Improve relocation overflow errors on MIPS.
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_data_la25_stub;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_mips_stubs;
71
72 template<int size>
73 class Mips_symbol;
74
75 template<int size, bool big_endian>
76 class Mips_got_info;
77
78 template<int size, bool big_endian>
79 class Mips_relobj;
80
81 class Mips16_stub_section_base;
82
83 template<int size, bool big_endian>
84 class Mips16_stub_section;
85
86 // The ABI says that every symbol used by dynamic relocations must have
87 // a global GOT entry. Among other things, this provides the dynamic
88 // linker with a free, directly-indexed cache. The GOT can therefore
89 // contain symbols that are not referenced by GOT relocations themselves
90 // (in other words, it may have symbols that are not referenced by things
91 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
92
93 // GOT relocations are less likely to overflow if we put the associated
94 // GOT entries towards the beginning. We therefore divide the global
95 // GOT entries into two areas: "normal" and "reloc-only". Entries in
96 // the first area can be used for both dynamic relocations and GP-relative
97 // accesses, while those in the "reloc-only" area are for dynamic
98 // relocations only.
99
100 // These GGA_* ("Global GOT Area") values are organised so that lower
101 // values are more general than higher values. Also, non-GGA_NONE
102 // values are ordered by the position of the area in the GOT.
103
104 enum Global_got_area
105 {
106 GGA_NORMAL = 0,
107 GGA_RELOC_ONLY = 1,
108 GGA_NONE = 2
109 };
110
111 // The types of GOT entries needed for this platform.
112 // These values are exposed to the ABI in an incremental link.
113 // Do not renumber existing values without changing the version
114 // number of the .gnu_incremental_inputs section.
115 enum Got_type
116 {
117 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
118 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
119 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
120
121 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
122 GOT_TYPE_STANDARD_MULTIGOT = 3,
123 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
124 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
125 };
126
127 // TLS type of GOT entry.
128 enum Got_tls_type
129 {
130 GOT_TLS_NONE = 0,
131 GOT_TLS_GD = 1,
132 GOT_TLS_LDM = 2,
133 GOT_TLS_IE = 4
134 };
135
136 // Values found in the r_ssym field of a relocation entry.
137 enum Special_relocation_symbol
138 {
139 RSS_UNDEF = 0, // None - value is zero.
140 RSS_GP = 1, // Value of GP.
141 RSS_GP0 = 2, // Value of GP in object being relocated.
142 RSS_LOC = 3 // Address of location being relocated.
143 };
144
145 // Whether the section is readonly.
146 static inline bool
147 is_readonly_section(Output_section* output_section)
148 {
149 elfcpp::Elf_Xword section_flags = output_section->flags();
150 elfcpp::Elf_Word section_type = output_section->type();
151
152 if (section_type == elfcpp::SHT_NOBITS)
153 return false;
154
155 if (section_flags & elfcpp::SHF_WRITE)
156 return false;
157
158 return true;
159 }
160
161 // Return TRUE if a relocation of type R_TYPE from OBJECT might
162 // require an la25 stub. See also local_pic_function, which determines
163 // whether the destination function ever requires a stub.
164 template<int size, bool big_endian>
165 static inline bool
166 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
167 unsigned int r_type, bool target_is_16_bit_code)
168 {
169 // We specifically ignore branches and jumps from EF_PIC objects,
170 // where the onus is on the compiler or programmer to perform any
171 // necessary initialization of $25. Sometimes such initialization
172 // is unnecessary; for example, -mno-shared functions do not use
173 // the incoming value of $25, and may therefore be called directly.
174 if (object->is_pic())
175 return false;
176
177 switch (r_type)
178 {
179 case elfcpp::R_MIPS_26:
180 case elfcpp::R_MIPS_PC16:
181 case elfcpp::R_MIPS_PC21_S2:
182 case elfcpp::R_MIPS_PC26_S2:
183 case elfcpp::R_MICROMIPS_26_S1:
184 case elfcpp::R_MICROMIPS_PC7_S1:
185 case elfcpp::R_MICROMIPS_PC10_S1:
186 case elfcpp::R_MICROMIPS_PC16_S1:
187 case elfcpp::R_MICROMIPS_PC23_S2:
188 return true;
189
190 case elfcpp::R_MIPS16_26:
191 return !target_is_16_bit_code;
192
193 default:
194 return false;
195 }
196 }
197
198 // Return true if SYM is a locally-defined PIC function, in the sense
199 // that it or its fn_stub might need $25 to be valid on entry.
200 // Note that MIPS16 functions set up $gp using PC-relative instructions,
201 // so they themselves never need $25 to be valid. Only non-MIPS16
202 // entry points are of interest here.
203 template<int size, bool big_endian>
204 static inline bool
205 local_pic_function(Mips_symbol<size>* sym)
206 {
207 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
208 && !sym->object()->is_dynamic()
209 && !sym->is_undefined());
210
211 if (sym->is_defined() && def_regular)
212 {
213 Mips_relobj<size, big_endian>* object =
214 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
215
216 if ((object->is_pic() || sym->is_pic())
217 && (!sym->is_mips16()
218 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
219 return true;
220 }
221 return false;
222 }
223
224 static inline bool
225 hi16_reloc(int r_type)
226 {
227 return (r_type == elfcpp::R_MIPS_HI16
228 || r_type == elfcpp::R_MIPS16_HI16
229 || r_type == elfcpp::R_MICROMIPS_HI16
230 || r_type == elfcpp::R_MIPS_PCHI16);
231 }
232
233 static inline bool
234 lo16_reloc(int r_type)
235 {
236 return (r_type == elfcpp::R_MIPS_LO16
237 || r_type == elfcpp::R_MIPS16_LO16
238 || r_type == elfcpp::R_MICROMIPS_LO16
239 || r_type == elfcpp::R_MIPS_PCLO16);
240 }
241
242 static inline bool
243 got16_reloc(unsigned int r_type)
244 {
245 return (r_type == elfcpp::R_MIPS_GOT16
246 || r_type == elfcpp::R_MIPS16_GOT16
247 || r_type == elfcpp::R_MICROMIPS_GOT16);
248 }
249
250 static inline bool
251 call_lo16_reloc(unsigned int r_type)
252 {
253 return (r_type == elfcpp::R_MIPS_CALL_LO16
254 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
255 }
256
257 static inline bool
258 got_lo16_reloc(unsigned int r_type)
259 {
260 return (r_type == elfcpp::R_MIPS_GOT_LO16
261 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
262 }
263
264 static inline bool
265 eh_reloc(unsigned int r_type)
266 {
267 return (r_type == elfcpp::R_MIPS_EH);
268 }
269
270 static inline bool
271 got_disp_reloc(unsigned int r_type)
272 {
273 return (r_type == elfcpp::R_MIPS_GOT_DISP
274 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
275 }
276
277 static inline bool
278 got_page_reloc(unsigned int r_type)
279 {
280 return (r_type == elfcpp::R_MIPS_GOT_PAGE
281 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
282 }
283
284 static inline bool
285 tls_gd_reloc(unsigned int r_type)
286 {
287 return (r_type == elfcpp::R_MIPS_TLS_GD
288 || r_type == elfcpp::R_MIPS16_TLS_GD
289 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
290 }
291
292 static inline bool
293 tls_gottprel_reloc(unsigned int r_type)
294 {
295 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
296 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
297 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
298 }
299
300 static inline bool
301 tls_ldm_reloc(unsigned int r_type)
302 {
303 return (r_type == elfcpp::R_MIPS_TLS_LDM
304 || r_type == elfcpp::R_MIPS16_TLS_LDM
305 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
306 }
307
308 static inline bool
309 mips16_call_reloc(unsigned int r_type)
310 {
311 return (r_type == elfcpp::R_MIPS16_26
312 || r_type == elfcpp::R_MIPS16_CALL16);
313 }
314
315 static inline bool
316 jal_reloc(unsigned int r_type)
317 {
318 return (r_type == elfcpp::R_MIPS_26
319 || r_type == elfcpp::R_MIPS16_26
320 || r_type == elfcpp::R_MICROMIPS_26_S1);
321 }
322
323 static inline bool
324 micromips_branch_reloc(unsigned int r_type)
325 {
326 return (r_type == elfcpp::R_MICROMIPS_26_S1
327 || r_type == elfcpp::R_MICROMIPS_PC16_S1
328 || r_type == elfcpp::R_MICROMIPS_PC10_S1
329 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
330 }
331
332 // Check if R_TYPE is a MIPS16 reloc.
333 static inline bool
334 mips16_reloc(unsigned int r_type)
335 {
336 switch (r_type)
337 {
338 case elfcpp::R_MIPS16_26:
339 case elfcpp::R_MIPS16_GPREL:
340 case elfcpp::R_MIPS16_GOT16:
341 case elfcpp::R_MIPS16_CALL16:
342 case elfcpp::R_MIPS16_HI16:
343 case elfcpp::R_MIPS16_LO16:
344 case elfcpp::R_MIPS16_TLS_GD:
345 case elfcpp::R_MIPS16_TLS_LDM:
346 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
347 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
348 case elfcpp::R_MIPS16_TLS_GOTTPREL:
349 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
351 return true;
352
353 default:
354 return false;
355 }
356 }
357
358 // Check if R_TYPE is a microMIPS reloc.
359 static inline bool
360 micromips_reloc(unsigned int r_type)
361 {
362 switch (r_type)
363 {
364 case elfcpp::R_MICROMIPS_26_S1:
365 case elfcpp::R_MICROMIPS_HI16:
366 case elfcpp::R_MICROMIPS_LO16:
367 case elfcpp::R_MICROMIPS_GPREL16:
368 case elfcpp::R_MICROMIPS_LITERAL:
369 case elfcpp::R_MICROMIPS_GOT16:
370 case elfcpp::R_MICROMIPS_PC7_S1:
371 case elfcpp::R_MICROMIPS_PC10_S1:
372 case elfcpp::R_MICROMIPS_PC16_S1:
373 case elfcpp::R_MICROMIPS_CALL16:
374 case elfcpp::R_MICROMIPS_GOT_DISP:
375 case elfcpp::R_MICROMIPS_GOT_PAGE:
376 case elfcpp::R_MICROMIPS_GOT_OFST:
377 case elfcpp::R_MICROMIPS_GOT_HI16:
378 case elfcpp::R_MICROMIPS_GOT_LO16:
379 case elfcpp::R_MICROMIPS_SUB:
380 case elfcpp::R_MICROMIPS_HIGHER:
381 case elfcpp::R_MICROMIPS_HIGHEST:
382 case elfcpp::R_MICROMIPS_CALL_HI16:
383 case elfcpp::R_MICROMIPS_CALL_LO16:
384 case elfcpp::R_MICROMIPS_SCN_DISP:
385 case elfcpp::R_MICROMIPS_JALR:
386 case elfcpp::R_MICROMIPS_HI0_LO16:
387 case elfcpp::R_MICROMIPS_TLS_GD:
388 case elfcpp::R_MICROMIPS_TLS_LDM:
389 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
390 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
391 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
392 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
394 case elfcpp::R_MICROMIPS_GPREL7_S2:
395 case elfcpp::R_MICROMIPS_PC23_S2:
396 return true;
397
398 default:
399 return false;
400 }
401 }
402
403 static inline bool
404 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
405 {
406 switch (high_reloc)
407 {
408 case elfcpp::R_MIPS_HI16:
409 case elfcpp::R_MIPS_GOT16:
410 return lo16_reloc == elfcpp::R_MIPS_LO16;
411 case elfcpp::R_MIPS_PCHI16:
412 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
413 case elfcpp::R_MIPS16_HI16:
414 case elfcpp::R_MIPS16_GOT16:
415 return lo16_reloc == elfcpp::R_MIPS16_LO16;
416 case elfcpp::R_MICROMIPS_HI16:
417 case elfcpp::R_MICROMIPS_GOT16:
418 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
419 default:
420 return false;
421 }
422 }
423
424 // This class is used to hold information about one GOT entry.
425 // There are three types of entry:
426 //
427 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
428 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
429 // (2) a SYMBOL address, where SYMBOL is not local to an input object
430 // (sym != NULL, symndx == -1)
431 // (3) a TLS LDM slot (there's only one of these per GOT.)
432 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
433
434 template<int size, bool big_endian>
435 class Mips_got_entry
436 {
437 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
438
439 public:
440 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
441 Mips_address addend, unsigned char tls_type,
442 unsigned int shndx, bool is_section_symbol)
443 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
444 is_section_symbol_(is_section_symbol), shndx_(shndx)
445 { this->d.object = object; }
446
447 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
448 : addend_(0), symndx_(-1U), tls_type_(tls_type),
449 is_section_symbol_(false), shndx_(-1U)
450 { this->d.sym = sym; }
451
452 // Return whether this entry is for a local symbol.
453 bool
454 is_for_local_symbol() const
455 { return this->symndx_ != -1U; }
456
457 // Return whether this entry is for a global symbol.
458 bool
459 is_for_global_symbol() const
460 { return this->symndx_ == -1U; }
461
462 // Return the hash of this entry.
463 size_t
464 hash() const
465 {
466 if (this->tls_type_ == GOT_TLS_LDM)
467 return this->symndx_ + (1 << 18);
468
469 size_t name_hash_value = gold::string_hash<char>(
470 (this->symndx_ != -1U)
471 ? this->d.object->name().c_str()
472 : this->d.sym->name());
473 size_t addend = this->addend_;
474 return name_hash_value ^ this->symndx_ ^ addend;
475 }
476
477 // Return whether this entry is equal to OTHER.
478 bool
479 equals(Mips_got_entry<size, big_endian>* other) const
480 {
481 if (this->tls_type_ == GOT_TLS_LDM)
482 return true;
483
484 return ((this->tls_type_ == other->tls_type_)
485 && (this->symndx_ == other->symndx_)
486 && ((this->symndx_ != -1U)
487 ? (this->d.object == other->d.object)
488 : (this->d.sym == other->d.sym))
489 && (this->addend_ == other->addend_));
490 }
491
492 // Return input object that needs this GOT entry.
493 Mips_relobj<size, big_endian>*
494 object() const
495 {
496 gold_assert(this->symndx_ != -1U);
497 return this->d.object;
498 }
499
500 // Return local symbol index for local GOT entries.
501 unsigned int
502 symndx() const
503 {
504 gold_assert(this->symndx_ != -1U);
505 return this->symndx_;
506 }
507
508 // Return the relocation addend for local GOT entries.
509 Mips_address
510 addend() const
511 { return this->addend_; }
512
513 // Return global symbol for global GOT entries.
514 Mips_symbol<size>*
515 sym() const
516 {
517 gold_assert(this->symndx_ == -1U);
518 return this->d.sym;
519 }
520
521 // Return whether this is a TLS GOT entry.
522 bool
523 is_tls_entry() const
524 { return this->tls_type_ != GOT_TLS_NONE; }
525
526 // Return TLS type of this GOT entry.
527 unsigned char
528 tls_type() const
529 { return this->tls_type_; }
530
531 // Return section index of the local symbol for local GOT entries.
532 unsigned int
533 shndx() const
534 { return this->shndx_; }
535
536 // Return whether this is a STT_SECTION symbol.
537 bool
538 is_section_symbol() const
539 { return this->is_section_symbol_; }
540
541 private:
542 // The addend.
543 Mips_address addend_;
544
545 // The index of the symbol if we have a local symbol; -1 otherwise.
546 unsigned int symndx_;
547
548 union
549 {
550 // The input object for local symbols that needs the GOT entry.
551 Mips_relobj<size, big_endian>* object;
552 // If symndx == -1, the global symbol corresponding to this GOT entry. The
553 // symbol's entry is in the local area if mips_sym->global_got_area is
554 // GGA_NONE, otherwise it is in the global area.
555 Mips_symbol<size>* sym;
556 } d;
557
558 // The TLS type of this GOT entry. An LDM GOT entry will be a local
559 // symbol entry with r_symndx == 0.
560 unsigned char tls_type_;
561
562 // Whether this is a STT_SECTION symbol.
563 bool is_section_symbol_;
564
565 // For local GOT entries, section index of the local symbol.
566 unsigned int shndx_;
567 };
568
569 // Hash for Mips_got_entry.
570
571 template<int size, bool big_endian>
572 class Mips_got_entry_hash
573 {
574 public:
575 size_t
576 operator()(Mips_got_entry<size, big_endian>* entry) const
577 { return entry->hash(); }
578 };
579
580 // Equality for Mips_got_entry.
581
582 template<int size, bool big_endian>
583 class Mips_got_entry_eq
584 {
585 public:
586 bool
587 operator()(Mips_got_entry<size, big_endian>* e1,
588 Mips_got_entry<size, big_endian>* e2) const
589 { return e1->equals(e2); }
590 };
591
592 // Hash for Mips_symbol.
593
594 template<int size>
595 class Mips_symbol_hash
596 {
597 public:
598 size_t
599 operator()(Mips_symbol<size>* sym) const
600 { return sym->hash(); }
601 };
602
603 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
604 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
605 // increasing MIN_ADDEND.
606
607 struct Got_page_range
608 {
609 Got_page_range()
610 : next(NULL), min_addend(0), max_addend(0)
611 { }
612
613 Got_page_range* next;
614 int min_addend;
615 int max_addend;
616
617 // Return the maximum number of GOT page entries required.
618 int
619 get_max_pages()
620 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
621 };
622
623 // Got_page_entry. This class describes the range of addends that are applied
624 // to page relocations against a given symbol.
625
626 struct Got_page_entry
627 {
628 Got_page_entry()
629 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
630 { }
631
632 Got_page_entry(Object* object_, unsigned int symndx_)
633 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
634 { }
635
636 // The input object that needs the GOT page entry.
637 Object* object;
638 // The index of the symbol, as stored in the relocation r_info.
639 unsigned int symndx;
640 // The ranges for this page entry.
641 Got_page_range* ranges;
642 // The maximum number of page entries needed for RANGES.
643 unsigned int num_pages;
644 };
645
646 // Hash for Got_page_entry.
647
648 struct Got_page_entry_hash
649 {
650 size_t
651 operator()(Got_page_entry* entry) const
652 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
653 };
654
655 // Equality for Got_page_entry.
656
657 struct Got_page_entry_eq
658 {
659 bool
660 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
661 {
662 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
663 }
664 };
665
666 // This class is used to hold .got information when linking.
667
668 template<int size, bool big_endian>
669 class Mips_got_info
670 {
671 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
672 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
673 Reloc_section;
674 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
675
676 // Unordered set of GOT entries.
