Add unaligned check for R_MIPS_PC16.
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2016 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_data_la25_stub;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_mips_stubs;
71
72 template<int size>
73 class Mips_symbol;
74
75 template<int size, bool big_endian>
76 class Mips_got_info;
77
78 template<int size, bool big_endian>
79 class Mips_relobj;
80
81 class Mips16_stub_section_base;
82
83 template<int size, bool big_endian>
84 class Mips16_stub_section;
85
86 // The ABI says that every symbol used by dynamic relocations must have
87 // a global GOT entry. Among other things, this provides the dynamic
88 // linker with a free, directly-indexed cache. The GOT can therefore
89 // contain symbols that are not referenced by GOT relocations themselves
90 // (in other words, it may have symbols that are not referenced by things
91 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
92
93 // GOT relocations are less likely to overflow if we put the associated
94 // GOT entries towards the beginning. We therefore divide the global
95 // GOT entries into two areas: "normal" and "reloc-only". Entries in
96 // the first area can be used for both dynamic relocations and GP-relative
97 // accesses, while those in the "reloc-only" area are for dynamic
98 // relocations only.
99
100 // These GGA_* ("Global GOT Area") values are organised so that lower
101 // values are more general than higher values. Also, non-GGA_NONE
102 // values are ordered by the position of the area in the GOT.
103
104 enum Global_got_area
105 {
106 GGA_NORMAL = 0,
107 GGA_RELOC_ONLY = 1,
108 GGA_NONE = 2
109 };
110
111 // The types of GOT entries needed for this platform.
112 // These values are exposed to the ABI in an incremental link.
113 // Do not renumber existing values without changing the version
114 // number of the .gnu_incremental_inputs section.
115 enum Got_type
116 {
117 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
118 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
119 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
120
121 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
122 GOT_TYPE_STANDARD_MULTIGOT = 3,
123 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
124 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
125 };
126
127 // TLS type of GOT entry.
128 enum Got_tls_type
129 {
130 GOT_TLS_NONE = 0,
131 GOT_TLS_GD = 1,
132 GOT_TLS_LDM = 2,
133 GOT_TLS_IE = 4
134 };
135
136 // Values found in the r_ssym field of a relocation entry.
137 enum Special_relocation_symbol
138 {
139 RSS_UNDEF = 0, // None - value is zero.
140 RSS_GP = 1, // Value of GP.
141 RSS_GP0 = 2, // Value of GP in object being relocated.
142 RSS_LOC = 3 // Address of location being relocated.
143 };
144
145 // Whether the section is readonly.
146 static inline bool
147 is_readonly_section(Output_section* output_section)
148 {
149 elfcpp::Elf_Xword section_flags = output_section->flags();
150 elfcpp::Elf_Word section_type = output_section->type();
151
152 if (section_type == elfcpp::SHT_NOBITS)
153 return false;
154
155 if (section_flags & elfcpp::SHF_WRITE)
156 return false;
157
158 return true;
159 }
160
161 // Return TRUE if a relocation of type R_TYPE from OBJECT might
162 // require an la25 stub. See also local_pic_function, which determines
163 // whether the destination function ever requires a stub.
164 template<int size, bool big_endian>
165 static inline bool
166 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
167 unsigned int r_type, bool target_is_16_bit_code)
168 {
169 // We specifically ignore branches and jumps from EF_PIC objects,
170 // where the onus is on the compiler or programmer to perform any
171 // necessary initialization of $25. Sometimes such initialization
172 // is unnecessary; for example, -mno-shared functions do not use
173 // the incoming value of $25, and may therefore be called directly.
174 if (object->is_pic())
175 return false;
176
177 switch (r_type)
178 {
179 case elfcpp::R_MIPS_26:
180 case elfcpp::R_MIPS_PC16:
181 case elfcpp::R_MIPS_PC21_S2:
182 case elfcpp::R_MIPS_PC26_S2:
183 case elfcpp::R_MICROMIPS_26_S1:
184 case elfcpp::R_MICROMIPS_PC7_S1:
185 case elfcpp::R_MICROMIPS_PC10_S1:
186 case elfcpp::R_MICROMIPS_PC16_S1:
187 case elfcpp::R_MICROMIPS_PC23_S2:
188 return true;
189
190 case elfcpp::R_MIPS16_26:
191 return !target_is_16_bit_code;
192
193 default:
194 return false;
195 }
196 }
197
198 // Return true if SYM is a locally-defined PIC function, in the sense
199 // that it or its fn_stub might need $25 to be valid on entry.
200 // Note that MIPS16 functions set up $gp using PC-relative instructions,
201 // so they themselves never need $25 to be valid. Only non-MIPS16
202 // entry points are of interest here.
203 template<int size, bool big_endian>
204 static inline bool
205 local_pic_function(Mips_symbol<size>* sym)
206 {
207 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
208 && !sym->object()->is_dynamic()
209 && !sym->is_undefined());
210
211 if (sym->is_defined() && def_regular)
212 {
213 Mips_relobj<size, big_endian>* object =
214 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
215
216 if ((object->is_pic() || sym->is_pic())
217 && (!sym->is_mips16()
218 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
219 return true;
220 }
221 return false;
222 }
223
224 static inline bool
225 hi16_reloc(int r_type)
226 {
227 return (r_type == elfcpp::R_MIPS_HI16
228 || r_type == elfcpp::R_MIPS16_HI16
229 || r_type == elfcpp::R_MICROMIPS_HI16
230 || r_type == elfcpp::R_MIPS_PCHI16);
231 }
232
233 static inline bool
234 lo16_reloc(int r_type)
235 {
236 return (r_type == elfcpp::R_MIPS_LO16
237 || r_type == elfcpp::R_MIPS16_LO16
238 || r_type == elfcpp::R_MICROMIPS_LO16
239 || r_type == elfcpp::R_MIPS_PCLO16);
240 }
241
242 static inline bool
243 got16_reloc(unsigned int r_type)
244 {
245 return (r_type == elfcpp::R_MIPS_GOT16
246 || r_type == elfcpp::R_MIPS16_GOT16
247 || r_type == elfcpp::R_MICROMIPS_GOT16);
248 }
249
250 static inline bool
251 call_lo16_reloc(unsigned int r_type)
252 {
253 return (r_type == elfcpp::R_MIPS_CALL_LO16
254 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
255 }
256
257 static inline bool
258 got_lo16_reloc(unsigned int r_type)
259 {
260 return (r_type == elfcpp::R_MIPS_GOT_LO16
261 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
262 }
263
264 static inline bool
265 eh_reloc(unsigned int r_type)
266 {
267 return (r_type == elfcpp::R_MIPS_EH);
268 }
269
270 static inline bool
271 got_disp_reloc(unsigned int r_type)
272 {
273 return (r_type == elfcpp::R_MIPS_GOT_DISP
274 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
275 }
276
277 static inline bool
278 got_page_reloc(unsigned int r_type)
279 {
280 return (r_type == elfcpp::R_MIPS_GOT_PAGE
281 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
282 }
283
284 static inline bool
285 tls_gd_reloc(unsigned int r_type)
286 {
287 return (r_type == elfcpp::R_MIPS_TLS_GD
288 || r_type == elfcpp::R_MIPS16_TLS_GD
289 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
290 }
291
292 static inline bool
293 tls_gottprel_reloc(unsigned int r_type)
294 {
295 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
296 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
297 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
298 }
299
300 static inline bool
301 tls_ldm_reloc(unsigned int r_type)
302 {
303 return (r_type == elfcpp::R_MIPS_TLS_LDM
304 || r_type == elfcpp::R_MIPS16_TLS_LDM
305 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
306 }
307
308 static inline bool
309 mips16_call_reloc(unsigned int r_type)
310 {
311 return (r_type == elfcpp::R_MIPS16_26
312 || r_type == elfcpp::R_MIPS16_CALL16);
313 }
314
315 static inline bool
316 jal_reloc(unsigned int r_type)
317 {
318 return (r_type == elfcpp::R_MIPS_26
319 || r_type == elfcpp::R_MIPS16_26
320 || r_type == elfcpp::R_MICROMIPS_26_S1);
321 }
322
323 static inline bool
324 micromips_branch_reloc(unsigned int r_type)
325 {
326 return (r_type == elfcpp::R_MICROMIPS_26_S1
327 || r_type == elfcpp::R_MICROMIPS_PC16_S1
328 || r_type == elfcpp::R_MICROMIPS_PC10_S1
329 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
330 }
331
332 // Check if R_TYPE is a MIPS16 reloc.
333 static inline bool
334 mips16_reloc(unsigned int r_type)
335 {
336 switch (r_type)
337 {
338 case elfcpp::R_MIPS16_26:
339 case elfcpp::R_MIPS16_GPREL:
340 case elfcpp::R_MIPS16_GOT16:
341 case elfcpp::R_MIPS16_CALL16:
342 case elfcpp::R_MIPS16_HI16:
343 case elfcpp::R_MIPS16_LO16:
344 case elfcpp::R_MIPS16_TLS_GD:
345 case elfcpp::R_MIPS16_TLS_LDM:
346 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
347 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
348 case elfcpp::R_MIPS16_TLS_GOTTPREL:
349 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
351 return true;
352
353 default:
354 return false;
355 }
356 }
357
358 // Check if R_TYPE is a microMIPS reloc.
359 static inline bool
360 micromips_reloc(unsigned int r_type)
361 {
362 switch (r_type)
363 {
364 case elfcpp::R_MICROMIPS_26_S1:
365 case elfcpp::R_MICROMIPS_HI16:
366 case elfcpp::R_MICROMIPS_LO16:
367 case elfcpp::R_MICROMIPS_GPREL16:
368 case elfcpp::R_MICROMIPS_LITERAL:
369 case elfcpp::R_MICROMIPS_GOT16:
370 case elfcpp::R_MICROMIPS_PC7_S1:
371 case elfcpp::R_MICROMIPS_PC10_S1:
372 case elfcpp::R_MICROMIPS_PC16_S1:
373 case elfcpp::R_MICROMIPS_CALL16:
374 case elfcpp::R_MICROMIPS_GOT_DISP:
375 case elfcpp::R_MICROMIPS_GOT_PAGE:
376 case elfcpp::R_MICROMIPS_GOT_OFST:
377 case elfcpp::R_MICROMIPS_GOT_HI16:
378 case elfcpp::R_MICROMIPS_GOT_LO16:
379 case elfcpp::R_MICROMIPS_SUB:
380 case elfcpp::R_MICROMIPS_HIGHER:
381 case elfcpp::R_MICROMIPS_HIGHEST:
382 case elfcpp::R_MICROMIPS_CALL_HI16:
383 case elfcpp::R_MICROMIPS_CALL_LO16:
384 case elfcpp::R_MICROMIPS_SCN_DISP:
385 case elfcpp::R_MICROMIPS_JALR:
386 case elfcpp::R_MICROMIPS_HI0_LO16:
387 case elfcpp::R_MICROMIPS_TLS_GD:
388 case elfcpp::R_MICROMIPS_TLS_LDM:
389 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
390 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
391 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
392 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
394 case elfcpp::R_MICROMIPS_GPREL7_S2:
395 case elfcpp::R_MICROMIPS_PC23_S2:
396 return true;
397
398 default:
399 return false;
400 }
401 }
402
403 static inline bool
404 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
405 {
406 switch (high_reloc)
407 {
408 case elfcpp::R_MIPS_HI16:
409 case elfcpp::R_MIPS_GOT16:
410 return lo16_reloc == elfcpp::R_MIPS_LO16;
411 case elfcpp::R_MIPS_PCHI16:
412 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
413 case elfcpp::R_MIPS16_HI16:
414 case elfcpp::R_MIPS16_GOT16:
415 return lo16_reloc == elfcpp::R_MIPS16_LO16;
416 case elfcpp::R_MICROMIPS_HI16:
417 case elfcpp::R_MICROMIPS_GOT16:
418 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
419 default:
420 return false;
421 }
422 }
423
424 // This class is used to hold information about one GOT entry.
425 // There are three types of entry:
426 //
427 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
428 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
429 // (2) a SYMBOL address, where SYMBOL is not local to an input object
430 // (sym != NULL, symndx == -1)
431 // (3) a TLS LDM slot (there's only one of these per GOT.)
432 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
433
434 template<int size, bool big_endian>
435 class Mips_got_entry
436 {
437 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
438
439 public:
440 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
441 Mips_address addend, unsigned char tls_type,
442 unsigned int shndx, bool is_section_symbol)
443 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
444 is_section_symbol_(is_section_symbol), shndx_(shndx)
445 { this->d.object = object; }
446
447 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
448 : addend_(0), symndx_(-1U), tls_type_(tls_type),
449 is_section_symbol_(false), shndx_(-1U)
450 { this->d.sym = sym; }
451
452 // Return whether this entry is for a local symbol.
453 bool
454 is_for_local_symbol() const
455 { return this->symndx_ != -1U; }
456
457 // Return whether this entry is for a global symbol.
458 bool
459 is_for_global_symbol() const
460 { return this->symndx_ == -1U; }
461
462 // Return the hash of this entry.
463 size_t
464 hash() const
465 {
466 if (this->tls_type_ == GOT_TLS_LDM)
467 return this->symndx_ + (1 << 18);
468
469 size_t name_hash_value = gold::string_hash<char>(
470 (this->symndx_ != -1U)
471 ? this->d.object->name().c_str()
472 : this->d.sym->name());
473 size_t addend = this->addend_;
474 return name_hash_value ^ this->symndx_ ^ addend;
475 }
476
477 // Return whether this entry is equal to OTHER.
478 bool
479 equals(Mips_got_entry<size, big_endian>* other) const
480 {
481 if (this->tls_type_ == GOT_TLS_LDM)
482 return true;
483
484 return ((this->tls_type_ == other->tls_type_)
485 && (this->symndx_ == other->symndx_)
486 && ((this->symndx_ != -1U)
487 ? (this->d.object == other->d.object)
488 : (this->d.sym == other->d.sym))
489 && (this->addend_ == other->addend_));
490 }
491
492 // Return input object that needs this GOT entry.
493 Mips_relobj<size, big_endian>*
494 object() const
495 {
496 gold_assert(this->symndx_ != -1U);
497 return this->d.object;
498 }
499
500 // Return local symbol index for local GOT entries.
501 unsigned int
502 symndx() const
503 {
504 gold_assert(this->symndx_ != -1U);
505 return this->symndx_;
506 }
507
508 // Return the relocation addend for local GOT entries.
509 Mips_address
510 addend() const
511 { return this->addend_; }
512
513 // Return global symbol for global GOT entries.
514 Mips_symbol<size>*
515 sym() const
516 {
517 gold_assert(this->symndx_ == -1U);
518 return this->d.sym;
519 }
520
521 // Return whether this is a TLS GOT entry.
522 bool
523 is_tls_entry() const
524 { return this->tls_type_ != GOT_TLS_NONE; }
525
526 // Return TLS type of this GOT entry.
527 unsigned char
528 tls_type() const
529 { return this->tls_type_; }
530
531 // Return section index of the local symbol for local GOT entries.
532 unsigned int
533 shndx() const
534 { return this->shndx_; }
535
536 // Return whether this is a STT_SECTION symbol.
537 bool
538 is_section_symbol() const
539 { return this->is_section_symbol_; }
540
541 private:
542 // The addend.
543 Mips_address addend_;
544
545 // The index of the symbol if we have a local symbol; -1 otherwise.
546 unsigned int symndx_;
547
548 union
549 {
550 // The input object for local symbols that needs the GOT entry.
551 Mips_relobj<size, big_endian>* object;
552 // If symndx == -1, the global symbol corresponding to this GOT entry. The
553 // symbol's entry is in the local area if mips_sym->global_got_area is
554 // GGA_NONE, otherwise it is in the global area.
555 Mips_symbol<size>* sym;
556 } d;
557
558 // The TLS type of this GOT entry. An LDM GOT entry will be a local
559 // symbol entry with r_symndx == 0.
560 unsigned char tls_type_;
561
562 // Whether this is a STT_SECTION symbol.
563 bool is_section_symbol_;
564
565 // For local GOT entries, section index of the local symbol.
566 unsigned int shndx_;
567 };
568
569 // Hash for Mips_got_entry.
570
571 template<int size, bool big_endian>
572 class Mips_got_entry_hash
573 {
574 public:
575 size_t
576 operator()(Mips_got_entry<size, big_endian>* entry) const
577 { return entry->hash(); }
578 };
579
580 // Equality for Mips_got_entry.
581
582 template<int size, bool big_endian>
583 class Mips_got_entry_eq
584 {
585 public:
586 bool
587 operator()(Mips_got_entry<size, big_endian>* e1,
588 Mips_got_entry<size, big_endian>* e2) const
589 { return e1->equals(e2); }
590 };
591
592 // Hash for Mips_symbol.
593
594 template<int size>
595 class Mips_symbol_hash
596 {
597 public:
598 size_t
599 operator()(Mips_symbol<size>* sym) const
600 { return sym->hash(); }
601 };
602
603 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
604 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
605 // increasing MIN_ADDEND.
606
607 struct Got_page_range
608 {
609 Got_page_range()
610 : next(NULL), min_addend(0), max_addend(0)
611 { }
612
613 Got_page_range* next;
614 int min_addend;
615 int max_addend;
616
617 // Return the maximum number of GOT page entries required.
618 int
619 get_max_pages()
620 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
621 };
622
623 // Got_page_entry. This class describes the range of addends that are applied
624 // to page relocations against a given symbol.
625
626 struct Got_page_entry
627 {
628 Got_page_entry()
629 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
630 { }
631
632 Got_page_entry(Object* object_, unsigned int symndx_)
633 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
634 { }
635
636 // The input object that needs the GOT page entry.
637 Object* object;
638 // The index of the symbol, as stored in the relocation r_info.
639 unsigned int symndx;
640 // The ranges for this page entry.
641 Got_page_range* ranges;
642 // The maximum number of page entries needed for RANGES.
643 unsigned int num_pages;
644 };
645
646 // Hash for Got_page_entry.
647
648 struct Got_page_entry_hash
649 {
650 size_t
651 operator()(Got_page_entry* entry) const
652 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
653 };
654
655 // Equality for Got_page_entry.
656
657 struct Got_page_entry_eq
658 {
659 bool
660 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
661 {
662 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
663 }
664 };
665
666 // This class is used to hold .got information when linking.
667
668 template<int size, bool big_endian>
669 class Mips_got_info
670 {
671 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
672 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
673 Reloc_section;
674 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
675
676 // Unordered set of GOT entries.
677 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
678 Mips_got_entry_hash<size, big_endian>,
679 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
680
681 // Unordered set of GOT page entries.
682 typedef Unordered_set<Got_page_entry*,
683 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
684
685 // Unordered set of global GOT entries.
686 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
687 Global_got_entry_set;
688
689 public:
690 Mips_got_info()
691 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
692 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
693 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
694 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
695 offset_(0)
696 { }
697
698 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
699 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
700 void
701 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
702 unsigned int symndx, Mips_address addend,
703 unsigned int r_type, unsigned int shndx,
704 bool is_section_symbol);
705
706 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
707 // in OBJECT. FOR_CALL is true if the caller is only interested in
708 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
709 // relocation.
710 void
711 record_global_got_symbol(Mips_symbol<size>* mips_sym,
712 Mips_relobj<size, big_endian>* object,
713 unsigned int r_type, bool dyn_reloc, bool for_call);
714
715 // Add ENTRY to master GOT and to OBJECT's GOT.
716 void
717 record_got_entry(Mips_got_entry<size, big_endian>* entry,
718 Mips_relobj<size, big_endian>* object);
719
720 // Record that OBJECT has a page relocation against symbol SYMNDX and
721 // that ADDEND is the addend for that relocation.
722 void
723 record_got_page_entry(Mips_relobj<size, big_endian>* object,
724 unsigned int symndx, int addend);
725
726 // Create all entries that should be in the local part of the GOT.
727 void
728 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
729
730 // Create GOT page entries.
731 void
732 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
733
734 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
735 void
736 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
737 unsigned int non_reloc_only_global_gotno);
738
739 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
740 void
741 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
742
743 // Create TLS GOT entries.
744 void
745 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
746
747 // Decide whether the symbol needs an entry in the global part of the primary
748 // GOT, setting global_got_area accordingly. Count the number of global
749 // symbols that are in the primary GOT only because they have dynamic
750 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
751 void
752 count_got_symbols(Symbol_table* symtab);
753
754 // Return the offset of GOT page entry for VALUE.
755 unsigned int
756 get_got_page_offset(Mips_address value,
757 Mips_output_data_got<size, big_endian>* got);
758
759 // Count the number of GOT entries required.
760 void
761 count_got_entries();
762
763 // Count the number of GOT entries required by ENTRY. Accumulate the result.
764 void
765 count_got_entry(Mips_got_entry<size, big_endian>* entry);
766
767 // Add FROM's GOT entries.
768 void
769 add_got_entries(Mips_got_info<size, big_endian>* from);
770
771 // Add FROM's GOT page entries.
772 void
773 add_got_page_entries(Mips_got_info<size, big_endian>* from);
774
775 // Return GOT size.
776 unsigned int
777 got_size() const
778 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
779 + this->tls_gotno_) * size/8);
780 }
781
782 // Return the number of local GOT entries.
783 unsigned int
784 local_gotno() const
785 { return this->local_gotno_; }
786
787 // Return the maximum number of page GOT entries needed.
788 unsigned int
789 page_gotno() const
790 { return this->page_gotno_; }
791
792 // Return the number of global GOT entries.
793 unsigned int
794 global_gotno() const
795 { return this->global_gotno_; }
796
797 // Set the number of global GOT entries.
798 void
799 set_global_gotno(unsigned int global_gotno)
800 { this->global_gotno_ = global_gotno; }
801
802 // Return the number of GGA_RELOC_ONLY global GOT entries.
803 unsigned int
804 reloc_only_gotno() const
805 { return this->reloc_only_gotno_; }
806
807 // Return the number of TLS GOT entries.
808 unsigned int
809 tls_gotno() const
810 { return this->tls_gotno_; }
811
812 // Return the GOT type for this GOT. Used for multi-GOT links only.
813 unsigned int
814 multigot_got_type(unsigned int got_type) const
815 {
816 switch (got_type)
817 {
818 case GOT_TYPE_STANDARD:
819 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
820 case GOT_TYPE_TLS_OFFSET:
821 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
822 case GOT_TYPE_TLS_PAIR:
823 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
824 default:
825 gold_unreachable();
826 }
827 }
828
829 // Remove lazy-binding stubs for global symbols in this GOT.
830 void
831 remove_lazy_stubs(Target_mips<size, big_endian>* target);
832
833 // Return offset of this GOT from the start of .got section.
834 unsigned int
835 offset() const
836 { return this->offset_; }
837
838 // Set offset of this GOT from the start of .got section.
839 void
840 set_offset(unsigned int offset)
841 { this->offset_ = offset; }
842
843 // Set index of this GOT in multi-GOT links.
844 void
845 set_index(unsigned int index)
846 { this->index_ = index; }
847
848 // Return next GOT in multi-GOT links.
849 Mips_got_info<size, big_endian>*
850 next() const
851 { return this->next_; }
852
853 // Set next GOT in multi-GOT links.
854 void
855 set_next(Mips_got_info<size, big_endian>* next)
856 { this->next_ = next; }
857
858 // Return the offset of TLS LDM entry for this GOT.
859 unsigned int
860 tls_ldm_offset() const
861 { return this->tls_ldm_offset_; }
862
863 // Set the offset of TLS LDM entry for this GOT.
864 void
865 set_tls_ldm_offset(unsigned int tls_ldm_offset)
866 { this->tls_ldm_offset_ = tls_ldm_offset; }
867
868 Global_got_entry_set&
869 global_got_symbols()
870 { return this->global_got_symbols_; }
871
872 // Return the GOT_TLS_* type required by relocation type R_TYPE.
873 static int
874 mips_elf_reloc_tls_type(unsigned int r_type)
875 {
876 if (tls_gd_reloc(r_type))
877 return GOT_TLS_GD;
878
879 if (tls_ldm_reloc(r_type))
880 return GOT_TLS_LDM;
881
882 if (tls_gottprel_reloc(r_type))
883 return GOT_TLS_IE;
884
885 return GOT_TLS_NONE;
886 }
887
888 // Return the number of GOT slots needed for GOT TLS type TYPE.
889 static int
890 mips_tls_got_entries(unsigned int type)
891 {
892 switch (type)
893 {
894 case GOT_TLS_GD:
895 case GOT_TLS_LDM:
896 return 2;
897
898 case GOT_TLS_IE:
899 return 1;
900
901 case GOT_TLS_NONE:
902 return 0;
903
904 default:
905 gold_unreachable();
906 }
907 }
908
909 private:
910 // The number of local GOT entries.
911 unsigned int local_gotno_;
912 // The maximum number of page GOT entries needed.
913 unsigned int page_gotno_;
914 // The number of global GOT entries.
915 unsigned int global_gotno_;
916 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
917 unsigned int reloc_only_gotno_;
918 // The number of TLS GOT entries.
919 unsigned int tls_gotno_;
920 // The offset of TLS LDM entry for this GOT.
921 unsigned int tls_ldm_offset_;
922 // All symbols that have global GOT entry.
923 Global_got_entry_set global_got_symbols_;
924 // A hash table holding GOT entries.
925 Got_entry_set got_entries_;
926 // A hash table of GOT page entries.
927 Got_page_entry_set got_page_entries_;
928 // The offset of first GOT page entry for this GOT.
929 unsigned int got_page_offset_start_;
930 // The offset of next available GOT page entry for this GOT.
931 unsigned int got_page_offset_next_;
932 // A hash table that maps GOT page entry value to the GOT offset where
933 // the entry is located.
934 Got_page_offsets got_page_offsets_;
935 // In multi-GOT links, a pointer to the next GOT.
936 Mips_got_info<size, big_endian>* next_;
937 // Index of this GOT in multi-GOT links.
938 unsigned int index_;
939 // The offset of this GOT in multi-GOT links.
940 unsigned int offset_;
941 };
942
943 // This is a helper class used during relocation scan. It records GOT16 addend.
944
945 template<int size, bool big_endian>
946 struct got16_addend
947 {
948 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
949
950 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
951 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
952 Mips_address _addend)
953 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
954 addend(_addend)
955 { }
956
957 const Sized_relobj_file<size, big_endian>* object;
958 unsigned int shndx;
959 unsigned int r_type;
960 unsigned int r_sym;
961 Mips_address addend;
962 };
963
964 // .MIPS.abiflags section content
965
966 template<bool big_endian>
967 struct Mips_abiflags
968 {
969 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
970 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
971 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
972
973 Mips_abiflags()
974 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
975 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
976 { }
977
978 // Version of flags structure.
979 Valtype16 version;
980 // The level of the ISA: 1-5, 32, 64.
981 Valtype8 isa_level;
982 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
983 Valtype8 isa_rev;
984 // The size of general purpose registers.
985 Valtype8 gpr_size;
986 // The size of co-processor 1 registers.
987 Valtype8 cpr1_size;
988 // The size of co-processor 2 registers.
989 Valtype8 cpr2_size;
990 // The floating-point ABI.
991 Valtype8 fp_abi;
992 // Processor-specific extension.
993 Valtype32 isa_ext;
994 // Mask of ASEs used.
995 Valtype32 ases;
996 // Mask of general flags.
997 Valtype32 flags1;
998 Valtype32 flags2;
999 };
1000
1001 // Mips_symbol class. Holds additional symbol information needed for Mips.
1002
1003 template<int size>
1004 class Mips_symbol : public Sized_symbol<size>
1005 {
1006 public:
1007 Mips_symbol()
1008 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1009 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1010 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1011 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1012 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1013 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1014 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1015 { }
1016
1017 // Return whether this is a MIPS16 symbol.
1018 bool
1019 is_mips16() const
1020 {
1021 // (st_other & STO_MIPS16) == STO_MIPS16
1022 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1023 == elfcpp::STO_MIPS16 >> 2);
1024 }
1025
1026 // Return whether this is a microMIPS symbol.
1027 bool
1028 is_micromips() const
1029 {
1030 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1031 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1032 == elfcpp::STO_MICROMIPS >> 2);
1033 }
1034
1035 // Return whether the symbol needs MIPS16 fn_stub.
1036 bool
1037 need_fn_stub() const
1038 { return this->need_fn_stub_; }
1039
1040 // Set that the symbol needs MIPS16 fn_stub.
1041 void
1042 set_need_fn_stub()
1043 { this->need_fn_stub_ = true; }
1044
1045 // Return whether this symbol is referenced by branch relocations from
1046 // any non-PIC input file.
1047 bool
1048 has_nonpic_branches() const
1049 { return this->has_nonpic_branches_; }
1050
1051 // Set that this symbol is referenced by branch relocations from
1052 // any non-PIC input file.
1053 void
1054 set_has_nonpic_branches()
1055 { this->has_nonpic_branches_ = true; }
1056
1057 // Return the offset of the la25 stub for this symbol from the start of the
1058 // la25 stub section.
1059 unsigned int
1060 la25_stub_offset() const
1061 { return this->la25_stub_offset_; }
1062
1063 // Set the offset of the la25 stub for this symbol from the start of the
1064 // la25 stub section.
1065 void
1066 set_la25_stub_offset(unsigned int offset)
1067 { this->la25_stub_offset_ = offset; }
1068
1069 // Return whether the symbol has la25 stub. This is true if this symbol is
1070 // for a PIC function, and there are non-PIC branches and jumps to it.
1071 bool
1072 has_la25_stub() const
1073 { return this->la25_stub_offset_ != -1U; }
1074
1075 // Return whether there is a relocation against this symbol that must be
1076 // resolved by the static linker (that is, the relocation cannot possibly
1077 // be made dynamic).
1078 bool
1079 has_static_relocs() const
1080 { return this->has_static_relocs_; }
1081
1082 // Set that there is a relocation against this symbol that must be resolved
1083 // by the static linker (that is, the relocation cannot possibly be made
1084 // dynamic).
1085 void
1086 set_has_static_relocs()
1087 { this->has_static_relocs_ = true; }
1088
1089 // Return whether we must not create a lazy-binding stub for this symbol.
1090 bool
1091 no_lazy_stub() const
1092 { return this->no_lazy_stub_; }
1093
1094 // Set that we must not create a lazy-binding stub for this symbol.
1095 void
1096 set_no_lazy_stub()
1097 { this->no_lazy_stub_ = true; }
1098
1099 // Return the offset of the lazy-binding stub for this symbol from the start
1100 // of .MIPS.stubs section.
1101 unsigned int
1102 lazy_stub_offset() const
1103 { return this->lazy_stub_offset_; }
1104
1105 // Set the offset of the lazy-binding stub for this symbol from the start
1106 // of .MIPS.stubs section.
1107 void
1108 set_lazy_stub_offset(unsigned int offset)
1109 { this->lazy_stub_offset_ = offset; }
1110
1111 // Return whether there are any relocations for this symbol where
1112 // pointer equality matters.
1113 bool
1114 pointer_equality_needed() const
1115 { return this->pointer_equality_needed_; }
1116
1117 // Set that there are relocations for this symbol where pointer equality
1118 // matters.
1119 void
1120 set_pointer_equality_needed()
1121 { this->pointer_equality_needed_ = true; }
1122
1123 // Return global GOT area where this symbol in located.
1124 Global_got_area
1125 global_got_area() const
1126 { return this->global_got_area_; }
1127
1128 // Set global GOT area where this symbol in located.
1129 void
1130 set_global_got_area(Global_got_area global_got_area)
1131 { this->global_got_area_ = global_got_area; }
1132
1133 // Return the global GOT offset for this symbol. For multi-GOT links, this
1134 // returns the offset from the start of .got section to the first GOT entry
1135 // for the symbol. Note that in multi-GOT links the symbol can have entry
1136 // in more than one GOT.
1137 unsigned int
1138 global_gotoffset() const
1139 { return this->global_gotoffset_; }
1140
1141 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1142 // the symbol can have entry in more than one GOT. This method will set
1143 // the offset only if it is less than current offset.
1144 void
1145 set_global_gotoffset(unsigned int offset)
1146 {
1147 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1148 this->global_gotoffset_ = offset;
1149 }
1150
1151 // Return whether all GOT relocations for this symbol are for calls.
1152 bool
1153 got_only_for_calls() const
1154 { return this->got_only_for_calls_; }
1155
1156 // Set that there is a GOT relocation for this symbol that is not for call.
1157 void
1158 set_got_not_only_for_calls()
1159 { this->got_only_for_calls_ = false; }
1160
1161 // Return whether this is a PIC symbol.
1162 bool
1163 is_pic() const
1164 {
1165 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1166 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1167 == (elfcpp::STO_MIPS_PIC >> 2));
1168 }
1169
1170 // Set the flag in st_other field that marks this symbol as PIC.
1171 void
1172 set_pic()
1173 {
1174 if (this->is_mips16())
1175 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1176 this->set_nonvis((this->nonvis()
1177 & ~((elfcpp::STO_MIPS16 >> 2)
1178 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1179 | (elfcpp::STO_MIPS_PIC >> 2));
1180 else
1181 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1182 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1183 | (elfcpp::STO_MIPS_PIC >> 2));
1184 }
1185
1186 // Set the flag in st_other field that marks this symbol as PLT.
1187 void
1188 set_mips_plt()
1189 {
1190 if (this->is_mips16())
1191 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1192 this->set_nonvis((this->nonvis()
1193 & ((elfcpp::STO_MIPS16 >> 2)
1194 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1195 | (elfcpp::STO_MIPS_PLT >> 2));
1196
1197 else
1198 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1199 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1200 | (elfcpp::STO_MIPS_PLT >> 2));
1201 }
1202
1203 // Downcast a base pointer to a Mips_symbol pointer.
1204 static Mips_symbol<size>*
1205 as_mips_sym(Symbol* sym)
1206 { return static_cast<Mips_symbol<size>*>(sym); }
1207
1208 // Downcast a base pointer to a Mips_symbol pointer.
1209 static const Mips_symbol<size>*
1210 as_mips_sym(const Symbol* sym)
1211 { return static_cast<const Mips_symbol<size>*>(sym); }
1212
1213 // Return whether the symbol has lazy-binding stub.
1214 bool
1215 has_lazy_stub() const
1216 { return this->has_lazy_stub_; }
1217
1218 // Set whether the symbol has lazy-binding stub.
1219 void
1220 set_has_lazy_stub(bool has_lazy_stub)
1221 { this->has_lazy_stub_ = has_lazy_stub; }
1222
1223 // Return whether the symbol needs a standard PLT entry.
1224 bool
1225 needs_mips_plt() const
1226 { return this->needs_mips_plt_; }
1227
1228 // Set whether the symbol needs a standard PLT entry.
1229 void
1230 set_needs_mips_plt(bool needs_mips_plt)
1231 { this->needs_mips_plt_ = needs_mips_plt; }
1232
1233 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1234 // entry.
1235 bool
1236 needs_comp_plt() const
1237 { return this->needs_comp_plt_; }
1238
1239 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1240 void
1241 set_needs_comp_plt(bool needs_comp_plt)
1242 { this->needs_comp_plt_ = needs_comp_plt; }
1243
1244 // Return standard PLT entry offset, or -1 if none.
1245 unsigned int
1246 mips_plt_offset() const
1247 { return this->mips_plt_offset_; }
1248
1249 // Set standard PLT entry offset.
1250 void
1251 set_mips_plt_offset(unsigned int mips_plt_offset)
1252 { this->mips_plt_offset_ = mips_plt_offset; }
1253
1254 // Return whether the symbol has standard PLT entry.
1255 bool
1256 has_mips_plt_offset() const
1257 { return this->mips_plt_offset_ != -1U; }
1258
1259 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1260 unsigned int
1261 comp_plt_offset() const
1262 { return this->comp_plt_offset_; }
1263
1264 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1265 void
1266 set_comp_plt_offset(unsigned int comp_plt_offset)
1267 { this->comp_plt_offset_ = comp_plt_offset; }
1268
1269 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1270 bool
1271 has_comp_plt_offset() const
1272 { return this->comp_plt_offset_ != -1U; }
1273
1274 // Return MIPS16 fn stub for a symbol.
1275 template<bool big_endian>
1276 Mips16_stub_section<size, big_endian>*
1277 get_mips16_fn_stub() const
1278 {
1279 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1280 }
1281
1282 // Set MIPS16 fn stub for a symbol.
1283 void
1284 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1285 { this->mips16_fn_stub_ = stub; }
1286
1287 // Return whether symbol has MIPS16 fn stub.
1288 bool
1289 has_mips16_fn_stub() const
1290 { return this->mips16_fn_stub_ != NULL; }
1291
1292 // Return MIPS16 call stub for a symbol.
1293 template<bool big_endian>
1294 Mips16_stub_section<size, big_endian>*
1295 get_mips16_call_stub() const
1296 {
1297 return static_cast<Mips16_stub_section<size, big_endian>*>(
1298 mips16_call_stub_);
1299 }
1300
1301 // Set MIPS16 call stub for a symbol.
1302 void
1303 set_mips16_call_stub(Mips16_stub_section_base* stub)
1304 { this->mips16_call_stub_ = stub; }
1305
1306 // Return whether symbol has MIPS16 call stub.
1307 bool
1308 has_mips16_call_stub() const
1309 { return this->mips16_call_stub_ != NULL; }
1310
1311 // Return MIPS16 call_fp stub for a symbol.
1312 template<bool big_endian>
1313 Mips16_stub_section<size, big_endian>*
1314 get_mips16_call_fp_stub() const
1315 {
1316 return static_cast<Mips16_stub_section<size, big_endian>*>(
1317 mips16_call_fp_stub_);
1318 }
1319
1320 // Set MIPS16 call_fp stub for a symbol.
1321 void
1322 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1323 { this->mips16_call_fp_stub_ = stub; }
1324
1325 // Return whether symbol has MIPS16 call_fp stub.
1326 bool
1327 has_mips16_call_fp_stub() const
1328 { return this->mips16_call_fp_stub_ != NULL; }
1329
1330 bool
1331 get_applied_secondary_got_fixup() const
1332 { return applied_secondary_got_fixup_; }
1333
1334 void
1335 set_applied_secondary_got_fixup()
1336 { this->applied_secondary_got_fixup_ = true; }
1337
1338 // Return the hash of this symbol.
1339 size_t
1340 hash() const
1341 {
1342 return gold::string_hash<char>(this->name());
1343 }
1344
1345 private:
1346 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1347 // appears in any relocs other than a 16 bit call.
1348 bool need_fn_stub_;
1349
1350 // True if this symbol is referenced by branch relocations from
1351 // any non-PIC input file. This is used to determine whether an
1352 // la25 stub is required.
1353 bool has_nonpic_branches_;
1354
1355 // The offset of the la25 stub for this symbol from the start of the
1356 // la25 stub section.
1357 unsigned int la25_stub_offset_;
1358
1359 // True if there is a relocation against this symbol that must be
1360 // resolved by the static linker (that is, the relocation cannot
1361 // possibly be made dynamic).
1362 bool has_static_relocs_;
1363
1364 // Whether we must not create a lazy-binding stub for this symbol.
1365 // This is true if the symbol has relocations related to taking the
1366 // function's address.
1367 bool no_lazy_stub_;
1368
1369 // The offset of the lazy-binding stub for this symbol from the start of
1370 // .MIPS.stubs section.
1371 unsigned int lazy_stub_offset_;
1372
1373 // True if there are any relocations for this symbol where pointer equality
1374 // matters.
1375 bool pointer_equality_needed_;
1376
1377 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1378 // in the global part of the GOT.
1379 Global_got_area global_got_area_;
1380
1381 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1382 // from the start of .got section to the first GOT entry for the symbol.
1383 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1384 unsigned int global_gotoffset_;
1385
1386 // Whether all GOT relocations for this symbol are for calls.
1387 bool got_only_for_calls_;
1388 // Whether the symbol has lazy-binding stub.
1389 bool has_lazy_stub_;
1390 // Whether the symbol needs a standard PLT entry.
1391 bool needs_mips_plt_;
1392 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1393 bool needs_comp_plt_;
1394 // Standard PLT entry offset, or -1 if none.
1395 unsigned int mips_plt_offset_;
1396 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1397 unsigned int comp_plt_offset_;
1398 // MIPS16 fn stub for a symbol.
1399 Mips16_stub_section_base* mips16_fn_stub_;
1400 // MIPS16 call stub for a symbol.
1401 Mips16_stub_section_base* mips16_call_stub_;
1402 // MIPS16 call_fp stub for a symbol.
1403 Mips16_stub_section_base* mips16_call_fp_stub_;
1404
1405 bool applied_secondary_got_fixup_;
1406 };
1407
1408 // Mips16_stub_section class.
1409
1410 // The mips16 compiler uses a couple of special sections to handle
1411 // floating point arguments.
1412
1413 // Section names that look like .mips16.fn.FNNAME contain stubs that
1414 // copy floating point arguments from the fp regs to the gp regs and
1415 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1416 // call should be redirected to the stub instead. If no 32 bit
1417 // function calls FNNAME, the stub should be discarded. We need to
1418 // consider any reference to the function, not just a call, because
1419 // if the address of the function is taken we will need the stub,
1420 // since the address might be passed to a 32 bit function.
1421
1422 // Section names that look like .mips16.call.FNNAME contain stubs
1423 // that copy floating point arguments from the gp regs to the fp
1424 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1425 // then any 16 bit function that calls FNNAME should be redirected
1426 // to the stub instead. If FNNAME is not a 32 bit function, the
1427 // stub should be discarded.
1428
1429 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1430 // which call FNNAME and then copy the return value from the fp regs
1431 // to the gp regs. These stubs store the return address in $18 while
1432 // calling FNNAME; any function which might call one of these stubs
1433 // must arrange to save $18 around the call. (This case is not
1434 // needed for 32 bit functions that call 16 bit functions, because
1435 // 16 bit functions always return floating point values in both
1436 // $f0/$f1 and $2/$3.)
1437
1438 // Note that in all cases FNNAME might be defined statically.
1439 // Therefore, FNNAME is not used literally. Instead, the relocation
1440 // information will indicate which symbol the section is for.
1441
1442 // We record any stubs that we find in the symbol table.
1443
1444 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1445
1446 class Mips16_stub_section_base { };
1447
1448 template<int size, bool big_endian>
1449 class Mips16_stub_section : public Mips16_stub_section_base
1450 {
1451 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1452
1453 public:
1454 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1455 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1456 found_r_mips_none_(false)
1457 {
1458 gold_assert(object->is_mips16_fn_stub_section(shndx)
1459 || object->is_mips16_call_stub_section(shndx)
1460 || object->is_mips16_call_fp_stub_section(shndx));
1461 }
1462
1463 // Return the object of this stub section.
1464 Mips_relobj<size, big_endian>*
1465 object() const
1466 { return this->object_; }
1467
1468 // Return the size of a section.
1469 uint64_t
1470 section_size() const
1471 { return this->object_->section_size(this->shndx_); }
1472
1473 // Return section index of this stub section.
1474 unsigned int
1475 shndx() const
1476 { return this->shndx_; }
1477
1478 // Return symbol index, if stub is for a local function.
1479 unsigned int
1480 r_sym() const
1481 { return this->r_sym_; }
1482
1483 // Return symbol, if stub is for a global function.
1484 Mips_symbol<size>*
1485 gsym() const
1486 { return this->gsym_; }
1487
1488 // Return whether stub is for a local function.
1489 bool
1490 is_for_local_function() const
1491 { return this->gsym_ == NULL; }
1492
1493 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1494 // is found in the stub section. Try to find stub target.
1495 void
1496 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1497 {
1498 // To find target symbol for this stub, trust the first R_MIPS_NONE
1499 // relocation, if any. Otherwise trust the first relocation, whatever
1500 // its kind.
1501 if (this->found_r_mips_none_)
1502 return;
1503 if (r_type == elfcpp::R_MIPS_NONE)
1504 {
1505 this->r_sym_ = r_sym;
1506 this->gsym_ = NULL;
1507 this->found_r_mips_none_ = true;
1508 }
1509 else if (!is_target_found())
1510 this->r_sym_ = r_sym;
1511 }
1512
1513 // This method is called when a new relocation R_TYPE for global symbol GSYM
1514 // is found in the stub section. Try to find stub target.
1515 void
1516 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1517 {
1518 // To find target symbol for this stub, trust the first R_MIPS_NONE
1519 // relocation, if any. Otherwise trust the first relocation, whatever
1520 // its kind.
1521 if (this->found_r_mips_none_)
1522 return;
1523 if (r_type == elfcpp::R_MIPS_NONE)
1524 {
1525 this->gsym_ = gsym;
1526 this->r_sym_ = 0;
1527 this->found_r_mips_none_ = true;
1528 }
1529 else if (!is_target_found())
1530 this->gsym_ = gsym;
1531 }
1532
1533 // Return whether we found the stub target.
1534 bool
1535 is_target_found() const
1536 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1537
1538 // Return whether this is a fn stub.
1539 bool
1540 is_fn_stub() const
1541 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1542
1543 // Return whether this is a call stub.
1544 bool
1545 is_call_stub() const
1546 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1547
1548 // Return whether this is a call_fp stub.
1549 bool
1550 is_call_fp_stub() const
1551 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1552
1553 // Return the output address.
1554 Mips_address
1555 output_address() const
1556 {
1557 return (this->object_->output_section(this->shndx_)->address()
1558 + this->object_->output_section_offset(this->shndx_));
1559 }
1560
1561 private:
1562 // The object of this stub section.
1563 Mips_relobj<size, big_endian>* object_;
1564 // The section index of this stub section.
1565 unsigned int shndx_;
1566 // The symbol index, if stub is for a local function.
1567 unsigned int r_sym_;
1568 // The symbol, if stub is for a global function.
1569 Mips_symbol<size>* gsym_;
1570 // True if we found R_MIPS_NONE relocation in this stub.
1571 bool found_r_mips_none_;
1572 };
1573
1574 // Mips_relobj class.
1575
1576 template<int size, bool big_endian>
1577 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1578 {
1579 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1580 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1581 Mips16_stubs_int_map;
1582 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1583
1584 public:
1585 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1586 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1587 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1588 processor_specific_flags_(0), local_symbol_is_mips16_(),
1589 local_symbol_is_micromips_(), mips16_stub_sections_(),
1590 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1591 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1592 got_info_(NULL), section_is_mips16_fn_stub_(),
1593 section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1594 pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1595 gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1596 {
1597 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1598 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1599 }
1600
1601 ~Mips_relobj()
1602 { delete this->attributes_section_data_; }
1603
1604 // Downcast a base pointer to a Mips_relobj pointer. This is
1605 // not type-safe but we only use Mips_relobj not the base class.
1606 static Mips_relobj<size, big_endian>*
1607 as_mips_relobj(Relobj* relobj)
1608 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1609
1610 // Downcast a base pointer to a Mips_relobj pointer. This is
1611 // not type-safe but we only use Mips_relobj not the base class.
1612 static const Mips_relobj<size, big_endian>*
1613 as_mips_relobj(const Relobj* relobj)
1614 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1615
1616 // Processor-specific flags in ELF file header. This is valid only after
1617 // reading symbols.
1618 elfcpp::Elf_Word
1619 processor_specific_flags() const
1620 { return this->processor_specific_flags_; }
1621
1622 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1623 // index. This is only valid after do_count_local_symbol is called.
1624 bool
1625 local_symbol_is_mips16(unsigned int r_sym) const
1626 {
1627 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1628 return this->local_symbol_is_mips16_[r_sym];
1629 }
1630
1631 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1632 // index. This is only valid after do_count_local_symbol is called.
1633 bool
1634 local_symbol_is_micromips(unsigned int r_sym) const
1635 {
1636 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1637 return this->local_symbol_is_micromips_[r_sym];
1638 }
1639
1640 // Get or create MIPS16 stub section.
