017 + 32);
7018 }
7019 else if (kind == elfcpp::ODK_REGINFO)
7020 {
7021 // In the 32 bit ABI, an ODK_REGINFO option is the following
7022 // structure. The info field of the options header is not
7023 // used. The same structure is used in .reginfo section.
7024 //
7025 // typedef struct
7026 // {
7027 // unsigned char ri_gprmask[4];
7028 // unsigned char ri_cprmask[4][4];
7029 // unsigned char ri_gp_value[4];
7030 // };
7031
7032 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
7033 + 28);
7034 }
7035 view += sz;
7036 }
7037 }
7038
7039 const char* name = pnames + shdr.get_sh_name();
7040 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
7041 this->section_is_mips16_call_stub_[i] =
7042 is_prefix_of(".mips16.call.", name);
7043 this->section_is_mips16_call_fp_stub_[i] =
7044 is_prefix_of(".mips16.call.fp.", name);
7045
7046 if (strcmp(name, ".pdr") == 0)
7047 {
7048 gold_assert(this->pdr_shndx_ == -1U);
7049 this->pdr_shndx_ = i;
7050 }
7051 }
7052
7053 // This is rare.
7054 if (!must_merge_processor_specific_data)
7055 this->merge_processor_specific_data_ = false;
7056 }
7057
7058 // Discard MIPS16 stub secions that are not needed.
7059
7060 template<int size, bool big_endian>
7061 void
7062 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
7063 {
7064 for (typename Mips16_stubs_int_map::const_iterator
7065 it = this->mips16_stub_sections_.begin();
7066 it != this->mips16_stub_sections_.end(); ++it)
7067 {
7068 Mips16_stub_section<size, big_endian>* stub_section = it->second;
7069 if (!stub_section->is_target_found())
7070 {
7071 gold_error(_("no relocation found in mips16 stub section '%s'"),
7072 stub_section->object()
7073 ->section_name(stub_section->shndx()).c_str());
7074 }
7075
7076 bool discard = false;
7077 if (stub_section->is_for_local_function())
7078 {
7079 if (stub_section->is_fn_stub())
7080 {
7081 // This stub is for a local symbol. This stub will only
7082 // be needed if there is some relocation in this object,
7083 // other than a 16 bit function call, which refers to this
7084 // symbol.
7085 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7086 discard = true;
7087 else
7088 this->add_local_mips16_fn_stub(stub_section);
7089 }
7090 else
7091 {
7092 // This stub is for a local symbol. This stub will only
7093 // be needed if there is some relocation (R_MIPS16_26) in
7094 // this object that refers to this symbol.
7095 gold_assert(stub_section->is_call_stub()
7096 || stub_section->is_call_fp_stub());
7097 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7098 discard = true;
7099 else
7100 this->add_local_mips16_call_stub(stub_section);
7101 }
7102 }
7103 else
7104 {
7105 Mips_symbol<size>* gsym = stub_section->gsym();
7106 if (stub_section->is_fn_stub())
7107 {
7108 if (gsym->has_mips16_fn_stub())
7109 // We already have a stub for this function.
7110 discard = true;
7111 else
7112 {
7113 gsym->set_mips16_fn_stub(stub_section);
7114 if (gsym->should_add_dynsym_entry(symtab))
7115 {
7116 // If we have a MIPS16 function with a stub, the
7117 // dynamic symbol must refer to the stub, since only
7118 // the stub uses the standard calling conventions.
7119 gsym->set_need_fn_stub();
7120 if (gsym->is_from_dynobj())
7121 gsym->set_needs_dynsym_value();
7122 }
7123 }
7124 if (!gsym->need_fn_stub())
7125 discard = true;
7126 }
7127 else if (stub_section->is_call_stub())
7128 {
7129 if (gsym->is_mips16())
7130 // We don't need the call_stub; this is a 16 bit
7131 // function, so calls from other 16 bit functions are
7132 // OK.
7133 discard = true;
7134 else if (gsym->has_mips16_call_stub())
7135 // We already have a stub for this function.
7136 discard = true;
7137 else
7138 gsym->set_mips16_call_stub(stub_section);
7139 }
7140 else
7141 {
7142 gold_assert(stub_section->is_call_fp_stub());
7143 if (gsym->is_mips16())
7144 // We don't need the call_stub; this is a 16 bit
7145 // function, so calls from other 16 bit functions are
7146 // OK.
7147 discard = true;
7148 else if (gsym->has_mips16_call_fp_stub())
7149 // We already have a stub for this function.
7150 discard = true;
7151 else
7152 gsym->set_mips16_call_fp_stub(stub_section);
7153 }
7154 }
7155 if (discard)
7156 this->set_output_section(stub_section->shndx(), NULL);
7157 }
7158 }
7159
7160 // Mips_output_data_la25_stub methods.
7161
7162 // Template for standard LA25 stub.
7163 template<int size, bool big_endian>
7164 const uint32_t
7165 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7166 {
7167 0x3c190000, // lui $25,%hi(func)
7168 0x08000000, // j func
7169 0x27390000, // add $25,$25,%lo(func)
7170 0x00000000 // nop
7171 };
7172
7173 // Template for microMIPS LA25 stub.
7174 template<int size, bool big_endian>
7175 const uint32_t
7176 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7177 {
7178 0x41b9, 0x0000, // lui t9,%hi(func)
7179 0xd400, 0x0000, // j func
7180 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7181 0x0000, 0x0000 // nop
7182 };
7183
7184 // Create la25 stub for a symbol.
7185
7186 template<int size, bool big_endian>
7187 void
7188 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7189 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7190 Mips_symbol<size>* gsym)
7191 {
7192 if (!gsym->has_la25_stub())
7193 {
7194 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7195 this->symbols_.push_back(gsym);
7196 this->create_stub_symbol(gsym, symtab, target, 16);
7197 }
7198 }
7199
7200 // Create a symbol for SYM stub's value and size, to help make the disassembly
7201 // easier to read.
7202
7203 template<int size, bool big_endian>
7204 void
7205 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7206 Mips_symbol<size>* sym, Symbol_table* symtab,
7207 Target_mips<size, big_endian>* target, uint64_t symsize)
7208 {
7209 std::string name(".pic.");
7210 name += sym->name();
7211
7212 unsigned int offset = sym->la25_stub_offset();
7213 if (sym->is_micromips())
7214 offset |= 1;
7215
7216 // Make it a local function.
7217 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7218 Symbol_table::PREDEFINED,
7219 target->la25_stub_section(),
7220 offset, symsize, elfcpp::STT_FUNC,
7221 elfcpp::STB_LOCAL,
7222 elfcpp::STV_DEFAULT, 0,
7223 false, false);
7224 new_sym->set_is_forced_local();
7225 }
7226
7227 // Write out la25 stubs. This uses the hand-coded instructions above,
7228 // and adjusts them as needed.
7229
7230 template<int size, bool big_endian>
7231 void
7232 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7233 {
7234 const off_t offset = this->offset();
7235 const section_size_type oview_size =
7236 convert_to_section_size_type(this->data_size());
7237 unsigned char* const oview = of->get_output_view(offset, oview_size);
7238
7239 for (typename std::vector<Mips_symbol<size>*>::iterator
7240 p = this->symbols_.begin();
7241 p != this->symbols_.end();
7242 ++p)
7243 {
7244 Mips_symbol<size>* sym = *p;
7245 unsigned char* pov = oview + sym->la25_stub_offset();
7246
7247 Mips_address target = sym->value();
7248 if (!sym->is_micromips())
7249 {
7250 elfcpp::Swap<32, big_endian>::writeval(pov,
7251 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7252 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7253 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7254 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7255 la25_stub_entry[2] | (target & 0xffff));
7256 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7257 }
7258 else
7259 {
7260 target |= 1;
7261 // First stub instruction. Paste high 16-bits of the target.
7262 elfcpp::Swap<16, big_endian>::writeval(pov,
7263 la25_stub_micromips_entry[0]);
7264 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7265 ((target + 0x8000) >> 16) & 0xffff);
7266 // Second stub instruction. Paste low 26-bits of the target, shifted
7267 // right by 1.
7268 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7269 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7270 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7271 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7272 // Third stub instruction. Paste low 16-bits of the target.
7273 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7274 la25_stub_micromips_entry[4]);
7275 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7276 // Fourth stub instruction.
7277 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7278 la25_stub_micromips_entry[6]);
7279 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7280 la25_stub_micromips_entry[7]);
7281 }
7282 }
7283
7284 of->write_output_view(offset, oview_size, oview);
7285 }
7286
7287 // Mips_output_data_plt methods.
7288
7289 // The format of the first PLT entry in an O32 executable.
7290 template<int size, bool big_endian>
7291 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7292 {
7293 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7294 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7295 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7296 0x031cc023, // subu $24, $24, $28
7297 0x03e07825, // or $15, $31, zero
7298 0x0018c082, // srl $24, $24, 2
7299 0x0320f809, // jalr $25
7300 0x2718fffe // subu $24, $24, 2
7301 };
7302
7303 // The format of the first PLT entry in an N32 executable. Different
7304 // because gp ($28) is not available; we use t2 ($14) instead.
7305 template<int size, bool big_endian>
7306 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7307 {
7308 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7309 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7310 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7311 0x030ec023, // subu $24, $24, $14
7312 0x03e07825, // or $15, $31, zero
7313 0x0018c082, // srl $24, $24, 2
7314 0x0320f809, // jalr $25
7315 0x2718fffe // subu $24, $24, 2
7316 };
7317
7318 // The format of the first PLT entry in an N64 executable. Different
7319 // from N32 because of the increased size of GOT entries.
7320 template<int size, bool big_endian>
7321 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7322 {
7323 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7324 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7325 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7326 0x030ec023, // subu $24, $24, $14
7327 0x03e07825, // or $15, $31, zero
7328 0x0018c0c2, // srl $24, $24, 3
7329 0x0320f809, // jalr $25
7330 0x2718fffe // subu $24, $24, 2
7331 };
7332
7333 // The format of the microMIPS first PLT entry in an O32 executable.
7334 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7335 // of the GOTPLT entry handled, so this stub may only be used when
7336 // all the subsequent PLT entries are microMIPS code too.
7337 //
7338 // The trailing NOP is for alignment and correct disassembly only.
7339 template<int size, bool big_endian>
7340 const uint32_t Mips_output_data_plt<size, big_endian>::
7341 plt0_entry_micromips_o32[] =
7342 {
7343 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7344 0xff23, 0x0000, // lw $25, 0($3)
7345 0x0535, // subu $2, $2, $3
7346 0x2525, // srl $2, $2, 2
7347 0x3302, 0xfffe, // subu $24, $2, 2
7348 0x0dff, // move $15, $31
7349 0x45f9, // jalrs $25
7350 0x0f83, // move $28, $3
7351 0x0c00 // nop
7352 };
7353
7354 // The format of the microMIPS first PLT entry in an O32 executable
7355 // in the insn32 mode.
7356 template<int size, bool big_endian>
7357 const uint32_t Mips_output_data_plt<size, big_endian>::
7358 plt0_entry_micromips32_o32[] =
7359 {
7360 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7361 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7362 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7363 0x0398, 0xc1d0, // subu $24, $24, $28
7364 0x001f, 0x7a90, // or $15, $31, zero
7365 0x0318, 0x1040, // srl $24, $24, 2
7366 0x03f9, 0x0f3c, // jalr $25
7367 0x3318, 0xfffe // subu $24, $24, 2
7368 };
7369
7370 // The format of subsequent standard entries in the PLT.
7371 template<int size, bool big_endian>
7372 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7373 {
7374 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7375 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7376 0x03200008, // jr $25
7377 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7378 };
7379
7380 // The format of subsequent R6 PLT entries.
7381 template<int size, bool big_endian>
7382 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7383 {
7384 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7385 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7386 0x03200009, // jr $25
7387 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7388 };
7389
7390 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7391 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7392 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7393 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7394 // target function address in register v0.
7395 template<int size, bool big_endian>
7396 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7397 {
7398 0xb303, // lw $3, 12($pc)
7399 0x651b, // move $24, $3
7400 0x9b60, // lw $3, 0($3)
7401 0xeb00, // jr $3
7402 0x653b, // move $25, $3
7403 0x6500, // nop
7404 0x0000, 0x0000 // .word (.got.plt entry)
7405 };
7406
7407 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7408 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7409 template<int size, bool big_endian>
7410 const uint32_t Mips_output_data_plt<size, big_endian>::
7411 plt_entry_micromips_o32[] =
7412 {
7413 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7414 0xff22, 0x0000, // lw $25, 0($2)
7415 0x4599, // jr $25
7416 0x0f02 // move $24, $2
7417 };
7418
7419 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7420 template<int size, bool big_endian>
7421 const uint32_t Mips_output_data_plt<size, big_endian>::
7422 plt_entry_micromips32_o32[] =
7423 {
7424 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7425 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7426 0x0019, 0x0f3c, // jr $25
7427 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7428 };
7429
7430 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7431
7432 template<int size, bool big_endian>
7433 void
7434 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7435 unsigned int r_type)
7436 {
7437 gold_assert(!gsym->has_plt_offset());
7438
7439 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7440 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7441 + sizeof(plt0_entry_o32));
7442 this->symbols_.push_back(gsym);
7443
7444 // Record whether the relocation requires a standard MIPS
7445 // or a compressed code entry.
7446 if (jal_reloc(r_type))
7447 {
7448 if (r_type == elfcpp::R_MIPS_26)
7449 gsym->set_needs_mips_plt(true);
7450 else
7451 gsym->set_needs_comp_plt(true);
7452 }
7453
7454 section_offset_type got_offset = this->got_plt_->current_data_size();
7455
7456 // Every PLT entry needs a GOT entry which points back to the PLT
7457 // entry (this will be changed by the dynamic linker, normally
7458 // lazily when the function is called).
7459 this->got_plt_->set_current_data_size(got_offset + size/8);
7460
7461 gsym->set_needs_dynsym_entry();
7462 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7463 got_offset);
7464 }
7465
7466 // Set final PLT offsets. For each symbol, determine whether standard or
7467 // compressed (MIPS16 or microMIPS) PLT entry is used.
7468
7469 template<int size, bool big_endian>
7470 void
7471 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7472 {
7473 // The sizes of individual PLT entries.
7474 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7475 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7476 ? this->compressed_plt_entry_size() : 0);
7477
7478 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7479 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7480 {
7481 Mips_symbol<size>* mips_sym = *p;
7482
7483 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7484 // so always use a standard entry there.
7485 //
7486 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7487 // all MIPS16 calls will go via that stub, and there is no benefit
7488 // to having a MIPS16 entry. And in the case of call_stub a
7489 // standard entry actually has to be used as the stub ends with a J
7490 // instruction.
7491 if (this->target_->is_output_newabi()
7492 || mips_sym->has_mips16_call_stub()
7493 || mips_sym->has_mips16_call_fp_stub())
7494 {
7495 mips_sym->set_needs_mips_plt(true);
7496 mips_sym->set_needs_comp_plt(false);
7497 }
7498
7499 // Otherwise, if there are no direct calls to the function, we
7500 // have a free choice of whether to use standard or compressed
7501 // entries. Prefer microMIPS entries if the object is known to
7502 // contain microMIPS code, so that it becomes possible to create
7503 // pure microMIPS binaries. Prefer standard entries otherwise,
7504 // because MIPS16 ones are no smaller and are usually slower.
7505 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7506 {
7507 if (this->target_->is_output_micromips())
7508 mips_sym->set_needs_comp_plt(true);
7509 else
7510 mips_sym->set_needs_mips_plt(true);
7511 }
7512
7513 if (mips_sym->needs_mips_plt())
7514 {
7515 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7516 this->plt_mips_offset_ += plt_mips_entry_size;
7517 }
7518 if (mips_sym->needs_comp_plt())
7519 {
7520 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7521 this->plt_comp_offset_ += plt_comp_entry_size;
7522 }
7523 }
7524
7525 // Figure out the size of the PLT header if we know that we are using it.
7526 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7527 this->plt_header_size_ = this->get_plt_header_size();
7528 }
7529
7530 // Write out the PLT. This uses the hand-coded instructions above,
7531 // and adjusts them as needed.
7532
7533 template<int size, bool big_endian>
7534 void
7535 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7536 {
7537 const off_t offset = this->offset();
7538 const section_size_type oview_size =
7539 convert_to_section_size_type(this->data_size());
7540 unsigned char* const oview = of->get_output_view(offset, oview_size);
7541
7542 const off_t gotplt_file_offset = this->got_plt_->offset();
7543 const section_size_type gotplt_size =
7544 convert_to_section_size_type(this->got_plt_->data_size());
7545 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7546 gotplt_size);
7547 unsigned char* pov = oview;
7548
7549 Mips_address plt_address = this->address();
7550
7551 // Calculate the address of .got.plt.
7552 Mips_address gotplt_addr = this->got_plt_->address();
7553 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7554 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7555
7556 // The PLT sequence is not safe for N64 if .got.plt's address can
7557 // not be loaded in two instructions.
7558 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7559 || ~(gotplt_addr | 0x7fffffff) == 0);
7560
7561 // Write the PLT header.
7562 const uint32_t* plt0_entry = this->get_plt_header_entry();
7563 if (plt0_entry == plt0_entry_micromips_o32)
7564 {
7565 // Write microMIPS PLT header.
7566 gold_assert(gotplt_addr % 4 == 0);
7567
7568 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7569
7570 // ADDIUPC has a span of +/-16MB, check we're in range.
7571 if (gotpc_offset + 0x1000000 >= 0x2000000)
7572 {
7573 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7574 "ADDIUPC"), (long)gotpc_offset);
7575 return;
7576 }
7577
7578 elfcpp::Swap<16, big_endian>::writeval(pov,
7579 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7580 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7581 (gotpc_offset >> 2) & 0xffff);
7582 pov += 4;
7583 for (unsigned int i = 2;
7584 i < (sizeof(plt0_entry_micromips_o32)
7585 / sizeof(plt0_entry_micromips_o32[0]));
7586 i++)
7587 {
7588 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7589 pov += 2;
7590 }
7591 }
7592 else if (plt0_entry == plt0_entry_micromips32_o32)
7593 {
7594 // Write microMIPS PLT header in insn32 mode.
7595 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7596 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7597 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7598 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7599 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7600 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7601 pov += 12;
7602 for (unsigned int i = 6;
7603 i < (sizeof(plt0_entry_micromips32_o32)
7604 / sizeof(plt0_entry_micromips32_o32[0]));
7605 i++)
7606 {
7607 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7608 pov += 2;
7609 }
7610 }
7611 else
7612 {
7613 // Write standard PLT header.
7614 elfcpp::Swap<32, big_endian>::writeval(pov,
7615 plt0_entry[0] | gotplt_addr_high);
7616 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7617 plt0_entry[1] | gotplt_addr_low);
7618 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7619 plt0_entry[2] | gotplt_addr_low);
7620 pov += 12;
7621 for (int i = 3; i < 8; i++)
7622 {
7623 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7624 pov += 4;
7625 }
7626 }
7627
7628
7629 unsigned char* gotplt_pov = gotplt_view;
7630 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7631
7632 // The first two entries in .got.plt are reserved.
7633 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7634 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7635
7636 unsigned int gotplt_offset = 2 * got_entry_size;
7637 gotplt_pov += 2 * got_entry_size;
7638
7639 // Calculate the address of the PLT header.
7640 Mips_address header_address = (plt_address
7641 + (this->is_plt_header_compressed() ? 1 : 0));
7642
7643 // Initialize compressed PLT area view.
7644 unsigned char* pov2 = pov + this->plt_mips_offset_;
7645
7646 // Write the PLT entries.
7647 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7648 p = this->symbols_.begin();
7649 p != this->symbols_.end();
7650 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7651 {
7652 Mips_symbol<size>* mips_sym = *p;
7653
7654 // Calculate the address of the .got.plt entry.
7655 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7656 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7657 & 0xffff);
7658 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7659
7660 // Initially point the .got.plt entry at the PLT header.
7661 if (this->target_->is_output_n64())
7662 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7663 else
7664 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7665
7666 // Now handle the PLT itself. First the standard entry.
7667 if (mips_sym->has_mips_plt_offset())
7668 {
7669 // Pick the load opcode (LW or LD).
7670 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7671 : 0x8c000000;
7672
7673 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7674 : plt_entry;
7675
7676 // Fill in the PLT entry itself.
7677 elfcpp::Swap<32, big_endian>::writeval(pov,
7678 entry[0] | gotplt_entry_addr_hi);
7679 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7680 entry[1] | gotplt_entry_addr_lo | load);
7681 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7682 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7683 entry[3] | gotplt_entry_addr_lo);
7684 pov += 16;
7685 }
7686
7687 // Now the compressed entry. They come after any standard ones.
7688 if (mips_sym->has_comp_plt_offset())
7689 {
7690 if (!this->target_->is_output_micromips())
7691 {
7692 // Write MIPS16 PLT entry.
7693 const uint32_t* plt_entry = plt_entry_mips16_o32;
7694
7695 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7696 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7697 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7698 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7699 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7700 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7701 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7702 gotplt_entry_addr);
7703 pov2 += 16;
7704 }
7705 else if (this->target_->use_32bit_micromips_instructions())
7706 {
7707 // Write microMIPS PLT entry in insn32 mode.
7708 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7709
7710 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7711 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7712 gotplt_entry_addr_hi);
7713 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7714 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7715 gotplt_entry_addr_lo);
7716 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7717 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7718 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7719 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7720 gotplt_entry_addr_lo);
7721 pov2 += 16;
7722 }
7723 else
7724 {
7725 // Write microMIPS PLT entry.
7726 const uint32_t* plt_entry = plt_entry_micromips_o32;
7727
7728 gold_assert(gotplt_entry_addr % 4 == 0);
7729
7730 Mips_address loc_address = plt_address + pov2 - oview;
7731 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7732
7733 // ADDIUPC has a span of +/-16MB, check we're in range.
7734 if (gotpc_offset + 0x1000000 >= 0x2000000)
7735 {
7736 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7737 "range of ADDIUPC"), (long)gotpc_offset);
7738 return;
7739 }
7740
7741 elfcpp::Swap<16, big_endian>::writeval(pov2,
7742 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7743 elfcpp::Swap<16, big_endian>::writeval(
7744 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7745 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7746 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7747 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7748 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7749 pov2 += 12;
7750 }
7751 }
7752 }
7753
7754 // Check the number of bytes written for standard entries.
7755 gold_assert(static_cast<section_size_type>(
7756 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7757 // Check the number of bytes written for compressed entries.