677 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
678 Mips_got_entry_hash<size, big_endian>,
679 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
680
681 // Unordered set of GOT page entries.
682 typedef Unordered_set<Got_page_entry*,
683 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
684
685 // Unordered set of global GOT entries.
686 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
687 Global_got_entry_set;
688
689 public:
690 Mips_got_info()
691 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
692 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
693 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
694 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
695 offset_(0)
696 { }
697
698 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
699 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
700 void
701 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
702 unsigned int symndx, Mips_address addend,
703 unsigned int r_type, unsigned int shndx,
704 bool is_section_symbol);
705
706 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
707 // in OBJECT. FOR_CALL is true if the caller is only interested in
708 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
709 // relocation.
710 void
711 record_global_got_symbol(Mips_symbol<size>* mips_sym,
712 Mips_relobj<size, big_endian>* object,
713 unsigned int r_type, bool dyn_reloc, bool for_call);
714
715 // Add ENTRY to master GOT and to OBJECT's GOT.
716 void
717 record_got_entry(Mips_got_entry<size, big_endian>* entry,
718 Mips_relobj<size, big_endian>* object);
719
720 // Record that OBJECT has a page relocation against symbol SYMNDX and
721 // that ADDEND is the addend for that relocation.
722 void
723 record_got_page_entry(Mips_relobj<size, big_endian>* object,
724 unsigned int symndx, int addend);
725
726 // Create all entries that should be in the local part of the GOT.
727 void
728 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
729
730 // Create GOT page entries.
731 void
732 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
733
734 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
735 void
736 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
737 unsigned int non_reloc_only_global_gotno);
738
739 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
740 void
741 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
742
743 // Create TLS GOT entries.
744 void
745 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
746
747 // Decide whether the symbol needs an entry in the global part of the primary
748 // GOT, setting global_got_area accordingly. Count the number of global
749 // symbols that are in the primary GOT only because they have dynamic
750 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
751 void
752 count_got_symbols(Symbol_table* symtab);
753
754 // Return the offset of GOT page entry for VALUE.
755 unsigned int
756 get_got_page_offset(Mips_address value,
757 Mips_output_data_got<size, big_endian>* got);
758
759 // Count the number of GOT entries required.
760 void
761 count_got_entries();
762
763 // Count the number of GOT entries required by ENTRY. Accumulate the result.
764 void
765 count_got_entry(Mips_got_entry<size, big_endian>* entry);
766
767 // Add FROM's GOT entries.
768 void
769 add_got_entries(Mips_got_info<size, big_endian>* from);
770
771 // Add FROM's GOT page entries.
772 void
773 add_got_page_entries(Mips_got_info<size, big_endian>* from);
774
775 // Return GOT size.
776 unsigned int
777 got_size() const
778 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
779 + this->tls_gotno_) * size/8);
780 }
781
782 // Return the number of local GOT entries.
783 unsigned int
784 local_gotno() const
785 { return this->local_gotno_; }
786
787 // Return the maximum number of page GOT entries needed.
788 unsigned int
789 page_gotno() const
790 { return this->page_gotno_; }
791
792 // Return the number of global GOT entries.
793 unsigned int
794 global_gotno() const
795 { return this->global_gotno_; }
796
797 // Set the number of global GOT entries.
798 void
799 set_global_gotno(unsigned int global_gotno)
800 { this->global_gotno_ = global_gotno; }
801
802 // Return the number of GGA_RELOC_ONLY global GOT entries.
803 unsigned int
804 reloc_only_gotno() const
805 { return this->reloc_only_gotno_; }
806
807 // Return the number of TLS GOT entries.
808 unsigned int
809 tls_gotno() const
810 { return this->tls_gotno_; }
811
812 // Return the GOT type for this GOT. Used for multi-GOT links only.
813 unsigned int
814 multigot_got_type(unsigned int got_type) const
815 {
816 switch (got_type)
817 {
818 case GOT_TYPE_STANDARD:
819 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
820 case GOT_TYPE_TLS_OFFSET:
821 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
822 case GOT_TYPE_TLS_PAIR:
823 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
824 default:
825 gold_unreachable();
826 }
827 }
828
829 // Remove lazy-binding stubs for global symbols in this GOT.
830 void
831 remove_lazy_stubs(Target_mips<size, big_endian>* target);
832
833 // Return offset of this GOT from the start of .got section.
834 unsigned int
835 offset() const
836 { return this->offset_; }
837
838 // Set offset of this GOT from the start of .got section.
839 void
840 set_offset(unsigned int offset)
841 { this->offset_ = offset; }
842
843 // Set index of this GOT in multi-GOT links.
844 void
845 set_index(unsigned int index)
846 { this->index_ = index; }
847
848 // Return next GOT in multi-GOT links.
849 Mips_got_info<size, big_endian>*
850 next() const
851 { return this->next_; }
852
853 // Set next GOT in multi-GOT links.
854 void
855 set_next(Mips_got_info<size, big_endian>* next)
856 { this->next_ = next; }
857
858 // Return the offset of TLS LDM entry for this GOT.
859 unsigned int
860 tls_ldm_offset() const
861 { return this->tls_ldm_offset_; }
862
863 // Set the offset of TLS LDM entry for this GOT.
864 void
865 set_tls_ldm_offset(unsigned int tls_ldm_offset)
866 { this->tls_ldm_offset_ = tls_ldm_offset; }
867
868 Global_got_entry_set&
869 global_got_symbols()
870 { return this->global_got_symbols_; }
871
872 // Return the GOT_TLS_* type required by relocation type R_TYPE.
873 static int
874 mips_elf_reloc_tls_type(unsigned int r_type)
875 {
876 if (tls_gd_reloc(r_type))
877 return GOT_TLS_GD;
878
879 if (tls_ldm_reloc(r_type))
880 return GOT_TLS_LDM;
881
882 if (tls_gottprel_reloc(r_type))
883 return GOT_TLS_IE;
884
885 return GOT_TLS_NONE;
886 }
887
888 // Return the number of GOT slots needed for GOT TLS type TYPE.
889 static int
890 mips_tls_got_entries(unsigned int type)
891 {
892 switch (type)
893 {
894 case GOT_TLS_GD:
895 case GOT_TLS_LDM:
896 return 2;
897
898 case GOT_TLS_IE:
899 return 1;
900
901 case GOT_TLS_NONE:
902 return 0;
903
904 default:
905 gold_unreachable();
906 }
907 }
908
909 private:
910 // The number of local GOT entries.
911 unsigned int local_gotno_;
912 // The maximum number of page GOT entries needed.
913 unsigned int page_gotno_;
914 // The number of global GOT entries.
915 unsigned int global_gotno_;
916 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
917 unsigned int reloc_only_gotno_;
918 // The number of TLS GOT entries.
919 unsigned int tls_gotno_;
920 // The offset of TLS LDM entry for this GOT.
921 unsigned int tls_ldm_offset_;
922 // All symbols that have global GOT entry.
923 Global_got_entry_set global_got_symbols_;
924 // A hash table holding GOT entries.
925 Got_entry_set got_entries_;
926 // A hash table of GOT page entries.
927 Got_page_entry_set got_page_entries_;
928 // The offset of first GOT page entry for this GOT.
929 unsigned int got_page_offset_start_;
930 // The offset of next available GOT page entry for this GOT.
931 unsigned int got_page_offset_next_;
932 // A hash table that maps GOT page entry value to the GOT offset where
933 // the entry is located.
934 Got_page_offsets got_page_offsets_;
935 // In multi-GOT links, a pointer to the next GOT.
936 Mips_got_info<size, big_endian>* next_;
937 // Index of this GOT in multi-GOT links.
938 unsigned int index_;
939 // The offset of this GOT in multi-GOT links.
940 unsigned int offset_;
941 };
942
943 // This is a helper class used during relocation scan. It records GOT16 addend.
944
945 template<int size, bool big_endian>
946 struct got16_addend
947 {
948 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
949
950 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
951 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
952 Mips_address _addend)
953 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
954 addend(_addend)
955 { }
956
957 const Sized_relobj_file<size, big_endian>* object;
958 unsigned int shndx;
959 unsigned int r_type;
960 unsigned int r_sym;
961 Mips_address addend;
962 };
963
964 // .MIPS.abiflags section content
965
966 template<bool big_endian>
967 struct Mips_abiflags
968 {
969 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
970 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
971 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
972
973 Mips_abiflags()
974 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
975 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
976 { }
977
978 // Version of flags structure.
979 Valtype16 version;
980 // The level of the ISA: 1-5, 32, 64.
981 Valtype8 isa_level;
982 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
983 Valtype8 isa_rev;
984 // The size of general purpose registers.
985 Valtype8 gpr_size;
986 // The size of co-processor 1 registers.
987 Valtype8 cpr1_size;
988 // The size of co-processor 2 registers.
989 Valtype8 cpr2_size;
990 // The floating-point ABI.
991 Valtype8 fp_abi;
992 // Processor-specific extension.
993 Valtype32 isa_ext;
994 // Mask of ASEs used.
995 Valtype32 ases;
996 // Mask of general flags.
997 Valtype32 flags1;
998 Valtype32 flags2;
999 };
1000
1001 // Mips_symbol class. Holds additional symbol information needed for Mips.
1002
1003 template<int size>
1004 class Mips_symbol : public Sized_symbol<size>
1005 {
1006 public:
1007 Mips_symbol()
1008 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1009 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1010 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1011 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1012 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1013 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1014 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1015 { }
1016
1017 // Return whether this is a MIPS16 symbol.
1018 bool
1019 is_mips16() const
1020 {
1021 // (st_other & STO_MIPS16) == STO_MIPS16
1022 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1023 == elfcpp::STO_MIPS16 >> 2);
1024 }
1025
1026 // Return whether this is a microMIPS symbol.
1027 bool
1028 is_micromips() const
1029 {
1030 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1031 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1032 == elfcpp::STO_MICROMIPS >> 2);
1033 }
1034
1035 // Return whether the symbol needs MIPS16 fn_stub.
1036 bool
1037 need_fn_stub() const
1038 { return this->need_fn_stub_; }
1039
1040 // Set that the symbol needs MIPS16 fn_stub.
1041 void
1042 set_need_fn_stub()
1043 { this->need_fn_stub_ = true; }
1044
1045 // Return whether this symbol is referenced by branch relocations from
1046 // any non-PIC input file.
1047 bool
1048 has_nonpic_branches() const
1049 { return this->has_nonpic_branches_; }
1050
1051 // Set that this symbol is referenced by branch relocations from
1052 // any non-PIC input file.
1053 void
1054 set_has_nonpic_branches()
1055 { this->has_nonpic_branches_ = true; }
1056
1057 // Return the offset of the la25 stub for this symbol from the start of the
1058 // la25 stub section.
1059 unsigned int
1060 la25_stub_offset() const
1061 { return this->la25_stub_offset_; }
1062
1063 // Set the offset of the la25 stub for this symbol from the start of the
1064 // la25 stub section.
1065 void
1066 set_la25_stub_offset(unsigned int offset)
1067 { this->la25_stub_offset_ = offset; }
1068
1069 // Return whether the symbol has la25 stub. This is true if this symbol is
1070 // for a PIC function, and there are non-PIC branches and jumps to it.
1071 bool
1072 has_la25_stub() const
1073 { return this->la25_stub_offset_ != -1U; }
1074
1075 // Return whether there is a relocation against this symbol that must be
1076 // resolved by the static linker (that is, the relocation cannot possibly
1077 // be made dynamic).
1078 bool
1079 has_static_relocs() const
1080 { return this->has_static_relocs_; }
1081
1082 // Set that there is a relocation against this symbol that must be resolved
1083 // by the static linker (that is, the relocation cannot possibly be made
1084 // dynamic).
1085 void
1086 set_has_static_relocs()
1087 { this->has_static_relocs_ = true; }
1088
1089 // Return whether we must not create a lazy-binding stub for this symbol.
1090 bool
1091 no_lazy_stub() const
1092 { return this->no_lazy_stub_; }
1093
1094 // Set that we must not create a lazy-binding stub for this symbol.
1095 void
1096 set_no_lazy_stub()
1097 { this->no_lazy_stub_ = true; }
1098
1099 // Return the offset of the lazy-binding stub for this symbol from the start
1100 // of .MIPS.stubs section.
1101 unsigned int
1102 lazy_stub_offset() const
1103 { return this->lazy_stub_offset_; }
1104
1105 // Set the offset of the lazy-binding stub for this symbol from the start
1106 // of .MIPS.stubs section.
1107 void
1108 set_lazy_stub_offset(unsigned int offset)
1109 { this->lazy_stub_offset_ = offset; }
1110
1111 // Return whether there are any relocations for this symbol where
1112 // pointer equality matters.
1113 bool
1114 pointer_equality_needed() const
1115 { return this->pointer_equality_needed_; }
1116
1117 // Set that there are relocations for this symbol where pointer equality
1118 // matters.
1119 void
1120 set_pointer_equality_needed()
1121 { this->pointer_equality_needed_ = true; }
1122
1123 // Return global GOT area where this symbol in located.
1124 Global_got_area
1125 global_got_area() const
1126 { return this->global_got_area_; }
1127
1128 // Set global GOT area where this symbol in located.
1129 void
1130 set_global_got_area(Global_got_area global_got_area)
1131 { this->global_got_area_ = global_got_area; }
1132
1133 // Return the global GOT offset for this symbol. For multi-GOT links, this
1134 // returns the offset from the start of .got section to the first GOT entry
1135 // for the symbol. Note that in multi-GOT links the symbol can have entry
1136 // in more than one GOT.
1137 unsigned int
1138 global_gotoffset() const
1139 { return this->global_gotoffset_; }
1140
1141 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1142 // the symbol can have entry in more than one GOT. This method will set
1143 // the offset only if it is less than current offset.
1144 void
1145 set_global_gotoffset(unsigned int offset)
1146 {
1147 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1148 this->global_gotoffset_ = offset;
1149 }
1150
1151 // Return whether all GOT relocations for this symbol are for calls.
1152 bool
1153 got_only_for_calls() const
1154 { return this->got_only_for_calls_; }
1155
1156 // Set that there is a GOT relocation for this symbol that is not for call.
1157 void
1158 set_got_not_only_for_calls()
1159 { this->got_only_for_calls_ = false; }
1160
1161 // Return whether this is a PIC symbol.
1162 bool
1163 is_pic() const
1164 {
1165 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1166 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1167 == (elfcpp::STO_MIPS_PIC >> 2));
1168 }
1169
1170 // Set the flag in st_other field that marks this symbol as PIC.
1171 void
1172 set_pic()
1173 {
1174 if (this->is_mips16())
1175 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1176 this->set_nonvis((this->nonvis()
1177 & ~((elfcpp::STO_MIPS16 >> 2)
1178 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1179 | (elfcpp::STO_MIPS_PIC >> 2));
1180 else
1181 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1182 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1183 | (elfcpp::STO_MIPS_PIC >> 2));
1184 }
1185
1186 // Set the flag in st_other field that marks this symbol as PLT.
1187 void
1188 set_mips_plt()
1189 {
1190 if (this->is_mips16())
1191 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1192 this->set_nonvis((this->nonvis()
1193 & ((elfcpp::STO_MIPS16 >> 2)
1194 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1195 | (elfcpp::STO_MIPS_PLT >> 2));
1196
1197 else
1198 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1199 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1200 | (elfcpp::STO_MIPS_PLT >> 2));
1201 }
1202
1203 // Downcast a base pointer to a Mips_symbol pointer.
1204 static Mips_symbol<size>*
1205 as_mips_sym(Symbol* sym)
1206 { return static_cast<Mips_symbol<size>*>(sym); }
1207
1208 // Downcast a base pointer to a Mips_symbol pointer.
1209 static const Mips_symbol<size>*
1210 as_mips_sym(const Symbol* sym)
1211 { return static_cast<const Mips_symbol<size>*>(sym); }
1212
1213 // Return whether the symbol has lazy-binding stub.
1214 bool
1215 has_lazy_stub() const
1216 { return this->has_lazy_stub_; }
1217
1218 // Set whether the symbol has lazy-binding stub.
1219 void
1220 set_has_lazy_stub(bool has_lazy_stub)
1221 { this->has_lazy_stub_ = has_lazy_stub; }
1222
1223 // Return whether the symbol needs a standard PLT entry.
1224 bool
1225 needs_mips_plt() const
1226 { return this->needs_mips_plt_; }
1227
1228 // Set whether the symbol needs a standard PLT entry.
1229 void
1230 set_needs_mips_plt(bool needs_mips_plt)
1231 { this->needs_mips_plt_ = needs_mips_plt; }
1232
1233 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1234 // entry.
1235 bool
1236 needs_comp_plt() const
1237 { return this->needs_comp_plt_; }
1238
1239 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1240 void
1241 set_needs_comp_plt(bool needs_comp_plt)
1242 { this->needs_comp_plt_ = needs_comp_plt; }
1243
1244 // Return standard PLT entry offset, or -1 if none.
1245 unsigned int
1246 mips_plt_offset() const
1247 { return this->mips_plt_offset_; }
1248
1249 // Set standard PLT entry offset.
1250 void
1251 set_mips_plt_offset(unsigned int mips_plt_offset)
1252 { this->mips_plt_offset_ = mips_plt_offset; }
1253
1254 // Return whether the symbol has standard PLT entry.
1255 bool
1256 has_mips_plt_offset() const
1257 { return this->mips_plt_offset_ != -1U; }
1258
1259 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1260 unsigned int
1261 comp_plt_offset() const
1262 { return this->comp_plt_offset_; }
1263
1264 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1265 void
1266 set_comp_plt_offset(unsigned int comp_plt_offset)
1267 { this->comp_plt_offset_ = comp_plt_offset; }
1268
1269 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1270 bool
1271 has_comp_plt_offset() const
1272 { return this->comp_plt_offset_ != -1U; }
1273
1274 // Return MIPS16 fn stub for a symbol.
1275 template<bool big_endian>
1276 Mips16_stub_section<size, big_endian>*
1277 get_mips16_fn_stub() const
1278 {
1279 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1280 }
1281
1282 // Set MIPS16 fn stub for a symbol.
1283 void
1284 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1285 { this->mips16_fn_stub_ = stub; }
1286
1287 // Return whether symbol has MIPS16 fn stub.
1288 bool
1289 has_mips16_fn_stub() const
1290 { return this->mips16_fn_stub_ != NULL; }
1291
1292 // Return MIPS16 call stub for a symbol.