1641 Mips16_stub_section<size, big_endian>*
1642 get_mips16_stub_section(unsigned int shndx)
1643 {
1644 typename Mips16_stubs_int_map::const_iterator it =
1645 this->mips16_stub_sections_.find(shndx);
1646 if (it != this->mips16_stub_sections_.end())
1647 return (*it).second;
1648
1649 Mips16_stub_section<size, big_endian>* stub_section =
1650 new Mips16_stub_section<size, big_endian>(this, shndx);
1651 this->mips16_stub_sections_.insert(
1652 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1653 stub_section->shndx(), stub_section));
1654 return stub_section;
1655 }
1656
1657 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1658 // object doesn't have fn stub for R_SYM.
1659 Mips16_stub_section<size, big_endian>*
1660 get_local_mips16_fn_stub(unsigned int r_sym) const
1661 {
1662 typename Mips16_stubs_int_map::const_iterator it =
1663 this->local_mips16_fn_stubs_.find(r_sym);
1664 if (it != this->local_mips16_fn_stubs_.end())
1665 return (*it).second;
1666 return NULL;
1667 }
1668
1669 // Record that this object has MIPS16 fn stub for local symbol. This method
1670 // is only called if we decided not to discard the stub.
1671 void
1672 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1673 {
1674 gold_assert(stub->is_for_local_function());
1675 unsigned int r_sym = stub->r_sym();
1676 this->local_mips16_fn_stubs_.insert(
1677 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1678 r_sym, stub));
1679 }
1680
1681 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1682 // object doesn't have call stub for R_SYM.
1683 Mips16_stub_section<size, big_endian>*
1684 get_local_mips16_call_stub(unsigned int r_sym) const
1685 {
1686 typename Mips16_stubs_int_map::const_iterator it =
1687 this->local_mips16_call_stubs_.find(r_sym);
1688 if (it != this->local_mips16_call_stubs_.end())
1689 return (*it).second;
1690 return NULL;
1691 }
1692
1693 // Record that this object has MIPS16 call stub for local symbol. This method
1694 // is only called if we decided not to discard the stub.
1695 void
1696 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1697 {
1698 gold_assert(stub->is_for_local_function());
1699 unsigned int r_sym = stub->r_sym();
1700 this->local_mips16_call_stubs_.insert(
1701 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1702 r_sym, stub));
1703 }
1704
1705 // Record that we found "non 16-bit" call relocation against local symbol
1706 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1707 // is one.
1708 void
1709 add_local_non_16bit_call(unsigned int symndx)
1710 { this->local_non_16bit_calls_.insert(symndx); }
1711
1712 // Return true if there is any "non 16-bit" call relocation against local
1713 // symbol SYMNDX in this object.
1714 bool
1715 has_local_non_16bit_call_relocs(unsigned int symndx)
1716 {
1717 return (this->local_non_16bit_calls_.find(symndx)
1718 != this->local_non_16bit_calls_.end());
1719 }
1720
1721 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1722 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1723 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1724 void
1725 add_local_16bit_call(unsigned int symndx)
1726 { this->local_16bit_calls_.insert(symndx); }
1727
1728 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1729 // symbol SYMNDX in this object.
1730 bool
1731 has_local_16bit_call_relocs(unsigned int symndx)
1732 {
1733 return (this->local_16bit_calls_.find(symndx)
1734 != this->local_16bit_calls_.end());
1735 }
1736
1737 // Get gp value that was used to create this object.
1738 Mips_address
1739 gp_value() const
1740 { return this->gp_; }
1741
1742 // Return whether the object is a PIC object.
1743 bool
1744 is_pic() const
1745 { return this->is_pic_; }
1746
1747 // Return whether the object uses N32 ABI.
1748 bool
1749 is_n32() const
1750 { return this->is_n32_; }
1751
1752 // Return whether the object uses N64 ABI.
1753 bool
1754 is_n64() const
1755 { return size == 64; }
1756
1757 // Return whether the object uses NewABI conventions.
1758 bool
1759 is_newabi() const
1760 { return this->is_n32() || this->is_n64(); }
1761
1762 // Return Mips_got_info for this object.
1763 Mips_got_info<size, big_endian>*
1764 get_got_info() const
1765 { return this->got_info_; }
1766
1767 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1768 Mips_got_info<size, big_endian>*
1769 get_or_create_got_info()
1770 {
1771 if (!this->got_info_)
1772 this->got_info_ = new Mips_got_info<size, big_endian>();
1773 return this->got_info_;
1774 }
1775
1776 // Set Mips_got_info for this object.
1777 void
1778 set_got_info(Mips_got_info<size, big_endian>* got_info)
1779 { this->got_info_ = got_info; }
1780
1781 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1782 // after do_read_symbols is called.
1783 bool
1784 is_mips16_stub_section(unsigned int shndx)
1785 {
1786 return (is_mips16_fn_stub_section(shndx)
1787 || is_mips16_call_stub_section(shndx)
1788 || is_mips16_call_fp_stub_section(shndx));
1789 }
1790
1791 // Return TRUE if relocations in section SHNDX can refer directly to a
1792 // MIPS16 function rather than to a hard-float stub. This is only valid
1793 // after do_read_symbols is called.
1794 bool
1795 section_allows_mips16_refs(unsigned int shndx)
1796 {
1797 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1798 }
1799
1800 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1801 // after do_read_symbols is called.
1802 bool
1803 is_mips16_fn_stub_section(unsigned int shndx)
1804 {
1805 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1806 return this->section_is_mips16_fn_stub_[shndx];
1807 }
1808
1809 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1810 // after do_read_symbols is called.
1811 bool
1812 is_mips16_call_stub_section(unsigned int shndx)
1813 {
1814 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1815 return this->section_is_mips16_call_stub_[shndx];
1816 }
1817
1818 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1819 // valid after do_read_symbols is called.
1820 bool
1821 is_mips16_call_fp_stub_section(unsigned int shndx)
1822 {
1823 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1824 return this->section_is_mips16_call_fp_stub_[shndx];
1825 }
1826
1827 // Discard MIPS16 stub secions that are not needed.
1828 void
1829 discard_mips16_stub_sections(Symbol_table* symtab);
1830
1831 // Return whether there is a .reginfo section.
1832 bool
1833 has_reginfo_section() const
1834 { return this->has_reginfo_section_; }
1835
1836 // Return gprmask from the .reginfo section of this object.
1837 Valtype
1838 gprmask() const
1839 { return this->gprmask_; }
1840
1841 // Return cprmask1 from the .reginfo section of this object.
1842 Valtype
1843 cprmask1() const
1844 { return this->cprmask1_; }
1845
1846 // Return cprmask2 from the .reginfo section of this object.
1847 Valtype
1848 cprmask2() const
1849 { return this->cprmask2_; }
1850
1851 // Return cprmask3 from the .reginfo section of this object.
1852 Valtype
1853 cprmask3() const
1854 { return this->cprmask3_; }
1855
1856 // Return cprmask4 from the .reginfo section of this object.
1857 Valtype
1858 cprmask4() const
1859 { return this->cprmask4_; }
1860
1861 // This is the contents of the .MIPS.abiflags section if there is one.
1862 Mips_abiflags<big_endian>*
1863 abiflags()
1864 { return this->abiflags_; }
1865
1866 // This is the contents of the .gnu.attribute section if there is one.
1867 const Attributes_section_data*
1868 attributes_section_data() const
1869 { return this->attributes_section_data_; }
1870
1871 protected:
1872 // Count the local symbols.
1873 void
1874 do_count_local_symbols(Stringpool_template<char>*,
1875 Stringpool_template<char>*);
1876
1877 // Read the symbol information.
1878 void
1879 do_read_symbols(Read_symbols_data* sd);
1880
1881 private:
1882 // The name of the options section.
1883 const char* mips_elf_options_section_name()
1884 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1885
1886 // processor-specific flags in ELF file header.
1887 elfcpp::Elf_Word processor_specific_flags_;
1888
1889 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1890 // This is only valid after do_count_local_symbol is called.
1891 std::vector<bool> local_symbol_is_mips16_;
1892
1893 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1894 // This is only valid after do_count_local_symbol is called.
1895 std::vector<bool> local_symbol_is_micromips_;
1896
1897 // Map from section index to the MIPS16 stub for that section. This contains
1898 // all stubs found in this object.
1899 Mips16_stubs_int_map mips16_stub_sections_;
1900
1901 // Local symbols that have "non 16-bit" call relocation. This relocation
1902 // would need to refer to a MIPS16 fn stub, if there is one.
1903 std::set<unsigned int> local_non_16bit_calls_;
1904
1905 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1906 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1907 // relocation that refers to the stub symbol.
1908 std::set<unsigned int> local_16bit_calls_;
1909
1910 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1911 // This contains only the stubs that we decided not to discard.
1912 Mips16_stubs_int_map local_mips16_fn_stubs_;
1913
1914 // Map from local symbol index to the MIPS16 call stub for that symbol.
1915 // This contains only the stubs that we decided not to discard.
1916 Mips16_stubs_int_map local_mips16_call_stubs_;
1917
1918 // gp value that was used to create this object.
1919 Mips_address gp_;
1920 // Whether the object is a PIC object.
1921 bool is_pic_ : 1;
1922 // Whether the object uses N32 ABI.
1923 bool is_n32_ : 1;
1924 // Whether the object contains a .reginfo section.
1925 bool has_reginfo_section_ : 1;
1926 // The Mips_got_info for this object.
1927 Mips_got_info<size, big_endian>* got_info_;
1928
1929 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1930 // This is only valid after do_read_symbols is called.
1931 std::vector<bool> section_is_mips16_fn_stub_;
1932
1933 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1934 // This is only valid after do_read_symbols is called.
1935 std::vector<bool> section_is_mips16_call_stub_;
1936
1937 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1938 // This is only valid after do_read_symbols is called.
1939 std::vector<bool> section_is_mips16_call_fp_stub_;
1940
1941 // .pdr section index.
1942 unsigned int pdr_shndx_;
1943
1944 // Object attributes if there is a .gnu.attributes section or NULL.
1945 Attributes_section_data* attributes_section_data_;
1946
1947 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1948 Mips_abiflags<big_endian>* abiflags_;
1949
1950 // gprmask from the .reginfo section of this object.
1951 Valtype gprmask_;
1952 // cprmask1 from the .reginfo section of this object.
1953 Valtype cprmask1_;
1954 // cprmask2 from the .reginfo section of this object.
1955 Valtype cprmask2_;
1956 // cprmask3 from the .reginfo section of this object.
1957 Valtype cprmask3_;
1958 // cprmask4 from the .reginfo section of this object.
1959 Valtype cprmask4_;
1960 };
1961
1962 // Mips_output_data_got class.
1963
1964 template<int size, bool big_endian>
1965 class Mips_output_data_got : public Output_data_got<size, big_endian>
1966 {
1967 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1968 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1969 Reloc_section;
1970 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1971
1972 public:
1973 Mips_output_data_got(Target_mips<size, big_endian>* target,
1974 Symbol_table* symtab, Layout* layout)
1975 : Output_data_got<size, big_endian>(), target_(target),
1976 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1977 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1978 secondary_got_relocs_()
1979 {
1980 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1981 this->set_addralign(16);
1982 }
1983
1984 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1985 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1986 void
1987 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1988 unsigned int symndx, Mips_address addend,
1989 unsigned int r_type, unsigned int shndx,
1990 bool is_section_symbol)
1991 {
1992 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1993 r_type, shndx,
1994 is_section_symbol);
1995 }
1996
1997 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1998 // in OBJECT. FOR_CALL is true if the caller is only interested in
1999 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2000 // relocation.
2001 void
2002 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2003 Mips_relobj<size, big_endian>* object,
2004 unsigned int r_type, bool dyn_reloc, bool for_call)
2005 {
2006 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2007 dyn_reloc, for_call);
2008 }
2009
2010 // Record that OBJECT has a page relocation against symbol SYMNDX and
2011 // that ADDEND is the addend for that relocation.
2012 void
2013 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2014 unsigned int symndx, int addend)
2015 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2016
2017 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2018 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2019 // applied in a static link.
2020 void
2021 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2022 Mips_symbol<size>* gsym)
2023 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2024
2025 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2026 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2027 // relocation that needs to be applied in a static link.
2028 void
2029 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2030 Sized_relobj_file<size, big_endian>* relobj,
2031 unsigned int index)
2032 {
2033 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2034 index));
2035 }
2036
2037 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2038 // secondary GOT at OFFSET.
2039 void
2040 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2041 Mips_symbol<size>* gsym)
2042 {
2043 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2044 r_type, gsym));
2045 }
2046
2047 // Update GOT entry at OFFSET with VALUE.
2048 void
2049 update_got_entry(unsigned int offset, Mips_address value)
2050 {
2051 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2052 }
2053
2054 // Return the number of entries in local part of the GOT. This includes
2055 // local entries, page entries and 2 reserved entries.
2056 unsigned int
2057 get_local_gotno() const
2058 {
2059 if (!this->multi_got())
2060 {
2061 return (2 + this->master_got_info_->local_gotno()
2062 + this->master_got_info_->page_gotno());
2063 }
2064 else
2065 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2066 }
2067
2068 // Return dynamic symbol table index of the first symbol with global GOT
2069 // entry.
2070 unsigned int
2071 first_global_got_dynsym_index() const
2072 { return this->first_global_got_dynsym_index_; }
2073
2074 // Set dynamic symbol table index of the first symbol with global GOT entry.
2075 void
2076 set_first_global_got_dynsym_index(unsigned int index)
2077 { this->first_global_got_dynsym_index_ = index; }
2078
2079 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2080 // larger than 64K, create multi-GOT.
2081 void
2082 lay_out_got(Layout* layout, Symbol_table* symtab,
2083 const Input_objects* input_objects);
2084
2085 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2086 void
2087 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2088
2089 // Attempt to merge GOTs of different input objects.
2090 void
2091 merge_gots(const Input_objects* input_objects);
2092
2093 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2094 // this would lead to overflow, true if they were merged successfully.
2095 bool
2096 merge_got_with(Mips_got_info<size, big_endian>* from,
2097 Mips_relobj<size, big_endian>* object,
2098 Mips_got_info<size, big_endian>* to);
2099
2100 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2101 // use OBJECT's GOT.
2102 unsigned int
2103 get_got_page_offset(Mips_address value,
2104 const Mips_relobj<size, big_endian>* object)
2105 {
2106 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2107 ? this->master_got_info_
2108 : object->get_got_info());
2109 gold_assert(g != NULL);
2110 return g->get_got_page_offset(value, this);
2111 }
2112
2113 // Return the GOT offset of type GOT_TYPE of the global symbol
2114 // GSYM. For multi-GOT links, use OBJECT's GOT.
2115 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2116 Mips_relobj<size, big_endian>* object) const
2117 {
2118 if (!this->multi_got())
2119 return gsym->got_offset(got_type);
2120 else
2121 {
2122 Mips_got_info<size, big_endian>* g = object->get_got_info();
2123 gold_assert(g != NULL);
2124 return gsym->got_offset(g->multigot_got_type(got_type));
2125 }
2126 }
2127
2128 // Return the GOT offset of type GOT_TYPE of the local symbol
2129 // SYMNDX.
2130 unsigned int
2131 got_offset(unsigned int symndx, unsigned int got_type,
2132 Sized_relobj_file<size, big_endian>* object,
2133 uint64_t addend) const
2134 { return object->local_got_offset(symndx, got_type, addend); }
2135
2136 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2137 unsigned int
2138 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2139 {
2140 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2141 ? this->master_got_info_
2142 : object->get_got_info());
2143 gold_assert(g != NULL);
2144 return g->tls_ldm_offset();
2145 }
2146
2147 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2148 void
2149 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2150 Mips_relobj<size, big_endian>* object)
2151 {
2152 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2153 ? this->master_got_info_
2154 : object->get_got_info());
2155 gold_assert(g != NULL);
2156 g->set_tls_ldm_offset(tls_ldm_offset);
2157 }
2158
2159 // Return true for multi-GOT links.
2160 bool
2161 multi_got() const
2162 { return this->primary_got_ != NULL; }
2163
2164 // Return the offset of OBJECT's GOT from the start of .got section.
2165 unsigned int
2166 get_got_offset(const Mips_relobj<size, big_endian>* object)
2167 {
2168 if (!this->multi_got())
2169 return 0;
2170 else
2171 {
2172 Mips_got_info<size, big_endian>* g = object->get_got_info();
2173 return g != NULL ? g->offset() : 0;
2174 }
2175 }
2176
2177 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2178 void
2179 add_reloc_only_entries()
2180 { this->master_got_info_->add_reloc_only_entries(this); }
2181
2182 // Return offset of the primary GOT's entry for global symbol.
2183 unsigned int
2184 get_primary_got_offset(const Mips_symbol<size>* sym) const
2185 {
2186 gold_assert(sym->global_got_area() != GGA_NONE);
2187 return (this->get_local_gotno() + sym->dynsym_index()
2188 - this->first_global_got_dynsym_index()) * size/8;
2189 }
2190
2191 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2192 // Input argument GOT_OFFSET is always global offset from the start of
2193 // .got section, for both single and multi-GOT links.
2194 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2195 // links, the return value is object_got_offset - 0x7FF0, where
2196 // object_got_offset is offset in the OBJECT's GOT.
2197 int
2198 gp_offset(unsigned int got_offset,
2199 const Mips_relobj<size, big_endian>* object) const
2200 {
2201 return (this->address() + got_offset
2202 - this->target_->adjusted_gp_value(object));
2203 }
2204
2205 protected:
2206 // Write out the GOT table.
2207 void
2208 do_write(Output_file*);
2209
2210 private:
2211
2212 // This class represent dynamic relocations that need to be applied by
2213 // gold because we are using TLS relocations in a static link.
2214 class Static_reloc
2215 {
2216 public:
2217 Static_reloc(unsigned int got_offset, unsigned int r_type,
2218 Mips_symbol<size>* gsym)
2219 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2220 { this->u_.global.symbol = gsym; }
2221
2222 Static_reloc(unsigned int got_offset, unsigned int r_type,
2223 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2224 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2225 {
2226 this->u_.local.relobj = relobj;
2227 this->u_.local.index = index;
2228 }
2229
2230 // Return the GOT offset.
2231 unsigned int
2232 got_offset() const
2233 { return this->got_offset_; }
2234
2235 // Relocation type.
2236 unsigned int
2237 r_type() const
2238 { return this->r_type_; }
2239
2240 // Whether the symbol is global or not.
2241 bool
2242 symbol_is_global() const
2243 { return this->symbol_is_global_; }
2244
2245 // For a relocation against a global symbol, the global symbol.
2246 Mips_symbol<size>*
2247 symbol() const
2248 {
2249 gold_assert(this->symbol_is_global_);
2250 return this->u_.global.symbol;
2251 }
2252
2253 // For a relocation against a local symbol, the defining object.
2254 Sized_relobj_file<size, big_endian>*
2255 relobj() const
2256 {
2257 gold_assert(!this->symbol_is_global_);
2258 return this->u_.local.relobj;
2259 }
2260
2261 // For a relocation against a local symbol, the local symbol index.
2262 unsigned int
2263 index() const
2264 {
2265 gold_assert(!this->symbol_is_global_);
2266 return this->u_.local.index;
2267 }
2268
2269 private:
2270 // GOT offset of the entry to which this relocation is applied.
2271 unsigned int got_offset_;
2272 // Type of relocation.
2273 unsigned int r_type_;
2274 // Whether this relocation is against a global symbol.
2275 bool symbol_is_global_;
2276 // A global or local symbol.
2277 union
2278 {
2279 struct
2280 {
2281 // For a global symbol, the symbol itself.
2282 Mips_symbol<size>* symbol;
2283 } global;
2284 struct
2285 {
2286 // For a local symbol, the object defining object.
2287 Sized_relobj_file<size, big_endian>* relobj;
2288 // For a local symbol, the symbol index.
2289 unsigned int index;
2290 } local;
2291 } u_;
2292 };
2293
2294 // The target.
2295 Target_mips<size, big_endian>* target_;
2296 // The symbol table.
2297 Symbol_table* symbol_table_;
2298 // The layout.
2299 Layout* layout_;
2300 // Static relocs to be applied to the GOT.
2301 std::vector<Static_reloc> static_relocs_;
2302 // .got section view.
2303 unsigned char* got_view_;
2304 // The dynamic symbol table index of the first symbol with global GOT entry.
2305 unsigned int first_global_got_dynsym_index_;
2306 // The master GOT information.
2307 Mips_got_info<size, big_endian>* master_got_info_;
2308 // The primary GOT information.
2309 Mips_got_info<size, big_endian>* primary_got_;
2310 // Secondary GOT fixups.
2311 std::vector<Static_reloc> secondary_got_relocs_;
2312 };
2313
2314 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2315 // two ways of creating these interfaces. The first is to add:
2316 //
2317 // lui $25,%hi(func)
2318 // j func
2319 // addiu $25,$25,%lo(func)
2320 //
2321 // to a separate trampoline section. The second is to add:
2322 //
2323 // lui $25,%hi(func)
2324 // addiu $25,$25,%lo(func)
2325 //
2326 // immediately before a PIC function "func", but only if a function is at the
2327 // beginning of the section, and the section is not too heavily aligned (i.e we
2328 // would need to add no more than 2 nops before the stub.)
2329 //
2330 // We only create stubs of the first type.
2331
2332 template<int size, bool big_endian>
2333 class Mips_output_data_la25_stub : public Output_section_data
2334 {
2335 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2336
2337 public:
2338 Mips_output_data_la25_stub()
2339 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2340 { }
2341
2342 // Create LA25 stub for a symbol.
2343 void
2344 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2345 Mips_symbol<size>* gsym);
2346
2347 // Return output address of a stub.
2348 Mips_address
2349 stub_address(const Mips_symbol<size>* sym) const
2350 {
2351 gold_assert(sym->has_la25_stub());
2352 return this->address() + sym->la25_stub_offset();
2353 }
2354
2355 protected:
2356 void
2357 do_adjust_output_section(Output_section* os)
2358 { os->set_entsize(0); }
2359
2360 private:
2361 // Template for standard LA25 stub.
2362 static const uint32_t la25_stub_entry[];
2363 // Template for microMIPS LA25 stub.
2364 static const uint32_t la25_stub_micromips_entry[];
2365
2366 // Set the final size.
2367 void
2368 set_final_data_size()
2369 { this->set_data_size(this->symbols_.size() * 16); }
2370
2371 // Create a symbol for SYM stub's value and size, to help make the
2372 // disassembly easier to read.
2373 void
2374 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2375 Target_mips<size, big_endian>* target, uint64_t symsize);
2376
2377 // Write to a map file.
2378 void
2379 do_print_to_mapfile(Mapfile* mapfile) const
2380 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2381
2382 // Write out the LA25 stub section.
2383 void
2384 do_write(Output_file*);
2385
2386 // Symbols that have LA25 stubs.
2387 std::vector<Mips_symbol<size>*> symbols_;
2388 };
2389
2390 // MIPS-specific relocation writer.
2391
2392 template<int sh_type, bool dynamic, int size, bool big_endian>
2393 struct Mips_output_reloc_writer;
2394
2395 template<int sh_type, bool dynamic, bool big_endian>
2396 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2397 {
2398 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2399 typedef std::vector<Output_reloc_type> Relocs;
2400
2401 static void
2402 write(typename Relocs::const_iterator p, unsigned char* pov)
2403 { p->write(pov); }
2404 };
2405
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2408 {
2409 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2410 typedef std::vector<Output_reloc_type> Relocs;
2411
2412 static void
2413 write(typename Relocs::const_iterator p, unsigned char* pov)
2414 {
2415 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2416 orel.put_r_offset(p->get_address());
2417 orel.put_r_sym(p->get_symbol_index());
2418 orel.put_r_ssym(RSS_UNDEF);
2419 orel.put_r_type(p->type());
2420 if (p->type() == elfcpp::R_MIPS_REL32)
2421 orel.put_r_type2(elfcpp::R_MIPS_64);
2422 else
2423 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2424 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2425 }
2426 };
2427
2428 template<int sh_type, bool dynamic, int size, bool big_endian>
2429 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2430 size, big_endian>
2431 {
2432 public:
2433 Mips_output_data_reloc(bool sort_relocs)
2434 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2435 { }
2436
2437 protected:
2438 // Write out the data.
2439 void
2440 do_write(Output_file* of)
2441 {
2442 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2443 big_endian> Writer;
2444 this->template do_write_generic<Writer>(of);
2445 }
2446 };
2447
2448
2449 // A class to handle the PLT data.
2450
2451 template<int size, bool big_endian>
2452 class Mips_output_data_plt : public Output_section_data
2453 {
2454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2455 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2456 size, big_endian> Reloc_section;
2457
2458 public:
2459 // Create the PLT section. The ordinary .got section is an argument,
2460 // since we need to refer to the start.
2461 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2462 Target_mips<size, big_endian>* target)
2463 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2464 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2465 target_(target)
2466 {
2467 this->rel_ = new Reloc_section(false);
2468 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2469 elfcpp::SHF_ALLOC, this->rel_,
2470 ORDER_DYNAMIC_PLT_RELOCS, false);
2471 }
2472
2473 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2474 void
2475 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2476
2477 // Return the .rel.plt section data.
2478 const Reloc_section*
2479 rel_plt() const
2480 { return this->rel_; }
2481
2482 // Return the number of PLT entries.
2483 unsigned int
2484 entry_count() const
2485 { return this->symbols_.size(); }
2486
2487 // Return the offset of the first non-reserved PLT entry.
2488 unsigned int
2489 first_plt_entry_offset() const
2490 { return sizeof(plt0_entry_o32); }
2491
2492 // Return the size of a PLT entry.
2493 unsigned int
2494 plt_entry_size() const
2495 { return sizeof(plt_entry); }
2496
2497 // Set final PLT offsets. For each symbol, determine whether standard or
2498 // compressed (MIPS16 or microMIPS) PLT entry is used.
2499 void
2500 set_plt_offsets();
2501
2502 // Return the offset of the first standard PLT entry.
2503 unsigned int
2504 first_mips_plt_offset() const
2505 { return this->plt_header_size_; }
2506
2507 // Return the offset of the first compressed PLT entry.
2508 unsigned int
2509 first_comp_plt_offset() const
2510 { return this->plt_header_size_ + this->plt_mips_offset_; }
2511
2512 // Return whether there are any standard PLT entries.
2513 bool
2514 has_standard_entries() const
2515 { return this->plt_mips_offset_ > 0; }
2516
2517 // Return the output address of standard PLT entry.
2518 Mips_address
2519 mips_entry_address(const Mips_symbol<size>* sym) const
2520 {
2521 gold_assert (sym->has_mips_plt_offset());
2522 return (this->address() + this->first_mips_plt_offset()
2523 + sym->mips_plt_offset());
2524 }
2525
2526 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2527 Mips_address
2528 comp_entry_address(const Mips_symbol<size>* sym) const
2529 {
2530 gold_assert (sym->has_comp_plt_offset());
2531 return (this->address() + this->first_comp_plt_offset()
2532 + sym->comp_plt_offset());
2533 }
2534
2535 protected:
2536 void
2537 do_adjust_output_section(Output_section* os)
2538 { os->set_entsize(0); }
2539
2540 // Write to a map file.
2541 void
2542 do_print_to_mapfile(Mapfile* mapfile) const
2543 { mapfile->print_output_data(this, _(".plt")); }
2544
2545 private:
2546 // Template for the first PLT entry.
2547 static const uint32_t plt0_entry_o32[];
2548 static const uint32_t plt0_entry_n32[];
2549 static const uint32_t plt0_entry_n64[];
2550 static const uint32_t plt0_entry_micromips_o32[];
2551 static const uint32_t plt0_entry_micromips32_o32[];
2552
2553 // Template for subsequent PLT entries.
2554 static const uint32_t plt_entry[];
2555 static const uint32_t plt_entry_r6[];
2556 static const uint32_t plt_entry_mips16_o32[];
2557 static const uint32_t plt_entry_micromips_o32[];
2558 static const uint32_t plt_entry_micromips32_o32[];
2559
2560 // Set the final size.
2561 void
2562 set_final_data_size()
2563 {
2564 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2565 + this->plt_comp_offset_);
2566 }
2567
2568 // Write out the PLT data.
2569 void
2570 do_write(Output_file*);
2571
2572 // Return whether the plt header contains microMIPS code. For the sake of
2573 // cache alignment always use a standard header whenever any standard entries
2574 // are present even if microMIPS entries are present as well. This also lets
2575 // the microMIPS header rely on the value of $v0 only set by microMIPS
2576 // entries, for a small size reduction.
2577 bool
2578 is_plt_header_compressed() const
2579 {
2580 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2581 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2582 }
2583
2584 // Return the size of the PLT header.
2585 unsigned int
2586 get_plt_header_size() const
2587 {
2588 if (this->target_->is_output_n64())
2589 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2590 else if (this->target_->is_output_n32())
2591 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2592 else if (!this->is_plt_header_compressed())
2593 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2594 else if (this->target_->use_32bit_micromips_instructions())
2595 return (2 * sizeof(plt0_entry_micromips32_o32)
2596 / sizeof(plt0_entry_micromips32_o32[0]));
2597 else
2598 return (2 * sizeof(plt0_entry_micromips_o32)
2599 / sizeof(plt0_entry_micromips_o32[0]));
2600 }
2601
2602 // Return the PLT header entry.
2603 const uint32_t*
2604 get_plt_header_entry() const
2605 {
2606 if (this->target_->is_output_n64())
2607 return plt0_entry_n64;
2608 else if (this->target_->is_output_n32())
2609 return plt0_entry_n32;
2610 else if (!this->is_plt_header_compressed())
2611 return plt0_entry_o32;
2612 else if (this->target_->use_32bit_micromips_instructions())
2613 return plt0_entry_micromips32_o32;
2614 else
2615 return plt0_entry_micromips_o32;
2616 }
2617
2618 // Return the size of the standard PLT entry.
2619 unsigned int
2620 standard_plt_entry_size() const
2621 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2622
2623 // Return the size of the compressed PLT entry.
2624 unsigned int
2625 compressed_plt_entry_size() const
2626 {
2627 gold_assert(!this->target_->is_output_newabi());
2628
2629 if (!this->target_->is_output_micromips())
2630 return (2 * sizeof(plt_entry_mips16_o32)
2631 / sizeof(plt_entry_mips16_o32[0]));
2632 else if (this->target_->use_32bit_micromips_instructions())
2633 return (2 * sizeof(plt_entry_micromips32_o32)
2634 / sizeof(plt_entry_micromips32_o32[0]));
2635 else
2636 return (2 * sizeof(plt_entry_micromips_o32)
2637 / sizeof(plt_entry_micromips_o32[0]));
2638 }
2639
2640 // The reloc section.
2641 Reloc_section* rel_;
2642 // The .got.plt section.
2643 Output_data_space* got_plt_;
2644 // Symbols that have PLT entry.
2645 std::vector<Mips_symbol<size>*> symbols_;
2646 // The offset of the next standard PLT entry to create.
2647 unsigned int plt_mips_offset_;
2648 // The offset of the next compressed PLT entry to create.
2649 unsigned int plt_comp_offset_;
2650 // The size of the PLT header in bytes.
2651 unsigned int plt_header_size_;
2652 // The target.
2653 Target_mips<size, big_endian>* target_;
2654 };
2655
2656 // A class to handle the .MIPS.stubs data.
2657
2658 template<int size, bool big_endian>
2659 class Mips_output_data_mips_stubs : public Output_section_data
2660 {
2661 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2662
2663 // Unordered set of .MIPS.stubs entries.
2664 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2665 Mips_stubs_entry_set;
2666
2667 public:
2668 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2669 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2670 stub_offsets_are_set_(false), target_(target)
2671 { }
2672
2673 // Create entry for a symbol.
2674 void
2675 make_entry(Mips_symbol<size>*);
2676
2677 // Remove entry for a symbol.
2678 void
2679 remove_entry(Mips_symbol<size>* gsym);
2680
2681 // Set stub offsets for symbols. This method expects that the number of
2682 // entries in dynamic symbol table is set.
2683 void
2684 set_lazy_stub_offsets();
2685
2686 void
2687 set_needs_dynsym_value();
2688
2689 // Set the number of entries in dynamic symbol table.
2690 void
2691 set_dynsym_count(unsigned int dynsym_count)
2692 { this->dynsym_count_ = dynsym_count; }
2693
2694 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2695 // count is greater than 0x10000. If the dynamic symbol count is less than
2696 // 0x10000, the stub will be 4 bytes smaller.
2697 // There's no disadvantage from using microMIPS code here, so for the sake of
2698 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2699 // output produced at all. This has a benefit of stubs being shorter by
2700 // 4 bytes each too, unless in the insn32 mode.
2701 unsigned int
2702 stub_max_size() const
2703 {
2704 if (!this->target_->is_output_micromips()
2705 || this->target_->use_32bit_micromips_instructions())
2706 return 20;
2707 else
2708 return 16;
2709 }
2710
2711 // Return the size of the stub. This method expects that the final dynsym
2712 // count is set.
2713 unsigned int
2714 stub_size() const
2715 {
2716 gold_assert(this->dynsym_count_ != -1U);
2717 if (this->dynsym_count_ > 0x10000)
2718 return this->stub_max_size();
2719 else
2720 return this->stub_max_size() - 4;
2721 }
2722
2723 // Return output address of a stub.
2724 Mips_address
2725 stub_address(const Mips_symbol<size>* sym) const
2726 {
2727 gold_assert(sym->has_lazy_stub());
2728 return this->address() + sym->lazy_stub_offset();
2729 }
2730
2731 protected:
2732 void
2733 do_adjust_output_section(Output_section* os)
2734 { os->set_entsize(0); }
2735
2736 // Write to a map file.
2737 void
2738 do_print_to_mapfile(Mapfile* mapfile) const
2739 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2740
2741 private:
2742 static const uint32_t lazy_stub_normal_1[];
2743 static const uint32_t lazy_stub_normal_1_n64[];
2744 static const uint32_t lazy_stub_normal_2[];
2745 static const uint32_t lazy_stub_normal_2_n64[];
2746 static const uint32_t lazy_stub_big[];
2747 static const uint32_t lazy_stub_big_n64[];
2748
2749 static const uint32_t lazy_stub_micromips_normal_1[];
2750 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2751 static const uint32_t lazy_stub_micromips_normal_2[];
2752 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2753 static const uint32_t lazy_stub_micromips_big[];
2754 static const uint32_t lazy_stub_micromips_big_n64[];
2755
2756 static const uint32_t lazy_stub_micromips32_normal_1[];
2757 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2758 static const uint32_t lazy_stub_micromips32_normal_2[];
2759 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2760 static const uint32_t lazy_stub_micromips32_big[];
2761 static const uint32_t lazy_stub_micromips32_big_n64[];
2762
2763 // Set the final size.
2764 void
2765 set_final_data_size()
2766 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2767
2768 // Write out the .MIPS.stubs data.
2769 void
2770 do_write(Output_file*);
2771
2772 // .MIPS.stubs symbols
2773 Mips_stubs_entry_set symbols_;
2774 // Number of entries in dynamic symbol table.
2775 unsigned int dynsym_count_;
2776 // Whether the stub offsets are set.
2777 bool stub_offsets_are_set_;
2778 // The target.
2779 Target_mips<size, big_endian>* target_;
2780 };
2781
2782 // This class handles Mips .reginfo output section.
2783
2784 template<int size, bool big_endian>
2785 class Mips_output_section_reginfo : public Output_section_data
2786 {
2787 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2788
2789 public:
2790 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2791 Valtype gprmask, Valtype cprmask1,
2792 Valtype cprmask2, Valtype cprmask3,
2793 Valtype cprmask4)
2794 : Output_section_data(24, 4, true), target_(target),
2795 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2796 cprmask3_(cprmask3), cprmask4_(cprmask4)
2797 { }
2798
2799 protected:
2800 // Write to a map file.
2801 void
2802 do_print_to_mapfile(Mapfile* mapfile) const
2803 { mapfile->print_output_data(this, _(".reginfo")); }
2804
2805 // Write out reginfo section.
2806 void
2807 do_write(Output_file* of);
2808
2809 private:
2810 Target_mips<size, big_endian>* target_;
2811
2812 // gprmask of the output .reginfo section.
2813 Valtype gprmask_;
2814 // cprmask1 of the output .reginfo section.
2815 Valtype cprmask1_;
2816 // cprmask2 of the output .reginfo section.
2817 Valtype cprmask2_;
2818 // cprmask3 of the output .reginfo section.
2819 Valtype cprmask3_;
2820 // cprmask4 of the output .reginfo section.
2821 Valtype cprmask4_;
2822 };
2823
2824 // This class handles .MIPS.abiflags output section.
2825
2826 template<int size, bool big_endian>
2827 class Mips_output_section_abiflags : public Output_section_data
2828 {
2829 public:
2830 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2831 : Output_section_data(24, 8, true), abiflags_(abiflags)
2832 { }
2833
2834 protected:
2835 // Write to a map file.
2836 void
2837 do_print_to_mapfile(Mapfile* mapfile) const
2838 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2839
2840 void
2841 do_write(Output_file* of);
2842
2843 private:
2844 const Mips_abiflags<big_endian>& abiflags_;
2845 };
2846
2847 // The MIPS target has relocation types which default handling of relocatable
2848 // relocation cannot process. So we have to extend the default code.
2849
2850 template<bool big_endian, typename Classify_reloc>
2851 class Mips_scan_relocatable_relocs :
2852 public Default_scan_relocatable_relocs<Classify_reloc>
2853 {
2854 public:
2855 // Return the strategy to use for a local symbol which is a section
2856 // symbol, given the relocation type.
2857 inline Relocatable_relocs::Reloc_strategy
2858 local_section_strategy(unsigned int r_type, Relobj* object)
2859 {
2860 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2861 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2862 else
2863 {
2864 switch (r_type)
2865 {
2866 case elfcpp::R_MIPS_26:
2867 return Relocatable_relocs::RELOC_SPECIAL;
2868
2869 default:
2870 return Default_scan_relocatable_relocs<Classify_reloc>::
2871 local_section_strategy(r_type, object);
2872 }
2873 }
2874 }
2875 };
2876
2877 // Mips_copy_relocs class. The only difference from the base class is the
2878 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2879 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2880 // cannot be made dynamic, a COPY reloc is emitted.
2881
2882 template<int sh_type, int size, bool big_endian>
2883 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2884 {
2885 public:
2886 Mips_copy_relocs()
2887 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2888 { }
2889
2890 // Emit any saved relocations which turn out to be needed. This is
2891 // called after all the relocs have been scanned.
2892 void
2893 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2894 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2895
2896 private:
2897 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2898 Copy_reloc_entry;
2899
2900 // Emit this reloc if appropriate. This is called after we have
2901 // scanned all the relocations, so we know whether we emitted a
2902 // COPY relocation for SYM_.
2903 void
2904 emit_entry(Copy_reloc_entry& entry,
2905 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2906 Symbol_table* symtab, Layout* layout,
2907 Target_mips<size, big_endian>* target);
2908 };
2909
2910
2911 // Return true if the symbol SYM should be considered to resolve local
2912 // to the current module, and false otherwise. The logic is taken from
2913 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2914 static bool
2915 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2916 bool local_protected)
2917 {
2918 // If it's a local sym, of course we resolve locally.
2919 if (sym == NULL)
2920 return true;
2921
2922 // STV_HIDDEN or STV_INTERNAL ones must be local.
2923 if (sym->visibility() == elfcpp::STV_HIDDEN
2924 || sym->visibility() == elfcpp::STV_INTERNAL)
2925 return true;
2926
2927 // If we don't have a definition in a regular file, then we can't
2928 // resolve locally. The sym is either undefined or dynamic.
2929 if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2930 || sym->is_undefined())
2931 return false;
2932
2933 // Forced local symbols resolve locally.
2934 if (sym->is_forced_local())
2935 return true;
2936
2937 // As do non-dynamic symbols.
2938 if (!has_dynsym_entry)
2939 return true;
2940
2941 // At this point, we know the symbol is defined and dynamic. In an
2942 // executable it must resolve locally, likewise when building symbolic
2943 // shared libraries.
2944 if (parameters->options().output_is_executable()
2945 || parameters->options().Bsymbolic())
2946 return true;
2947
2948 // Now deal with defined dynamic symbols in shared libraries. Ones
2949 // with default visibility might not resolve locally.
2950 if (sym->visibility() == elfcpp::STV_DEFAULT)
2951 return false;
2952
2953 // STV_PROTECTED non-function symbols are local.
2954 if (sym->type() != elfcpp::STT_FUNC)
2955 return true;
2956
2957 // Function pointer equality tests may require that STV_PROTECTED
2958 // symbols be treated as dynamic symbols. If the address of a
2959 // function not defined in an executable is set to that function's
2960 // plt entry in the executable, then the address of the function in
2961 // a shared library must also be the plt entry in the executable.
2962 return local_protected;
2963 }
2964
2965 // Return TRUE if references to this symbol always reference the symbol in this
2966 // object.
2967 static bool
2968 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2969 {
2970 return symbol_refs_local(sym, has_dynsym_entry, false);
2971 }
2972
2973 // Return TRUE if calls to this symbol always call the version in this object.
2974 static bool
2975 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2976 {
2977 return symbol_refs_local(sym, has_dynsym_entry, true);
2978 }
2979
2980 // Compare GOT offsets of two symbols.
2981
2982 template<int size, bool big_endian>
2983 static bool
2984 got_offset_compare(Symbol* sym1, Symbol* sym2)
2985 {
2986 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2987 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2988 unsigned int area1 = mips_sym1->global_got_area();
2989 unsigned int area2 = mips_sym2->global_got_area();
2990 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2991
2992 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2993 if (area1 != area2)
2994 return area1 < area2;
2995
2996 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2997 }
2998
2999 // This method divides dynamic symbols into symbols that have GOT entry, and
3000 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3001 // Mips ABI requires that symbols with the GOT entry must be at the end of
3002 // dynamic symbol table, and the order in dynamic symbol table must match the
3003 // order in GOT.
3004
3005 template<int size, bool big_endian>
3006 static void
3007 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3008 std::vector<Symbol*>* non_got_symbols,
3009 std::vector<Symbol*>* got_symbols)
3010 {
3011 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3012 p != dyn_symbols->end();
3013 ++p)
3014 {
3015 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3016 if (mips_sym->global_got_area() == GGA_NORMAL
3017 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3018 got_symbols->push_back(mips_sym);
3019 else
3020 non_got_symbols->push_back(mips_sym);
3021 }
3022
3023 std::sort(got_symbols->begin(), got_symbols->end(),
3024 got_offset_compare<size, big_endian>);
3025 }
3026
3027 // Functor class for processing the global symbol table.
3028
3029 template<int size, bool big_endian>
3030 class Symbol_visitor_check_symbols
3031 {
3032 public:
3033 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3034 Layout* layout, Symbol_table* symtab)
3035 : target_(target), layout_(layout), symtab_(symtab)
3036 { }
3037
3038 void
3039 operator()(Sized_symbol<size>* sym)
3040 {
3041 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3042 if (local_pic_function<size, big_endian>(mips_sym))
3043 {
3044 // SYM is a function that might need $25 to be valid on entry.
3045 // If we're creating a non-PIC relocatable object, mark SYM as
3046 // being PIC. If we're creating a non-relocatable object with
3047 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3048 // stub.
3049 if (parameters->options().relocatable())
3050 {
3051 if (!parameters->options().output_is_position_independent())
3052 mips_sym->set_pic();
3053 }
3054 else if (mips_sym->has_nonpic_branches())
3055 {
3056 this->target_->la25_stub_section(layout_)
3057 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3058 }
3059 }
3060 }
3061
3062 private:
3063 Target_mips<size, big_endian>* target_;
3064 Layout* layout_;
3065 Symbol_table* symtab_;
3066 };
3067
3068 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3069 // and endianness. The relocation format for MIPS-64 is non-standard.
3070
3071 template<int sh_type, int size, bool big_endian>
3072 struct Mips_reloc_types;
3073
3074 template<bool big_endian>
3075 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3076 {
3077 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3078 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3079
3080 static typename elfcpp::Elf_types<32>::Elf_Swxword
3081 get_r_addend(const Reloc*)
3082 { return 0; }
3083
3084 static inline void
3085 set_reloc_addend(Reloc_write*,
3086 typename elfcpp::Elf_types<32>::Elf_Swxword)
3087 { gold_unreachable(); }
3088 };
3089
3090 template<bool big_endian>
3091 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3092 {
3093 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3094 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3095
3096 static typename elfcpp::Elf_types<32>::Elf_Swxword
3097 get_r_addend(const Reloc* reloc)
3098 { return reloc->get_r_addend(); }
3099
3100 static inline void
3101 set_reloc_addend(Reloc_write* p,
3102 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3103 { p->put_r_addend(val); }
3104 };
3105
3106 template<bool big_endian>
3107 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3108 {
3109 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3110 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3111
3112 static typename elfcpp::Elf_types<64>::Elf_Swxword
3113 get_r_addend(const Reloc*)
3114 { return 0; }
3115
3116 static inline void
3117 set_reloc_addend(Reloc_write*,
3118 typename elfcpp::Elf_types<64>::Elf_Swxword)
3119 { gold_unreachable(); }
3120 };
3121
3122 template<bool big_endian>
3123 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3124 {
3125 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3126 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3127
3128 static typename elfcpp::Elf_types<64>::Elf_Swxword
3129 get_r_addend(const Reloc* reloc)
3130 { return reloc->get_r_addend(); }
3131
3132 static inline void
3133 set_reloc_addend(Reloc_write* p,
3134 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3135 { p->put_r_addend(val); }
3136 };
3137
3138 // Forward declaration.
3139 static unsigned int
3140 mips_get_size_for_reloc(unsigned int, Relobj*);
3141
3142 // A class for inquiring about properties of a relocation,
3143 // used while scanning relocs during a relocatable link and
3144 // garbage collection.
3145
3146 template<int sh_type_, int size, bool big_endian>
3147 class Mips_classify_reloc;
3148
3149 template<int sh_type_, bool big_endian>
3150 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3151 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3152 {
3153 public:
3154 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3155 Reltype;
3156 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3157 Reltype_write;
3158
3159 // Return the symbol referred to by the relocation.
3160 static inline unsigned int
3161 get_r_sym(const Reltype* reloc)
3162 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3163
3164 // Return the type of the relocation.
3165 static inline unsigned int
3166 get_r_type(const Reltype* reloc)
3167 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3168
3169 static inline unsigned int
3170 get_r_type2(const Reltype*)
3171 { return 0; }
3172
3173 static inline unsigned int
3174 get_r_type3(const Reltype*)
3175 { return 0; }
3176
3177 static inline unsigned int
3178 get_r_ssym(const Reltype*)
3179 { return 0; }
3180
3181 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3182 static inline unsigned int
3183 get_r_addend(const Reltype* reloc)
3184 {
3185 if (sh_type_ == elfcpp::SHT_REL)
3186 return 0;
3187 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3188 }
3189
3190 // Write the r_info field to a new reloc, using the r_info field from
3191 // the original reloc, replacing the r_sym field with R_SYM.
3192 static inline void
3193 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3194 {
3195 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3196 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3197 }
3198
3199 // Write the r_addend field to a new reloc.
3200 static inline void
3201 put_r_addend(Reltype_write* to,
3202 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3203 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3204
3205 // Return the size of the addend of the relocation (only used for SHT_REL).
3206 static unsigned int
3207 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3208 { return mips_get_size_for_reloc(r_type, obj); }
3209 };
3210
3211 template<int sh_type_, bool big_endian>
3212 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3213 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3214 {
3215 public:
3216 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3217 Reltype;
3218 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3219 Reltype_write;
3220
3221 // Return the symbol referred to by the relocation.