7758 gold_assert((static_cast<section_size_type>(pov2 - pov)
7759 == this->plt_comp_offset_));
7760 // Check the total number of bytes written.
7761 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7762
7763 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7764 == gotplt_size);
7765
7766 of->write_output_view(offset, oview_size, oview);
7767 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7768 }
7769
7770 // Mips_output_data_mips_stubs methods.
7771
7772 // The format of the lazy binding stub when dynamic symbol count is less than
7773 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7774 template<int size, bool big_endian>
7775 const uint32_t
7776 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7777 {
7778 0x8f998010, // lw t9,0x8010(gp)
7779 0x03e07825, // or t7,ra,zero
7780 0x0320f809, // jalr t9,ra
7781 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7782 };
7783
7784 // The format of the lazy binding stub when dynamic symbol count is less than
7785 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7786 template<int size, bool big_endian>
7787 const uint32_t
7788 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7789 {
7790 0xdf998010, // ld t9,0x8010(gp)
7791 0x03e07825, // or t7,ra,zero
7792 0x0320f809, // jalr t9,ra
7793 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7794 };
7795
7796 // The format of the lazy binding stub when dynamic symbol count is less than
7797 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7798 template<int size, bool big_endian>
7799 const uint32_t
7800 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7801 {
7802 0x8f998010, // lw t9,0x8010(gp)
7803 0x03e07825, // or t7,ra,zero
7804 0x0320f809, // jalr t9,ra
7805 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7806 };
7807
7808 // The format of the lazy binding stub when dynamic symbol count is less than
7809 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7810 template<int size, bool big_endian>
7811 const uint32_t
7812 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7813 {
7814 0xdf998010, // ld t9,0x8010(gp)
7815 0x03e07825, // or t7,ra,zero
7816 0x0320f809, // jalr t9,ra
7817 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7818 };
7819
7820 // The format of the lazy binding stub when dynamic symbol count is greater than
7821 // 64K, and ABI is not N64.
7822 template<int size, bool big_endian>
7823 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7824 {
7825 0x8f998010, // lw t9,0x8010(gp)
7826 0x03e07825, // or t7,ra,zero
7827 0x3c180000, // lui t8,DYN_INDEX
7828 0x0320f809, // jalr t9,ra
7829 0x37180000 // ori t8,t8,DYN_INDEX
7830 };
7831
7832 // The format of the lazy binding stub when dynamic symbol count is greater than
7833 // 64K, and ABI is N64.
7834 template<int size, bool big_endian>
7835 const uint32_t
7836 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7837 {
7838 0xdf998010, // ld t9,0x8010(gp)
7839 0x03e07825, // or t7,ra,zero
7840 0x3c180000, // lui t8,DYN_INDEX
7841 0x0320f809, // jalr t9,ra
7842 0x37180000 // ori t8,t8,DYN_INDEX
7843 };
7844
7845 // microMIPS stubs.
7846
7847 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7848 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7849 template<int size, bool big_endian>
7850 const uint32_t
7851 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7852 {
7853 0xff3c, 0x8010, // lw t9,0x8010(gp)
7854 0x0dff, // move t7,ra
7855 0x45d9, // jalr t9
7856 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7857 };
7858
7859 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7860 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7861 template<int size, bool big_endian>
7862 const uint32_t
7863 Mips_output_data_mips_stubs<size, big_endian>::
7864 lazy_stub_micromips_normal_1_n64[] =
7865 {
7866 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7867 0x0dff, // move t7,ra
7868 0x45d9, // jalr t9
7869 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7870 };
7871
7872 // The format of the microMIPS lazy binding stub when dynamic symbol
7873 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7874 // and ABI is not N64.
7875 template<int size, bool big_endian>
7876 const uint32_t
7877 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7878 {
7879 0xff3c, 0x8010, // lw t9,0x8010(gp)
7880 0x0dff, // move t7,ra
7881 0x45d9, // jalr t9
7882 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7883 };
7884
7885 // The format of the microMIPS lazy binding stub when dynamic symbol
7886 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7887 // and ABI is N64.
7888 template<int size, bool big_endian>
7889 const uint32_t
7890 Mips_output_data_mips_stubs<size, big_endian>::
7891 lazy_stub_micromips_normal_2_n64[] =
7892 {
7893 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7894 0x0dff, // move t7,ra
7895 0x45d9, // jalr t9
7896 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7897 };
7898
7899 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7900 // greater than 64K, and ABI is not N64.
7901 template<int size, bool big_endian>
7902 const uint32_t
7903 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7904 {
7905 0xff3c, 0x8010, // lw t9,0x8010(gp)
7906 0x0dff, // move t7,ra
7907 0x41b8, 0x0000, // lui t8,DYN_INDEX
7908 0x45d9, // jalr t9
7909 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7910 };
7911
7912 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7913 // greater than 64K, and ABI is N64.
7914 template<int size, bool big_endian>
7915 const uint32_t
7916 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7917 {
7918 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7919 0x0dff, // move t7,ra
7920 0x41b8, 0x0000, // lui t8,DYN_INDEX
7921 0x45d9, // jalr t9
7922 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7923 };
7924
7925 // 32-bit microMIPS stubs.
7926
7927 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7928 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7929 // can use only 32-bit instructions.
7930 template<int size, bool big_endian>
7931 const uint32_t
7932 Mips_output_data_mips_stubs<size, big_endian>::
7933 lazy_stub_micromips32_normal_1[] =
7934 {
7935 0xff3c, 0x8010, // lw t9,0x8010(gp)
7936 0x001f, 0x7a90, // or t7,ra,zero
7937 0x03f9, 0x0f3c, // jalr ra,t9
7938 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7939 };
7940
7941 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7942 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7943 // use only 32-bit instructions.
7944 template<int size, bool big_endian>
7945 const uint32_t
7946 Mips_output_data_mips_stubs<size, big_endian>::
7947 lazy_stub_micromips32_normal_1_n64[] =
7948 {
7949 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7950 0x001f, 0x7a90, // or t7,ra,zero
7951 0x03f9, 0x0f3c, // jalr ra,t9
7952 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7953 };
7954
7955 // The format of the microMIPS lazy binding stub when dynamic symbol
7956 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7957 // ABI is not N64, and we can use only 32-bit instructions.
7958 template<int size, bool big_endian>
7959 const uint32_t
7960 Mips_output_data_mips_stubs<size, big_endian>::
7961 lazy_stub_micromips32_normal_2[] =
7962 {
7963 0xff3c, 0x8010, // lw t9,0x8010(gp)
7964 0x001f, 0x7a90, // or t7,ra,zero
7965 0x03f9, 0x0f3c, // jalr ra,t9
7966 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7967 };
7968
7969 // The format of the microMIPS lazy binding stub when dynamic symbol
7970 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7971 // ABI is N64, and we can use only 32-bit instructions.
7972 template<int size, bool big_endian>
7973 const uint32_t
7974 Mips_output_data_mips_stubs<size, big_endian>::
7975 lazy_stub_micromips32_normal_2_n64[] =
7976 {
7977 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7978 0x001f, 0x7a90, // or t7,ra,zero
7979 0x03f9, 0x0f3c, // jalr ra,t9
7980 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7981 };
7982
7983 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7984 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7985 template<int size, bool big_endian>
7986 const uint32_t
7987 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7988 {
7989 0xff3c, 0x8010, // lw t9,0x8010(gp)
7990 0x001f, 0x7a90, // or t7,ra,zero
7991 0x41b8, 0x0000, // lui t8,DYN_INDEX
7992 0x03f9, 0x0f3c, // jalr ra,t9
7993 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7994 };
7995
7996 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7997 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7998 template<int size, bool big_endian>
7999 const uint32_t
8000 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
8001 {
8002 0xdf3c, 0x8010, // ld t9,0x8010(gp)
8003 0x001f, 0x7a90, // or t7,ra,zero
8004 0x41b8, 0x0000, // lui t8,DYN_INDEX
8005 0x03f9, 0x0f3c, // jalr ra,t9
8006 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
8007 };
8008
8009 // Create entry for a symbol.
8010
8011 template<int size, bool big_endian>
8012 void
8013 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
8014 Mips_symbol<size>* gsym)
8015 {
8016 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
8017 {
8018 this->symbols_.insert(gsym);
8019 gsym->set_has_lazy_stub(true);
8020 }
8021 }
8022
8023 // Remove entry for a symbol.
8024
8025 template<int size, bool big_endian>
8026 void
8027 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
8028 Mips_symbol<size>* gsym)
8029 {
8030 if (gsym->has_lazy_stub())
8031 {
8032 this->symbols_.erase(gsym);
8033 gsym->set_has_lazy_stub(false);
8034 }
8035 }
8036
8037 // Set stub offsets for symbols. This method expects that the number of
8038 // entries in dynamic symbol table is set.
8039
8040 template<int size, bool big_endian>
8041 void
8042 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
8043 {
8044 gold_assert(this->dynsym_count_ != -1U);
8045
8046 if (this->stub_offsets_are_set_)
8047 return;
8048
8049 unsigned int stub_size = this->stub_size();
8050 unsigned int offset = 0;
8051 for (typename Mips_stubs_entry_set::const_iterator
8052 p = this->symbols_.begin();
8053 p != this->symbols_.end();
8054 ++p, offset += stub_size)
8055 {
8056 Mips_symbol<size>* mips_sym = *p;
8057 mips_sym->set_lazy_stub_offset(offset);
8058 }
8059 this->stub_offsets_are_set_ = true;
8060 }
8061
8062 template<int size, bool big_endian>
8063 void
8064 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
8065 {
8066 for (typename Mips_stubs_entry_set::const_iterator
8067 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8068 {
8069 Mips_symbol<size>* sym = *p;
8070 if (sym->is_from_dynobj())
8071 sym->set_needs_dynsym_value();
8072 }
8073 }
8074
8075 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
8076 // adjusts them as needed.
8077
8078 template<int size, bool big_endian>
8079 void
8080 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8081 {
8082 const off_t offset = this->offset();
8083 const section_size_type oview_size =
8084 convert_to_section_size_type(this->data_size());
8085 unsigned char* const oview = of->get_output_view(offset, oview_size);
8086
8087 bool big_stub = this->dynsym_count_ > 0x10000;
8088
8089 unsigned char* pov = oview;
8090 for (typename Mips_stubs_entry_set::const_iterator
8091 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8092 {
8093 Mips_symbol<size>* sym = *p;
8094 const uint32_t* lazy_stub;
8095 bool n64 = this->target_->is_output_n64();
8096
8097 if (!this->target_->is_output_micromips())
8098 {
8099 // Write standard (non-microMIPS) stub.
8100 if (!big_stub)
8101 {
8102 if (sym->dynsym_index() & ~0x7fff)
8103 // Dynsym index is between 32K and 64K.
8104 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8105 else
8106 // Dynsym index is less than 32K.
8107 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8108 }
8109 else
8110 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8111
8112 unsigned int i = 0;
8113 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8114 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8115 pov += 8;
8116
8117 i += 2;
8118 if (big_stub)
8119 {
8120 // LUI instruction of the big stub. Paste high 16 bits of the
8121 // dynsym index.
8122 elfcpp::Swap<32, big_endian>::writeval(pov,
8123 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8124 pov += 4;
8125 i += 1;
8126 }
8127 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8128 // Last stub instruction. Paste low 16 bits of the dynsym index.
8129 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8130 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8131 pov += 8;
8132 }
8133 else if (this->target_->use_32bit_micromips_instructions())
8134 {
8135 // Write microMIPS stub in insn32 mode.
8136 if (!big_stub)
8137 {
8138 if (sym->dynsym_index() & ~0x7fff)
8139 // Dynsym index is between 32K and 64K.
8140 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8141 : lazy_stub_micromips32_normal_2;
8142 else
8143 // Dynsym index is less than 32K.
8144 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8145 : lazy_stub_micromips32_normal_1;
8146 }
8147 else
8148 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8149 : lazy_stub_micromips32_big;
8150
8151 unsigned int i = 0;
8152 // First stub instruction. We emit 32-bit microMIPS instructions by
8153 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8154 // the instruction where the opcode is must always come first, for
8155 // both little and big endian.
8156 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8157 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8158 // Second stub instruction.
8159 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8160 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8161 pov += 8;
8162 i += 4;
8163 if (big_stub)
8164 {
8165 // LUI instruction of the big stub. Paste high 16 bits of the
8166 // dynsym index.
8167 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8168 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8169 (sym->dynsym_index() >> 16) & 0x7fff);
8170 pov += 4;
8171 i += 2;
8172 }
8173 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8174 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8175 // Last stub instruction. Paste low 16 bits of the dynsym index.
8176 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8177 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8178 sym->dynsym_index() & 0xffff);
8179 pov += 8;
8180 }
8181 else
8182 {
8183 // Write microMIPS stub.
8184 if (!big_stub)
8185 {
8186 if (sym->dynsym_index() & ~0x7fff)
8187 // Dynsym index is between 32K and 64K.
8188 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8189 : lazy_stub_micromips_normal_2;
8190 else
8191 // Dynsym index is less than 32K.
8192 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8193 : lazy_stub_micromips_normal_1;
8194 }
8195 else
8196 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8197 : lazy_stub_micromips_big;
8198
8199 unsigned int i = 0;
8200 // First stub instruction. We emit 32-bit microMIPS instructions by
8201 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8202 // the instruction where the opcode is must always come first, for
8203 // both little and big endian.
8204 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8205 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8206 // Second stub instruction.
8207 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8208 pov += 6;
8209 i += 3;
8210 if (big_stub)
8211 {
8212 // LUI instruction of the big stub. Paste high 16 bits of the
8213 // dynsym index.
8214 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8215 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8216 (sym->dynsym_index() >> 16) & 0x7fff);
8217 pov += 4;
8218 i += 2;
8219 }
8220 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8221 // Last stub instruction. Paste low 16 bits of the dynsym index.
8222 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8223 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8224 sym->dynsym_index() & 0xffff);
8225 pov += 6;
8226 }
8227 }
8228
8229 // We always allocate 20 bytes for every stub, because final dynsym count is
8230 // not known in method do_finalize_sections. There are 4 unused bytes per
8231 // stub if final dynsym count is less than 0x10000.
8232 unsigned int used = pov - oview;
8233 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8234 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8235
8236 // Fill the unused space with zeroes.
8237 // TODO(sasa): Can we strip unused bytes during the relaxation?
8238 if (unused > 0)
8239 memset(pov, 0, unused);
8240
8241 of->write_output_view(offset, oview_size, oview);
8242 }
8243
8244 // Mips_output_section_reginfo methods.
8245
8246 template<int size, bool big_endian>
8247 void
8248 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8249 {
8250 off_t offset = this->offset();
8251 off_t data_size = this->data_size();
8252
8253 unsigned char* view = of->get_output_view(offset, data_size);
8254 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8255 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8256 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8257 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8258 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8259 // Write the gp value.
8260 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8261 this->target_->gp_value());
8262
8263 of->write_output_view(offset, data_size, view);
8264 }
8265
8266 // Mips_output_section_options methods.
8267
8268 template<int size, bool big_endian>
8269 void
8270 Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
8271 {
8272 off_t offset = this->offset();
8273 const section_size_type oview_size =
8274 convert_to_section_size_type(this->data_size());
8275 unsigned char* view = of->get_output_view(offset, oview_size);
8276 const unsigned char* end = view + oview_size;
8277
8278 while (view + 8 <= end)
8279 {
8280 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
8281 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
8282 if (sz < 8)
8283 {
8284 gold_error(_("Warning: bad `%s' option size %u smaller "
8285 "than its header in output section"),
8286 this->name(), sz);
8287 break;
8288 }
8289
8290 // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8291 if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
8292 elfcpp::Swap<size, big_endian>::writeval(view + 32,
8293 this->target_->gp_value());
8294 else if (kind == elfcpp::ODK_REGINFO)
8295 elfcpp::Swap<size, big_endian>::writeval(view + 28,
8296 this->target_->gp_value());
8297
8298 view += sz;
8299 }
8300
8301 of->write_output_view(offset, oview_size, view);
8302 }
8303
8304 // Mips_output_section_abiflags methods.
8305
8306 template<int size, bool big_endian>
8307 void
8308 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8309 {
8310 off_t offset = this->offset();
8311 off_t data_size = this->data_size();
8312
8313 unsigned char* view = of->get_output_view(offset, data_size);
8314 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8315 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8316 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8317 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8318 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8319 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8320 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8321 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8322 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8323 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8324 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8325
8326 of->write_output_view(offset, data_size, view);
8327 }
8328
8329 // Mips_copy_relocs methods.
8330
8331 // Emit any saved relocs.
8332
8333 template<int sh_type, int size, bool big_endian>
8334 void
8335 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8336 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8337 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8338 {
8339 for (typename Copy_relocs<sh_type, size, big_endian>::
8340 Copy_reloc_entries::iterator p = this->entries_.begin();
8341 p != this->entries_.end();
8342 ++p)
8343 emit_entry(*p, reloc_section, symtab, layout, target);
8344
8345 // We no longer need the saved information.
8346 this->entries_.clear();
8347 }
8348
8349 // Emit the reloc if appropriate.
8350
8351 template<int sh_type, int size, bool big_endian>
8352 void
8353 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8354 Copy_reloc_entry& entry,
8355 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8356 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8357 {
8358 // If the symbol is no longer defined in a dynamic object, then we
8359 // emitted a COPY relocation, and we do not want to emit this
8360 // dynamic relocation.
8361 if (!entry.sym_->is_from_dynobj())
8362 return;
8363
8364 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8365 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8366 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8367
8368 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8369 if (can_make_dynamic && !sym->has_static_relocs())
8370 {
8371 Mips_relobj<size, big_endian>* object =
8372 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8373 target->got_section(symtab, layout)->record_global_got_symbol(
8374 sym, object, entry.reloc_type_, true, false);
8375 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8376 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8377 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8378 else
8379 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8380 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8381 entry.shndx_, entry.address_);
8382 }
8383 else
8384 this->make_copy_reloc(symtab, layout,
8385 static_cast<Sized_symbol<size>*>(entry.sym_),
8386 entry.relobj_,
8387 reloc_section);
8388 }
8389
8390 // Target_mips methods.
8391
8392 // Return the value to use for a dynamic symbol which requires special
8393 // treatment. This is how we support equality comparisons of function
8394 // pointers across shared library boundaries, as described in the
8395 // processor specific ABI supplement.
8396
8397 template<int size, bool big_endian>
8398 uint64_t
8399 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8400 {
8401 uint64_t value = 0;
8402 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8403
8404 if (!mips_sym->has_lazy_stub())
8405 {
8406 if (mips_sym->has_plt_offset())
8407 {
8408 // We distinguish between PLT entries and lazy-binding stubs by
8409 // giving the former an st_other value of STO_MIPS_PLT. Set the
8410 // value to the stub address if there are any relocations in the
8411 // binary where pointer equality matters.
8412 if (mips_sym->pointer_equality_needed())
8413 {
8414 // Prefer a standard MIPS PLT entry.
8415 if (mips_sym->has_mips_plt_offset())
8416 value = this->plt_section()->mips_entry_address(mips_sym);
8417 else
8418 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8419 }
8420 else
8421 value = 0;
8422 }
8423 }
8424 else
8425 {
8426 // First, set stub offsets for symbols. This method expects that the
8427 // number of entries in dynamic symbol table is set.
8428 this->mips_stubs_section()->set_lazy_stub_offsets();
8429
8430 // The run-time linker uses the st_value field of the symbol
8431 // to reset the global offset table entry for this external
8432 // to its stub address when unlinking a shared object.
8433 value = this->mips_stubs_section()->stub_address(mips_sym);
8434 }
8435
8436 if (mips_sym->has_mips16_fn_stub())
8437 {
8438 // If we have a MIPS16 function with a stub, the dynamic symbol must
8439 // refer to the stub, since only the stub uses the standard calling
8440 // conventions.
8441 value = mips_sym->template
8442 get_mips16_fn_stub<big_endian>()->output_address();
8443 }
8444
8445 return value;
8446 }
8447
8448 // Get the dynamic reloc section, creating it if necessary. It's always
8449 // .rel.dyn, even for MIPS64.
8450
8451 template<int size, bool big_endian>
8452 typename Target_mips<size, big_endian>::Reloc_section*
8453 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8454 {
8455 if (this->rel_dyn_ == NULL)
8456 {
8457 gold_assert(layout != NULL);
8458 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8459 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8460 elfcpp::SHF_ALLOC, this->rel_dyn_,
8461 ORDER_DYNAMIC_RELOCS, false);
8462
8463 // First entry in .rel.dyn has to be null.
8464 // This is hack - we define dummy output data and set its address to 0,
8465 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8466 // This ensures that the entry is null.
8467 Output_data* od = new Output_data_zero_fill(0, 0);
8468 od->set_address(0);
8469 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8470 }
8471 return this->rel_dyn_;
8472 }
8473
8474 // Get the GOT section, creating it if necessary.
8475
8476 template<int size, bool big_endian>
8477 Mips_output_data_got<size, big_endian>*
8478 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8479 Layout* layout)
8480 {
8481 if (this->got_ == NULL)
8482 {
8483 gold_assert(symtab != NULL && layout != NULL);
8484
8485 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8486 layout);
8487 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8488 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8489 elfcpp::SHF_MIPS_GPREL),
8490 this->got_, ORDER_DATA, false);
8491
8492 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8493 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8494 Symbol_table::PREDEFINED,
8495 this->got_,
8496 0, 0, elfcpp::STT_OBJECT,
8497 elfcpp::STB_GLOBAL,
8498 elfcpp::STV_HIDDEN, 0,
8499 false, false);
8500 }
8501
8502 return this->got_;
8503 }
8504
8505 // Calculate value of _gp symbol.
8506
8507 template<int size, bool big_endian>
8508 void
8509 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8510 {
8511 gold_assert(this->gp_ == NULL);
8512
8513 Sized_symbol<size>* gp =
8514 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8515
8516 // Set _gp symbol if the linker script hasn't created it.
8517 if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8518 {
8519 // If there is no .got section, gp should be based on .sdata.
8520 Output_data* gp_section = (this->got_ != NULL
8521 ? this->got_->output_section()
8522 : layout->find_output_section(".sdata"));
8523
8524 if (gp_section != NULL)
8525 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8526 "_gp", NULL, Symbol_table::PREDEFINED,
8527 gp_section, MIPS_GP_OFFSET, 0,
8528 elfcpp::STT_NOTYPE,
8529 elfcpp::STB_LOCAL,
8530 elfcpp::STV_DEFAULT,
8531 0, false, false));
8532 }
8533
8534 this->gp_ = gp;
8535 }
8536
8537 // Set the dynamic symbol indexes. INDEX is the index of the first
8538 // global dynamic symbol. Pointers to the symbols are stored into the
8539 // vector SYMS. The names are added to DYNPOOL. This returns an
8540 // updated dynamic symbol index.