1293 template<bool big_endian>
1294 Mips16_stub_section<size, big_endian>*
1295 get_mips16_call_stub() const
1296 {
1297 return static_cast<Mips16_stub_section<size, big_endian>*>(
1298 mips16_call_stub_);
1299 }
1300
1301 // Set MIPS16 call stub for a symbol.
1302 void
1303 set_mips16_call_stub(Mips16_stub_section_base* stub)
1304 { this->mips16_call_stub_ = stub; }
1305
1306 // Return whether symbol has MIPS16 call stub.
1307 bool
1308 has_mips16_call_stub() const
1309 { return this->mips16_call_stub_ != NULL; }
1310
1311 // Return MIPS16 call_fp stub for a symbol.
1312 template<bool big_endian>
1313 Mips16_stub_section<size, big_endian>*
1314 get_mips16_call_fp_stub() const
1315 {
1316 return static_cast<Mips16_stub_section<size, big_endian>*>(
1317 mips16_call_fp_stub_);
1318 }
1319
1320 // Set MIPS16 call_fp stub for a symbol.
1321 void
1322 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1323 { this->mips16_call_fp_stub_ = stub; }
1324
1325 // Return whether symbol has MIPS16 call_fp stub.
1326 bool
1327 has_mips16_call_fp_stub() const
1328 { return this->mips16_call_fp_stub_ != NULL; }
1329
1330 bool
1331 get_applied_secondary_got_fixup() const
1332 { return applied_secondary_got_fixup_; }
1333
1334 void
1335 set_applied_secondary_got_fixup()
1336 { this->applied_secondary_got_fixup_ = true; }
1337
1338 // Return the hash of this symbol.
1339 size_t
1340 hash() const
1341 {
1342 return gold::string_hash<char>(this->name());
1343 }
1344
1345 private:
1346 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1347 // appears in any relocs other than a 16 bit call.
1348 bool need_fn_stub_;
1349
1350 // True if this symbol is referenced by branch relocations from
1351 // any non-PIC input file. This is used to determine whether an
1352 // la25 stub is required.
1353 bool has_nonpic_branches_;
1354
1355 // The offset of the la25 stub for this symbol from the start of the
1356 // la25 stub section.
1357 unsigned int la25_stub_offset_;
1358
1359 // True if there is a relocation against this symbol that must be
1360 // resolved by the static linker (that is, the relocation cannot
1361 // possibly be made dynamic).
1362 bool has_static_relocs_;
1363
1364 // Whether we must not create a lazy-binding stub for this symbol.
1365 // This is true if the symbol has relocations related to taking the
1366 // function's address.
1367 bool no_lazy_stub_;
1368
1369 // The offset of the lazy-binding stub for this symbol from the start of
1370 // .MIPS.stubs section.
1371 unsigned int lazy_stub_offset_;
1372
1373 // True if there are any relocations for this symbol where pointer equality
1374 // matters.
1375 bool pointer_equality_needed_;
1376
1377 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1378 // in the global part of the GOT.
1379 Global_got_area global_got_area_;
1380
1381 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1382 // from the start of .got section to the first GOT entry for the symbol.
1383 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1384 unsigned int global_gotoffset_;
1385
1386 // Whether all GOT relocations for this symbol are for calls.
1387 bool got_only_for_calls_;
1388 // Whether the symbol has lazy-binding stub.
1389 bool has_lazy_stub_;
1390 // Whether the symbol needs a standard PLT entry.
1391 bool needs_mips_plt_;
1392 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1393 bool needs_comp_plt_;
1394 // Standard PLT entry offset, or -1 if none.
1395 unsigned int mips_plt_offset_;
1396 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1397 unsigned int comp_plt_offset_;
1398 // MIPS16 fn stub for a symbol.
1399 Mips16_stub_section_base* mips16_fn_stub_;
1400 // MIPS16 call stub for a symbol.
1401 Mips16_stub_section_base* mips16_call_stub_;
1402 // MIPS16 call_fp stub for a symbol.
1403 Mips16_stub_section_base* mips16_call_fp_stub_;
1404
1405 bool applied_secondary_got_fixup_;
1406 };
1407
1408 // Mips16_stub_section class.
1409
1410 // The mips16 compiler uses a couple of special sections to handle
1411 // floating point arguments.
1412
1413 // Section names that look like .mips16.fn.FNNAME contain stubs that
1414 // copy floating point arguments from the fp regs to the gp regs and
1415 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1416 // call should be redirected to the stub instead. If no 32 bit
1417 // function calls FNNAME, the stub should be discarded. We need to
1418 // consider any reference to the function, not just a call, because
1419 // if the address of the function is taken we will need the stub,
1420 // since the address might be passed to a 32 bit function.
1421
1422 // Section names that look like .mips16.call.FNNAME contain stubs
1423 // that copy floating point arguments from the gp regs to the fp
1424 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1425 // then any 16 bit function that calls FNNAME should be redirected
1426 // to the stub instead. If FNNAME is not a 32 bit function, the
1427 // stub should be discarded.
1428
1429 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1430 // which call FNNAME and then copy the return value from the fp regs
1431 // to the gp regs. These stubs store the return address in $18 while
1432 // calling FNNAME; any function which might call one of these stubs
1433 // must arrange to save $18 around the call. (This case is not
1434 // needed for 32 bit functions that call 16 bit functions, because
1435 // 16 bit functions always return floating point values in both
1436 // $f0/$f1 and $2/$3.)
1437
1438 // Note that in all cases FNNAME might be defined statically.
1439 // Therefore, FNNAME is not used literally. Instead, the relocation
1440 // information will indicate which symbol the section is for.
1441
1442 // We record any stubs that we find in the symbol table.
1443
1444 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1445
1446 class Mips16_stub_section_base { };
1447
1448 template<int size, bool big_endian>
1449 class Mips16_stub_section : public Mips16_stub_section_base
1450 {
1451 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1452
1453 public:
1454 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1455 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1456 found_r_mips_none_(false)
1457 {
1458 gold_assert(object->is_mips16_fn_stub_section(shndx)
1459 || object->is_mips16_call_stub_section(shndx)
1460 || object->is_mips16_call_fp_stub_section(shndx));
1461 }
1462
1463 // Return the object of this stub section.
1464 Mips_relobj<size, big_endian>*
1465 object() const
1466 { return this->object_; }
1467
1468 // Return the size of a section.
1469 uint64_t
1470 section_size() const
1471 { return this->object_->section_size(this->shndx_); }
1472
1473 // Return section index of this stub section.
1474 unsigned int
1475 shndx() const
1476 { return this->shndx_; }
1477
1478 // Return symbol index, if stub is for a local function.
1479 unsigned int
1480 r_sym() const
1481 { return this->r_sym_; }
1482
1483 // Return symbol, if stub is for a global function.
1484 Mips_symbol<size>*
1485 gsym() const
1486 { return this->gsym_; }
1487
1488 // Return whether stub is for a local function.
1489 bool
1490 is_for_local_function() const
1491 { return this->gsym_ == NULL; }
1492
1493 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1494 // is found in the stub section. Try to find stub target.
1495 void
1496 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1497 {
1498 // To find target symbol for this stub, trust the first R_MIPS_NONE
1499 // relocation, if any. Otherwise trust the first relocation, whatever
1500 // its kind.
1501 if (this->found_r_mips_none_)
1502 return;
1503 if (r_type == elfcpp::R_MIPS_NONE)
1504 {
1505 this->r_sym_ = r_sym;
1506 this->gsym_ = NULL;
1507 this->found_r_mips_none_ = true;
1508 }
1509 else if (!is_target_found())
1510 this->r_sym_ = r_sym;
1511 }
1512
1513 // This method is called when a new relocation R_TYPE for global symbol GSYM
1514 // is found in the stub section. Try to find stub target.
1515 void
1516 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1517 {
1518 // To find target symbol for this stub, trust the first R_MIPS_NONE
1519 // relocation, if any. Otherwise trust the first relocation, whatever
1520 // its kind.
1521 if (this->found_r_mips_none_)
1522 return;
1523 if (r_type == elfcpp::R_MIPS_NONE)
1524 {
1525 this->gsym_ = gsym;
1526 this->r_sym_ = 0;
1527 this->found_r_mips_none_ = true;
1528 }
1529 else if (!is_target_found())
1530 this->gsym_ = gsym;
1531 }
1532
1533 // Return whether we found the stub target.
1534 bool
1535 is_target_found() const
1536 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1537
1538 // Return whether this is a fn stub.
1539 bool
1540 is_fn_stub() const
1541 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1542
1543 // Return whether this is a call stub.
1544 bool
1545 is_call_stub() const
1546 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1547
1548 // Return whether this is a call_fp stub.
1549 bool
1550 is_call_fp_stub() const
1551 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1552
1553 // Return the output address.
1554 Mips_address
1555 output_address() const
1556 {
1557 return (this->object_->output_section(this->shndx_)->address()
1558 + this->object_->output_section_offset(this->shndx_));
1559 }
1560
1561 private:
1562 // The object of this stub section.
1563 Mips_relobj<size, big_endian>* object_;
1564 // The section index of this stub section.
1565 unsigned int shndx_;
1566 // The symbol index, if stub is for a local function.
1567 unsigned int r_sym_;
1568 // The symbol, if stub is for a global function.
1569 Mips_symbol<size>* gsym_;
1570 // True if we found R_MIPS_NONE relocation in this stub.
1571 bool found_r_mips_none_;
1572 };
1573
1574 // Mips_relobj class.
1575
1576 template<int size, bool big_endian>
1577 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1578 {
1579 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1580 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1581 Mips16_stubs_int_map;
1582 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1583
1584 public:
1585 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1586 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1587 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1588 processor_specific_flags_(0), local_symbol_is_mips16_(),
1589 local_symbol_is_micromips_(), mips16_stub_sections_(),
1590 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1591 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1592 got_info_(NULL), section_is_mips16_fn_stub_(),
1593 section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1594 pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1595 gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1596 {
1597 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1598 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1599 }
1600
1601 ~Mips_relobj()
1602 { delete this->attributes_section_data_; }
1603
1604 // Downcast a base pointer to a Mips_relobj pointer. This is
1605 // not type-safe but we only use Mips_relobj not the base class.
1606 static Mips_relobj<size, big_endian>*
1607 as_mips_relobj(Relobj* relobj)
1608 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1609
1610 // Downcast a base pointer to a Mips_relobj pointer. This is
1611 // not type-safe but we only use Mips_relobj not the base class.
1612 static const Mips_relobj<size, big_endian>*
1613 as_mips_relobj(const Relobj* relobj)
1614 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1615
1616 // Processor-specific flags in ELF file header. This is valid only after
1617 // reading symbols.
1618 elfcpp::Elf_Word
1619 processor_specific_flags() const
1620 { return this->processor_specific_flags_; }
1621
1622 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1623 // index. This is only valid after do_count_local_symbol is called.
1624 bool
1625 local_symbol_is_mips16(unsigned int r_sym) const
1626 {
1627 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1628 return this->local_symbol_is_mips16_[r_sym];
1629 }
1630
1631 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1632 // index. This is only valid after do_count_local_symbol is called.
1633 bool
1634 local_symbol_is_micromips(unsigned int r_sym) const
1635 {
1636 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1637 return this->local_symbol_is_micromips_[r_sym];
1638 }
1639
1640 // Get or create MIPS16 stub section.
1641 Mips16_stub_section<size, big_endian>*
1642 get_mips16_stub_section(unsigned int shndx)
1643 {
1644 typename Mips16_stubs_int_map::const_iterator it =
1645 this->mips16_stub_sections_.find(shndx);
1646 if (it != this->mips16_stub_sections_.end())
1647 return (*it).second;
1648
1649 Mips16_stub_section<size, big_endian>* stub_section =
1650 new Mips16_stub_section<size, big_endian>(this, shndx);
1651 this->mips16_stub_sections_.insert(
1652 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1653 stub_section->shndx(), stub_section));
1654 return stub_section;
1655 }
1656
1657 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1658 // object doesn't have fn stub for R_SYM.
1659 Mips16_stub_section<size, big_endian>*
1660 get_local_mips16_fn_stub(unsigned int r_sym) const
1661 {
1662 typename Mips16_stubs_int_map::const_iterator it =
1663 this->local_mips16_fn_stubs_.find(r_sym);
1664 if (it != this->local_mips16_fn_stubs_.end())
1665 return (*it).second;
1666 return NULL;
1667 }
1668
1669 // Record that this object has MIPS16 fn stub for local symbol. This method
1670 // is only called if we decided not to discard the stub.
1671 void
1672 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1673 {
1674 gold_assert(stub->is_for_local_function());
1675 unsigned int r_sym = stub->r_sym();
1676 this->local_mips16_fn_stubs_.insert(
1677 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1678 r_sym, stub));
1679 }
1680
1681 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1682 // object doesn't have call stub for R_SYM.
1683 Mips16_stub_section<size, big_endian>*
1684 get_local_mips16_call_stub(unsigned int r_sym) const
1685 {
1686 typename Mips16_stubs_int_map::const_iterator it =
1687 this->local_mips16_call_stubs_.find(r_sym);
1688 if (it != this->local_mips16_call_stubs_.end())
1689 return (*it).second;
1690 return NULL;
1691 }
1692
1693 // Record that this object has MIPS16 call stub for local symbol. This method
1694 // is only called if we decided not to discard the stub.
1695 void
1696 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1697 {
1698 gold_assert(stub->is_for_local_function());
1699 unsigned int r_sym = stub->r_sym();
1700 this->local_mips16_call_stubs_.insert(
1701 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1702 r_sym, stub));
1703 }
1704
1705 // Record that we found "non 16-bit" call relocation against local symbol
1706 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1707 // is one.
1708 void
1709 add_local_non_16bit_call(unsigned int symndx)
1710 { this->local_non_16bit_calls_.insert(symndx); }
1711
1712 // Return true if there is any "non 16-bit" call relocation against local
1713 // symbol SYMNDX in this object.
1714 bool
1715 has_local_non_16bit_call_relocs(unsigned int symndx)
1716 {
1717 return (this->local_non_16bit_calls_.find(symndx)
1718 != this->local_non_16bit_calls_.end());
1719 }
1720
1721 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1722 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1723 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1724 void
1725 add_local_16bit_call(unsigned int symndx)
1726 { this->local_16bit_calls_.insert(symndx); }
1727
1728 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1729 // symbol SYMNDX in this object.
1730 bool
1731 has_local_16bit_call_relocs(unsigned int symndx)
1732 {
1733 return (this->local_16bit_calls_.find(symndx)
1734 != this->local_16bit_calls_.end());
1735 }
1736
1737 // Get gp value that was used to create this object.
1738 Mips_address
1739 gp_value() const
1740 { return this->gp_; }
1741
1742 // Return whether the object is a PIC object.
1743 bool
1744 is_pic() const
1745 { return this->is_pic_; }
1746
1747 // Return whether the object uses N32 ABI.
1748 bool
1749 is_n32() const
1750 { return this->is_n32_; }
1751
1752 // Return whether the object uses N64 ABI.
1753 bool
1754 is_n64() const
1755 { return size == 64; }
1756
1757 // Return whether the object uses NewABI conventions.
1758 bool
1759 is_newabi() const
1760 { return this->is_n32() || this->is_n64(); }
1761
1762 // Return Mips_got_info for this object.
1763 Mips_got_info<size, big_endian>*
1764 get_got_info() const
1765 { return this->got_info_; }
1766
1767 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1768 Mips_got_info<size, big_endian>*
1769 get_or_create_got_info()
1770 {
1771 if (!this->got_info_)
1772 this->got_info_ = new Mips_got_info<size, big_endian>();
1773 return this->got_info_;
1774 }
1775
1776 // Set Mips_got_info for this object.
1777 void
1778 set_got_info(Mips_got_info<size, big_endian>* got_info)
1779 { this->got_info_ = got_info; }
1780
1781 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1782 // after do_read_symbols is called.
1783 bool
1784 is_mips16_stub_section(unsigned int shndx)
1785 {
1786 return (is_mips16_fn_stub_section(shndx)
1787 || is_mips16_call_stub_section(shndx)
1788 || is_mips16_call_fp_stub_section(shndx));
1789 }
1790
1791 // Return TRUE if relocations in section SHNDX can refer directly to a
1792 // MIPS16 function rather than to a hard-float stub. This is only valid
1793 // after do_read_symbols is called.
1794 bool
1795 section_allows_mips16_refs(unsigned int shndx)
1796 {
1797 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1798 }
1799
1800 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1801 // after do_read_symbols is called.
1802 bool
1803 is_mips16_fn_stub_section(unsigned int shndx)
1804 {
1805 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1806 return this->section_is_mips16_fn_stub_[shndx];
1807 }
1808
1809 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1810 // after do_read_symbols is called.
1811 bool
1812 is_mips16_call_stub_section(unsigned int shndx)
1813 {
1814 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1815 return this->section_is_mips16_call_stub_[shndx];
1816 }
1817
1818 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1819 // valid after do_read_symbols is called.
1820 bool
1821 is_mips16_call_fp_stub_section(unsigned int shndx)
1822 {
1823 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1824 return this->section_is_mips16_call_fp_stub_[shndx];
1825 }
1826
1827 // Discard MIPS16 stub secions that are not needed.
1828 void
1829 discard_mips16_stub_sections(Symbol_table* symtab);
1830
1831 // Return whether there is a .reginfo section.
1832 bool
1833 has_reginfo_section() const
1834 { return this->has_reginfo_section_; }
1835
1836 // Return gprmask from the .reginfo section of this object.
1837 Valtype
1838 gprmask() const
1839 { return this->gprmask_; }
1840
1841 // Return cprmask1 from the .reginfo section of this object.
1842 Valtype
1843 cprmask1() const
1844 { return this->cprmask1_; }
1845
1846 // Return cprmask2 from the .reginfo section of this object.
1847 Valtype
1848 cprmask2() const
1849 { return this->cprmask2_; }
1850
1851 // Return cprmask3 from the .reginfo section of this object.
1852 Valtype
1853 cprmask3() const
1854 { return this->cprmask3_; }
1855
1856 // Return cprmask4 from the .reginfo section of this object.
1857 Valtype
1858 cprmask4() const
1859 { return this->cprmask4_; }
1860
1861 // This is the contents of the .MIPS.abiflags section if there is one.
1862 Mips_abiflags<big_endian>*
1863 abiflags()
1864 { return this->abiflags_; }
1865
1866 // This is the contents of the .gnu.attribute section if there is one.
1867 const Attributes_section_data*
1868 attributes_section_data() const
1869 { return this->attributes_section_data_; }
1870
1871 protected:
1872 // Count the local symbols.