3222 static inline unsigned int
3223 get_r_sym(const Reltype* reloc)
3224 { return reloc->get_r_sym(); }
3225
3226 // Return the r_type of the relocation.
3227 static inline unsigned int
3228 get_r_type(const Reltype* reloc)
3229 { return reloc->get_r_type(); }
3230
3231 // Return the r_type2 of the relocation.
3232 static inline unsigned int
3233 get_r_type2(const Reltype* reloc)
3234 { return reloc->get_r_type2(); }
3235
3236 // Return the r_type3 of the relocation.
3237 static inline unsigned int
3238 get_r_type3(const Reltype* reloc)
3239 { return reloc->get_r_type3(); }
3240
3241 // Return the special symbol of the relocation.
3242 static inline unsigned int
3243 get_r_ssym(const Reltype* reloc)
3244 { return reloc->get_r_ssym(); }
3245
3246 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3247 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3248 get_r_addend(const Reltype* reloc)
3249 {
3250 if (sh_type_ == elfcpp::SHT_REL)
3251 return 0;
3252 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3253 }
3254
3255 // Write the r_info field to a new reloc, using the r_info field from
3256 // the original reloc, replacing the r_sym field with R_SYM.
3257 static inline void
3258 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3259 {
3260 new_reloc->put_r_sym(r_sym);
3261 new_reloc->put_r_ssym(reloc->get_r_ssym());
3262 new_reloc->put_r_type3(reloc->get_r_type3());
3263 new_reloc->put_r_type2(reloc->get_r_type2());
3264 new_reloc->put_r_type(reloc->get_r_type());
3265 }
3266
3267 // Write the r_addend field to a new reloc.
3268 static inline void
3269 put_r_addend(Reltype_write* to,
3270 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3271 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3272
3273 // Return the size of the addend of the relocation (only used for SHT_REL).
3274 static unsigned int
3275 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3276 { return mips_get_size_for_reloc(r_type, obj); }
3277 };
3278
3279 template<int size, bool big_endian>
3280 class Target_mips : public Sized_target<size, big_endian>
3281 {
3282 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3283 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3284 Reloc_section;
3285 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3286 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3287 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3288 Reltype;
3289 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3290 Relatype;
3291
3292 public:
3293 Target_mips(const Target::Target_info* info = &mips_info)
3294 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3295 got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(), dyn_relocs_(),
3296 la25_stub_(NULL), mips_mach_extensions_(), mips_stubs_(NULL),
3297 attributes_section_data_(NULL), abiflags_(NULL), mach_(0), layout_(NULL),
3298 got16_addends_(), has_abiflags_section_(false),
3299 entry_symbol_is_compressed_(false), insn32_(false)
3300 {
3301 this->add_machine_extensions();
3302 }
3303
3304 // The offset of $gp from the beginning of the .got section.
3305 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3306
3307 // The maximum size of the GOT for it to be addressable using 16-bit
3308 // offsets from $gp.
3309 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3310
3311 // Make a new symbol table entry for the Mips target.
3312 Sized_symbol<size>*
3313 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3314 { return new Mips_symbol<size>(); }
3315
3316 // Process the relocations to determine unreferenced sections for
3317 // garbage collection.
3318 void
3319 gc_process_relocs(Symbol_table* symtab,
3320 Layout* layout,
3321 Sized_relobj_file<size, big_endian>* object,
3322 unsigned int data_shndx,
3323 unsigned int sh_type,
3324 const unsigned char* prelocs,
3325 size_t reloc_count,
3326 Output_section* output_section,
3327 bool needs_special_offset_handling,
3328 size_t local_symbol_count,
3329 const unsigned char* plocal_symbols);
3330
3331 // Scan the relocations to look for symbol adjustments.
3332 void
3333 scan_relocs(Symbol_table* symtab,
3334 Layout* layout,
3335 Sized_relobj_file<size, big_endian>* object,
3336 unsigned int data_shndx,
3337 unsigned int sh_type,
3338 const unsigned char* prelocs,
3339 size_t reloc_count,
3340 Output_section* output_section,
3341 bool needs_special_offset_handling,
3342 size_t local_symbol_count,
3343 const unsigned char* plocal_symbols);
3344
3345 // Finalize the sections.
3346 void
3347 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3348
3349 // Relocate a section.
3350 void
3351 relocate_section(const Relocate_info<size, big_endian>*,
3352 unsigned int sh_type,
3353 const unsigned char* prelocs,
3354 size_t reloc_count,
3355 Output_section* output_section,
3356 bool needs_special_offset_handling,
3357 unsigned char* view,
3358 Mips_address view_address,
3359 section_size_type view_size,
3360 const Reloc_symbol_changes*);
3361
3362 // Scan the relocs during a relocatable link.
3363 void
3364 scan_relocatable_relocs(Symbol_table* symtab,
3365 Layout* layout,
3366 Sized_relobj_file<size, big_endian>* object,
3367 unsigned int data_shndx,
3368 unsigned int sh_type,
3369 const unsigned char* prelocs,
3370 size_t reloc_count,
3371 Output_section* output_section,
3372 bool needs_special_offset_handling,
3373 size_t local_symbol_count,
3374 const unsigned char* plocal_symbols,
3375 Relocatable_relocs*);
3376
3377 // Scan the relocs for --emit-relocs.
3378 void
3379 emit_relocs_scan(Symbol_table* symtab,
3380 Layout* layout,
3381 Sized_relobj_file<size, big_endian>* object,
3382 unsigned int data_shndx,
3383 unsigned int sh_type,
3384 const unsigned char* prelocs,
3385 size_t reloc_count,
3386 Output_section* output_section,
3387 bool needs_special_offset_handling,
3388 size_t local_symbol_count,
3389 const unsigned char* plocal_syms,
3390 Relocatable_relocs* rr);
3391
3392 // Emit relocations for a section.
3393 void
3394 relocate_relocs(const Relocate_info<size, big_endian>*,
3395 unsigned int sh_type,
3396 const unsigned char* prelocs,
3397 size_t reloc_count,
3398 Output_section* output_section,
3399 typename elfcpp::Elf_types<size>::Elf_Off
3400 offset_in_output_section,
3401 unsigned char* view,
3402 Mips_address view_address,
3403 section_size_type view_size,
3404 unsigned char* reloc_view,
3405 section_size_type reloc_view_size);
3406
3407 // Perform target-specific processing in a relocatable link. This is
3408 // only used if we use the relocation strategy RELOC_SPECIAL.
3409 void
3410 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3411 unsigned int sh_type,
3412 const unsigned char* preloc_in,
3413 size_t relnum,
3414 Output_section* output_section,
3415 typename elfcpp::Elf_types<size>::Elf_Off
3416 offset_in_output_section,
3417 unsigned char* view,
3418 Mips_address view_address,
3419 section_size_type view_size,
3420 unsigned char* preloc_out);
3421
3422 // Return whether SYM is defined by the ABI.
3423 bool
3424 do_is_defined_by_abi(const Symbol* sym) const
3425 {
3426 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3427 || (strcmp(sym->name(), "_gp_disp") == 0)
3428 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3429 }
3430
3431 // Return the number of entries in the GOT.
3432 unsigned int
3433 got_entry_count() const
3434 {
3435 if (!this->has_got_section())
3436 return 0;
3437 return this->got_size() / (size/8);
3438 }
3439
3440 // Return the number of entries in the PLT.
3441 unsigned int
3442 plt_entry_count() const
3443 {
3444 if (this->plt_ == NULL)
3445 return 0;
3446 return this->plt_->entry_count();
3447 }
3448
3449 // Return the offset of the first non-reserved PLT entry.
3450 unsigned int
3451 first_plt_entry_offset() const
3452 { return this->plt_->first_plt_entry_offset(); }
3453
3454 // Return the size of each PLT entry.
3455 unsigned int
3456 plt_entry_size() const
3457 { return this->plt_->plt_entry_size(); }
3458
3459 // Get the GOT section, creating it if necessary.
3460 Mips_output_data_got<size, big_endian>*
3461 got_section(Symbol_table*, Layout*);
3462
3463 // Get the GOT section.
3464 Mips_output_data_got<size, big_endian>*
3465 got_section() const
3466 {
3467 gold_assert(this->got_ != NULL);
3468 return this->got_;
3469 }
3470
3471 // Get the .MIPS.stubs section, creating it if necessary.
3472 Mips_output_data_mips_stubs<size, big_endian>*
3473 mips_stubs_section(Layout* layout);
3474
3475 // Get the .MIPS.stubs section.
3476 Mips_output_data_mips_stubs<size, big_endian>*
3477 mips_stubs_section() const
3478 {
3479 gold_assert(this->mips_stubs_ != NULL);
3480 return this->mips_stubs_;
3481 }
3482
3483 // Get the LA25 stub section, creating it if necessary.
3484 Mips_output_data_la25_stub<size, big_endian>*
3485 la25_stub_section(Layout*);
3486
3487 // Get the LA25 stub section.
3488 Mips_output_data_la25_stub<size, big_endian>*
3489 la25_stub_section()
3490 {
3491 gold_assert(this->la25_stub_ != NULL);
3492 return this->la25_stub_;
3493 }
3494
3495 // Get gp value. It has the value of .got + 0x7FF0.
3496 Mips_address
3497 gp_value() const
3498 {
3499 if (this->gp_ != NULL)
3500 return this->gp_->value();
3501 return 0;
3502 }
3503
3504 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3505 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3506 Mips_address
3507 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3508 {
3509 if (this->gp_ == NULL)
3510 return 0;
3511
3512 bool multi_got = false;
3513 if (this->has_got_section())
3514 multi_got = this->got_section()->multi_got();
3515 if (!multi_got)
3516 return this->gp_->value();
3517 else
3518 return this->gp_->value() + this->got_section()->get_got_offset(object);
3519 }
3520
3521 // Get the dynamic reloc section, creating it if necessary.
3522 Reloc_section*
3523 rel_dyn_section(Layout*);
3524
3525 bool
3526 do_has_custom_set_dynsym_indexes() const
3527 { return true; }
3528
3529 // Don't emit input .reginfo/.MIPS.abiflags sections to
3530 // output .reginfo/.MIPS.abiflags.
3531 bool
3532 do_should_include_section(elfcpp::Elf_Word sh_type) const
3533 {
3534 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3535 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3536 }
3537
3538 // Set the dynamic symbol indexes. INDEX is the index of the first
3539 // global dynamic symbol. Pointers to the symbols are stored into the
3540 // vector SYMS. The names are added to DYNPOOL. This returns an
3541 // updated dynamic symbol index.
3542 unsigned int
3543 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3544 std::vector<Symbol*>* syms, Stringpool* dynpool,
3545 Versions* versions, Symbol_table* symtab) const;
3546
3547 // Remove .MIPS.stubs entry for a symbol.
3548 void
3549 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3550 {
3551 if (this->mips_stubs_ != NULL)
3552 this->mips_stubs_->remove_entry(sym);
3553 }
3554
3555 // The value to write into got[1] for SVR4 targets, to identify it is
3556 // a GNU object. The dynamic linker can then use got[1] to store the
3557 // module pointer.
3558 uint64_t
3559 mips_elf_gnu_got1_mask()
3560 {
3561 if (this->is_output_n64())
3562 return (uint64_t)1 << 63;
3563 else
3564 return 1 << 31;
3565 }
3566
3567 // Whether the output has microMIPS code. This is valid only after
3568 // merge_obj_e_flags() is called.
3569 bool
3570 is_output_micromips() const
3571 {
3572 gold_assert(this->are_processor_specific_flags_set());
3573 return elfcpp::is_micromips(this->processor_specific_flags());
3574 }
3575
3576 // Whether the output uses N32 ABI. This is valid only after
3577 // merge_obj_e_flags() is called.
3578 bool
3579 is_output_n32() const
3580 {
3581 gold_assert(this->are_processor_specific_flags_set());
3582 return elfcpp::abi_n32(this->processor_specific_flags());
3583 }
3584
3585 // Whether the output uses R6 ISA. This is valid only after
3586 // merge_obj_e_flags() is called.
3587 bool
3588 is_output_r6() const
3589 {
3590 gold_assert(this->are_processor_specific_flags_set());
3591 return elfcpp::r6_isa(this->processor_specific_flags());
3592 }
3593
3594 // Whether the output uses N64 ABI.
3595 bool
3596 is_output_n64() const
3597 { return size == 64; }
3598
3599 // Whether the output uses NEWABI. This is valid only after
3600 // merge_obj_e_flags() is called.
3601 bool
3602 is_output_newabi() const
3603 { return this->is_output_n32() || this->is_output_n64(); }
3604
3605 // Whether we can only use 32-bit microMIPS instructions.
3606 bool
3607 use_32bit_micromips_instructions() const
3608 { return this->insn32_; }
3609
3610 // Return the r_sym field from a relocation.
3611 unsigned int
3612 get_r_sym(const unsigned char* preloc) const
3613 {
3614 // Since REL and RELA relocs share the same structure through
3615 // the r_info field, we can just use REL here.
3616 Reltype rel(preloc);
3617 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3618 get_r_sym(&rel);
3619 }
3620
3621 protected:
3622 // Return the value to use for a dynamic symbol which requires special
3623 // treatment. This is how we support equality comparisons of function
3624 // pointers across shared library boundaries, as described in the
3625 // processor specific ABI supplement.
3626 uint64_t
3627 do_dynsym_value(const Symbol* gsym) const;
3628
3629 // Make an ELF object.
3630 Object*
3631 do_make_elf_object(const std::string&, Input_file*, off_t,
3632 const elfcpp::Ehdr<size, big_endian>& ehdr);
3633
3634 Object*
3635 do_make_elf_object(const std::string&, Input_file*, off_t,
3636 const elfcpp::Ehdr<size, !big_endian>&)
3637 { gold_unreachable(); }
3638
3639 // Adjust ELF file header.
3640 void
3641 do_adjust_elf_header(unsigned char* view, int len);
3642
3643 // Get the custom dynamic tag value.
3644 unsigned int
3645 do_dynamic_tag_custom_value(elfcpp::DT) const;
3646
3647 // Adjust the value written to the dynamic symbol table.
3648 virtual void
3649 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3650 {
3651 elfcpp::Sym<size, big_endian> isym(view);
3652 elfcpp::Sym_write<size, big_endian> osym(view);
3653 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3654
3655 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3656 // to treat compressed symbols like any other.
3657 Mips_address value = isym.get_st_value();
3658 if (mips_sym->is_mips16() && value != 0)
3659 {
3660 if (!mips_sym->has_mips16_fn_stub())
3661 value |= 1;
3662 else
3663 {
3664 // If we have a MIPS16 function with a stub, the dynamic symbol
3665 // must refer to the stub, since only the stub uses the standard
3666 // calling conventions. Stub contains MIPS32 code, so don't add +1
3667 // in this case.
3668
3669 // There is a code which does this in the method
3670 // Target_mips::do_dynsym_value, but that code will only be
3671 // executed if the symbol is from dynobj.
3672 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3673 // table.
3674
3675 Mips16_stub_section<size, big_endian>* fn_stub =
3676 mips_sym->template get_mips16_fn_stub<big_endian>();
3677 value = fn_stub->output_address();
3678 osym.put_st_size(fn_stub->section_size());
3679 }
3680
3681 osym.put_st_value(value);
3682 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3683 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3684 }
3685 else if ((mips_sym->is_micromips()
3686 // Stubs are always microMIPS if there is any microMIPS code in
3687 // the output.
3688 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3689 && value != 0)
3690 {
3691 osym.put_st_value(value | 1);
3692 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3693 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3694 }
3695 }
3696
3697 private:
3698 // The class which scans relocations.
3699 class Scan
3700 {
3701 public:
3702 Scan()
3703 { }
3704
3705 static inline int
3706 get_reference_flags(unsigned int r_type);
3707
3708 inline void
3709 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3710 Sized_relobj_file<size, big_endian>* object,
3711 unsigned int data_shndx,
3712 Output_section* output_section,
3713 const Reltype& reloc, unsigned int r_type,
3714 const elfcpp::Sym<size, big_endian>& lsym,
3715 bool is_discarded);
3716
3717 inline void
3718 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3719 Sized_relobj_file<size, big_endian>* object,
3720 unsigned int data_shndx,
3721 Output_section* output_section,
3722 const Relatype& reloc, unsigned int r_type,
3723 const elfcpp::Sym<size, big_endian>& lsym,
3724 bool is_discarded);
3725
3726 inline void
3727 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3728 Sized_relobj_file<size, big_endian>* object,
3729 unsigned int data_shndx,
3730 Output_section* output_section,
3731 const Relatype* rela,
3732 const Reltype* rel,
3733 unsigned int rel_type,
3734 unsigned int r_type,
3735 const elfcpp::Sym<size, big_endian>& lsym,
3736 bool is_discarded);
3737
3738 inline void
3739 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3740 Sized_relobj_file<size, big_endian>* object,
3741 unsigned int data_shndx,
3742 Output_section* output_section,
3743 const Reltype& reloc, unsigned int r_type,
3744 Symbol* gsym);
3745
3746 inline void
3747 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3748 Sized_relobj_file<size, big_endian>* object,
3749 unsigned int data_shndx,
3750 Output_section* output_section,
3751 const Relatype& reloc, unsigned int r_type,
3752 Symbol* gsym);
3753
3754 inline void
3755 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3756 Sized_relobj_file<size, big_endian>* object,
3757 unsigned int data_shndx,
3758 Output_section* output_section,
3759 const Relatype* rela,
3760 const Reltype* rel,
3761 unsigned int rel_type,
3762 unsigned int r_type,
3763 Symbol* gsym);
3764
3765 inline bool
3766 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3767 Target_mips*,
3768 Sized_relobj_file<size, big_endian>*,
3769 unsigned int,
3770 Output_section*,
3771 const Reltype&,
3772 unsigned int,
3773 const elfcpp::Sym<size, big_endian>&)
3774 { return false; }
3775
3776 inline bool
3777 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3778 Target_mips*,
3779 Sized_relobj_file<size, big_endian>*,
3780 unsigned int,
3781 Output_section*,
3782 const Reltype&,
3783 unsigned int, Symbol*)
3784 { return false; }
3785
3786 inline bool
3787 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3788 Target_mips*,
3789 Sized_relobj_file<size, big_endian>*,
3790 unsigned int,
3791 Output_section*,
3792 const Relatype&,
3793 unsigned int,
3794 const elfcpp::Sym<size, big_endian>&)
3795 { return false; }
3796
3797 inline bool
3798 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3799 Target_mips*,
3800 Sized_relobj_file<size, big_endian>*,
3801 unsigned int,
3802 Output_section*,
3803 const Relatype&,
3804 unsigned int, Symbol*)
3805 { return false; }
3806 private:
3807 static void
3808 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3809 unsigned int r_type);
3810
3811 static void
3812 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3813 unsigned int r_type, Symbol*);
3814 };
3815
3816 // The class which implements relocation.
3817 class Relocate
3818 {
3819 public:
3820 Relocate()
3821 { }
3822
3823 ~Relocate()
3824 { }
3825
3826 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3827 inline bool
3828 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3829 unsigned int r_type,
3830 Output_section* output_section,
3831 Target_mips* target);
3832
3833 // Do a relocation. Return false if the caller should not issue
3834 // any warnings about this relocation.
3835 inline bool
3836 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3837 Target_mips*, Output_section*, size_t, const unsigned char*,
3838 const Sized_symbol<size>*, const Symbol_value<size>*,
3839 unsigned char*, Mips_address, section_size_type);
3840 };
3841
3842 // This POD class holds the dynamic relocations that should be emitted instead
3843 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3844 // relocations if it turns out that the symbol does not have static
3845 // relocations.
3846 class Dyn_reloc
3847 {
3848 public:
3849 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3850 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3851 Output_section* output_section, Mips_address r_offset)
3852 : sym_(sym), r_type_(r_type), relobj_(relobj),
3853 shndx_(shndx), output_section_(output_section),
3854 r_offset_(r_offset)
3855 { }
3856
3857 // Emit this reloc if appropriate. This is called after we have
3858 // scanned all the relocations, so we know whether the symbol has
3859 // static relocations.
3860 void
3861 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3862 Symbol_table* symtab)
3863 {
3864 if (!this->sym_->has_static_relocs())
3865 {
3866 got->record_global_got_symbol(this->sym_, this->relobj_,
3867 this->r_type_, true, false);
3868 if (!symbol_references_local(this->sym_,
3869 this->sym_->should_add_dynsym_entry(symtab)))
3870 rel_dyn->add_global(this->sym_, this->r_type_,
3871 this->output_section_, this->relobj_,
3872 this->shndx_, this->r_offset_);
3873 else
3874 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3875 this->output_section_, this->relobj_,
3876 this->shndx_, this->r_offset_);
3877 }
3878 }
3879
3880 private:
3881 Mips_symbol<size>* sym_;
3882 unsigned int r_type_;
3883 Mips_relobj<size, big_endian>* relobj_;
3884 unsigned int shndx_;
3885 Output_section* output_section_;
3886 Mips_address r_offset_;
3887 };
3888
3889 // Adjust TLS relocation type based on the options and whether this
3890 // is a local symbol.
3891 static tls::Tls_optimization
3892 optimize_tls_reloc(bool is_final, int r_type);
3893
3894 // Return whether there is a GOT section.
3895 bool
3896 has_got_section() const
3897 { return this->got_ != NULL; }
3898
3899 // Check whether the given ELF header flags describe a 32-bit binary.
3900 bool
3901 mips_32bit_flags(elfcpp::Elf_Word);
3902
3903 enum Mips_mach {
3904 mach_mips3000 = 3000,
3905 mach_mips3900 = 3900,
3906 mach_mips4000 = 4000,
3907 mach_mips4010 = 4010,
3908 mach_mips4100 = 4100,
3909 mach_mips4111 = 4111,
3910 mach_mips4120 = 4120,
3911 mach_mips4300 = 4300,
3912 mach_mips4400 = 4400,
3913 mach_mips4600 = 4600,
3914 mach_mips4650 = 4650,
3915 mach_mips5000 = 5000,
3916 mach_mips5400 = 5400,
3917 mach_mips5500 = 5500,
3918 mach_mips5900 = 5900,
3919 mach_mips6000 = 6000,
3920 mach_mips7000 = 7000,
3921 mach_mips8000 = 8000,
3922 mach_mips9000 = 9000,
3923 mach_mips10000 = 10000,
3924 mach_mips12000 = 12000,
3925 mach_mips14000 = 14000,
3926 mach_mips16000 = 16000,
3927 mach_mips16 = 16,
3928 mach_mips5 = 5,
3929 mach_mips_loongson_2e = 3001,
3930 mach_mips_loongson_2f = 3002,
3931 mach_mips_loongson_3a = 3003,
3932 mach_mips_sb1 = 12310201, // octal 'SB', 01
3933 mach_mips_octeon = 6501,
3934 mach_mips_octeonp = 6601,
3935 mach_mips_octeon2 = 6502,
3936 mach_mips_octeon3 = 6503,
3937 mach_mips_xlr = 887682, // decimal 'XLR'
3938 mach_mipsisa32 = 32,
3939 mach_mipsisa32r2 = 33,
3940 mach_mipsisa32r3 = 34,
3941 mach_mipsisa32r5 = 36,
3942 mach_mipsisa32r6 = 37,
3943 mach_mipsisa64 = 64,
3944 mach_mipsisa64r2 = 65,
3945 mach_mipsisa64r3 = 66,
3946 mach_mipsisa64r5 = 68,
3947 mach_mipsisa64r6 = 69,
3948 mach_mips_micromips = 96
3949 };
3950
3951 // Return the MACH for a MIPS e_flags value.
3952 unsigned int
3953 elf_mips_mach(elfcpp::Elf_Word);
3954
3955 // Return the MACH for each .MIPS.abiflags ISA Extension.
3956 unsigned int
3957 mips_isa_ext_mach(unsigned int);
3958
3959 // Return the .MIPS.abiflags value representing each ISA Extension.
3960 unsigned int
3961 mips_isa_ext(unsigned int);
3962
3963 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
3964 void
3965 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
3966 Mips_abiflags<big_endian>*);
3967
3968 // Infer the content of the ABI flags based on the elf header.
3969 void
3970 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3971
3972 // Create abiflags from elf header or from .MIPS.abiflags section.
3973 void
3974 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3975
3976 // Return the meaning of fp_abi, or "unknown" if not known.
3977 const char*
3978 fp_abi_string(int);
3979
3980 // Select fp_abi.
3981 int
3982 select_fp_abi(const std::string&, int, int);
3983
3984 // Merge attributes from input object.
3985 void
3986 merge_obj_attributes(const std::string&, const Attributes_section_data*);
3987
3988 // Merge abiflags from input object.
3989 void
3990 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
3991
3992 // Check whether machine EXTENSION is an extension of machine BASE.
3993 bool
3994 mips_mach_extends(unsigned int, unsigned int);
3995
3996 // Merge file header flags from input object.
3997 void
3998 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
3999
4000 // Encode ISA level and revision as a single value.
4001 int
4002 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4003 { return (isa_level << 3) | isa_rev; }
4004
4005 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4006 static inline bool
4007 jal_to_bal()
4008 { return false; }
4009
4010 // True if we are linking for CPUs that are faster if JALR is converted to
4011 // BAL. This should be safe for all architectures. We enable this predicate
4012 // for all CPUs.
4013 static inline bool
4014 jalr_to_bal()
4015 { return true; }
4016
4017 // True if we are linking for CPUs that are faster if JR is converted to B.
4018 // This should be safe for all architectures. We enable this predicate for
4019 // all CPUs.
4020 static inline bool
4021 jr_to_b()
4022 { return true; }
4023
4024 // Return the size of the GOT section.
4025 section_size_type
4026 got_size() const
4027 {
4028 gold_assert(this->got_ != NULL);
4029 return this->got_->data_size();
4030 }
4031
4032 // Create a PLT entry for a global symbol referenced by r_type relocation.
4033 void
4034 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4035 unsigned int r_type);
4036
4037 // Get the PLT section.
4038 Mips_output_data_plt<size, big_endian>*
4039 plt_section() const
4040 {
4041 gold_assert(this->plt_ != NULL);
4042 return this->plt_;
4043 }
4044
4045 // Get the GOT PLT section.
4046 const Mips_output_data_plt<size, big_endian>*
4047 got_plt_section() const
4048 {
4049 gold_assert(this->got_plt_ != NULL);
4050 return this->got_plt_;
4051 }
4052
4053 // Copy a relocation against a global symbol.
4054 void
4055 copy_reloc(Symbol_table* symtab, Layout* layout,
4056 Sized_relobj_file<size, big_endian>* object,
4057 unsigned int shndx, Output_section* output_section,
4058 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4059 {
4060 this->copy_relocs_.copy_reloc(symtab, layout,
4061 symtab->get_sized_symbol<size>(sym),
4062 object, shndx, output_section,
4063 r_type, r_offset, 0,
4064 this->rel_dyn_section(layout));
4065 }
4066
4067 void
4068 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4069 Mips_relobj<size, big_endian>* relobj,
4070 unsigned int shndx, Output_section* output_section,
4071 Mips_address r_offset)
4072 {
4073 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4074 output_section, r_offset));
4075 }
4076
4077 // Calculate value of _gp symbol.
4078 void
4079 set_gp(Layout*, Symbol_table*);
4080
4081 const char*
4082 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4083 const char*
4084 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4085
4086 // Adds entries that describe how machines relate to one another. The entries
4087 // are ordered topologically with MIPS I extensions listed last. First
4088 // element is extension, second element is base.
4089 void
4090 add_machine_extensions()
4091 {
4092 // MIPS64r2 extensions.
4093 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4094 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4095 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4096 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4097 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4098
4099 // MIPS64 extensions.
4100 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4101 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4102 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4103
4104 // MIPS V extensions.
4105 this->add_extension(mach_mipsisa64, mach_mips5);
4106
4107 // R10000 extensions.
4108 this->add_extension(mach_mips12000, mach_mips10000);
4109 this->add_extension(mach_mips14000, mach_mips10000);
4110 this->add_extension(mach_mips16000, mach_mips10000);
4111
4112 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4113 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4114 // better to allow vr5400 and vr5500 code to be merged anyway, since
4115 // many libraries will just use the core ISA. Perhaps we could add
4116 // some sort of ASE flag if this ever proves a problem.
4117 this->add_extension(mach_mips5500, mach_mips5400);
4118 this->add_extension(mach_mips5400, mach_mips5000);
4119
4120 // MIPS IV extensions.
4121 this->add_extension(mach_mips5, mach_mips8000);
4122 this->add_extension(mach_mips10000, mach_mips8000);
4123 this->add_extension(mach_mips5000, mach_mips8000);
4124 this->add_extension(mach_mips7000, mach_mips8000);
4125 this->add_extension(mach_mips9000, mach_mips8000);
4126
4127 // VR4100 extensions.
4128 this->add_extension(mach_mips4120, mach_mips4100);
4129 this->add_extension(mach_mips4111, mach_mips4100);
4130
4131 // MIPS III extensions.
4132 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4133 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4134 this->add_extension(mach_mips8000, mach_mips4000);
4135 this->add_extension(mach_mips4650, mach_mips4000);
4136 this->add_extension(mach_mips4600, mach_mips4000);
4137 this->add_extension(mach_mips4400, mach_mips4000);
4138 this->add_extension(mach_mips4300, mach_mips4000);
4139 this->add_extension(mach_mips4100, mach_mips4000);
4140 this->add_extension(mach_mips4010, mach_mips4000);
4141 this->add_extension(mach_mips5900, mach_mips4000);
4142
4143 // MIPS32 extensions.
4144 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4145
4146 // MIPS II extensions.
4147 this->add_extension(mach_mips4000, mach_mips6000);
4148 this->add_extension(mach_mipsisa32, mach_mips6000);
4149
4150 // MIPS I extensions.
4151 this->add_extension(mach_mips6000, mach_mips3000);
4152 this->add_extension(mach_mips3900, mach_mips3000);
4153 }
4154
4155 // Add value to MIPS extenstions.
4156 void
4157 add_extension(unsigned int base, unsigned int extension)
4158 {
4159 std::pair<unsigned int, unsigned int> ext(base, extension);
4160 this->mips_mach_extensions_.push_back(ext);
4161 }
4162
4163 // Return the number of entries in the .dynsym section.
4164 unsigned int get_dt_mips_symtabno() const
4165 {
4166 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4167 / elfcpp::Elf_sizes<size>::sym_size));
4168 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4169 }
4170
4171 // Information about this specific target which we pass to the
4172 // general Target structure.
4173 static const Target::Target_info mips_info;
4174 // The GOT section.
4175 Mips_output_data_got<size, big_endian>* got_;
4176 // gp symbol. It has the value of .got + 0x7FF0.
4177 Sized_symbol<size>* gp_;
4178 // The PLT section.
4179 Mips_output_data_plt<size, big_endian>* plt_;
4180 // The GOT PLT section.
4181 Output_data_space* got_plt_;
4182 // The dynamic reloc section.
4183 Reloc_section* rel_dyn_;
4184 // Relocs saved to avoid a COPY reloc.
4185 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4186
4187 // A list of dyn relocs to be saved.
4188 std::vector<Dyn_reloc> dyn_relocs_;
4189
4190 // The LA25 stub section.
4191 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4192 // Architecture extensions.
4193 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4194 // .MIPS.stubs
4195 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4196
4197 // Attributes section data in output.
4198 Attributes_section_data* attributes_section_data_;
4199 // .MIPS.abiflags section data in output.
4200 Mips_abiflags<big_endian>* abiflags_;
4201
4202 unsigned int mach_;
4203 Layout* layout_;
4204
4205 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4206
4207 // Whether there is an input .MIPS.abiflags section.
4208 bool has_abiflags_section_;
4209
4210 // Whether the entry symbol is mips16 or micromips.
4211 bool entry_symbol_is_compressed_;
4212
4213 // Whether we can use only 32-bit microMIPS instructions.
4214 // TODO(sasa): This should be a linker option.
4215 bool insn32_;
4216 };
4217
4218 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4219 // It records high part of the relocation pair.
4220
4221 template<int size, bool big_endian>
4222 struct reloc_high
4223 {
4224 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4225
4226 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4227 const Symbol_value<size>* _psymval, Mips_address _addend,
4228 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4229 Mips_address _address = 0, bool _gp_disp = false)
4230 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4231 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4232 address(_address), gp_disp(_gp_disp)
4233 { }
4234
4235 unsigned char* view;
4236 const Mips_relobj<size, big_endian>* object;
4237 const Symbol_value<size>* psymval;
4238 Mips_address addend;
4239 unsigned int r_type;
4240 unsigned int r_sym;
4241 bool extract_addend;
4242 Mips_address address;
4243 bool gp_disp;
4244 };
4245
4246 template<int size, bool big_endian>
4247 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4248 {
4249 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4250 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4251 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4252 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4253 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4254
4255 public:
4256 typedef enum
4257 {
4258 STATUS_OKAY, // No error during relocation.
4259 STATUS_OVERFLOW, // Relocation overflow.
4260 STATUS_BAD_RELOC, // Relocation cannot be applied.
4261 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4262 } Status;
4263
4264 private:
4265 typedef Relocate_functions<size, big_endian> Base;
4266 typedef Mips_relocate_functions<size, big_endian> This;
4267
4268 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4269 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4270 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4271
4272 template<int valsize>
4273 static inline typename This::Status
4274 check_overflow(Valtype value)
4275 {
4276 if (size == 32)
4277 return (Bits<valsize>::has_overflow32(value)
4278 ? This::STATUS_OVERFLOW
4279 : This::STATUS_OKAY);
4280
4281 return (Bits<valsize>::has_overflow(value)
4282 ? This::STATUS_OVERFLOW
4283 : This::STATUS_OKAY);
4284 }
4285
4286 static inline bool
4287 should_shuffle_micromips_reloc(unsigned int r_type)
4288 {
4289 return (micromips_reloc(r_type)
4290 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4291 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4292 }
4293
4294 public:
4295 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4296 // Most mips16 instructions are 16 bits, but these instructions
4297 // are 32 bits.
4298 //
4299 // The format of these instructions is:
4300 //
4301 // +--------------+--------------------------------+
4302 // | JALX | X| Imm 20:16 | Imm 25:21 |
4303 // +--------------+--------------------------------+
4304 // | Immediate 15:0 |
4305 // +-----------------------------------------------+
4306 //
4307 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4308 // Note that the immediate value in the first word is swapped.
4309 //
4310 // When producing a relocatable object file, R_MIPS16_26 is
4311 // handled mostly like R_MIPS_26. In particular, the addend is
4312 // stored as a straight 26-bit value in a 32-bit instruction.
4313 // (gas makes life simpler for itself by never adjusting a
4314 // R_MIPS16_26 reloc to be against a section, so the addend is
4315 // always zero). However, the 32 bit instruction is stored as 2
4316 // 16-bit values, rather than a single 32-bit value. In a
4317 // big-endian file, the result is the same; in a little-endian
4318 // file, the two 16-bit halves of the 32 bit value are swapped.
4319 // This is so that a disassembler can recognize the jal
4320 // instruction.
4321 //
4322 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4323 // instruction stored as two 16-bit values. The addend A is the
4324 // contents of the targ26 field. The calculation is the same as
4325 // R_MIPS_26. When storing the calculated value, reorder the
4326 // immediate value as shown above, and don't forget to store the
4327 // value as two 16-bit values.
4328 //
4329 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4330 // defined as
4331 //
4332 // big-endian:
4333 // +--------+----------------------+
4334 // | | |
4335 // | | targ26-16 |
4336 // |31 26|25 0|
4337 // +--------+----------------------+
4338 //
4339 // little-endian:
4340 // +----------+------+-------------+
4341 // | | | |
4342 // | sub1 | | sub2 |
4343 // |0 9|10 15|16 31|
4344 // +----------+--------------------+
4345 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4346 // ((sub1 << 16) | sub2)).
4347 //
4348 // When producing a relocatable object file, the calculation is
4349 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4350 // When producing a fully linked file, the calculation is
4351 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4352 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4353 //
4354 // The table below lists the other MIPS16 instruction relocations.
4355 // Each one is calculated in the same way as the non-MIPS16 relocation
4356 // given on the right, but using the extended MIPS16 layout of 16-bit
4357 // immediate fields:
4358 //
4359 // R_MIPS16_GPREL R_MIPS_GPREL16
4360 // R_MIPS16_GOT16 R_MIPS_GOT16
4361 // R_MIPS16_CALL16 R_MIPS_CALL16
4362 // R_MIPS16_HI16 R_MIPS_HI16
4363 // R_MIPS16_LO16 R_MIPS_LO16
4364 //
4365 // A typical instruction will have a format like this:
4366 //
4367 // +--------------+--------------------------------+
4368 // | EXTEND | Imm 10:5 | Imm 15:11 |
4369 // +--------------+--------------------------------+
4370 // | Major | rx | ry | Imm 4:0 |
4371 // +--------------+--------------------------------+
4372 //
4373 // EXTEND is the five bit value 11110. Major is the instruction
4374 // opcode.
4375 //
4376 // All we need to do here is shuffle the bits appropriately.
4377 // As above, the two 16-bit halves must be swapped on a
4378 // little-endian system.
4379
4380 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4381 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4382 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4383
4384 static void
4385 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4386 bool jal_shuffle)
4387 {
4388 if (!mips16_reloc(r_type)
4389 && !should_shuffle_micromips_reloc(r_type))
4390 return;
4391
4392 // Pick up the first and second halfwords of the instruction.
4393 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4394 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4395 Valtype32 val;
4396
4397 if (micromips_reloc(r_type)
4398 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4399 val = first << 16 | second;
4400 else if (r_type != elfcpp::R_MIPS16_26)
4401 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4402 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4403 else
4404 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4405 | ((first & 0x1f) << 21) | second);
4406
4407 elfcpp::Swap<32, big_endian>::writeval(view, val);
4408 }
4409
4410 static void
4411 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4412 {
4413 if (!mips16_reloc(r_type)
4414 && !should_shuffle_micromips_reloc(r_type))
4415 return;
4416
4417 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4418 Valtype16 first, second;
4419
4420 if (micromips_reloc(r_type)
4421 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4422 {
4423 second = val & 0xffff;
4424 first = val >> 16;
4425 }
4426 else if (r_type != elfcpp::R_MIPS16_26)
4427 {
4428 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4429 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4430 }
4431 else
4432 {
4433 second = val & 0xffff;
4434 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4435 | ((val >> 21) & 0x1f);
4436 }
4437
4438 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4439 elfcpp::Swap<16, big_endian>::writeval(view, first);
4440 }
4441
4442 // R_MIPS_16: S + sign-extend(A)
4443 static inline typename This::Status
4444 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4445 const Symbol_value<size>* psymval, Mips_address addend_a,
4446 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4447 {
4448 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4449 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4450
4451 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4452 : addend_a);
4453
4454 Valtype x = psymval->value(object, addend);
4455 val = Bits<16>::bit_select32(val, x, 0xffffU);
4456
4457 if (calculate_only)
4458 {
4459 *calculated_value = x;
4460 return This::STATUS_OKAY;
4461 }
4462 else
4463 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4464
4465 return check_overflow<16>(x);
4466 }
4467
4468 // R_MIPS_32: S + A
4469 static inline typename This::Status
4470 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4471 const Symbol_value<size>* psymval, Mips_address addend_a,
4472 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4473 {
4474 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4475 Valtype addend = (extract_addend
4476 ? elfcpp::Swap<32, big_endian>::readval(wv)
4477 : addend_a);
4478 Valtype x = psymval->value(object, addend);
4479
4480 if (calculate_only)
4481 *calculated_value = x;
4482 else
4483 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4484
4485 return This::STATUS_OKAY;
4486 }
4487
4488 // R_MIPS_JALR, R_MICROMIPS_JALR
4489 static inline typename This::Status
4490 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4491 const Symbol_value<size>* psymval, Mips_address address,
4492 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4493 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4494 bool calculate_only, Valtype* calculated_value)
4495 {
4496 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4497 Valtype addend = extract_addend ? 0 : addend_a;
4498 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4499
4500 // Try converting J(AL)R to B(AL), if the target is in range.
4501 if (!parameters->options().relocatable()
4502 && r_type == elfcpp::R_MIPS_JALR
4503 && !cross_mode_jump
4504 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4505 || (jr_to_b && val == 0x03200008))) // jr t9
4506 {
4507 int offset = psymval->value(object, addend) - (address + 4);
4508 if (!Bits<18>::has_overflow32(offset))
4509 {
4510 if (val == 0x03200008) // jr t9
4511 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4512 else
4513 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4514 }
4515 }
4516
4517 if (calculate_only)
4518 *calculated_value = val;
4519 else
4520 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4521
4522 return This::STATUS_OKAY;
4523 }
4524
4525 // R_MIPS_PC32: S + A - P
4526 static inline typename This::Status
4527 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4528 const Symbol_value<size>* psymval, Mips_address address,
4529 Mips_address addend_a, bool extract_addend, bool calculate_only,
4530 Valtype* calculated_value)
4531 {
4532 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4533 Valtype addend = (extract_addend
4534 ? elfcpp::Swap<32, big_endian>::readval(wv)
4535 : addend_a);
4536 Valtype x = psymval->value(object, addend) - address;
4537
4538 if (calculate_only)
4539 *calculated_value = x;
4540 else
4541 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4542
4543 return This::STATUS_OKAY;
4544 }
4545
4546 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4547 static inline typename This::Status
4548 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4549 const Symbol_value<size>* psymval, Mips_address address,
4550 bool local, Mips_address addend_a, bool extract_addend,
4551 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4552 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4553 {
4554 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4555 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4556
4557 Valtype addend;
4558 if (extract_addend)
4559 {
4560 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4561 addend = (val & 0x03ffffff) << 1;
4562 else
4563 addend = (val & 0x03ffffff) << 2;
4564 }
4565 else
4566 addend = addend_a;
4567
4568 // Make sure the target of JALX is word-aligned. Bit 0 must be
4569 // the correct ISA mode selector and bit 1 must be 0.
4570 if (!calculate_only && cross_mode_jump
4571 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4572 {
4573 gold_warning(_("JALX to a non-word-aligned address"));
4574 return This::STATUS_BAD_RELOC;
4575 }
4576
4577 // Shift is 2, unusually, for microMIPS JALX.
4578 unsigned int shift =
4579 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4580
4581 Valtype x;
4582 if (local)
4583 x = addend | ((address + 4) & (0xfc000000 << shift));
4584 else
4585 {
4586 if (shift == 1)
4587 x = Bits<27>::sign_extend32(addend);
4588 else
4589 x = Bits<28>::sign_extend32(addend);
4590 }
4591 x = psymval->value(object, x) >> shift;
4592
4593 if (!calculate_only && !local && !gsym->is_weak_undefined())
4594 {
4595 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4596 {
4597 gold_error(_("relocation truncated to fit: %u against '%s'"),
4598 r_type, gsym->name());
4599 return This::STATUS_OVERFLOW;
4600 }
4601 }
4602
4603 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4604
4605 // If required, turn JAL into JALX.
4606 if (cross_mode_jump)
4607 {
4608 bool ok;
4609 Valtype32 opcode = val >> 26;
4610 Valtype32 jalx_opcode;
4611
4612 // Check to see if the opcode is already JAL or JALX.
4613 if (r_type == elfcpp::R_MIPS16_26)
4614 {
4615 ok = (opcode == 0x6) || (opcode == 0x7);
4616 jalx_opcode = 0x7;
4617 }
4618 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4619 {
4620 ok = (opcode == 0x3d) || (opcode == 0x3c);
4621 jalx_opcode = 0x3c;
4622 }
4623 else
4624 {
4625 ok = (opcode == 0x3) || (opcode == 0x1d);
4626 jalx_opcode = 0x1d;
4627 }
4628
4629 // If the opcode is not JAL or JALX, there's a problem. We cannot
4630 // convert J or JALS to JALX.
4631 if (!calculate_only && !ok)
4632 {
4633 gold_error(_("Unsupported jump between ISA modes; consider "
4634 "recompiling with interlinking enabled."));
4635 return This::STATUS_BAD_RELOC;
4636 }
4637
4638 // Make this the JALX opcode.
4639 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4640 }
4641
4642 // Try converting JAL to BAL, if the target is in range.
4643 if (!parameters->options().relocatable()
4644 && !cross_mode_jump
4645 && ((jal_to_bal
4646 && r_type == elfcpp::R_MIPS_26
4647 && (val >> 26) == 0x3))) // jal addr
4648 {
4649 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4650 int offset = dest - (address + 4);
4651 if (!Bits<18>::has_overflow32(offset))
4652 {
4653 if (val == 0x03200008) // jr t9
4654 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4655 else
4656 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4657 }
4658 }
4659
4660 if (calculate_only)
4661 *calculated_value = val;
4662 else
4663 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4664
4665 return This::STATUS_OKAY;
4666 }
4667
4668 // R_MIPS_PC16
4669 static inline typename This::Status
4670 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4671 const Symbol_value<size>* psymval, Mips_address address,
4672 Mips_address addend_a, bool extract_addend, bool calculate_only,
4673 Valtype* calculated_value)
4674 {
4675 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4676 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4677
4678 Valtype addend = (extract_addend
4679 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4680 : addend_a);
4681
4682 Valtype x = psymval->value(object, addend) - address;
4683 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4684
4685 if (calculate_only)
4686 {
4687 *calculated_value = x >> 2;
4688 return This::STATUS_OKAY;
4689 }
4690 else
4691 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4692
4693 if (psymval->value(object, addend) & 3)
4694 return This::STATUS_PCREL_UNALIGNED;
4695
4696 return check_overflow<18>(x);
4697 }
4698
4699 // R_MIPS_PC21_S2
4700 static inline typename This::Status
4701 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4702 const Symbol_value<size>* psymval, Mips_address address,
4703 Mips_address addend_a, bool extract_addend, bool calculate_only,
4704 Valtype* calculated_value)
4705 {
4706 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4707 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4708
4709 Valtype addend = (extract_addend
4710 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4711 : addend_a);
4712
4713 Valtype x = psymval->value(object, addend) - address;
4714 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4715
4716 if (calculate_only)
4717 {
4718 *calculated_value = x >> 2;
4719 return This::STATUS_OKAY;
4720 }
4721 else
4722 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4723
4724 if (psymval->value(object, addend) & 3)
4725 return This::STATUS_PCREL_UNALIGNED;
4726
4727 return check_overflow<23>(x);
4728 }
4729
4730 // R_MIPS_PC26_S2
4731 static inline typename This::Status
4732 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4733 const Symbol_value<size>* psymval, Mips_address address,
4734 Mips_address addend_a, bool extract_addend, bool calculate_only,
4735 Valtype* calculated_value)
4736 {
4737 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4738 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4739
4740 Valtype addend = (extract_addend
4741 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4742 : addend_a);
4743
4744 Valtype x = psymval->value(object, addend) - address;
4745 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4746
4747 if (calculate_only)
4748 {
4749 *calculated_value = x >> 2;
4750 return This::STATUS_OKAY;
4751 }
4752 else
4753 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4754
4755 if (psymval->value(object, addend) & 3)
4756 return This::STATUS_PCREL_UNALIGNED;
4757
4758 return check_overflow<28>(x);
4759 }
4760
4761 // R_MIPS_PC18_S3
4762 static inline typename This::Status
4763 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4764 const Symbol_value<size>* psymval, Mips_address address,
4765 Mips_address addend_a, bool extract_addend, bool calculate_only,
4766 Valtype* calculated_value)
4767 {
4768 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4769 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4770
4771 Valtype addend = (extract_addend
4772 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4773 : addend_a);
4774
4775 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4776 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4777
4778 if (calculate_only)
4779 {
4780 *calculated_value = x >> 3;
4781 return This::STATUS_OKAY;
4782 }
4783 else
4784 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4785
4786 if (psymval->value(object, addend) & 7)
4787 return This::STATUS_PCREL_UNALIGNED;
4788
4789 return check_overflow<21>(x);
4790 }
4791
4792 // R_MIPS_PC19_S2
4793 static inline typename This::Status
4794 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4795 const Symbol_value<size>* psymval, Mips_address address,
4796 Mips_address addend_a, bool extract_addend, bool calculate_only,
4797 Valtype* calculated_value)
4798 {
4799 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4800 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4801
4802 Valtype addend = (extract_addend
4803 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4804 : addend_a);
4805
4806 Valtype x = psymval->value(object, addend) - address;
4807 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4808
4809 if (calculate_only)
4810 {
4811 *calculated_value = x >> 2;
4812 return This::STATUS_OKAY;
4813 }
4814 else
4815 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4816
4817 if (psymval->value(object, addend) & 3)
4818 return This::STATUS_PCREL_UNALIGNED;
4819
4820 return check_overflow<21>(x);
4821 }
4822
4823 // R_MIPS_PCHI16
4824 static inline typename This::Status
4825 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4826 const Symbol_value<size>* psymval, Mips_address addend,
4827 Mips_address address, unsigned int r_sym, bool extract_addend)
4828 {
4829 // Record the relocation. It will be resolved when we find pclo16 part.