8541
8542 template<int size, bool big_endian>
8543 unsigned int
8544 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8545 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8546 std::vector<Symbol*>* syms, Stringpool* dynpool,
8547 Versions* versions, Symbol_table* symtab) const
8548 {
8549 std::vector<Symbol*> non_got_symbols;
8550 std::vector<Symbol*> got_symbols;
8551
8552 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8553 &got_symbols);
8554
8555 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8556 p != non_got_symbols.end();
8557 ++p)
8558 {
8559 Symbol* sym = *p;
8560
8561 // Note that SYM may already have a dynamic symbol index, since
8562 // some symbols appear more than once in the symbol table, with
8563 // and without a version.
8564
8565 if (!sym->has_dynsym_index())
8566 {
8567 sym->set_dynsym_index(index);
8568 ++index;
8569 syms->push_back(sym);
8570 dynpool->add(sym->name(), false, NULL);
8571
8572 // Record any version information.
8573 if (sym->version() != NULL)
8574 versions->record_version(symtab, dynpool, sym);
8575
8576 // If the symbol is defined in a dynamic object and is
8577 // referenced in a regular object, then mark the dynamic
8578 // object as needed. This is used to implement --as-needed.
8579 if (sym->is_from_dynobj() && sym->in_reg())
8580 sym->object()->set_is_needed();
8581 }
8582 }
8583
8584 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8585 p != got_symbols.end();
8586 ++p)
8587 {
8588 Symbol* sym = *p;
8589 if (!sym->has_dynsym_index())
8590 {
8591 // Record any version information.
8592 if (sym->version() != NULL)
8593 versions->record_version(symtab, dynpool, sym);
8594 }
8595 }
8596
8597 index = versions->finalize(symtab, index, syms);
8598
8599 int got_sym_count = 0;
8600 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8601 p != got_symbols.end();
8602 ++p)
8603 {
8604 Symbol* sym = *p;
8605
8606 if (!sym->has_dynsym_index())
8607 {
8608 ++got_sym_count;
8609 sym->set_dynsym_index(index);
8610 ++index;
8611 syms->push_back(sym);
8612 dynpool->add(sym->name(), false, NULL);
8613
8614 // If the symbol is defined in a dynamic object and is
8615 // referenced in a regular object, then mark the dynamic
8616 // object as needed. This is used to implement --as-needed.
8617 if (sym->is_from_dynobj() && sym->in_reg())
8618 sym->object()->set_is_needed();
8619 }
8620 }
8621
8622 // Set index of the first symbol that has .got entry.
8623 this->got_->set_first_global_got_dynsym_index(
8624 got_sym_count > 0 ? index - got_sym_count : -1U);
8625
8626 if (this->mips_stubs_ != NULL)
8627 this->mips_stubs_->set_dynsym_count(index);
8628
8629 return index;
8630 }
8631
8632 // Create a PLT entry for a global symbol referenced by r_type relocation.
8633
8634 template<int size, bool big_endian>
8635 void
8636 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8637 Layout* layout,
8638 Mips_symbol<size>* gsym,
8639 unsigned int r_type)
8640 {
8641 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8642 return;
8643
8644 if (this->plt_ == NULL)
8645 {
8646 // Create the GOT section first.
8647 this->got_section(symtab, layout);
8648
8649 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8650 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8651 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8652 this->got_plt_, ORDER_DATA, false);
8653
8654 // The first two entries are reserved.
8655 this->got_plt_->set_current_data_size(2 * size/8);
8656
8657 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8658 this->got_plt_,
8659 this);
8660 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8661 (elfcpp::SHF_ALLOC
8662 | elfcpp::SHF_EXECINSTR),
8663 this->plt_, ORDER_PLT, false);
8664
8665 // Make the sh_info field of .rel.plt point to .plt.
8666 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8667 rel_plt_os->set_info_section(this->plt_->output_section());
8668 }
8669
8670 this->plt_->add_entry(gsym, r_type);
8671 }
8672
8673
8674 // Get the .MIPS.stubs section, creating it if necessary.
8675
8676 template<int size, bool big_endian>
8677 Mips_output_data_mips_stubs<size, big_endian>*
8678 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8679 {
8680 if (this->mips_stubs_ == NULL)
8681 {
8682 this->mips_stubs_ =
8683 new Mips_output_data_mips_stubs<size, big_endian>(this);
8684 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8685 (elfcpp::SHF_ALLOC
8686 | elfcpp::SHF_EXECINSTR),
8687 this->mips_stubs_, ORDER_PLT, false);
8688 }
8689 return this->mips_stubs_;
8690 }
8691
8692 // Get the LA25 stub section, creating it if necessary.
8693
8694 template<int size, bool big_endian>
8695 Mips_output_data_la25_stub<size, big_endian>*
8696 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8697 {
8698 if (this->la25_stub_ == NULL)
8699 {
8700 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8701 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8702 (elfcpp::SHF_ALLOC
8703 | elfcpp::SHF_EXECINSTR),
8704 this->la25_stub_, ORDER_TEXT, false);
8705 }
8706 return this->la25_stub_;
8707 }
8708
8709 // Process the relocations to determine unreferenced sections for
8710 // garbage collection.
8711
8712 template<int size, bool big_endian>
8713 void
8714 Target_mips<size, big_endian>::gc_process_relocs(
8715 Symbol_table* symtab,
8716 Layout* layout,
8717 Sized_relobj_file<size, big_endian>* object,
8718 unsigned int data_shndx,
8719 unsigned int sh_type,
8720 const unsigned char* prelocs,
8721 size_t reloc_count,
8722 Output_section* output_section,
8723 bool needs_special_offset_handling,
8724 size_t local_symbol_count,
8725 const unsigned char* plocal_symbols)
8726 {
8727 typedef Target_mips<size, big_endian> Mips;
8728
8729 if (sh_type == elfcpp::SHT_REL)
8730 {
8731 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8732 Classify_reloc;
8733
8734 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8735 symtab,
8736 layout,
8737 this,
8738 object,
8739 data_shndx,
8740 prelocs,
8741 reloc_count,
8742 output_section,
8743 needs_special_offset_handling,
8744 local_symbol_count,
8745 plocal_symbols);
8746 }
8747 else if (sh_type == elfcpp::SHT_RELA)
8748 {
8749 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8750 Classify_reloc;
8751
8752 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8753 symtab,
8754 layout,
8755 this,
8756 object,
8757 data_shndx,
8758 prelocs,
8759 reloc_count,
8760 output_section,
8761 needs_special_offset_handling,
8762 local_symbol_count,
8763 plocal_symbols);
8764 }
8765 else
8766 gold_unreachable();
8767 }
8768
8769 // Scan relocations for a section.
8770
8771 template<int size, bool big_endian>
8772 void
8773 Target_mips<size, big_endian>::scan_relocs(
8774 Symbol_table* symtab,
8775 Layout* layout,
8776 Sized_relobj_file<size, big_endian>* object,
8777 unsigned int data_shndx,
8778 unsigned int sh_type,
8779 const unsigned char* prelocs,
8780 size_t reloc_count,
8781 Output_section* output_section,
8782 bool needs_special_offset_handling,
8783 size_t local_symbol_count,
8784 const unsigned char* plocal_symbols)
8785 {
8786 typedef Target_mips<size, big_endian> Mips;
8787
8788 if (sh_type == elfcpp::SHT_REL)
8789 {
8790 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8791 Classify_reloc;
8792
8793 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8794 symtab,
8795 layout,
8796 this,
8797 object,
8798 data_shndx,
8799 prelocs,
8800 reloc_count,
8801 output_section,
8802 needs_special_offset_handling,
8803 local_symbol_count,
8804 plocal_symbols);
8805 }
8806 else if (sh_type == elfcpp::SHT_RELA)
8807 {
8808 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8809 Classify_reloc;
8810
8811 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8812 symtab,
8813 layout,
8814 this,
8815 object,
8816 data_shndx,
8817 prelocs,
8818 reloc_count,
8819 output_section,
8820 needs_special_offset_handling,
8821 local_symbol_count,
8822 plocal_symbols);
8823 }
8824 }
8825
8826 template<int size, bool big_endian>
8827 bool
8828 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8829 {
8830 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8831 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8832 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8833 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8834 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8835 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8836 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8837 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8838 }
8839
8840 // Return the MACH for a MIPS e_flags value.
8841 template<int size, bool big_endian>
8842 unsigned int
8843 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8844 {
8845 switch (flags & elfcpp::EF_MIPS_MACH)
8846 {
8847 case elfcpp::E_MIPS_MACH_3900:
8848 return mach_mips3900;
8849
8850 case elfcpp::E_MIPS_MACH_4010:
8851 return mach_mips4010;
8852
8853 case elfcpp::E_MIPS_MACH_4100:
8854 return mach_mips4100;
8855
8856 case elfcpp::E_MIPS_MACH_4111:
8857 return mach_mips4111;
8858
8859 case elfcpp::E_MIPS_MACH_4120:
8860 return mach_mips4120;
8861
8862 case elfcpp::E_MIPS_MACH_4650:
8863 return mach_mips4650;
8864
8865 case elfcpp::E_MIPS_MACH_5400:
8866 return mach_mips5400;
8867
8868 case elfcpp::E_MIPS_MACH_5500:
8869 return mach_mips5500;
8870
8871 case elfcpp::E_MIPS_MACH_5900:
8872 return mach_mips5900;
8873
8874 case elfcpp::E_MIPS_MACH_9000:
8875 return mach_mips9000;
8876
8877 case elfcpp::E_MIPS_MACH_SB1:
8878 return mach_mips_sb1;
8879
8880 case elfcpp::E_MIPS_MACH_LS2E:
8881 return mach_mips_loongson_2e;
8882
8883 case elfcpp::E_MIPS_MACH_LS2F:
8884 return mach_mips_loongson_2f;
8885
8886 case elfcpp::E_MIPS_MACH_LS3A:
8887 return mach_mips_loongson_3a;
8888
8889 case elfcpp::E_MIPS_MACH_OCTEON3:
8890 return mach_mips_octeon3;
8891
8892 case elfcpp::E_MIPS_MACH_OCTEON2:
8893 return mach_mips_octeon2;
8894
8895 case elfcpp::E_MIPS_MACH_OCTEON:
8896 return mach_mips_octeon;
8897
8898 case elfcpp::E_MIPS_MACH_XLR:
8899 return mach_mips_xlr;
8900
8901 default:
8902 switch (flags & elfcpp::EF_MIPS_ARCH)
8903 {
8904 default:
8905 case elfcpp::E_MIPS_ARCH_1:
8906 return mach_mips3000;
8907
8908 case elfcpp::E_MIPS_ARCH_2:
8909 return mach_mips6000;
8910
8911 case elfcpp::E_MIPS_ARCH_3:
8912 return mach_mips4000;
8913
8914 case elfcpp::E_MIPS_ARCH_4:
8915 return mach_mips8000;
8916
8917 case elfcpp::E_MIPS_ARCH_5:
8918 return mach_mips5;
8919
8920 case elfcpp::E_MIPS_ARCH_32:
8921 return mach_mipsisa32;
8922
8923 case elfcpp::E_MIPS_ARCH_64:
8924 return mach_mipsisa64;
8925
8926 case elfcpp::E_MIPS_ARCH_32R2:
8927 return mach_mipsisa32r2;
8928
8929 case elfcpp::E_MIPS_ARCH_32R6:
8930 return mach_mipsisa32r6;
8931
8932 case elfcpp::E_MIPS_ARCH_64R2:
8933 return mach_mipsisa64r2;
8934
8935 case elfcpp::E_MIPS_ARCH_64R6:
8936 return mach_mipsisa64r6;
8937 }
8938 }
8939
8940 return 0;
8941 }
8942
8943 // Return the MACH for each .MIPS.abiflags ISA Extension.
8944
8945 template<int size, bool big_endian>
8946 unsigned int
8947 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8948 {
8949 switch (isa_ext)
8950 {
8951 case elfcpp::AFL_EXT_3900:
8952 return mach_mips3900;
8953
8954 case elfcpp::AFL_EXT_4010:
8955 return mach_mips4010;
8956
8957 case elfcpp::AFL_EXT_4100:
8958 return mach_mips4100;
8959
8960 case elfcpp::AFL_EXT_4111:
8961 return mach_mips4111;
8962
8963 case elfcpp::AFL_EXT_4120:
8964 return mach_mips4120;
8965
8966 case elfcpp::AFL_EXT_4650:
8967 return mach_mips4650;
8968
8969 case elfcpp::AFL_EXT_5400:
8970 return mach_mips5400;
8971
8972 case elfcpp::AFL_EXT_5500:
8973 return mach_mips5500;
8974
8975 case elfcpp::AFL_EXT_5900:
8976 return mach_mips5900;
8977
8978 case elfcpp::AFL_EXT_10000:
8979 return mach_mips10000;
8980
8981 case elfcpp::AFL_EXT_LOONGSON_2E:
8982 return mach_mips_loongson_2e;
8983
8984 case elfcpp::AFL_EXT_LOONGSON_2F:
8985 return mach_mips_loongson_2f;
8986
8987 case elfcpp::AFL_EXT_LOONGSON_3A:
8988 return mach_mips_loongson_3a;
8989
8990 case elfcpp::AFL_EXT_SB1:
8991 return mach_mips_sb1;
8992
8993 case elfcpp::AFL_EXT_OCTEON:
8994 return mach_mips_octeon;
8995
8996 case elfcpp::AFL_EXT_OCTEONP:
8997 return mach_mips_octeonp;
8998
8999 case elfcpp::AFL_EXT_OCTEON2:
9000 return mach_mips_octeon2;
9001
9002 case elfcpp::AFL_EXT_XLR:
9003 return mach_mips_xlr;
9004
9005 default:
9006 return mach_mips3000;
9007 }
9008 }
9009
9010 // Return the .MIPS.abiflags value representing each ISA Extension.
9011
9012 template<int size, bool big_endian>
9013 unsigned int
9014 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
9015 {
9016 switch (mips_mach)
9017 {
9018 case mach_mips3900:
9019 return elfcpp::AFL_EXT_3900;
9020
9021 case mach_mips4010:
9022 return elfcpp::AFL_EXT_4010;
9023
9024 case mach_mips4100:
9025 return elfcpp::AFL_EXT_4100;
9026
9027 case mach_mips4111:
9028 return elfcpp::AFL_EXT_4111;
9029
9030 case mach_mips4120:
9031 return elfcpp::AFL_EXT_4120;
9032
9033 case mach_mips4650:
9034 return elfcpp::AFL_EXT_4650;
9035
9036 case mach_mips5400:
9037 return elfcpp::AFL_EXT_5400;
9038
9039 case mach_mips5500:
9040 return elfcpp::AFL_EXT_5500;
9041
9042 case mach_mips5900:
9043 return elfcpp::AFL_EXT_5900;
9044
9045 case mach_mips10000:
9046 return elfcpp::AFL_EXT_10000;
9047
9048 case mach_mips_loongson_2e:
9049 return elfcpp::AFL_EXT_LOONGSON_2E;
9050
9051 case mach_mips_loongson_2f:
9052 return elfcpp::AFL_EXT_LOONGSON_2F;
9053
9054 case mach_mips_loongson_3a:
9055 return elfcpp::AFL_EXT_LOONGSON_3A;
9056
9057 case mach_mips_sb1:
9058 return elfcpp::AFL_EXT_SB1;
9059
9060 case mach_mips_octeon:
9061 return elfcpp::AFL_EXT_OCTEON;
9062
9063 case mach_mips_octeonp:
9064 return elfcpp::AFL_EXT_OCTEONP;
9065
9066 case mach_mips_octeon3:
9067 return elfcpp::AFL_EXT_OCTEON3;
9068
9069 case mach_mips_octeon2:
9070 return elfcpp::AFL_EXT_OCTEON2;
9071
9072 case mach_mips_xlr:
9073 return elfcpp::AFL_EXT_XLR;
9074
9075 default:
9076 return 0;
9077 }
9078 }
9079
9080 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9081
9082 template<int size, bool big_endian>
9083 void
9084 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
9085 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
9086 {
9087 int new_isa = 0;
9088 switch (e_flags & elfcpp::EF_MIPS_ARCH)
9089 {
9090 case elfcpp::E_MIPS_ARCH_1:
9091 new_isa = this->level_rev(1, 0);
9092 break;
9093 case elfcpp::E_MIPS_ARCH_2:
9094 new_isa = this->level_rev(2, 0);
9095 break;
9096 case elfcpp::E_MIPS_ARCH_3:
9097 new_isa = this->level_rev(3, 0);
9098 break;
9099 case elfcpp::E_MIPS_ARCH_4:
9100 new_isa = this->level_rev(4, 0);
9101 break;
9102 case elfcpp::E_MIPS_ARCH_5:
9103 new_isa = this->level_rev(5, 0);
9104 break;
9105 case elfcpp::E_MIPS_ARCH_32:
9106 new_isa = this->level_rev(32, 1);
9107 break;
9108 case elfcpp::E_MIPS_ARCH_32R2:
9109 new_isa = this->level_rev(32, 2);
9110 break;
9111 case elfcpp::E_MIPS_ARCH_32R6:
9112 new_isa = this->level_rev(32, 6);
9113 break;
9114 case elfcpp::E_MIPS_ARCH_64:
9115 new_isa = this->level_rev(64, 1);
9116 break;
9117 case elfcpp::E_MIPS_ARCH_64R2:
9118 new_isa = this->level_rev(64, 2);
9119 break;
9120 case elfcpp::E_MIPS_ARCH_64R6:
9121 new_isa = this->level_rev(64, 6);
9122 break;
9123 default:
9124 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9125 this->elf_mips_mach_name(e_flags));
9126 }
9127
9128 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9129 {
9130 // Decode a single value into level and revision.
9131 abiflags->isa_level = new_isa >> 3;
9132 abiflags->isa_rev = new_isa & 0x7;
9133 }
9134
9135 // Update the isa_ext if needed.
9136 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9137 this->elf_mips_mach(e_flags)))
9138 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9139 }
9140
9141 // Infer the content of the ABI flags based on the elf header.
9142
9143 template<int size, bool big_endian>
9144 void
9145 Target_mips<size, big_endian>::infer_abiflags(
9146 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9147 {
9148 const Attributes_section_data* pasd = relobj->attributes_section_data();
9149 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9150 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9151
9152 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9153 if (pasd != NULL)
9154 {
9155 // Read fp_abi from the .gnu.attribute section.
9156 const Object_attribute* attr =
9157 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9158 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9159 }
9160
9161 abiflags->fp_abi = attr_fp_abi;
9162 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9163 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9164 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9165 : elfcpp::AFL_REG_64;
9166
9167 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9168 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9169 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9170 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9171 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9172 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9173 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9174 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9175 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9176
9177 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9178 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9179 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9180 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9181 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9182 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9183
9184 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9185 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9186 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9187 && abiflags->isa_level >= 32
9188 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9189 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9190 }
9191
9192 // Create abiflags from elf header or from .MIPS.abiflags section.
9193
9194 template<int size, bool big_endian>
9195 void
9196 Target_mips<size, big_endian>::create_abiflags(
9197 Mips_relobj<size, big_endian>* relobj,
9198 Mips_abiflags<big_endian>* abiflags)
9199 {
9200 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9201 Mips_abiflags<big_endian> header_abiflags;
9202
9203 this->infer_abiflags(relobj, &header_abiflags);
9204
9205 if (sec_abiflags == NULL)
9206 {
9207 // If there is no input .MIPS.abiflags section, use abiflags created
9208 // from elf header.
9209 *abiflags = header_abiflags;
9210 return;
9211 }
9212
9213 this->has_abiflags_section_ = true;
9214
9215 // It is not possible to infer the correct ISA revision for R3 or R5
9216 // so drop down to R2 for the checks.
9217 unsigned char isa_rev = sec_abiflags->isa_rev;
9218 if (isa_rev == 3 || isa_rev == 5)
9219 isa_rev = 2;
9220
9221 // Check compatibility between abiflags created from elf header
9222 // and abiflags from .MIPS.abiflags section in this object file.
9223 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9224 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9225 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9226 relobj->name().c_str());
9227 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9228 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9229 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9230 ".MIPS.abiflags"), relobj->name().c_str());
9231 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9232 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9233 relobj->name().c_str());
9234 // The isa_ext is allowed to be an extension of what can be inferred
9235 // from e_flags.
9236 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9237 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9238 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9239 ".MIPS.abiflags"), relobj->name().c_str());
9240 if (sec_abiflags->flags2 != 0)
9241 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9242 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9243 sec_abiflags->flags2);
9244 // Use abiflags from .MIPS.abiflags section.
9245 *abiflags = *sec_abiflags;
9246 }
9247
9248 // Return the meaning of fp_abi, or "unknown" if not known.
9249
9250 template<int size, bool big_endian>
9251 const char*
9252 Target_mips<size, big_endian>::fp_abi_string(int fp)
9253 {
9254 switch (fp)
9255 {
9256 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9257 return "-mdouble-float";
9258 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9259 return "-msingle-float";
9260 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9261 return "-msoft-float";
9262 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9263 return _("-mips32r2 -mfp64 (12 callee-saved)");
9264 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9265 return "-mfpxx";
9266 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9267 return "-mgp32 -mfp64";
9268 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9269 return "-mgp32 -mfp64 -mno-odd-spreg";
9270 default:
9271 return "unknown";
9272 }
9273 }
9274
9275 // Select fp_abi.
9276
9277 template<int size, bool big_endian>
9278 int
9279 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9280 int out_fp)
9281 {
9282 if (in_fp == out_fp)
9283 return out_fp;
9284
9285 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9286 return in_fp;
9287 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9288 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9289 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9290 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9291 return in_fp;
9292 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9293 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9294 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9295 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9296 return out_fp; // Keep the current setting.
9297 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9298 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9299 return in_fp;
9300 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9301 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9302 return out_fp; // Keep the current setting.
9303 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9304 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9305 fp_abi_string(in_fp), fp_abi_string(out_fp));
9306 return out_fp;
9307 }
9308
9309 // Merge attributes from input object.
9310
9311 template<int size, bool big_endian>
9312 void
9313 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9314 const Attributes_section_data* pasd)
9315 {
9316 // Return if there is no attributes section data.