1873 void
1874 do_count_local_symbols(Stringpool_template<char>*,
1875 Stringpool_template<char>*);
1876
1877 // Read the symbol information.
1878 void
1879 do_read_symbols(Read_symbols_data* sd);
1880
1881 private:
1882 // The name of the options section.
1883 const char* mips_elf_options_section_name()
1884 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1885
1886 // processor-specific flags in ELF file header.
1887 elfcpp::Elf_Word processor_specific_flags_;
1888
1889 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1890 // This is only valid after do_count_local_symbol is called.
1891 std::vector<bool> local_symbol_is_mips16_;
1892
1893 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1894 // This is only valid after do_count_local_symbol is called.
1895 std::vector<bool> local_symbol_is_micromips_;
1896
1897 // Map from section index to the MIPS16 stub for that section. This contains
1898 // all stubs found in this object.
1899 Mips16_stubs_int_map mips16_stub_sections_;
1900
1901 // Local symbols that have "non 16-bit" call relocation. This relocation
1902 // would need to refer to a MIPS16 fn stub, if there is one.
1903 std::set<unsigned int> local_non_16bit_calls_;
1904
1905 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1906 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1907 // relocation that refers to the stub symbol.
1908 std::set<unsigned int> local_16bit_calls_;
1909
1910 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1911 // This contains only the stubs that we decided not to discard.
1912 Mips16_stubs_int_map local_mips16_fn_stubs_;
1913
1914 // Map from local symbol index to the MIPS16 call stub for that symbol.
1915 // This contains only the stubs that we decided not to discard.
1916 Mips16_stubs_int_map local_mips16_call_stubs_;
1917
1918 // gp value that was used to create this object.
1919 Mips_address gp_;
1920 // Whether the object is a PIC object.
1921 bool is_pic_ : 1;
1922 // Whether the object uses N32 ABI.
1923 bool is_n32_ : 1;
1924 // Whether the object contains a .reginfo section.
1925 bool has_reginfo_section_ : 1;
1926 // The Mips_got_info for this object.
1927 Mips_got_info<size, big_endian>* got_info_;
1928
1929 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1930 // This is only valid after do_read_symbols is called.
1931 std::vector<bool> section_is_mips16_fn_stub_;
1932
1933 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1934 // This is only valid after do_read_symbols is called.
1935 std::vector<bool> section_is_mips16_call_stub_;
1936
1937 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1938 // This is only valid after do_read_symbols is called.
1939 std::vector<bool> section_is_mips16_call_fp_stub_;
1940
1941 // .pdr section index.
1942 unsigned int pdr_shndx_;
1943
1944 // Object attributes if there is a .gnu.attributes section or NULL.
1945 Attributes_section_data* attributes_section_data_;
1946
1947 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1948 Mips_abiflags<big_endian>* abiflags_;
1949
1950 // gprmask from the .reginfo section of this object.
1951 Valtype gprmask_;
1952 // cprmask1 from the .reginfo section of this object.
1953 Valtype cprmask1_;
1954 // cprmask2 from the .reginfo section of this object.
1955 Valtype cprmask2_;
1956 // cprmask3 from the .reginfo section of this object.
1957 Valtype cprmask3_;
1958 // cprmask4 from the .reginfo section of this object.
1959 Valtype cprmask4_;
1960 };
1961
1962 // Mips_output_data_got class.
1963
1964 template<int size, bool big_endian>
1965 class Mips_output_data_got : public Output_data_got<size, big_endian>
1966 {
1967 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1968 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1969 Reloc_section;
1970 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1971
1972 public:
1973 Mips_output_data_got(Target_mips<size, big_endian>* target,
1974 Symbol_table* symtab, Layout* layout)
1975 : Output_data_got<size, big_endian>(), target_(target),
1976 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1977 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1978 secondary_got_relocs_()
1979 {
1980 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1981 this->set_addralign(16);
1982 }
1983
1984 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1985 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1986 void
1987 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1988 unsigned int symndx, Mips_address addend,
1989 unsigned int r_type, unsigned int shndx,
1990 bool is_section_symbol)
1991 {
1992 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1993 r_type, shndx,
1994 is_section_symbol);
1995 }
1996
1997 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1998 // in OBJECT. FOR_CALL is true if the caller is only interested in
1999 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2000 // relocation.
2001 void
2002 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2003 Mips_relobj<size, big_endian>* object,
2004 unsigned int r_type, bool dyn_reloc, bool for_call)
2005 {
2006 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2007 dyn_reloc, for_call);
2008 }
2009
2010 // Record that OBJECT has a page relocation against symbol SYMNDX and
2011 // that ADDEND is the addend for that relocation.
2012 void
2013 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2014 unsigned int symndx, int addend)
2015 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2016
2017 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2018 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2019 // applied in a static link.
2020 void
2021 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2022 Mips_symbol<size>* gsym)
2023 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2024
2025 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2026 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2027 // relocation that needs to be applied in a static link.
2028 void
2029 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2030 Sized_relobj_file<size, big_endian>* relobj,
2031 unsigned int index)
2032 {
2033 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2034 index));
2035 }
2036
2037 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2038 // secondary GOT at OFFSET.
2039 void
2040 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2041 Mips_symbol<size>* gsym)
2042 {
2043 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2044 r_type, gsym));
2045 }
2046
2047 // Update GOT entry at OFFSET with VALUE.
2048 void
2049 update_got_entry(unsigned int offset, Mips_address value)
2050 {
2051 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2052 }
2053
2054 // Return the number of entries in local part of the GOT. This includes
2055 // local entries, page entries and 2 reserved entries.
2056 unsigned int
2057 get_local_gotno() const
2058 {
2059 if (!this->multi_got())
2060 {
2061 return (2 + this->master_got_info_->local_gotno()
2062 + this->master_got_info_->page_gotno());
2063 }
2064 else
2065 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2066 }
2067
2068 // Return dynamic symbol table index of the first symbol with global GOT
2069 // entry.
2070 unsigned int
2071 first_global_got_dynsym_index() const
2072 { return this->first_global_got_dynsym_index_; }
2073
2074 // Set dynamic symbol table index of the first symbol with global GOT entry.
2075 void
2076 set_first_global_got_dynsym_index(unsigned int index)
2077 { this->first_global_got_dynsym_index_ = index; }
2078
2079 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2080 // larger than 64K, create multi-GOT.
2081 void
2082 lay_out_got(Layout* layout, Symbol_table* symtab,
2083 const Input_objects* input_objects);
2084
2085 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2086 void
2087 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2088
2089 // Attempt to merge GOTs of different input objects.
2090 void
2091 merge_gots(const Input_objects* input_objects);
2092
2093 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2094 // this would lead to overflow, true if they were merged successfully.
2095 bool
2096 merge_got_with(Mips_got_info<size, big_endian>* from,
2097 Mips_relobj<size, big_endian>* object,
2098 Mips_got_info<size, big_endian>* to);
2099
2100 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2101 // use OBJECT's GOT.
2102 unsigned int
2103 get_got_page_offset(Mips_address value,
2104 const Mips_relobj<size, big_endian>* object)
2105 {
2106 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2107 ? this->master_got_info_
2108 : object->get_got_info());
2109 gold_assert(g != NULL);
2110 return g->get_got_page_offset(value, this);
2111 }
2112
2113 // Return the GOT offset of type GOT_TYPE of the global symbol
2114 // GSYM. For multi-GOT links, use OBJECT's GOT.
2115 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2116 Mips_relobj<size, big_endian>* object) const
2117 {
2118 if (!this->multi_got())
2119 return gsym->got_offset(got_type);
2120 else
2121 {
2122 Mips_got_info<size, big_endian>* g = object->get_got_info();
2123 gold_assert(g != NULL);
2124 return gsym->got_offset(g->multigot_got_type(got_type));
2125 }
2126 }
2127
2128 // Return the GOT offset of type GOT_TYPE of the local symbol
2129 // SYMNDX.
2130 unsigned int
2131 got_offset(unsigned int symndx, unsigned int got_type,
2132 Sized_relobj_file<size, big_endian>* object,
2133 uint64_t addend) const
2134 { return object->local_got_offset(symndx, got_type, addend); }
2135
2136 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2137 unsigned int
2138 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2139 {
2140 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2141 ? this->master_got_info_
2142 : object->get_got_info());
2143 gold_assert(g != NULL);
2144 return g->tls_ldm_offset();
2145 }
2146
2147 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2148 void
2149 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2150 Mips_relobj<size, big_endian>* object)
2151 {
2152 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2153 ? this->master_got_info_
2154 : object->get_got_info());
2155 gold_assert(g != NULL);
2156 g->set_tls_ldm_offset(tls_ldm_offset);
2157 }
2158
2159 // Return true for multi-GOT links.
2160 bool
2161 multi_got() const
2162 { return this->primary_got_ != NULL; }
2163
2164 // Return the offset of OBJECT's GOT from the start of .got section.
2165 unsigned int
2166 get_got_offset(const Mips_relobj<size, big_endian>* object)
2167 {
2168 if (!this->multi_got())
2169 return 0;
2170 else
2171 {
2172 Mips_got_info<size, big_endian>* g = object->get_got_info();
2173 return g != NULL ? g->offset() : 0;
2174 }
2175 }
2176
2177 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2178 void
2179 add_reloc_only_entries()
2180 { this->master_got_info_->add_reloc_only_entries(this); }
2181
2182 // Return offset of the primary GOT's entry for global symbol.
2183 unsigned int
2184 get_primary_got_offset(const Mips_symbol<size>* sym) const
2185 {
2186 gold_assert(sym->global_got_area() != GGA_NONE);
2187 return (this->get_local_gotno() + sym->dynsym_index()
2188 - this->first_global_got_dynsym_index()) * size/8;
2189 }
2190
2191 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2192 // Input argument GOT_OFFSET is always global offset from the start of
2193 // .got section, for both single and multi-GOT links.
2194 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2195 // links, the return value is object_got_offset - 0x7FF0, where
2196 // object_got_offset is offset in the OBJECT's GOT.
2197 int
2198 gp_offset(unsigned int got_offset,
2199 const Mips_relobj<size, big_endian>* object) const
2200 {
2201 return (this->address() + got_offset
2202 - this->target_->adjusted_gp_value(object));
2203 }
2204
2205 protected:
2206 // Write out the GOT table.
2207 void
2208 do_write(Output_file*);
2209
2210 private:
2211
2212 // This class represent dynamic relocations that need to be applied by
2213 // gold because we are using TLS relocations in a static link.
2214 class Static_reloc
2215 {
2216 public:
2217 Static_reloc(unsigned int got_offset, unsigned int r_type,
2218 Mips_symbol<size>* gsym)
2219 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2220 { this->u_.global.symbol = gsym; }
2221
2222 Static_reloc(unsigned int got_offset, unsigned int r_type,
2223 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2224 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2225 {
2226 this->u_.local.relobj = relobj;
2227 this->u_.local.index = index;
2228 }
2229
2230 // Return the GOT offset.
2231 unsigned int
2232 got_offset() const
2233 { return this->got_offset_; }
2234
2235 // Relocation type.
2236 unsigned int
2237 r_type() const
2238 { return this->r_type_; }
2239
2240 // Whether the symbol is global or not.
2241 bool
2242 symbol_is_global() const
2243 { return this->symbol_is_global_; }
2244
2245 // For a relocation against a global symbol, the global symbol.
2246 Mips_symbol<size>*
2247 symbol() const
2248 {
2249 gold_assert(this->symbol_is_global_);
2250 return this->u_.global.symbol;
2251 }
2252
2253 // For a relocation against a local symbol, the defining object.
2254 Sized_relobj_file<size, big_endian>*
2255 relobj() const
2256 {
2257 gold_assert(!this->symbol_is_global_);
2258 return this->u_.local.relobj;
2259 }
2260
2261 // For a relocation against a local symbol, the local symbol index.
2262 unsigned int
2263 index() const
2264 {
2265 gold_assert(!this->symbol_is_global_);
2266 return this->u_.local.index;
2267 }
2268
2269 private:
2270 // GOT offset of the entry to which this relocation is applied.
2271 unsigned int got_offset_;
2272 // Type of relocation.
2273 unsigned int r_type_;
2274 // Whether this relocation is against a global symbol.
2275 bool symbol_is_global_;
2276 // A global or local symbol.
2277 union
2278 {
2279 struct
2280 {
2281 // For a global symbol, the symbol itself.
2282 Mips_symbol<size>* symbol;
2283 } global;
2284 struct
2285 {
2286 // For a local symbol, the object defining object.
2287 Sized_relobj_file<size, big_endian>* relobj;
2288 // For a local symbol, the symbol index.
2289 unsigned int index;
2290 } local;
2291 } u_;
2292 };
2293
2294 // The target.
2295 Target_mips<size, big_endian>* target_;
2296 // The symbol table.
2297 Symbol_table* symbol_table_;
2298 // The layout.
2299 Layout* layout_;
2300 // Static relocs to be applied to the GOT.
2301 std::vector<Static_reloc> static_relocs_;
2302 // .got section view.
2303 unsigned char* got_view_;
2304 // The dynamic symbol table index of the first symbol with global GOT entry.
2305 unsigned int first_global_got_dynsym_index_;
2306 // The master GOT information.
2307 Mips_got_info<size, big_endian>* master_got_info_;
2308 // The primary GOT information.
2309 Mips_got_info<size, big_endian>* primary_got_;
2310 // Secondary GOT fixups.
2311 std::vector<Static_reloc> secondary_got_relocs_;
2312 };
2313
2314 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2315 // two ways of creating these interfaces. The first is to add:
2316 //
2317 // lui $25,%hi(func)
2318 // j func
2319 // addiu $25,$25,%lo(func)
2320 //
2321 // to a separate trampoline section. The second is to add:
2322 //
2323 // lui $25,%hi(func)
2324 // addiu $25,$25,%lo(func)
2325 //
2326 // immediately before a PIC function "func", but only if a function is at the
2327 // beginning of the section, and the section is not too heavily aligned (i.e we
2328 // would need to add no more than 2 nops before the stub.)
2329 //
2330 // We only create stubs of the first type.
2331
2332 template<int size, bool big_endian>
2333 class Mips_output_data_la25_stub : public Output_section_data
2334 {
2335 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2336
2337 public:
2338 Mips_output_data_la25_stub()
2339 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2340 { }
2341
2342 // Create LA25 stub for a symbol.
2343 void
2344 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2345 Mips_symbol<size>* gsym);
2346
2347 // Return output address of a stub.
2348 Mips_address
2349 stub_address(const Mips_symbol<size>* sym) const
2350 {
2351 gold_assert(sym->has_la25_stub());
2352 return this->address() + sym->la25_stub_offset();
2353 }
2354
2355 protected:
2356 void
2357 do_adjust_output_section(Output_section* os)
2358 { os->set_entsize(0); }
2359
2360 private:
2361 // Template for standard LA25 stub.
2362 static const uint32_t la25_stub_entry[];
2363 // Template for microMIPS LA25 stub.
2364 static const uint32_t la25_stub_micromips_entry[];
2365
2366 // Set the final size.
2367 void
2368 set_final_data_size()
2369 { this->set_data_size(this->symbols_.size() * 16); }
2370
2371 // Create a symbol for SYM stub's value and size, to help make the
2372 // disassembly easier to read.
2373 void
2374 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2375 Target_mips<size, big_endian>* target, uint64_t symsize);
2376
2377 // Write to a map file.
2378 void
2379 do_print_to_mapfile(Mapfile* mapfile) const
2380 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2381
2382 // Write out the LA25 stub section.
2383 void
2384 do_write(Output_file*);
2385
2386 // Symbols that have LA25 stubs.
2387 std::vector<Mips_symbol<size>*> symbols_;
2388 };
2389
2390 // MIPS-specific relocation writer.
2391
2392 template<int sh_type, bool dynamic, int size, bool big_endian>
2393 struct Mips_output_reloc_writer;
2394
2395 template<int sh_type, bool dynamic, bool big_endian>
2396 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2397 {
2398 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2399 typedef std::vector<Output_reloc_type> Relocs;
2400
2401 static void
2402 write(typename Relocs::const_iterator p, unsigned char* pov)
2403 { p->write(pov); }
2404 };
2405
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2408 {
2409 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2410 typedef std::vector<Output_reloc_type> Relocs;
2411
2412 static void
2413 write(typename Relocs::const_iterator p, unsigned char* pov)
2414 {
2415 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2416 orel.put_r_offset(p->get_address());
2417 orel.put_r_sym(p->get_symbol_index());
2418 orel.put_r_ssym(RSS_UNDEF);
2419 orel.put_r_type(p->type());
2420 if (p->type() == elfcpp::R_MIPS_REL32)
2421 orel.put_r_type2(elfcpp::R_MIPS_64);
2422 else
2423 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2424 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2425 }
2426 };
2427
2428 template<int sh_type, bool dynamic, int size, bool big_endian>
2429 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2430 size, big_endian>
2431 {
2432 public:
2433 Mips_output_data_reloc(bool sort_relocs)
2434 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2435 { }
2436
2437 protected:
2438 // Write out the data.
2439 void
2440 do_write(Output_file* of)
2441 {
2442 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2443 big_endian> Writer;
2444 this->template do_write_generic<Writer>(of);
2445 }
2446 };
2447
2448
2449 // A class to handle the PLT data.
2450
2451 template<int size, bool big_endian>
2452 class Mips_output_data_plt : public Output_section_data
2453 {
2454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2455 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2456 size, big_endian> Reloc_section;
2457
2458 public:
2459 // Create the PLT section. The ordinary .got section is an argument,
2460 // since we need to refer to the start.
2461 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2462 Target_mips<size, big_endian>* target)
2463 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2464 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2465 target_(target)
2466 {
2467 this->rel_ = new Reloc_section(false);
2468 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2469 elfcpp::SHF_ALLOC, this->rel_,
2470 ORDER_DYNAMIC_PLT_RELOCS, false);
2471 }
2472
2473 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2474 void
2475 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2476
2477 // Return the .rel.plt section data.
2478 Reloc_section*
2479 rel_plt() const
2480 { return this->rel_; }
2481
2482 // Return the number of PLT entries.
2483 unsigned int
2484 entry_count() const
2485 { return this->symbols_.size(); }
2486
2487 // Return the offset of the first non-reserved PLT entry.
2488 unsigned int
2489 first_plt_entry_offset() const
2490 { return sizeof(plt0_entry_o32); }
2491
2492 // Return the size of a PLT entry.