4830 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4831 addend, 0, r_sym, extract_addend, address));
4832 return This::STATUS_OKAY;
4833 }
4834
4835 // R_MIPS_PCHI16
4836 static inline typename This::Status
4837 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4838 const Symbol_value<size>* psymval, Mips_address addend_hi,
4839 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4840 bool calculate_only, Valtype* calculated_value)
4841 {
4842 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4843 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4844
4845 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4846 : addend_hi);
4847
4848 Valtype value = psymval->value(object, addend) - address;
4849 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4850 val = Bits<32>::bit_select32(val, x, 0xffff);
4851
4852 if (calculate_only)
4853 *calculated_value = x;
4854 else
4855 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4856
4857 return This::STATUS_OKAY;
4858 }
4859
4860 // R_MIPS_PCLO16
4861 static inline typename This::Status
4862 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4863 const Symbol_value<size>* psymval, Mips_address addend_a,
4864 bool extract_addend, Mips_address address, unsigned int r_sym,
4865 unsigned int rel_type, bool calculate_only,
4866 Valtype* calculated_value)
4867 {
4868 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4869 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4870
4871 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4872 : addend_a);
4873
4874 if (rel_type == elfcpp::SHT_REL)
4875 {
4876 // Resolve pending R_MIPS_PCHI16 relocations.
4877 typename std::list<reloc_high<size, big_endian> >::iterator it =
4878 pchi16_relocs.begin();
4879 while (it != pchi16_relocs.end())
4880 {
4881 reloc_high<size, big_endian> pchi16 = *it;
4882 if (pchi16.r_sym == r_sym)
4883 {
4884 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4885 pchi16.addend, pchi16.address,
4886 pchi16.extract_addend, addend, calculate_only,
4887 calculated_value);
4888 it = pchi16_relocs.erase(it);
4889 }
4890 else
4891 ++it;
4892 }
4893 }
4894
4895 // Resolve R_MIPS_PCLO16 relocation.
4896 Valtype x = psymval->value(object, addend) - address;
4897 val = Bits<32>::bit_select32(val, x, 0xffff);
4898
4899 if (calculate_only)
4900 *calculated_value = x;
4901 else
4902 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4903
4904 return This::STATUS_OKAY;
4905 }
4906
4907 // R_MICROMIPS_PC7_S1
4908 static inline typename This::Status
4909 relmicromips_pc7_s1(unsigned char* view,
4910 const Mips_relobj<size, big_endian>* object,
4911 const Symbol_value<size>* psymval, Mips_address address,
4912 Mips_address addend_a, bool extract_addend,
4913 bool calculate_only, Valtype* calculated_value)
4914 {
4915 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4916 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4917
4918 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4919 : addend_a;
4920
4921 Valtype x = psymval->value(object, addend) - address;
4922 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4923
4924 if (calculate_only)
4925 {
4926 *calculated_value = x >> 1;
4927 return This::STATUS_OKAY;
4928 }
4929 else
4930 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4931
4932 return check_overflow<8>(x);
4933 }
4934
4935 // R_MICROMIPS_PC10_S1
4936 static inline typename This::Status
4937 relmicromips_pc10_s1(unsigned char* view,
4938 const Mips_relobj<size, big_endian>* object,
4939 const Symbol_value<size>* psymval, Mips_address address,
4940 Mips_address addend_a, bool extract_addend,
4941 bool calculate_only, Valtype* calculated_value)
4942 {
4943 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4944 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4945
4946 Valtype addend = (extract_addend
4947 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4948 : addend_a);
4949
4950 Valtype x = psymval->value(object, addend) - address;
4951 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4952
4953 if (calculate_only)
4954 {
4955 *calculated_value = x >> 1;
4956 return This::STATUS_OKAY;
4957 }
4958 else
4959 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4960
4961 return check_overflow<11>(x);
4962 }
4963
4964 // R_MICROMIPS_PC16_S1
4965 static inline typename This::Status
4966 relmicromips_pc16_s1(unsigned char* view,
4967 const Mips_relobj<size, big_endian>* object,
4968 const Symbol_value<size>* psymval, Mips_address address,
4969 Mips_address addend_a, bool extract_addend,
4970 bool calculate_only, Valtype* calculated_value)
4971 {
4972 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4973 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4974
4975 Valtype addend = (extract_addend
4976 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
4977 : addend_a);
4978
4979 Valtype x = psymval->value(object, addend) - address;
4980 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4981
4982 if (calculate_only)
4983 {
4984 *calculated_value = x >> 1;
4985 return This::STATUS_OKAY;
4986 }
4987 else
4988 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4989
4990 return check_overflow<17>(x);
4991 }
4992
4993 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4994 static inline typename This::Status
4995 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4996 const Symbol_value<size>* psymval, Mips_address addend,
4997 Mips_address address, bool gp_disp, unsigned int r_type,
4998 unsigned int r_sym, bool extract_addend)
4999 {
5000 // Record the relocation. It will be resolved when we find lo16 part.
5001 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5002 addend, r_type, r_sym, extract_addend, address,
5003 gp_disp));
5004 return This::STATUS_OKAY;
5005 }
5006
5007 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5008 static inline typename This::Status
5009 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5010 const Symbol_value<size>* psymval, Mips_address addend_hi,
5011 Mips_address address, bool is_gp_disp, unsigned int r_type,
5012 bool extract_addend, Valtype32 addend_lo,
5013 Target_mips<size, big_endian>* target, bool calculate_only,
5014 Valtype* calculated_value)
5015 {
5016 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5017 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5018
5019 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5020 : addend_hi);
5021
5022 Valtype32 value;
5023 if (!is_gp_disp)
5024 value = psymval->value(object, addend);
5025 else
5026 {
5027 // For MIPS16 ABI code we generate this sequence
5028 // 0: li $v0,%hi(_gp_disp)
5029 // 4: addiupc $v1,%lo(_gp_disp)
5030 // 8: sll $v0,16
5031 // 12: addu $v0,$v1
5032 // 14: move $gp,$v0
5033 // So the offsets of hi and lo relocs are the same, but the
5034 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5035 // ADDIUPC clears the low two bits of the instruction address,
5036 // so the base is ($t9 + 4) & ~3.
5037 Valtype32 gp_disp;
5038 if (r_type == elfcpp::R_MIPS16_HI16)
5039 gp_disp = (target->adjusted_gp_value(object)
5040 - ((address + 4) & ~0x3));
5041 // The microMIPS .cpload sequence uses the same assembly
5042 // instructions as the traditional psABI version, but the
5043 // incoming $t9 has the low bit set.
5044 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5045 gp_disp = target->adjusted_gp_value(object) - address - 1;
5046 else
5047 gp_disp = target->adjusted_gp_value(object) - address;
5048 value = gp_disp + addend;
5049 }
5050 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5051 val = Bits<32>::bit_select32(val, x, 0xffff);
5052
5053 if (calculate_only)
5054 {
5055 *calculated_value = x;
5056 return This::STATUS_OKAY;
5057 }
5058 else
5059 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5060
5061 return (is_gp_disp ? check_overflow<16>(x)
5062 : This::STATUS_OKAY);
5063 }
5064
5065 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5066 static inline typename This::Status
5067 relgot16_local(unsigned char* view,
5068 const Mips_relobj<size, big_endian>* object,
5069 const Symbol_value<size>* psymval, Mips_address addend_a,
5070 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5071 {
5072 // Record the relocation. It will be resolved when we find lo16 part.
5073 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5074 addend_a, r_type, r_sym, extract_addend));
5075 return This::STATUS_OKAY;
5076 }
5077
5078 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5079 static inline typename This::Status
5080 do_relgot16_local(unsigned char* view,
5081 const Mips_relobj<size, big_endian>* object,
5082 const Symbol_value<size>* psymval, Mips_address addend_hi,
5083 bool extract_addend, Valtype32 addend_lo,
5084 Target_mips<size, big_endian>* target, bool calculate_only,
5085 Valtype* calculated_value)
5086 {
5087 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5088 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5089
5090 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5091 : addend_hi);
5092
5093 // Find GOT page entry.
5094 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5095 & 0xffff;
5096 value <<= 16;
5097 unsigned int got_offset =
5098 target->got_section()->get_got_page_offset(value, object);
5099
5100 // Resolve the relocation.
5101 Valtype x = target->got_section()->gp_offset(got_offset, object);
5102 val = Bits<32>::bit_select32(val, x, 0xffff);
5103
5104 if (calculate_only)
5105 {
5106 *calculated_value = x;
5107 return This::STATUS_OKAY;
5108 }
5109 else
5110 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5111
5112 return check_overflow<16>(x);
5113 }
5114
5115 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5116 static inline typename This::Status
5117 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5118 const Mips_relobj<size, big_endian>* object,
5119 const Symbol_value<size>* psymval, Mips_address addend_a,
5120 bool extract_addend, Mips_address address, bool is_gp_disp,
5121 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5122 bool calculate_only, Valtype* calculated_value)
5123 {
5124 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5125 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5126
5127 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5128 : addend_a);
5129
5130 if (rel_type == elfcpp::SHT_REL)
5131 {
5132 typename This::Status reloc_status = This::STATUS_OKAY;
5133 // Resolve pending R_MIPS_HI16 relocations.
5134 typename std::list<reloc_high<size, big_endian> >::iterator it =
5135 hi16_relocs.begin();
5136 while (it != hi16_relocs.end())
5137 {
5138 reloc_high<size, big_endian> hi16 = *it;
5139 if (hi16.r_sym == r_sym
5140 && is_matching_lo16_reloc(hi16.r_type, r_type))
5141 {
5142 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5143 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5144 hi16.addend, hi16.address, hi16.gp_disp,
5145 hi16.r_type, hi16.extract_addend, addend,
5146 target, calculate_only, calculated_value);
5147 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5148 if (reloc_status == This::STATUS_OVERFLOW)
5149 return This::STATUS_OVERFLOW;
5150 it = hi16_relocs.erase(it);
5151 }
5152 else
5153 ++it;
5154 }
5155
5156 // Resolve pending local R_MIPS_GOT16 relocations.
5157 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5158 got16_relocs.begin();
5159 while (it2 != got16_relocs.end())
5160 {
5161 reloc_high<size, big_endian> got16 = *it2;
5162 if (got16.r_sym == r_sym
5163 && is_matching_lo16_reloc(got16.r_type, r_type))
5164 {
5165 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5166
5167 reloc_status = do_relgot16_local(got16.view, got16.object,
5168 got16.psymval, got16.addend,
5169 got16.extract_addend, addend, target,
5170 calculate_only, calculated_value);
5171
5172 mips_reloc_shuffle(got16.view, got16.r_type, false);
5173 if (reloc_status == This::STATUS_OVERFLOW)
5174 return This::STATUS_OVERFLOW;
5175 it2 = got16_relocs.erase(it2);
5176 }
5177 else
5178 ++it2;
5179 }
5180 }
5181
5182 // Resolve R_MIPS_LO16 relocation.
5183 Valtype x;
5184 if (!is_gp_disp)
5185 x = psymval->value(object, addend);
5186 else
5187 {
5188 // See the comment for R_MIPS16_HI16 above for the reason
5189 // for this conditional.
5190 Valtype32 gp_disp;
5191 if (r_type == elfcpp::R_MIPS16_LO16)
5192 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5193 else if (r_type == elfcpp::R_MICROMIPS_LO16
5194 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5195 gp_disp = target->adjusted_gp_value(object) - address + 3;
5196 else
5197 gp_disp = target->adjusted_gp_value(object) - address + 4;
5198 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5199 // for overflow. Relocations against _gp_disp are normally
5200 // generated from the .cpload pseudo-op. It generates code
5201 // that normally looks like this:
5202
5203 // lui $gp,%hi(_gp_disp)
5204 // addiu $gp,$gp,%lo(_gp_disp)
5205 // addu $gp,$gp,$t9
5206
5207 // Here $t9 holds the address of the function being called,
5208 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5209 // relocation can easily overflow in this situation, but the
5210 // R_MIPS_HI16 relocation will handle the overflow.
5211 // Therefore, we consider this a bug in the MIPS ABI, and do
5212 // not check for overflow here.
5213 x = gp_disp + addend;
5214 }
5215 val = Bits<32>::bit_select32(val, x, 0xffff);
5216
5217 if (calculate_only)
5218 *calculated_value = x;
5219 else
5220 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5221
5222 return This::STATUS_OKAY;
5223 }
5224
5225 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5226 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5227 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5228 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5229 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5230 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5231 static inline typename This::Status
5232 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5233 Valtype* calculated_value)
5234 {
5235 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5236 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5237 Valtype x = gp_offset;
5238 val = Bits<32>::bit_select32(val, x, 0xffff);
5239
5240 if (calculate_only)
5241 {
5242 *calculated_value = x;
5243 return This::STATUS_OKAY;
5244 }
5245 else
5246 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5247
5248 return check_overflow<16>(x);
5249 }
5250
5251 // R_MIPS_EH
5252 static inline typename This::Status
5253 releh(unsigned char* view, int gp_offset, bool calculate_only,
5254 Valtype* calculated_value)
5255 {
5256 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5257 Valtype x = gp_offset;
5258
5259 if (calculate_only)
5260 {
5261 *calculated_value = x;
5262 return This::STATUS_OKAY;
5263 }
5264 else
5265 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5266
5267 return check_overflow<32>(x);
5268 }
5269
5270 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5271 static inline typename This::Status
5272 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5273 const Mips_relobj<size, big_endian>* object,
5274 const Symbol_value<size>* psymval, Mips_address addend_a,
5275 bool extract_addend, bool calculate_only,
5276 Valtype* calculated_value)
5277 {
5278 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5279 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5280 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5281
5282 // Find a GOT page entry that points to within 32KB of symbol + addend.
5283 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5284 unsigned int got_offset =
5285 target->got_section()->get_got_page_offset(value, object);
5286
5287 Valtype x = target->got_section()->gp_offset(got_offset, object);
5288 val = Bits<32>::bit_select32(val, x, 0xffff);
5289
5290 if (calculate_only)
5291 {
5292 *calculated_value = x;
5293 return This::STATUS_OKAY;
5294 }
5295 else
5296 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5297
5298 return check_overflow<16>(x);
5299 }
5300
5301 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5302 static inline typename This::Status
5303 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5304 const Mips_relobj<size, big_endian>* object,
5305 const Symbol_value<size>* psymval, Mips_address addend_a,
5306 bool extract_addend, bool local, bool calculate_only,
5307 Valtype* calculated_value)
5308 {
5309 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5310 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5311 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5312
5313 // For a local symbol, find a GOT page entry that points to within 32KB of
5314 // symbol + addend. Relocation value is the offset of the GOT page entry's
5315 // value from symbol + addend.
5316 // For a global symbol, relocation value is addend.
5317 Valtype x;
5318 if (local)
5319 {
5320 // Find GOT page entry.
5321 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5322 & ~0xffff);
5323 target->got_section()->get_got_page_offset(value, object);
5324
5325 x = psymval->value(object, addend) - value;
5326 }
5327 else
5328 x = addend;
5329 val = Bits<32>::bit_select32(val, x, 0xffff);
5330
5331 if (calculate_only)
5332 {
5333 *calculated_value = x;
5334 return This::STATUS_OKAY;
5335 }
5336 else
5337 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5338
5339 return check_overflow<16>(x);
5340 }
5341
5342 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5343 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5344 static inline typename This::Status
5345 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5346 Valtype* calculated_value)
5347 {
5348 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5349 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5350 Valtype x = gp_offset;
5351 x = ((x + 0x8000) >> 16) & 0xffff;
5352 val = Bits<32>::bit_select32(val, x, 0xffff);
5353
5354 if (calculate_only)
5355 *calculated_value = x;
5356 else
5357 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5358
5359 return This::STATUS_OKAY;
5360 }
5361
5362 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5363 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5364 static inline typename This::Status
5365 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5366 Valtype* calculated_value)
5367 {
5368 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5369 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5370 Valtype x = gp_offset;
5371 val = Bits<32>::bit_select32(val, x, 0xffff);
5372
5373 if (calculate_only)
5374 *calculated_value = x;
5375 else
5376 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5377
5378 return This::STATUS_OKAY;
5379 }
5380
5381 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5382 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5383 static inline typename This::Status
5384 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5385 const Symbol_value<size>* psymval, Mips_address gp,
5386 Mips_address addend_a, bool extract_addend, bool local,
5387 unsigned int r_type, bool calculate_only,
5388 Valtype* calculated_value)
5389 {
5390 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5391 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5392
5393 Valtype addend;
5394 if (extract_addend)
5395 {
5396 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5397 addend = (val & 0x7f) << 2;
5398 else
5399 addend = val & 0xffff;
5400 // Only sign-extend the addend if it was extracted from the
5401 // instruction. If the addend was separate, leave it alone,
5402 // otherwise we may lose significant bits.
5403 addend = Bits<16>::sign_extend32(addend);
5404 }
5405 else
5406 addend = addend_a;
5407
5408 Valtype x = psymval->value(object, addend) - gp;
5409
5410 // If the symbol was local, any earlier relocatable links will
5411 // have adjusted its addend with the gp offset, so compensate
5412 // for that now. Don't do it for symbols forced local in this
5413 // link, though, since they won't have had the gp offset applied
5414 // to them before.
5415 if (local)
5416 x += object->gp_value();
5417
5418 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5419 val = Bits<32>::bit_select32(val, x, 0x7f);
5420 else
5421 val = Bits<32>::bit_select32(val, x, 0xffff);
5422
5423 if (calculate_only)
5424 {
5425 *calculated_value = x;
5426 return This::STATUS_OKAY;
5427 }
5428 else
5429 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5430
5431 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5432 {
5433 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5434 "limit (see option -G)"));
5435 return This::STATUS_OVERFLOW;
5436 }
5437 return This::STATUS_OKAY;
5438 }
5439
5440 // R_MIPS_GPREL32
5441 static inline typename This::Status
5442 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5443 const Symbol_value<size>* psymval, Mips_address gp,
5444 Mips_address addend_a, bool extract_addend, bool calculate_only,
5445 Valtype* calculated_value)
5446 {
5447 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5448 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5449 Valtype addend = extract_addend ? val : addend_a;
5450
5451 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5452 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5453
5454 if (calculate_only)
5455 *calculated_value = x;
5456 else
5457 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5458
5459 return This::STATUS_OKAY;
5460 }
5461
5462 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5463 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5464 // R_MICROMIPS_TLS_DTPREL_HI16
5465 static inline typename This::Status
5466 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5467 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5468 Mips_address addend_a, bool extract_addend, bool calculate_only,
5469 Valtype* calculated_value)
5470 {
5471 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5472 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5473 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5474
5475 // tls symbol values are relative to tls_segment()->vaddr()
5476 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5477 val = Bits<32>::bit_select32(val, x, 0xffff);
5478
5479 if (calculate_only)
5480 *calculated_value = x;
5481 else
5482 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5483
5484 return This::STATUS_OKAY;
5485 }
5486
5487 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5488 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5489 // R_MICROMIPS_TLS_DTPREL_LO16,
5490 static inline typename This::Status
5491 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5492 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5493 Mips_address addend_a, bool extract_addend, bool calculate_only,
5494 Valtype* calculated_value)
5495 {
5496 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5497 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5498 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5499
5500 // tls symbol values are relative to tls_segment()->vaddr()
5501 Valtype x = psymval->value(object, addend) - tp_offset;
5502 val = Bits<32>::bit_select32(val, x, 0xffff);
5503
5504 if (calculate_only)
5505 *calculated_value = x;
5506 else
5507 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5508
5509 return This::STATUS_OKAY;
5510 }
5511
5512 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5513 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5514 static inline typename This::Status
5515 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5516 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5517 Mips_address addend_a, bool extract_addend, bool calculate_only,
5518 Valtype* calculated_value)
5519 {
5520 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5521 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5522 Valtype addend = extract_addend ? val : addend_a;
5523
5524 // tls symbol values are relative to tls_segment()->vaddr()
5525 Valtype x = psymval->value(object, addend) - tp_offset;
5526
5527 if (calculate_only)
5528 *calculated_value = x;
5529 else
5530 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5531
5532 return This::STATUS_OKAY;
5533 }
5534
5535 // R_MIPS_SUB, R_MICROMIPS_SUB
5536 static inline typename This::Status
5537 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5538 const Symbol_value<size>* psymval, Mips_address addend_a,
5539 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5540 {
5541 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5542 Valtype64 addend = (extract_addend
5543 ? elfcpp::Swap<64, big_endian>::readval(wv)
5544 : addend_a);
5545
5546 Valtype64 x = psymval->value(object, -addend);
5547 if (calculate_only)
5548 *calculated_value = x;
5549 else
5550 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5551
5552 return This::STATUS_OKAY;
5553 }
5554
5555 // R_MIPS_64: S + A
5556 static inline typename This::Status
5557 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5558 const Symbol_value<size>* psymval, Mips_address addend_a,
5559 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5560 bool apply_addend_only)
5561 {
5562 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5563 Valtype64 addend = (extract_addend
5564 ? elfcpp::Swap<64, big_endian>::readval(wv)
5565 : addend_a);
5566
5567 Valtype64 x = psymval->value(object, addend);
5568 if (calculate_only)
5569 *calculated_value = x;
5570 else
5571 {
5572 if (apply_addend_only)
5573 x = addend;
5574 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5575 }
5576
5577 return This::STATUS_OKAY;
5578 }
5579
5580 };
5581
5582 template<int size, bool big_endian>
5583 typename std::list<reloc_high<size, big_endian> >
5584 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5585
5586 template<int size, bool big_endian>
5587 typename std::list<reloc_high<size, big_endian> >
5588 Mips_relocate_functions<size, big_endian>::got16_relocs;
5589
5590 template<int size, bool big_endian>
5591 typename std::list<reloc_high<size, big_endian> >
5592 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5593
5594 // Mips_got_info methods.
5595
5596 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5597 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5598
5599 template<int size, bool big_endian>
5600 void
5601 Mips_got_info<size, big_endian>::record_local_got_symbol(
5602 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5603 Mips_address addend, unsigned int r_type, unsigned int shndx,
5604 bool is_section_symbol)
5605 {
5606 Mips_got_entry<size, big_endian>* entry =
5607 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5608 mips_elf_reloc_tls_type(r_type),
5609 shndx, is_section_symbol);
5610 this->record_got_entry(entry, object);
5611 }
5612
5613 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5614 // in OBJECT. FOR_CALL is true if the caller is only interested in
5615 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5616 // relocation.
5617
5618 template<int size, bool big_endian>
5619 void
5620 Mips_got_info<size, big_endian>::record_global_got_symbol(
5621 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5622 unsigned int r_type, bool dyn_reloc, bool for_call)
5623 {
5624 if (!for_call)
5625 mips_sym->set_got_not_only_for_calls();
5626
5627 // A global symbol in the GOT must also be in the dynamic symbol table.
5628 if (!mips_sym->needs_dynsym_entry())
5629 {
5630 switch (mips_sym->visibility())
5631 {
5632 case elfcpp::STV_INTERNAL:
5633 case elfcpp::STV_HIDDEN:
5634 mips_sym->set_is_forced_local();
5635 break;
5636 default:
5637 mips_sym->set_needs_dynsym_entry();
5638 break;
5639 }
5640 }
5641
5642 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5643 if (tls_type == GOT_TLS_NONE)
5644 this->global_got_symbols_.insert(mips_sym);
5645
5646 if (dyn_reloc)
5647 {
5648 if (mips_sym->global_got_area() == GGA_NONE)
5649 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5650 return;
5651 }
5652
5653 Mips_got_entry<size, big_endian>* entry =
5654 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5655
5656 this->record_got_entry(entry, object);
5657 }
5658
5659 // Add ENTRY to master GOT and to OBJECT's GOT.
5660
5661 template<int size, bool big_endian>
5662 void
5663 Mips_got_info<size, big_endian>::record_got_entry(
5664 Mips_got_entry<size, big_endian>* entry,
5665 Mips_relobj<size, big_endian>* object)
5666 {
5667 this->got_entries_.insert(entry);
5668
5669 // Create the GOT entry for the OBJECT's GOT.
5670 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5671 Mips_got_entry<size, big_endian>* entry2 =
5672 new Mips_got_entry<size, big_endian>(*entry);
5673
5674 g->got_entries_.insert(entry2);
5675 }
5676
5677 // Record that OBJECT has a page relocation against symbol SYMNDX and
5678 // that ADDEND is the addend for that relocation.
5679 // This function creates an upper bound on the number of GOT slots
5680 // required; no attempt is made to combine references to non-overridable
5681 // global symbols across multiple input files.
5682
5683 template<int size, bool big_endian>
5684 void
5685 Mips_got_info<size, big_endian>::record_got_page_entry(
5686 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5687 {
5688 struct Got_page_range **range_ptr, *range;
5689 int old_pages, new_pages;
5690
5691 // Find the Got_page_entry for this symbol.
5692 Got_page_entry* entry = new Got_page_entry(object, symndx);
5693 typename Got_page_entry_set::iterator it =
5694 this->got_page_entries_.find(entry);
5695 if (it != this->got_page_entries_.end())
5696 entry = *it;
5697 else
5698 this->got_page_entries_.insert(entry);
5699
5700 // Add the same entry to the OBJECT's GOT.
5701 Got_page_entry* entry2 = NULL;
5702 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5703 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5704 {
5705 entry2 = new Got_page_entry(*entry);
5706 g2->got_page_entries_.insert(entry2);
5707 }
5708
5709 // Skip over ranges whose maximum extent cannot share a page entry
5710 // with ADDEND.
5711 range_ptr = &entry->ranges;
5712 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5713 range_ptr = &(*range_ptr)->next;
5714
5715 // If we scanned to the end of the list, or found a range whose
5716 // minimum extent cannot share a page entry with ADDEND, create
5717 // a new singleton range.
5718 range = *range_ptr;
5719 if (!range || addend < range->min_addend - 0xffff)
5720 {
5721 range = new Got_page_range();
5722 range->next = *range_ptr;
5723 range->min_addend = addend;
5724 range->max_addend = addend;
5725
5726 *range_ptr = range;
5727 ++entry->num_pages;
5728 if (entry2 != NULL)
5729 ++entry2->num_pages;
5730 ++this->page_gotno_;
5731 ++g2->page_gotno_;
5732 return;
5733 }
5734
5735 // Remember how many pages the old range contributed.
5736 old_pages = range->get_max_pages();
5737
5738 // Update the ranges.
5739 if (addend < range->min_addend)
5740 range->min_addend = addend;
5741 else if (addend > range->max_addend)
5742 {
5743 if (range->next && addend >= range->next->min_addend - 0xffff)
5744 {
5745 old_pages += range->next->get_max_pages();
5746 range->max_addend = range->next->max_addend;
5747 range->next = range->next->next;
5748 }
5749 else
5750 range->max_addend = addend;
5751 }
5752
5753 // Record any change in the total estimate.
5754 new_pages = range->get_max_pages();
5755 if (old_pages != new_pages)
5756 {
5757 entry->num_pages += new_pages - old_pages;
5758 if (entry2 != NULL)
5759 entry2->num_pages += new_pages - old_pages;
5760 this->page_gotno_ += new_pages - old_pages;
5761 g2->page_gotno_ += new_pages - old_pages;
5762 }
5763 }
5764
5765 // Create all entries that should be in the local part of the GOT.
5766
5767 template<int size, bool big_endian>
5768 void
5769 Mips_got_info<size, big_endian>::add_local_entries(
5770 Target_mips<size, big_endian>* target, Layout* layout)
5771 {
5772 Mips_output_data_got<size, big_endian>* got = target->got_section();
5773 // First two GOT entries are reserved. The first entry will be filled at
5774 // runtime. The second entry will be used by some runtime loaders.
5775 got->add_constant(0);
5776 got->add_constant(target->mips_elf_gnu_got1_mask());
5777
5778 for (typename Got_entry_set::iterator
5779 p = this->got_entries_.begin();
5780 p != this->got_entries_.end();
5781 ++p)
5782 {
5783 Mips_got_entry<size, big_endian>* entry = *p;
5784 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5785 {
5786 got->add_local(entry->object(), entry->symndx(),
5787 GOT_TYPE_STANDARD, entry->addend());
5788 unsigned int got_offset = entry->object()->local_got_offset(
5789 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5790 if (got->multi_got() && this->index_ > 0
5791 && parameters->options().output_is_position_independent())
5792 {
5793 if (!entry->is_section_symbol())
5794 target->rel_dyn_section(layout)->add_local(entry->object(),
5795 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5796 else
5797 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5798 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5799 got, got_offset);
5800 }
5801 }
5802 }
5803
5804 this->add_page_entries(target, layout);
5805
5806 // Add global entries that should be in the local area.
5807 for (typename Got_entry_set::iterator
5808 p = this->got_entries_.begin();
5809 p != this->got_entries_.end();
5810 ++p)
5811 {
5812 Mips_got_entry<size, big_endian>* entry = *p;
5813 if (!entry->is_for_global_symbol())
5814 continue;
5815
5816 Mips_symbol<size>* mips_sym = entry->sym();
5817 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5818 {
5819 unsigned int got_type;
5820 if (!got->multi_got())
5821 got_type = GOT_TYPE_STANDARD;
5822 else
5823 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5824 if (got->add_global(mips_sym, got_type))
5825 {
5826 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5827 if (got->multi_got() && this->index_ > 0
5828 && parameters->options().output_is_position_independent())
5829 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5830 mips_sym, elfcpp::R_MIPS_REL32, got,
5831 mips_sym->got_offset(got_type));
5832 }
5833 }
5834 }
5835 }
5836
5837 // Create GOT page entries.
5838
5839 template<int size, bool big_endian>
5840 void
5841 Mips_got_info<size, big_endian>::add_page_entries(
5842 Target_mips<size, big_endian>* target, Layout* layout)
5843 {
5844 if (this->page_gotno_ == 0)
5845 return;
5846
5847 Mips_output_data_got<size, big_endian>* got = target->got_section();
5848 this->got_page_offset_start_ = got->add_constant(0);
5849 if (got->multi_got() && this->index_ > 0
5850 && parameters->options().output_is_position_independent())
5851 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5852 this->got_page_offset_start_);
5853 int num_entries = this->page_gotno_;
5854 unsigned int prev_offset = this->got_page_offset_start_;
5855 while (--num_entries > 0)
5856 {
5857 unsigned int next_offset = got->add_constant(0);
5858 if (got->multi_got() && this->index_ > 0
5859 && parameters->options().output_is_position_independent())
5860 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5861 next_offset);
5862 gold_assert(next_offset == prev_offset + size/8);
5863 prev_offset = next_offset;
5864 }
5865 this->got_page_offset_next_ = this->got_page_offset_start_;
5866 }
5867
5868 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5869
5870 template<int size, bool big_endian>
5871 void
5872 Mips_got_info<size, big_endian>::add_global_entries(
5873 Target_mips<size, big_endian>* target, Layout* layout,
5874 unsigned int non_reloc_only_global_gotno)
5875 {
5876 Mips_output_data_got<size, big_endian>* got = target->got_section();
5877 // Add GGA_NORMAL entries.
5878 unsigned int count = 0;
5879 for (typename Got_entry_set::iterator
5880 p = this->got_entries_.begin();
5881 p != this->got_entries_.end();
5882 ++p)
5883 {
5884 Mips_got_entry<size, big_endian>* entry = *p;
5885 if (!entry->is_for_global_symbol())
5886 continue;
5887
5888 Mips_symbol<size>* mips_sym = entry->sym();
5889 if (mips_sym->global_got_area() != GGA_NORMAL)
5890 continue;
5891
5892 unsigned int got_type;
5893 if (!got->multi_got())
5894 got_type = GOT_TYPE_STANDARD;
5895 else
5896 // In multi-GOT links, global symbol can be in both primary and
5897 // secondary GOT(s). By creating custom GOT type
5898 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5899 // is added to secondary GOT(s).
5900 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5901 if (!got->add_global(mips_sym, got_type))
5902 continue;
5903
5904 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5905 if (got->multi_got() && this->index_ == 0)
5906 count++;
5907 if (got->multi_got() && this->index_ > 0)
5908 {
5909 if (parameters->options().output_is_position_independent()
5910 || (!parameters->doing_static_link()
5911 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5912 {
5913 target->rel_dyn_section(layout)->add_global(
5914 mips_sym, elfcpp::R_MIPS_REL32, got,
5915 mips_sym->got_offset(got_type));
5916 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5917 elfcpp::R_MIPS_REL32, mips_sym);
5918 }
5919 }
5920 }
5921
5922 if (!got->multi_got() || this->index_ == 0)
5923 {
5924 if (got->multi_got())
5925 {
5926 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5927 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5928 // entries correspond to dynamic symbol indexes.
5929 while (count < non_reloc_only_global_gotno)
5930 {
5931 got->add_constant(0);
5932 ++count;
5933 }
5934 }
5935
5936 // Add GGA_RELOC_ONLY entries.
5937 got->add_reloc_only_entries();
5938 }
5939 }
5940
5941 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5942
5943 template<int size, bool big_endian>
5944 void
5945 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5946 Mips_output_data_got<size, big_endian>* got)
5947 {
5948 for (typename Global_got_entry_set::iterator
5949 p = this->global_got_symbols_.begin();
5950 p != this->global_got_symbols_.end();
5951 ++p)
5952 {
5953 Mips_symbol<size>* mips_sym = *p;
5954 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5955 {
5956 unsigned int got_type;
5957 if (!got->multi_got())
5958 got_type = GOT_TYPE_STANDARD;
5959 else
5960 got_type = GOT_TYPE_STANDARD_MULTIGOT;
5961 if (got->add_global(mips_sym, got_type))
5962 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5963 }
5964 }
5965 }
5966
5967 // Create TLS GOT entries.
5968
5969 template<int size, bool big_endian>
5970 void
5971 Mips_got_info<size, big_endian>::add_tls_entries(
5972 Target_mips<size, big_endian>* target, Layout* layout)
5973 {
5974 Mips_output_data_got<size, big_endian>* got = target->got_section();
5975 // Add local tls entries.
5976 for (typename Got_entry_set::iterator
5977 p = this->got_entries_.begin();
5978 p != this->got_entries_.end();
5979 ++p)
5980 {
5981 Mips_got_entry<size, big_endian>* entry = *p;
5982 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5983 continue;
5984
5985 if (entry->tls_type() == GOT_TLS_GD)
5986 {
5987 unsigned int got_type = GOT_TYPE_TLS_PAIR;
5988 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5989 : elfcpp::R_MIPS_TLS_DTPMOD64);
5990 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5991 : elfcpp::R_MIPS_TLS_DTPREL64);
5992
5993 if (!parameters->doing_static_link())
5994 {
5995 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5996 entry->shndx(), got_type,
5997 target->rel_dyn_section(layout),
5998 r_type1, entry->addend());
5999 unsigned int got_offset =
6000 entry->object()->local_got_offset(entry->symndx(), got_type,
6001 entry->addend());
6002 got->add_static_reloc(got_offset + size/8, r_type2,
6003 entry->object(), entry->symndx());
6004 }
6005 else
6006 {
6007 // We are doing a static link. Mark it as belong to module 1,
6008 // the executable.
6009 unsigned int got_offset = got->add_constant(1);
6010 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6011 got_offset,
6012 entry->addend());
6013 got->add_constant(0);
6014 got->add_static_reloc(got_offset + size/8, r_type2,
6015 entry->object(), entry->symndx());
6016 }
6017 }
6018 else if (entry->tls_type() == GOT_TLS_IE)
6019 {
6020 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6021 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6022 : elfcpp::R_MIPS_TLS_TPREL64);
6023 if (!parameters->doing_static_link())
6024 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6025 target->rel_dyn_section(layout), r_type,
6026 entry->addend());
6027 else
6028 {
6029 got->add_local(entry->object(), entry->symndx(), got_type,
6030 entry->addend());
6031 unsigned int got_offset =
6032 entry->object()->local_got_offset(entry->symndx(), got_type,
6033 entry->addend());
6034 got->add_static_reloc(got_offset, r_type, entry->object(),
6035 entry->symndx());
6036 }
6037 }
6038 else if (entry->tls_type() == GOT_TLS_LDM)
6039 {
6040 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6041 : elfcpp::R_MIPS_TLS_DTPMOD64);
6042 unsigned int got_offset;
6043 if (!parameters->doing_static_link())
6044 {
6045 got_offset = got->add_constant(0);
6046 target->rel_dyn_section(layout)->add_local(
6047 entry->object(), 0, r_type, got, got_offset);
6048 }
6049 else
6050 // We are doing a static link. Just mark it as belong to module 1,
6051 // the executable.
6052 got_offset = got->add_constant(1);
6053
6054 got->add_constant(0);
6055 got->set_tls_ldm_offset(got_offset, entry->object());
6056 }
6057 else
6058 gold_unreachable();
6059 }
6060
6061 // Add global tls entries.
6062 for (typename Got_entry_set::iterator
6063 p = this->got_entries_.begin();
6064 p != this->got_entries_.end();
6065 ++p)
6066 {
6067 Mips_got_entry<size, big_endian>* entry = *p;
6068 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6069 continue;
6070
6071 Mips_symbol<size>* mips_sym = entry->sym();
6072 if (entry->tls_type() == GOT_TLS_GD)
6073 {
6074 unsigned int got_type;
6075 if (!got->multi_got())
6076 got_type = GOT_TYPE_TLS_PAIR;
6077 else
6078 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6079 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6080 : elfcpp::R_MIPS_TLS_DTPMOD64);
6081 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6082 : elfcpp::R_MIPS_TLS_DTPREL64);
6083 if (!parameters->doing_static_link())
6084 got->add_global_pair_with_rel(mips_sym, got_type,
6085 target->rel_dyn_section(layout), r_type1, r_type2);
6086 else
6087 {
6088 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6089 // GOT entries. The first one is initialized to be 1, which is the
6090 // module index for the main executable and the second one 0. A
6091 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6092 // the second GOT entry and will be applied by gold.
6093 unsigned int got_offset = got->add_constant(1);
6094 mips_sym->set_got_offset(got_type, got_offset);
6095 got->add_constant(0);
6096 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6097 }
6098 }
6099 else if (entry->tls_type() == GOT_TLS_IE)
6100 {
6101 unsigned int got_type;
6102 if (!got->multi_got())
6103 got_type = GOT_TYPE_TLS_OFFSET;
6104 else
6105 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6106 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6107 : elfcpp::R_MIPS_TLS_TPREL64);
6108 if (!parameters->doing_static_link())
6109 got->add_global_with_rel(mips_sym, got_type,
6110 target->rel_dyn_section(layout), r_type);
6111 else
6112 {
6113 got->add_global(mips_sym, got_type);
6114 unsigned int got_offset = mips_sym->got_offset(got_type);
6115 got->add_static_reloc(got_offset, r_type, mips_sym);
6116 }
6117 }
6118 else
6119 gold_unreachable();
6120 }
6121 }
6122
6123 // Decide whether the symbol needs an entry in the global part of the primary
6124 // GOT, setting global_got_area accordingly. Count the number of global
6125 // symbols that are in the primary GOT only because they have dynamic
6126 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6127
6128 template<int size, bool big_endian>
6129 void
6130 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6131 {
6132 for (typename Global_got_entry_set::iterator
6133 p = this->global_got_symbols_.begin();
6134 p != this->global_got_symbols_.end();
6135 ++p)
6136 {
6137 Mips_symbol<size>* sym = *p;
6138 // Make a final decision about whether the symbol belongs in the
6139 // local or global GOT. Symbols that bind locally can (and in the
6140 // case of forced-local symbols, must) live in the local GOT.
6141 // Those that are aren't in the dynamic symbol table must also
6142 // live in the local GOT.
6143
6144 if (!sym->should_add_dynsym_entry(symtab)
6145 || (sym->got_only_for_calls()
6146 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6147 : symbol_references_local(sym,
6148 sym->should_add_dynsym_entry(symtab))))
6149 // The symbol belongs in the local GOT. We no longer need this
6150 // entry if it was only used for relocations; those relocations
6151 // will be against the null or section symbol instead.
6152 sym->set_global_got_area(GGA_NONE);
6153 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6154 {
6155 ++this->reloc_only_gotno_;
6156 ++this->global_gotno_ ;
6157 }
6158 }
6159 }
6160
6161 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6162 // VALUE if it is not initialized.
6163
6164 template<int size, bool big_endian>
6165 unsigned int
6166 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6167 Mips_output_data_got<size, big_endian>* got)
6168 {
6169 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6170 if (it != this->got_page_offsets_.end())
6171 return it->second;
6172
6173 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6174 + (size/8) * this->page_gotno_);
6175
6176 unsigned int got_offset = this->got_page_offset_next_;
6177 this->got_page_offsets_[value] = got_offset;
6178 this->got_page_offset_next_ += size/8;
6179 got->update_got_entry(got_offset, value);
6180 return got_offset;
6181 }
6182
6183 // Remove lazy-binding stubs for global symbols in this GOT.
6184
6185 template<int size, bool big_endian>
6186 void
6187 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6188 Target_mips<size, big_endian>* target)
6189 {
6190 for (typename Got_entry_set::iterator
6191 p = this->got_entries_.begin();
6192 p != this->got_entries_.end();
6193 ++p)
6194 {
6195 Mips_got_entry<size, big_endian>* entry = *p;
6196 if (entry->is_for_global_symbol())
6197 target->remove_lazy_stub_entry(entry->sym());
6198 }
6199 }
6200
6201 // Count the number of GOT entries required.
6202
6203 template<int size, bool big_endian>
6204 void
6205 Mips_got_info<size, big_endian>::count_got_entries()
6206 {
6207 for (typename Got_entry_set::iterator
6208 p = this->got_entries_.begin();
6209 p != this->got_entries_.end();
6210 ++p)
6211 {
6212 this->count_got_entry(*p);
6213 }
6214 }
6215
6216 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6217
6218 template<int size, bool big_endian>
6219 void
6220 Mips_got_info<size, big_endian>::count_got_entry(
6221 Mips_got_entry<size, big_endian>* entry)
6222 {
6223 if (entry->is_tls_entry())
6224 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6225 else if (entry->is_for_local_symbol()
6226 || entry->sym()->global_got_area() == GGA_NONE)
6227 ++this->local_gotno_;
6228 else
6229 ++this->global_gotno_;
6230 }
6231
6232 // Add FROM's GOT entries.
6233
6234 template<int size, bool big_endian>
6235 void
6236 Mips_got_info<size, big_endian>::add_got_entries(
6237 Mips_got_info<size, big_endian>* from)
6238 {
6239 for (typename Got_entry_set::iterator
6240 p = from->got_entries_.begin();
6241 p != from->got_entries_.end();
6242 ++p)
6243 {
6244 Mips_got_entry<size, big_endian>* entry = *p;
6245 if (this->got_entries_.find(entry) == this->got_entries_.end())
6246 {
6247 Mips_got_entry<size, big_endian>* entry2 =
6248 new Mips_got_entry<size, big_endian>(*entry);
6249 this->got_entries_.insert(entry2);
6250 this->count_got_entry(entry);
6251 }
6252 }
6253 }
6254
6255 // Add FROM's GOT page entries.
6256
6257 template<int size, bool big_endian>
6258 void
6259 Mips_got_info<size, big_endian>::add_got_page_entries(
6260 Mips_got_info<size, big_endian>* from)
6261 {
6262 for (typename Got_page_entry_set::iterator
6263 p = from->got_page_entries_.begin();
6264 p != from->got_page_entries_.end();
6265 ++p)
6266 {
6267 Got_page_entry* entry = *p;
6268 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6269 {
6270 Got_page_entry* entry2 = new Got_page_entry(*entry);
6271 this->got_page_entries_.insert(entry2);
6272 this->page_gotno_ += entry->num_pages;
6273 }
6274 }
6275 }
6276
6277 // Mips_output_data_got methods.
6278
6279 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6280 // larger than 64K, create multi-GOT.
6281
6282 template<int size, bool big_endian>
6283 void
6284 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6285 Symbol_table* symtab, const Input_objects* input_objects)
6286 {
6287 // Decide which symbols need to go in the global part of the GOT and
6288 // count the number of reloc-only GOT symbols.
6289 this->master_got_info_->count_got_symbols(symtab);
6290
6291 // Count the number of GOT entries.
6292 this->master_got_info_->count_got_entries();
6293
6294 unsigned int got_size = this->master_got_info_->got_size();
6295 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6296 this->lay_out_multi_got(layout, input_objects);
6297 else
6298 {
6299 // Record that all objects use single GOT.
6300 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6301 p != input_objects->relobj_end();
6302 ++p)
6303 {
6304 Mips_relobj<size, big_endian>* object =
6305 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6306 if (object->get_got_info() != NULL)
6307 object->set_got_info(this->master_got_info_);
6308 }
6309
6310 this->master_got_info_->add_local_entries(this->target_, layout);
6311 this->master_got_info_->add_global_entries(this->target_, layout,
6312 /*not used*/-1U);
6313 this->master_got_info_->add_tls_entries(this->target_, layout);
6314 }
6315 }
6316
6317 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6318
6319 template<int size, bool big_endian>
6320 void
6321 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6322 const Input_objects* input_objects)
6323 {
6324 // Try to merge the GOTs of input objects together, as long as they
6325 // don't seem to exceed the maximum GOT size, choosing one of them
6326 // to be the primary GOT.
6327 this->merge_gots(input_objects);
6328
6329 // Every symbol that is referenced in a dynamic relocation must be
6330 // present in the primary GOT.
6331 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6332
6333 // Add GOT entries.
6334 unsigned int i = 0;
6335 unsigned int offset = 0;
6336 Mips_got_info<size, big_endian>* g = this->primary_got_;
6337 do
6338 {
6339 g->set_index(i);
6340 g->set_offset(offset);
6341
6342 g->add_local_entries(this->target_, layout);
6343 if (i == 0)
6344 g->add_global_entries(this->target_, layout,
6345 (this->master_got_info_->global_gotno()
6346 - this->master_got_info_->reloc_only_gotno()));
6347 else
6348 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6349 g->add_tls_entries(this->target_, layout);
6350
6351 // Forbid global symbols in every non-primary GOT from having
6352 // lazy-binding stubs.
6353 if (i > 0)
6354 g->remove_lazy_stubs(this->target_);
6355
6356 ++i;
6357 offset += g->got_size();
6358 g = g->next();
6359 }
6360 while (g);
6361 }
6362
6363 // Attempt to merge GOTs of different input objects. Try to use as much as
6364 // possible of the primary GOT, since it doesn't require explicit dynamic
6365 // relocations, but don't use objects that would reference global symbols
6366 // out of the addressable range. Failing the primary GOT, attempt to merge
6367 // with the current GOT, or finish the current GOT and then make make the new
6368 // GOT current.