9317 if (pasd == NULL)
9318 return;
9319
9320 // If output has no object attributes, just copy.
9321 if (this->attributes_section_data_ == NULL)
9322 {
9323 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9324 return;
9325 }
9326
9327 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9328 Object_attribute::OBJ_ATTR_GNU);
9329
9330 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9331 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9332
9333 // Merge Tag_compatibility attributes and any common GNU ones.
9334 this->attributes_section_data_->merge(name.c_str(), pasd);
9335 }
9336
9337 // Merge abiflags from input object.
9338
9339 template<int size, bool big_endian>
9340 void
9341 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9342 Mips_abiflags<big_endian>* in_abiflags)
9343 {
9344 // If output has no abiflags, just copy.
9345 if (this->abiflags_ == NULL)
9346 {
9347 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9348 return;
9349 }
9350
9351 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9352 this->abiflags_->fp_abi);
9353
9354 // Merge abiflags.
9355 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9356 in_abiflags->isa_level);
9357 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9358 in_abiflags->isa_rev);
9359 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9360 in_abiflags->gpr_size);
9361 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9362 in_abiflags->cpr1_size);
9363 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9364 in_abiflags->cpr2_size);
9365 this->abiflags_->ases |= in_abiflags->ases;
9366 this->abiflags_->flags1 |= in_abiflags->flags1;
9367 }
9368
9369 // Check whether machine EXTENSION is an extension of machine BASE.
9370 template<int size, bool big_endian>
9371 bool
9372 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9373 unsigned int extension)
9374 {
9375 if (extension == base)
9376 return true;
9377
9378 if ((base == mach_mipsisa32)
9379 && this->mips_mach_extends(mach_mipsisa64, extension))
9380 return true;
9381
9382 if ((base == mach_mipsisa32r2)
9383 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9384 return true;
9385
9386 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9387 if (extension == this->mips_mach_extensions_[i].first)
9388 {
9389 extension = this->mips_mach_extensions_[i].second;
9390 if (extension == base)
9391 return true;
9392 }
9393
9394 return false;
9395 }
9396
9397 // Merge file header flags from input object.
9398
9399 template<int size, bool big_endian>
9400 void
9401 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9402 elfcpp::Elf_Word in_flags)
9403 {
9404 // If flags are not set yet, just copy them.
9405 if (!this->are_processor_specific_flags_set())
9406 {
9407 this->set_processor_specific_flags(in_flags);
9408 this->mach_ = this->elf_mips_mach(in_flags);
9409 return;
9410 }
9411
9412 elfcpp::Elf_Word new_flags = in_flags;
9413 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9414 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9415 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9416
9417 // Check flag compatibility.
9418 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9419 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9420
9421 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9422 // doesn't seem to matter.
9423 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9424 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9425
9426 // MIPSpro generates ucode info in n64 objects. Again, we should
9427 // just be able to ignore this.
9428 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9429 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9430
9431 if (new_flags == old_flags)
9432 {
9433 this->set_processor_specific_flags(merged_flags);
9434 return;
9435 }
9436
9437 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9438 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9439 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9440 name.c_str());
9441
9442 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9443 merged_flags |= elfcpp::EF_MIPS_CPIC;
9444 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9445 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9446
9447 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9448 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9449
9450 // Compare the ISAs.
9451 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9452 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9453 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9454 {
9455 // Output ISA isn't the same as, or an extension of, input ISA.
9456 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9457 {
9458 // Copy the architecture info from input object to output. Also copy
9459 // the 32-bit flag (if set) so that we continue to recognise
9460 // output as a 32-bit binary.
9461 this->mach_ = this->elf_mips_mach(in_flags);
9462 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9463 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9464 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9465
9466 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9467 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9468
9469 // Copy across the ABI flags if output doesn't use them
9470 // and if that was what caused us to treat input object as 32-bit.
9471 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9472 && this->mips_32bit_flags(new_flags)
9473 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9474 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9475 }
9476 else
9477 // The ISAs aren't compatible.
9478 gold_error(_("%s: linking %s module with previous %s modules"),
9479 name.c_str(), this->elf_mips_mach_name(in_flags),
9480 this->elf_mips_mach_name(merged_flags));
9481 }
9482
9483 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9484 | elfcpp::EF_MIPS_32BITMODE));
9485 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9486 | elfcpp::EF_MIPS_32BITMODE));
9487
9488 // Compare ABIs.
9489 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9490 {
9491 // Only error if both are set (to different values).
9492 if ((new_flags & elfcpp::EF_MIPS_ABI)
9493 && (old_flags & elfcpp::EF_MIPS_ABI))
9494 gold_error(_("%s: ABI mismatch: linking %s module with "
9495 "previous %s modules"), name.c_str(),
9496 this->elf_mips_abi_name(in_flags),
9497 this->elf_mips_abi_name(merged_flags));
9498
9499 new_flags &= ~elfcpp::EF_MIPS_ABI;
9500 old_flags &= ~elfcpp::EF_MIPS_ABI;
9501 }
9502
9503 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9504 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9505 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9506 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9507 {
9508 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9509 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9510 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9511 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9512 int micro_mis = old_m16 && new_micro;
9513 int m16_mis = old_micro && new_m16;
9514
9515 if (m16_mis || micro_mis)
9516 gold_error(_("%s: ASE mismatch: linking %s module with "
9517 "previous %s modules"), name.c_str(),
9518 m16_mis ? "MIPS16" : "microMIPS",
9519 m16_mis ? "microMIPS" : "MIPS16");
9520
9521 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9522
9523 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9524 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9525 }
9526
9527 // Compare NaN encodings.
9528 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9529 {
9530 gold_error(_("%s: linking %s module with previous %s modules"),
9531 name.c_str(),
9532 (new_flags & elfcpp::EF_MIPS_NAN2008
9533 ? "-mnan=2008" : "-mnan=legacy"),
9534 (old_flags & elfcpp::EF_MIPS_NAN2008
9535 ? "-mnan=2008" : "-mnan=legacy"));
9536
9537 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9538 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9539 }
9540
9541 // Compare FP64 state.
9542 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9543 {
9544 gold_error(_("%s: linking %s module with previous %s modules"),
9545 name.c_str(),
9546 (new_flags & elfcpp::EF_MIPS_FP64
9547 ? "-mfp64" : "-mfp32"),
9548 (old_flags & elfcpp::EF_MIPS_FP64
9549 ? "-mfp64" : "-mfp32"));
9550
9551 new_flags &= ~elfcpp::EF_MIPS_FP64;
9552 old_flags &= ~elfcpp::EF_MIPS_FP64;
9553 }
9554
9555 // Warn about any other mismatches.
9556 if (new_flags != old_flags)
9557 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9558 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9559
9560 this->set_processor_specific_flags(merged_flags);
9561 }
9562
9563 // Adjust ELF file header.
9564
9565 template<int size, bool big_endian>
9566 void
9567 Target_mips<size, big_endian>::do_adjust_elf_header(
9568 unsigned char* view,
9569 int len)
9570 {
9571 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9572
9573 elfcpp::Ehdr<size, big_endian> ehdr(view);
9574 unsigned char e_ident[elfcpp::EI_NIDENT];
9575 elfcpp::Elf_Word flags = this->processor_specific_flags();
9576 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9577
9578 unsigned char ei_abiversion = 0;
9579 elfcpp::Elf_Half type = ehdr.get_e_type();
9580 if (type == elfcpp::ET_EXEC
9581 && parameters->options().copyreloc()
9582 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9583 == elfcpp::EF_MIPS_CPIC)
9584 ei_abiversion = 1;
9585
9586 if (this->abiflags_ != NULL
9587 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9588 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9589 ei_abiversion = 3;
9590
9591 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9592 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9593 oehdr.put_e_ident(e_ident);
9594
9595 if (this->entry_symbol_is_compressed_)
9596 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9597 }
9598
9599 // do_make_elf_object to override the same function in the base class.
9600 // We need to use a target-specific sub-class of
9601 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9602 // Hence we need to have our own ELF object creation.
9603
9604 template<int size, bool big_endian>
9605 Object*
9606 Target_mips<size, big_endian>::do_make_elf_object(
9607 const std::string& name,
9608 Input_file* input_file,
9609 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9610 {
9611 int et = ehdr.get_e_type();
9612 // ET_EXEC files are valid input for --just-symbols/-R,
9613 // and we treat them as relocatable objects.
9614 if (et == elfcpp::ET_REL
9615 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9616 {
9617 Mips_relobj<size, big_endian>* obj =
9618 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9619 obj->setup();
9620 return obj;
9621 }
9622 else if (et == elfcpp::ET_DYN)
9623 {
9624 // TODO(sasa): Should we create Mips_dynobj?
9625 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9626 }
9627 else
9628 {
9629 gold_error(_("%s: unsupported ELF file type %d"),
9630 name.c_str(), et);
9631 return NULL;
9632 }
9633 }
9634
9635 // Finalize the sections.
9636
9637 template <int size, bool big_endian>
9638 void
9639 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9640 const Input_objects* input_objects,
9641 Symbol_table* symtab)
9642 {
9643 const bool relocatable = parameters->options().relocatable();
9644
9645 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9646 // DT_FINI have correct values.
9647 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9648 symtab->lookup(parameters->options().init()));
9649 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9650 init->set_value(init->value() | 1);
9651 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9652 symtab->lookup(parameters->options().fini()));
9653 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9654 fini->set_value(fini->value() | 1);
9655
9656 // Check whether the entry symbol is mips16 or micromips. This is needed to
9657 // adjust entry address in ELF header.
9658 Mips_symbol<size>* entry =
9659 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9660 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9661 || entry->is_micromips()));
9662
9663 if (!parameters->doing_static_link()
9664 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9665 || strcmp(parameters->options().hash_style(), "both") == 0))
9666 {
9667 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9668 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9669 // MIPS ABI requires a mapping between the GOT and the symbol table.
9670 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9671 }
9672
9673 // Check whether the final section that was scanned has HI16 or GOT16
9674 // relocations without the corresponding LO16 part.
9675 if (this->got16_addends_.size() > 0)
9676 gold_error("Can't find matching LO16 reloc");
9677
9678 Valtype gprmask = 0;
9679 Valtype cprmask1 = 0;
9680 Valtype cprmask2 = 0;
9681 Valtype cprmask3 = 0;
9682 Valtype cprmask4 = 0;
9683 bool has_reginfo_section = false;
9684
9685 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9686 p != input_objects->relobj_end();
9687 ++p)
9688 {
9689 Mips_relobj<size, big_endian>* relobj =
9690 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9691
9692 // Check for any mips16 stub sections that we can discard.
9693 if (!relocatable)
9694 relobj->discard_mips16_stub_sections(symtab);
9695
9696 if (!relobj->merge_processor_specific_data())
9697 continue;
9698
9699 // Merge .reginfo contents of input objects.
9700 if (relobj->has_reginfo_section())
9701 {
9702 has_reginfo_section = true;
9703 gprmask |= relobj->gprmask();
9704 cprmask1 |= relobj->cprmask1();
9705 cprmask2 |= relobj->cprmask2();
9706 cprmask3 |= relobj->cprmask3();
9707 cprmask4 |= relobj->cprmask4();
9708 }
9709
9710 // Merge processor specific flags.
9711 Mips_abiflags<big_endian> in_abiflags;
9712
9713 this->create_abiflags(relobj, &in_abiflags);
9714 this->merge_obj_e_flags(relobj->name(),
9715 relobj->processor_specific_flags());
9716 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9717 this->merge_obj_attributes(relobj->name(),
9718 relobj->attributes_section_data());
9719 }
9720
9721 // Create a .gnu.attributes section if we have merged any attributes
9722 // from inputs.
9723 if (this->attributes_section_data_ != NULL)
9724 {
9725 Output_attributes_section_data* attributes_section =
9726 new Output_attributes_section_data(*this->attributes_section_data_);
9727 layout->add_output_section_data(".gnu.attributes",
9728 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9729 attributes_section, ORDER_INVALID, false);
9730 }
9731
9732 // Create .MIPS.abiflags output section if there is an input section.
9733 if (this->has_abiflags_section_)
9734 {
9735 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9736 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9737
9738 Output_section* os =
9739 layout->add_output_section_data(".MIPS.abiflags",
9740 elfcpp::SHT_MIPS_ABIFLAGS,
9741 elfcpp::SHF_ALLOC,
9742 abiflags_section, ORDER_INVALID, false);
9743
9744 if (!relocatable && os != NULL)
9745 {
9746 Output_segment* abiflags_segment =
9747 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9748 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9749 }
9750 }
9751
9752 if (has_reginfo_section && !parameters->options().gc_sections())
9753 {
9754 // Create .reginfo output section.
9755 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9756 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9757 cprmask1, cprmask2,
9758 cprmask3, cprmask4);
9759
9760 Output_section* os =
9761 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9762 elfcpp::SHF_ALLOC, reginfo_section,
9763 ORDER_INVALID, false);
9764
9765 if (!relocatable && os != NULL)
9766 {
9767 Output_segment* reginfo_segment =
9768 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9769 elfcpp::PF_R);
9770 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9771 }
9772 }
9773
9774 if (this->plt_ != NULL)
9775 {
9776 // Set final PLT offsets for symbols.
9777 this->plt_section()->set_plt_offsets();
9778
9779 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9780 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9781 // there are no standard PLT entries present.
9782 unsigned char nonvis = 0;
9783 if (this->is_output_micromips()
9784 && !this->plt_section()->has_standard_entries())
9785 nonvis = elfcpp::STO_MICROMIPS >> 2;
9786 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9787 Symbol_table::PREDEFINED,
9788 this->plt_,
9789 0, 0, elfcpp::STT_FUNC,
9790 elfcpp::STB_LOCAL,
9791 elfcpp::STV_DEFAULT, nonvis,
9792 false, false);
9793 }
9794
9795 if (this->mips_stubs_ != NULL)
9796 {
9797 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9798 unsigned char nonvis = 0;
9799 if (this->is_output_micromips())
9800 nonvis = elfcpp::STO_MICROMIPS >> 2;
9801 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9802 Symbol_table::PREDEFINED,
9803 this->mips_stubs_,
9804 0, 0, elfcpp::STT_FUNC,
9805 elfcpp::STB_LOCAL,
9806 elfcpp::STV_DEFAULT, nonvis,
9807 false, false);
9808 }
9809
9810 if (!relocatable && !parameters->doing_static_link())
9811 // In case there is no .got section, create one.
9812 this->got_section(symtab, layout);
9813
9814 // Emit any relocs we saved in an attempt to avoid generating COPY
9815 // relocs.
9816 if (this->copy_relocs_.any_saved_relocs())
9817 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9818 this);
9819
9820 // Set _gp value.
9821 this->set_gp(layout, symtab);
9822
9823 // Emit dynamic relocs.
9824 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9825 p != this->dyn_relocs_.end();
9826 ++p)
9827 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9828
9829 if (this->has_got_section())
9830 this->got_section()->lay_out_got(layout, symtab, input_objects);
9831
9832 if (this->mips_stubs_ != NULL)
9833 this->mips_stubs_->set_needs_dynsym_value();
9834
9835 // Check for functions that might need $25 to be valid on entry.
9836 // TODO(sasa): Can we do this without iterating over all symbols?
9837 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9838 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9839 symtab));
9840
9841 // Add NULL segment.
9842 if (!relocatable)
9843 layout->make_output_segment(elfcpp::PT_NULL, 0);
9844
9845 // Fill in some more dynamic tags.
9846 // TODO(sasa): Add more dynamic tags.
9847 const Reloc_section* rel_plt = (this->plt_ == NULL
9848 ? NULL : this->plt_->rel_plt());
9849 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9850 this->rel_dyn_, true, false);
9851
9852 Output_data_dynamic* const odyn = layout->dynamic_data();
9853 if (odyn != NULL
9854 && !relocatable
9855 && !parameters->doing_static_link())
9856 {
9857 unsigned int d_val;
9858 // This element holds a 32-bit version id for the Runtime
9859 // Linker Interface. This will start at integer value 1.
9860 d_val = 0x01;
9861 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9862
9863 // Dynamic flags
9864 d_val = elfcpp::RHF_NOTPOT;
9865 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9866
9867 // Save layout for using when emitting custom dynamic tags.
9868 this->layout_ = layout;
9869
9870 // This member holds the base address of the segment.
9871 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9872
9873 // This member holds the number of entries in the .dynsym section.
9874 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9875
9876 // This member holds the index of the first dynamic symbol
9877 // table entry that corresponds to an entry in the global offset table.
9878 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9879
9880 // This member holds the number of local GOT entries.
9881 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9882 this->got_->get_local_gotno());
9883
9884 if (this->plt_ != NULL)
9885 // DT_MIPS_PLTGOT dynamic tag
9886 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9887
9888 if (!parameters->options().shared())
9889 {
9890 this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9891
9892 layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9893 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9894 this->rld_map_, ORDER_INVALID, false);
9895
9896 // __RLD_MAP will be filled in by the runtime loader to contain
9897 // a pointer to the _r_debug structure.
9898 Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9899 Symbol_table::PREDEFINED,
9900 this->rld_map_,
9901 0, 0, elfcpp::STT_OBJECT,
9902 elfcpp::STB_GLOBAL,
9903 elfcpp::STV_DEFAULT, 0,
9904 false, false);
9905
9906 if (!rld_map->is_forced_local())
9907 rld_map->set_needs_dynsym_entry();
9908
9909 if (!parameters->options().pie())
9910 // This member holds the absolute address of the debug pointer.
9911 odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9912 else
9913 // This member holds the offset to the debug pointer,
9914 // relative to the address of the tag.
9915 odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9916 }
9917 }
9918 }
9919
9920 // Get the custom dynamic tag value.
9921 template<int size, bool big_endian>
9922 unsigned int
9923 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9924 {
9925 switch (tag)
9926 {
9927 case elfcpp::DT_MIPS_BASE_ADDRESS:
9928 {
9929 // The base address of the segment.
9930 // At this point, the segment list has been sorted into final order,
9931 // so just return vaddr of the first readable PT_LOAD segment.
9932 Output_segment* seg =
9933 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9934 gold_assert(seg != NULL);
9935 return seg->vaddr();
9936 }
9937
9938 case elfcpp::DT_MIPS_SYMTABNO:
9939 // The number of entries in the .dynsym section.
9940 return this->get_dt_mips_symtabno();
9941
9942 case elfcpp::DT_MIPS_GOTSYM:
9943 {
9944 // The index of the first dynamic symbol table entry that corresponds
9945 // to an entry in the GOT.
9946 if (this->got_->first_global_got_dynsym_index() != -1U)
9947 return this->got_->first_global_got_dynsym_index();
9948 else
9949 // In case if we don't have global GOT symbols we default to setting
9950 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9951 return this->get_dt_mips_symtabno();
9952 }
9953
9954 case elfcpp::DT_MIPS_RLD_MAP_REL:
9955 {
9956 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9957 // relative to the address of the tag.
9958 Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9959 unsigned int entry_offset =
9960 odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9961 gold_assert(entry_offset != -1U);
9962 return this->rld_map_->address() - (odyn->address() + entry_offset);
9963 }
9964 default:
9965 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9966 }
9967
9968 return (unsigned int)-1;
9969 }
9970
9971 // Relocate section data.
9972
9973 template<int size, bool big_endian>
9974 void
9975 Target_mips<size, big_endian>::relocate_section(
9976 const Relocate_info<size, big_endian>* relinfo,
9977 unsigned int sh_type,
9978 const unsigned char* prelocs,
9979 size_t reloc_count,
9980 Output_section* output_section,
9981 bool needs_special_offset_handling,
9982 unsigned char* view,
9983 Mips_address address,
9984 section_size_type view_size,
9985 const Reloc_symbol_changes* reloc_symbol_changes)
9986 {
9987 typedef Target_mips<size, big_endian> Mips;
9988 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9989
9990 if (sh_type == elfcpp::SHT_REL)
9991 {
9992 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9993 Classify_reloc;
9994
9995 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9996 gold::Default_comdat_behavior, Classify_reloc>(
9997 relinfo,
9998 this,
9999 prelocs,
10000 reloc_count,
10001 output_section,
10002 needs_special_offset_handling,
10003 view,
10004 address,
10005 view_size,
10006 reloc_symbol_changes);
10007 }
10008 else if (sh_type == elfcpp::SHT_RELA)
10009 {
10010 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10011 Classify_reloc;
10012
10013 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
10014 gold::Default_comdat_behavior, Classify_reloc>(
10015 relinfo,
10016 this,
10017 prelocs,
10018 reloc_count,
10019 output_section,
10020 needs_special_offset_handling,
10021 view,
10022 address,
10023 view_size,
10024 reloc_symbol_changes);
10025 }
10026 }
10027
10028 // Return the size of a relocation while scanning during a relocatable
10029 // link.
10030
10031 unsigned int
10032 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
10033 {
10034 switch (r_type)
10035 {
10036 case elfcpp::R_MIPS_NONE:
10037 case elfcpp::R_MIPS_TLS_DTPMOD64:
10038 case elfcpp::R_MIPS_TLS_DTPREL64:
10039 case elfcpp::R_MIPS_TLS_TPREL64:
10040 return 0;
10041
10042 case elfcpp::R_MIPS_32:
10043 case elfcpp::R_MIPS_TLS_DTPMOD32:
10044 case elfcpp::R_MIPS_TLS_DTPREL32:
10045 case elfcpp::R_MIPS_TLS_TPREL32:
10046 case elfcpp::R_MIPS_REL32:
10047 case elfcpp::R_MIPS_PC32:
10048 case elfcpp::R_MIPS_GPREL32:
10049 case elfcpp::R_MIPS_JALR:
10050 case elfcpp::R_MIPS_EH:
10051 return 4;
10052
10053 case elfcpp::R_MIPS_16:
10054 case elfcpp::R_MIPS_HI16:
10055 case elfcpp::R_MIPS_LO16:
10056 case elfcpp::R_MIPS_HIGHER:
10057 case elfcpp::R_MIPS_HIGHEST:
10058 case elfcpp::R_MIPS_GPREL16:
10059 case elfcpp::R_MIPS16_HI16:
10060 case elfcpp::R_MIPS16_LO16:
10061 case elfcpp::R_MIPS_PC16:
10062 case elfcpp::R_MIPS_PCHI16:
10063 case elfcpp::R_MIPS_PCLO16:
10064 case elfcpp::R_MIPS_GOT16:
10065 case elfcpp::R_MIPS16_GOT16:
10066 case elfcpp::R_MIPS_CALL16:
10067 case elfcpp::R_MIPS16_CALL16:
10068 case elfcpp::R_MIPS_GOT_HI16:
10069 case elfcpp::R_MIPS_CALL_HI16:
10070 case elfcpp::R_MIPS_GOT_LO16:
10071 case elfcpp::R_MIPS_CALL_LO16:
10072 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10073 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10074 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10075 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10076 case elfcpp::R_MIPS16_GPREL:
10077 case elfcpp::R_MIPS_GOT_DISP:
10078 case elfcpp::R_MIPS_LITERAL:
10079 case elfcpp::R_MIPS_GOT_PAGE:
10080 case elfcpp::R_MIPS_GOT_OFST:
10081 case elfcpp::R_MIPS_TLS_GD:
10082 case elfcpp::R_MIPS_TLS_LDM:
10083 case elfcpp::R_MIPS_TLS_GOTTPREL:
10084 return 2;
10085
10086 // These relocations are not byte sized
10087 case elfcpp::R_MIPS_26:
10088 case elfcpp::R_MIPS16_26:
10089 case elfcpp::R_MIPS_PC21_S2:
10090 case elfcpp::R_MIPS_PC26_S2:
10091 case elfcpp::R_MIPS_PC18_S3:
10092 case elfcpp::R_MIPS_PC19_S2:
10093 return 4;
10094
10095 case elfcpp::R_MIPS_COPY:
10096 case elfcpp::R_MIPS_JUMP_SLOT:
10097 object->error(_("unexpected reloc %u in object file"), r_type);
10098 return 0;
10099
10100 default:
10101 object->error(_("unsupported reloc %u in object file"), r_type);
10102 return 0;
10103 }
10104 }
10105
10106 // Scan the relocs during a relocatable link.