2493 unsigned int
2494 plt_entry_size() const
2495 { return sizeof(plt_entry); }
2496
2497 // Set final PLT offsets. For each symbol, determine whether standard or
2498 // compressed (MIPS16 or microMIPS) PLT entry is used.
2499 void
2500 set_plt_offsets();
2501
2502 // Return the offset of the first standard PLT entry.
2503 unsigned int
2504 first_mips_plt_offset() const
2505 { return this->plt_header_size_; }
2506
2507 // Return the offset of the first compressed PLT entry.
2508 unsigned int
2509 first_comp_plt_offset() const
2510 { return this->plt_header_size_ + this->plt_mips_offset_; }
2511
2512 // Return whether there are any standard PLT entries.
2513 bool
2514 has_standard_entries() const
2515 { return this->plt_mips_offset_ > 0; }
2516
2517 // Return the output address of standard PLT entry.
2518 Mips_address
2519 mips_entry_address(const Mips_symbol<size>* sym) const
2520 {
2521 gold_assert (sym->has_mips_plt_offset());
2522 return (this->address() + this->first_mips_plt_offset()
2523 + sym->mips_plt_offset());
2524 }
2525
2526 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2527 Mips_address
2528 comp_entry_address(const Mips_symbol<size>* sym) const
2529 {
2530 gold_assert (sym->has_comp_plt_offset());
2531 return (this->address() + this->first_comp_plt_offset()
2532 + sym->comp_plt_offset());
2533 }
2534
2535 protected:
2536 void
2537 do_adjust_output_section(Output_section* os)
2538 { os->set_entsize(0); }
2539
2540 // Write to a map file.
2541 void
2542 do_print_to_mapfile(Mapfile* mapfile) const
2543 { mapfile->print_output_data(this, _(".plt")); }
2544
2545 private:
2546 // Template for the first PLT entry.
2547 static const uint32_t plt0_entry_o32[];
2548 static const uint32_t plt0_entry_n32[];
2549 static const uint32_t plt0_entry_n64[];
2550 static const uint32_t plt0_entry_micromips_o32[];
2551 static const uint32_t plt0_entry_micromips32_o32[];
2552
2553 // Template for subsequent PLT entries.
2554 static const uint32_t plt_entry[];
2555 static const uint32_t plt_entry_r6[];
2556 static const uint32_t plt_entry_mips16_o32[];
2557 static const uint32_t plt_entry_micromips_o32[];
2558 static const uint32_t plt_entry_micromips32_o32[];
2559
2560 // Set the final size.
2561 void
2562 set_final_data_size()
2563 {
2564 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2565 + this->plt_comp_offset_);
2566 }
2567
2568 // Write out the PLT data.
2569 void
2570 do_write(Output_file*);
2571
2572 // Return whether the plt header contains microMIPS code. For the sake of
2573 // cache alignment always use a standard header whenever any standard entries
2574 // are present even if microMIPS entries are present as well. This also lets
2575 // the microMIPS header rely on the value of $v0 only set by microMIPS
2576 // entries, for a small size reduction.
2577 bool
2578 is_plt_header_compressed() const
2579 {
2580 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2581 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2582 }
2583
2584 // Return the size of the PLT header.
2585 unsigned int
2586 get_plt_header_size() const
2587 {
2588 if (this->target_->is_output_n64())
2589 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2590 else if (this->target_->is_output_n32())
2591 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2592 else if (!this->is_plt_header_compressed())
2593 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2594 else if (this->target_->use_32bit_micromips_instructions())
2595 return (2 * sizeof(plt0_entry_micromips32_o32)
2596 / sizeof(plt0_entry_micromips32_o32[0]));
2597 else
2598 return (2 * sizeof(plt0_entry_micromips_o32)
2599 / sizeof(plt0_entry_micromips_o32[0]));
2600 }
2601
2602 // Return the PLT header entry.
2603 const uint32_t*
2604 get_plt_header_entry() const
2605 {
2606 if (this->target_->is_output_n64())
2607 return plt0_entry_n64;
2608 else if (this->target_->is_output_n32())
2609 return plt0_entry_n32;
2610 else if (!this->is_plt_header_compressed())
2611 return plt0_entry_o32;
2612 else if (this->target_->use_32bit_micromips_instructions())
2613 return plt0_entry_micromips32_o32;
2614 else
2615 return plt0_entry_micromips_o32;
2616 }
2617
2618 // Return the size of the standard PLT entry.
2619 unsigned int
2620 standard_plt_entry_size() const
2621 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2622
2623 // Return the size of the compressed PLT entry.
2624 unsigned int
2625 compressed_plt_entry_size() const
2626 {
2627 gold_assert(!this->target_->is_output_newabi());
2628
2629 if (!this->target_->is_output_micromips())
2630 return (2 * sizeof(plt_entry_mips16_o32)
2631 / sizeof(plt_entry_mips16_o32[0]));
2632 else if (this->target_->use_32bit_micromips_instructions())
2633 return (2 * sizeof(plt_entry_micromips32_o32)
2634 / sizeof(plt_entry_micromips32_o32[0]));
2635 else
2636 return (2 * sizeof(plt_entry_micromips_o32)
2637 / sizeof(plt_entry_micromips_o32[0]));
2638 }
2639
2640 // The reloc section.
2641 Reloc_section* rel_;
2642 // The .got.plt section.
2643 Output_data_space* got_plt_;
2644 // Symbols that have PLT entry.
2645 std::vector<Mips_symbol<size>*> symbols_;
2646 // The offset of the next standard PLT entry to create.
2647 unsigned int plt_mips_offset_;
2648 // The offset of the next compressed PLT entry to create.
2649 unsigned int plt_comp_offset_;
2650 // The size of the PLT header in bytes.
2651 unsigned int plt_header_size_;
2652 // The target.
2653 Target_mips<size, big_endian>* target_;
2654 };
2655
2656 // A class to handle the .MIPS.stubs data.
2657
2658 template<int size, bool big_endian>
2659 class Mips_output_data_mips_stubs : public Output_section_data
2660 {
2661 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2662
2663 // Unordered set of .MIPS.stubs entries.
2664 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2665 Mips_stubs_entry_set;
2666
2667 public:
2668 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2669 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2670 stub_offsets_are_set_(false), target_(target)
2671 { }
2672
2673 // Create entry for a symbol.
2674 void
2675 make_entry(Mips_symbol<size>*);
2676
2677 // Remove entry for a symbol.
2678 void
2679 remove_entry(Mips_symbol<size>* gsym);
2680
2681 // Set stub offsets for symbols. This method expects that the number of
2682 // entries in dynamic symbol table is set.
2683 void
2684 set_lazy_stub_offsets();
2685
2686 void
2687 set_needs_dynsym_value();
2688
2689 // Set the number of entries in dynamic symbol table.
2690 void
2691 set_dynsym_count(unsigned int dynsym_count)
2692 { this->dynsym_count_ = dynsym_count; }
2693
2694 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2695 // count is greater than 0x10000. If the dynamic symbol count is less than
2696 // 0x10000, the stub will be 4 bytes smaller.
2697 // There's no disadvantage from using microMIPS code here, so for the sake of
2698 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2699 // output produced at all. This has a benefit of stubs being shorter by
2700 // 4 bytes each too, unless in the insn32 mode.
2701 unsigned int
2702 stub_max_size() const
2703 {
2704 if (!this->target_->is_output_micromips()
2705 || this->target_->use_32bit_micromips_instructions())
2706 return 20;
2707 else
2708 return 16;
2709 }
2710
2711 // Return the size of the stub. This method expects that the final dynsym
2712 // count is set.
2713 unsigned int
2714 stub_size() const
2715 {
2716 gold_assert(this->dynsym_count_ != -1U);
2717 if (this->dynsym_count_ > 0x10000)
2718 return this->stub_max_size();
2719 else
2720 return this->stub_max_size() - 4;
2721 }
2722
2723 // Return output address of a stub.
2724 Mips_address
2725 stub_address(const Mips_symbol<size>* sym) const
2726 {
2727 gold_assert(sym->has_lazy_stub());
2728 return this->address() + sym->lazy_stub_offset();
2729 }
2730
2731 protected:
2732 void
2733 do_adjust_output_section(Output_section* os)
2734 { os->set_entsize(0); }
2735
2736 // Write to a map file.
2737 void
2738 do_print_to_mapfile(Mapfile* mapfile) const
2739 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2740
2741 private:
2742 static const uint32_t lazy_stub_normal_1[];
2743 static const uint32_t lazy_stub_normal_1_n64[];
2744 static const uint32_t lazy_stub_normal_2[];
2745 static const uint32_t lazy_stub_normal_2_n64[];
2746 static const uint32_t lazy_stub_big[];
2747 static const uint32_t lazy_stub_big_n64[];
2748
2749 static const uint32_t lazy_stub_micromips_normal_1[];
2750 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2751 static const uint32_t lazy_stub_micromips_normal_2[];
2752 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2753 static const uint32_t lazy_stub_micromips_big[];
2754 static const uint32_t lazy_stub_micromips_big_n64[];
2755
2756 static const uint32_t lazy_stub_micromips32_normal_1[];
2757 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2758 static const uint32_t lazy_stub_micromips32_normal_2[];
2759 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2760 static const uint32_t lazy_stub_micromips32_big[];
2761 static const uint32_t lazy_stub_micromips32_big_n64[];
2762
2763 // Set the final size.
2764 void
2765 set_final_data_size()
2766 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2767
2768 // Write out the .MIPS.stubs data.
2769 void
2770 do_write(Output_file*);
2771
2772 // .MIPS.stubs symbols
2773 Mips_stubs_entry_set symbols_;
2774 // Number of entries in dynamic symbol table.
2775 unsigned int dynsym_count_;
2776 // Whether the stub offsets are set.
2777 bool stub_offsets_are_set_;
2778 // The target.
2779 Target_mips<size, big_endian>* target_;
2780 };
2781
2782 // This class handles Mips .reginfo output section.
2783
2784 template<int size, bool big_endian>
2785 class Mips_output_section_reginfo : public Output_section_data
2786 {
2787 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2788
2789 public:
2790 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2791 Valtype gprmask, Valtype cprmask1,
2792 Valtype cprmask2, Valtype cprmask3,
2793 Valtype cprmask4)
2794 : Output_section_data(24, 4, true), target_(target),
2795 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2796 cprmask3_(cprmask3), cprmask4_(cprmask4)
2797 { }
2798
2799 protected:
2800 // Write to a map file.
2801 void
2802 do_print_to_mapfile(Mapfile* mapfile) const
2803 { mapfile->print_output_data(this, _(".reginfo")); }
2804
2805 // Write out reginfo section.
2806 void
2807 do_write(Output_file* of);
2808
2809 private:
2810 Target_mips<size, big_endian>* target_;
2811
2812 // gprmask of the output .reginfo section.
2813 Valtype gprmask_;
2814 // cprmask1 of the output .reginfo section.
2815 Valtype cprmask1_;
2816 // cprmask2 of the output .reginfo section.
2817 Valtype cprmask2_;
2818 // cprmask3 of the output .reginfo section.
2819 Valtype cprmask3_;
2820 // cprmask4 of the output .reginfo section.
2821 Valtype cprmask4_;
2822 };
2823
2824 // This class handles .MIPS.abiflags output section.
2825
2826 template<int size, bool big_endian>
2827 class Mips_output_section_abiflags : public Output_section_data
2828 {
2829 public:
2830 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2831 : Output_section_data(24, 8, true), abiflags_(abiflags)
2832 { }
2833
2834 protected:
2835 // Write to a map file.
2836 void
2837 do_print_to_mapfile(Mapfile* mapfile) const
2838 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2839
2840 void
2841 do_write(Output_file* of);
2842
2843 private:
2844 const Mips_abiflags<big_endian>& abiflags_;
2845 };
2846
2847 // The MIPS target has relocation types which default handling of relocatable
2848 // relocation cannot process. So we have to extend the default code.
2849
2850 template<bool big_endian, typename Classify_reloc>
2851 class Mips_scan_relocatable_relocs :
2852 public Default_scan_relocatable_relocs<Classify_reloc>
2853 {
2854 public:
2855 // Return the strategy to use for a local symbol which is a section
2856 // symbol, given the relocation type.
2857 inline Relocatable_relocs::Reloc_strategy
2858 local_section_strategy(unsigned int r_type, Relobj* object)
2859 {
2860 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2861 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2862 else
2863 {
2864 switch (r_type)
2865 {
2866 case elfcpp::R_MIPS_26:
2867 return Relocatable_relocs::RELOC_SPECIAL;
2868
2869 default:
2870 return Default_scan_relocatable_relocs<Classify_reloc>::
2871 local_section_strategy(r_type, object);
2872 }
2873 }
2874 }
2875 };
2876
2877 // Mips_copy_relocs class. The only difference from the base class is the
2878 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2879 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2880 // cannot be made dynamic, a COPY reloc is emitted.
2881
2882 template<int sh_type, int size, bool big_endian>
2883 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2884 {
2885 public:
2886 Mips_copy_relocs()
2887 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2888 { }
2889
2890 // Emit any saved relocations which turn out to be needed. This is
2891 // called after all the relocs have been scanned.
2892 void
2893 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2894 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2895
2896 private:
2897 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2898 Copy_reloc_entry;
2899
2900 // Emit this reloc if appropriate. This is called after we have
2901 // scanned all the relocations, so we know whether we emitted a
2902 // COPY relocation for SYM_.
2903 void
2904 emit_entry(Copy_reloc_entry& entry,
2905 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2906 Symbol_table* symtab, Layout* layout,
2907 Target_mips<size, big_endian>* target);
2908 };
2909
2910
2911 // Return true if the symbol SYM should be considered to resolve local
2912 // to the current module, and false otherwise. The logic is taken from
2913 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2914 static bool
2915 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2916 bool local_protected)
2917 {
2918 // If it's a local sym, of course we resolve locally.
2919 if (sym == NULL)
2920 return true;
2921
2922 // STV_HIDDEN or STV_INTERNAL ones must be local.
2923 if (sym->visibility() == elfcpp::STV_HIDDEN
2924 || sym->visibility() == elfcpp::STV_INTERNAL)
2925 return true;
2926
2927 // If we don't have a definition in a regular file, then we can't
2928 // resolve locally. The sym is either undefined or dynamic.
2929 if (sym->is_from_dynobj() || sym->is_undefined())
2930 return false;
2931
2932 // Forced local symbols resolve locally.
2933 if (sym->is_forced_local())
2934 return true;
2935
2936 // As do non-dynamic symbols.
2937 if (!has_dynsym_entry)
2938 return true;
2939
2940 // At this point, we know the symbol is defined and dynamic. In an
2941 // executable it must resolve locally, likewise when building symbolic
2942 // shared libraries.
2943 if (parameters->options().output_is_executable()
2944 || parameters->options().Bsymbolic())
2945 return true;
2946
2947 // Now deal with defined dynamic symbols in shared libraries. Ones
2948 // with default visibility might not resolve locally.
2949 if (sym->visibility() == elfcpp::STV_DEFAULT)
2950 return false;
2951
2952 // STV_PROTECTED non-function symbols are local.
2953 if (sym->type() != elfcpp::STT_FUNC)
2954 return true;
2955
2956 // Function pointer equality tests may require that STV_PROTECTED
2957 // symbols be treated as dynamic symbols. If the address of a
2958 // function not defined in an executable is set to that function's
2959 // plt entry in the executable, then the address of the function in
2960 // a shared library must also be the plt entry in the executable.
2961 return local_protected;
2962 }
2963
2964 // Return TRUE if references to this symbol always reference the symbol in this
2965 // object.
2966 static bool
2967 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2968 {
2969 return symbol_refs_local(sym, has_dynsym_entry, false);
2970 }
2971
2972 // Return TRUE if calls to this symbol always call the version in this object.
2973 static bool
2974 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2975 {
2976 return symbol_refs_local(sym, has_dynsym_entry, true);
2977 }
2978
2979 // Compare GOT offsets of two symbols.
2980
2981 template<int size, bool big_endian>
2982 static bool
2983 got_offset_compare(Symbol* sym1, Symbol* sym2)
2984 {
2985 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2986 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2987 unsigned int area1 = mips_sym1->global_got_area();
2988 unsigned int area2 = mips_sym2->global_got_area();
2989 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2990
2991 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2992 if (area1 != area2)
2993 return area1 < area2;
2994
2995 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2996 }
2997
2998 // This method divides dynamic symbols into symbols that have GOT entry, and
2999 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3000 // Mips ABI requires that symbols with the GOT entry must be at the end of
3001 // dynamic symbol table, and the order in dynamic symbol table must match the
3002 // order in GOT.
3003
3004 template<int size, bool big_endian>
3005 static void
3006 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3007 std::vector<Symbol*>* non_got_symbols,
3008 std::vector<Symbol*>* got_symbols)
3009 {
3010 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3011 p != dyn_symbols->end();
3012 ++p)
3013 {
3014 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3015 if (mips_sym->global_got_area() == GGA_NORMAL
3016 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3017 got_symbols->push_back(mips_sym);
3018 else
3019 non_got_symbols->push_back(mips_sym);
3020 }
3021
3022 std::sort(got_symbols->begin(), got_symbols->end(),
3023 got_offset_compare<size, big_endian>);
3024 }
3025
3026 // Functor class for processing the global symbol table.
3027
3028 template<int size, bool big_endian>
3029 class Symbol_visitor_check_symbols
3030 {
3031 public:
3032 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3033 Layout* layout, Symbol_table* symtab)
3034 : target_(target), layout_(layout), symtab_(symtab)
3035 { }
3036
3037 void
3038 operator()(Sized_symbol<size>* sym)
3039 {
3040 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3041 if (local_pic_function<size, big_endian>(mips_sym))
3042 {
3043 // SYM is a function that might need $25 to be valid on entry.
3044 // If we're creating a non-PIC relocatable object, mark SYM as
3045 // being PIC. If we're creating a non-relocatable object with
3046 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3047 // stub.
3048 if (parameters->options().relocatable())
3049 {
3050 if (!parameters->options().output_is_position_independent())
3051 mips_sym->set_pic();
3052 }
3053 else if (mips_sym->has_nonpic_branches())
3054 {
3055 this->target_->la25_stub_section(layout_)
3056 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3057 }
3058 }
3059 }
3060
3061 private:
3062 Target_mips<size, big_endian>* target_;
3063 Layout* layout_;
3064 Symbol_table* symtab_;
3065 };
3066
3067 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3068 // and endianness. The relocation format for MIPS-64 is non-standard.