6369
6370 template<int size, bool big_endian>
6371 void
6372 Mips_output_data_got<size, big_endian>::merge_gots(
6373 const Input_objects* input_objects)
6374 {
6375 gold_assert(this->primary_got_ == NULL);
6376 Mips_got_info<size, big_endian>* current = NULL;
6377
6378 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6379 p != input_objects->relobj_end();
6380 ++p)
6381 {
6382 Mips_relobj<size, big_endian>* object =
6383 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6384
6385 Mips_got_info<size, big_endian>* g = object->get_got_info();
6386 if (g == NULL)
6387 continue;
6388
6389 g->count_got_entries();
6390
6391 // Work out the number of page, local and TLS entries.
6392 unsigned int estimate = this->master_got_info_->page_gotno();
6393 if (estimate > g->page_gotno())
6394 estimate = g->page_gotno();
6395 estimate += g->local_gotno() + g->tls_gotno();
6396
6397 // We place TLS GOT entries after both locals and globals. The globals
6398 // for the primary GOT may overflow the normal GOT size limit, so be
6399 // sure not to merge a GOT which requires TLS with the primary GOT in that
6400 // case. This doesn't affect non-primary GOTs.
6401 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6402 : g->global_gotno());
6403
6404 unsigned int max_count =
6405 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6406 if (estimate <= max_count)
6407 {
6408 // If we don't have a primary GOT, use it as
6409 // a starting point for the primary GOT.
6410 if (!this->primary_got_)
6411 {
6412 this->primary_got_ = g;
6413 continue;
6414 }
6415
6416 // Try merging with the primary GOT.
6417 if (this->merge_got_with(g, object, this->primary_got_))
6418 continue;
6419 }
6420
6421 // If we can merge with the last-created GOT, do it.
6422 if (current && this->merge_got_with(g, object, current))
6423 continue;
6424
6425 // Well, we couldn't merge, so create a new GOT. Don't check if it
6426 // fits; if it turns out that it doesn't, we'll get relocation
6427 // overflows anyway.
6428 g->set_next(current);
6429 current = g;
6430 }
6431
6432 // If we do not find any suitable primary GOT, create an empty one.
6433 if (this->primary_got_ == NULL)
6434 this->primary_got_ = new Mips_got_info<size, big_endian>();
6435
6436 // Link primary GOT with secondary GOTs.
6437 this->primary_got_->set_next(current);
6438 }
6439
6440 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6441 // this would lead to overflow, true if they were merged successfully.
6442
6443 template<int size, bool big_endian>
6444 bool
6445 Mips_output_data_got<size, big_endian>::merge_got_with(
6446 Mips_got_info<size, big_endian>* from,
6447 Mips_relobj<size, big_endian>* object,
6448 Mips_got_info<size, big_endian>* to)
6449 {
6450 // Work out how many page entries we would need for the combined GOT.
6451 unsigned int estimate = this->master_got_info_->page_gotno();
6452 if (estimate >= from->page_gotno() + to->page_gotno())
6453 estimate = from->page_gotno() + to->page_gotno();
6454
6455 // Conservatively estimate how many local and TLS entries would be needed.
6456 estimate += from->local_gotno() + to->local_gotno();
6457 estimate += from->tls_gotno() + to->tls_gotno();
6458
6459 // If we're merging with the primary got, any TLS relocations will
6460 // come after the full set of global entries. Otherwise estimate those
6461 // conservatively as well.
6462 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6463 estimate += this->master_got_info_->global_gotno();
6464 else
6465 estimate += from->global_gotno() + to->global_gotno();
6466
6467 // Bail out if the combined GOT might be too big.
6468 unsigned int max_count =
6469 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6470 if (estimate > max_count)
6471 return false;
6472
6473 // Transfer the object's GOT information from FROM to TO.
6474 to->add_got_entries(from);
6475 to->add_got_page_entries(from);
6476
6477 // Record that OBJECT should use output GOT TO.
6478 object->set_got_info(to);
6479
6480 return true;
6481 }
6482
6483 // Write out the GOT.
6484
6485 template<int size, bool big_endian>
6486 void
6487 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6488 {
6489 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6490 Mips_stubs_entry_set;
6491
6492 // Call parent to write out GOT.
6493 Output_data_got<size, big_endian>::do_write(of);
6494
6495 const off_t offset = this->offset();
6496 const section_size_type oview_size =
6497 convert_to_section_size_type(this->data_size());
6498 unsigned char* const oview = of->get_output_view(offset, oview_size);
6499
6500 // Needed for fixing values of .got section.
6501 this->got_view_ = oview;
6502
6503 // Write lazy stub addresses.
6504 for (typename Mips_stubs_entry_set::iterator
6505 p = this->master_got_info_->global_got_symbols().begin();
6506 p != this->master_got_info_->global_got_symbols().end();
6507 ++p)
6508 {
6509 Mips_symbol<size>* mips_sym = *p;
6510 if (mips_sym->has_lazy_stub())
6511 {
6512 Valtype* wv = reinterpret_cast<Valtype*>(
6513 oview + this->get_primary_got_offset(mips_sym));
6514 Valtype value =
6515 this->target_->mips_stubs_section()->stub_address(mips_sym);
6516 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6517 }
6518 }
6519
6520 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6521 for (typename Mips_stubs_entry_set::iterator
6522 p = this->master_got_info_->global_got_symbols().begin();
6523 p != this->master_got_info_->global_got_symbols().end();
6524 ++p)
6525 {
6526 Mips_symbol<size>* mips_sym = *p;
6527 if (!this->multi_got()
6528 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6529 && mips_sym->global_got_area() == GGA_NONE
6530 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6531 {
6532 Valtype* wv = reinterpret_cast<Valtype*>(
6533 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6534 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6535 if (value != 0)
6536 {
6537 value |= 1;
6538 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6539 }
6540 }
6541 }
6542
6543 if (!this->secondary_got_relocs_.empty())
6544 {
6545 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6546 // secondary GOT entries with non-zero initial value copy the value
6547 // to the corresponding primary GOT entry, and set the secondary GOT
6548 // entry to zero.
6549 // TODO(sasa): This is workaround. It needs to be investigated further.
6550
6551 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6552 {
6553 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6554 if (reloc.symbol_is_global())
6555 {
6556 Mips_symbol<size>* gsym = reloc.symbol();
6557 gold_assert(gsym != NULL);
6558
6559 unsigned got_offset = reloc.got_offset();
6560 gold_assert(got_offset < oview_size);
6561
6562 // Find primary GOT entry.
6563 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6564 oview + this->get_primary_got_offset(gsym));
6565
6566 // Find secondary GOT entry.
6567 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6568
6569 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6570 if (value != 0)
6571 {
6572 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6573 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6574 gsym->set_applied_secondary_got_fixup();
6575 }
6576 }
6577 }
6578
6579 of->write_output_view(offset, oview_size, oview);
6580 }
6581
6582 // We are done if there is no fix up.
6583 if (this->static_relocs_.empty())
6584 return;
6585
6586 Output_segment* tls_segment = this->layout_->tls_segment();
6587 gold_assert(tls_segment != NULL);
6588
6589 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6590 {
6591 Static_reloc& reloc(this->static_relocs_[i]);
6592
6593 Mips_address value;
6594 if (!reloc.symbol_is_global())
6595 {
6596 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6597 const Symbol_value<size>* psymval =
6598 object->local_symbol(reloc.index());
6599
6600 // We are doing static linking. Issue an error and skip this
6601 // relocation if the symbol is undefined or in a discarded_section.
6602 bool is_ordinary;
6603 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6604 if ((shndx == elfcpp::SHN_UNDEF)
6605 || (is_ordinary
6606 && shndx != elfcpp::SHN_UNDEF
6607 && !object->is_section_included(shndx)
6608 && !this->symbol_table_->is_section_folded(object, shndx)))
6609 {
6610 gold_error(_("undefined or discarded local symbol %u from "
6611 " object %s in GOT"),
6612 reloc.index(), reloc.relobj()->name().c_str());
6613 continue;
6614 }
6615
6616 value = psymval->value(object, 0);
6617 }
6618 else
6619 {
6620 const Mips_symbol<size>* gsym = reloc.symbol();
6621 gold_assert(gsym != NULL);
6622
6623 // We are doing static linking. Issue an error and skip this
6624 // relocation if the symbol is undefined or in a discarded_section
6625 // unless it is a weakly_undefined symbol.
6626 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6627 && !gsym->is_weak_undefined())
6628 {
6629 gold_error(_("undefined or discarded symbol %s in GOT"),
6630 gsym->name());
6631 continue;
6632 }
6633
6634 if (!gsym->is_weak_undefined())
6635 value = gsym->value();
6636 else
6637 value = 0;
6638 }
6639
6640 unsigned got_offset = reloc.got_offset();
6641 gold_assert(got_offset < oview_size);
6642
6643 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6644 Valtype x;
6645
6646 switch (reloc.r_type())
6647 {
6648 case elfcpp::R_MIPS_TLS_DTPMOD32:
6649 case elfcpp::R_MIPS_TLS_DTPMOD64:
6650 x = value;
6651 break;
6652 case elfcpp::R_MIPS_TLS_DTPREL32:
6653 case elfcpp::R_MIPS_TLS_DTPREL64:
6654 x = value - elfcpp::DTP_OFFSET;
6655 break;
6656 case elfcpp::R_MIPS_TLS_TPREL32:
6657 case elfcpp::R_MIPS_TLS_TPREL64:
6658 x = value - elfcpp::TP_OFFSET;
6659 break;
6660 default:
6661 gold_unreachable();
6662 break;
6663 }
6664
6665 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6666 }
6667
6668 of->write_output_view(offset, oview_size, oview);
6669 }
6670
6671 // Mips_relobj methods.
6672
6673 // Count the local symbols. The Mips backend needs to know if a symbol
6674 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6675 // because the Symbol object keeps the ELF symbol type and st_other field.
6676 // For local symbol it is harder because we cannot access this information.
6677 // So we override the do_count_local_symbol in parent and scan local symbols to
6678 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6679 // I do not want to slow down other ports by calling a per symbol target hook
6680 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6681
6682 template<int size, bool big_endian>
6683 void
6684 Mips_relobj<size, big_endian>::do_count_local_symbols(
6685 Stringpool_template<char>* pool,
6686 Stringpool_template<char>* dynpool)
6687 {
6688 // Ask parent to count the local symbols.
6689 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6690 const unsigned int loccount = this->local_symbol_count();
6691 if (loccount == 0)
6692 return;
6693
6694 // Initialize the mips16 and micromips function bit-vector.
6695 this->local_symbol_is_mips16_.resize(loccount, false);
6696 this->local_symbol_is_micromips_.resize(loccount, false);
6697
6698 // Read the symbol table section header.
6699 const unsigned int symtab_shndx = this->symtab_shndx();
6700 elfcpp::Shdr<size, big_endian>
6701 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6702 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6703
6704 // Read the local symbols.
6705 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6706 gold_assert(loccount == symtabshdr.get_sh_info());
6707 off_t locsize = loccount * sym_size;
6708 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6709 locsize, true, true);
6710
6711 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6712
6713 // Skip the first dummy symbol.
6714 psyms += sym_size;
6715 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6716 {
6717 elfcpp::Sym<size, big_endian> sym(psyms);
6718 unsigned char st_other = sym.get_st_other();
6719 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6720 this->local_symbol_is_micromips_[i] =
6721 elfcpp::elf_st_is_micromips(st_other);
6722 }
6723 }
6724
6725 // Read the symbol information.
6726
6727 template<int size, bool big_endian>
6728 void
6729 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6730 {
6731 // Call parent class to read symbol information.
6732 this->base_read_symbols(sd);
6733
6734 // Read processor-specific flags in ELF file header.
6735 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6736 elfcpp::Elf_sizes<size>::ehdr_size,
6737 true, false);
6738 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6739 this->processor_specific_flags_ = ehdr.get_e_flags();
6740
6741 // Get the section names.
6742 const unsigned char* pnamesu = sd->section_names->data();
6743 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6744
6745 // Initialize the mips16 stub section bit-vectors.
6746 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6747 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6748 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6749
6750 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6751 const unsigned char* pshdrs = sd->section_headers->data();
6752 const unsigned char* ps = pshdrs + shdr_size;
6753 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6754 {
6755 elfcpp::Shdr<size, big_endian> shdr(ps);
6756
6757 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6758 {
6759 this->has_reginfo_section_ = true;
6760 // Read the gp value that was used to create this object. We need the
6761 // gp value while processing relocs. The .reginfo section is not used
6762 // in the 64-bit MIPS ELF ABI.
6763 section_offset_type section_offset = shdr.get_sh_offset();
6764 section_size_type section_size =
6765 convert_to_section_size_type(shdr.get_sh_size());
6766 const unsigned char* view =
6767 this->get_view(section_offset, section_size, true, false);
6768
6769 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6770
6771 // Read the rest of .reginfo.
6772 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6773 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6774 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6775 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6776 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6777 }
6778
6779 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6780 {
6781 gold_assert(this->attributes_section_data_ == NULL);
6782 section_offset_type section_offset = shdr.get_sh_offset();
6783 section_size_type section_size =
6784 convert_to_section_size_type(shdr.get_sh_size());
6785 const unsigned char* view =
6786 this->get_view(section_offset, section_size, true, false);
6787 this->attributes_section_data_ =
6788 new Attributes_section_data(view, section_size);
6789 }
6790
6791 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6792 {
6793 gold_assert(this->abiflags_ == NULL);
6794 section_offset_type section_offset = shdr.get_sh_offset();
6795 section_size_type section_size =
6796 convert_to_section_size_type(shdr.get_sh_size());
6797 const unsigned char* view =
6798 this->get_view(section_offset, section_size, true, false);
6799 this->abiflags_ = new Mips_abiflags<big_endian>();
6800
6801 this->abiflags_->version =
6802 elfcpp::Swap<16, big_endian>::readval(view);
6803 if (this->abiflags_->version != 0)
6804 {
6805 gold_error(_("%s: .MIPS.abiflags section has "
6806 "unsupported version %u"),
6807 this->name().c_str(),
6808 this->abiflags_->version);
6809 break;
6810 }
6811 this->abiflags_->isa_level =
6812 elfcpp::Swap<8, big_endian>::readval(view + 2);
6813 this->abiflags_->isa_rev =
6814 elfcpp::Swap<8, big_endian>::readval(view + 3);
6815 this->abiflags_->gpr_size =
6816 elfcpp::Swap<8, big_endian>::readval(view + 4);
6817 this->abiflags_->cpr1_size =
6818 elfcpp::Swap<8, big_endian>::readval(view + 5);
6819 this->abiflags_->cpr2_size =
6820 elfcpp::Swap<8, big_endian>::readval(view + 6);
6821 this->abiflags_->fp_abi =
6822 elfcpp::Swap<8, big_endian>::readval(view + 7);
6823 this->abiflags_->isa_ext =
6824 elfcpp::Swap<32, big_endian>::readval(view + 8);
6825 this->abiflags_->ases =
6826 elfcpp::Swap<32, big_endian>::readval(view + 12);
6827 this->abiflags_->flags1 =
6828 elfcpp::Swap<32, big_endian>::readval(view + 16);
6829 this->abiflags_->flags2 =
6830 elfcpp::Swap<32, big_endian>::readval(view + 20);
6831 }
6832
6833 // In the 64-bit ABI, .MIPS.options section holds register information.
6834 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6835 // starts with this header:
6836 //
6837 // typedef struct
6838 // {
6839 // // Type of option.
6840 // unsigned char kind[1];
6841 // // Size of option descriptor, including header.
6842 // unsigned char size[1];
6843 // // Section index of affected section, or 0 for global option.
6844 // unsigned char section[2];
6845 // // Information specific to this kind of option.
6846 // unsigned char info[4];
6847 // };
6848 //
6849 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6850 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6851 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6852
6853 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6854 {
6855 section_offset_type section_offset = shdr.get_sh_offset();
6856 section_size_type section_size =
6857 convert_to_section_size_type(shdr.get_sh_size());
6858 const unsigned char* view =
6859 this->get_view(section_offset, section_size, true, false);
6860 const unsigned char* end = view + section_size;
6861
6862 while (view + 8 <= end)
6863 {
6864 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6865 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6866 if (sz < 8)
6867 {
6868 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6869 "than its header"),
6870 this->name().c_str(),
6871 this->mips_elf_options_section_name(), sz);
6872 break;
6873 }
6874
6875 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6876 {
6877 // In the 64 bit ABI, an ODK_REGINFO option is the following
6878 // structure. The info field of the options header is not
6879 // used.
6880 //
6881 // typedef struct
6882 // {
6883 // // Mask of general purpose registers used.
6884 // unsigned char ri_gprmask[4];
6885 // // Padding.
6886 // unsigned char ri_pad[4];
6887 // // Mask of co-processor registers used.
6888 // unsigned char ri_cprmask[4][4];
6889 // // GP register value for this object file.
6890 // unsigned char ri_gp_value[8];
6891 // };
6892
6893 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6894 + 32);
6895 }
6896 else if (kind == elfcpp::ODK_REGINFO)
6897 {
6898 // In the 32 bit ABI, an ODK_REGINFO option is the following
6899 // structure. The info field of the options header is not
6900 // used. The same structure is used in .reginfo section.
6901 //
6902 // typedef struct
6903 // {
6904 // unsigned char ri_gprmask[4];
6905 // unsigned char ri_cprmask[4][4];
6906 // unsigned char ri_gp_value[4];
6907 // };
6908
6909 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6910 + 28);
6911 }
6912 view += sz;
6913 }
6914 }
6915
6916 const char* name = pnames + shdr.get_sh_name();
6917 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6918 this->section_is_mips16_call_stub_[i] =
6919 is_prefix_of(".mips16.call.", name);
6920 this->section_is_mips16_call_fp_stub_[i] =
6921 is_prefix_of(".mips16.call.fp.", name);
6922
6923 if (strcmp(name, ".pdr") == 0)
6924 {
6925 gold_assert(this->pdr_shndx_ == -1U);
6926 this->pdr_shndx_ = i;
6927 }
6928 }
6929 }
6930
6931 // Discard MIPS16 stub secions that are not needed.
6932
6933 template<int size, bool big_endian>
6934 void
6935 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6936 {
6937 for (typename Mips16_stubs_int_map::const_iterator
6938 it = this->mips16_stub_sections_.begin();
6939 it != this->mips16_stub_sections_.end(); ++it)
6940 {
6941 Mips16_stub_section<size, big_endian>* stub_section = it->second;
6942 if (!stub_section->is_target_found())
6943 {
6944 gold_error(_("no relocation found in mips16 stub section '%s'"),
6945 stub_section->object()
6946 ->section_name(stub_section->shndx()).c_str());
6947 }
6948
6949 bool discard = false;
6950 if (stub_section->is_for_local_function())
6951 {
6952 if (stub_section->is_fn_stub())
6953 {
6954 // This stub is for a local symbol. This stub will only
6955 // be needed if there is some relocation in this object,
6956 // other than a 16 bit function call, which refers to this
6957 // symbol.
6958 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
6959 discard = true;
6960 else
6961 this->add_local_mips16_fn_stub(stub_section);
6962 }
6963 else
6964 {
6965 // This stub is for a local symbol. This stub will only
6966 // be needed if there is some relocation (R_MIPS16_26) in
6967 // this object that refers to this symbol.
6968 gold_assert(stub_section->is_call_stub()
6969 || stub_section->is_call_fp_stub());
6970 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
6971 discard = true;
6972 else
6973 this->add_local_mips16_call_stub(stub_section);
6974 }
6975 }
6976 else
6977 {
6978 Mips_symbol<size>* gsym = stub_section->gsym();
6979 if (stub_section->is_fn_stub())
6980 {
6981 if (gsym->has_mips16_fn_stub())
6982 // We already have a stub for this function.
6983 discard = true;
6984 else
6985 {
6986 gsym->set_mips16_fn_stub(stub_section);
6987 if (gsym->should_add_dynsym_entry(symtab))
6988 {
6989 // If we have a MIPS16 function with a stub, the
6990 // dynamic symbol must refer to the stub, since only
6991 // the stub uses the standard calling conventions.
6992 gsym->set_need_fn_stub();
6993 if (gsym->is_from_dynobj())
6994 gsym->set_needs_dynsym_value();
6995 }
6996 }
6997 if (!gsym->need_fn_stub())
6998 discard = true;
6999 }
7000 else if (stub_section->is_call_stub())
7001 {
7002 if (gsym->is_mips16())
7003 // We don't need the call_stub; this is a 16 bit
7004 // function, so calls from other 16 bit functions are
7005 // OK.
7006 discard = true;
7007 else if (gsym->has_mips16_call_stub())
7008 // We already have a stub for this function.
7009 discard = true;
7010 else
7011 gsym->set_mips16_call_stub(stub_section);
7012 }
7013 else
7014 {
7015 gold_assert(stub_section->is_call_fp_stub());
7016 if (gsym->is_mips16())
7017 // We don't need the call_stub; this is a 16 bit
7018 // function, so calls from other 16 bit functions are
7019 // OK.
7020 discard = true;
7021 else if (gsym->has_mips16_call_fp_stub())
7022 // We already have a stub for this function.
7023 discard = true;
7024 else
7025 gsym->set_mips16_call_fp_stub(stub_section);
7026 }
7027 }
7028 if (discard)
7029 this->set_output_section(stub_section->shndx(), NULL);
7030 }
7031 }
7032
7033 // Mips_output_data_la25_stub methods.
7034
7035 // Template for standard LA25 stub.
7036 template<int size, bool big_endian>
7037 const uint32_t
7038 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7039 {
7040 0x3c190000, // lui $25,%hi(func)
7041 0x08000000, // j func
7042 0x27390000, // add $25,$25,%lo(func)
7043 0x00000000 // nop
7044 };
7045
7046 // Template for microMIPS LA25 stub.
7047 template<int size, bool big_endian>
7048 const uint32_t
7049 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7050 {
7051 0x41b9, 0x0000, // lui t9,%hi(func)
7052 0xd400, 0x0000, // j func
7053 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7054 0x0000, 0x0000 // nop
7055 };
7056
7057 // Create la25 stub for a symbol.
7058
7059 template<int size, bool big_endian>
7060 void
7061 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7062 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7063 Mips_symbol<size>* gsym)
7064 {
7065 if (!gsym->has_la25_stub())
7066 {
7067 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7068 this->symbols_.push_back(gsym);
7069 this->create_stub_symbol(gsym, symtab, target, 16);
7070 }
7071 }
7072
7073 // Create a symbol for SYM stub's value and size, to help make the disassembly
7074 // easier to read.
7075
7076 template<int size, bool big_endian>
7077 void
7078 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7079 Mips_symbol<size>* sym, Symbol_table* symtab,
7080 Target_mips<size, big_endian>* target, uint64_t symsize)
7081 {
7082 std::string name(".pic.");
7083 name += sym->name();
7084
7085 unsigned int offset = sym->la25_stub_offset();
7086 if (sym->is_micromips())
7087 offset |= 1;
7088
7089 // Make it a local function.
7090 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7091 Symbol_table::PREDEFINED,
7092 target->la25_stub_section(),
7093 offset, symsize, elfcpp::STT_FUNC,
7094 elfcpp::STB_LOCAL,
7095 elfcpp::STV_DEFAULT, 0,
7096 false, false);
7097 new_sym->set_is_forced_local();
7098 }
7099
7100 // Write out la25 stubs. This uses the hand-coded instructions above,
7101 // and adjusts them as needed.
7102
7103 template<int size, bool big_endian>
7104 void
7105 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7106 {
7107 const off_t offset = this->offset();
7108 const section_size_type oview_size =
7109 convert_to_section_size_type(this->data_size());
7110 unsigned char* const oview = of->get_output_view(offset, oview_size);
7111
7112 for (typename std::vector<Mips_symbol<size>*>::iterator
7113 p = this->symbols_.begin();
7114 p != this->symbols_.end();
7115 ++p)
7116 {
7117 Mips_symbol<size>* sym = *p;
7118 unsigned char* pov = oview + sym->la25_stub_offset();
7119
7120 Mips_address target = sym->value();
7121 if (!sym->is_micromips())
7122 {
7123 elfcpp::Swap<32, big_endian>::writeval(pov,
7124 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7125 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7126 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7127 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7128 la25_stub_entry[2] | (target & 0xffff));
7129 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7130 }
7131 else
7132 {
7133 target |= 1;
7134 // First stub instruction. Paste high 16-bits of the target.
7135 elfcpp::Swap<16, big_endian>::writeval(pov,
7136 la25_stub_micromips_entry[0]);
7137 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7138 ((target + 0x8000) >> 16) & 0xffff);
7139 // Second stub instruction. Paste low 26-bits of the target, shifted
7140 // right by 1.
7141 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7142 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7143 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7144 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7145 // Third stub instruction. Paste low 16-bits of the target.
7146 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7147 la25_stub_micromips_entry[4]);
7148 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7149 // Fourth stub instruction.
7150 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7151 la25_stub_micromips_entry[6]);
7152 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7153 la25_stub_micromips_entry[7]);
7154 }
7155 }
7156
7157 of->write_output_view(offset, oview_size, oview);
7158 }
7159
7160 // Mips_output_data_plt methods.
7161
7162 // The format of the first PLT entry in an O32 executable.
7163 template<int size, bool big_endian>
7164 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7165 {
7166 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7167 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7168 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7169 0x031cc023, // subu $24, $24, $28
7170 0x03e07825, // or $15, $31, zero
7171 0x0018c082, // srl $24, $24, 2
7172 0x0320f809, // jalr $25
7173 0x2718fffe // subu $24, $24, 2
7174 };
7175
7176 // The format of the first PLT entry in an N32 executable. Different
7177 // because gp ($28) is not available; we use t2 ($14) instead.
7178 template<int size, bool big_endian>
7179 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7180 {
7181 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7182 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7183 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7184 0x030ec023, // subu $24, $24, $14
7185 0x03e07825, // or $15, $31, zero
7186 0x0018c082, // srl $24, $24, 2
7187 0x0320f809, // jalr $25
7188 0x2718fffe // subu $24, $24, 2
7189 };
7190
7191 // The format of the first PLT entry in an N64 executable. Different
7192 // from N32 because of the increased size of GOT entries.
7193 template<int size, bool big_endian>
7194 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7195 {
7196 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7197 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7198 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7199 0x030ec023, // subu $24, $24, $14
7200 0x03e07825, // or $15, $31, zero
7201 0x0018c0c2, // srl $24, $24, 3
7202 0x0320f809, // jalr $25
7203 0x2718fffe // subu $24, $24, 2
7204 };
7205
7206 // The format of the microMIPS first PLT entry in an O32 executable.
7207 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7208 // of the GOTPLT entry handled, so this stub may only be used when
7209 // all the subsequent PLT entries are microMIPS code too.
7210 //
7211 // The trailing NOP is for alignment and correct disassembly only.
7212 template<int size, bool big_endian>
7213 const uint32_t Mips_output_data_plt<size, big_endian>::
7214 plt0_entry_micromips_o32[] =
7215 {
7216 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7217 0xff23, 0x0000, // lw $25, 0($3)
7218 0x0535, // subu $2, $2, $3
7219 0x2525, // srl $2, $2, 2
7220 0x3302, 0xfffe, // subu $24, $2, 2
7221 0x0dff, // move $15, $31
7222 0x45f9, // jalrs $25
7223 0x0f83, // move $28, $3
7224 0x0c00 // nop
7225 };
7226
7227 // The format of the microMIPS first PLT entry in an O32 executable
7228 // in the insn32 mode.
7229 template<int size, bool big_endian>
7230 const uint32_t Mips_output_data_plt<size, big_endian>::
7231 plt0_entry_micromips32_o32[] =
7232 {
7233 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7234 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7235 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7236 0x0398, 0xc1d0, // subu $24, $24, $28
7237 0x001f, 0x7a90, // or $15, $31, zero
7238 0x0318, 0x1040, // srl $24, $24, 2
7239 0x03f9, 0x0f3c, // jalr $25
7240 0x3318, 0xfffe // subu $24, $24, 2
7241 };
7242
7243 // The format of subsequent standard entries in the PLT.
7244 template<int size, bool big_endian>
7245 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7246 {
7247 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7248 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7249 0x03200008, // jr $25
7250 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7251 };
7252
7253 // The format of subsequent R6 PLT entries.
7254 template<int size, bool big_endian>
7255 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7256 {
7257 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7258 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7259 0x03200009, // jr $25
7260 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7261 };
7262
7263 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7264 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7265 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7266 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7267 // target function address in register v0.
7268 template<int size, bool big_endian>
7269 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7270 {
7271 0xb303, // lw $3, 12($pc)
7272 0x651b, // move $24, $3
7273 0x9b60, // lw $3, 0($3)
7274 0xeb00, // jr $3
7275 0x653b, // move $25, $3
7276 0x6500, // nop
7277 0x0000, 0x0000 // .word (.got.plt entry)
7278 };
7279
7280 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7281 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7282 template<int size, bool big_endian>
7283 const uint32_t Mips_output_data_plt<size, big_endian>::
7284 plt_entry_micromips_o32[] =
7285 {
7286 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7287 0xff22, 0x0000, // lw $25, 0($2)
7288 0x4599, // jr $25
7289 0x0f02 // move $24, $2
7290 };
7291
7292 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7293 template<int size, bool big_endian>
7294 const uint32_t Mips_output_data_plt<size, big_endian>::
7295 plt_entry_micromips32_o32[] =
7296 {
7297 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7298 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7299 0x0019, 0x0f3c, // jr $25
7300 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7301 };
7302
7303 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7304
7305 template<int size, bool big_endian>
7306 void
7307 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7308 unsigned int r_type)
7309 {
7310 gold_assert(!gsym->has_plt_offset());
7311
7312 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7313 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7314 + sizeof(plt0_entry_o32));
7315 this->symbols_.push_back(gsym);
7316
7317 // Record whether the relocation requires a standard MIPS
7318 // or a compressed code entry.
7319 if (jal_reloc(r_type))
7320 {
7321 if (r_type == elfcpp::R_MIPS_26)
7322 gsym->set_needs_mips_plt(true);
7323 else
7324 gsym->set_needs_comp_plt(true);
7325 }
7326
7327 section_offset_type got_offset = this->got_plt_->current_data_size();
7328
7329 // Every PLT entry needs a GOT entry which points back to the PLT
7330 // entry (this will be changed by the dynamic linker, normally
7331 // lazily when the function is called).
7332 this->got_plt_->set_current_data_size(got_offset + size/8);
7333
7334 gsym->set_needs_dynsym_entry();
7335 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7336 got_offset);
7337 }
7338
7339 // Set final PLT offsets. For each symbol, determine whether standard or
7340 // compressed (MIPS16 or microMIPS) PLT entry is used.
7341
7342 template<int size, bool big_endian>
7343 void
7344 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7345 {
7346 // The sizes of individual PLT entries.
7347 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7348 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7349 ? this->compressed_plt_entry_size() : 0);
7350
7351 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7352 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7353 {
7354 Mips_symbol<size>* mips_sym = *p;
7355
7356 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7357 // so always use a standard entry there.
7358 //
7359 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7360 // all MIPS16 calls will go via that stub, and there is no benefit
7361 // to having a MIPS16 entry. And in the case of call_stub a
7362 // standard entry actually has to be used as the stub ends with a J
7363 // instruction.
7364 if (this->target_->is_output_newabi()
7365 || mips_sym->has_mips16_call_stub()
7366 || mips_sym->has_mips16_call_fp_stub())
7367 {
7368 mips_sym->set_needs_mips_plt(true);
7369 mips_sym->set_needs_comp_plt(false);
7370 }
7371
7372 // Otherwise, if there are no direct calls to the function, we
7373 // have a free choice of whether to use standard or compressed
7374 // entries. Prefer microMIPS entries if the object is known to
7375 // contain microMIPS code, so that it becomes possible to create
7376 // pure microMIPS binaries. Prefer standard entries otherwise,
7377 // because MIPS16 ones are no smaller and are usually slower.
7378 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7379 {
7380 if (this->target_->is_output_micromips())
7381 mips_sym->set_needs_comp_plt(true);
7382 else
7383 mips_sym->set_needs_mips_plt(true);
7384 }
7385
7386 if (mips_sym->needs_mips_plt())
7387 {
7388 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7389 this->plt_mips_offset_ += plt_mips_entry_size;
7390 }
7391 if (mips_sym->needs_comp_plt())
7392 {
7393 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7394 this->plt_comp_offset_ += plt_comp_entry_size;
7395 }
7396 }
7397
7398 // Figure out the size of the PLT header if we know that we are using it.
7399 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7400 this->plt_header_size_ = this->get_plt_header_size();
7401 }
7402
7403 // Write out the PLT. This uses the hand-coded instructions above,
7404 // and adjusts them as needed.
7405
7406 template<int size, bool big_endian>
7407 void
7408 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7409 {
7410 const off_t offset = this->offset();
7411 const section_size_type oview_size =
7412 convert_to_section_size_type(this->data_size());
7413 unsigned char* const oview = of->get_output_view(offset, oview_size);
7414
7415 const off_t gotplt_file_offset = this->got_plt_->offset();
7416 const section_size_type gotplt_size =
7417 convert_to_section_size_type(this->got_plt_->data_size());
7418 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7419 gotplt_size);
7420 unsigned char* pov = oview;
7421
7422 Mips_address plt_address = this->address();
7423
7424 // Calculate the address of .got.plt.
7425 Mips_address gotplt_addr = this->got_plt_->address();
7426 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7427 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7428
7429 // The PLT sequence is not safe for N64 if .got.plt's address can
7430 // not be loaded in two instructions.
7431 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7432 || ~(gotplt_addr | 0x7fffffff) == 0);
7433
7434 // Write the PLT header.
7435 const uint32_t* plt0_entry = this->get_plt_header_entry();
7436 if (plt0_entry == plt0_entry_micromips_o32)
7437 {
7438 // Write microMIPS PLT header.
7439 gold_assert(gotplt_addr % 4 == 0);
7440
7441 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7442
7443 // ADDIUPC has a span of +/-16MB, check we're in range.
7444 if (gotpc_offset + 0x1000000 >= 0x2000000)
7445 {
7446 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7447 "ADDIUPC"), (long)gotpc_offset);
7448 return;
7449 }
7450
7451 elfcpp::Swap<16, big_endian>::writeval(pov,
7452 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7453 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7454 (gotpc_offset >> 2) & 0xffff);
7455 pov += 4;
7456 for (unsigned int i = 2;
7457 i < (sizeof(plt0_entry_micromips_o32)
7458 / sizeof(plt0_entry_micromips_o32[0]));
7459 i++)
7460 {
7461 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7462 pov += 2;
7463 }
7464 }
7465 else if (plt0_entry == plt0_entry_micromips32_o32)
7466 {
7467 // Write microMIPS PLT header in insn32 mode.
7468 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7469 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7470 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7471 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7472 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7473 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7474 pov += 12;
7475 for (unsigned int i = 6;
7476 i < (sizeof(plt0_entry_micromips32_o32)
7477 / sizeof(plt0_entry_micromips32_o32[0]));
7478 i++)
7479 {
7480 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7481 pov += 2;
7482 }
7483 }
7484 else
7485 {
7486 // Write standard PLT header.
7487 elfcpp::Swap<32, big_endian>::writeval(pov,
7488 plt0_entry[0] | gotplt_addr_high);
7489 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7490 plt0_entry[1] | gotplt_addr_low);
7491 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7492 plt0_entry[2] | gotplt_addr_low);
7493 pov += 12;
7494 for (int i = 3; i < 8; i++)
7495 {
7496 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7497 pov += 4;
7498 }
7499 }
7500
7501
7502 unsigned char* gotplt_pov = gotplt_view;
7503 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7504
7505 // The first two entries in .got.plt are reserved.
7506 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7507 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7508
7509 unsigned int gotplt_offset = 2 * got_entry_size;
7510 gotplt_pov += 2 * got_entry_size;
7511
7512 // Calculate the address of the PLT header.
7513 Mips_address header_address = (plt_address
7514 + (this->is_plt_header_compressed() ? 1 : 0));
7515
7516 // Initialize compressed PLT area view.
7517 unsigned char* pov2 = pov + this->plt_mips_offset_;
7518
7519 // Write the PLT entries.
7520 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7521 p = this->symbols_.begin();
7522 p != this->symbols_.end();
7523 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7524 {
7525 Mips_symbol<size>* mips_sym = *p;
7526
7527 // Calculate the address of the .got.plt entry.
7528 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7529 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7530 & 0xffff);
7531 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7532
7533 // Initially point the .got.plt entry at the PLT header.
7534 if (this->target_->is_output_n64())
7535 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7536 else
7537 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7538
7539 // Now handle the PLT itself. First the standard entry.
7540 if (mips_sym->has_mips_plt_offset())
7541 {
7542 // Pick the load opcode (LW or LD).
7543 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7544 : 0x8c000000;
7545
7546 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7547 : plt_entry;
7548
7549 // Fill in the PLT entry itself.
7550 elfcpp::Swap<32, big_endian>::writeval(pov,
7551 entry[0] | gotplt_entry_addr_hi);
7552 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7553 entry[1] | gotplt_entry_addr_lo | load);
7554 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7555 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7556 entry[3] | gotplt_entry_addr_lo);
7557 pov += 16;
7558 }
7559
7560 // Now the compressed entry. They come after any standard ones.
7561 if (mips_sym->has_comp_plt_offset())
7562 {
7563 if (!this->target_->is_output_micromips())
7564 {
7565 // Write MIPS16 PLT entry.
7566 const uint32_t* plt_entry = plt_entry_mips16_o32;
7567
7568 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7569 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7570 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7571 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7572 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7573 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7574 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7575 gotplt_entry_addr);
7576 pov2 += 16;
7577 }
7578 else if (this->target_->use_32bit_micromips_instructions())
7579 {
7580 // Write microMIPS PLT entry in insn32 mode.
7581 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7582
7583 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7584 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7585 gotplt_entry_addr_hi);
7586 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7587 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7588 gotplt_entry_addr_lo);
7589 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7590 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7591 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7592 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7593 gotplt_entry_addr_lo);
7594 pov2 += 16;
7595 }
7596 else
7597 {
7598 // Write microMIPS PLT entry.
7599 const uint32_t* plt_entry = plt_entry_micromips_o32;
7600
7601 gold_assert(gotplt_entry_addr % 4 == 0);
7602
7603 Mips_address loc_address = plt_address + pov2 - oview;
7604 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7605
7606 // ADDIUPC has a span of +/-16MB, check we're in range.
7607 if (gotpc_offset + 0x1000000 >= 0x2000000)
7608 {
7609 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7610 "range of ADDIUPC"), (long)gotpc_offset);
7611 return;
7612 }
7613
7614 elfcpp::Swap<16, big_endian>::writeval(pov2,
7615 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7616 elfcpp::Swap<16, big_endian>::writeval(
7617 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7618 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7619 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7620 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7621 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7622 pov2 += 12;
7623 }
7624 }
7625 }
7626
7627 // Check the number of bytes written for standard entries.
7628 gold_assert(static_cast<section_size_type>(
7629 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7630 // Check the number of bytes written for compressed entries.
7631 gold_assert((static_cast<section_size_type>(pov2 - pov)
7632 == this->plt_comp_offset_));
7633 // Check the total number of bytes written.
7634 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7635
7636 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7637 == gotplt_size);
7638
7639 of->write_output_view(offset, oview_size, oview);
7640 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7641 }
7642
7643 // Mips_output_data_mips_stubs methods.
7644
7645 // The format of the lazy binding stub when dynamic symbol count is less than
7646 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7647 template<int size, bool big_endian>
7648 const uint32_t
7649 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7650 {
7651 0x8f998010, // lw t9,0x8010(gp)
7652 0x03e07825, // or t7,ra,zero
7653 0x0320f809, // jalr t9,ra
7654 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7655 };
7656
7657 // The format of the lazy binding stub when dynamic symbol count is less than
7658 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7659 template<int size, bool big_endian>
7660 const uint32_t
7661 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7662 {
7663 0xdf998010, // ld t9,0x8010(gp)
7664 0x03e07825, // or t7,ra,zero
7665 0x0320f809, // jalr t9,ra
7666 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7667 };
7668
7669 // The format of the lazy binding stub when dynamic symbol count is less than
7670 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7671 template<int size, bool big_endian>
7672 const uint32_t
7673 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7674 {
7675 0x8f998010, // lw t9,0x8010(gp)
7676 0x03e07825, // or t7,ra,zero
7677 0x0320f809, // jalr t9,ra
7678 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7679 };
7680
7681 // The format of the lazy binding stub when dynamic symbol count is less than
7682 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7683 template<int size, bool big_endian>
7684 const uint32_t
7685 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7686 {
7687 0xdf998010, // ld t9,0x8010(gp)
7688 0x03e07825, // or t7,ra,zero
7689 0x0320f809, // jalr t9,ra
7690 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7691 };
7692
7693 // The format of the lazy binding stub when dynamic symbol count is greater than
7694 // 64K, and ABI is not N64.
7695 template<int size, bool big_endian>
7696 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7697 {
7698 0x8f998010, // lw t9,0x8010(gp)
7699 0x03e07825, // or t7,ra,zero
7700 0x3c180000, // lui t8,DYN_INDEX
7701 0x0320f809, // jalr t9,ra
7702 0x37180000 // ori t8,t8,DYN_INDEX
7703 };
7704
7705 // The format of the lazy binding stub when dynamic symbol count is greater than
7706 // 64K, and ABI is N64.
7707 template<int size, bool big_endian>
7708 const uint32_t
7709 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7710 {
7711 0xdf998010, // ld t9,0x8010(gp)
7712 0x03e07825, // or t7,ra,zero
7713 0x3c180000, // lui t8,DYN_INDEX
7714 0x0320f809, // jalr t9,ra
7715 0x37180000 // ori t8,t8,DYN_INDEX
7716 };
7717
7718 // microMIPS stubs.
7719
7720 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7721 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7722 template<int size, bool big_endian>
7723 const uint32_t
7724 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7725 {
7726 0xff3c, 0x8010, // lw t9,0x8010(gp)
7727 0x0dff, // move t7,ra
7728 0x45d9, // jalr t9
7729 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7730 };
7731
7732 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7733 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7734 template<int size, bool big_endian>
7735 const uint32_t
7736 Mips_output_data_mips_stubs<size, big_endian>::
7737 lazy_stub_micromips_normal_1_n64[] =
7738 {
7739 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7740 0x0dff, // move t7,ra
7741 0x45d9, // jalr t9
7742 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7743 };
7744
7745 // The format of the microMIPS lazy binding stub when dynamic symbol
7746 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7747 // and ABI is not N64.
7748 template<int size, bool big_endian>
7749 const uint32_t
7750 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7751 {
7752 0xff3c, 0x8010, // lw t9,0x8010(gp)
7753 0x0dff, // move t7,ra
7754 0x45d9, // jalr t9
7755 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7756 };
7757
7758 // The format of the microMIPS lazy binding stub when dynamic symbol
7759 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7760 // and ABI is N64.
7761 template<int size, bool big_endian>
7762 const uint32_t
7763 Mips_output_data_mips_stubs<size, big_endian>::
7764 lazy_stub_micromips_normal_2_n64[] =
7765 {
7766 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7767 0x0dff, // move t7,ra
7768 0x45d9, // jalr t9
7769 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7770 };
7771
7772 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7773 // greater than 64K, and ABI is not N64.
7774 template<int size, bool big_endian>
7775 const uint32_t
7776 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7777 {
7778 0xff3c, 0x8010, // lw t9,0x8010(gp)
7779 0x0dff, // move t7,ra
7780 0x41b8, 0x0000, // lui t8,DYN_INDEX
7781 0x45d9, // jalr t9
7782 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7783 };
7784
7785 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7786 // greater than 64K, and ABI is N64.
7787 template<int size, bool big_endian>
7788 const uint32_t
7789 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7790 {
7791 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7792 0x0dff, // move t7,ra
7793 0x41b8, 0x0000, // lui t8,DYN_INDEX
7794 0x45d9, // jalr t9
7795 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7796 };
7797
7798 // 32-bit microMIPS stubs.
7799
7800 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7801 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7802 // can use only 32-bit instructions.
7803 template<int size, bool big_endian>
7804 const uint32_t
7805 Mips_output_data_mips_stubs<size, big_endian>::
7806 lazy_stub_micromips32_normal_1[] =
7807 {
7808 0xff3c, 0x8010, // lw t9,0x8010(gp)
7809 0x001f, 0x7a90, // or t7,ra,zero
7810 0x03f9, 0x0f3c, // jalr ra,t9
7811 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7812 };
7813
7814 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7815 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7816 // use only 32-bit instructions.
7817 template<int size, bool big_endian>
7818 const uint32_t
7819 Mips_output_data_mips_stubs<size, big_endian>::
7820 lazy_stub_micromips32_normal_1_n64[] =
7821 {
7822 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7823 0x001f, 0x7a90, // or t7,ra,zero
7824 0x03f9, 0x0f3c, // jalr ra,t9
7825 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7826 };
7827
7828 // The format of the microMIPS lazy binding stub when dynamic symbol
7829 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7830 // ABI is not N64, and we can use only 32-bit instructions.
7831 template<int size, bool big_endian>
7832 const uint32_t
7833 Mips_output_data_mips_stubs<size, big_endian>::
7834 lazy_stub_micromips32_normal_2[] =
7835 {
7836 0xff3c, 0x8010, // lw t9,0x8010(gp)
7837 0x001f, 0x7a90, // or t7,ra,zero
7838 0x03f9, 0x0f3c, // jalr ra,t9
7839 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7840 };
7841
7842 // The format of the microMIPS lazy binding stub when dynamic symbol
7843 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7844 // ABI is N64, and we can use only 32-bit instructions.
7845 template<int size, bool big_endian>
7846 const uint32_t
7847 Mips_output_data_mips_stubs<size, big_endian>::
7848 lazy_stub_micromips32_normal_2_n64[] =
7849 {
7850 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7851 0x001f, 0x7a90, // or t7,ra,zero
7852 0x03f9, 0x0f3c, // jalr ra,t9
7853 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7854 };
7855
7856 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7857 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7858 template<int size, bool big_endian>
7859 const uint32_t
7860 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7861 {
7862 0xff3c, 0x8010, // lw t9,0x8010(gp)
7863 0x001f, 0x7a90, // or t7,ra,zero
7864 0x41b8, 0x0000, // lui t8,DYN_INDEX
7865 0x03f9, 0x0f3c, // jalr ra,t9
7866 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7867 };
7868
7869 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7870 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7871 template<int size, bool big_endian>
7872 const uint32_t
7873 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7874 {
7875 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7876 0x001f, 0x7a90, // or t7,ra,zero
7877 0x41b8, 0x0000, // lui t8,DYN_INDEX
7878 0x03f9, 0x0f3c, // jalr ra,t9
7879 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7880 };
7881
7882 // Create entry for a symbol.
7883
7884 template<int size, bool big_endian>
7885 void
7886 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7887 Mips_symbol<size>* gsym)
7888 {
7889 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7890 {
7891 this->symbols_.insert(gsym);
7892 gsym->set_has_lazy_stub(true);
7893 }
7894 }
7895
7896 // Remove entry for a symbol.
7897
7898 template<int size, bool big_endian>
7899 void
7900 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7901 Mips_symbol<size>* gsym)
7902 {
7903 if (gsym->has_lazy_stub())
7904 {
7905 this->symbols_.erase(gsym);
7906 gsym->set_has_lazy_stub(false);
7907 }
7908 }
7909
7910 // Set stub offsets for symbols. This method expects that the number of
7911 // entries in dynamic symbol table is set.