10107
10108 template<int size, bool big_endian>
10109 void
10110 Target_mips<size, big_endian>::scan_relocatable_relocs(
10111 Symbol_table* symtab,
10112 Layout* layout,
10113 Sized_relobj_file<size, big_endian>* object,
10114 unsigned int data_shndx,
10115 unsigned int sh_type,
10116 const unsigned char* prelocs,
10117 size_t reloc_count,
10118 Output_section* output_section,
10119 bool needs_special_offset_handling,
10120 size_t local_symbol_count,
10121 const unsigned char* plocal_symbols,
10122 Relocatable_relocs* rr)
10123 {
10124 if (sh_type == elfcpp::SHT_REL)
10125 {
10126 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10127 Classify_reloc;
10128 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10129 Scan_relocatable_relocs;
10130
10131 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10132 symtab,
10133 layout,
10134 object,
10135 data_shndx,
10136 prelocs,
10137 reloc_count,
10138 output_section,
10139 needs_special_offset_handling,
10140 local_symbol_count,
10141 plocal_symbols,
10142 rr);
10143 }
10144 else if (sh_type == elfcpp::SHT_RELA)
10145 {
10146 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10147 Classify_reloc;
10148 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10149 Scan_relocatable_relocs;
10150
10151 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10152 symtab,
10153 layout,
10154 object,
10155 data_shndx,
10156 prelocs,
10157 reloc_count,
10158 output_section,
10159 needs_special_offset_handling,
10160 local_symbol_count,
10161 plocal_symbols,
10162 rr);
10163 }
10164 else
10165 gold_unreachable();
10166 }
10167
10168 // Scan the relocs for --emit-relocs.
10169
10170 template<int size, bool big_endian>
10171 void
10172 Target_mips<size, big_endian>::emit_relocs_scan(
10173 Symbol_table* symtab,
10174 Layout* layout,
10175 Sized_relobj_file<size, big_endian>* object,
10176 unsigned int data_shndx,
10177 unsigned int sh_type,
10178 const unsigned char* prelocs,
10179 size_t reloc_count,
10180 Output_section* output_section,
10181 bool needs_special_offset_handling,
10182 size_t local_symbol_count,
10183 const unsigned char* plocal_syms,
10184 Relocatable_relocs* rr)
10185 {
10186 if (sh_type == elfcpp::SHT_REL)
10187 {
10188 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10189 Classify_reloc;
10190 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10191 Emit_relocs_strategy;
10192
10193 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10194 symtab,
10195 layout,
10196 object,
10197 data_shndx,
10198 prelocs,
10199 reloc_count,
10200 output_section,
10201 needs_special_offset_handling,
10202 local_symbol_count,
10203 plocal_syms,
10204 rr);
10205 }
10206 else if (sh_type == elfcpp::SHT_RELA)
10207 {
10208 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10209 Classify_reloc;
10210 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10211 Emit_relocs_strategy;
10212
10213 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10214 symtab,
10215 layout,
10216 object,
10217 data_shndx,
10218 prelocs,
10219 reloc_count,
10220 output_section,
10221 needs_special_offset_handling,
10222 local_symbol_count,
10223 plocal_syms,
10224 rr);
10225 }
10226 else
10227 gold_unreachable();
10228 }
10229
10230 // Emit relocations for a section.
10231
10232 template<int size, bool big_endian>
10233 void
10234 Target_mips<size, big_endian>::relocate_relocs(
10235 const Relocate_info<size, big_endian>* relinfo,
10236 unsigned int sh_type,
10237 const unsigned char* prelocs,
10238 size_t reloc_count,
10239 Output_section* output_section,
10240 typename elfcpp::Elf_types<size>::Elf_Off
10241 offset_in_output_section,
10242 unsigned char* view,
10243 Mips_address view_address,
10244 section_size_type view_size,
10245 unsigned char* reloc_view,
10246 section_size_type reloc_view_size)
10247 {
10248 if (sh_type == elfcpp::SHT_REL)
10249 {
10250 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10251 Classify_reloc;
10252
10253 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10254 relinfo,
10255 prelocs,
10256 reloc_count,
10257 output_section,
10258 offset_in_output_section,
10259 view,
10260 view_address,
10261 view_size,
10262 reloc_view,
10263 reloc_view_size);
10264 }
10265 else if (sh_type == elfcpp::SHT_RELA)
10266 {
10267 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10268 Classify_reloc;
10269
10270 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10271 relinfo,
10272 prelocs,
10273 reloc_count,
10274 output_section,
10275 offset_in_output_section,
10276 view,
10277 view_address,
10278 view_size,
10279 reloc_view,
10280 reloc_view_size);
10281 }
10282 else
10283 gold_unreachable();
10284 }
10285
10286 // Perform target-specific processing in a relocatable link. This is
10287 // only used if we use the relocation strategy RELOC_SPECIAL.
10288
10289 template<int size, bool big_endian>
10290 void
10291 Target_mips<size, big_endian>::relocate_special_relocatable(
10292 const Relocate_info<size, big_endian>* relinfo,
10293 unsigned int sh_type,
10294 const unsigned char* preloc_in,
10295 size_t relnum,
10296 Output_section* output_section,
10297 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10298 unsigned char* view,
10299 Mips_address view_address,
10300 section_size_type,
10301 unsigned char* preloc_out)
10302 {
10303 // We can only handle REL type relocation sections.
10304 gold_assert(sh_type == elfcpp::SHT_REL);
10305
10306 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10307 Reltype;
10308 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10309 Reltype_write;
10310
10311 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10312
10313 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10314
10315 Mips_relobj<size, big_endian>* object =
10316 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10317 const unsigned int local_count = object->local_symbol_count();
10318
10319 Reltype reloc(preloc_in);
10320 Reltype_write reloc_write(preloc_out);
10321
10322 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10323 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10324 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10325
10326 // Get the new symbol index.
10327 // We only use RELOC_SPECIAL strategy in local relocations.
10328 gold_assert(r_sym < local_count);
10329
10330 // We are adjusting a section symbol. We need to find
10331 // the symbol table index of the section symbol for
10332 // the output section corresponding to input section
10333 // in which this symbol is defined.
10334 bool is_ordinary;
10335 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10336 gold_assert(is_ordinary);
10337 Output_section* os = object->output_section(shndx);
10338 gold_assert(os != NULL);
10339 gold_assert(os->needs_symtab_index());
10340 unsigned int new_symndx = os->symtab_index();
10341
10342 // Get the new offset--the location in the output section where
10343 // this relocation should be applied.
10344
10345 Mips_address offset = reloc.get_r_offset();
10346 Mips_address new_offset;
10347 if (offset_in_output_section != invalid_address)
10348 new_offset = offset + offset_in_output_section;
10349 else
10350 {
10351 section_offset_type sot_offset =
10352 convert_types<section_offset_type, Mips_address>(offset);
10353 section_offset_type new_sot_offset =
10354 output_section->output_offset(object, relinfo->data_shndx,
10355 sot_offset);
10356 gold_assert(new_sot_offset != -1);
10357 new_offset = new_sot_offset;
10358 }
10359
10360 // In an object file, r_offset is an offset within the section.
10361 // In an executable or dynamic object, generated by
10362 // --emit-relocs, r_offset is an absolute address.
10363 if (!parameters->options().relocatable())
10364 {
10365 new_offset += view_address;
10366 if (offset_in_output_section != invalid_address)
10367 new_offset -= offset_in_output_section;
10368 }
10369
10370 reloc_write.put_r_offset(new_offset);
10371 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10372
10373 // Handle the reloc addend.
10374 // The relocation uses a section symbol in the input file.
10375 // We are adjusting it to use a section symbol in the output
10376 // file. The input section symbol refers to some address in
10377 // the input section. We need the relocation in the output
10378 // file to refer to that same address. This adjustment to
10379 // the addend is the same calculation we use for a simple
10380 // absolute relocation for the input section symbol.
10381 Valtype calculated_value = 0;
10382 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10383
10384 unsigned char* paddend = view + offset;
10385 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10386 switch (r_type)
10387 {
10388 case elfcpp::R_MIPS_26:
10389 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10390 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10391 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10392 false, &calculated_value);
10393 break;
10394
10395 default:
10396 gold_unreachable();
10397 }
10398
10399 // Report any errors.
10400 switch (reloc_status)
10401 {
10402 case Reloc_funcs::STATUS_OKAY:
10403 break;
10404 case Reloc_funcs::STATUS_OVERFLOW:
10405 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10406 _("relocation overflow: "
10407 "%u against local symbol %u in %s"),
10408 r_type, r_sym, object->name().c_str());
10409 break;
10410 case Reloc_funcs::STATUS_BAD_RELOC:
10411 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10412 _("unexpected opcode while processing relocation"));
10413 break;
10414 default:
10415 gold_unreachable();
10416 }
10417 }
10418
10419 // Optimize the TLS relocation type based on what we know about the
10420 // symbol. IS_FINAL is true if the final address of this symbol is
10421 // known at link time.
10422
10423 template<int size, bool big_endian>
10424 tls::Tls_optimization
10425 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10426 {
10427 // FIXME: Currently we do not do any TLS optimization.
10428 return tls::TLSOPT_NONE;
10429 }
10430
10431 // Scan a relocation for a local symbol.
10432
10433 template<int size, bool big_endian>
10434 inline void
10435 Target_mips<size, big_endian>::Scan::local(
10436 Symbol_table* symtab,
10437 Layout* layout,
10438 Target_mips<size, big_endian>* target,
10439 Sized_relobj_file<size, big_endian>* object,
10440 unsigned int data_shndx,
10441 Output_section* output_section,
10442 const Relatype* rela,
10443 const Reltype* rel,
10444 unsigned int rel_type,
10445 unsigned int r_type,
10446 const elfcpp::Sym<size, big_endian>& lsym,
10447 bool is_discarded)
10448 {
10449 if (is_discarded)
10450 return;
10451
10452 Mips_address r_offset;
10453 unsigned int r_sym;
10454 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10455
10456 if (rel_type == elfcpp::SHT_RELA)
10457 {
10458 r_offset = rela->get_r_offset();
10459 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10460 get_r_sym(rela);
10461 r_addend = rela->get_r_addend();
10462 }
10463 else
10464 {
10465 r_offset = rel->get_r_offset();
10466 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10467 get_r_sym(rel);
10468 r_addend = 0;
10469 }
10470
10471 Mips_relobj<size, big_endian>* mips_obj =
10472 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10473
10474 if (mips_obj->is_mips16_stub_section(data_shndx))
10475 {
10476 mips_obj->get_mips16_stub_section(data_shndx)
10477 ->new_local_reloc_found(r_type, r_sym);
10478 }
10479
10480 if (r_type == elfcpp::R_MIPS_NONE)
10481 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10482 // mips16 stub.
10483 return;
10484
10485 if (!mips16_call_reloc(r_type)
10486 && !mips_obj->section_allows_mips16_refs(data_shndx))
10487 // This reloc would need to refer to a MIPS16 hard-float stub, if
10488 // there is one. We ignore MIPS16 stub sections and .pdr section when
10489 // looking for relocs that would need to refer to MIPS16 stubs.
10490 mips_obj->add_local_non_16bit_call(r_sym);
10491
10492 if (r_type == elfcpp::R_MIPS16_26
10493 && !mips_obj->section_allows_mips16_refs(data_shndx))
10494 mips_obj->add_local_16bit_call(r_sym);
10495
10496 switch (r_type)
10497 {
10498 case elfcpp::R_MIPS_GOT16:
10499 case elfcpp::R_MIPS_CALL16:
10500 case elfcpp::R_MIPS_CALL_HI16:
10501 case elfcpp::R_MIPS_CALL_LO16:
10502 case elfcpp::R_MIPS_GOT_HI16:
10503 case elfcpp::R_MIPS_GOT_LO16:
10504 case elfcpp::R_MIPS_GOT_PAGE:
10505 case elfcpp::R_MIPS_GOT_OFST:
10506 case elfcpp::R_MIPS_GOT_DISP:
10507 case elfcpp::R_MIPS_TLS_GOTTPREL:
10508 case elfcpp::R_MIPS_TLS_GD:
10509 case elfcpp::R_MIPS_TLS_LDM:
10510 case elfcpp::R_MIPS16_GOT16:
10511 case elfcpp::R_MIPS16_CALL16:
10512 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10513 case elfcpp::R_MIPS16_TLS_GD:
10514 case elfcpp::R_MIPS16_TLS_LDM:
10515 case elfcpp::R_MICROMIPS_GOT16:
10516 case elfcpp::R_MICROMIPS_CALL16:
10517 case elfcpp::R_MICROMIPS_CALL_HI16:
10518 case elfcpp::R_MICROMIPS_CALL_LO16:
10519 case elfcpp::R_MICROMIPS_GOT_HI16:
10520 case elfcpp::R_MICROMIPS_GOT_LO16:
10521 case elfcpp::R_MICROMIPS_GOT_PAGE:
10522 case elfcpp::R_MICROMIPS_GOT_OFST:
10523 case elfcpp::R_MICROMIPS_GOT_DISP:
10524 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10525 case elfcpp::R_MICROMIPS_TLS_GD:
10526 case elfcpp::R_MICROMIPS_TLS_LDM:
10527 case elfcpp::R_MIPS_EH:
10528 // We need a GOT section.
10529 target->got_section(symtab, layout);
10530 break;
10531
10532 default:
10533 break;
10534 }
10535
10536 if (call_lo16_reloc(r_type)
10537 || got_lo16_reloc(r_type)
10538 || got_disp_reloc(r_type)
10539 || eh_reloc(r_type))
10540 {
10541 // We may need a local GOT entry for this relocation. We
10542 // don't count R_MIPS_GOT_PAGE because we can estimate the
10543 // maximum number of pages needed by looking at the size of
10544 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10545 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10546 // R_MIPS_CALL_HI16 because these are always followed by an
10547 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10548 Mips_output_data_got<size, big_endian>* got =
10549 target->got_section(symtab, layout);
10550 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10551 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10552 is_section_symbol);
10553 }
10554
10555 switch (r_type)
10556 {
10557 case elfcpp::R_MIPS_CALL16:
10558 case elfcpp::R_MIPS16_CALL16:
10559 case elfcpp::R_MICROMIPS_CALL16:
10560 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10561 (unsigned long)r_offset);
10562 return;
10563
10564 case elfcpp::R_MIPS_GOT_PAGE:
10565 case elfcpp::R_MICROMIPS_GOT_PAGE:
10566 case elfcpp::R_MIPS16_GOT16:
10567 case elfcpp::R_MIPS_GOT16:
10568 case elfcpp::R_MIPS_GOT_HI16:
10569 case elfcpp::R_MIPS_GOT_LO16:
10570 case elfcpp::R_MICROMIPS_GOT16:
10571 case elfcpp::R_MICROMIPS_GOT_HI16:
10572 case elfcpp::R_MICROMIPS_GOT_LO16:
10573 {
10574 // This relocation needs a page entry in the GOT.
10575 // Get the section contents.
10576 section_size_type view_size = 0;
10577 const unsigned char* view = object->section_contents(data_shndx,
10578 &view_size, false);
10579 view += r_offset;
10580
10581 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10582 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10583 : r_addend);
10584
10585 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10586 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10587 object, data_shndx, r_type, r_sym, addend));
10588 else
10589 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10590 break;
10591 }
10592
10593 case elfcpp::R_MIPS_HI16:
10594 case elfcpp::R_MIPS_PCHI16:
10595 case elfcpp::R_MIPS16_HI16:
10596 case elfcpp::R_MICROMIPS_HI16:
10597 // Record the reloc so that we can check whether the corresponding LO16
10598 // part exists.
10599 if (rel_type == elfcpp::SHT_REL)
10600 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10601 object, data_shndx, r_type, r_sym, 0));
10602 break;
10603
10604 case elfcpp::R_MIPS_LO16:
10605 case elfcpp::R_MIPS_PCLO16:
10606 case elfcpp::R_MIPS16_LO16:
10607 case elfcpp::R_MICROMIPS_LO16:
10608 {
10609 if (rel_type != elfcpp::SHT_REL)
10610 break;
10611
10612 // Find corresponding GOT16/HI16 relocation.
10613
10614 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10615 // be immediately following. However, for the IRIX6 ABI, the next
10616 // relocation may be a composed relocation consisting of several
10617 // relocations for the same address. In that case, the R_MIPS_LO16
10618 // relocation may occur as one of these. We permit a similar
10619 // extension in general, as that is useful for GCC.
10620
10621 // In some cases GCC dead code elimination removes the LO16 but
10622 // keeps the corresponding HI16. This is strictly speaking a
10623 // violation of the ABI but not immediately harmful.
10624
10625 typename std::list<got16_addend<size, big_endian> >::iterator it =
10626 target->got16_addends_.begin();
10627 while (it != target->got16_addends_.end())
10628 {
10629 got16_addend<size, big_endian> _got16_addend = *it;
10630
10631 // TODO(sasa): Split got16_addends_ list into two lists - one for
10632 // GOT16 relocs and the other for HI16 relocs.
10633
10634 // Report an error if we find HI16 or GOT16 reloc from the
10635 // previous section without the matching LO16 part.
10636 if (_got16_addend.object != object
10637 || _got16_addend.shndx != data_shndx)
10638 {
10639 gold_error("Can't find matching LO16 reloc");
10640 break;
10641 }
10642
10643 if (_got16_addend.r_sym != r_sym
10644 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10645 {
10646 ++it;
10647 continue;
10648 }
10649
10650 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10651 // For GOT16, we need to calculate combined addend and record GOT page
10652 // entry.
10653 if (got16_reloc(_got16_addend.r_type))
10654 {
10655
10656 section_size_type view_size = 0;
10657 const unsigned char* view = object->section_contents(data_shndx,
10658 &view_size,
10659 false);
10660 view += r_offset;
10661
10662 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10663 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10664
10665 addend = (_got16_addend.addend << 16) + addend;
10666 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10667 addend);
10668 }
10669
10670 it = target->got16_addends_.erase(it);
10671 }
10672 break;
10673 }
10674 }
10675
10676 switch (r_type)
10677 {
10678 case elfcpp::R_MIPS_32:
10679 case elfcpp::R_MIPS_REL32:
10680 case elfcpp::R_MIPS_64:
10681 {
10682 if (parameters->options().output_is_position_independent())
10683 {
10684 // If building a shared library (or a position-independent
10685 // executable), we need to create a dynamic relocation for
10686 // this location.
10687 if (is_readonly_section(output_section))
10688 break;
10689 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10690 rel_dyn->add_symbolless_local_addend(object, r_sym,
10691 elfcpp::R_MIPS_REL32,
10692 output_section, data_shndx,
10693 r_offset);
10694 }
10695 break;
10696 }
10697
10698 case elfcpp::R_MIPS_TLS_GOTTPREL:
10699 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10700 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10701 case elfcpp::R_MIPS_TLS_LDM:
10702 case elfcpp::R_MIPS16_TLS_LDM:
10703 case elfcpp::R_MICROMIPS_TLS_LDM:
10704 case elfcpp::R_MIPS_TLS_GD:
10705 case elfcpp::R_MIPS16_TLS_GD:
10706 case elfcpp::R_MICROMIPS_TLS_GD:
10707 {
10708 bool output_is_shared = parameters->options().shared();
10709 const tls::Tls_optimization optimized_type
10710 = Target_mips<size, big_endian>::optimize_tls_reloc(
10711 !output_is_shared, r_type);
10712 switch (r_type)
10713 {
10714 case elfcpp::R_MIPS_TLS_GD:
10715 case elfcpp::R_MIPS16_TLS_GD:
10716 case elfcpp::R_MICROMIPS_TLS_GD:
10717 if (optimized_type == tls::TLSOPT_NONE)
10718 {
10719 // Create a pair of GOT entries for the module index and
10720 // dtv-relative offset.
10721 Mips_output_data_got<size, big_endian>* got =
10722 target->got_section(symtab, layout);
10723 unsigned int shndx = lsym.get_st_shndx();
10724 bool is_ordinary;
10725 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10726 if (!is_ordinary)
10727 {
10728 object->error(_("local symbol %u has bad shndx %u"),
10729 r_sym, shndx);
10730 break;
10731 }
10732 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10733 shndx, false);
10734 }
10735 else
10736 {
10737 // FIXME: TLS optimization not supported yet.
10738 gold_unreachable();
10739 }
10740 break;
10741
10742 case elfcpp::R_MIPS_TLS_LDM:
10743 case elfcpp::R_MIPS16_TLS_LDM:
10744 case elfcpp::R_MICROMIPS_TLS_LDM:
10745 if (optimized_type == tls::TLSOPT_NONE)
10746 {
10747 // We always record LDM symbols as local with index 0.
10748 target->got_section()->record_local_got_symbol(mips_obj, 0,
10749 r_addend, r_type,
10750 -1U, false);
10751 }
10752 else
10753 {
10754 // FIXME: TLS optimization not supported yet.