3069
3070 template<int sh_type, int size, bool big_endian>
3071 struct Mips_reloc_types;
3072
3073 template<bool big_endian>
3074 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3075 {
3076 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3077 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3078
3079 static typename elfcpp::Elf_types<32>::Elf_Swxword
3080 get_r_addend(const Reloc*)
3081 { return 0; }
3082
3083 static inline void
3084 set_reloc_addend(Reloc_write*,
3085 typename elfcpp::Elf_types<32>::Elf_Swxword)
3086 { gold_unreachable(); }
3087 };
3088
3089 template<bool big_endian>
3090 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3091 {
3092 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3093 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3094
3095 static typename elfcpp::Elf_types<32>::Elf_Swxword
3096 get_r_addend(const Reloc* reloc)
3097 { return reloc->get_r_addend(); }
3098
3099 static inline void
3100 set_reloc_addend(Reloc_write* p,
3101 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3102 { p->put_r_addend(val); }
3103 };
3104
3105 template<bool big_endian>
3106 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3107 {
3108 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3109 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3110
3111 static typename elfcpp::Elf_types<64>::Elf_Swxword
3112 get_r_addend(const Reloc*)
3113 { return 0; }
3114
3115 static inline void
3116 set_reloc_addend(Reloc_write*,
3117 typename elfcpp::Elf_types<64>::Elf_Swxword)
3118 { gold_unreachable(); }
3119 };
3120
3121 template<bool big_endian>
3122 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3123 {
3124 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3125 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3126
3127 static typename elfcpp::Elf_types<64>::Elf_Swxword
3128 get_r_addend(const Reloc* reloc)
3129 { return reloc->get_r_addend(); }
3130
3131 static inline void
3132 set_reloc_addend(Reloc_write* p,
3133 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3134 { p->put_r_addend(val); }
3135 };
3136
3137 // Forward declaration.
3138 static unsigned int
3139 mips_get_size_for_reloc(unsigned int, Relobj*);
3140
3141 // A class for inquiring about properties of a relocation,
3142 // used while scanning relocs during a relocatable link and
3143 // garbage collection.
3144
3145 template<int sh_type_, int size, bool big_endian>
3146 class Mips_classify_reloc;
3147
3148 template<int sh_type_, bool big_endian>
3149 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3150 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3151 {
3152 public:
3153 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3154 Reltype;
3155 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3156 Reltype_write;
3157
3158 // Return the symbol referred to by the relocation.
3159 static inline unsigned int
3160 get_r_sym(const Reltype* reloc)
3161 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3162
3163 // Return the type of the relocation.
3164 static inline unsigned int
3165 get_r_type(const Reltype* reloc)
3166 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3167
3168 static inline unsigned int
3169 get_r_type2(const Reltype*)
3170 { return 0; }
3171
3172 static inline unsigned int
3173 get_r_type3(const Reltype*)
3174 { return 0; }
3175
3176 static inline unsigned int
3177 get_r_ssym(const Reltype*)
3178 { return 0; }
3179
3180 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3181 static inline unsigned int
3182 get_r_addend(const Reltype* reloc)
3183 {
3184 if (sh_type_ == elfcpp::SHT_REL)
3185 return 0;
3186 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3187 }
3188
3189 // Write the r_info field to a new reloc, using the r_info field from
3190 // the original reloc, replacing the r_sym field with R_SYM.
3191 static inline void
3192 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3193 {
3194 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3195 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3196 }
3197
3198 // Write the r_addend field to a new reloc.
3199 static inline void
3200 put_r_addend(Reltype_write* to,
3201 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3202 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3203
3204 // Return the size of the addend of the relocation (only used for SHT_REL).
3205 static unsigned int
3206 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3207 { return mips_get_size_for_reloc(r_type, obj); }
3208 };
3209
3210 template<int sh_type_, bool big_endian>
3211 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3212 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3213 {
3214 public:
3215 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3216 Reltype;
3217 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3218 Reltype_write;
3219
3220 // Return the symbol referred to by the relocation.
3221 static inline unsigned int
3222 get_r_sym(const Reltype* reloc)
3223 { return reloc->get_r_sym(); }
3224
3225 // Return the r_type of the relocation.
3226 static inline unsigned int
3227 get_r_type(const Reltype* reloc)
3228 { return reloc->get_r_type(); }
3229
3230 // Return the r_type2 of the relocation.
3231 static inline unsigned int
3232 get_r_type2(const Reltype* reloc)
3233 { return reloc->get_r_type2(); }
3234
3235 // Return the r_type3 of the relocation.
3236 static inline unsigned int
3237 get_r_type3(const Reltype* reloc)
3238 { return reloc->get_r_type3(); }
3239
3240 // Return the special symbol of the relocation.
3241 static inline unsigned int
3242 get_r_ssym(const Reltype* reloc)
3243 { return reloc->get_r_ssym(); }
3244
3245 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3246 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3247 get_r_addend(const Reltype* reloc)
3248 {
3249 if (sh_type_ == elfcpp::SHT_REL)
3250 return 0;
3251 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3252 }
3253
3254 // Write the r_info field to a new reloc, using the r_info field from
3255 // the original reloc, replacing the r_sym field with R_SYM.
3256 static inline void
3257 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3258 {
3259 new_reloc->put_r_sym(r_sym);
3260 new_reloc->put_r_ssym(reloc->get_r_ssym());
3261 new_reloc->put_r_type3(reloc->get_r_type3());
3262 new_reloc->put_r_type2(reloc->get_r_type2());
3263 new_reloc->put_r_type(reloc->get_r_type());
3264 }
3265
3266 // Write the r_addend field to a new reloc.
3267 static inline void
3268 put_r_addend(Reltype_write* to,
3269 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3270 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3271
3272 // Return the size of the addend of the relocation (only used for SHT_REL).
3273 static unsigned int
3274 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3275 { return mips_get_size_for_reloc(r_type, obj); }
3276 };
3277
3278 template<int size, bool big_endian>
3279 class Target_mips : public Sized_target<size, big_endian>
3280 {
3281 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3282 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3283 Reloc_section;
3284 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3285 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3286 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3287 Reltype;
3288 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3289 Relatype;
3290
3291 public:
3292 Target_mips(const Target::Target_info* info = &mips_info)
3293 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3294 got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3295 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3296 mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3297 mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3298 entry_symbol_is_compressed_(false), insn32_(false)
3299 {
3300 this->add_machine_extensions();
3301 }
3302
3303 // The offset of $gp from the beginning of the .got section.
3304 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3305
3306 // The maximum size of the GOT for it to be addressable using 16-bit
3307 // offsets from $gp.
3308 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3309
3310 // Make a new symbol table entry for the Mips target.
3311 Sized_symbol<size>*
3312 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3313 { return new Mips_symbol<size>(); }
3314
3315 // Process the relocations to determine unreferenced sections for
3316 // garbage collection.
3317 void
3318 gc_process_relocs(Symbol_table* symtab,
3319 Layout* layout,
3320 Sized_relobj_file<size, big_endian>* object,
3321 unsigned int data_shndx,
3322 unsigned int sh_type,
3323 const unsigned char* prelocs,
3324 size_t reloc_count,
3325 Output_section* output_section,
3326 bool needs_special_offset_handling,
3327 size_t local_symbol_count,
3328 const unsigned char* plocal_symbols);
3329
3330 // Scan the relocations to look for symbol adjustments.
3331 void
3332 scan_relocs(Symbol_table* symtab,
3333 Layout* layout,
3334 Sized_relobj_file<size, big_endian>* object,
3335 unsigned int data_shndx,
3336 unsigned int sh_type,
3337 const unsigned char* prelocs,
3338 size_t reloc_count,
3339 Output_section* output_section,
3340 bool needs_special_offset_handling,
3341 size_t local_symbol_count,
3342 const unsigned char* plocal_symbols);
3343
3344 // Finalize the sections.
3345 void
3346 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3347
3348 // Relocate a section.
3349 void
3350 relocate_section(const Relocate_info<size, big_endian>*,
3351 unsigned int sh_type,
3352 const unsigned char* prelocs,
3353 size_t reloc_count,
3354 Output_section* output_section,
3355 bool needs_special_offset_handling,
3356 unsigned char* view,
3357 Mips_address view_address,
3358 section_size_type view_size,
3359 const Reloc_symbol_changes*);
3360
3361 // Scan the relocs during a relocatable link.
3362 void
3363 scan_relocatable_relocs(Symbol_table* symtab,
3364 Layout* layout,
3365 Sized_relobj_file<size, big_endian>* object,
3366 unsigned int data_shndx,
3367 unsigned int sh_type,
3368 const unsigned char* prelocs,
3369 size_t reloc_count,
3370 Output_section* output_section,
3371 bool needs_special_offset_handling,
3372 size_t local_symbol_count,
3373 const unsigned char* plocal_symbols,
3374 Relocatable_relocs*);
3375
3376 // Scan the relocs for --emit-relocs.
3377 void
3378 emit_relocs_scan(Symbol_table* symtab,
3379 Layout* layout,
3380 Sized_relobj_file<size, big_endian>* object,
3381 unsigned int data_shndx,
3382 unsigned int sh_type,
3383 const unsigned char* prelocs,
3384 size_t reloc_count,
3385 Output_section* output_section,
3386 bool needs_special_offset_handling,
3387 size_t local_symbol_count,
3388 const unsigned char* plocal_syms,
3389 Relocatable_relocs* rr);
3390
3391 // Emit relocations for a section.
3392 void
3393 relocate_relocs(const Relocate_info<size, big_endian>*,
3394 unsigned int sh_type,
3395 const unsigned char* prelocs,
3396 size_t reloc_count,
3397 Output_section* output_section,
3398 typename elfcpp::Elf_types<size>::Elf_Off
3399 offset_in_output_section,
3400 unsigned char* view,
3401 Mips_address view_address,
3402 section_size_type view_size,
3403 unsigned char* reloc_view,
3404 section_size_type reloc_view_size);
3405
3406 // Perform target-specific processing in a relocatable link. This is
3407 // only used if we use the relocation strategy RELOC_SPECIAL.
3408 void
3409 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3410 unsigned int sh_type,
3411 const unsigned char* preloc_in,
3412 size_t relnum,
3413 Output_section* output_section,
3414 typename elfcpp::Elf_types<size>::Elf_Off
3415 offset_in_output_section,
3416 unsigned char* view,
3417 Mips_address view_address,
3418 section_size_type view_size,
3419 unsigned char* preloc_out);
3420
3421 // Return whether SYM is defined by the ABI.
3422 bool
3423 do_is_defined_by_abi(const Symbol* sym) const
3424 {
3425 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3426 || (strcmp(sym->name(), "_gp_disp") == 0)
3427 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3428 }
3429
3430 // Return the number of entries in the GOT.
3431 unsigned int
3432 got_entry_count() const
3433 {
3434 if (!this->has_got_section())
3435 return 0;
3436 return this->got_size() / (size/8);
3437 }
3438
3439 // Return the number of entries in the PLT.
3440 unsigned int
3441 plt_entry_count() const
3442 {
3443 if (this->plt_ == NULL)
3444 return 0;
3445 return this->plt_->entry_count();
3446 }
3447
3448 // Return the offset of the first non-reserved PLT entry.
3449 unsigned int
3450 first_plt_entry_offset() const
3451 { return this->plt_->first_plt_entry_offset(); }
3452
3453 // Return the size of each PLT entry.
3454 unsigned int
3455 plt_entry_size() const
3456 { return this->plt_->plt_entry_size(); }
3457
3458 // Get the GOT section, creating it if necessary.
3459 Mips_output_data_got<size, big_endian>*
3460 got_section(Symbol_table*, Layout*);
3461
3462 // Get the GOT section.
3463 Mips_output_data_got<size, big_endian>*
3464 got_section() const
3465 {
3466 gold_assert(this->got_ != NULL);
3467 return this->got_;
3468 }
3469
3470 // Get the .MIPS.stubs section, creating it if necessary.
3471 Mips_output_data_mips_stubs<size, big_endian>*
3472 mips_stubs_section(Layout* layout);
3473
3474 // Get the .MIPS.stubs section.
3475 Mips_output_data_mips_stubs<size, big_endian>*
3476 mips_stubs_section() const
3477 {
3478 gold_assert(this->mips_stubs_ != NULL);
3479 return this->mips_stubs_;
3480 }
3481
3482 // Get the LA25 stub section, creating it if necessary.
3483 Mips_output_data_la25_stub<size, big_endian>*
3484 la25_stub_section(Layout*);
3485
3486 // Get the LA25 stub section.
3487 Mips_output_data_la25_stub<size, big_endian>*
3488 la25_stub_section()
3489 {
3490 gold_assert(this->la25_stub_ != NULL);
3491 return this->la25_stub_;
3492 }
3493
3494 // Get gp value. It has the value of .got + 0x7FF0.
3495 Mips_address
3496 gp_value() const
3497 {
3498 if (this->gp_ != NULL)
3499 return this->gp_->value();
3500 return 0;
3501 }
3502
3503 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3504 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3505 Mips_address
3506 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3507 {
3508 if (this->gp_ == NULL)
3509 return 0;
3510
3511 bool multi_got = false;
3512 if (this->has_got_section())
3513 multi_got = this->got_section()->multi_got();
3514 if (!multi_got)
3515 return this->gp_->value();
3516 else
3517 return this->gp_->value() + this->got_section()->get_got_offset(object);
3518 }
3519
3520 // Get the dynamic reloc section, creating it if necessary.
3521 Reloc_section*
3522 rel_dyn_section(Layout*);
3523
3524 bool
3525 do_has_custom_set_dynsym_indexes() const
3526 { return true; }
3527
3528 // Don't emit input .reginfo/.MIPS.abiflags sections to
3529 // output .reginfo/.MIPS.abiflags.
3530 bool
3531 do_should_include_section(elfcpp::Elf_Word sh_type) const
3532 {
3533 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3534 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3535 }
3536
3537 // Set the dynamic symbol indexes. INDEX is the index of the first
3538 // global dynamic symbol. Pointers to the symbols are stored into the
3539 // vector SYMS. The names are added to DYNPOOL. This returns an
3540 // updated dynamic symbol index.
3541 unsigned int
3542 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3543 std::vector<Symbol*>* syms, Stringpool* dynpool,
3544 Versions* versions, Symbol_table* symtab) const;
3545
3546 // Remove .MIPS.stubs entry for a symbol.
3547 void
3548 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3549 {
3550 if (this->mips_stubs_ != NULL)
3551 this->mips_stubs_->remove_entry(sym);
3552 }
3553
3554 // The value to write into got[1] for SVR4 targets, to identify it is
3555 // a GNU object. The dynamic linker can then use got[1] to store the
3556 // module pointer.
3557 uint64_t
3558 mips_elf_gnu_got1_mask()
3559 {
3560 if (this->is_output_n64())
3561 return (uint64_t)1 << 63;
3562 else
3563 return 1 << 31;
3564 }
3565
3566 // Whether the output has microMIPS code. This is valid only after
3567 // merge_obj_e_flags() is called.
3568 bool
3569 is_output_micromips() const
3570 {
3571 gold_assert(this->are_processor_specific_flags_set());
3572 return elfcpp::is_micromips(this->processor_specific_flags());
3573 }
3574
3575 // Whether the output uses N32 ABI. This is valid only after
3576 // merge_obj_e_flags() is called.
3577 bool
3578 is_output_n32() const
3579 {
3580 gold_assert(this->are_processor_specific_flags_set());
3581 return elfcpp::abi_n32(this->processor_specific_flags());
3582 }
3583
3584 // Whether the output uses R6 ISA. This is valid only after
3585 // merge_obj_e_flags() is called.
3586 bool
3587 is_output_r6() const
3588 {
3589 gold_assert(this->are_processor_specific_flags_set());
3590 return elfcpp::r6_isa(this->processor_specific_flags());
3591 }
3592
3593 // Whether the output uses N64 ABI.
3594 bool
3595 is_output_n64() const
3596 { return size == 64; }
3597
3598 // Whether the output uses NEWABI. This is valid only after
3599 // merge_obj_e_flags() is called.
3600 bool
3601 is_output_newabi() const
3602 { return this->is_output_n32() || this->is_output_n64(); }
3603
3604 // Whether we can only use 32-bit microMIPS instructions.
3605 bool
3606 use_32bit_micromips_instructions() const
3607 { return this->insn32_; }
3608
3609 // Return the r_sym field from a relocation.
3610 unsigned int
3611 get_r_sym(const unsigned char* preloc) const
3612 {
3613 // Since REL and RELA relocs share the same structure through
3614 // the r_info field, we can just use REL here.
3615 Reltype rel(preloc);
3616 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3617 get_r_sym(&rel);
3618 }
3619
3620 protected:
3621 // Return the value to use for a dynamic symbol which requires special
3622 // treatment. This is how we support equality comparisons of function
3623 // pointers across shared library boundaries, as described in the
3624 // processor specific ABI supplement.
3625 uint64_t
3626 do_dynsym_value(const Symbol* gsym) const;
3627
3628 // Make an ELF object.
3629 Object*
3630 do_make_elf_object(const std::string&, Input_file*, off_t,
3631 const elfcpp::Ehdr<size, big_endian>& ehdr);
3632
3633 Object*
3634 do_make_elf_object(const std::string&, Input_file*, off_t,
3635 const elfcpp::Ehdr<size, !big_endian>&)
3636 { gold_unreachable(); }
3637
3638 // Adjust ELF file header.
3639 void
3640 do_adjust_elf_header(unsigned char* view, int len);
3641
3642 // Get the custom dynamic tag value.
3643 unsigned int
3644 do_dynamic_tag_custom_value(elfcpp::DT) const;
3645
3646 // Adjust the value written to the dynamic symbol table.
3647 virtual void
3648 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3649 {
3650 elfcpp::Sym<size, big_endian> isym(view);
3651 elfcpp::Sym_write<size, big_endian> osym(view);
3652 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3653
3654 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3655 // to treat compressed symbols like any other.
3656 Mips_address value = isym.get_st_value();
3657 if (mips_sym->is_mips16() && value != 0)
3658 {
3659 if (!mips_sym->has_mips16_fn_stub())
3660 value |= 1;
3661 else
3662 {
3663 // If we have a MIPS16 function with a stub, the dynamic symbol
3664 // must refer to the stub, since only the stub uses the standard
3665 // calling conventions. Stub contains MIPS32 code, so don't add +1
3666 // in this case.
3667
3668 // There is a code which does this in the method
3669 // Target_mips::do_dynsym_value, but that code will only be
3670 // executed if the symbol is from dynobj.
3671 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3672 // table.