7912
7913 template<int size, bool big_endian>
7914 void
7915 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7916 {
7917 gold_assert(this->dynsym_count_ != -1U);
7918
7919 if (this->stub_offsets_are_set_)
7920 return;
7921
7922 unsigned int stub_size = this->stub_size();
7923 unsigned int offset = 0;
7924 for (typename Mips_stubs_entry_set::const_iterator
7925 p = this->symbols_.begin();
7926 p != this->symbols_.end();
7927 ++p, offset += stub_size)
7928 {
7929 Mips_symbol<size>* mips_sym = *p;
7930 mips_sym->set_lazy_stub_offset(offset);
7931 }
7932 this->stub_offsets_are_set_ = true;
7933 }
7934
7935 template<int size, bool big_endian>
7936 void
7937 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7938 {
7939 for (typename Mips_stubs_entry_set::const_iterator
7940 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7941 {
7942 Mips_symbol<size>* sym = *p;
7943 if (sym->is_from_dynobj())
7944 sym->set_needs_dynsym_value();
7945 }
7946 }
7947
7948 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
7949 // adjusts them as needed.
7950
7951 template<int size, bool big_endian>
7952 void
7953 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
7954 {
7955 const off_t offset = this->offset();
7956 const section_size_type oview_size =
7957 convert_to_section_size_type(this->data_size());
7958 unsigned char* const oview = of->get_output_view(offset, oview_size);
7959
7960 bool big_stub = this->dynsym_count_ > 0x10000;
7961
7962 unsigned char* pov = oview;
7963 for (typename Mips_stubs_entry_set::const_iterator
7964 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7965 {
7966 Mips_symbol<size>* sym = *p;
7967 const uint32_t* lazy_stub;
7968 bool n64 = this->target_->is_output_n64();
7969
7970 if (!this->target_->is_output_micromips())
7971 {
7972 // Write standard (non-microMIPS) stub.
7973 if (!big_stub)
7974 {
7975 if (sym->dynsym_index() & ~0x7fff)
7976 // Dynsym index is between 32K and 64K.
7977 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
7978 else
7979 // Dynsym index is less than 32K.
7980 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
7981 }
7982 else
7983 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
7984
7985 unsigned int i = 0;
7986 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7987 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
7988 pov += 8;
7989
7990 i += 2;
7991 if (big_stub)
7992 {
7993 // LUI instruction of the big stub. Paste high 16 bits of the
7994 // dynsym index.
7995 elfcpp::Swap<32, big_endian>::writeval(pov,
7996 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
7997 pov += 4;
7998 i += 1;
7999 }
8000 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8001 // Last stub instruction. Paste low 16 bits of the dynsym index.
8002 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8003 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8004 pov += 8;
8005 }
8006 else if (this->target_->use_32bit_micromips_instructions())
8007 {
8008 // Write microMIPS stub in insn32 mode.
8009 if (!big_stub)
8010 {
8011 if (sym->dynsym_index() & ~0x7fff)
8012 // Dynsym index is between 32K and 64K.
8013 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8014 : lazy_stub_micromips32_normal_2;
8015 else
8016 // Dynsym index is less than 32K.
8017 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8018 : lazy_stub_micromips32_normal_1;
8019 }
8020 else
8021 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8022 : lazy_stub_micromips32_big;
8023
8024 unsigned int i = 0;
8025 // First stub instruction. We emit 32-bit microMIPS instructions by
8026 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8027 // the instruction where the opcode is must always come first, for
8028 // both little and big endian.
8029 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8030 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8031 // Second stub instruction.
8032 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8033 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8034 pov += 8;
8035 i += 4;
8036 if (big_stub)
8037 {
8038 // LUI instruction of the big stub. Paste high 16 bits of the
8039 // dynsym index.
8040 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8041 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8042 (sym->dynsym_index() >> 16) & 0x7fff);
8043 pov += 4;
8044 i += 2;
8045 }
8046 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8047 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8048 // Last stub instruction. Paste low 16 bits of the dynsym index.
8049 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8050 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8051 sym->dynsym_index() & 0xffff);
8052 pov += 8;
8053 }
8054 else
8055 {
8056 // Write microMIPS stub.
8057 if (!big_stub)
8058 {
8059 if (sym->dynsym_index() & ~0x7fff)
8060 // Dynsym index is between 32K and 64K.
8061 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8062 : lazy_stub_micromips_normal_2;
8063 else
8064 // Dynsym index is less than 32K.
8065 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8066 : lazy_stub_micromips_normal_1;
8067 }
8068 else
8069 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8070 : lazy_stub_micromips_big;
8071
8072 unsigned int i = 0;
8073 // First stub instruction. We emit 32-bit microMIPS instructions by
8074 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8075 // the instruction where the opcode is must always come first, for
8076 // both little and big endian.
8077 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8078 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8079 // Second stub instruction.
8080 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8081 pov += 6;
8082 i += 3;
8083 if (big_stub)
8084 {
8085 // LUI instruction of the big stub. Paste high 16 bits of the
8086 // dynsym index.
8087 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8088 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8089 (sym->dynsym_index() >> 16) & 0x7fff);
8090 pov += 4;
8091 i += 2;
8092 }
8093 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8094 // Last stub instruction. Paste low 16 bits of the dynsym index.
8095 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8096 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8097 sym->dynsym_index() & 0xffff);
8098 pov += 6;
8099 }
8100 }
8101
8102 // We always allocate 20 bytes for every stub, because final dynsym count is
8103 // not known in method do_finalize_sections. There are 4 unused bytes per
8104 // stub if final dynsym count is less than 0x10000.
8105 unsigned int used = pov - oview;
8106 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8107 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8108
8109 // Fill the unused space with zeroes.
8110 // TODO(sasa): Can we strip unused bytes during the relaxation?
8111 if (unused > 0)
8112 memset(pov, 0, unused);
8113
8114 of->write_output_view(offset, oview_size, oview);
8115 }
8116
8117 // Mips_output_section_reginfo methods.
8118
8119 template<int size, bool big_endian>
8120 void
8121 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8122 {
8123 off_t offset = this->offset();
8124 off_t data_size = this->data_size();
8125
8126 unsigned char* view = of->get_output_view(offset, data_size);
8127 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8128 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8129 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8130 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8131 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8132 // Write the gp value.
8133 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8134 this->target_->gp_value());
8135
8136 of->write_output_view(offset, data_size, view);
8137 }
8138
8139 // Mips_output_section_abiflags methods.
8140
8141 template<int size, bool big_endian>
8142 void
8143 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8144 {
8145 off_t offset = this->offset();
8146 off_t data_size = this->data_size();
8147
8148 unsigned char* view = of->get_output_view(offset, data_size);
8149 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8150 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8151 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8152 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8153 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8154 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8155 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8156 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8157 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8158 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8159 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8160
8161 of->write_output_view(offset, data_size, view);
8162 }
8163
8164 // Mips_copy_relocs methods.
8165
8166 // Emit any saved relocs.
8167
8168 template<int sh_type, int size, bool big_endian>
8169 void
8170 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8171 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8172 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8173 {
8174 for (typename Copy_relocs<sh_type, size, big_endian>::
8175 Copy_reloc_entries::iterator p = this->entries_.begin();
8176 p != this->entries_.end();
8177 ++p)
8178 emit_entry(*p, reloc_section, symtab, layout, target);
8179
8180 // We no longer need the saved information.
8181 this->entries_.clear();
8182 }
8183
8184 // Emit the reloc if appropriate.
8185
8186 template<int sh_type, int size, bool big_endian>
8187 void
8188 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8189 Copy_reloc_entry& entry,
8190 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8191 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8192 {
8193 // If the symbol is no longer defined in a dynamic object, then we
8194 // emitted a COPY relocation, and we do not want to emit this
8195 // dynamic relocation.
8196 if (!entry.sym_->is_from_dynobj())
8197 return;
8198
8199 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8200 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8201 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8202
8203 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8204 if (can_make_dynamic && !sym->has_static_relocs())
8205 {
8206 Mips_relobj<size, big_endian>* object =
8207 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8208 target->got_section(symtab, layout)->record_global_got_symbol(
8209 sym, object, entry.reloc_type_, true, false);
8210 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8211 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8212 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8213 else
8214 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8215 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8216 entry.shndx_, entry.address_);
8217 }
8218 else
8219 this->make_copy_reloc(symtab, layout,
8220 static_cast<Sized_symbol<size>*>(entry.sym_),
8221 entry.relobj_,
8222 reloc_section);
8223 }
8224
8225 // Target_mips methods.
8226
8227 // Return the value to use for a dynamic symbol which requires special
8228 // treatment. This is how we support equality comparisons of function
8229 // pointers across shared library boundaries, as described in the
8230 // processor specific ABI supplement.
8231
8232 template<int size, bool big_endian>
8233 uint64_t
8234 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8235 {
8236 uint64_t value = 0;
8237 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8238
8239 if (!mips_sym->has_lazy_stub())
8240 {
8241 if (mips_sym->has_plt_offset())
8242 {
8243 // We distinguish between PLT entries and lazy-binding stubs by
8244 // giving the former an st_other value of STO_MIPS_PLT. Set the
8245 // value to the stub address if there are any relocations in the
8246 // binary where pointer equality matters.
8247 if (mips_sym->pointer_equality_needed())
8248 {
8249 // Prefer a standard MIPS PLT entry.
8250 if (mips_sym->has_mips_plt_offset())
8251 value = this->plt_section()->mips_entry_address(mips_sym);
8252 else
8253 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8254 }
8255 else
8256 value = 0;
8257 }
8258 }
8259 else
8260 {
8261 // First, set stub offsets for symbols. This method expects that the
8262 // number of entries in dynamic symbol table is set.
8263 this->mips_stubs_section()->set_lazy_stub_offsets();
8264
8265 // The run-time linker uses the st_value field of the symbol
8266 // to reset the global offset table entry for this external
8267 // to its stub address when unlinking a shared object.
8268 value = this->mips_stubs_section()->stub_address(mips_sym);
8269 }
8270
8271 if (mips_sym->has_mips16_fn_stub())
8272 {
8273 // If we have a MIPS16 function with a stub, the dynamic symbol must
8274 // refer to the stub, since only the stub uses the standard calling
8275 // conventions.
8276 value = mips_sym->template
8277 get_mips16_fn_stub<big_endian>()->output_address();
8278 }
8279
8280 return value;
8281 }
8282
8283 // Get the dynamic reloc section, creating it if necessary. It's always
8284 // .rel.dyn, even for MIPS64.
8285
8286 template<int size, bool big_endian>
8287 typename Target_mips<size, big_endian>::Reloc_section*
8288 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8289 {
8290 if (this->rel_dyn_ == NULL)
8291 {
8292 gold_assert(layout != NULL);
8293 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8294 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8295 elfcpp::SHF_ALLOC, this->rel_dyn_,
8296 ORDER_DYNAMIC_RELOCS, false);
8297
8298 // First entry in .rel.dyn has to be null.
8299 // This is hack - we define dummy output data and set its address to 0,
8300 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8301 // This ensures that the entry is null.
8302 Output_data* od = new Output_data_zero_fill(0, 0);
8303 od->set_address(0);
8304 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8305 }
8306 return this->rel_dyn_;
8307 }
8308
8309 // Get the GOT section, creating it if necessary.
8310
8311 template<int size, bool big_endian>
8312 Mips_output_data_got<size, big_endian>*
8313 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8314 Layout* layout)
8315 {
8316 if (this->got_ == NULL)
8317 {
8318 gold_assert(symtab != NULL && layout != NULL);
8319
8320 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8321 layout);
8322 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8323 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8324 elfcpp::SHF_MIPS_GPREL),
8325 this->got_, ORDER_DATA, false);
8326
8327 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8328 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8329 Symbol_table::PREDEFINED,
8330 this->got_,
8331 0, 0, elfcpp::STT_OBJECT,
8332 elfcpp::STB_GLOBAL,
8333 elfcpp::STV_DEFAULT, 0,
8334 false, false);
8335 }
8336
8337 return this->got_;
8338 }
8339
8340 // Calculate value of _gp symbol.
8341
8342 template<int size, bool big_endian>
8343 void
8344 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8345 {
8346 if (this->gp_ != NULL)
8347 return;
8348
8349 Output_data* section = layout->find_output_section(".got");
8350 if (section == NULL)
8351 {
8352 // If there is no .got section, gp should be based on .sdata.
8353 // TODO(sasa): This is probably not needed. This was needed for older
8354 // MIPS architectures which accessed both GOT and .sdata section using
8355 // gp-relative addressing. Modern Mips Linux ELF architectures don't
8356 // access .sdata using gp-relative addressing.
8357 for (Layout::Section_list::const_iterator
8358 p = layout->section_list().begin();
8359 p != layout->section_list().end();
8360 ++p)
8361 {
8362 if (strcmp((*p)->name(), ".sdata") == 0)
8363 {
8364 section = *p;
8365 break;
8366 }
8367 }
8368 }
8369
8370 Sized_symbol<size>* gp =
8371 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8372 if (gp != NULL)
8373 {
8374 if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
8375 gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
8376 elfcpp::STT_OBJECT,
8377 elfcpp::STB_GLOBAL,
8378 elfcpp::STV_DEFAULT, 0,
8379 false, false);
8380 this->gp_ = gp;
8381 }
8382 else if (section != NULL)
8383 {
8384 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8385 "_gp", NULL, Symbol_table::PREDEFINED,
8386 section, MIPS_GP_OFFSET, 0,
8387 elfcpp::STT_OBJECT,
8388 elfcpp::STB_GLOBAL,
8389 elfcpp::STV_DEFAULT,
8390 0, false, false));
8391 this->gp_ = gp;
8392 }
8393 }
8394
8395 // Set the dynamic symbol indexes. INDEX is the index of the first
8396 // global dynamic symbol. Pointers to the symbols are stored into the
8397 // vector SYMS. The names are added to DYNPOOL. This returns an
8398 // updated dynamic symbol index.
8399
8400 template<int size, bool big_endian>
8401 unsigned int
8402 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8403 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8404 std::vector<Symbol*>* syms, Stringpool* dynpool,
8405 Versions* versions, Symbol_table* symtab) const
8406 {
8407 std::vector<Symbol*> non_got_symbols;
8408 std::vector<Symbol*> got_symbols;
8409
8410 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8411 &got_symbols);
8412
8413 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8414 p != non_got_symbols.end();
8415 ++p)
8416 {
8417 Symbol* sym = *p;
8418
8419 // Note that SYM may already have a dynamic symbol index, since
8420 // some symbols appear more than once in the symbol table, with
8421 // and without a version.
8422
8423 if (!sym->has_dynsym_index())
8424 {
8425 sym->set_dynsym_index(index);
8426 ++index;
8427 syms->push_back(sym);
8428 dynpool->add(sym->name(), false, NULL);
8429
8430 // Record any version information.
8431 if (sym->version() != NULL)
8432 versions->record_version(symtab, dynpool, sym);
8433
8434 // If the symbol is defined in a dynamic object and is
8435 // referenced in a regular object, then mark the dynamic
8436 // object as needed. This is used to implement --as-needed.
8437 if (sym->is_from_dynobj() && sym->in_reg())
8438 sym->object()->set_is_needed();
8439 }
8440 }
8441
8442 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8443 p != got_symbols.end();
8444 ++p)
8445 {
8446 Symbol* sym = *p;
8447 if (!sym->has_dynsym_index())
8448 {
8449 // Record any version information.
8450 if (sym->version() != NULL)
8451 versions->record_version(symtab, dynpool, sym);
8452 }
8453 }
8454
8455 index = versions->finalize(symtab, index, syms);
8456
8457 int got_sym_count = 0;
8458 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8459 p != got_symbols.end();
8460 ++p)
8461 {
8462 Symbol* sym = *p;
8463
8464 if (!sym->has_dynsym_index())
8465 {
8466 ++got_sym_count;
8467 sym->set_dynsym_index(index);
8468 ++index;
8469 syms->push_back(sym);
8470 dynpool->add(sym->name(), false, NULL);
8471
8472 // If the symbol is defined in a dynamic object and is
8473 // referenced in a regular object, then mark the dynamic
8474 // object as needed. This is used to implement --as-needed.
8475 if (sym->is_from_dynobj() && sym->in_reg())
8476 sym->object()->set_is_needed();
8477 }
8478 }
8479
8480 // Set index of the first symbol that has .got entry.
8481 this->got_->set_first_global_got_dynsym_index(
8482 got_sym_count > 0 ? index - got_sym_count : -1U);
8483
8484 if (this->mips_stubs_ != NULL)
8485 this->mips_stubs_->set_dynsym_count(index);
8486
8487 return index;
8488 }
8489
8490 // Create a PLT entry for a global symbol referenced by r_type relocation.
8491
8492 template<int size, bool big_endian>
8493 void
8494 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8495 Layout* layout,
8496 Mips_symbol<size>* gsym,
8497 unsigned int r_type)
8498 {
8499 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8500 return;
8501
8502 if (this->plt_ == NULL)
8503 {
8504 // Create the GOT section first.
8505 this->got_section(symtab, layout);
8506
8507 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8508 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8509 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8510 this->got_plt_, ORDER_DATA, false);
8511
8512 // The first two entries are reserved.
8513 this->got_plt_->set_current_data_size(2 * size/8);
8514
8515 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8516 this->got_plt_,
8517 this);
8518 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8519 (elfcpp::SHF_ALLOC
8520 | elfcpp::SHF_EXECINSTR),
8521 this->plt_, ORDER_PLT, false);
8522 }
8523
8524 this->plt_->add_entry(gsym, r_type);
8525 }
8526
8527
8528 // Get the .MIPS.stubs section, creating it if necessary.
8529
8530 template<int size, bool big_endian>
8531 Mips_output_data_mips_stubs<size, big_endian>*
8532 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8533 {
8534 if (this->mips_stubs_ == NULL)
8535 {
8536 this->mips_stubs_ =
8537 new Mips_output_data_mips_stubs<size, big_endian>(this);
8538 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8539 (elfcpp::SHF_ALLOC
8540 | elfcpp::SHF_EXECINSTR),
8541 this->mips_stubs_, ORDER_PLT, false);
8542 }
8543 return this->mips_stubs_;
8544 }
8545
8546 // Get the LA25 stub section, creating it if necessary.
8547
8548 template<int size, bool big_endian>
8549 Mips_output_data_la25_stub<size, big_endian>*
8550 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8551 {
8552 if (this->la25_stub_ == NULL)
8553 {
8554 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8555 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8556 (elfcpp::SHF_ALLOC
8557 | elfcpp::SHF_EXECINSTR),
8558 this->la25_stub_, ORDER_TEXT, false);
8559 }
8560 return this->la25_stub_;
8561 }
8562
8563 // Process the relocations to determine unreferenced sections for
8564 // garbage collection.
8565
8566 template<int size, bool big_endian>
8567 void
8568 Target_mips<size, big_endian>::gc_process_relocs(
8569 Symbol_table* symtab,
8570 Layout* layout,
8571 Sized_relobj_file<size, big_endian>* object,
8572 unsigned int data_shndx,
8573 unsigned int sh_type,
8574 const unsigned char* prelocs,
8575 size_t reloc_count,
8576 Output_section* output_section,
8577 bool needs_special_offset_handling,
8578 size_t local_symbol_count,
8579 const unsigned char* plocal_symbols)
8580 {
8581 typedef Target_mips<size, big_endian> Mips;
8582
8583 if (sh_type == elfcpp::SHT_REL)
8584 {
8585 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8586 Classify_reloc;
8587
8588 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8589 symtab,
8590 layout,
8591 this,
8592 object,
8593 data_shndx,
8594 prelocs,
8595 reloc_count,
8596 output_section,
8597 needs_special_offset_handling,
8598 local_symbol_count,
8599 plocal_symbols);
8600 }
8601 else if (sh_type == elfcpp::SHT_RELA)
8602 {
8603 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8604 Classify_reloc;
8605
8606 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8607 symtab,
8608 layout,
8609 this,
8610 object,
8611 data_shndx,
8612 prelocs,
8613 reloc_count,
8614 output_section,
8615 needs_special_offset_handling,
8616 local_symbol_count,
8617 plocal_symbols);
8618 }
8619 else
8620 gold_unreachable();
8621 }
8622
8623 // Scan relocations for a section.
8624
8625 template<int size, bool big_endian>
8626 void
8627 Target_mips<size, big_endian>::scan_relocs(
8628 Symbol_table* symtab,
8629 Layout* layout,
8630 Sized_relobj_file<size, big_endian>* object,
8631 unsigned int data_shndx,
8632 unsigned int sh_type,
8633 const unsigned char* prelocs,
8634 size_t reloc_count,
8635 Output_section* output_section,
8636 bool needs_special_offset_handling,
8637 size_t local_symbol_count,
8638 const unsigned char* plocal_symbols)
8639 {
8640 typedef Target_mips<size, big_endian> Mips;
8641
8642 if (sh_type == elfcpp::SHT_REL)
8643 {
8644 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8645 Classify_reloc;
8646
8647 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8648 symtab,
8649 layout,
8650 this,
8651 object,
8652 data_shndx,
8653 prelocs,
8654 reloc_count,
8655 output_section,
8656 needs_special_offset_handling,
8657 local_symbol_count,
8658 plocal_symbols);
8659 }
8660 else if (sh_type == elfcpp::SHT_RELA)
8661 {
8662 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8663 Classify_reloc;
8664
8665 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8666 symtab,
8667 layout,
8668 this,
8669 object,
8670 data_shndx,
8671 prelocs,
8672 reloc_count,
8673 output_section,
8674 needs_special_offset_handling,
8675 local_symbol_count,
8676 plocal_symbols);
8677 }
8678 }
8679
8680 template<int size, bool big_endian>
8681 bool
8682 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8683 {
8684 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8685 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8686 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8687 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8688 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8689 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8690 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8691 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8692 }
8693
8694 // Return the MACH for a MIPS e_flags value.
8695 template<int size, bool big_endian>
8696 unsigned int
8697 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8698 {
8699 switch (flags & elfcpp::EF_MIPS_MACH)
8700 {
8701 case elfcpp::E_MIPS_MACH_3900:
8702 return mach_mips3900;
8703
8704 case elfcpp::E_MIPS_MACH_4010:
8705 return mach_mips4010;
8706
8707 case elfcpp::E_MIPS_MACH_4100:
8708 return mach_mips4100;
8709
8710 case elfcpp::E_MIPS_MACH_4111:
8711 return mach_mips4111;
8712
8713 case elfcpp::E_MIPS_MACH_4120:
8714 return mach_mips4120;
8715
8716 case elfcpp::E_MIPS_MACH_4650:
8717 return mach_mips4650;
8718
8719 case elfcpp::E_MIPS_MACH_5400:
8720 return mach_mips5400;
8721
8722 case elfcpp::E_MIPS_MACH_5500:
8723 return mach_mips5500;
8724
8725 case elfcpp::E_MIPS_MACH_5900:
8726 return mach_mips5900;
8727
8728 case elfcpp::E_MIPS_MACH_9000:
8729 return mach_mips9000;
8730
8731 case elfcpp::E_MIPS_MACH_SB1:
8732 return mach_mips_sb1;
8733
8734 case elfcpp::E_MIPS_MACH_LS2E:
8735 return mach_mips_loongson_2e;
8736
8737 case elfcpp::E_MIPS_MACH_LS2F:
8738 return mach_mips_loongson_2f;
8739
8740 case elfcpp::E_MIPS_MACH_LS3A:
8741 return mach_mips_loongson_3a;
8742
8743 case elfcpp::E_MIPS_MACH_OCTEON3:
8744 return mach_mips_octeon3;
8745
8746 case elfcpp::E_MIPS_MACH_OCTEON2:
8747 return mach_mips_octeon2;
8748
8749 case elfcpp::E_MIPS_MACH_OCTEON:
8750 return mach_mips_octeon;
8751
8752 case elfcpp::E_MIPS_MACH_XLR:
8753 return mach_mips_xlr;
8754
8755 default:
8756 switch (flags & elfcpp::EF_MIPS_ARCH)
8757 {
8758 default:
8759 case elfcpp::E_MIPS_ARCH_1:
8760 return mach_mips3000;
8761
8762 case elfcpp::E_MIPS_ARCH_2:
8763 return mach_mips6000;
8764
8765 case elfcpp::E_MIPS_ARCH_3:
8766 return mach_mips4000;
8767
8768 case elfcpp::E_MIPS_ARCH_4:
8769 return mach_mips8000;
8770
8771 case elfcpp::E_MIPS_ARCH_5:
8772 return mach_mips5;
8773
8774 case elfcpp::E_MIPS_ARCH_32:
8775 return mach_mipsisa32;
8776
8777 case elfcpp::E_MIPS_ARCH_64:
8778 return mach_mipsisa64;
8779
8780 case elfcpp::E_MIPS_ARCH_32R2:
8781 return mach_mipsisa32r2;
8782
8783 case elfcpp::E_MIPS_ARCH_32R6:
8784 return mach_mipsisa32r6;
8785
8786 case elfcpp::E_MIPS_ARCH_64R2:
8787 return mach_mipsisa64r2;
8788
8789 case elfcpp::E_MIPS_ARCH_64R6:
8790 return mach_mipsisa64r6;
8791 }
8792 }
8793
8794 return 0;
8795 }
8796
8797 // Return the MACH for each .MIPS.abiflags ISA Extension.
8798
8799 template<int size, bool big_endian>
8800 unsigned int
8801 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8802 {
8803 switch (isa_ext)
8804 {
8805 case elfcpp::AFL_EXT_3900:
8806 return mach_mips3900;
8807
8808 case elfcpp::AFL_EXT_4010:
8809 return mach_mips4010;
8810
8811 case elfcpp::AFL_EXT_4100:
8812 return mach_mips4100;
8813
8814 case elfcpp::AFL_EXT_4111:
8815 return mach_mips4111;
8816
8817 case elfcpp::AFL_EXT_4120:
8818 return mach_mips4120;
8819
8820 case elfcpp::AFL_EXT_4650:
8821 return mach_mips4650;
8822
8823 case elfcpp::AFL_EXT_5400:
8824 return mach_mips5400;
8825
8826 case elfcpp::AFL_EXT_5500:
8827 return mach_mips5500;
8828
8829 case elfcpp::AFL_EXT_5900:
8830 return mach_mips5900;
8831
8832 case elfcpp::AFL_EXT_10000:
8833 return mach_mips10000;
8834
8835 case elfcpp::AFL_EXT_LOONGSON_2E:
8836 return mach_mips_loongson_2e;
8837
8838 case elfcpp::AFL_EXT_LOONGSON_2F:
8839 return mach_mips_loongson_2f;
8840
8841 case elfcpp::AFL_EXT_LOONGSON_3A:
8842 return mach_mips_loongson_3a;
8843
8844 case elfcpp::AFL_EXT_SB1:
8845 return mach_mips_sb1;
8846
8847 case elfcpp::AFL_EXT_OCTEON:
8848 return mach_mips_octeon;
8849
8850 case elfcpp::AFL_EXT_OCTEONP:
8851 return mach_mips_octeonp;
8852
8853 case elfcpp::AFL_EXT_OCTEON2:
8854 return mach_mips_octeon2;
8855
8856 case elfcpp::AFL_EXT_XLR:
8857 return mach_mips_xlr;
8858
8859 default:
8860 return mach_mips3000;
8861 }
8862 }
8863
8864 // Return the .MIPS.abiflags value representing each ISA Extension.
8865
8866 template<int size, bool big_endian>
8867 unsigned int
8868 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8869 {
8870 switch (mips_mach)
8871 {
8872 case mach_mips3900:
8873 return elfcpp::AFL_EXT_3900;
8874
8875 case mach_mips4010:
8876 return elfcpp::AFL_EXT_4010;
8877
8878 case mach_mips4100:
8879 return elfcpp::AFL_EXT_4100;
8880
8881 case mach_mips4111:
8882 return elfcpp::AFL_EXT_4111;
8883
8884 case mach_mips4120:
8885 return elfcpp::AFL_EXT_4120;
8886
8887 case mach_mips4650:
8888 return elfcpp::AFL_EXT_4650;
8889
8890 case mach_mips5400:
8891 return elfcpp::AFL_EXT_5400;
8892
8893 case mach_mips5500:
8894 return elfcpp::AFL_EXT_5500;
8895
8896 case mach_mips5900:
8897 return elfcpp::AFL_EXT_5900;
8898
8899 case mach_mips10000:
8900 return elfcpp::AFL_EXT_10000;
8901
8902 case mach_mips_loongson_2e:
8903 return elfcpp::AFL_EXT_LOONGSON_2E;
8904
8905 case mach_mips_loongson_2f:
8906 return elfcpp::AFL_EXT_LOONGSON_2F;
8907
8908 case mach_mips_loongson_3a:
8909 return elfcpp::AFL_EXT_LOONGSON_3A;
8910
8911 case mach_mips_sb1:
8912 return elfcpp::AFL_EXT_SB1;
8913
8914 case mach_mips_octeon:
8915 return elfcpp::AFL_EXT_OCTEON;
8916
8917 case mach_mips_octeonp:
8918 return elfcpp::AFL_EXT_OCTEONP;
8919
8920 case mach_mips_octeon3:
8921 return elfcpp::AFL_EXT_OCTEON3;
8922
8923 case mach_mips_octeon2:
8924 return elfcpp::AFL_EXT_OCTEON2;
8925
8926 case mach_mips_xlr:
8927 return elfcpp::AFL_EXT_XLR;
8928
8929 default:
8930 return 0;
8931 }
8932 }
8933
8934 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
8935
8936 template<int size, bool big_endian>
8937 void
8938 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
8939 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
8940 {
8941 int new_isa = 0;
8942 switch (e_flags & elfcpp::EF_MIPS_ARCH)
8943 {
8944 case elfcpp::E_MIPS_ARCH_1:
8945 new_isa = this->level_rev(1, 0);
8946 break;
8947 case elfcpp::E_MIPS_ARCH_2:
8948 new_isa = this->level_rev(2, 0);
8949 break;
8950 case elfcpp::E_MIPS_ARCH_3:
8951 new_isa = this->level_rev(3, 0);
8952 break;
8953 case elfcpp::E_MIPS_ARCH_4:
8954 new_isa = this->level_rev(4, 0);
8955 break;
8956 case elfcpp::E_MIPS_ARCH_5:
8957 new_isa = this->level_rev(5, 0);
8958 break;
8959 case elfcpp::E_MIPS_ARCH_32:
8960 new_isa = this->level_rev(32, 1);
8961 break;
8962 case elfcpp::E_MIPS_ARCH_32R2:
8963 new_isa = this->level_rev(32, 2);
8964 break;
8965 case elfcpp::E_MIPS_ARCH_32R6:
8966 new_isa = this->level_rev(32, 6);
8967 break;
8968 case elfcpp::E_MIPS_ARCH_64:
8969 new_isa = this->level_rev(64, 1);
8970 break;
8971 case elfcpp::E_MIPS_ARCH_64R2:
8972 new_isa = this->level_rev(64, 2);
8973 break;
8974 case elfcpp::E_MIPS_ARCH_64R6:
8975 new_isa = this->level_rev(64, 6);
8976 break;
8977 default:
8978 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
8979 this->elf_mips_mach_name(e_flags));
8980 }
8981
8982 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
8983 {
8984 // Decode a single value into level and revision.
8985 abiflags->isa_level = new_isa >> 3;
8986 abiflags->isa_rev = new_isa & 0x7;
8987 }
8988
8989 // Update the isa_ext if needed.
8990 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
8991 this->elf_mips_mach(e_flags)))
8992 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
8993 }
8994
8995 // Infer the content of the ABI flags based on the elf header.
8996
8997 template<int size, bool big_endian>
8998 void
8999 Target_mips<size, big_endian>::infer_abiflags(
9000 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9001 {
9002 const Attributes_section_data* pasd = relobj->attributes_section_data();
9003 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9004 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9005
9006 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9007 if (pasd != NULL)
9008 {
9009 // Read fp_abi from the .gnu.attribute section.
9010 const Object_attribute* attr =
9011 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9012 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9013 }
9014
9015 abiflags->fp_abi = attr_fp_abi;
9016 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9017 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9018 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9019 : elfcpp::AFL_REG_64;
9020
9021 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9022 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9023 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9024 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9025 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9026 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9027 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9028 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9029 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9030
9031 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9032 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9033 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9034 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9035 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9036 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9037
9038 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9039 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9040 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9041 && abiflags->isa_level >= 32
9042 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9043 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9044 }
9045
9046 // Create abiflags from elf header or from .MIPS.abiflags section.
9047
9048 template<int size, bool big_endian>
9049 void
9050 Target_mips<size, big_endian>::create_abiflags(
9051 Mips_relobj<size, big_endian>* relobj,
9052 Mips_abiflags<big_endian>* abiflags)
9053 {
9054 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9055 Mips_abiflags<big_endian> header_abiflags;
9056
9057 this->infer_abiflags(relobj, &header_abiflags);
9058
9059 if (sec_abiflags == NULL)
9060 {
9061 // If there is no input .MIPS.abiflags section, use abiflags created
9062 // from elf header.
9063 *abiflags = header_abiflags;
9064 return;
9065 }
9066
9067 this->has_abiflags_section_ = true;
9068
9069 // It is not possible to infer the correct ISA revision for R3 or R5
9070 // so drop down to R2 for the checks.
9071 unsigned char isa_rev = sec_abiflags->isa_rev;
9072 if (isa_rev == 3 || isa_rev == 5)
9073 isa_rev = 2;
9074
9075 // Check compatibility between abiflags created from elf header
9076 // and abiflags from .MIPS.abiflags section in this object file.
9077 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9078 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9079 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9080 relobj->name().c_str());
9081 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9082 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9083 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9084 ".MIPS.abiflags"), relobj->name().c_str());
9085 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9086 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9087 relobj->name().c_str());
9088 // The isa_ext is allowed to be an extension of what can be inferred
9089 // from e_flags.
9090 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9091 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9092 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9093 ".MIPS.abiflags"), relobj->name().c_str());
9094 if (sec_abiflags->flags2 != 0)
9095 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9096 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9097 sec_abiflags->flags2);
9098 // Use abiflags from .MIPS.abiflags section.
9099 *abiflags = *sec_abiflags;
9100 }
9101
9102 // Return the meaning of fp_abi, or "unknown" if not known.
9103
9104 template<int size, bool big_endian>
9105 const char*
9106 Target_mips<size, big_endian>::fp_abi_string(int fp)
9107 {
9108 switch (fp)
9109 {
9110 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9111 return "-mdouble-float";
9112 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9113 return "-msingle-float";
9114 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9115 return "-msoft-float";
9116 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9117 return _("-mips32r2 -mfp64 (12 callee-saved)");
9118 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9119 return "-mfpxx";
9120 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9121 return "-mgp32 -mfp64";
9122 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9123 return "-mgp32 -mfp64 -mno-odd-spreg";
9124 default:
9125 return "unknown";
9126 }
9127 }
9128
9129 // Select fp_abi.
9130
9131 template<int size, bool big_endian>
9132 int
9133 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9134 int out_fp)
9135 {
9136 if (in_fp == out_fp)
9137 return out_fp;
9138
9139 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9140 return in_fp;
9141 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9142 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9143 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9144 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9145 return in_fp;
9146 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9147 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9148 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9149 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9150 return out_fp; // Keep the current setting.
9151 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9152 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9153 return in_fp;
9154 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9155 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9156 return out_fp; // Keep the current setting.
9157 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9158 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9159 fp_abi_string(in_fp), fp_abi_string(out_fp));
9160 return out_fp;
9161 }
9162
9163 // Merge attributes from input object.
9164
9165 template<int size, bool big_endian>
9166 void
9167 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9168 const Attributes_section_data* pasd)
9169 {
9170 // Return if there is no attributes section data.
9171 if (pasd == NULL)
9172 return;
9173
9174 // If output has no object attributes, just copy.
9175 if (this->attributes_section_data_ == NULL)
9176 {
9177 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9178 return;
9179 }
9180
9181 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9182 Object_attribute::OBJ_ATTR_GNU);
9183
9184 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9185 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9186
9187 // Merge Tag_compatibility attributes and any common GNU ones.
9188 this->attributes_section_data_->merge(name.c_str(), pasd);
9189 }
9190
9191 // Merge abiflags from input object.
9192
9193 template<int size, bool big_endian>
9194 void
9195 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9196 Mips_abiflags<big_endian>* in_abiflags)
9197 {
9198 // If output has no abiflags, just copy.
9199 if (this->abiflags_ == NULL)
9200 {
9201 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9202 return;
9203 }
9204
9205 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9206 this->abiflags_->fp_abi);
9207
9208 // Merge abiflags.
9209 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9210 in_abiflags->isa_level);
9211 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9212 in_abiflags->isa_rev);
9213 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9214 in_abiflags->gpr_size);
9215 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9216 in_abiflags->cpr1_size);
9217 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9218 in_abiflags->cpr2_size);
9219 this->abiflags_->ases |= in_abiflags->ases;
9220 this->abiflags_->flags1 |= in_abiflags->flags1;
9221 }
9222
9223 // Check whether machine EXTENSION is an extension of machine BASE.
9224 template<int size, bool big_endian>
9225 bool
9226 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9227 unsigned int extension)
9228 {
9229 if (extension == base)
9230 return true;
9231
9232 if ((base == mach_mipsisa32)
9233 && this->mips_mach_extends(mach_mipsisa64, extension))
9234 return true;
9235
9236 if ((base == mach_mipsisa32r2)
9237 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9238 return true;
9239
9240 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9241 if (extension == this->mips_mach_extensions_[i].first)
9242 {
9243 extension = this->mips_mach_extensions_[i].second;
9244 if (extension == base)
9245 return true;
9246 }
9247
9248 return false;
9249 }
9250
9251 // Merge file header flags from input object.
9252
9253 template<int size, bool big_endian>
9254 void
9255 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9256 elfcpp::Elf_Word in_flags)
9257 {
9258 // If flags are not set yet, just copy them.
9259 if (!this->are_processor_specific_flags_set())
9260 {
9261 this->set_processor_specific_flags(in_flags);
9262 this->mach_ = this->elf_mips_mach(in_flags);
9263 return;
9264 }
9265
9266 elfcpp::Elf_Word new_flags = in_flags;
9267 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9268 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9269 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9270
9271 // Check flag compatibility.
9272 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9273 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9274
9275 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9276 // doesn't seem to matter.
9277 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9278 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9279
9280 // MIPSpro generates ucode info in n64 objects. Again, we should
9281 // just be able to ignore this.
9282 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9283 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9284
9285 if (new_flags == old_flags)
9286 {
9287 this->set_processor_specific_flags(merged_flags);
9288 return;
9289 }
9290
9291 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9292 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9293 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9294 name.c_str());
9295
9296 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9297 merged_flags |= elfcpp::EF_MIPS_CPIC;
9298 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9299 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9300
9301 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9302 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9303
9304 // Compare the ISAs.
9305 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9306 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9307 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9308 {
9309 // Output ISA isn't the same as, or an extension of, input ISA.
9310 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9311 {
9312 // Copy the architecture info from input object to output. Also copy
9313 // the 32-bit flag (if set) so that we continue to recognise
9314 // output as a 32-bit binary.
9315 this->mach_ = this->elf_mips_mach(in_flags);
9316 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9317 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9318 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9319
9320 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9321 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9322
9323 // Copy across the ABI flags if output doesn't use them
9324 // and if that was what caused us to treat input object as 32-bit.
9325 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9326 && this->mips_32bit_flags(new_flags)
9327 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9328 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9329 }
9330 else
9331 // The ISAs aren't compatible.
9332 gold_error(_("%s: linking %s module with previous %s modules"),
9333 name.c_str(), this->elf_mips_mach_name(in_flags),
9334 this->elf_mips_mach_name(merged_flags));
9335 }
9336
9337 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9338 | elfcpp::EF_MIPS_32BITMODE));
9339 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9340 | elfcpp::EF_MIPS_32BITMODE));
9341
9342 // Compare ABIs.
9343 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9344 {
9345 // Only error if both are set (to different values).
9346 if ((new_flags & elfcpp::EF_MIPS_ABI)
9347 && (old_flags & elfcpp::EF_MIPS_ABI))
9348 gold_error(_("%s: ABI mismatch: linking %s module with "
9349 "previous %s modules"), name.c_str(),
9350 this->elf_mips_abi_name(in_flags),
9351 this->elf_mips_abi_name(merged_flags));
9352
9353 new_flags &= ~elfcpp::EF_MIPS_ABI;
9354 old_flags &= ~elfcpp::EF_MIPS_ABI;
9355 }
9356
9357 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9358 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9359 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9360 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9361 {
9362 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9363 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9364 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9365 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9366 int micro_mis = old_m16 && new_micro;
9367 int m16_mis = old_micro && new_m16;
9368
9369 if (m16_mis || micro_mis)
9370 gold_error(_("%s: ASE mismatch: linking %s module with "
9371 "previous %s modules"), name.c_str(),
9372 m16_mis ? "MIPS16" : "microMIPS",
9373 m16_mis ? "microMIPS" : "MIPS16");
9374
9375 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9376
9377 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9378 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9379 }
9380
9381 // Compare NaN encodings.
9382 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9383 {
9384 gold_error(_("%s: linking %s module with previous %s modules"),
9385 name.c_str(),
9386 (new_flags & elfcpp::EF_MIPS_NAN2008
9387 ? "-mnan=2008" : "-mnan=legacy"),
9388 (old_flags & elfcpp::EF_MIPS_NAN2008
9389 ? "-mnan=2008" : "-mnan=legacy"));
9390
9391 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9392 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9393 }
9394
9395 // Compare FP64 state.
9396 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9397 {
9398 gold_error(_("%s: linking %s module with previous %s modules"),
9399 name.c_str(),
9400 (new_flags & elfcpp::EF_MIPS_FP64
9401 ? "-mfp64" : "-mfp32"),
9402 (old_flags & elfcpp::EF_MIPS_FP64
9403 ? "-mfp64" : "-mfp32"));
9404
9405 new_flags &= ~elfcpp::EF_MIPS_FP64;
9406 old_flags &= ~elfcpp::EF_MIPS_FP64;
9407 }
9408
9409 // Warn about any other mismatches.
9410 if (new_flags != old_flags)
9411 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9412 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9413
9414 this->set_processor_specific_flags(merged_flags);
9415 }
9416
9417 // Adjust ELF file header.
9418
9419 template<int size, bool big_endian>
9420 void
9421 Target_mips<size, big_endian>::do_adjust_elf_header(
9422 unsigned char* view,
9423 int len)
9424 {
9425 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9426
9427 elfcpp::Ehdr<size, big_endian> ehdr(view);
9428 unsigned char e_ident[elfcpp::EI_NIDENT];
9429 elfcpp::Elf_Word flags = this->processor_specific_flags();
9430 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9431
9432 unsigned char ei_abiversion = 0;
9433 elfcpp::Elf_Half type = ehdr.get_e_type();
9434 if (type == elfcpp::ET_EXEC
9435 && parameters->options().copyreloc()
9436 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9437 == elfcpp::EF_MIPS_CPIC)
9438 ei_abiversion = 1;
9439
9440 if (this->abiflags_ != NULL
9441 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9442 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9443 ei_abiversion = 3;
9444
9445 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9446 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9447 oehdr.put_e_ident(e_ident);
9448
9449 if (this->entry_symbol_is_compressed_)
9450 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9451 }
9452
9453 // do_make_elf_object to override the same function in the base class.
9454 // We need to use a target-specific sub-class of
9455 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9456 // Hence we need to have our own ELF object creation.
9457
9458 template<int size, bool big_endian>
9459 Object*
9460 Target_mips<size, big_endian>::do_make_elf_object(
9461 const std::string& name,
9462 Input_file* input_file,
9463 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9464 {
9465 int et = ehdr.get_e_type();
9466 // ET_EXEC files are valid input for --just-symbols/-R,
9467 // and we treat them as relocatable objects.
9468 if (et == elfcpp::ET_REL
9469 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9470 {
9471 Mips_relobj<size, big_endian>* obj =
9472 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9473 obj->setup();
9474 return obj;
9475 }
9476 else if (et == elfcpp::ET_DYN)
9477 {
9478 // TODO(sasa): Should we create Mips_dynobj?
9479 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9480 }
9481 else
9482 {
9483 gold_error(_("%s: unsupported ELF file type %d"),
9484 name.c_str(), et);
9485 return NULL;
9486 }
9487 }
9488
9489 // Finalize the sections.
9490
9491 template <int size, bool big_endian>
9492 void
9493 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9494 const Input_objects* input_objects,
9495 Symbol_table* symtab)
9496 {
9497 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9498 // DT_FINI have correct values.
9499 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9500 symtab->lookup(parameters->options().init()));
9501 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9502 init->set_value(init->value() | 1);
9503 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9504 symtab->lookup(parameters->options().fini()));
9505 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9506 fini->set_value(fini->value() | 1);
9507
9508 // Check whether the entry symbol is mips16 or micromips. This is needed to
9509 // adjust entry address in ELF header.
9510 Mips_symbol<size>* entry =
9511 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9512 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9513 || entry->is_micromips()));
9514
9515 if (!parameters->doing_static_link()
9516 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9517 || strcmp(parameters->options().hash_style(), "both") == 0))
9518 {
9519 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9520 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9521 // MIPS ABI requires a mapping between the GOT and the symbol table.
9522 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9523 }
9524
9525 // Check whether the final section that was scanned has HI16 or GOT16
9526 // relocations without the corresponding LO16 part.
9527 if (this->got16_addends_.size() > 0)
9528 gold_error("Can't find matching LO16 reloc");
9529
9530 // Set _gp value.
9531 this->set_gp(layout, symtab);
9532
9533 // Check for any mips16 stub sections that we can discard.
9534 if (!parameters->options().relocatable())
9535 {
9536 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9537 p != input_objects->relobj_end();
9538 ++p)
9539 {
9540 Mips_relobj<size, big_endian>* object =
9541 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9542 object->discard_mips16_stub_sections(symtab);
9543 }
9544 }
9545
9546 Valtype gprmask = 0;
9547 Valtype cprmask1 = 0;
9548 Valtype cprmask2 = 0;
9549 Valtype cprmask3 = 0;
9550 Valtype cprmask4 = 0;
9551 bool has_reginfo_section = false;
9552
9553 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9554 p != input_objects->relobj_end();
9555 ++p)
9556 {
9557 Mips_relobj<size, big_endian>* relobj =
9558 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9559
9560 // Merge .reginfo contents of input objects.
9561 if (relobj->has_reginfo_section())
9562 {
9563 has_reginfo_section = true;
9564 gprmask |= relobj->gprmask();
9565 cprmask1 |= relobj->cprmask1();
9566 cprmask2 |= relobj->cprmask2();
9567 cprmask3 |= relobj->cprmask3();
9568 cprmask4 |= relobj->cprmask4();
9569 }
9570
9571 Input_file::Format format = relobj->input_file()->format();
9572 if (format != Input_file::FORMAT_ELF)
9573 continue;
9574
9575 // If all input sections will be discarded, don't use this object
9576 // file for merging processor specific flags.
9577 bool should_merge_processor_specific_flags = false;
9578
9579 for (unsigned int i = 1; i < relobj->shnum(); ++i)
9580 if (relobj->output_section(i) != NULL)
9581 {
9582 should_merge_processor_specific_flags = true;
9583 break;
9584 }
9585
9586 if (!should_merge_processor_specific_flags)
9587 continue;
9588
9589 // Merge processor specific flags.
9590 Mips_abiflags<big_endian> in_abiflags;
9591
9592 this->create_abiflags(relobj, &in_abiflags);
9593 this->merge_obj_e_flags(relobj->name(),
9594 relobj->processor_specific_flags());
9595 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9596 this->merge_obj_attributes(relobj->name(),
9597 relobj->attributes_section_data());
9598 }
9599
9600 // Create a .gnu.attributes section if we have merged any attributes
9601 // from inputs.