10755 gold_unreachable();
10756 }
10757 break;
10758 case elfcpp::R_MIPS_TLS_GOTTPREL:
10759 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10760 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10761 layout->set_has_static_tls();
10762 if (optimized_type == tls::TLSOPT_NONE)
10763 {
10764 // Create a GOT entry for the tp-relative offset.
10765 Mips_output_data_got<size, big_endian>* got =
10766 target->got_section(symtab, layout);
10767 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10768 -1U, false);
10769 }
10770 else
10771 {
10772 // FIXME: TLS optimization not supported yet.
10773 gold_unreachable();
10774 }
10775 break;
10776
10777 default:
10778 gold_unreachable();
10779 }
10780 }
10781 break;
10782
10783 default:
10784 break;
10785 }
10786
10787 // Refuse some position-dependent relocations when creating a
10788 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10789 // not PIC, but we can create dynamic relocations and the result
10790 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10791 // combined with R_MIPS_GOT16.
10792 if (parameters->options().shared())
10793 {
10794 switch (r_type)
10795 {
10796 case elfcpp::R_MIPS16_HI16:
10797 case elfcpp::R_MIPS_HI16:
10798 case elfcpp::R_MIPS_HIGHER:
10799 case elfcpp::R_MIPS_HIGHEST:
10800 case elfcpp::R_MICROMIPS_HI16:
10801 case elfcpp::R_MICROMIPS_HIGHER:
10802 case elfcpp::R_MICROMIPS_HIGHEST:
10803 // Don't refuse a high part relocation if it's against
10804 // no symbol (e.g. part of a compound relocation).
10805 if (r_sym == 0)
10806 break;
10807 // Fall through.
10808
10809 case elfcpp::R_MIPS16_26:
10810 case elfcpp::R_MIPS_26:
10811 case elfcpp::R_MICROMIPS_26_S1:
10812 gold_error(_("%s: relocation %u against `%s' can not be used when "
10813 "making a shared object; recompile with -fPIC"),
10814 object->name().c_str(), r_type, "a local symbol");
10815 default:
10816 break;
10817 }
10818 }
10819 }
10820
10821 template<int size, bool big_endian>
10822 inline void
10823 Target_mips<size, big_endian>::Scan::local(
10824 Symbol_table* symtab,
10825 Layout* layout,
10826 Target_mips<size, big_endian>* target,
10827 Sized_relobj_file<size, big_endian>* object,
10828 unsigned int data_shndx,
10829 Output_section* output_section,
10830 const Reltype& reloc,
10831 unsigned int r_type,
10832 const elfcpp::Sym<size, big_endian>& lsym,
10833 bool is_discarded)
10834 {
10835 if (is_discarded)
10836 return;
10837
10838 local(
10839 symtab,
10840 layout,
10841 target,
10842 object,
10843 data_shndx,
10844 output_section,
10845 (const Relatype*) NULL,
10846 &reloc,
10847 elfcpp::SHT_REL,
10848 r_type,
10849 lsym, is_discarded);
10850 }
10851
10852
10853 template<int size, bool big_endian>
10854 inline void
10855 Target_mips<size, big_endian>::Scan::local(
10856 Symbol_table* symtab,
10857 Layout* layout,
10858 Target_mips<size, big_endian>* target,
10859 Sized_relobj_file<size, big_endian>* object,
10860 unsigned int data_shndx,
10861 Output_section* output_section,
10862 const Relatype& reloc,
10863 unsigned int r_type,
10864 const elfcpp::Sym<size, big_endian>& lsym,
10865 bool is_discarded)
10866 {
10867 if (is_discarded)
10868 return;
10869
10870 local(
10871 symtab,
10872 layout,
10873 target,
10874 object,
10875 data_shndx,
10876 output_section,
10877 &reloc,
10878 (const Reltype*) NULL,
10879 elfcpp::SHT_RELA,
10880 r_type,
10881 lsym, is_discarded);
10882 }
10883
10884 // Scan a relocation for a global symbol.
10885
10886 template<int size, bool big_endian>
10887 inline void
10888 Target_mips<size, big_endian>::Scan::global(
10889 Symbol_table* symtab,
10890 Layout* layout,
10891 Target_mips<size, big_endian>* target,
10892 Sized_relobj_file<size, big_endian>* object,
10893 unsigned int data_shndx,
10894 Output_section* output_section,
10895 const Relatype* rela,
10896 const Reltype* rel,
10897 unsigned int rel_type,
10898 unsigned int r_type,
10899 Symbol* gsym)
10900 {
10901 Mips_address r_offset;
10902 unsigned int r_sym;
10903 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10904
10905 if (rel_type == elfcpp::SHT_RELA)
10906 {
10907 r_offset = rela->get_r_offset();
10908 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10909 get_r_sym(rela);
10910 r_addend = rela->get_r_addend();
10911 }
10912 else
10913 {
10914 r_offset = rel->get_r_offset();
10915 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10916 get_r_sym(rel);
10917 r_addend = 0;
10918 }
10919
10920 Mips_relobj<size, big_endian>* mips_obj =
10921 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10922 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10923
10924 if (mips_obj->is_mips16_stub_section(data_shndx))
10925 {
10926 mips_obj->get_mips16_stub_section(data_shndx)
10927 ->new_global_reloc_found(r_type, mips_sym);
10928 }
10929
10930 if (r_type == elfcpp::R_MIPS_NONE)
10931 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10932 // mips16 stub.
10933 return;
10934
10935 if (!mips16_call_reloc(r_type)
10936 && !mips_obj->section_allows_mips16_refs(data_shndx))
10937 // This reloc would need to refer to a MIPS16 hard-float stub, if
10938 // there is one. We ignore MIPS16 stub sections and .pdr section when
10939 // looking for relocs that would need to refer to MIPS16 stubs.
10940 mips_sym->set_need_fn_stub();
10941
10942 // We need PLT entries if there are static-only relocations against
10943 // an externally-defined function. This can technically occur for
10944 // shared libraries if there are branches to the symbol, although it
10945 // is unlikely that this will be used in practice due to the short
10946 // ranges involved. It can occur for any relative or absolute relocation
10947 // in executables; in that case, the PLT entry becomes the function's
10948 // canonical address.
10949 bool static_reloc = false;
10950
10951 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10952 // relocation into a dynamic one.
10953 bool can_make_dynamic = false;
10954 switch (r_type)
10955 {
10956 case elfcpp::R_MIPS_GOT16:
10957 case elfcpp::R_MIPS_CALL16:
10958 case elfcpp::R_MIPS_CALL_HI16:
10959 case elfcpp::R_MIPS_CALL_LO16:
10960 case elfcpp::R_MIPS_GOT_HI16:
10961 case elfcpp::R_MIPS_GOT_LO16:
10962 case elfcpp::R_MIPS_GOT_PAGE:
10963 case elfcpp::R_MIPS_GOT_OFST:
10964 case elfcpp::R_MIPS_GOT_DISP:
10965 case elfcpp::R_MIPS_TLS_GOTTPREL:
10966 case elfcpp::R_MIPS_TLS_GD:
10967 case elfcpp::R_MIPS_TLS_LDM:
10968 case elfcpp::R_MIPS16_GOT16:
10969 case elfcpp::R_MIPS16_CALL16:
10970 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10971 case elfcpp::R_MIPS16_TLS_GD:
10972 case elfcpp::R_MIPS16_TLS_LDM:
10973 case elfcpp::R_MICROMIPS_GOT16:
10974 case elfcpp::R_MICROMIPS_CALL16:
10975 case elfcpp::R_MICROMIPS_CALL_HI16:
10976 case elfcpp::R_MICROMIPS_CALL_LO16:
10977 case elfcpp::R_MICROMIPS_GOT_HI16:
10978 case elfcpp::R_MICROMIPS_GOT_LO16:
10979 case elfcpp::R_MICROMIPS_GOT_PAGE:
10980 case elfcpp::R_MICROMIPS_GOT_OFST:
10981 case elfcpp::R_MICROMIPS_GOT_DISP:
10982 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10983 case elfcpp::R_MICROMIPS_TLS_GD:
10984 case elfcpp::R_MICROMIPS_TLS_LDM:
10985 case elfcpp::R_MIPS_EH:
10986 // We need a GOT section.
10987 target->got_section(symtab, layout);
10988 break;
10989
10990 // This is just a hint; it can safely be ignored. Don't set
10991 // has_static_relocs for the corresponding symbol.
10992 case elfcpp::R_MIPS_JALR:
10993 case elfcpp::R_MICROMIPS_JALR:
10994 break;
10995
10996 case elfcpp::R_MIPS_GPREL16:
10997 case elfcpp::R_MIPS_GPREL32:
10998 case elfcpp::R_MIPS16_GPREL:
10999 case elfcpp::R_MICROMIPS_GPREL16:
11000 // TODO(sasa)
11001 // GP-relative relocations always resolve to a definition in a
11002 // regular input file, ignoring the one-definition rule. This is
11003 // important for the GP setup sequence in NewABI code, which
11004 // always resolves to a local function even if other relocations
11005 // against the symbol wouldn't.
11006 //constrain_symbol_p = FALSE;
11007 break;
11008
11009 case elfcpp::R_MIPS_32:
11010 case elfcpp::R_MIPS_REL32:
11011 case elfcpp::R_MIPS_64:
11012 if ((parameters->options().shared()
11013 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
11014 && (!is_readonly_section(output_section)
11015 || mips_obj->is_pic())))
11016 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
11017 {
11018 if (r_type != elfcpp::R_MIPS_REL32)
11019 mips_sym->set_pointer_equality_needed();
11020 can_make_dynamic = true;
11021 break;
11022 }
11023 // Fall through.
11024
11025 default:
11026 // Most static relocations require pointer equality, except
11027 // for branches.
11028 mips_sym->set_pointer_equality_needed();
11029 // Fall through.
11030
11031 case elfcpp::R_MIPS_26:
11032 case elfcpp::R_MIPS_PC16:
11033 case elfcpp::R_MIPS_PC21_S2:
11034 case elfcpp::R_MIPS_PC26_S2:
11035 case elfcpp::R_MIPS16_26:
11036 case elfcpp::R_MICROMIPS_26_S1:
11037 case elfcpp::R_MICROMIPS_PC7_S1:
11038 case elfcpp::R_MICROMIPS_PC10_S1:
11039 case elfcpp::R_MICROMIPS_PC16_S1:
11040 case elfcpp::R_MICROMIPS_PC23_S2:
11041 static_reloc = true;
11042 mips_sym->set_has_static_relocs();
11043 break;
11044 }
11045
11046 // If there are call relocations against an externally-defined symbol,
11047 // see whether we can create a MIPS lazy-binding stub for it. We can
11048 // only do this if all references to the function are through call
11049 // relocations, and in that case, the traditional lazy-binding stubs
11050 // are much more efficient than PLT entries.
11051 switch (r_type)
11052 {
11053 case elfcpp::R_MIPS16_CALL16:
11054 case elfcpp::R_MIPS_CALL16:
11055 case elfcpp::R_MIPS_CALL_HI16:
11056 case elfcpp::R_MIPS_CALL_LO16:
11057 case elfcpp::R_MIPS_JALR:
11058 case elfcpp::R_MICROMIPS_CALL16:
11059 case elfcpp::R_MICROMIPS_CALL_HI16:
11060 case elfcpp::R_MICROMIPS_CALL_LO16:
11061 case elfcpp::R_MICROMIPS_JALR:
11062 if (!mips_sym->no_lazy_stub())
11063 {
11064 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
11065 // Calls from shared objects to undefined symbols of type
11066 // STT_NOTYPE need lazy-binding stub.
11067 || (mips_sym->is_undefined() && parameters->options().shared()))
11068 target->mips_stubs_section(layout)->make_entry(mips_sym);
11069 }
11070 break;
11071 default:
11072 {
11073 // We must not create a stub for a symbol that has relocations
11074 // related to taking the function's address.
11075 mips_sym->set_no_lazy_stub();
11076 target->remove_lazy_stub_entry(mips_sym);
11077 break;
11078 }
11079 }
11080
11081 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11082 mips_sym->is_mips16()))
11083 mips_sym->set_has_nonpic_branches();
11084
11085 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11086 // and has a special meaning.
11087 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11088 && strcmp(gsym->name(), "_gp_disp") == 0
11089 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11090 if (static_reloc && gsym->needs_plt_entry())
11091 {
11092 target->make_plt_entry(symtab, layout, mips_sym, r_type);
11093
11094 // Since this is not a PC-relative relocation, we may be
11095 // taking the address of a function. In that case we need to
11096 // set the entry in the dynamic symbol table to the address of
11097 // the PLT entry.
11098 if (gsym->is_from_dynobj() && !parameters->options().shared())
11099 {
11100 gsym->set_needs_dynsym_value();
11101 // We distinguish between PLT entries and lazy-binding stubs by
11102 // giving the former an st_other value of STO_MIPS_PLT. Set the
11103 // flag if there are any relocations in the binary where pointer
11104 // equality matters.
11105 if (mips_sym->pointer_equality_needed())
11106 mips_sym->set_mips_plt();
11107 }
11108 }
11109 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11110 {
11111 // Absolute addressing relocations.
11112 // Make a dynamic relocation if necessary.
11113 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11114 {
11115 if (gsym->may_need_copy_reloc())
11116 {
11117 target->copy_reloc(symtab, layout, object, data_shndx,
11118 output_section, gsym, r_type, r_offset);
11119 }
11120 else if (can_make_dynamic)
11121 {
11122 // Create .rel.dyn section.
11123 target->rel_dyn_section(layout);
11124 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11125 data_shndx, output_section, r_offset);
11126 }
11127 else
11128 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11129 gsym->name());
11130 }
11131 }
11132
11133 bool for_call = false;
11134 switch (r_type)
11135 {
11136 case elfcpp::R_MIPS_CALL16:
11137 case elfcpp::R_MIPS16_CALL16:
11138 case elfcpp::R_MICROMIPS_CALL16:
11139 case elfcpp::R_MIPS_CALL_HI16:
11140 case elfcpp::R_MIPS_CALL_LO16:
11141 case elfcpp::R_MICROMIPS_CALL_HI16:
11142 case elfcpp::R_MICROMIPS_CALL_LO16:
11143 for_call = true;
11144 // Fall through.
11145
11146 case elfcpp::R_MIPS16_GOT16:
11147 case elfcpp::R_MIPS_GOT16:
11148 case elfcpp::R_MIPS_GOT_HI16:
11149 case elfcpp::R_MIPS_GOT_LO16:
11150 case elfcpp::R_MICROMIPS_GOT16:
11151 case elfcpp::R_MICROMIPS_GOT_HI16:
11152 case elfcpp::R_MICROMIPS_GOT_LO16:
11153 case elfcpp::R_MIPS_GOT_DISP:
11154 case elfcpp::R_MICROMIPS_GOT_DISP:
11155 case elfcpp::R_MIPS_EH:
11156 {
11157 // The symbol requires a GOT entry.
11158 Mips_output_data_got<size, big_endian>* got =
11159 target->got_section(symtab, layout);
11160 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11161 for_call);
11162 mips_sym->set_global_got_area(GGA_NORMAL);
11163 }
11164 break;
11165
11166 case elfcpp::R_MIPS_GOT_PAGE:
11167 case elfcpp::R_MICROMIPS_GOT_PAGE:
11168 {
11169 // This relocation needs a page entry in the GOT.
11170 // Get the section contents.
11171 section_size_type view_size = 0;
11172 const unsigned char* view =
11173 object->section_contents(data_shndx, &view_size, false);
11174 view += r_offset;
11175
11176 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11177 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11178 : r_addend);
11179 Mips_output_data_got<size, big_endian>* got =
11180 target->got_section(symtab, layout);
11181 got->record_got_page_entry(mips_obj, r_sym, addend);
11182
11183 // If this is a global, overridable symbol, GOT_PAGE will
11184 // decay to GOT_DISP, so we'll need a GOT entry for it.
11185 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11186 && !mips_sym->object()->is_dynamic()
11187 && !mips_sym->is_undefined());
11188 if (!def_regular
11189 || (parameters->options().output_is_position_independent()
11190 && !parameters->options().Bsymbolic()
11191 && !mips_sym->is_forced_local()))
11192 {
11193 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11194 for_call);
11195 mips_sym->set_global_got_area(GGA_NORMAL);
11196 }
11197 }
11198 break;
11199
11200 case elfcpp::R_MIPS_TLS_GOTTPREL:
11201 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11202 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11203 case elfcpp::R_MIPS_TLS_LDM:
11204 case elfcpp::R_MIPS16_TLS_LDM:
11205 case elfcpp::R_MICROMIPS_TLS_LDM:
11206 case elfcpp::R_MIPS_TLS_GD:
11207 case elfcpp::R_MIPS16_TLS_GD:
11208 case elfcpp::R_MICROMIPS_TLS_GD:
11209 {
11210 const bool is_final = gsym->final_value_is_known();
11211 const tls::Tls_optimization optimized_type =
11212 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11213
11214 switch (r_type)
11215 {
11216 case elfcpp::R_MIPS_TLS_GD:
11217 case elfcpp::R_MIPS16_TLS_GD:
11218 case elfcpp::R_MICROMIPS_TLS_GD:
11219 if (optimized_type == tls::TLSOPT_NONE)
11220 {
11221 // Create a pair of GOT entries for the module index and
11222 // dtv-relative offset.
11223 Mips_output_data_got<size, big_endian>* got =
11224 target->got_section(symtab, layout);
11225 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11226 false);
11227 }
11228 else
11229 {
11230 // FIXME: TLS optimization not supported yet.
11231 gold_unreachable();
11232 }
11233 break;
11234
11235 case elfcpp::R_MIPS_TLS_LDM:
11236 case elfcpp::R_MIPS16_TLS_LDM:
11237 case elfcpp::R_MICROMIPS_TLS_LDM:
11238 if (optimized_type == tls::TLSOPT_NONE)
11239 {
11240 // We always record LDM symbols as local with index 0.
11241 target->got_section()->record_local_got_symbol(mips_obj, 0,
11242 r_addend, r_type,
11243 -1U, false);
11244 }
11245 else
11246 {
11247 // FIXME: TLS optimization not supported yet.
11248 gold_unreachable();
11249 }
11250 break;
11251 case elfcpp::R_MIPS_TLS_GOTTPREL:
11252 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11253 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11254 layout->set_has_static_tls();
11255 if (optimized_type == tls::TLSOPT_NONE)
11256 {
11257 // Create a GOT entry for the tp-relative offset.
11258 Mips_output_data_got<size, big_endian>* got =
11259 target->got_section(symtab, layout);
11260 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11261 false);
11262 }
11263 else
11264 {
11265 // FIXME: TLS optimization not supported yet.
11266 gold_unreachable();
11267 }
11268 break;
11269
11270 default:
11271 gold_unreachable();
11272 }
11273 }
11274 break;
11275 case elfcpp::R_MIPS_COPY:
11276 case elfcpp::R_MIPS_JUMP_SLOT:
11277 // These are relocations which should only be seen by the
11278 // dynamic linker, and should never be seen here.
11279 gold_error(_("%s: unexpected reloc %u in object file"),
11280 object->name().c_str(), r_type);
11281 break;
11282
11283 default:
11284 break;
11285 }
11286
11287 // Refuse some position-dependent relocations when creating a
11288 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11289 // not PIC, but we can create dynamic relocations and the result
11290 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11291 // combined with R_MIPS_GOT16.
11292 if (parameters->options().shared())
11293 {
11294 switch (r_type)
11295 {
11296 case elfcpp::R_MIPS16_HI16:
11297 case elfcpp::R_MIPS_HI16:
11298 case elfcpp::R_MIPS_HIGHER:
11299 case elfcpp::R_MIPS_HIGHEST:
11300 case elfcpp::R_MICROMIPS_HI16:
11301 case elfcpp::R_MICROMIPS_HIGHER:
11302 case elfcpp::R_MICROMIPS_HIGHEST:
11303 // Don't refuse a high part relocation if it's against
11304 // no symbol (e.g. part of a compound relocation).
11305 if (r_sym == 0)
11306 break;
11307
11308 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11309 // and has a special meaning.
11310 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11311 break;
11312 // Fall through.
11313
11314 case elfcpp::R_MIPS16_26:
11315 case elfcpp::R_MIPS_26:
11316 case elfcpp::R_MICROMIPS_26_S1:
11317 gold_error(_("%s: relocation %u against `%s' can not be used when "
11318 "making a shared object; recompile with -fPIC"),
11319 object->name().c_str(), r_type, gsym->name());
11320 default:
11321 break;
11322 }
11323 }
11324 }
11325
11326 template<int size, bool big_endian>
11327 inline void
11328 Target_mips<size, big_endian>::Scan::global(
11329 Symbol_table* symtab,
11330 Layout* layout,
11331 Target_mips<size, big_endian>* target,
11332 Sized_relobj_file<size, big_endian>* object,
11333 unsigned int data_shndx,
11334 Output_section* output_section,
11335 const Relatype& reloc,
11336 unsigned int r_type,
11337 Symbol* gsym)
11338 {
11339 global(
11340 symtab,
11341 layout,
11342 target,
11343 object,
11344 data_shndx,
11345 output_section,
11346 &reloc,
11347 (const Reltype*) NULL,
11348 elfcpp::SHT_RELA,
11349 r_type,
11350 gsym);
11351 }
11352
11353 template<int size, bool big_endian>
11354 inline void
11355 Target_mips<size, big_endian>::Scan::global(
11356 Symbol_table* symtab,
11357 Layout* layout,
11358 Target_mips<size, big_endian>* target,
11359 Sized_relobj_file<size, big_endian>* object,
11360 unsigned int data_shndx,
11361 Output_section* output_section,
11362 const Reltype& reloc,
11363 unsigned int r_type,
11364 Symbol* gsym)
11365 {
11366 global(
11367 symtab,
11368 layout,
11369 target,
11370 object,
11371 data_shndx,
11372 output_section,
11373 (const Relatype*) NULL,
11374 &reloc,
11375 elfcpp::SHT_REL,
11376 r_type,
11377 gsym);
11378 }
11379
11380 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11381 // In cases where Scan::local() or Scan::global() has created
11382 // a dynamic relocation, the addend of the relocation is carried
11383 // in the data, and we must not apply the static relocation.
11384
11385 template<int size, bool big_endian>
11386 inline bool
11387 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11388 const Mips_symbol<size>* gsym,
11389 unsigned int r_type,
11390 Output_section* output_section,
11391 Target_mips* target)
11392 {
11393 // If the output section is not allocated, then we didn't call
11394 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11395 // the reloc here.