3673
3674 Mips16_stub_section<size, big_endian>* fn_stub =
3675 mips_sym->template get_mips16_fn_stub<big_endian>();
3676 value = fn_stub->output_address();
3677 osym.put_st_size(fn_stub->section_size());
3678 }
3679
3680 osym.put_st_value(value);
3681 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3682 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3683 }
3684 else if ((mips_sym->is_micromips()
3685 // Stubs are always microMIPS if there is any microMIPS code in
3686 // the output.
3687 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3688 && value != 0)
3689 {
3690 osym.put_st_value(value | 1);
3691 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3692 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3693 }
3694 }
3695
3696 private:
3697 // The class which scans relocations.
3698 class Scan
3699 {
3700 public:
3701 Scan()
3702 { }
3703
3704 static inline int
3705 get_reference_flags(unsigned int r_type);
3706
3707 inline void
3708 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3709 Sized_relobj_file<size, big_endian>* object,
3710 unsigned int data_shndx,
3711 Output_section* output_section,
3712 const Reltype& reloc, unsigned int r_type,
3713 const elfcpp::Sym<size, big_endian>& lsym,
3714 bool is_discarded);
3715
3716 inline void
3717 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3718 Sized_relobj_file<size, big_endian>* object,
3719 unsigned int data_shndx,
3720 Output_section* output_section,
3721 const Relatype& reloc, unsigned int r_type,
3722 const elfcpp::Sym<size, big_endian>& lsym,
3723 bool is_discarded);
3724
3725 inline void
3726 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3727 Sized_relobj_file<size, big_endian>* object,
3728 unsigned int data_shndx,
3729 Output_section* output_section,
3730 const Relatype* rela,
3731 const Reltype* rel,
3732 unsigned int rel_type,
3733 unsigned int r_type,
3734 const elfcpp::Sym<size, big_endian>& lsym,
3735 bool is_discarded);
3736
3737 inline void
3738 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3739 Sized_relobj_file<size, big_endian>* object,
3740 unsigned int data_shndx,
3741 Output_section* output_section,
3742 const Reltype& reloc, unsigned int r_type,
3743 Symbol* gsym);
3744
3745 inline void
3746 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3747 Sized_relobj_file<size, big_endian>* object,
3748 unsigned int data_shndx,
3749 Output_section* output_section,
3750 const Relatype& reloc, unsigned int r_type,
3751 Symbol* gsym);
3752
3753 inline void
3754 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3755 Sized_relobj_file<size, big_endian>* object,
3756 unsigned int data_shndx,
3757 Output_section* output_section,
3758 const Relatype* rela,
3759 const Reltype* rel,
3760 unsigned int rel_type,
3761 unsigned int r_type,
3762 Symbol* gsym);
3763
3764 inline bool
3765 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3766 Target_mips*,
3767 Sized_relobj_file<size, big_endian>*,
3768 unsigned int,
3769 Output_section*,
3770 const Reltype&,
3771 unsigned int,
3772 const elfcpp::Sym<size, big_endian>&)
3773 { return false; }
3774
3775 inline bool
3776 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3777 Target_mips*,
3778 Sized_relobj_file<size, big_endian>*,
3779 unsigned int,
3780 Output_section*,
3781 const Reltype&,
3782 unsigned int, Symbol*)
3783 { return false; }
3784
3785 inline bool
3786 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3787 Target_mips*,
3788 Sized_relobj_file<size, big_endian>*,
3789 unsigned int,
3790 Output_section*,
3791 const Relatype&,
3792 unsigned int,
3793 const elfcpp::Sym<size, big_endian>&)
3794 { return false; }
3795
3796 inline bool
3797 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3798 Target_mips*,
3799 Sized_relobj_file<size, big_endian>*,
3800 unsigned int,
3801 Output_section*,
3802 const Relatype&,
3803 unsigned int, Symbol*)
3804 { return false; }
3805 private:
3806 static void
3807 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3808 unsigned int r_type);
3809
3810 static void
3811 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3812 unsigned int r_type, Symbol*);
3813 };
3814
3815 // The class which implements relocation.
3816 class Relocate
3817 {
3818 public:
3819 Relocate()
3820 { }
3821
3822 ~Relocate()
3823 { }
3824
3825 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3826 inline bool
3827 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3828 unsigned int r_type,
3829 Output_section* output_section,
3830 Target_mips* target);
3831
3832 // Do a relocation. Return false if the caller should not issue
3833 // any warnings about this relocation.
3834 inline bool
3835 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3836 Target_mips*, Output_section*, size_t, const unsigned char*,
3837 const Sized_symbol<size>*, const Symbol_value<size>*,
3838 unsigned char*, Mips_address, section_size_type);
3839 };
3840
3841 // This POD class holds the dynamic relocations that should be emitted instead
3842 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3843 // relocations if it turns out that the symbol does not have static
3844 // relocations.
3845 class Dyn_reloc
3846 {
3847 public:
3848 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3849 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3850 Output_section* output_section, Mips_address r_offset)
3851 : sym_(sym), r_type_(r_type), relobj_(relobj),
3852 shndx_(shndx), output_section_(output_section),
3853 r_offset_(r_offset)
3854 { }
3855
3856 // Emit this reloc if appropriate. This is called after we have
3857 // scanned all the relocations, so we know whether the symbol has
3858 // static relocations.
3859 void
3860 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3861 Symbol_table* symtab)
3862 {
3863 if (!this->sym_->has_static_relocs())
3864 {
3865 got->record_global_got_symbol(this->sym_, this->relobj_,
3866 this->r_type_, true, false);
3867 if (!symbol_references_local(this->sym_,
3868 this->sym_->should_add_dynsym_entry(symtab)))
3869 rel_dyn->add_global(this->sym_, this->r_type_,
3870 this->output_section_, this->relobj_,
3871 this->shndx_, this->r_offset_);
3872 else
3873 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3874 this->output_section_, this->relobj_,
3875 this->shndx_, this->r_offset_);
3876 }
3877 }
3878
3879 private:
3880 Mips_symbol<size>* sym_;
3881 unsigned int r_type_;
3882 Mips_relobj<size, big_endian>* relobj_;
3883 unsigned int shndx_;
3884 Output_section* output_section_;
3885 Mips_address r_offset_;
3886 };
3887
3888 // Adjust TLS relocation type based on the options and whether this
3889 // is a local symbol.
3890 static tls::Tls_optimization
3891 optimize_tls_reloc(bool is_final, int r_type);
3892
3893 // Return whether there is a GOT section.
3894 bool
3895 has_got_section() const
3896 { return this->got_ != NULL; }
3897
3898 // Check whether the given ELF header flags describe a 32-bit binary.
3899 bool
3900 mips_32bit_flags(elfcpp::Elf_Word);
3901
3902 enum Mips_mach {
3903 mach_mips3000 = 3000,
3904 mach_mips3900 = 3900,
3905 mach_mips4000 = 4000,
3906 mach_mips4010 = 4010,
3907 mach_mips4100 = 4100,
3908 mach_mips4111 = 4111,
3909 mach_mips4120 = 4120,
3910 mach_mips4300 = 4300,
3911 mach_mips4400 = 4400,
3912 mach_mips4600 = 4600,
3913 mach_mips4650 = 4650,
3914 mach_mips5000 = 5000,
3915 mach_mips5400 = 5400,
3916 mach_mips5500 = 5500,
3917 mach_mips5900 = 5900,
3918 mach_mips6000 = 6000,
3919 mach_mips7000 = 7000,
3920 mach_mips8000 = 8000,
3921 mach_mips9000 = 9000,
3922 mach_mips10000 = 10000,
3923 mach_mips12000 = 12000,
3924 mach_mips14000 = 14000,
3925 mach_mips16000 = 16000,
3926 mach_mips16 = 16,
3927 mach_mips5 = 5,
3928 mach_mips_loongson_2e = 3001,
3929 mach_mips_loongson_2f = 3002,
3930 mach_mips_loongson_3a = 3003,
3931 mach_mips_sb1 = 12310201, // octal 'SB', 01
3932 mach_mips_octeon = 6501,
3933 mach_mips_octeonp = 6601,
3934 mach_mips_octeon2 = 6502,
3935 mach_mips_octeon3 = 6503,
3936 mach_mips_xlr = 887682, // decimal 'XLR'
3937 mach_mipsisa32 = 32,
3938 mach_mipsisa32r2 = 33,
3939 mach_mipsisa32r3 = 34,
3940 mach_mipsisa32r5 = 36,
3941 mach_mipsisa32r6 = 37,
3942 mach_mipsisa64 = 64,
3943 mach_mipsisa64r2 = 65,
3944 mach_mipsisa64r3 = 66,
3945 mach_mipsisa64r5 = 68,
3946 mach_mipsisa64r6 = 69,
3947 mach_mips_micromips = 96
3948 };
3949
3950 // Return the MACH for a MIPS e_flags value.
3951 unsigned int
3952 elf_mips_mach(elfcpp::Elf_Word);
3953
3954 // Return the MACH for each .MIPS.abiflags ISA Extension.
3955 unsigned int
3956 mips_isa_ext_mach(unsigned int);
3957
3958 // Return the .MIPS.abiflags value representing each ISA Extension.
3959 unsigned int
3960 mips_isa_ext(unsigned int);
3961
3962 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
3963 void
3964 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
3965 Mips_abiflags<big_endian>*);
3966
3967 // Infer the content of the ABI flags based on the elf header.
3968 void
3969 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3970
3971 // Create abiflags from elf header or from .MIPS.abiflags section.
3972 void
3973 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3974
3975 // Return the meaning of fp_abi, or "unknown" if not known.
3976 const char*
3977 fp_abi_string(int);
3978
3979 // Select fp_abi.
3980 int
3981 select_fp_abi(const std::string&, int, int);
3982
3983 // Merge attributes from input object.
3984 void
3985 merge_obj_attributes(const std::string&, const Attributes_section_data*);
3986
3987 // Merge abiflags from input object.
3988 void
3989 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
3990
3991 // Check whether machine EXTENSION is an extension of machine BASE.
3992 bool
3993 mips_mach_extends(unsigned int, unsigned int);
3994
3995 // Merge file header flags from input object.
3996 void
3997 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
3998
3999 // Encode ISA level and revision as a single value.
4000 int
4001 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4002 { return (isa_level << 3) | isa_rev; }
4003
4004 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4005 static inline bool
4006 jal_to_bal()
4007 { return false; }
4008
4009 // True if we are linking for CPUs that are faster if JALR is converted to
4010 // BAL. This should be safe for all architectures. We enable this predicate
4011 // for all CPUs.
4012 static inline bool
4013 jalr_to_bal()
4014 { return true; }
4015
4016 // True if we are linking for CPUs that are faster if JR is converted to B.
4017 // This should be safe for all architectures. We enable this predicate for
4018 // all CPUs.
4019 static inline bool
4020 jr_to_b()
4021 { return true; }
4022
4023 // Return the size of the GOT section.
4024 section_size_type
4025 got_size() const
4026 {
4027 gold_assert(this->got_ != NULL);
4028 return this->got_->data_size();
4029 }
4030
4031 // Create a PLT entry for a global symbol referenced by r_type relocation.
4032 void
4033 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4034 unsigned int r_type);
4035
4036 // Get the PLT section.
4037 Mips_output_data_plt<size, big_endian>*
4038 plt_section() const
4039 {
4040 gold_assert(this->plt_ != NULL);
4041 return this->plt_;
4042 }
4043
4044 // Get the GOT PLT section.
4045 const Mips_output_data_plt<size, big_endian>*
4046 got_plt_section() const
4047 {
4048 gold_assert(this->got_plt_ != NULL);
4049 return this->got_plt_;
4050 }
4051
4052 // Copy a relocation against a global symbol.
4053 void
4054 copy_reloc(Symbol_table* symtab, Layout* layout,
4055 Sized_relobj_file<size, big_endian>* object,
4056 unsigned int shndx, Output_section* output_section,
4057 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4058 {
4059 this->copy_relocs_.copy_reloc(symtab, layout,
4060 symtab->get_sized_symbol<size>(sym),
4061 object, shndx, output_section,
4062 r_type, r_offset, 0,
4063 this->rel_dyn_section(layout));
4064 }
4065
4066 void
4067 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4068 Mips_relobj<size, big_endian>* relobj,
4069 unsigned int shndx, Output_section* output_section,
4070 Mips_address r_offset)
4071 {
4072 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4073 output_section, r_offset));
4074 }
4075
4076 // Calculate value of _gp symbol.
4077 void
4078 set_gp(Layout*, Symbol_table*);
4079
4080 const char*
4081 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4082 const char*
4083 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4084
4085 // Adds entries that describe how machines relate to one another. The entries
4086 // are ordered topologically with MIPS I extensions listed last. First
4087 // element is extension, second element is base.
4088 void
4089 add_machine_extensions()
4090 {
4091 // MIPS64r2 extensions.
4092 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4093 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4094 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4095 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4096 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4097
4098 // MIPS64 extensions.
4099 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4100 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4101 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4102
4103 // MIPS V extensions.
4104 this->add_extension(mach_mipsisa64, mach_mips5);
4105
4106 // R10000 extensions.
4107 this->add_extension(mach_mips12000, mach_mips10000);
4108 this->add_extension(mach_mips14000, mach_mips10000);
4109 this->add_extension(mach_mips16000, mach_mips10000);
4110
4111 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4112 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4113 // better to allow vr5400 and vr5500 code to be merged anyway, since
4114 // many libraries will just use the core ISA. Perhaps we could add
4115 // some sort of ASE flag if this ever proves a problem.
4116 this->add_extension(mach_mips5500, mach_mips5400);
4117 this->add_extension(mach_mips5400, mach_mips5000);
4118
4119 // MIPS IV extensions.
4120 this->add_extension(mach_mips5, mach_mips8000);
4121 this->add_extension(mach_mips10000, mach_mips8000);
4122 this->add_extension(mach_mips5000, mach_mips8000);
4123 this->add_extension(mach_mips7000, mach_mips8000);
4124 this->add_extension(mach_mips9000, mach_mips8000);
4125
4126 // VR4100 extensions.
4127 this->add_extension(mach_mips4120, mach_mips4100);
4128 this->add_extension(mach_mips4111, mach_mips4100);
4129
4130 // MIPS III extensions.
4131 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4132 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4133 this->add_extension(mach_mips8000, mach_mips4000);
4134 this->add_extension(mach_mips4650, mach_mips4000);
4135 this->add_extension(mach_mips4600, mach_mips4000);
4136 this->add_extension(mach_mips4400, mach_mips4000);
4137 this->add_extension(mach_mips4300, mach_mips4000);
4138 this->add_extension(mach_mips4100, mach_mips4000);
4139 this->add_extension(mach_mips4010, mach_mips4000);
4140 this->add_extension(mach_mips5900, mach_mips4000);
4141
4142 // MIPS32 extensions.
4143 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4144
4145 // MIPS II extensions.
4146 this->add_extension(mach_mips4000, mach_mips6000);
4147 this->add_extension(mach_mipsisa32, mach_mips6000);
4148
4149 // MIPS I extensions.
4150 this->add_extension(mach_mips6000, mach_mips3000);
4151 this->add_extension(mach_mips3900, mach_mips3000);
4152 }
4153
4154 // Add value to MIPS extenstions.
4155 void
4156 add_extension(unsigned int base, unsigned int extension)
4157 {
4158 std::pair<unsigned int, unsigned int> ext(base, extension);
4159 this->mips_mach_extensions_.push_back(ext);
4160 }
4161
4162 // Return the number of entries in the .dynsym section.
4163 unsigned int get_dt_mips_symtabno() const
4164 {
4165 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4166 / elfcpp::Elf_sizes<size>::sym_size));
4167 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4168 }
4169
4170 // Information about this specific target which we pass to the
4171 // general Target structure.
4172 static const Target::Target_info mips_info;
4173 // The GOT section.
4174 Mips_output_data_got<size, big_endian>* got_;
4175 // gp symbol. It has the value of .got + 0x7FF0.
4176 Sized_symbol<size>* gp_;
4177 // The PLT section.
4178 Mips_output_data_plt<size, big_endian>* plt_;
4179 // The GOT PLT section.
4180 Output_data_space* got_plt_;
4181 // The dynamic reloc section.
4182 Reloc_section* rel_dyn_;
4183 // The .rld_map section.
4184 Output_data_zero_fill* rld_map_;
4185 // Relocs saved to avoid a COPY reloc.
4186 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4187
4188 // A list of dyn relocs to be saved.
4189 std::vector<Dyn_reloc> dyn_relocs_;
4190
4191 // The LA25 stub section.
4192 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4193 // Architecture extensions.
4194 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4195 // .MIPS.stubs
4196 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4197
4198 // Attributes section data in output.
4199 Attributes_section_data* attributes_section_data_;
4200 // .MIPS.abiflags section data in output.
4201 Mips_abiflags<big_endian>* abiflags_;
4202
4203 unsigned int mach_;
4204 Layout* layout_;
4205
4206 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4207
4208 // Whether there is an input .MIPS.abiflags section.
4209 bool has_abiflags_section_;
4210
4211 // Whether the entry symbol is mips16 or micromips.
4212 bool entry_symbol_is_compressed_;
4213
4214 // Whether we can use only 32-bit microMIPS instructions.
4215 // TODO(sasa): This should be a linker option.
4216 bool insn32_;
4217 };
4218
4219 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4220 // It records high part of the relocation pair.
4221
4222 template<int size, bool big_endian>
4223 struct reloc_high
4224 {
4225 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4226
4227 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4228 const Symbol_value<size>* _psymval, Mips_address _addend,
4229 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4230 Mips_address _address = 0, bool _gp_disp = false)
4231 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4232 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4233 address(_address), gp_disp(_gp_disp)
4234 { }
4235
4236 unsigned char* view;
4237 const Mips_relobj<size, big_endian>* object;
4238 const Symbol_value<size>* psymval;
4239 Mips_address addend;
4240 unsigned int r_type;
4241 unsigned int r_sym;
4242 bool extract_addend;
4243 Mips_address address;
4244 bool gp_disp;
4245 };
4246
4247 template<int size, bool big_endian>
4248 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4249 {
4250 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4251 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4252 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4253 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4254 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4255
4256 public:
4257 typedef enum
4258 {
4259 STATUS_OKAY, // No error during relocation.
4260 STATUS_OVERFLOW, // Relocation overflow.
4261 STATUS_BAD_RELOC, // Relocation cannot be applied.
4262 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4263 } Status;
4264
4265 private:
4266 typedef Relocate_functions<size, big_endian> Base;
4267 typedef Mips_relocate_functions<size, big_endian> This;
4268
4269 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4270 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4271 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4272
4273 template<int valsize>
4274 static inline typename This::Status
4275 check_overflow(Valtype value)
4276 {
4277 if (size == 32)
4278 return (Bits<valsize>::has_overflow32(value)
4279 ? This::STATUS_OVERFLOW
4280 : This::STATUS_OKAY);
4281
4282 return (Bits<valsize>::has_overflow(value)
4283 ? This::STATUS_OVERFLOW
4284 : This::STATUS_OKAY);
4285 }
4286
4287 static inline bool
4288 should_shuffle_micromips_reloc(unsigned int r_type)
4289 {
4290 return (micromips_reloc(r_type)
4291 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4292 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4293 }
4294
4295 public:
4296 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4297 // Most mips16 instructions are 16 bits, but these instructions
4298 // are 32 bits.