9602 if (this->attributes_section_data_ != NULL)
9603 {
9604 Output_attributes_section_data* attributes_section =
9605 new Output_attributes_section_data(*this->attributes_section_data_);
9606 layout->add_output_section_data(".gnu.attributes",
9607 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9608 attributes_section, ORDER_INVALID, false);
9609 }
9610
9611 // Create .MIPS.abiflags output section if there is an input section.
9612 if (this->has_abiflags_section_)
9613 {
9614 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9615 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9616
9617 Output_section* os =
9618 layout->add_output_section_data(".MIPS.abiflags",
9619 elfcpp::SHT_MIPS_ABIFLAGS,
9620 elfcpp::SHF_ALLOC,
9621 abiflags_section, ORDER_INVALID, false);
9622
9623 if (!parameters->options().relocatable() && os != NULL)
9624 {
9625 Output_segment* abiflags_segment =
9626 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9627 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9628 }
9629 }
9630
9631 if (has_reginfo_section && !parameters->options().gc_sections())
9632 {
9633 // Create .reginfo output section.
9634 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9635 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9636 cprmask1, cprmask2,
9637 cprmask3, cprmask4);
9638
9639 Output_section* os =
9640 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9641 elfcpp::SHF_ALLOC, reginfo_section,
9642 ORDER_INVALID, false);
9643
9644 if (!parameters->options().relocatable() && os != NULL)
9645 {
9646 Output_segment* reginfo_segment =
9647 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9648 elfcpp::PF_R);
9649 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9650 }
9651 }
9652
9653 if (this->plt_ != NULL)
9654 {
9655 // Set final PLT offsets for symbols.
9656 this->plt_section()->set_plt_offsets();
9657
9658 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9659 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9660 // there are no standard PLT entries present.
9661 unsigned char nonvis = 0;
9662 if (this->is_output_micromips()
9663 && !this->plt_section()->has_standard_entries())
9664 nonvis = elfcpp::STO_MICROMIPS >> 2;
9665 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9666 Symbol_table::PREDEFINED,
9667 this->plt_,
9668 0, 0, elfcpp::STT_FUNC,
9669 elfcpp::STB_LOCAL,
9670 elfcpp::STV_DEFAULT, nonvis,
9671 false, false);
9672 }
9673
9674 if (this->mips_stubs_ != NULL)
9675 {
9676 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9677 unsigned char nonvis = 0;
9678 if (this->is_output_micromips())
9679 nonvis = elfcpp::STO_MICROMIPS >> 2;
9680 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9681 Symbol_table::PREDEFINED,
9682 this->mips_stubs_,
9683 0, 0, elfcpp::STT_FUNC,
9684 elfcpp::STB_LOCAL,
9685 elfcpp::STV_DEFAULT, nonvis,
9686 false, false);
9687 }
9688
9689 if (!parameters->options().relocatable() && !parameters->doing_static_link())
9690 // In case there is no .got section, create one.
9691 this->got_section(symtab, layout);
9692
9693 // Emit any relocs we saved in an attempt to avoid generating COPY
9694 // relocs.
9695 if (this->copy_relocs_.any_saved_relocs())
9696 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9697 this);
9698
9699 // Emit dynamic relocs.
9700 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9701 p != this->dyn_relocs_.end();
9702 ++p)
9703 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9704
9705 if (this->has_got_section())
9706 this->got_section()->lay_out_got(layout, symtab, input_objects);
9707
9708 if (this->mips_stubs_ != NULL)
9709 this->mips_stubs_->set_needs_dynsym_value();
9710
9711 // Check for functions that might need $25 to be valid on entry.
9712 // TODO(sasa): Can we do this without iterating over all symbols?
9713 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9714 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9715 symtab));
9716
9717 // Add NULL segment.
9718 if (!parameters->options().relocatable())
9719 layout->make_output_segment(elfcpp::PT_NULL, 0);
9720
9721 // Fill in some more dynamic tags.
9722 // TODO(sasa): Add more dynamic tags.
9723 const Reloc_section* rel_plt = (this->plt_ == NULL
9724 ? NULL : this->plt_->rel_plt());
9725 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9726 this->rel_dyn_, true, false);
9727
9728 Output_data_dynamic* const odyn = layout->dynamic_data();
9729 if (odyn != NULL
9730 && !parameters->options().relocatable()
9731 && !parameters->doing_static_link())
9732 {
9733 unsigned int d_val;
9734 // This element holds a 32-bit version id for the Runtime
9735 // Linker Interface. This will start at integer value 1.
9736 d_val = 0x01;
9737 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9738
9739 // Dynamic flags
9740 d_val = elfcpp::RHF_NOTPOT;
9741 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9742
9743 // Save layout for using when emiting custom dynamic tags.
9744 this->layout_ = layout;
9745
9746 // This member holds the base address of the segment.
9747 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9748
9749 // This member holds the number of entries in the .dynsym section.
9750 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9751
9752 // This member holds the index of the first dynamic symbol
9753 // table entry that corresponds to an entry in the global offset table.
9754 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9755
9756 // This member holds the number of local GOT entries.
9757 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9758 this->got_->get_local_gotno());
9759
9760 if (this->plt_ != NULL)
9761 // DT_MIPS_PLTGOT dynamic tag
9762 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9763 }
9764 }
9765
9766 // Get the custom dynamic tag value.
9767 template<int size, bool big_endian>
9768 unsigned int
9769 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9770 {
9771 switch (tag)
9772 {
9773 case elfcpp::DT_MIPS_BASE_ADDRESS:
9774 {
9775 // The base address of the segment.
9776 // At this point, the segment list has been sorted into final order,
9777 // so just return vaddr of the first readable PT_LOAD segment.
9778 Output_segment* seg =
9779 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9780 gold_assert(seg != NULL);
9781 return seg->vaddr();
9782 }
9783
9784 case elfcpp::DT_MIPS_SYMTABNO:
9785 // The number of entries in the .dynsym section.
9786 return this->get_dt_mips_symtabno();
9787
9788 case elfcpp::DT_MIPS_GOTSYM:
9789 {
9790 // The index of the first dynamic symbol table entry that corresponds
9791 // to an entry in the GOT.
9792 if (this->got_->first_global_got_dynsym_index() != -1U)
9793 return this->got_->first_global_got_dynsym_index();
9794 else
9795 // In case if we don't have global GOT symbols we default to setting
9796 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9797 return this->get_dt_mips_symtabno();
9798 }
9799
9800 default:
9801 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9802 }
9803
9804 return (unsigned int)-1;
9805 }
9806
9807 // Relocate section data.
9808
9809 template<int size, bool big_endian>
9810 void
9811 Target_mips<size, big_endian>::relocate_section(
9812 const Relocate_info<size, big_endian>* relinfo,
9813 unsigned int sh_type,
9814 const unsigned char* prelocs,
9815 size_t reloc_count,
9816 Output_section* output_section,
9817 bool needs_special_offset_handling,
9818 unsigned char* view,
9819 Mips_address address,
9820 section_size_type view_size,
9821 const Reloc_symbol_changes* reloc_symbol_changes)
9822 {
9823 typedef Target_mips<size, big_endian> Mips;
9824 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9825
9826 if (sh_type == elfcpp::SHT_REL)
9827 {
9828 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9829 Classify_reloc;
9830
9831 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9832 gold::Default_comdat_behavior, Classify_reloc>(
9833 relinfo,
9834 this,
9835 prelocs,
9836 reloc_count,
9837 output_section,
9838 needs_special_offset_handling,
9839 view,
9840 address,
9841 view_size,
9842 reloc_symbol_changes);
9843 }
9844 else if (sh_type == elfcpp::SHT_RELA)
9845 {
9846 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9847 Classify_reloc;
9848
9849 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9850 gold::Default_comdat_behavior, Classify_reloc>(
9851 relinfo,
9852 this,
9853 prelocs,
9854 reloc_count,
9855 output_section,
9856 needs_special_offset_handling,
9857 view,
9858 address,
9859 view_size,
9860 reloc_symbol_changes);
9861 }
9862 }
9863
9864 // Return the size of a relocation while scanning during a relocatable
9865 // link.
9866
9867 unsigned int
9868 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
9869 {
9870 switch (r_type)
9871 {
9872 case elfcpp::R_MIPS_NONE:
9873 case elfcpp::R_MIPS_TLS_DTPMOD64:
9874 case elfcpp::R_MIPS_TLS_DTPREL64:
9875 case elfcpp::R_MIPS_TLS_TPREL64:
9876 return 0;
9877
9878 case elfcpp::R_MIPS_32:
9879 case elfcpp::R_MIPS_TLS_DTPMOD32:
9880 case elfcpp::R_MIPS_TLS_DTPREL32:
9881 case elfcpp::R_MIPS_TLS_TPREL32:
9882 case elfcpp::R_MIPS_REL32:
9883 case elfcpp::R_MIPS_PC32:
9884 case elfcpp::R_MIPS_GPREL32:
9885 case elfcpp::R_MIPS_JALR:
9886 case elfcpp::R_MIPS_EH:
9887 return 4;
9888
9889 case elfcpp::R_MIPS_16:
9890 case elfcpp::R_MIPS_HI16:
9891 case elfcpp::R_MIPS_LO16:
9892 case elfcpp::R_MIPS_GPREL16:
9893 case elfcpp::R_MIPS16_HI16:
9894 case elfcpp::R_MIPS16_LO16:
9895 case elfcpp::R_MIPS_PC16:
9896 case elfcpp::R_MIPS_PCHI16:
9897 case elfcpp::R_MIPS_PCLO16:
9898 case elfcpp::R_MIPS_GOT16:
9899 case elfcpp::R_MIPS16_GOT16:
9900 case elfcpp::R_MIPS_CALL16:
9901 case elfcpp::R_MIPS16_CALL16:
9902 case elfcpp::R_MIPS_GOT_HI16:
9903 case elfcpp::R_MIPS_CALL_HI16:
9904 case elfcpp::R_MIPS_GOT_LO16:
9905 case elfcpp::R_MIPS_CALL_LO16:
9906 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
9907 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
9908 case elfcpp::R_MIPS_TLS_TPREL_HI16:
9909 case elfcpp::R_MIPS_TLS_TPREL_LO16:
9910 case elfcpp::R_MIPS16_GPREL:
9911 case elfcpp::R_MIPS_GOT_DISP:
9912 case elfcpp::R_MIPS_LITERAL:
9913 case elfcpp::R_MIPS_GOT_PAGE:
9914 case elfcpp::R_MIPS_GOT_OFST:
9915 case elfcpp::R_MIPS_TLS_GD:
9916 case elfcpp::R_MIPS_TLS_LDM:
9917 case elfcpp::R_MIPS_TLS_GOTTPREL:
9918 return 2;
9919
9920 // These relocations are not byte sized
9921 case elfcpp::R_MIPS_26:
9922 case elfcpp::R_MIPS16_26:
9923 case elfcpp::R_MIPS_PC21_S2:
9924 case elfcpp::R_MIPS_PC26_S2:
9925 case elfcpp::R_MIPS_PC18_S3:
9926 case elfcpp::R_MIPS_PC19_S2:
9927 return 4;
9928
9929 case elfcpp::R_MIPS_COPY:
9930 case elfcpp::R_MIPS_JUMP_SLOT:
9931 object->error(_("unexpected reloc %u in object file"), r_type);
9932 return 0;
9933
9934 default:
9935 object->error(_("unsupported reloc %u in object file"), r_type);
9936 return 0;
9937 }
9938 }
9939
9940 // Scan the relocs during a relocatable link.
9941
9942 template<int size, bool big_endian>
9943 void
9944 Target_mips<size, big_endian>::scan_relocatable_relocs(
9945 Symbol_table* symtab,
9946 Layout* layout,
9947 Sized_relobj_file<size, big_endian>* object,
9948 unsigned int data_shndx,
9949 unsigned int sh_type,
9950 const unsigned char* prelocs,
9951 size_t reloc_count,
9952 Output_section* output_section,
9953 bool needs_special_offset_handling,
9954 size_t local_symbol_count,
9955 const unsigned char* plocal_symbols,
9956 Relocatable_relocs* rr)
9957 {
9958 if (sh_type == elfcpp::SHT_REL)
9959 {
9960 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9961 Classify_reloc;
9962 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
9963 Scan_relocatable_relocs;
9964
9965 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
9966 symtab,
9967 layout,
9968 object,
9969 data_shndx,
9970 prelocs,
9971 reloc_count,
9972 output_section,
9973 needs_special_offset_handling,
9974 local_symbol_count,
9975 plocal_symbols,
9976 rr);
9977 }
9978 else if (sh_type == elfcpp::SHT_RELA)
9979 {
9980 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9981 Classify_reloc;
9982 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
9983 Scan_relocatable_relocs;
9984
9985 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
9986 symtab,
9987 layout,
9988 object,
9989 data_shndx,
9990 prelocs,
9991 reloc_count,
9992 output_section,
9993 needs_special_offset_handling,
9994 local_symbol_count,
9995 plocal_symbols,
9996 rr);
9997 }
9998 else
9999 gold_unreachable();
10000 }
10001
10002 // Scan the relocs for --emit-relocs.
10003
10004 template<int size, bool big_endian>
10005 void
10006 Target_mips<size, big_endian>::emit_relocs_scan(
10007 Symbol_table* symtab,
10008 Layout* layout,
10009 Sized_relobj_file<size, big_endian>* object,
10010 unsigned int data_shndx,
10011 unsigned int sh_type,
10012 const unsigned char* prelocs,
10013 size_t reloc_count,
10014 Output_section* output_section,
10015 bool needs_special_offset_handling,
10016 size_t local_symbol_count,
10017 const unsigned char* plocal_syms,
10018 Relocatable_relocs* rr)
10019 {
10020 if (sh_type == elfcpp::SHT_REL)
10021 {
10022 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10023 Classify_reloc;
10024 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10025 Emit_relocs_strategy;
10026
10027 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10028 symtab,
10029 layout,
10030 object,
10031 data_shndx,
10032 prelocs,
10033 reloc_count,
10034 output_section,
10035 needs_special_offset_handling,
10036 local_symbol_count,
10037 plocal_syms,
10038 rr);
10039 }
10040 else if (sh_type == elfcpp::SHT_RELA)
10041 {
10042 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10043 Classify_reloc;
10044 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10045 Emit_relocs_strategy;
10046
10047 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10048 symtab,
10049 layout,
10050 object,
10051 data_shndx,
10052 prelocs,
10053 reloc_count,
10054 output_section,
10055 needs_special_offset_handling,
10056 local_symbol_count,
10057 plocal_syms,
10058 rr);
10059 }
10060 else
10061 gold_unreachable();
10062 }
10063
10064 // Emit relocations for a section.
10065
10066 template<int size, bool big_endian>
10067 void
10068 Target_mips<size, big_endian>::relocate_relocs(
10069 const Relocate_info<size, big_endian>* relinfo,
10070 unsigned int sh_type,
10071 const unsigned char* prelocs,
10072 size_t reloc_count,
10073 Output_section* output_section,
10074 typename elfcpp::Elf_types<size>::Elf_Off
10075 offset_in_output_section,
10076 unsigned char* view,
10077 Mips_address view_address,
10078 section_size_type view_size,
10079 unsigned char* reloc_view,
10080 section_size_type reloc_view_size)
10081 {
10082 if (sh_type == elfcpp::SHT_REL)
10083 {
10084 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10085 Classify_reloc;
10086
10087 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10088 relinfo,
10089 prelocs,
10090 reloc_count,
10091 output_section,
10092 offset_in_output_section,
10093 view,
10094 view_address,
10095 view_size,
10096 reloc_view,
10097 reloc_view_size);
10098 }
10099 else if (sh_type == elfcpp::SHT_RELA)
10100 {
10101 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10102 Classify_reloc;
10103
10104 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10105 relinfo,
10106 prelocs,
10107 reloc_count,
10108 output_section,
10109 offset_in_output_section,
10110 view,
10111 view_address,
10112 view_size,
10113 reloc_view,
10114 reloc_view_size);
10115 }
10116 else
10117 gold_unreachable();
10118 }
10119
10120 // Perform target-specific processing in a relocatable link. This is
10121 // only used if we use the relocation strategy RELOC_SPECIAL.
10122
10123 template<int size, bool big_endian>
10124 void
10125 Target_mips<size, big_endian>::relocate_special_relocatable(
10126 const Relocate_info<size, big_endian>* relinfo,
10127 unsigned int sh_type,
10128 const unsigned char* preloc_in,
10129 size_t relnum,
10130 Output_section* output_section,
10131 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10132 unsigned char* view,
10133 Mips_address view_address,
10134 section_size_type,
10135 unsigned char* preloc_out)
10136 {
10137 // We can only handle REL type relocation sections.
10138 gold_assert(sh_type == elfcpp::SHT_REL);
10139
10140 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10141 Reltype;
10142 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10143 Reltype_write;
10144
10145 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10146
10147 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10148
10149 Mips_relobj<size, big_endian>* object =
10150 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10151 const unsigned int local_count = object->local_symbol_count();
10152
10153 Reltype reloc(preloc_in);
10154 Reltype_write reloc_write(preloc_out);
10155
10156 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10157 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10158 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10159
10160 // Get the new symbol index.
10161 // We only use RELOC_SPECIAL strategy in local relocations.
10162 gold_assert(r_sym < local_count);
10163
10164 // We are adjusting a section symbol. We need to find
10165 // the symbol table index of the section symbol for
10166 // the output section corresponding to input section
10167 // in which this symbol is defined.
10168 bool is_ordinary;
10169 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10170 gold_assert(is_ordinary);
10171 Output_section* os = object->output_section(shndx);
10172 gold_assert(os != NULL);
10173 gold_assert(os->needs_symtab_index());
10174 unsigned int new_symndx = os->symtab_index();
10175
10176 // Get the new offset--the location in the output section where
10177 // this relocation should be applied.
10178
10179 Mips_address offset = reloc.get_r_offset();
10180 Mips_address new_offset;
10181 if (offset_in_output_section != invalid_address)
10182 new_offset = offset + offset_in_output_section;
10183 else
10184 {
10185 section_offset_type sot_offset =
10186 convert_types<section_offset_type, Mips_address>(offset);
10187 section_offset_type new_sot_offset =
10188 output_section->output_offset(object, relinfo->data_shndx,
10189 sot_offset);
10190 gold_assert(new_sot_offset != -1);
10191 new_offset = new_sot_offset;
10192 }
10193
10194 // In an object file, r_offset is an offset within the section.
10195 // In an executable or dynamic object, generated by
10196 // --emit-relocs, r_offset is an absolute address.
10197 if (!parameters->options().relocatable())
10198 {
10199 new_offset += view_address;
10200 if (offset_in_output_section != invalid_address)
10201 new_offset -= offset_in_output_section;
10202 }
10203
10204 reloc_write.put_r_offset(new_offset);
10205 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10206
10207 // Handle the reloc addend.
10208 // The relocation uses a section symbol in the input file.
10209 // We are adjusting it to use a section symbol in the output
10210 // file. The input section symbol refers to some address in
10211 // the input section. We need the relocation in the output
10212 // file to refer to that same address. This adjustment to
10213 // the addend is the same calculation we use for a simple
10214 // absolute relocation for the input section symbol.
10215 Valtype calculated_value = 0;
10216 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10217
10218 unsigned char* paddend = view + offset;
10219 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10220 switch (r_type)
10221 {
10222 case elfcpp::R_MIPS_26:
10223 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10224 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10225 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10226 false, &calculated_value);
10227 break;
10228
10229 default:
10230 gold_unreachable();
10231 }
10232
10233 // Report any errors.
10234 switch (reloc_status)
10235 {
10236 case Reloc_funcs::STATUS_OKAY:
10237 break;
10238 case Reloc_funcs::STATUS_OVERFLOW:
10239 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10240 _("relocation overflow"));
10241 break;
10242 case Reloc_funcs::STATUS_BAD_RELOC:
10243 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10244 _("unexpected opcode while processing relocation"));
10245 break;
10246 default:
10247 gold_unreachable();
10248 }
10249 }
10250
10251 // Optimize the TLS relocation type based on what we know about the
10252 // symbol. IS_FINAL is true if the final address of this symbol is
10253 // known at link time.
10254
10255 template<int size, bool big_endian>
10256 tls::Tls_optimization
10257 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10258 {
10259 // FIXME: Currently we do not do any TLS optimization.
10260 return tls::TLSOPT_NONE;
10261 }
10262
10263 // Scan a relocation for a local symbol.
10264
10265 template<int size, bool big_endian>
10266 inline void
10267 Target_mips<size, big_endian>::Scan::local(
10268 Symbol_table* symtab,
10269 Layout* layout,
10270 Target_mips<size, big_endian>* target,
10271 Sized_relobj_file<size, big_endian>* object,
10272 unsigned int data_shndx,
10273 Output_section* output_section,
10274 const Relatype* rela,
10275 const Reltype* rel,
10276 unsigned int rel_type,
10277 unsigned int r_type,
10278 const elfcpp::Sym<size, big_endian>& lsym,
10279 bool is_discarded)
10280 {
10281 if (is_discarded)
10282 return;
10283
10284 Mips_address r_offset;
10285 unsigned int r_sym;
10286 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10287
10288 if (rel_type == elfcpp::SHT_RELA)
10289 {
10290 r_offset = rela->get_r_offset();
10291 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10292 get_r_sym(rela);
10293 r_addend = rela->get_r_addend();
10294 }
10295 else
10296 {
10297 r_offset = rel->get_r_offset();
10298 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10299 get_r_sym(rel);
10300 r_addend = 0;
10301 }
10302
10303 Mips_relobj<size, big_endian>* mips_obj =
10304 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10305
10306 if (mips_obj->is_mips16_stub_section(data_shndx))
10307 {
10308 mips_obj->get_mips16_stub_section(data_shndx)
10309 ->new_local_reloc_found(r_type, r_sym);
10310 }
10311
10312 if (r_type == elfcpp::R_MIPS_NONE)
10313 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10314 // mips16 stub.
10315 return;
10316
10317 if (!mips16_call_reloc(r_type)
10318 && !mips_obj->section_allows_mips16_refs(data_shndx))
10319 // This reloc would need to refer to a MIPS16 hard-float stub, if
10320 // there is one. We ignore MIPS16 stub sections and .pdr section when
10321 // looking for relocs that would need to refer to MIPS16 stubs.
10322 mips_obj->add_local_non_16bit_call(r_sym);
10323
10324 if (r_type == elfcpp::R_MIPS16_26
10325 && !mips_obj->section_allows_mips16_refs(data_shndx))
10326 mips_obj->add_local_16bit_call(r_sym);
10327
10328 switch (r_type)
10329 {
10330 case elfcpp::R_MIPS_GOT16:
10331 case elfcpp::R_MIPS_CALL16:
10332 case elfcpp::R_MIPS_CALL_HI16:
10333 case elfcpp::R_MIPS_CALL_LO16:
10334 case elfcpp::R_MIPS_GOT_HI16:
10335 case elfcpp::R_MIPS_GOT_LO16:
10336 case elfcpp::R_MIPS_GOT_PAGE:
10337 case elfcpp::R_MIPS_GOT_OFST:
10338 case elfcpp::R_MIPS_GOT_DISP:
10339 case elfcpp::R_MIPS_TLS_GOTTPREL:
10340 case elfcpp::R_MIPS_TLS_GD:
10341 case elfcpp::R_MIPS_TLS_LDM:
10342 case elfcpp::R_MIPS16_GOT16:
10343 case elfcpp::R_MIPS16_CALL16:
10344 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10345 case elfcpp::R_MIPS16_TLS_GD:
10346 case elfcpp::R_MIPS16_TLS_LDM:
10347 case elfcpp::R_MICROMIPS_GOT16:
10348 case elfcpp::R_MICROMIPS_CALL16:
10349 case elfcpp::R_MICROMIPS_CALL_HI16:
10350 case elfcpp::R_MICROMIPS_CALL_LO16:
10351 case elfcpp::R_MICROMIPS_GOT_HI16:
10352 case elfcpp::R_MICROMIPS_GOT_LO16:
10353 case elfcpp::R_MICROMIPS_GOT_PAGE:
10354 case elfcpp::R_MICROMIPS_GOT_OFST:
10355 case elfcpp::R_MICROMIPS_GOT_DISP:
10356 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10357 case elfcpp::R_MICROMIPS_TLS_GD:
10358 case elfcpp::R_MICROMIPS_TLS_LDM:
10359 case elfcpp::R_MIPS_EH:
10360 // We need a GOT section.
10361 target->got_section(symtab, layout);
10362 break;
10363
10364 default:
10365 break;
10366 }
10367
10368 if (call_lo16_reloc(r_type)
10369 || got_lo16_reloc(r_type)
10370 || got_disp_reloc(r_type)
10371 || eh_reloc(r_type))
10372 {
10373 // We may need a local GOT entry for this relocation. We
10374 // don't count R_MIPS_GOT_PAGE because we can estimate the
10375 // maximum number of pages needed by looking at the size of
10376 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10377 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10378 // R_MIPS_CALL_HI16 because these are always followed by an
10379 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10380 Mips_output_data_got<size, big_endian>* got =
10381 target->got_section(symtab, layout);
10382 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10383 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10384 is_section_symbol);
10385 }
10386
10387 switch (r_type)
10388 {
10389 case elfcpp::R_MIPS_CALL16:
10390 case elfcpp::R_MIPS16_CALL16:
10391 case elfcpp::R_MICROMIPS_CALL16:
10392 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10393 (unsigned long)r_offset);
10394 return;
10395
10396 case elfcpp::R_MIPS_GOT_PAGE:
10397 case elfcpp::R_MICROMIPS_GOT_PAGE:
10398 case elfcpp::R_MIPS16_GOT16:
10399 case elfcpp::R_MIPS_GOT16:
10400 case elfcpp::R_MIPS_GOT_HI16:
10401 case elfcpp::R_MIPS_GOT_LO16:
10402 case elfcpp::R_MICROMIPS_GOT16:
10403 case elfcpp::R_MICROMIPS_GOT_HI16:
10404 case elfcpp::R_MICROMIPS_GOT_LO16:
10405 {
10406 // This relocation needs a page entry in the GOT.
10407 // Get the section contents.
10408 section_size_type view_size = 0;
10409 const unsigned char* view = object->section_contents(data_shndx,
10410 &view_size, false);
10411 view += r_offset;
10412
10413 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10414 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10415 : r_addend);
10416
10417 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10418 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10419 object, data_shndx, r_type, r_sym, addend));
10420 else
10421 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10422 break;
10423 }
10424
10425 case elfcpp::R_MIPS_HI16:
10426 case elfcpp::R_MIPS_PCHI16:
10427 case elfcpp::R_MIPS16_HI16:
10428 case elfcpp::R_MICROMIPS_HI16:
10429 // Record the reloc so that we can check whether the corresponding LO16
10430 // part exists.
10431 if (rel_type == elfcpp::SHT_REL)
10432 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10433 object, data_shndx, r_type, r_sym, 0));
10434 break;
10435
10436 case elfcpp::R_MIPS_LO16:
10437 case elfcpp::R_MIPS_PCLO16:
10438 case elfcpp::R_MIPS16_LO16:
10439 case elfcpp::R_MICROMIPS_LO16:
10440 {
10441 if (rel_type != elfcpp::SHT_REL)
10442 break;
10443
10444 // Find corresponding GOT16/HI16 relocation.
10445
10446 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10447 // be immediately following. However, for the IRIX6 ABI, the next
10448 // relocation may be a composed relocation consisting of several
10449 // relocations for the same address. In that case, the R_MIPS_LO16
10450 // relocation may occur as one of these. We permit a similar
10451 // extension in general, as that is useful for GCC.
10452
10453 // In some cases GCC dead code elimination removes the LO16 but
10454 // keeps the corresponding HI16. This is strictly speaking a
10455 // violation of the ABI but not immediately harmful.
10456
10457 typename std::list<got16_addend<size, big_endian> >::iterator it =
10458 target->got16_addends_.begin();
10459 while (it != target->got16_addends_.end())
10460 {
10461 got16_addend<size, big_endian> _got16_addend = *it;
10462
10463 // TODO(sasa): Split got16_addends_ list into two lists - one for
10464 // GOT16 relocs and the other for HI16 relocs.
10465
10466 // Report an error if we find HI16 or GOT16 reloc from the
10467 // previous section without the matching LO16 part.
10468 if (_got16_addend.object != object
10469 || _got16_addend.shndx != data_shndx)
10470 {
10471 gold_error("Can't find matching LO16 reloc");
10472 break;
10473 }
10474
10475 if (_got16_addend.r_sym != r_sym
10476 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10477 {
10478 ++it;
10479 continue;
10480 }
10481
10482 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10483 // For GOT16, we need to calculate combined addend and record GOT page
10484 // entry.
10485 if (got16_reloc(_got16_addend.r_type))
10486 {
10487
10488 section_size_type view_size = 0;
10489 const unsigned char* view = object->section_contents(data_shndx,
10490 &view_size,
10491 false);
10492 view += r_offset;
10493
10494 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10495 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10496
10497 addend = (_got16_addend.addend << 16) + addend;
10498 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10499 addend);
10500 }
10501
10502 it = target->got16_addends_.erase(it);
10503 }
10504 break;
10505 }
10506 }
10507
10508 switch (r_type)
10509 {
10510 case elfcpp::R_MIPS_32:
10511 case elfcpp::R_MIPS_REL32:
10512 case elfcpp::R_MIPS_64:
10513 {
10514 if (parameters->options().output_is_position_independent())
10515 {
10516 // If building a shared library (or a position-independent
10517 // executable), we need to create a dynamic relocation for
10518 // this location.
10519 if (is_readonly_section(output_section))
10520 break;
10521 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10522 rel_dyn->add_symbolless_local_addend(object, r_sym,
10523 elfcpp::R_MIPS_REL32,
10524 output_section, data_shndx,
10525 r_offset);
10526 }
10527 break;
10528 }
10529
10530 case elfcpp::R_MIPS_TLS_GOTTPREL:
10531 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10532 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10533 case elfcpp::R_MIPS_TLS_LDM:
10534 case elfcpp::R_MIPS16_TLS_LDM:
10535 case elfcpp::R_MICROMIPS_TLS_LDM:
10536 case elfcpp::R_MIPS_TLS_GD:
10537 case elfcpp::R_MIPS16_TLS_GD:
10538 case elfcpp::R_MICROMIPS_TLS_GD:
10539 {
10540 bool output_is_shared = parameters->options().shared();
10541 const tls::Tls_optimization optimized_type
10542 = Target_mips<size, big_endian>::optimize_tls_reloc(
10543 !output_is_shared, r_type);
10544 switch (r_type)
10545 {
10546 case elfcpp::R_MIPS_TLS_GD:
10547 case elfcpp::R_MIPS16_TLS_GD:
10548 case elfcpp::R_MICROMIPS_TLS_GD:
10549 if (optimized_type == tls::TLSOPT_NONE)
10550 {
10551 // Create a pair of GOT entries for the module index and
10552 // dtv-relative offset.
10553 Mips_output_data_got<size, big_endian>* got =
10554 target->got_section(symtab, layout);
10555 unsigned int shndx = lsym.get_st_shndx();
10556 bool is_ordinary;
10557 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10558 if (!is_ordinary)
10559 {
10560 object->error(_("local symbol %u has bad shndx %u"),
10561 r_sym, shndx);
10562 break;
10563 }
10564 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10565 shndx, false);
10566 }
10567 else
10568 {
10569 // FIXME: TLS optimization not supported yet.
10570 gold_unreachable();
10571 }
10572 break;
10573
10574 case elfcpp::R_MIPS_TLS_LDM:
10575 case elfcpp::R_MIPS16_TLS_LDM:
10576 case elfcpp::R_MICROMIPS_TLS_LDM:
10577 if (optimized_type == tls::TLSOPT_NONE)
10578 {
10579 // We always record LDM symbols as local with index 0.
10580 target->got_section()->record_local_got_symbol(mips_obj, 0,
10581 r_addend, r_type,
10582 -1U, false);
10583 }
10584 else
10585 {
10586 // FIXME: TLS optimization not supported yet.
10587 gold_unreachable();
10588 }
10589 break;
10590 case elfcpp::R_MIPS_TLS_GOTTPREL:
10591 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10592 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10593 layout->set_has_static_tls();
10594 if (optimized_type == tls::TLSOPT_NONE)
10595 {
10596 // Create a GOT entry for the tp-relative offset.
10597 Mips_output_data_got<size, big_endian>* got =
10598 target->got_section(symtab, layout);
10599 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10600 -1U, false);
10601 }
10602 else
10603 {
10604 // FIXME: TLS optimization not supported yet.
10605 gold_unreachable();
10606 }
10607 break;
10608
10609 default:
10610 gold_unreachable();
10611 }
10612 }
10613 break;
10614
10615 default:
10616 break;
10617 }
10618
10619 // Refuse some position-dependent relocations when creating a
10620 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10621 // not PIC, but we can create dynamic relocations and the result
10622 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10623 // combined with R_MIPS_GOT16.
10624 if (parameters->options().shared())
10625 {
10626 switch (r_type)
10627 {
10628 case elfcpp::R_MIPS16_HI16:
10629 case elfcpp::R_MIPS_HI16:
10630 case elfcpp::R_MICROMIPS_HI16:
10631 // Don't refuse a high part relocation if it's against
10632 // no symbol (e.g. part of a compound relocation).
10633 if (r_sym == 0)
10634 break;
10635
10636 // FALLTHROUGH
10637
10638 case elfcpp::R_MIPS16_26:
10639 case elfcpp::R_MIPS_26:
10640 case elfcpp::R_MICROMIPS_26_S1:
10641 gold_error(_("%s: relocation %u against `%s' can not be used when "
10642 "making a shared object; recompile with -fPIC"),
10643 object->name().c_str(), r_type, "a local symbol");
10644 default:
10645 break;
10646 }
10647 }
10648 }
10649
10650 template<int size, bool big_endian>
10651 inline void
10652 Target_mips<size, big_endian>::Scan::local(
10653 Symbol_table* symtab,
10654 Layout* layout,
10655 Target_mips<size, big_endian>* target,
10656 Sized_relobj_file<size, big_endian>* object,
10657 unsigned int data_shndx,
10658 Output_section* output_section,
10659 const Reltype& reloc,
10660 unsigned int r_type,
10661 const elfcpp::Sym<size, big_endian>& lsym,
10662 bool is_discarded)
10663 {
10664 if (is_discarded)
10665 return;
10666
10667 local(
10668 symtab,
10669 layout,
10670 target,
10671 object,
10672 data_shndx,
10673 output_section,
10674 (const Relatype*) NULL,
10675 &reloc,
10676 elfcpp::SHT_REL,
10677 r_type,
10678 lsym, is_discarded);
10679 }
10680
10681
10682 template<int size, bool big_endian>
10683 inline void
10684 Target_mips<size, big_endian>::Scan::local(
10685 Symbol_table* symtab,
10686 Layout* layout,
10687 Target_mips<size, big_endian>* target,
10688 Sized_relobj_file<size, big_endian>* object,
10689 unsigned int data_shndx,
10690 Output_section* output_section,
10691 const Relatype& reloc,
10692 unsigned int r_type,
10693 const elfcpp::Sym<size, big_endian>& lsym,
10694 bool is_discarded)
10695 {
10696 if (is_discarded)
10697 return;
10698
10699 local(
10700 symtab,
10701 layout,
10702 target,
10703 object,
10704 data_shndx,
10705 output_section,
10706 &reloc,
10707 (const Reltype*) NULL,
10708 elfcpp::SHT_RELA,
10709 r_type,
10710 lsym, is_discarded);
10711 }
10712
10713 // Scan a relocation for a global symbol.
10714
10715 template<int size, bool big_endian>
10716 inline void
10717 Target_mips<size, big_endian>::Scan::global(
10718 Symbol_table* symtab,
10719 Layout* layout,
10720 Target_mips<size, big_endian>* target,
10721 Sized_relobj_file<size, big_endian>* object,
10722 unsigned int data_shndx,
10723 Output_section* output_section,
10724 const Relatype* rela,
10725 const Reltype* rel,
10726 unsigned int rel_type,
10727 unsigned int r_type,
10728 Symbol* gsym)
10729 {
10730 Mips_address r_offset;
10731 unsigned int r_sym;
10732 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10733
10734 if (rel_type == elfcpp::SHT_RELA)
10735 {
10736 r_offset = rela->get_r_offset();
10737 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10738 get_r_sym(rela);
10739 r_addend = rela->get_r_addend();
10740 }
10741 else
10742 {
10743 r_offset = rel->get_r_offset();
10744 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10745 get_r_sym(rel);
10746 r_addend = 0;
10747 }
10748
10749 Mips_relobj<size, big_endian>* mips_obj =
10750 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10751 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10752
10753 if (mips_obj->is_mips16_stub_section(data_shndx))
10754 {
10755 mips_obj->get_mips16_stub_section(data_shndx)
10756 ->new_global_reloc_found(r_type, mips_sym);
10757 }
10758
10759 if (r_type == elfcpp::R_MIPS_NONE)
10760 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10761 // mips16 stub.
10762 return;
10763
10764 if (!mips16_call_reloc(r_type)
10765 && !mips_obj->section_allows_mips16_refs(data_shndx))
10766 // This reloc would need to refer to a MIPS16 hard-float stub, if
10767 // there is one. We ignore MIPS16 stub sections and .pdr section when
10768 // looking for relocs that would need to refer to MIPS16 stubs.
10769 mips_sym->set_need_fn_stub();
10770
10771 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
10772 // section. We check here to avoid creating a dynamic reloc against
10773 // _GLOBAL_OFFSET_TABLE_.
10774 if (!target->has_got_section()
10775 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
10776 target->got_section(symtab, layout);
10777
10778 // We need PLT entries if there are static-only relocations against
10779 // an externally-defined function. This can technically occur for
10780 // shared libraries if there are branches to the symbol, although it
10781 // is unlikely that this will be used in practice due to the short
10782 // ranges involved. It can occur for any relative or absolute relocation
10783 // in executables; in that case, the PLT entry becomes the function's
10784 // canonical address.
10785 bool static_reloc = false;
10786
10787 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10788 // relocation into a dynamic one.
10789 bool can_make_dynamic = false;
10790 switch (r_type)
10791 {
10792 case elfcpp::R_MIPS_GOT16:
10793 case elfcpp::R_MIPS_CALL16:
10794 case elfcpp::R_MIPS_CALL_HI16:
10795 case elfcpp::R_MIPS_CALL_LO16:
10796 case elfcpp::R_MIPS_GOT_HI16:
10797 case elfcpp::R_MIPS_GOT_LO16:
10798 case elfcpp::R_MIPS_GOT_PAGE:
10799 case elfcpp::R_MIPS_GOT_OFST:
10800 case elfcpp::R_MIPS_GOT_DISP:
10801 case elfcpp::R_MIPS_TLS_GOTTPREL:
10802 case elfcpp::R_MIPS_TLS_GD:
10803 case elfcpp::R_MIPS_TLS_LDM:
10804 case elfcpp::R_MIPS16_GOT16:
10805 case elfcpp::R_MIPS16_CALL16:
10806 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10807 case elfcpp::R_MIPS16_TLS_GD:
10808 case elfcpp::R_MIPS16_TLS_LDM:
10809 case elfcpp::R_MICROMIPS_GOT16:
10810 case elfcpp::R_MICROMIPS_CALL16:
10811 case elfcpp::R_MICROMIPS_CALL_HI16:
10812 case elfcpp::R_MICROMIPS_CALL_LO16:
10813 case elfcpp::R_MICROMIPS_GOT_HI16:
10814 case elfcpp::R_MICROMIPS_GOT_LO16:
10815 case elfcpp::R_MICROMIPS_GOT_PAGE:
10816 case elfcpp::R_MICROMIPS_GOT_OFST:
10817 case elfcpp::R_MICROMIPS_GOT_DISP:
10818 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10819 case elfcpp::R_MICROMIPS_TLS_GD:
10820 case elfcpp::R_MICROMIPS_TLS_LDM:
10821 case elfcpp::R_MIPS_EH:
10822 // We need a GOT section.
10823 target->got_section(symtab, layout);
10824 break;
10825
10826 // This is just a hint; it can safely be ignored. Don't set
10827 // has_static_relocs for the corresponding symbol.
10828 case elfcpp::R_MIPS_JALR:
10829 case elfcpp::R_MICROMIPS_JALR:
10830 break;
10831
10832 case elfcpp::R_MIPS_GPREL16:
10833 case elfcpp::R_MIPS_GPREL32:
10834 case elfcpp::R_MIPS16_GPREL:
10835 case elfcpp::R_MICROMIPS_GPREL16:
10836 // TODO(sasa)
10837 // GP-relative relocations always resolve to a definition in a
10838 // regular input file, ignoring the one-definition rule. This is
10839 // important for the GP setup sequence in NewABI code, which
10840 // always resolves to a local function even if other relocations
10841 // against the symbol wouldn't.
10842 //constrain_symbol_p = FALSE;
10843 break;
10844
10845 case elfcpp::R_MIPS_32:
10846 case elfcpp::R_MIPS_REL32:
10847 case elfcpp::R_MIPS_64:
10848 if ((parameters->options().shared()
10849 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10850 && (!is_readonly_section(output_section)
10851 || mips_obj->is_pic())))
10852 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10853 {
10854 if (r_type != elfcpp::R_MIPS_REL32)
10855 mips_sym->set_pointer_equality_needed();
10856 can_make_dynamic = true;
10857 break;
10858 }
10859 // Fall through.
10860
10861 default:
10862 // Most static relocations require pointer equality, except
10863 // for branches.
10864 mips_sym->set_pointer_equality_needed();
10865
10866 // Fall through.
10867
10868 case elfcpp::R_MIPS_26:
10869 case elfcpp::R_MIPS_PC16:
10870 case elfcpp::R_MIPS_PC21_S2:
10871 case elfcpp::R_MIPS_PC26_S2:
10872 case elfcpp::R_MIPS16_26:
10873 case elfcpp::R_MICROMIPS_26_S1:
10874 case elfcpp::R_MICROMIPS_PC7_S1:
10875 case elfcpp::R_MICROMIPS_PC10_S1:
10876 case elfcpp::R_MICROMIPS_PC16_S1:
10877 case elfcpp::R_MICROMIPS_PC23_S2:
10878 static_reloc = true;
10879 mips_sym->set_has_static_relocs();
10880 break;
10881 }
10882
10883 // If there are call relocations against an externally-defined symbol,
10884 // see whether we can create a MIPS lazy-binding stub for it. We can
10885 // only do this if all references to the function are through call
10886 // relocations, and in that case, the traditional lazy-binding stubs
10887 // are much more efficient than PLT entries.
10888 switch (r_type)
10889 {
10890 case elfcpp::R_MIPS16_CALL16:
10891 case elfcpp::R_MIPS_CALL16:
10892 case elfcpp::R_MIPS_CALL_HI16:
10893 case elfcpp::R_MIPS_CALL_LO16:
10894 case elfcpp::R_MIPS_JALR:
10895 case elfcpp::R_MICROMIPS_CALL16:
10896 case elfcpp::R_MICROMIPS_CALL_HI16:
10897 case elfcpp::R_MICROMIPS_CALL_LO16:
10898 case elfcpp::R_MICROMIPS_JALR:
10899 if (!mips_sym->no_lazy_stub())
10900 {
10901 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
10902 // Calls from shared objects to undefined symbols of type
10903 // STT_NOTYPE need lazy-binding stub.
10904 || (mips_sym->is_undefined() && parameters->options().shared()))
10905 target->mips_stubs_section(layout)->make_entry(mips_sym);
10906 }
10907 break;
10908 default:
10909 {
10910 // We must not create a stub for a symbol that has relocations
10911 // related to taking the function's address.
10912 mips_sym->set_no_lazy_stub();
10913 target->remove_lazy_stub_entry(mips_sym);
10914 break;
10915 }
10916 }
10917
10918 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
10919 mips_sym->is_mips16()))
10920 mips_sym->set_has_nonpic_branches();
10921
10922 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
10923 // and has a special meaning.
10924 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
10925 && strcmp(gsym->name(), "_gp_disp") == 0
10926 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
10927 if (static_reloc && gsym->needs_plt_entry())
10928 {
10929 target->make_plt_entry(symtab, layout, mips_sym, r_type);
10930
10931 // Since this is not a PC-relative relocation, we may be
10932 // taking the address of a function. In that case we need to
10933 // set the entry in the dynamic symbol table to the address of
10934 // the PLT entry.
10935 if (gsym->is_from_dynobj() && !parameters->options().shared())
10936 {
10937 gsym->set_needs_dynsym_value();
10938 // We distinguish between PLT entries and lazy-binding stubs by
10939 // giving the former an st_other value of STO_MIPS_PLT. Set the
10940 // flag if there are any relocations in the binary where pointer
10941 // equality matters.
10942 if (mips_sym->pointer_equality_needed())
10943 mips_sym->set_mips_plt();
10944 }
10945 }
10946 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
10947 {
10948 // Absolute addressing relocations.
10949 // Make a dynamic relocation if necessary.
10950 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
10951 {
10952 if (gsym->may_need_copy_reloc())
10953 {
10954 target->copy_reloc(symtab, layout, object, data_shndx,
10955 output_section, gsym, r_type, r_offset);
10956 }
10957 else if (can_make_dynamic)
10958 {
10959 // Create .rel.dyn section.
10960 target->rel_dyn_section(layout);
10961 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
10962 data_shndx, output_section, r_offset);
10963 }
10964 else
10965 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
10966 gsym->name());
10967 }
10968 }
10969
10970 bool for_call = false;
10971 switch (r_type)
10972 {
10973 case elfcpp::R_MIPS_CALL16:
10974 case elfcpp::R_MIPS16_CALL16:
10975 case elfcpp::R_MICROMIPS_CALL16:
10976 case elfcpp::R_MIPS_CALL_HI16:
10977 case elfcpp::R_MIPS_CALL_LO16:
10978 case elfcpp::R_MICROMIPS_CALL_HI16:
10979 case elfcpp::R_MICROMIPS_CALL_LO16:
10980 for_call = true;
10981 // Fall through.
10982
10983 case elfcpp::R_MIPS16_GOT16:
10984 case elfcpp::R_MIPS_GOT16:
10985 case elfcpp::R_MIPS_GOT_HI16:
10986 case elfcpp::R_MIPS_GOT_LO16:
10987 case elfcpp::R_MICROMIPS_GOT16:
10988 case elfcpp::R_MICROMIPS_GOT_HI16:
10989 case elfcpp::R_MICROMIPS_GOT_LO16:
10990 case elfcpp::R_MIPS_GOT_DISP:
10991 case elfcpp::R_MICROMIPS_GOT_DISP:
10992 case elfcpp::R_MIPS_EH:
10993 {
10994 // The symbol requires a GOT entry.
10995 Mips_output_data_got<size, big_endian>* got =
10996 target->got_section(symtab, layout);
10997 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
10998 for_call);
10999 mips_sym->set_global_got_area(GGA_NORMAL);
11000 }
11001 break;
11002
11003 case elfcpp::R_MIPS_GOT_PAGE:
11004 case elfcpp::R_MICROMIPS_GOT_PAGE:
11005 {
11006 // This relocation needs a page entry in the GOT.
11007 // Get the section contents.
11008 section_size_type view_size = 0;
11009 const unsigned char* view =
11010 object->section_contents(data_shndx, &view_size, false);
11011 view += r_offset;
11012
11013 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11014 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11015 : r_addend);
11016 Mips_output_data_got<size, big_endian>* got =
11017 target->got_section(symtab, layout);
11018 got->record_got_page_entry(mips_obj, r_sym, addend);
11019
11020 // If this is a global, overridable symbol, GOT_PAGE will
11021 // decay to GOT_DISP, so we'll need a GOT entry for it.