11396 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11397 return true;
11398
11399 if (gsym == NULL)
11400 return true;
11401 else
11402 {
11403 // For global symbols, we use the same helper routines used in the
11404 // scan pass.
11405 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11406 && !gsym->may_need_copy_reloc())
11407 {
11408 // We have generated dynamic reloc (R_MIPS_REL32).
11409
11410 bool multi_got = false;
11411 if (target->has_got_section())
11412 multi_got = target->got_section()->multi_got();
11413 bool has_got_offset;
11414 if (!multi_got)
11415 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11416 else
11417 has_got_offset = gsym->global_gotoffset() != -1U;
11418 if (!has_got_offset)
11419 return true;
11420 else
11421 // Apply the relocation only if the symbol is in the local got.
11422 // Do not apply the relocation if the symbol is in the global
11423 // got.
11424 return symbol_references_local(gsym, gsym->has_dynsym_index());
11425 }
11426 else
11427 // We have not generated dynamic reloc.
11428 return true;
11429 }
11430 }
11431
11432 // Perform a relocation.
11433
11434 template<int size, bool big_endian>
11435 inline bool
11436 Target_mips<size, big_endian>::Relocate::relocate(
11437 const Relocate_info<size, big_endian>* relinfo,
11438 unsigned int rel_type,
11439 Target_mips* target,
11440 Output_section* output_section,
11441 size_t relnum,
11442 const unsigned char* preloc,
11443 const Sized_symbol<size>* gsym,
11444 const Symbol_value<size>* psymval,
11445 unsigned char* view,
11446 Mips_address address,
11447 section_size_type)
11448 {
11449 Mips_address r_offset;
11450 unsigned int r_sym;
11451 unsigned int r_type;
11452 unsigned int r_type2;
11453 unsigned int r_type3;
11454 unsigned char r_ssym;
11455 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11456 // r_offset and r_type of the next relocation is needed for resolving multiple
11457 // consecutive relocations with the same offset.
11458 Mips_address next_r_offset = static_cast<Mips_address>(0) - 1;
11459 unsigned int next_r_type = elfcpp::R_MIPS_NONE;
11460
11461 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11462 size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize();
11463
11464 if (rel_type == elfcpp::SHT_RELA)
11465 {
11466 const Relatype rela(preloc);
11467 r_offset = rela.get_r_offset();
11468 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11469 get_r_sym(&rela);
11470 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11471 get_r_type(&rela);
11472 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11473 get_r_type2(&rela);
11474 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11475 get_r_type3(&rela);
11476 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11477 get_r_ssym(&rela);
11478 r_addend = rela.get_r_addend();
11479 // If this is not last relocation, get r_offset and r_type of the next
11480 // relocation.
11481 if (relnum + 1 < reloc_count)
11482 {
11483 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11484 const Relatype next_rela(preloc + reloc_size);
11485 next_r_offset = next_rela.get_r_offset();
11486 next_r_type =
11487 Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11488 get_r_type(&next_rela);
11489 }
11490 }
11491 else
11492 {
11493 const Reltype rel(preloc);
11494 r_offset = rel.get_r_offset();
11495 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11496 get_r_sym(&rel);
11497 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11498 get_r_type(&rel);
11499 r_ssym = 0;
11500 r_type2 = elfcpp::R_MIPS_NONE;
11501 r_type3 = elfcpp::R_MIPS_NONE;
11502 r_addend = 0;
11503 // If this is not last relocation, get r_offset and r_type of the next
11504 // relocation.
11505 if (relnum + 1 < reloc_count)
11506 {
11507 const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
11508 const Reltype next_rel(preloc + reloc_size);
11509 next_r_offset = next_rel.get_r_offset();
11510 next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11511 get_r_type(&next_rel);
11512 }
11513 }
11514
11515 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11516 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11517
11518 Mips_relobj<size, big_endian>* object =
11519 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11520
11521 bool target_is_16_bit_code = false;
11522 bool target_is_micromips_code = false;
11523 bool cross_mode_jump;
11524
11525 Symbol_value<size> symval;
11526
11527 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11528
11529 bool changed_symbol_value = false;
11530 if (gsym == NULL)
11531 {
11532 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11533 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11534 if (target_is_16_bit_code || target_is_micromips_code)
11535 {
11536 // MIPS16/microMIPS text labels should be treated as odd.
11537 symval.set_output_value(psymval->value(object, 1));
11538 psymval = &symval;
11539 changed_symbol_value = true;
11540 }
11541 }
11542 else
11543 {
11544 target_is_16_bit_code = mips_sym->is_mips16();
11545 target_is_micromips_code = mips_sym->is_micromips();
11546
11547 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11548 // it odd. This will cause something like .word SYM to come up with
11549 // the right value when it is loaded into the PC.
11550
11551 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11552 && psymval->value(object, 0) != 0)
11553 {
11554 symval.set_output_value(psymval->value(object, 0) | 1);
11555 psymval = &symval;
11556 changed_symbol_value = true;
11557 }
11558
11559 // Pick the value to use for symbols defined in shared objects.
11560 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11561 || mips_sym->has_lazy_stub())
11562 {
11563 Mips_address value;
11564 if (!mips_sym->has_lazy_stub())
11565 {
11566 // Prefer a standard MIPS PLT entry.
11567 if (mips_sym->has_mips_plt_offset())
11568 {
11569 value = target->plt_section()->mips_entry_address(mips_sym);
11570 target_is_micromips_code = false;
11571 target_is_16_bit_code = false;
11572 }
11573 else
11574 {
11575 value = (target->plt_section()->comp_entry_address(mips_sym)
11576 + 1);
11577 if (target->is_output_micromips())
11578 target_is_micromips_code = true;
11579 else
11580 target_is_16_bit_code = true;
11581 }
11582 }
11583 else
11584 value = target->mips_stubs_section()->stub_address(mips_sym);
11585
11586 symval.set_output_value(value);
11587 psymval = &symval;
11588 }
11589 }
11590
11591 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11592 // Note that such a symbol must always be a global symbol.
11593 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11594 && !object->is_newabi());
11595
11596 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11597 // Note that such a symbol must always be a global symbol.
11598 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11599
11600
11601 if (gp_disp)
11602 {
11603 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11604 gold_error_at_location(relinfo, relnum, r_offset,
11605 _("relocations against _gp_disp are permitted only"
11606 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11607 }
11608 else if (gnu_local_gp)
11609 {
11610 // __gnu_local_gp is _gp symbol.
11611 symval.set_output_value(target->adjusted_gp_value(object));
11612 psymval = &symval;
11613 }
11614
11615 // If this is a reference to a 16-bit function with a stub, we need
11616 // to redirect the relocation to the stub unless:
11617 //
11618 // (a) the relocation is for a MIPS16 JAL;
11619 //
11620 // (b) the relocation is for a MIPS16 PIC call, and there are no
11621 // non-MIPS16 uses of the GOT slot; or
11622 //
11623 // (c) the section allows direct references to MIPS16 functions.
11624 if (r_type != elfcpp::R_MIPS16_26
11625 && ((mips_sym != NULL
11626 && mips_sym->has_mips16_fn_stub()
11627 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11628 || (mips_sym == NULL
11629 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11630 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11631 {
11632 // This is a 32- or 64-bit call to a 16-bit function. We should
11633 // have already noticed that we were going to need the
11634 // stub.
11635 Mips_address value;
11636 if (mips_sym == NULL)
11637 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11638 else
11639 {
11640 gold_assert(mips_sym->need_fn_stub());
11641 if (mips_sym->has_la25_stub())
11642 value = target->la25_stub_section()->stub_address(mips_sym);
11643 else
11644 {
11645 value = mips_sym->template
11646 get_mips16_fn_stub<big_endian>()->output_address();
11647 }
11648 }
11649 symval.set_output_value(value);
11650 psymval = &symval;
11651 changed_symbol_value = true;
11652
11653 // The target is 16-bit, but the stub isn't.
11654 target_is_16_bit_code = false;
11655 }
11656 // If this is a MIPS16 call with a stub, that is made through the PLT or
11657 // to a standard MIPS function, we need to redirect the call to the stub.
11658 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11659 // indirect calls should use an indirect stub instead.
11660 else if (r_type == elfcpp::R_MIPS16_26
11661 && ((mips_sym != NULL
11662 && (mips_sym->has_mips16_call_stub()
11663 || mips_sym->has_mips16_call_fp_stub()))
11664 || (mips_sym == NULL
11665 && object->get_local_mips16_call_stub(r_sym) != NULL))
11666 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11667 || !target_is_16_bit_code))
11668 {
11669 Mips16_stub_section<size, big_endian>* call_stub;
11670 if (mips_sym == NULL)
11671 call_stub = object->get_local_mips16_call_stub(r_sym);
11672 else
11673 {
11674 // If both call_stub and call_fp_stub are defined, we can figure
11675 // out which one to use by checking which one appears in the input
11676 // file.
11677 if (mips_sym->has_mips16_call_stub()
11678 && mips_sym->has_mips16_call_fp_stub())
11679 {
11680 call_stub = NULL;
11681 for (unsigned int i = 1; i < object->shnum(); ++i)
11682 {
11683 if (object->is_mips16_call_fp_stub_section(i))
11684 {
11685 call_stub = mips_sym->template
11686 get_mips16_call_fp_stub<big_endian>();
11687 break;
11688 }
11689
11690 }
11691 if (call_stub == NULL)
11692 call_stub =
11693 mips_sym->template get_mips16_call_stub<big_endian>();
11694 }
11695 else if (mips_sym->has_mips16_call_stub())
11696 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11697 else
11698 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11699 }
11700
11701 symval.set_output_value(call_stub->output_address());
11702 psymval = &symval;
11703 changed_symbol_value = true;
11704 }
11705 // If this is a direct call to a PIC function, redirect to the
11706 // non-PIC stub.
11707 else if (mips_sym != NULL
11708 && mips_sym->has_la25_stub()
11709 && relocation_needs_la25_stub<size, big_endian>(
11710 object, r_type, target_is_16_bit_code))
11711 {
11712 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11713 if (mips_sym->is_micromips())
11714 value += 1;
11715 symval.set_output_value(value);
11716 psymval = &symval;
11717 }
11718 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11719 // entry is used if a standard PLT entry has also been made.
11720 else if ((r_type == elfcpp::R_MIPS16_26
11721 || r_type == elfcpp::R_MICROMIPS_26_S1)
11722 && mips_sym != NULL
11723 && mips_sym->has_plt_offset()
11724 && mips_sym->has_comp_plt_offset()
11725 && mips_sym->has_mips_plt_offset())
11726 {
11727 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11728 + 1);
11729 symval.set_output_value(value);
11730 psymval = &symval;
11731
11732 target_is_16_bit_code = !target->is_output_micromips();
11733 target_is_micromips_code = target->is_output_micromips();
11734 }
11735
11736 // Make sure MIPS16 and microMIPS are not used together.
11737 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11738 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11739 {
11740 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11741 }
11742
11743 // Calls from 16-bit code to 32-bit code and vice versa require the
11744 // mode change. However, we can ignore calls to undefined weak symbols,
11745 // which should never be executed at runtime. This exception is important
11746 // because the assembly writer may have "known" that any definition of the
11747 // symbol would be 16-bit code, and that direct jumps were therefore
11748 // acceptable.
11749 cross_mode_jump =
11750 (!(gsym != NULL && gsym->is_weak_undefined())
11751 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11752 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11753 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11754 && (target_is_16_bit_code || target_is_micromips_code))));
11755
11756 bool local = (mips_sym == NULL
11757 || (mips_sym->got_only_for_calls()
11758 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11759 : symbol_references_local(mips_sym,
11760 mips_sym->has_dynsym_index())));
11761
11762 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11763 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11764 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11765 if (got_page_reloc(r_type) && !local)
11766 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11767 : elfcpp::R_MIPS_GOT_DISP);
11768
11769 unsigned int got_offset = 0;
11770 int gp_offset = 0;
11771
11772 // Whether we have to extract addend from instruction.
11773 bool extract_addend = rel_type == elfcpp::SHT_REL;
11774 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11775
11776 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11777
11778 // For Mips64 N64 ABI, there may be up to three operations specified per
11779 // record, by the fields r_type, r_type2, and r_type3. The first operation
11780 // takes its addend from the relocation record. Each subsequent operation
11781 // takes as its addend the result of the previous operation.
11782 // The first operation in a record which references a symbol uses the symbol
11783 // implied by r_sym. The next operation in a record which references a symbol
11784 // uses the special symbol value given by the r_ssym field. A third operation
11785 // in a record which references a symbol will assume a NULL symbol,
11786 // i.e. value zero.
11787
11788 // TODO(Vladimir)
11789 // Check if a record references to a symbol.
11790 for (unsigned int i = 0; i < 3; ++i)
11791 {
11792 if (r_types[i] == elfcpp::R_MIPS_NONE)
11793 break;
11794
11795 // If we didn't apply previous relocation, use its result as addend
11796 // for current.
11797 if (this->calculate_only_)
11798 {
11799 r_addend = this->calculated_value_;
11800 extract_addend = false;
11801 }
11802
11803 // In the N32 and 64-bit ABIs there may be multiple consecutive
11804 // relocations for the same offset. In that case we are
11805 // supposed to treat the output of each relocation as the addend
11806 // for the next. For N64 ABI, we are checking offsets only in a
11807 // third operation in a record (r_type3).
11808 this->calculate_only_ =
11809 (object->is_n64() && i < 2
11810 ? r_types[i+1] != elfcpp::R_MIPS_NONE
11811 : (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE));
11812
11813 if (object->is_n64())
11814 {
11815 if (i == 1)
11816 {
11817 // Handle special symbol for r_type2 relocation type.
11818 switch (r_ssym)
11819 {
11820 case RSS_UNDEF:
11821 symval.set_output_value(0);
11822 break;
11823 case RSS_GP:
11824 symval.set_output_value(target->gp_value());
11825 break;
11826 case RSS_GP0:
11827 symval.set_output_value(object->gp_value());
11828 break;
11829 case RSS_LOC:
11830 symval.set_output_value(address);
11831 break;
11832 default:
11833 gold_unreachable();
11834 }
11835 psymval = &symval;
11836 }
11837 else if (i == 2)
11838 {
11839 // For r_type3 symbol value is 0.
11840 symval.set_output_value(0);
11841 }
11842 }
11843
11844 bool update_got_entry = false;
11845 switch (r_types[i])
11846 {
11847 case elfcpp::R_MIPS_NONE:
11848 break;
11849 case elfcpp::R_MIPS_16:
11850 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11851 extract_addend,
11852 this->calculate_only_,
11853 &this->calculated_value_);
11854 break;
11855
11856 case elfcpp::R_MIPS_32:
11857 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11858 target))
11859 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11860 extract_addend,
11861 this->calculate_only_,
11862 &this->calculated_value_);
11863 if (mips_sym != NULL
11864 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11865 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11866 {
11867 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11868 // already updated by adding +1.
11869 if (mips_sym->has_mips16_fn_stub())
11870 {
11871 gold_assert(mips_sym->need_fn_stub());
11872 Mips16_stub_section<size, big_endian>* fn_stub =
11873 mips_sym->template get_mips16_fn_stub<big_endian>();
11874
11875 symval.set_output_value(fn_stub->output_address());
11876 psymval = &symval;
11877 }
11878 got_offset = mips_sym->global_gotoffset();
11879 update_got_entry = true;
11880 }
11881 break;
11882
11883 case elfcpp::R_MIPS_64:
11884 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11885 target))
11886 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11887 extract_addend,
11888 this->calculate_only_,
11889 &this->calculated_value_, false);
11890 else if (target->is_output_n64() && r_addend != 0)
11891 // Only apply the addend. The static relocation was RELA, but the
11892 // dynamic relocation is REL, so we need to apply the addend.
11893 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11894 extract_addend,
11895 this->calculate_only_,
11896 &this->calculated_value_, true);
11897 break;
11898 case elfcpp::R_MIPS_REL32:
11899 gold_unreachable();
11900
11901 case elfcpp::R_MIPS_PC32:
11902 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11903 r_addend, extract_addend,
11904 this->calculate_only_,
11905 &this->calculated_value_);
11906 break;
11907
11908 case elfcpp::R_MIPS16_26:
11909 // The calculation for R_MIPS16_26 is just the same as for an
11910 // R_MIPS_26. It's only the storage of the relocated field into
11911 // the output file that's different. So, we just fall through to the
11912 // R_MIPS_26 case here.
11913 case elfcpp::R_MIPS_26:
11914 case elfcpp::R_MICROMIPS_26_S1:
11915 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11916 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11917 r_types[i], target->jal_to_bal(), this->calculate_only_,
11918 &this->calculated_value_);
11919 break;
11920
11921 case elfcpp::R_MIPS_HI16:
11922 case elfcpp::R_MIPS16_HI16:
11923 case elfcpp::R_MICROMIPS_HI16:
11924 if (rel_type == elfcpp::SHT_RELA)
11925 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11926 r_addend, address,
11927 gp_disp, r_types[i],
11928 extract_addend, 0,
11929 target,
11930 this->calculate_only_,
11931 &this->calculated_value_);
11932 else if (rel_type == elfcpp::SHT_REL)
11933 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11934 address, gp_disp, r_types[i],
11935 r_sym, extract_addend);
11936 else
11937 gold_unreachable();
11938 break;
11939
11940 case elfcpp::R_MIPS_LO16:
11941 case elfcpp::R_MIPS16_LO16:
11942 case elfcpp::R_MICROMIPS_LO16:
11943 case elfcpp::R_MICROMIPS_HI0_LO16:
11944 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11945 r_addend, extract_addend, address,
11946 gp_disp, r_types[i], r_sym,
11947 rel_type, this->calculate_only_,
11948 &this->calculated_value_);
11949 break;
11950
11951 case elfcpp::R_MIPS_LITERAL:
11952 case elfcpp::R_MICROMIPS_LITERAL:
11953 // Because we don't merge literal sections, we can handle this
11954 // just like R_MIPS_GPREL16. In the long run, we should merge
11955 // shared literals, and then we will need to additional work
11956 // here.
11957
11958 // Fall through.
11959
11960 case elfcpp::R_MIPS_GPREL16:
11961 case elfcpp::R_MIPS16_GPREL:
11962 case elfcpp::R_MICROMIPS_GPREL7_S2:
11963 case elfcpp::R_MICROMIPS_GPREL16:
11964 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11965 target->adjusted_gp_value(object),
11966 r_addend, extract_addend,
11967 gsym == NULL, r_types[i],
11968 this->calculate_only_,
11969 &this->calculated_value_);
11970 break;
11971
11972 case elfcpp::R_MIPS_PC16:
11973 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11974 r_addend, extract_addend,
11975 this->calculate_only_,
11976 &this->calculated_value_);
11977 break;
11978
11979 case elfcpp::R_MIPS_PC21_S2:
11980 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11981 r_addend, extract_addend,
11982 this->calculate_only_,
11983 &this->calculated_value_);
11984 break;
11985
11986 case elfcpp::R_MIPS_PC26_S2:
11987 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11988 r_addend, extract_addend,
11989 this->calculate_only_,
11990 &this->calculated_value_);
11991 break;
11992
11993 case elfcpp::R_MIPS_PC18_S3:
11994 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11995 r_addend, extract_addend,
11996 this->calculate_only_,
11997 &this->calculated_value_);
11998 break;
11999
12000 case elfcpp::R_MIPS_PC19_S2:
12001 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
12002 r_addend, extract_addend,
12003 this->calculate_only_,
12004 &this->calculated_value_);
12005 break;
12006
12007 case elfcpp::R_MIPS_PCHI16:
12008 if (rel_type == elfcpp::SHT_RELA)
12009 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
12010 r_addend, address,
12011 extract_addend, 0,
12012 this->calculate_only_,
12013 &this->calculated_value_);
12014 else if (rel_type == elfcpp::SHT_REL)
12015 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
12016 r_addend, address, r_sym,
12017 extract_addend);
12018 else
12019 gold_unreachable();
12020 break;
12021
12022 case elfcpp::R_MIPS_PCLO16:
12023 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
12024 extract_addend, address, r_sym,
12025 rel_type, this->calculate_only_,
12026 &this->calculated_value_);
12027 break;
12028 case elfcpp::R_MICROMIPS_PC7_S1:
12029 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
12030 address, r_addend,
12031 extract_addend,
12032 this->calculate_only_,
12033 &this->calculated_value_);
12034 break;
12035 case elfcpp::R_MICROMIPS_PC10_S1:
12036 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
12037 psymval, address,
12038 r_addend, extract_addend,
12039 this->calculate_only_,
12040 &this->calculated_value_);
12041 break;
12042 case elfcpp::R_MICROMIPS_PC16_S1:
12043 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
12044 psymval, address,
12045 r_addend, extract_addend,
12046 this->calculate_only_,
12047 &this->calculated_value_);
12048 break;
12049 case elfcpp::R_MIPS_GPREL32:
12050 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
12051 target->adjusted_gp_value(object),
12052 r_addend, extract_addend,
12053 this->calculate_only_,
12054 &this->calculated_value_);
12055 break;
12056 case elfcpp::R_MIPS_GOT_HI16:
12057 case elfcpp::R_MIPS_CALL_HI16:
12058 case elfcpp::R_MICROMIPS_GOT_HI16:
12059 case elfcpp::R_MICROMIPS_CALL_HI16:
12060 if (gsym != NULL)
12061 got_offset = target->got_section()->got_offset(gsym,
12062 GOT_TYPE_STANDARD,
12063 object);
12064 else
12065 got_offset = target->got_section()->got_offset(r_sym,
12066 GOT_TYPE_STANDARD,
12067 object, r_addend);
12068 gp_offset = target->got_section()->gp_offset(got_offset, object);
12069 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
12070 this->calculate_only_,
12071 &this->calculated_value_);
12072 update_got_entry = changed_symbol_value;
12073 break;
12074
12075 case elfcpp::R_MIPS_GOT_LO16:
12076 case elfcpp::R_MIPS_CALL_LO16:
12077 case elfcpp::R_MICROMIPS_GOT_LO16:
12078 case elfcpp::R_MICROMIPS_CALL_LO16:
12079 if (gsym != NULL)
12080 got_offset = target->got_section()->got_offset(gsym,
12081 GOT_TYPE_STANDARD,
12082 object);
12083 else
12084 got_offset = target->got_section()->got_offset(r_sym,
12085 GOT_TYPE_STANDARD,
12086 object, r_addend);
12087 gp_offset = target->got_section()->gp_offset(got_offset, object);
12088 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
12089 this->calculate_only_,
12090 &this->calculated_value_);
12091 update_got_entry = changed_symbol_value;
12092 break;
12093
12094 case elfcpp::R_MIPS_GOT_DISP:
12095 case elfcpp::R_MICROMIPS_GOT_DISP:
12096 case elfcpp::R_MIPS_EH:
12097 if (gsym != NULL)
12098 got_offset = target->got_section()->got_offset(gsym,
12099 GOT_TYPE_STANDARD,
12100 object);
12101 else
12102 got_offset = target->got_section()->got_offset(r_sym,
12103 GOT_TYPE_STANDARD,
12104 object, r_addend);
12105 gp_offset = target->got_section()->gp_offset(got_offset, object);
12106 if (eh_reloc(r_types[i]))
12107 reloc_status = Reloc_funcs::releh(view, gp_offset,
12108 this->calculate_only_,
12109 &this->calculated_value_);
12110 else
12111 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12112 this->calculate_only_,
12113 &this->calculated_value_);
12114 break;
12115 case elfcpp::R_MIPS_CALL16:
12116 case elfcpp::R_MIPS16_CALL16:
12117 case elfcpp::R_MICROMIPS_CALL16:
12118 gold_assert(gsym != NULL);
12119 got_offset = target->got_section()->got_offset(gsym,
12120 GOT_TYPE_STANDARD,
12121 object);
12122 gp_offset = target->got_section()->gp_offset(got_offset, object);
12123 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12124 this->calculate_only_,
12125 &this->calculated_value_);
12126 // TODO(sasa): We should also initialize update_got_entry
12127 // in other place swhere relgot is called.
12128 update_got_entry = changed_symbol_value;
12129 break;
12130
12131 case elfcpp::R_MIPS_GOT16:
12132 case elfcpp::R_MIPS16_GOT16:
12133 case elfcpp::R_MICROMIPS_GOT16:
12134 if (gsym != NULL)
12135 {
12136 got_offset = target->got_section()->got_offset(gsym,
12137 GOT_TYPE_STANDARD,
12138 object);
12139 gp_offset = target->got_section()->gp_offset(got_offset, object);
12140 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12141 this->calculate_only_,
12142 &this->calculated_value_);
12143 }
12144 else
12145 {
12146 if (rel_type == elfcpp::SHT_RELA)
12147 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12148 psymval, r_addend,
12149 extract_addend, 0,
12150 target,
12151 this->calculate_only_,
12152 &this->calculated_value_);
12153 else if (rel_type == elfcpp::SHT_REL)
12154 reloc_status = Reloc_funcs::relgot16_local(view, object,
12155 psymval, r_addend,
12156 extract_addend,
12157 r_types[i], r_sym);
12158 else
12159 gold_unreachable();
12160 }
12161 update_got_entry = changed_symbol_value;
12162 break;
12163
12164 case elfcpp::R_MIPS_TLS_GD:
12165 case elfcpp::R_MIPS16_TLS_GD:
12166 case elfcpp::R_MICROMIPS_TLS_GD:
12167 if (gsym != NULL)
12168 got_offset = target->got_section()->got_offset(gsym,
12169 GOT_TYPE_TLS_PAIR,
12170 object);
12171 else
12172 got_offset = target->got_section()->got_offset(r_sym,
12173 GOT_TYPE_TLS_PAIR,
12174 object, r_addend);
12175 gp_offset = target->got_section()->gp_offset(got_offset, object);
12176 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12177 this->calculate_only_,
12178 &this->calculated_value_);
12179 break;
12180
12181 case elfcpp::R_MIPS_TLS_GOTTPREL:
12182 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12183 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12184 if (gsym != NULL)
12185 got_offset = target->got_section()->got_offset(gsym,
12186 GOT_TYPE_TLS_OFFSET,
12187 object);
12188 else
12189 got_offset = target->got_section()->got_offset(r_sym,
12190 GOT_TYPE_TLS_OFFSET,
12191 object, r_addend);
12192 gp_offset = target->got_section()->gp_offset(got_offset, object);
12193 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12194 this->calculate_only_,
12195 &this->calculated_value_);
12196 break;
12197
12198 case elfcpp::R_MIPS_TLS_LDM:
12199 case elfcpp::R_MIPS16_TLS_LDM:
12200 case elfcpp::R_MICROMIPS_TLS_LDM:
12201 // Relocate the field with the offset of the GOT entry for
12202 // the module index.
12203 got_offset = target->got_section()->tls_ldm_offset(object);
12204 gp_offset = target->got_section()->gp_offset(got_offset, object);
12205 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12206 this->calculate_only_,
12207 &this->calculated_value_);
12208 break;
12209
12210 case elfcpp::R_MIPS_GOT_PAGE:
12211 case elfcpp::R_MICROMIPS_GOT_PAGE:
12212 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12213 r_addend, extract_addend,
12214 this->calculate_only_,
12215 &this->calculated_value_);
12216 break;
12217
12218 case elfcpp::R_MIPS_GOT_OFST:
12219 case elfcpp::R_MICROMIPS_GOT_OFST:
12220 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12221 r_addend, extract_addend,
12222 local, this->calculate_only_,
12223 &this->calculated_value_);
12224 break;
12225
12226 case elfcpp::R_MIPS_JALR:
12227 case elfcpp::R_MICROMIPS_JALR:
12228 // This relocation is only a hint. In some cases, we optimize
12229 // it into a bal instruction. But we don't try to optimize
12230 // when the symbol does not resolve locally.
12231 if (gsym == NULL
12232 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12233 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12234 r_addend, extract_addend,
12235 cross_mode_jump, r_types[i],
12236 target->jalr_to_bal(),
12237 target->jr_to_b(),
12238 this->calculate_only_,
12239 &this->calculated_value_);
12240 break;
12241
12242 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12243 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12244 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12245 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12246 elfcpp::DTP_OFFSET, r_addend,
12247 extract_addend,
12248 this->calculate_only_,
12249 &this->calculated_value_);
12250 break;
12251 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12252 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12253 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12254 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12255 elfcpp::DTP_OFFSET, r_addend,
12256 extract_addend,
12257 this->calculate_only_,
12258 &this->calculated_value_);
12259 break;
12260 case elfcpp::R_MIPS_TLS_DTPREL32:
12261 case elfcpp::R_MIPS_TLS_DTPREL64:
12262 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12263 elfcpp::DTP_OFFSET, r_addend,
12264 extract_addend,
12265 this->calculate_only_,
12266 &this->calculated_value_);
12267 break;
12268 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12269 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12270 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12271 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12272 elfcpp::TP_OFFSET, r_addend,
12273 extract_addend,
12274 this->calculate_only_,
12275 &this->calculated_value_);
12276 break;
12277 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12278 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12279 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12280 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12281 elfcpp::TP_OFFSET, r_addend,
12282 extract_addend,
12283 this->calculate_only_,
12284 &this->calculated_value_);
12285 break;
12286 case elfcpp::R_MIPS_TLS_TPREL32:
12287 case elfcpp::R_MIPS_TLS_TPREL64:
12288 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12289 elfcpp::TP_OFFSET, r_addend,
12290 extract_addend,
12291 this->calculate_only_,
12292 &this->calculated_value_);
12293 break;
12294 case elfcpp::R_MIPS_SUB:
12295 case elfcpp::R_MICROMIPS_SUB:
12296 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12297 extract_addend,
12298 this->calculate_only_,
12299 &this->calculated_value_);
12300 break;
12301 case elfcpp::R_MIPS_HIGHER:
12302 case elfcpp::R_MICROMIPS_HIGHER:
12303 reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12304 extract_addend,
12305 this->calculate_only_,
12306 &this->calculated_value_);
12307 break;
12308 case elfcpp::R_MIPS_HIGHEST:
12309 case elfcpp::R_MICROMIPS_HIGHEST:
12310 reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12311 r_addend, extract_addend,
12312 this->calculate_only_,
12313 &this->calculated_value_);
12314 break;
12315 default:
12316 gold_error_at_location(relinfo, relnum, r_offset,
12317 _("unsupported reloc %u"), r_types[i]);
12318 break;
12319 }
12320
12321 if (update_got_entry)
12322 {
12323 Mips_output_data_got<size, big_endian>* got = target->got_section();
12324 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12325 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12326 psymval->value(object, 0));
12327 else
12328 got->update_got_entry(got_offset, psymval->value(object, 0));
12329 }
12330 }
12331
12332 bool jal_shuffle = jal_reloc(r_type);
12333 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12334
12335 // Report any errors.
12336 switch (reloc_status)
12337 {
12338 case Reloc_funcs::STATUS_OKAY:
12339 break;
12340 case Reloc_funcs::STATUS_OVERFLOW:
12341 if (gsym == NULL)
12342 gold_error_at_location(relinfo, relnum, r_offset,
12343 _("relocation overflow: "
12344 "%u against local symbol %u in %s"),
12345 r_type, r_sym, object->name().c_str());
12346 else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12347 gold_error_at_location(relinfo, relnum, r_offset,
12348 _("relocation overflow: "
12349 "%u against '%s' defined in %s"),
12350 r_type, gsym->demangled_name().c_str(),
12351 gsym->object()->name().c_str());
12352 else
12353 gold_error_at_location(relinfo, relnum, r_offset,
12354 _("relocation overflow: %u against '%s'"),
12355 r_type, gsym->demangled_name().c_str());
12356 break;
12357 case Reloc_funcs::STATUS_BAD_RELOC:
12358 gold_error_at_location(relinfo, relnum, r_offset,
12359 _("unexpected opcode while processing relocation"));
12360 break;
12361 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12362 gold_error_at_location(relinfo, relnum, r_offset,
12363 _("unaligned PC-relative relocation"));
12364 break;
12365 default:
12366 gold_unreachable();
12367 }
12368
12369 return true;
12370 }
12371
12372 // Get the Reference_flags for a particular relocation.
12373
12374 template<int size, bool big_endian>
12375 int
12376 Target_mips<size, big_endian>::Scan::get_reference_flags(
12377 unsigned int r_type)
12378 {
12379 switch (r_type)
12380 {
12381 case elfcpp::R_MIPS_NONE:
12382 // No symbol reference.
12383 return 0;
12384
12385 case elfcpp::R_MIPS_16:
12386 case elfcpp::R_MIPS_32:
12387 case elfcpp::R_MIPS_64:
12388 case elfcpp::R_MIPS_HI16:
12389 case elfcpp::R_MIPS_LO16:
12390 case elfcpp::R_MIPS_HIGHER:
12391 case elfcpp::R_MIPS_HIGHEST:
12392 case elfcpp::R_MIPS16_HI16:
12393 case elfcpp::R_MIPS16_LO16:
12394 case elfcpp::R_MICROMIPS_HI16:
12395 case elfcpp::R_MICROMIPS_LO16:
12396 case elfcpp::R_MICROMIPS_HIGHER:
12397 case elfcpp::R_MICROMIPS_HIGHEST:
12398 return Symbol::ABSOLUTE_REF;
12399
12400 case elfcpp::R_MIPS_26:
12401 case elfcpp::R_MIPS16_26:
12402 case elfcpp::R_MICROMIPS_26_S1:
12403 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12404
12405 case elfcpp::R_MIPS_PC18_S3:
12406 case elfcpp::R_MIPS_PC19_S2:
12407 case elfcpp::R_MIPS_PCHI16:
12408 case elfcpp::R_MIPS_PCLO16:
12409 case elfcpp::R_MIPS_GPREL32:
12410 case elfcpp::R_MIPS_GPREL16:
12411 case elfcpp::R_MIPS_REL32:
12412 case elfcpp::R_MIPS16_GPREL:
12413 return Symbol::RELATIVE_REF;
12414
12415 case elfcpp::R_MIPS_PC16:
12416 case elfcpp::R_MIPS_PC32:
12417 case elfcpp::R_MIPS_PC21_S2:
12418 case elfcpp::R_MIPS_PC26_S2:
12419 case elfcpp::R_MIPS_JALR:
12420 case elfcpp::R_MICROMIPS_JALR:
12421 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12422
12423 case elfcpp::R_MIPS_GOT16:
12424 case elfcpp::R_MIPS_CALL16:
12425 case elfcpp::R_MIPS_GOT_DISP:
12426 case elfcpp::R_MIPS_GOT_HI16:
12427 case elfcpp::R_MIPS_GOT_LO16:
12428 case elfcpp::R_MIPS_CALL_HI16:
12429 case elfcpp::R_MIPS_CALL_LO16:
12430 case elfcpp::R_MIPS_LITERAL:
12431 case elfcpp::R_MIPS_GOT_PAGE:
12432 case elfcpp::R_MIPS_GOT_OFST:
12433 case elfcpp::R_MIPS16_GOT16:
12434 case elfcpp::R_MIPS16_CALL16:
12435 case elfcpp::R_MICROMIPS_GOT16:
12436 case elfcpp::R_MICROMIPS_CALL16:
12437 case elfcpp::R_MICROMIPS_GOT_HI16:
12438 case elfcpp::R_MICROMIPS_GOT_LO16:
12439 case elfcpp::R_MICROMIPS_CALL_HI16:
12440 case elfcpp::R_MICROMIPS_CALL_LO16:
12441 case elfcpp::R_MIPS_EH:
12442 // Absolute in GOT.
12443 return Symbol::RELATIVE_REF;
12444
12445 case elfcpp::R_MIPS_TLS_DTPMOD32:
12446 case elfcpp::R_MIPS_TLS_DTPREL32:
12447 case elfcpp::R_MIPS_TLS_DTPMOD64:
12448 case elfcpp::R_MIPS_TLS_DTPREL64:
12449 case elfcpp::R_MIPS_TLS_GD:
12450 case elfcpp::R_MIPS_TLS_LDM:
12451 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12452 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12453 case elfcpp::R_MIPS_TLS_GOTTPREL:
12454 case elfcpp::R_MIPS_TLS_TPREL32:
12455 case elfcpp::R_MIPS_TLS_TPREL64:
12456 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12457 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12458 case elfcpp::R_MIPS16_TLS_GD:
12459 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12460 case elfcpp::R_MICROMIPS_TLS_GD:
12461 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12462 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12463 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12464 return Symbol::TLS_REF;
12465
12466 case elfcpp::R_MIPS_COPY:
12467 case elfcpp::R_MIPS_JUMP_SLOT:
12468 default:
12469 // Not expected. We will give an error later.
12470 return 0;
12471 }
12472 }
12473
12474 // Report an unsupported relocation against a local symbol.
12475
12476 template<int size, bool big_endian>
12477 void
12478 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12479 Sized_relobj_file<size, big_endian>* object,
12480 unsigned int r_type)
12481 {
12482 gold_error(_("%s: unsupported reloc %u against local symbol"),
12483 object->name().c_str(), r_type);
12484 }
12485
12486 // Report an unsupported relocation against a global symbol.
12487
12488 template<int size, bool big_endian>
12489 void
12490 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12491 Sized_relobj_file<size, big_endian>* object,
12492 unsigned int r_type,
12493 Symbol* gsym)
12494 {
12495 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12496 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12497 }
12498
12499 // Return printable name for ABI.
12500 template<int size, bool big_endian>
12501 const char*
12502 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12503 {
12504 switch (e_flags & elfcpp::EF_MIPS_ABI)
12505 {
12506 case 0:
12507 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12508 return "N32";
12509 else if (size == 64)
12510 return "64";
12511 else
12512 return "none";
12513 case elfcpp::E_MIPS_ABI_O32:
12514 return "O32";
12515 case elfcpp::E_MIPS_ABI_O64:
12516 return "O64";
12517 case elfcpp::E_MIPS_ABI_EABI32:
12518 return "EABI32";
12519 case elfcpp::E_MIPS_ABI_EABI64:
12520 return "EABI64";
12521 default:
12522 return "unknown abi";
12523 }
12524 }
12525
12526 template<int size, bool big_endian>
12527 const char*
12528 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12529 {
12530 switch (e_flags & elfcpp::EF_MIPS_MACH)
12531 {
12532 case elfcpp::E_MIPS_MACH_3900:
12533 return "mips:3900";
12534 case elfcpp::E_MIPS_MACH_4010:
12535 return "mips:4010";
12536 case elfcpp::E_MIPS_MACH_4100:
12537 return "mips:4100";
12538 case elfcpp::E_MIPS_MACH_4111:
12539 return "mips:4111";
12540 case elfcpp::E_MIPS_MACH_4120:
12541 return "mips:4120";
12542 case elfcpp::E_MIPS_MACH_4650:
12543 return "mips:4650";
12544 case elfcpp::E_MIPS_MACH_5400:
12545 return "mips:5400";
12546 case elfcpp::E_MIPS_MACH_5500:
12547 return "mips:5500";
12548 case elfcpp::E_MIPS_MACH_5900:
12549 return "mips:5900";
12550 case elfcpp::E_MIPS_MACH_SB1:
12551 return "mips:sb1";
12552 case elfcpp::E_MIPS_MACH_9000:
12553 return "mips:9000";
12554 case elfcpp::E_MIPS_MACH_LS2E:
12555 return "mips:loongson_2e";
12556 case elfcpp::E_MIPS_MACH_LS2F:
12557 return "mips:loongson_2f";
12558 case elfcpp::E_MIPS_MACH_LS3A:
12559 return "mips:loongson_3a";
12560 case elfcpp::E_MIPS_MACH_OCTEON:
12561 return "mips:octeon";
12562 case elfcpp::E_MIPS_MACH_OCTEON2:
12563 return "mips:octeon2";
12564 case elfcpp::E_MIPS_MACH_OCTEON3:
12565 return "mips:octeon3";
12566 case elfcpp::E_MIPS_MACH_XLR:
12567 return "mips:xlr";
12568 default:
12569 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12570 {
12571 default:
12572 case elfcpp::E_MIPS_ARCH_1:
12573 return "mips:3000";
12574
12575 case elfcpp::E_MIPS_ARCH_2:
12576 return "mips:6000";
12577
12578 case elfcpp::E_MIPS_ARCH_3:
12579 return "mips:4000";
12580
12581 case elfcpp::E_MIPS_ARCH_4:
12582 return "mips:8000";
12583
12584 case elfcpp::E_MIPS_ARCH_5:
12585 return "mips:mips5";
12586
12587 case elfcpp::E_MIPS_ARCH_32:
12588 return "mips:isa32";
12589
12590 case elfcpp::E_MIPS_ARCH_64:
12591 return "mips:isa64";
12592
12593 case elfcpp::E_MIPS_ARCH_32R2:
12594 return "mips:isa32r2";
12595
12596 case elfcpp::E_MIPS_ARCH_32R6:
12597 return "mips:isa32r6";
12598
12599 case elfcpp::E_MIPS_ARCH_64R2:
12600 return "mips:isa64r2";
12601
12602 case elfcpp::E_MIPS_ARCH_64R6:
12603 return "mips:isa64r6";
12604 }
12605 }
12606 return "unknown CPU";
12607 }
12608
12609 template<int size, bool big_endian>
12610 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12611 {
12612 size, // size
12613 big_endian, // is_big_endian
12614 elfcpp::EM_MIPS, // machine_code
12615 true, // has_make_symbol
12616 false, // has_resolve
12617 false, // has_code_fill
12618 true, // is_default_stack_executable
12619 false, // can_icf_inline_merge_sections
12620 '\0', // wrap_char
12621 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12622 0x400000, // default_text_segment_address
12623 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12624 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12625 false, // isolate_execinstr
12626 0, // rosegment_gap
12627 elfcpp::SHN_UNDEF, // small_common_shndx
12628 elfcpp::SHN_UNDEF, // large_common_shndx
12629 0, // small_common_section_flags
12630 0, // large_common_section_flags
12631 NULL, // attributes_section
12632 NULL, // attributes_vendor
12633 "__start", // entry_symbol_name
12634 32, // hash_entry_size
12635 elfcpp::SHT_PROGBITS, // unwind_section_type
12636 };
12637
12638 template<int size, bool big_endian>
12639 class Target_mips_nacl : public Target_mips<size, big_endian>
12640 {
12641 public:
12642 Target_mips_nacl()
12643 : Target_mips<size, big_endian>(&mips_nacl_info)
12644 { }
12645
12646 private:
12647 static const Target::Target_info mips_nacl_info;
12648 };
12649
12650 template<int size, bool big_endian>
12651 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12652 {
12653 size, // size
12654 big_endian, // is_big_endian
12655 elfcpp::EM_MIPS, // machine_code
12656 true, // has_make_symbol
12657 false, // has_resolve
12658 false, // has_code_fill
12659 true, // is_default_stack_executable
12660 false, // can_icf_inline_merge_sections
12661 '\0', // wrap_char
12662 "/lib/ld.so.1", // dynamic_linker
12663 0x20000, // default_text_segment_address
12664 0x10000, // abi_pagesize (overridable by -z max-page-size)
12665 0x10000, // common_pagesize (overridable by -z common-page-size)
12666 true, // isolate_execinstr
12667 0x10000000, // rosegment_gap
12668 elfcpp::SHN_UNDEF, // small_common_shndx
12669 elfcpp::SHN_UNDEF, // large_common_shndx
12670 0, // small_common_section_flags
12671 0, // large_common_section_flags
12672 NULL, // attributes_section
12673 NULL, // attributes_vendor
12674 "_start", // entry_symbol_name
12675 32, // hash_entry_size
12676 elfcpp::SHT_PROGBITS, // unwind_section_type
12677 };
12678
12679 // Target selector for Mips. Note this is never instantiated directly.
12680 // It's only used in Target_selector_mips_nacl, below.
12681
12682 template<int size, bool big_endian>
12683 class Target_selector_mips : public Target_selector
12684 {
12685 public:
12686 Target_selector_mips()
12687 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12688 (size == 64 ?
12689 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12690 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12691 (size == 64 ?
12692 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12693 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12694 { }
12695
12696 Target* do_instantiate_target()
12697 { return new Target_mips<size, big_endian>(); }
12698 };
12699
12700 template<int size, bool big_endian>
12701 class Target_selector_mips_nacl
12702 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12703 Target_mips_nacl<size, big_endian> >
12704 {
12705 public:
12706 Target_selector_mips_nacl()
12707 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12708 Target_mips_nacl<size, big_endian> >(
12709 // NaCl currently supports only MIPS32 little-endian.
12710 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12711 { }
12712 };
12713
12714 Target_selector_mips_nacl<32, true> target_selector_mips32;
12715 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12716 Target_selector_mips_nacl<64, true> target_selector_mips64;
12717 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12718
12719 } // End anonymous namespace.
This page took 0.301261 seconds and 5 git commands to generate.