11022 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11023 && !mips_sym->object()->is_dynamic()
11024 && !mips_sym->is_undefined());
11025 if (!def_regular
11026 || (parameters->options().output_is_position_independent()
11027 && !parameters->options().Bsymbolic()
11028 && !mips_sym->is_forced_local()))
11029 {
11030 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11031 for_call);
11032 mips_sym->set_global_got_area(GGA_NORMAL);
11033 }
11034 }
11035 break;
11036
11037 case elfcpp::R_MIPS_TLS_GOTTPREL:
11038 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11039 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11040 case elfcpp::R_MIPS_TLS_LDM:
11041 case elfcpp::R_MIPS16_TLS_LDM:
11042 case elfcpp::R_MICROMIPS_TLS_LDM:
11043 case elfcpp::R_MIPS_TLS_GD:
11044 case elfcpp::R_MIPS16_TLS_GD:
11045 case elfcpp::R_MICROMIPS_TLS_GD:
11046 {
11047 const bool is_final = gsym->final_value_is_known();
11048 const tls::Tls_optimization optimized_type =
11049 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11050
11051 switch (r_type)
11052 {
11053 case elfcpp::R_MIPS_TLS_GD:
11054 case elfcpp::R_MIPS16_TLS_GD:
11055 case elfcpp::R_MICROMIPS_TLS_GD:
11056 if (optimized_type == tls::TLSOPT_NONE)
11057 {
11058 // Create a pair of GOT entries for the module index and
11059 // dtv-relative offset.
11060 Mips_output_data_got<size, big_endian>* got =
11061 target->got_section(symtab, layout);
11062 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11063 false);
11064 }
11065 else
11066 {
11067 // FIXME: TLS optimization not supported yet.
11068 gold_unreachable();
11069 }
11070 break;
11071
11072 case elfcpp::R_MIPS_TLS_LDM:
11073 case elfcpp::R_MIPS16_TLS_LDM:
11074 case elfcpp::R_MICROMIPS_TLS_LDM:
11075 if (optimized_type == tls::TLSOPT_NONE)
11076 {
11077 // We always record LDM symbols as local with index 0.
11078 target->got_section()->record_local_got_symbol(mips_obj, 0,
11079 r_addend, r_type,
11080 -1U, false);
11081 }
11082 else
11083 {
11084 // FIXME: TLS optimization not supported yet.
11085 gold_unreachable();
11086 }
11087 break;
11088 case elfcpp::R_MIPS_TLS_GOTTPREL:
11089 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11090 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11091 layout->set_has_static_tls();
11092 if (optimized_type == tls::TLSOPT_NONE)
11093 {
11094 // Create a GOT entry for the tp-relative offset.
11095 Mips_output_data_got<size, big_endian>* got =
11096 target->got_section(symtab, layout);
11097 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11098 false);
11099 }
11100 else
11101 {
11102 // FIXME: TLS optimization not supported yet.
11103 gold_unreachable();
11104 }
11105 break;
11106
11107 default:
11108 gold_unreachable();
11109 }
11110 }
11111 break;
11112 case elfcpp::R_MIPS_COPY:
11113 case elfcpp::R_MIPS_JUMP_SLOT:
11114 // These are relocations which should only be seen by the
11115 // dynamic linker, and should never be seen here.
11116 gold_error(_("%s: unexpected reloc %u in object file"),
11117 object->name().c_str(), r_type);
11118 break;
11119
11120 default:
11121 break;
11122 }
11123
11124 // Refuse some position-dependent relocations when creating a
11125 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11126 // not PIC, but we can create dynamic relocations and the result
11127 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11128 // combined with R_MIPS_GOT16.
11129 if (parameters->options().shared())
11130 {
11131 switch (r_type)
11132 {
11133 case elfcpp::R_MIPS16_HI16:
11134 case elfcpp::R_MIPS_HI16:
11135 case elfcpp::R_MICROMIPS_HI16:
11136 // Don't refuse a high part relocation if it's against
11137 // no symbol (e.g. part of a compound relocation).
11138 if (r_sym == 0)
11139 break;
11140
11141 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11142 // and has a special meaning.
11143 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11144 break;
11145
11146 // FALLTHROUGH
11147
11148 case elfcpp::R_MIPS16_26:
11149 case elfcpp::R_MIPS_26:
11150 case elfcpp::R_MICROMIPS_26_S1:
11151 gold_error(_("%s: relocation %u against `%s' can not be used when "
11152 "making a shared object; recompile with -fPIC"),
11153 object->name().c_str(), r_type, gsym->name());
11154 default:
11155 break;
11156 }
11157 }
11158 }
11159
11160 template<int size, bool big_endian>
11161 inline void
11162 Target_mips<size, big_endian>::Scan::global(
11163 Symbol_table* symtab,
11164 Layout* layout,
11165 Target_mips<size, big_endian>* target,
11166 Sized_relobj_file<size, big_endian>* object,
11167 unsigned int data_shndx,
11168 Output_section* output_section,
11169 const Relatype& reloc,
11170 unsigned int r_type,
11171 Symbol* gsym)
11172 {
11173 global(
11174 symtab,
11175 layout,
11176 target,
11177 object,
11178 data_shndx,
11179 output_section,
11180 &reloc,
11181 (const Reltype*) NULL,
11182 elfcpp::SHT_RELA,
11183 r_type,
11184 gsym);
11185 }
11186
11187 template<int size, bool big_endian>
11188 inline void
11189 Target_mips<size, big_endian>::Scan::global(
11190 Symbol_table* symtab,
11191 Layout* layout,
11192 Target_mips<size, big_endian>* target,
11193 Sized_relobj_file<size, big_endian>* object,
11194 unsigned int data_shndx,
11195 Output_section* output_section,
11196 const Reltype& reloc,
11197 unsigned int r_type,
11198 Symbol* gsym)
11199 {
11200 global(
11201 symtab,
11202 layout,
11203 target,
11204 object,
11205 data_shndx,
11206 output_section,
11207 (const Relatype*) NULL,
11208 &reloc,
11209 elfcpp::SHT_REL,
11210 r_type,
11211 gsym);
11212 }
11213
11214 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11215 // In cases where Scan::local() or Scan::global() has created
11216 // a dynamic relocation, the addend of the relocation is carried
11217 // in the data, and we must not apply the static relocation.
11218
11219 template<int size, bool big_endian>
11220 inline bool
11221 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11222 const Mips_symbol<size>* gsym,
11223 unsigned int r_type,
11224 Output_section* output_section,
11225 Target_mips* target)
11226 {
11227 // If the output section is not allocated, then we didn't call
11228 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11229 // the reloc here.
11230 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11231 return true;
11232
11233 if (gsym == NULL)
11234 return true;
11235 else
11236 {
11237 // For global symbols, we use the same helper routines used in the
11238 // scan pass.
11239 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11240 && !gsym->may_need_copy_reloc())
11241 {
11242 // We have generated dynamic reloc (R_MIPS_REL32).
11243
11244 bool multi_got = false;
11245 if (target->has_got_section())
11246 multi_got = target->got_section()->multi_got();
11247 bool has_got_offset;
11248 if (!multi_got)
11249 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11250 else
11251 has_got_offset = gsym->global_gotoffset() != -1U;
11252 if (!has_got_offset)
11253 return true;
11254 else
11255 // Apply the relocation only if the symbol is in the local got.
11256 // Do not apply the relocation if the symbol is in the global
11257 // got.
11258 return symbol_references_local(gsym, gsym->has_dynsym_index());
11259 }
11260 else
11261 // We have not generated dynamic reloc.
11262 return true;
11263 }
11264 }
11265
11266 // Perform a relocation.
11267
11268 template<int size, bool big_endian>
11269 inline bool
11270 Target_mips<size, big_endian>::Relocate::relocate(
11271 const Relocate_info<size, big_endian>* relinfo,
11272 unsigned int rel_type,
11273 Target_mips* target,
11274 Output_section* output_section,
11275 size_t relnum,
11276 const unsigned char* preloc,
11277 const Sized_symbol<size>* gsym,
11278 const Symbol_value<size>* psymval,
11279 unsigned char* view,
11280 Mips_address address,
11281 section_size_type)
11282 {
11283 Mips_address r_offset;
11284 unsigned int r_sym;
11285 unsigned int r_type;
11286 unsigned int r_type2;
11287 unsigned int r_type3;
11288 unsigned char r_ssym;
11289 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11290
11291 if (rel_type == elfcpp::SHT_RELA)
11292 {
11293 const Relatype rela(preloc);
11294 r_offset = rela.get_r_offset();
11295 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11296 get_r_sym(&rela);
11297 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11298 get_r_type(&rela);
11299 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11300 get_r_type2(&rela);
11301 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11302 get_r_type3(&rela);
11303 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11304 get_r_ssym(&rela);
11305 r_addend = rela.get_r_addend();
11306 }
11307 else
11308 {
11309 const Reltype rel(preloc);
11310 r_offset = rel.get_r_offset();
11311 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11312 get_r_sym(&rel);
11313 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11314 get_r_type(&rel);
11315 r_ssym = 0;
11316 r_type2 = 0;
11317 r_type3 = 0;
11318 r_addend = 0;
11319 }
11320
11321 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11322 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11323
11324 Mips_relobj<size, big_endian>* object =
11325 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11326
11327 bool target_is_16_bit_code = false;
11328 bool target_is_micromips_code = false;
11329 bool cross_mode_jump;
11330
11331 Symbol_value<size> symval;
11332
11333 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11334
11335 bool changed_symbol_value = false;
11336 if (gsym == NULL)
11337 {
11338 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11339 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11340 if (target_is_16_bit_code || target_is_micromips_code)
11341 {
11342 // MIPS16/microMIPS text labels should be treated as odd.
11343 symval.set_output_value(psymval->value(object, 1));
11344 psymval = &symval;
11345 changed_symbol_value = true;
11346 }
11347 }
11348 else
11349 {
11350 target_is_16_bit_code = mips_sym->is_mips16();
11351 target_is_micromips_code = mips_sym->is_micromips();
11352
11353 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11354 // it odd. This will cause something like .word SYM to come up with
11355 // the right value when it is loaded into the PC.
11356
11357 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11358 && psymval->value(object, 0) != 0)
11359 {
11360 symval.set_output_value(psymval->value(object, 0) | 1);
11361 psymval = &symval;
11362 changed_symbol_value = true;
11363 }
11364
11365 // Pick the value to use for symbols defined in shared objects.
11366 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11367 || mips_sym->has_lazy_stub())
11368 {
11369 Mips_address value;
11370 if (!mips_sym->has_lazy_stub())
11371 {
11372 // Prefer a standard MIPS PLT entry.
11373 if (mips_sym->has_mips_plt_offset())
11374 {
11375 value = target->plt_section()->mips_entry_address(mips_sym);
11376 target_is_micromips_code = false;
11377 target_is_16_bit_code = false;
11378 }
11379 else
11380 {
11381 value = (target->plt_section()->comp_entry_address(mips_sym)
11382 + 1);
11383 if (target->is_output_micromips())
11384 target_is_micromips_code = true;
11385 else
11386 target_is_16_bit_code = true;
11387 }
11388 }
11389 else
11390 value = target->mips_stubs_section()->stub_address(mips_sym);
11391
11392 symval.set_output_value(value);
11393 psymval = &symval;
11394 }
11395 }
11396
11397 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11398 // Note that such a symbol must always be a global symbol.
11399 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11400 && !object->is_newabi());
11401
11402 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11403 // Note that such a symbol must always be a global symbol.
11404 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11405
11406
11407 if (gp_disp)
11408 {
11409 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11410 gold_error_at_location(relinfo, relnum, r_offset,
11411 _("relocations against _gp_disp are permitted only"
11412 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11413 }
11414 else if (gnu_local_gp)
11415 {
11416 // __gnu_local_gp is _gp symbol.
11417 symval.set_output_value(target->adjusted_gp_value(object));
11418 psymval = &symval;
11419 }
11420
11421 // If this is a reference to a 16-bit function with a stub, we need
11422 // to redirect the relocation to the stub unless:
11423 //
11424 // (a) the relocation is for a MIPS16 JAL;
11425 //
11426 // (b) the relocation is for a MIPS16 PIC call, and there are no
11427 // non-MIPS16 uses of the GOT slot; or
11428 //
11429 // (c) the section allows direct references to MIPS16 functions.
11430 if (r_type != elfcpp::R_MIPS16_26
11431 && !parameters->options().relocatable()
11432 && ((mips_sym != NULL
11433 && mips_sym->has_mips16_fn_stub()
11434 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11435 || (mips_sym == NULL
11436 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11437 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11438 {
11439 // This is a 32- or 64-bit call to a 16-bit function. We should
11440 // have already noticed that we were going to need the
11441 // stub.
11442 Mips_address value;
11443 if (mips_sym == NULL)
11444 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11445 else
11446 {
11447 gold_assert(mips_sym->need_fn_stub());
11448 if (mips_sym->has_la25_stub())
11449 value = target->la25_stub_section()->stub_address(mips_sym);
11450 else
11451 {
11452 value = mips_sym->template
11453 get_mips16_fn_stub<big_endian>()->output_address();
11454 }
11455 }
11456 symval.set_output_value(value);
11457 psymval = &symval;
11458 changed_symbol_value = true;
11459
11460 // The target is 16-bit, but the stub isn't.
11461 target_is_16_bit_code = false;
11462 }
11463 // If this is a MIPS16 call with a stub, that is made through the PLT or
11464 // to a standard MIPS function, we need to redirect the call to the stub.
11465 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11466 // indirect calls should use an indirect stub instead.
11467 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
11468 && ((mips_sym != NULL
11469 && (mips_sym->has_mips16_call_stub()
11470 || mips_sym->has_mips16_call_fp_stub()))
11471 || (mips_sym == NULL
11472 && object->get_local_mips16_call_stub(r_sym) != NULL))
11473 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11474 || !target_is_16_bit_code))
11475 {
11476 Mips16_stub_section<size, big_endian>* call_stub;
11477 if (mips_sym == NULL)
11478 call_stub = object->get_local_mips16_call_stub(r_sym);
11479 else
11480 {
11481 // If both call_stub and call_fp_stub are defined, we can figure
11482 // out which one to use by checking which one appears in the input
11483 // file.
11484 if (mips_sym->has_mips16_call_stub()
11485 && mips_sym->has_mips16_call_fp_stub())
11486 {
11487 call_stub = NULL;
11488 for (unsigned int i = 1; i < object->shnum(); ++i)
11489 {
11490 if (object->is_mips16_call_fp_stub_section(i))
11491 {
11492 call_stub = mips_sym->template
11493 get_mips16_call_fp_stub<big_endian>();
11494 break;
11495 }
11496
11497 }
11498 if (call_stub == NULL)
11499 call_stub =
11500 mips_sym->template get_mips16_call_stub<big_endian>();
11501 }
11502 else if (mips_sym->has_mips16_call_stub())
11503 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11504 else
11505 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11506 }
11507
11508 symval.set_output_value(call_stub->output_address());
11509 psymval = &symval;
11510 changed_symbol_value = true;
11511 }
11512 // If this is a direct call to a PIC function, redirect to the
11513 // non-PIC stub.
11514 else if (mips_sym != NULL
11515 && mips_sym->has_la25_stub()
11516 && relocation_needs_la25_stub<size, big_endian>(
11517 object, r_type, target_is_16_bit_code))
11518 {
11519 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11520 if (mips_sym->is_micromips())
11521 value += 1;
11522 symval.set_output_value(value);
11523 psymval = &symval;
11524 }
11525 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11526 // entry is used if a standard PLT entry has also been made.
11527 else if ((r_type == elfcpp::R_MIPS16_26
11528 || r_type == elfcpp::R_MICROMIPS_26_S1)
11529 && !parameters->options().relocatable()
11530 && mips_sym != NULL
11531 && mips_sym->has_plt_offset()
11532 && mips_sym->has_comp_plt_offset()
11533 && mips_sym->has_mips_plt_offset())
11534 {
11535 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11536 + 1);
11537 symval.set_output_value(value);
11538 psymval = &symval;
11539
11540 target_is_16_bit_code = !target->is_output_micromips();
11541 target_is_micromips_code = target->is_output_micromips();
11542 }
11543
11544 // Make sure MIPS16 and microMIPS are not used together.
11545 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11546 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11547 {
11548 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11549 }
11550
11551 // Calls from 16-bit code to 32-bit code and vice versa require the
11552 // mode change. However, we can ignore calls to undefined weak symbols,
11553 // which should never be executed at runtime. This exception is important
11554 // because the assembly writer may have "known" that any definition of the
11555 // symbol would be 16-bit code, and that direct jumps were therefore
11556 // acceptable.
11557 cross_mode_jump =
11558 (!parameters->options().relocatable()
11559 && !(gsym != NULL && gsym->is_weak_undefined())
11560 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11561 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11562 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11563 && (target_is_16_bit_code || target_is_micromips_code))));
11564
11565 bool local = (mips_sym == NULL
11566 || (mips_sym->got_only_for_calls()
11567 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11568 : symbol_references_local(mips_sym,
11569 mips_sym->has_dynsym_index())));
11570
11571 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11572 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11573 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11574 if (got_page_reloc(r_type) && !local)
11575 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11576 : elfcpp::R_MIPS_GOT_DISP);
11577
11578 unsigned int got_offset = 0;
11579 int gp_offset = 0;
11580
11581 bool calculate_only = false;
11582 Valtype calculated_value = 0;
11583 bool extract_addend = rel_type == elfcpp::SHT_REL;
11584 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11585
11586 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11587
11588 // For Mips64 N64 ABI, there may be up to three operations specified per
11589 // record, by the fields r_type, r_type2, and r_type3. The first operation
11590 // takes its addend from the relocation record. Each subsequent operation
11591 // takes as its addend the result of the previous operation.
11592 // The first operation in a record which references a symbol uses the symbol
11593 // implied by r_sym. The next operation in a record which references a symbol
11594 // uses the special symbol value given by the r_ssym field. A third operation
11595 // in a record which references a symbol will assume a NULL symbol,
11596 // i.e. value zero.
11597
11598 // TODO(Vladimir)
11599 // Check if a record references to a symbol.
11600 for (unsigned int i = 0; i < 3; ++i)
11601 {
11602 if (r_types[i] == elfcpp::R_MIPS_NONE)
11603 break;
11604
11605 // TODO(Vladimir)
11606 // Check if the next relocation is for the same instruction.
11607 calculate_only = i == 2 ? false
11608 : r_types[i+1] != elfcpp::R_MIPS_NONE;
11609
11610 if (object->is_n64())
11611 {
11612 if (i == 1)
11613 {
11614 // Handle special symbol for r_type2 relocation type.
11615 switch (r_ssym)
11616 {
11617 case RSS_UNDEF:
11618 symval.set_output_value(0);
11619 break;
11620 case RSS_GP:
11621 symval.set_output_value(target->gp_value());
11622 break;
11623 case RSS_GP0:
11624 symval.set_output_value(object->gp_value());
11625 break;
11626 case RSS_LOC:
11627 symval.set_output_value(address);
11628 break;
11629 default:
11630 gold_unreachable();
11631 }
11632 psymval = &symval;
11633 }
11634 else if (i == 2)
11635 {
11636 // For r_type3 symbol value is 0.
11637 symval.set_output_value(0);
11638 }
11639 }
11640
11641 bool update_got_entry = false;
11642 switch (r_types[i])
11643 {
11644 case elfcpp::R_MIPS_NONE:
11645 break;
11646 case elfcpp::R_MIPS_16:
11647 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11648 extract_addend, calculate_only,
11649 &calculated_value);
11650 break;
11651
11652 case elfcpp::R_MIPS_32:
11653 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11654 target))
11655 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11656 extract_addend, calculate_only,
11657 &calculated_value);
11658 if (mips_sym != NULL
11659 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11660 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11661 {
11662 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11663 // already updated by adding +1.
11664 if (mips_sym->has_mips16_fn_stub())
11665 {
11666 gold_assert(mips_sym->need_fn_stub());
11667 Mips16_stub_section<size, big_endian>* fn_stub =
11668 mips_sym->template get_mips16_fn_stub<big_endian>();
11669
11670 symval.set_output_value(fn_stub->output_address());
11671 psymval = &symval;
11672 }
11673 got_offset = mips_sym->global_gotoffset();
11674 update_got_entry = true;
11675 }
11676 break;
11677
11678 case elfcpp::R_MIPS_64:
11679 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11680 target))
11681 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11682 extract_addend, calculate_only,
11683 &calculated_value, false);
11684 else if (target->is_output_n64() && r_addend != 0)
11685 // Only apply the addend. The static relocation was RELA, but the
11686 // dynamic relocation is REL, so we need to apply the addend.
11687 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11688 extract_addend, calculate_only,
11689 &calculated_value, true);
11690 break;
11691 case elfcpp::R_MIPS_REL32:
11692 gold_unreachable();
11693
11694 case elfcpp::R_MIPS_PC32:
11695 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11696 r_addend, extract_addend,
11697 calculate_only,
11698 &calculated_value);
11699 break;
11700
11701 case elfcpp::R_MIPS16_26:
11702 // The calculation for R_MIPS16_26 is just the same as for an
11703 // R_MIPS_26. It's only the storage of the relocated field into
11704 // the output file that's different. So, we just fall through to the
11705 // R_MIPS_26 case here.
11706 case elfcpp::R_MIPS_26:
11707 case elfcpp::R_MICROMIPS_26_S1:
11708 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11709 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11710 r_types[i], target->jal_to_bal(), calculate_only,
11711 &calculated_value);
11712 break;
11713
11714 case elfcpp::R_MIPS_HI16:
11715 case elfcpp::R_MIPS16_HI16:
11716 case elfcpp::R_MICROMIPS_HI16:
11717 if (rel_type == elfcpp::SHT_RELA)
11718 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11719 r_addend, address,
11720 gp_disp, r_types[i],
11721 extract_addend, 0,
11722 target, calculate_only,
11723 &calculated_value);
11724 else if (rel_type == elfcpp::SHT_REL)
11725 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11726 address, gp_disp, r_types[i],
11727 r_sym, extract_addend);
11728 else
11729 gold_unreachable();
11730 break;
11731
11732 case elfcpp::R_MIPS_LO16:
11733 case elfcpp::R_MIPS16_LO16:
11734 case elfcpp::R_MICROMIPS_LO16:
11735 case elfcpp::R_MICROMIPS_HI0_LO16:
11736 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11737 r_addend, extract_addend, address,
11738 gp_disp, r_types[i], r_sym,
11739 rel_type, calculate_only,
11740 &calculated_value);
11741 break;
11742
11743 case elfcpp::R_MIPS_LITERAL:
11744 case elfcpp::R_MICROMIPS_LITERAL:
11745 // Because we don't merge literal sections, we can handle this
11746 // just like R_MIPS_GPREL16. In the long run, we should merge
11747 // shared literals, and then we will need to additional work
11748 // here.
11749
11750 // Fall through.
11751
11752 case elfcpp::R_MIPS_GPREL16:
11753 case elfcpp::R_MIPS16_GPREL:
11754 case elfcpp::R_MICROMIPS_GPREL7_S2:
11755 case elfcpp::R_MICROMIPS_GPREL16:
11756 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11757 target->adjusted_gp_value(object),
11758 r_addend, extract_addend,
11759 gsym == NULL, r_types[i],
11760 calculate_only, &calculated_value);
11761 break;
11762
11763 case elfcpp::R_MIPS_PC16:
11764 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11765 r_addend, extract_addend,
11766 calculate_only,
11767 &calculated_value);
11768 break;
11769
11770 case elfcpp::R_MIPS_PC21_S2:
11771 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11772 r_addend, extract_addend,
11773 calculate_only,
11774 &calculated_value);
11775 break;
11776
11777 case elfcpp::R_MIPS_PC26_S2:
11778 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11779 r_addend, extract_addend,
11780 calculate_only,
11781 &calculated_value);
11782 break;
11783
11784 case elfcpp::R_MIPS_PC18_S3:
11785 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11786 r_addend, extract_addend,
11787 calculate_only,
11788 &calculated_value);
11789 break;
11790
11791 case elfcpp::R_MIPS_PC19_S2:
11792 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11793 r_addend, extract_addend,
11794 calculate_only,
11795 &calculated_value);
11796 break;
11797
11798 case elfcpp::R_MIPS_PCHI16:
11799 if (rel_type == elfcpp::SHT_RELA)
11800 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11801 r_addend, address,
11802 extract_addend, 0,
11803 calculate_only,
11804 &calculated_value);
11805 else if (rel_type == elfcpp::SHT_REL)
11806 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11807 r_addend, address, r_sym,
11808 extract_addend);
11809 else
11810 gold_unreachable();
11811 break;
11812
11813 case elfcpp::R_MIPS_PCLO16:
11814 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11815 extract_addend, address, r_sym,
11816 rel_type, calculate_only,
11817 &calculated_value);
11818 break;
11819 case elfcpp::R_MICROMIPS_PC7_S1:
11820 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11821 address, r_addend,
11822 extract_addend,
11823 calculate_only,
11824 &calculated_value);
11825 break;
11826 case elfcpp::R_MICROMIPS_PC10_S1:
11827 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11828 psymval, address,
11829 r_addend, extract_addend,
11830 calculate_only,
11831 &calculated_value);
11832 break;
11833 case elfcpp::R_MICROMIPS_PC16_S1:
11834 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11835 psymval, address,
11836 r_addend, extract_addend,
11837 calculate_only,
11838 &calculated_value);
11839 break;
11840 case elfcpp::R_MIPS_GPREL32:
11841 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11842 target->adjusted_gp_value(object),
11843 r_addend, extract_addend,
11844 calculate_only,
11845 &calculated_value);
11846 break;
11847 case elfcpp::R_MIPS_GOT_HI16:
11848 case elfcpp::R_MIPS_CALL_HI16:
11849 case elfcpp::R_MICROMIPS_GOT_HI16:
11850 case elfcpp::R_MICROMIPS_CALL_HI16:
11851 if (gsym != NULL)
11852 got_offset = target->got_section()->got_offset(gsym,
11853 GOT_TYPE_STANDARD,
11854 object);
11855 else
11856 got_offset = target->got_section()->got_offset(r_sym,
11857 GOT_TYPE_STANDARD,
11858 object, r_addend);
11859 gp_offset = target->got_section()->gp_offset(got_offset, object);
11860 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11861 calculate_only,
11862 &calculated_value);
11863 update_got_entry = changed_symbol_value;
11864 break;
11865
11866 case elfcpp::R_MIPS_GOT_LO16:
11867 case elfcpp::R_MIPS_CALL_LO16:
11868 case elfcpp::R_MICROMIPS_GOT_LO16:
11869 case elfcpp::R_MICROMIPS_CALL_LO16:
11870 if (gsym != NULL)
11871 got_offset = target->got_section()->got_offset(gsym,
11872 GOT_TYPE_STANDARD,
11873 object);
11874 else
11875 got_offset = target->got_section()->got_offset(r_sym,
11876 GOT_TYPE_STANDARD,
11877 object, r_addend);
11878 gp_offset = target->got_section()->gp_offset(got_offset, object);
11879 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
11880 calculate_only,
11881 &calculated_value);
11882 update_got_entry = changed_symbol_value;
11883 break;
11884
11885 case elfcpp::R_MIPS_GOT_DISP:
11886 case elfcpp::R_MICROMIPS_GOT_DISP:
11887 case elfcpp::R_MIPS_EH:
11888 if (gsym != NULL)
11889 got_offset = target->got_section()->got_offset(gsym,
11890 GOT_TYPE_STANDARD,
11891 object);
11892 else
11893 got_offset = target->got_section()->got_offset(r_sym,
11894 GOT_TYPE_STANDARD,
11895 object, r_addend);
11896 gp_offset = target->got_section()->gp_offset(got_offset, object);
11897 if (eh_reloc(r_types[i]))
11898 reloc_status = Reloc_funcs::releh(view, gp_offset,
11899 calculate_only,
11900 &calculated_value);
11901 else
11902 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11903 calculate_only,
11904 &calculated_value);
11905 break;
11906 case elfcpp::R_MIPS_CALL16:
11907 case elfcpp::R_MIPS16_CALL16:
11908 case elfcpp::R_MICROMIPS_CALL16:
11909 gold_assert(gsym != NULL);
11910 got_offset = target->got_section()->got_offset(gsym,
11911 GOT_TYPE_STANDARD,
11912 object);
11913 gp_offset = target->got_section()->gp_offset(got_offset, object);
11914 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11915 calculate_only, &calculated_value);
11916 // TODO(sasa): We should also initialize update_got_entry
11917 // in other place swhere relgot is called.
11918 update_got_entry = changed_symbol_value;
11919 break;
11920
11921 case elfcpp::R_MIPS_GOT16:
11922 case elfcpp::R_MIPS16_GOT16:
11923 case elfcpp::R_MICROMIPS_GOT16:
11924 if (gsym != NULL)
11925 {
11926 got_offset = target->got_section()->got_offset(gsym,
11927 GOT_TYPE_STANDARD,
11928 object);
11929 gp_offset = target->got_section()->gp_offset(got_offset, object);
11930 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11931 calculate_only,
11932 &calculated_value);
11933 }
11934 else
11935 {
11936 if (rel_type == elfcpp::SHT_RELA)
11937 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
11938 psymval, r_addend,
11939 extract_addend, 0,
11940 target,
11941 calculate_only,
11942 &calculated_value);
11943 else if (rel_type == elfcpp::SHT_REL)
11944 reloc_status = Reloc_funcs::relgot16_local(view, object,
11945 psymval, r_addend,
11946 extract_addend,
11947 r_types[i], r_sym);
11948 else
11949 gold_unreachable();
11950 }
11951 update_got_entry = changed_symbol_value;
11952 break;
11953
11954 case elfcpp::R_MIPS_TLS_GD:
11955 case elfcpp::R_MIPS16_TLS_GD:
11956 case elfcpp::R_MICROMIPS_TLS_GD:
11957 if (gsym != NULL)
11958 got_offset = target->got_section()->got_offset(gsym,
11959 GOT_TYPE_TLS_PAIR,
11960 object);
11961 else
11962 got_offset = target->got_section()->got_offset(r_sym,
11963 GOT_TYPE_TLS_PAIR,
11964 object, r_addend);
11965 gp_offset = target->got_section()->gp_offset(got_offset, object);
11966 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
11967 &calculated_value);
11968 break;
11969
11970 case elfcpp::R_MIPS_TLS_GOTTPREL:
11971 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11972 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11973 if (gsym != NULL)
11974 got_offset = target->got_section()->got_offset(gsym,
11975 GOT_TYPE_TLS_OFFSET,
11976 object);
11977 else
11978 got_offset = target->got_section()->got_offset(r_sym,
11979 GOT_TYPE_TLS_OFFSET,
11980 object, r_addend);
11981 gp_offset = target->got_section()->gp_offset(got_offset, object);
11982 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
11983 &calculated_value);
11984 break;
11985
11986 case elfcpp::R_MIPS_TLS_LDM:
11987 case elfcpp::R_MIPS16_TLS_LDM:
11988 case elfcpp::R_MICROMIPS_TLS_LDM:
11989 // Relocate the field with the offset of the GOT entry for
11990 // the module index.
11991 got_offset = target->got_section()->tls_ldm_offset(object);
11992 gp_offset = target->got_section()->gp_offset(got_offset, object);
11993 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
11994 &calculated_value);
11995 break;
11996
11997 case elfcpp::R_MIPS_GOT_PAGE:
11998 case elfcpp::R_MICROMIPS_GOT_PAGE:
11999 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12000 r_addend, extract_addend,
12001 calculate_only,
12002 &calculated_value);
12003 break;
12004
12005 case elfcpp::R_MIPS_GOT_OFST:
12006 case elfcpp::R_MICROMIPS_GOT_OFST:
12007 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12008 r_addend, extract_addend,
12009 local, calculate_only,
12010 &calculated_value);
12011 break;
12012
12013 case elfcpp::R_MIPS_JALR:
12014 case elfcpp::R_MICROMIPS_JALR:
12015 // This relocation is only a hint. In some cases, we optimize
12016 // it into a bal instruction. But we don't try to optimize
12017 // when the symbol does not resolve locally.
12018 if (gsym == NULL
12019 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12020 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12021 r_addend, extract_addend,
12022 cross_mode_jump, r_types[i],
12023 target->jalr_to_bal(),
12024 target->jr_to_b(),
12025 calculate_only,
12026 &calculated_value);
12027 break;
12028
12029 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12030 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12031 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12032 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12033 elfcpp::DTP_OFFSET, r_addend,
12034 extract_addend, calculate_only,
12035 &calculated_value);
12036 break;
12037 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12038 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12039 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12040 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12041 elfcpp::DTP_OFFSET, r_addend,
12042 extract_addend, calculate_only,
12043 &calculated_value);
12044 break;
12045 case elfcpp::R_MIPS_TLS_DTPREL32:
12046 case elfcpp::R_MIPS_TLS_DTPREL64:
12047 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12048 elfcpp::DTP_OFFSET, r_addend,
12049 extract_addend, calculate_only,
12050 &calculated_value);
12051 break;
12052 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12053 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12054 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12055 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12056 elfcpp::TP_OFFSET, r_addend,
12057 extract_addend, calculate_only,
12058 &calculated_value);
12059 break;
12060 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12061 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12062 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12063 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12064 elfcpp::TP_OFFSET, r_addend,
12065 extract_addend, calculate_only,
12066 &calculated_value);
12067 break;
12068 case elfcpp::R_MIPS_TLS_TPREL32:
12069 case elfcpp::R_MIPS_TLS_TPREL64:
12070 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12071 elfcpp::TP_OFFSET, r_addend,
12072 extract_addend, calculate_only,
12073 &calculated_value);
12074 break;
12075 case elfcpp::R_MIPS_SUB:
12076 case elfcpp::R_MICROMIPS_SUB:
12077 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12078 extract_addend,
12079 calculate_only, &calculated_value);
12080 break;
12081 default:
12082 gold_error_at_location(relinfo, relnum, r_offset,
12083 _("unsupported reloc %u"), r_types[i]);
12084 break;
12085 }
12086
12087 if (update_got_entry)
12088 {
12089 Mips_output_data_got<size, big_endian>* got = target->got_section();
12090 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12091 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12092 psymval->value(object, 0));
12093 else
12094 got->update_got_entry(got_offset, psymval->value(object, 0));
12095 }
12096
12097 r_addend = calculated_value;
12098 }
12099
12100 bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable()
12101 : false;
12102 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12103
12104 // Report any errors.
12105 switch (reloc_status)
12106 {
12107 case Reloc_funcs::STATUS_OKAY:
12108 break;
12109 case Reloc_funcs::STATUS_OVERFLOW:
12110 gold_error_at_location(relinfo, relnum, r_offset,
12111 _("relocation overflow"));
12112 break;
12113 case Reloc_funcs::STATUS_BAD_RELOC:
12114 gold_error_at_location(relinfo, relnum, r_offset,
12115 _("unexpected opcode while processing relocation"));
12116 break;
12117 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12118 gold_error_at_location(relinfo, relnum, r_offset,
12119 _("unaligned PC-relative relocation"));
12120 break;
12121 default:
12122 gold_unreachable();
12123 }
12124
12125 return true;
12126 }
12127
12128 // Get the Reference_flags for a particular relocation.
12129
12130 template<int size, bool big_endian>
12131 int
12132 Target_mips<size, big_endian>::Scan::get_reference_flags(
12133 unsigned int r_type)
12134 {
12135 switch (r_type)
12136 {
12137 case elfcpp::R_MIPS_NONE:
12138 // No symbol reference.
12139 return 0;
12140
12141 case elfcpp::R_MIPS_16:
12142 case elfcpp::R_MIPS_32:
12143 case elfcpp::R_MIPS_64:
12144 case elfcpp::R_MIPS_HI16:
12145 case elfcpp::R_MIPS_LO16:
12146 case elfcpp::R_MIPS16_HI16:
12147 case elfcpp::R_MIPS16_LO16:
12148 case elfcpp::R_MICROMIPS_HI16:
12149 case elfcpp::R_MICROMIPS_LO16:
12150 return Symbol::ABSOLUTE_REF;
12151
12152 case elfcpp::R_MIPS_26:
12153 case elfcpp::R_MIPS16_26:
12154 case elfcpp::R_MICROMIPS_26_S1:
12155 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12156
12157 case elfcpp::R_MIPS_PC18_S3:
12158 case elfcpp::R_MIPS_PC19_S2:
12159 case elfcpp::R_MIPS_PCHI16:
12160 case elfcpp::R_MIPS_PCLO16:
12161 case elfcpp::R_MIPS_GPREL32:
12162 case elfcpp::R_MIPS_GPREL16:
12163 case elfcpp::R_MIPS_REL32:
12164 case elfcpp::R_MIPS16_GPREL:
12165 return Symbol::RELATIVE_REF;
12166
12167 case elfcpp::R_MIPS_PC16:
12168 case elfcpp::R_MIPS_PC32:
12169 case elfcpp::R_MIPS_PC21_S2:
12170 case elfcpp::R_MIPS_PC26_S2:
12171 case elfcpp::R_MIPS_JALR:
12172 case elfcpp::R_MICROMIPS_JALR:
12173 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12174
12175 case elfcpp::R_MIPS_GOT16:
12176 case elfcpp::R_MIPS_CALL16:
12177 case elfcpp::R_MIPS_GOT_DISP:
12178 case elfcpp::R_MIPS_GOT_HI16:
12179 case elfcpp::R_MIPS_GOT_LO16:
12180 case elfcpp::R_MIPS_CALL_HI16:
12181 case elfcpp::R_MIPS_CALL_LO16:
12182 case elfcpp::R_MIPS_LITERAL:
12183 case elfcpp::R_MIPS_GOT_PAGE:
12184 case elfcpp::R_MIPS_GOT_OFST:
12185 case elfcpp::R_MIPS16_GOT16:
12186 case elfcpp::R_MIPS16_CALL16:
12187 case elfcpp::R_MICROMIPS_GOT16:
12188 case elfcpp::R_MICROMIPS_CALL16:
12189 case elfcpp::R_MICROMIPS_GOT_HI16:
12190 case elfcpp::R_MICROMIPS_GOT_LO16:
12191 case elfcpp::R_MICROMIPS_CALL_HI16:
12192 case elfcpp::R_MICROMIPS_CALL_LO16:
12193 case elfcpp::R_MIPS_EH:
12194 // Absolute in GOT.
12195 return Symbol::RELATIVE_REF;
12196
12197 case elfcpp::R_MIPS_TLS_DTPMOD32:
12198 case elfcpp::R_MIPS_TLS_DTPREL32:
12199 case elfcpp::R_MIPS_TLS_DTPMOD64:
12200 case elfcpp::R_MIPS_TLS_DTPREL64:
12201 case elfcpp::R_MIPS_TLS_GD:
12202 case elfcpp::R_MIPS_TLS_LDM:
12203 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12204 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12205 case elfcpp::R_MIPS_TLS_GOTTPREL:
12206 case elfcpp::R_MIPS_TLS_TPREL32:
12207 case elfcpp::R_MIPS_TLS_TPREL64:
12208 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12209 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12210 case elfcpp::R_MIPS16_TLS_GD:
12211 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12212 case elfcpp::R_MICROMIPS_TLS_GD:
12213 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12214 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12215 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12216 return Symbol::TLS_REF;
12217
12218 case elfcpp::R_MIPS_COPY:
12219 case elfcpp::R_MIPS_JUMP_SLOT:
12220 default:
12221 gold_unreachable();
12222 // Not expected. We will give an error later.
12223 return 0;
12224 }
12225 }
12226
12227 // Report an unsupported relocation against a local symbol.
12228
12229 template<int size, bool big_endian>
12230 void
12231 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12232 Sized_relobj_file<size, big_endian>* object,
12233 unsigned int r_type)
12234 {
12235 gold_error(_("%s: unsupported reloc %u against local symbol"),
12236 object->name().c_str(), r_type);
12237 }
12238
12239 // Report an unsupported relocation against a global symbol.
12240
12241 template<int size, bool big_endian>
12242 void
12243 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12244 Sized_relobj_file<size, big_endian>* object,
12245 unsigned int r_type,
12246 Symbol* gsym)
12247 {
12248 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12249 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12250 }
12251
12252 // Return printable name for ABI.
12253 template<int size, bool big_endian>
12254 const char*
12255 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12256 {
12257 switch (e_flags & elfcpp::EF_MIPS_ABI)
12258 {
12259 case 0:
12260 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12261 return "N32";
12262 else if (size == 64)
12263 return "64";
12264 else
12265 return "none";
12266 case elfcpp::E_MIPS_ABI_O32:
12267 return "O32";
12268 case elfcpp::E_MIPS_ABI_O64:
12269 return "O64";
12270 case elfcpp::E_MIPS_ABI_EABI32:
12271 return "EABI32";
12272 case elfcpp::E_MIPS_ABI_EABI64:
12273 return "EABI64";
12274 default:
12275 return "unknown abi";
12276 }
12277 }
12278
12279 template<int size, bool big_endian>
12280 const char*
12281 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12282 {
12283 switch (e_flags & elfcpp::EF_MIPS_MACH)
12284 {
12285 case elfcpp::E_MIPS_MACH_3900:
12286 return "mips:3900";
12287 case elfcpp::E_MIPS_MACH_4010:
12288 return "mips:4010";
12289 case elfcpp::E_MIPS_MACH_4100:
12290 return "mips:4100";
12291 case elfcpp::E_MIPS_MACH_4111:
12292 return "mips:4111";
12293 case elfcpp::E_MIPS_MACH_4120:
12294 return "mips:4120";
12295 case elfcpp::E_MIPS_MACH_4650:
12296 return "mips:4650";
12297 case elfcpp::E_MIPS_MACH_5400:
12298 return "mips:5400";
12299 case elfcpp::E_MIPS_MACH_5500:
12300 return "mips:5500";
12301 case elfcpp::E_MIPS_MACH_5900:
12302 return "mips:5900";
12303 case elfcpp::E_MIPS_MACH_SB1:
12304 return "mips:sb1";
12305 case elfcpp::E_MIPS_MACH_9000:
12306 return "mips:9000";
12307 case elfcpp::E_MIPS_MACH_LS2E:
12308 return "mips:loongson_2e";
12309 case elfcpp::E_MIPS_MACH_LS2F:
12310 return "mips:loongson_2f";
12311 case elfcpp::E_MIPS_MACH_LS3A:
12312 return "mips:loongson_3a";
12313 case elfcpp::E_MIPS_MACH_OCTEON:
12314 return "mips:octeon";
12315 case elfcpp::E_MIPS_MACH_OCTEON2:
12316 return "mips:octeon2";
12317 case elfcpp::E_MIPS_MACH_OCTEON3:
12318 return "mips:octeon3";
12319 case elfcpp::E_MIPS_MACH_XLR:
12320 return "mips:xlr";
12321 default:
12322 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12323 {
12324 default:
12325 case elfcpp::E_MIPS_ARCH_1:
12326 return "mips:3000";
12327
12328 case elfcpp::E_MIPS_ARCH_2:
12329 return "mips:6000";
12330
12331 case elfcpp::E_MIPS_ARCH_3:
12332 return "mips:4000";
12333
12334 case elfcpp::E_MIPS_ARCH_4:
12335 return "mips:8000";
12336
12337 case elfcpp::E_MIPS_ARCH_5:
12338 return "mips:mips5";
12339
12340 case elfcpp::E_MIPS_ARCH_32:
12341 return "mips:isa32";
12342
12343 case elfcpp::E_MIPS_ARCH_64:
12344 return "mips:isa64";
12345
12346 case elfcpp::E_MIPS_ARCH_32R2:
12347 return "mips:isa32r2";
12348
12349 case elfcpp::E_MIPS_ARCH_32R6:
12350 return "mips:isa32r6";
12351
12352 case elfcpp::E_MIPS_ARCH_64R2:
12353 return "mips:isa64r2";
12354
12355 case elfcpp::E_MIPS_ARCH_64R6:
12356 return "mips:isa64r6";
12357 }
12358 }
12359 return "unknown CPU";
12360 }
12361
12362 template<int size, bool big_endian>
12363 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12364 {
12365 size, // size
12366 big_endian, // is_big_endian
12367 elfcpp::EM_MIPS, // machine_code
12368 true, // has_make_symbol
12369 false, // has_resolve
12370 false, // has_code_fill
12371 true, // is_default_stack_executable
12372 false, // can_icf_inline_merge_sections
12373 '\0', // wrap_char
12374 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12375 0x400000, // default_text_segment_address
12376 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12377 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12378 false, // isolate_execinstr
12379 0, // rosegment_gap
12380 elfcpp::SHN_UNDEF, // small_common_shndx
12381 elfcpp::SHN_UNDEF, // large_common_shndx
12382 0, // small_common_section_flags
12383 0, // large_common_section_flags
12384 NULL, // attributes_section
12385 NULL, // attributes_vendor
12386 "__start", // entry_symbol_name
12387 32, // hash_entry_size
12388 };
12389
12390 template<int size, bool big_endian>
12391 class Target_mips_nacl : public Target_mips<size, big_endian>
12392 {
12393 public:
12394 Target_mips_nacl()
12395 : Target_mips<size, big_endian>(&mips_nacl_info)
12396 { }
12397
12398 private:
12399 static const Target::Target_info mips_nacl_info;
12400 };
12401
12402 template<int size, bool big_endian>
12403 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12404 {
12405 size, // size
12406 big_endian, // is_big_endian
12407 elfcpp::EM_MIPS, // machine_code
12408 true, // has_make_symbol
12409 false, // has_resolve
12410 false, // has_code_fill
12411 true, // is_default_stack_executable
12412 false, // can_icf_inline_merge_sections
12413 '\0', // wrap_char
12414 "/lib/ld.so.1", // dynamic_linker
12415 0x20000, // default_text_segment_address
12416 0x10000, // abi_pagesize (overridable by -z max-page-size)
12417 0x10000, // common_pagesize (overridable by -z common-page-size)
12418 true, // isolate_execinstr
12419 0x10000000, // rosegment_gap
12420 elfcpp::SHN_UNDEF, // small_common_shndx
12421 elfcpp::SHN_UNDEF, // large_common_shndx
12422 0, // small_common_section_flags
12423 0, // large_common_section_flags
12424 NULL, // attributes_section
12425 NULL, // attributes_vendor
12426 "_start", // entry_symbol_name
12427 32, // hash_entry_size
12428 };
12429
12430 // Target selector for Mips. Note this is never instantiated directly.
12431 // It's only used in Target_selector_mips_nacl, below.
12432
12433 template<int size, bool big_endian>
12434 class Target_selector_mips : public Target_selector
12435 {
12436 public:
12437 Target_selector_mips()
12438 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12439 (size == 64 ?
12440 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12441 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12442 (size == 64 ?
12443 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12444 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12445 { }
12446
12447 Target* do_instantiate_target()
12448 { return new Target_mips<size, big_endian>(); }
12449 };
12450
12451 template<int size, bool big_endian>
12452 class Target_selector_mips_nacl
12453 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12454 Target_mips_nacl<size, big_endian> >
12455 {
12456 public:
12457 Target_selector_mips_nacl()
12458 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12459 Target_mips_nacl<size, big_endian> >(
12460 // NaCl currently supports only MIPS32 little-endian.
12461 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12462 { }
12463 };
12464
12465 Target_selector_mips_nacl<32, true> target_selector_mips32;
12466 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12467 Target_selector_mips_nacl<64, true> target_selector_mips64;
12468 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12469
12470 } // End anonymous namespace.
This page took 0.349997 seconds and 5 git commands to generate.