4299 //
4300 // The format of these instructions is:
4301 //
4302 // +--------------+--------------------------------+
4303 // | JALX | X| Imm 20:16 | Imm 25:21 |
4304 // +--------------+--------------------------------+
4305 // | Immediate 15:0 |
4306 // +-----------------------------------------------+
4307 //
4308 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4309 // Note that the immediate value in the first word is swapped.
4310 //
4311 // When producing a relocatable object file, R_MIPS16_26 is
4312 // handled mostly like R_MIPS_26. In particular, the addend is
4313 // stored as a straight 26-bit value in a 32-bit instruction.
4314 // (gas makes life simpler for itself by never adjusting a
4315 // R_MIPS16_26 reloc to be against a section, so the addend is
4316 // always zero). However, the 32 bit instruction is stored as 2
4317 // 16-bit values, rather than a single 32-bit value. In a
4318 // big-endian file, the result is the same; in a little-endian
4319 // file, the two 16-bit halves of the 32 bit value are swapped.
4320 // This is so that a disassembler can recognize the jal
4321 // instruction.
4322 //
4323 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4324 // instruction stored as two 16-bit values. The addend A is the
4325 // contents of the targ26 field. The calculation is the same as
4326 // R_MIPS_26. When storing the calculated value, reorder the
4327 // immediate value as shown above, and don't forget to store the
4328 // value as two 16-bit values.
4329 //
4330 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4331 // defined as
4332 //
4333 // big-endian:
4334 // +--------+----------------------+
4335 // | | |
4336 // | | targ26-16 |
4337 // |31 26|25 0|
4338 // +--------+----------------------+
4339 //
4340 // little-endian:
4341 // +----------+------+-------------+
4342 // | | | |
4343 // | sub1 | | sub2 |
4344 // |0 9|10 15|16 31|
4345 // +----------+--------------------+
4346 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4347 // ((sub1 << 16) | sub2)).
4348 //
4349 // When producing a relocatable object file, the calculation is
4350 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4351 // When producing a fully linked file, the calculation is
4352 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4353 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4354 //
4355 // The table below lists the other MIPS16 instruction relocations.
4356 // Each one is calculated in the same way as the non-MIPS16 relocation
4357 // given on the right, but using the extended MIPS16 layout of 16-bit
4358 // immediate fields:
4359 //
4360 // R_MIPS16_GPREL R_MIPS_GPREL16
4361 // R_MIPS16_GOT16 R_MIPS_GOT16
4362 // R_MIPS16_CALL16 R_MIPS_CALL16
4363 // R_MIPS16_HI16 R_MIPS_HI16
4364 // R_MIPS16_LO16 R_MIPS_LO16
4365 //
4366 // A typical instruction will have a format like this:
4367 //
4368 // +--------------+--------------------------------+
4369 // | EXTEND | Imm 10:5 | Imm 15:11 |
4370 // +--------------+--------------------------------+
4371 // | Major | rx | ry | Imm 4:0 |
4372 // +--------------+--------------------------------+
4373 //
4374 // EXTEND is the five bit value 11110. Major is the instruction
4375 // opcode.
4376 //
4377 // All we need to do here is shuffle the bits appropriately.
4378 // As above, the two 16-bit halves must be swapped on a
4379 // little-endian system.
4380
4381 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4382 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4383 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4384
4385 static void
4386 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4387 bool jal_shuffle)
4388 {
4389 if (!mips16_reloc(r_type)
4390 && !should_shuffle_micromips_reloc(r_type))
4391 return;
4392
4393 // Pick up the first and second halfwords of the instruction.
4394 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4395 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4396 Valtype32 val;
4397
4398 if (micromips_reloc(r_type)
4399 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4400 val = first << 16 | second;
4401 else if (r_type != elfcpp::R_MIPS16_26)
4402 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4403 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4404 else
4405 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4406 | ((first & 0x1f) << 21) | second);
4407
4408 elfcpp::Swap<32, big_endian>::writeval(view, val);
4409 }
4410
4411 static void
4412 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4413 {
4414 if (!mips16_reloc(r_type)
4415 && !should_shuffle_micromips_reloc(r_type))
4416 return;
4417
4418 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4419 Valtype16 first, second;
4420
4421 if (micromips_reloc(r_type)
4422 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4423 {
4424 second = val & 0xffff;
4425 first = val >> 16;
4426 }
4427 else if (r_type != elfcpp::R_MIPS16_26)
4428 {
4429 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4430 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4431 }
4432 else
4433 {
4434 second = val & 0xffff;
4435 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4436 | ((val >> 21) & 0x1f);
4437 }
4438
4439 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4440 elfcpp::Swap<16, big_endian>::writeval(view, first);
4441 }
4442
4443 // R_MIPS_16: S + sign-extend(A)
4444 static inline typename This::Status
4445 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4446 const Symbol_value<size>* psymval, Mips_address addend_a,
4447 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4448 {
4449 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4450 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4451
4452 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4453 : addend_a);
4454
4455 Valtype x = psymval->value(object, addend);
4456 val = Bits<16>::bit_select32(val, x, 0xffffU);
4457
4458 if (calculate_only)
4459 {
4460 *calculated_value = x;
4461 return This::STATUS_OKAY;
4462 }
4463 else
4464 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4465
4466 return check_overflow<16>(x);
4467 }
4468
4469 // R_MIPS_32: S + A
4470 static inline typename This::Status
4471 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4472 const Symbol_value<size>* psymval, Mips_address addend_a,
4473 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4474 {
4475 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4476 Valtype addend = (extract_addend
4477 ? elfcpp::Swap<32, big_endian>::readval(wv)
4478 : addend_a);
4479 Valtype x = psymval->value(object, addend);
4480
4481 if (calculate_only)
4482 *calculated_value = x;
4483 else
4484 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4485
4486 return This::STATUS_OKAY;
4487 }
4488
4489 // R_MIPS_JALR, R_MICROMIPS_JALR
4490 static inline typename This::Status
4491 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4492 const Symbol_value<size>* psymval, Mips_address address,
4493 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4494 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4495 bool calculate_only, Valtype* calculated_value)
4496 {
4497 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4498 Valtype addend = extract_addend ? 0 : addend_a;
4499 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4500
4501 // Try converting J(AL)R to B(AL), if the target is in range.
4502 if (!parameters->options().relocatable()
4503 && r_type == elfcpp::R_MIPS_JALR
4504 && !cross_mode_jump
4505 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4506 || (jr_to_b && val == 0x03200008))) // jr t9
4507 {
4508 int offset = psymval->value(object, addend) - (address + 4);
4509 if (!Bits<18>::has_overflow32(offset))
4510 {
4511 if (val == 0x03200008) // jr t9
4512 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4513 else
4514 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4515 }
4516 }
4517
4518 if (calculate_only)
4519 *calculated_value = val;
4520 else
4521 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4522
4523 return This::STATUS_OKAY;
4524 }
4525
4526 // R_MIPS_PC32: S + A - P
4527 static inline typename This::Status
4528 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4529 const Symbol_value<size>* psymval, Mips_address address,
4530 Mips_address addend_a, bool extract_addend, bool calculate_only,
4531 Valtype* calculated_value)
4532 {
4533 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4534 Valtype addend = (extract_addend
4535 ? elfcpp::Swap<32, big_endian>::readval(wv)
4536 : addend_a);
4537 Valtype x = psymval->value(object, addend) - address;
4538
4539 if (calculate_only)
4540 *calculated_value = x;
4541 else
4542 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4543
4544 return This::STATUS_OKAY;
4545 }
4546
4547 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4548 static inline typename This::Status
4549 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4550 const Symbol_value<size>* psymval, Mips_address address,
4551 bool local, Mips_address addend_a, bool extract_addend,
4552 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4553 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4554 {
4555 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4556 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4557
4558 Valtype addend;
4559 if (extract_addend)
4560 {
4561 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4562 addend = (val & 0x03ffffff) << 1;
4563 else
4564 addend = (val & 0x03ffffff) << 2;
4565 }
4566 else
4567 addend = addend_a;
4568
4569 // Make sure the target of JALX is word-aligned. Bit 0 must be
4570 // the correct ISA mode selector and bit 1 must be 0.
4571 if (!calculate_only && cross_mode_jump
4572 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4573 {
4574 gold_warning(_("JALX to a non-word-aligned address"));
4575 return This::STATUS_BAD_RELOC;
4576 }
4577
4578 // Shift is 2, unusually, for microMIPS JALX.
4579 unsigned int shift =
4580 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4581
4582 Valtype x;
4583 if (local)
4584 x = addend | ((address + 4) & (0xfc000000 << shift));
4585 else
4586 {
4587 if (shift == 1)
4588 x = Bits<27>::sign_extend32(addend);
4589 else
4590 x = Bits<28>::sign_extend32(addend);
4591 }
4592 x = psymval->value(object, x) >> shift;
4593
4594 if (!calculate_only && !local && !gsym->is_weak_undefined()
4595 && ((x >> 26) != ((address + 4) >> (26 + shift))))
4596 return This::STATUS_OVERFLOW;
4597
4598 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4599
4600 // If required, turn JAL into JALX.
4601 if (cross_mode_jump)
4602 {
4603 bool ok;
4604 Valtype32 opcode = val >> 26;
4605 Valtype32 jalx_opcode;
4606
4607 // Check to see if the opcode is already JAL or JALX.
4608 if (r_type == elfcpp::R_MIPS16_26)
4609 {
4610 ok = (opcode == 0x6) || (opcode == 0x7);
4611 jalx_opcode = 0x7;
4612 }
4613 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4614 {
4615 ok = (opcode == 0x3d) || (opcode == 0x3c);
4616 jalx_opcode = 0x3c;
4617 }
4618 else
4619 {
4620 ok = (opcode == 0x3) || (opcode == 0x1d);
4621 jalx_opcode = 0x1d;
4622 }
4623
4624 // If the opcode is not JAL or JALX, there's a problem. We cannot
4625 // convert J or JALS to JALX.
4626 if (!calculate_only && !ok)
4627 {
4628 gold_error(_("Unsupported jump between ISA modes; consider "
4629 "recompiling with interlinking enabled."));
4630 return This::STATUS_BAD_RELOC;
4631 }
4632
4633 // Make this the JALX opcode.
4634 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4635 }
4636
4637 // Try converting JAL to BAL, if the target is in range.
4638 if (!parameters->options().relocatable()
4639 && !cross_mode_jump
4640 && ((jal_to_bal
4641 && r_type == elfcpp::R_MIPS_26
4642 && (val >> 26) == 0x3))) // jal addr
4643 {
4644 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4645 int offset = dest - (address + 4);
4646 if (!Bits<18>::has_overflow32(offset))
4647 {
4648 if (val == 0x03200008) // jr t9
4649 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4650 else
4651 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4652 }
4653 }
4654
4655 if (calculate_only)
4656 *calculated_value = val;
4657 else
4658 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4659
4660 return This::STATUS_OKAY;
4661 }
4662
4663 // R_MIPS_PC16
4664 static inline typename This::Status
4665 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4666 const Symbol_value<size>* psymval, Mips_address address,
4667 Mips_address addend_a, bool extract_addend, bool calculate_only,
4668 Valtype* calculated_value)
4669 {
4670 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4671 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4672
4673 Valtype addend = (extract_addend
4674 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4675 : addend_a);
4676
4677 Valtype x = psymval->value(object, addend) - address;
4678 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4679
4680 if (calculate_only)
4681 {
4682 *calculated_value = x >> 2;
4683 return This::STATUS_OKAY;
4684 }
4685 else
4686 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4687
4688 if (psymval->value(object, addend) & 3)
4689 return This::STATUS_PCREL_UNALIGNED;
4690
4691 return check_overflow<18>(x);
4692 }
4693
4694 // R_MIPS_PC21_S2
4695 static inline typename This::Status
4696 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4697 const Symbol_value<size>* psymval, Mips_address address,
4698 Mips_address addend_a, bool extract_addend, bool calculate_only,
4699 Valtype* calculated_value)
4700 {
4701 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4702 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4703
4704 Valtype addend = (extract_addend
4705 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4706 : addend_a);
4707
4708 Valtype x = psymval->value(object, addend) - address;
4709 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4710
4711 if (calculate_only)
4712 {
4713 *calculated_value = x >> 2;
4714 return This::STATUS_OKAY;
4715 }
4716 else
4717 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4718
4719 if (psymval->value(object, addend) & 3)
4720 return This::STATUS_PCREL_UNALIGNED;
4721
4722 return check_overflow<23>(x);
4723 }
4724
4725 // R_MIPS_PC26_S2
4726 static inline typename This::Status
4727 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4728 const Symbol_value<size>* psymval, Mips_address address,
4729 Mips_address addend_a, bool extract_addend, bool calculate_only,
4730 Valtype* calculated_value)
4731 {
4732 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4733 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4734
4735 Valtype addend = (extract_addend
4736 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4737 : addend_a);
4738
4739 Valtype x = psymval->value(object, addend) - address;
4740 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4741
4742 if (calculate_only)
4743 {
4744 *calculated_value = x >> 2;
4745 return This::STATUS_OKAY;
4746 }
4747 else
4748 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4749
4750 if (psymval->value(object, addend) & 3)
4751 return This::STATUS_PCREL_UNALIGNED;
4752
4753 return check_overflow<28>(x);
4754 }
4755
4756 // R_MIPS_PC18_S3
4757 static inline typename This::Status
4758 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4759 const Symbol_value<size>* psymval, Mips_address address,
4760 Mips_address addend_a, bool extract_addend, bool calculate_only,
4761 Valtype* calculated_value)
4762 {
4763 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4764 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4765
4766 Valtype addend = (extract_addend
4767 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4768 : addend_a);
4769
4770 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4771 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4772
4773 if (calculate_only)
4774 {
4775 *calculated_value = x >> 3;
4776 return This::STATUS_OKAY;
4777 }
4778 else
4779 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4780
4781 if (psymval->value(object, addend) & 7)
4782 return This::STATUS_PCREL_UNALIGNED;
4783
4784 return check_overflow<21>(x);
4785 }
4786
4787 // R_MIPS_PC19_S2
4788 static inline typename This::Status
4789 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4790 const Symbol_value<size>* psymval, Mips_address address,
4791 Mips_address addend_a, bool extract_addend, bool calculate_only,
4792 Valtype* calculated_value)
4793 {
4794 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4795 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4796
4797 Valtype addend = (extract_addend
4798 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4799 : addend_a);
4800
4801 Valtype x = psymval->value(object, addend) - address;
4802 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4803
4804 if (calculate_only)
4805 {
4806 *calculated_value = x >> 2;
4807 return This::STATUS_OKAY;
4808 }
4809 else
4810 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4811
4812 if (psymval->value(object, addend) & 3)
4813 return This::STATUS_PCREL_UNALIGNED;
4814
4815 return check_overflow<21>(x);
4816 }
4817
4818 // R_MIPS_PCHI16
4819 static inline typename This::Status
4820 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4821 const Symbol_value<size>* psymval, Mips_address addend,
4822 Mips_address address, unsigned int r_sym, bool extract_addend)
4823 {
4824 // Record the relocation. It will be resolved when we find pclo16 part.
4825 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4826 addend, 0, r_sym, extract_addend, address));
4827 return This::STATUS_OKAY;
4828 }
4829
4830 // R_MIPS_PCHI16
4831 static inline typename This::Status
4832 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4833 const Symbol_value<size>* psymval, Mips_address addend_hi,
4834 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4835 bool calculate_only, Valtype* calculated_value)
4836 {
4837 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4838 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4839
4840 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4841 : addend_hi);
4842
4843 Valtype value = psymval->value(object, addend) - address;
4844 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4845 val = Bits<32>::bit_select32(val, x, 0xffff);
4846
4847 if (calculate_only)
4848 *calculated_value = x;
4849 else
4850 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4851
4852 return This::STATUS_OKAY;
4853 }
4854
4855 // R_MIPS_PCLO16
4856 static inline typename This::Status
4857 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4858 const Symbol_value<size>* psymval, Mips_address addend_a,
4859 bool extract_addend, Mips_address address, unsigned int r_sym,
4860 unsigned int rel_type, bool calculate_only,
4861 Valtype* calculated_value)
4862 {
4863 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4864 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4865
4866 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4867 : addend_a);
4868
4869 if (rel_type == elfcpp::SHT_REL)
4870 {
4871 // Resolve pending R_MIPS_PCHI16 relocations.
4872 typename std::list<reloc_high<size, big_endian> >::iterator it =
4873 pchi16_relocs.begin();
4874 while (it != pchi16_relocs.end())
4875 {
4876 reloc_high<size, big_endian> pchi16 = *it;
4877 if (pchi16.r_sym == r_sym)
4878 {
4879 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4880 pchi16.addend, pchi16.address,
4881 pchi16.extract_addend, addend, calculate_only,
4882 calculated_value);
4883 it = pchi16_relocs.erase(it);
4884 }
4885 else
4886 ++it;
4887 }
4888 }
4889
4890 // Resolve R_MIPS_PCLO16 relocation.
4891 Valtype x = psymval->value(object, addend) - address;
4892 val = Bits<32>::bit_select32(val, x, 0xffff);
4893
4894 if (calculate_only)
4895 *calculated_value = x;
4896 else
4897 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4898
4899 return This::STATUS_OKAY;
4900 }
4901
4902 // R_MICROMIPS_PC7_S1
4903 static inline typename This::Status
4904 relmicromips_pc7_s1(unsigned char* view,
4905 const Mips_relobj<size, big_endian>* object,
4906 const Symbol_value<size>* psymval, Mips_address address,
4907 Mips_address addend_a, bool extract_addend,
4908 bool calculate_only, Valtype* calculated_value)
4909 {
4910 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4911 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4912
4913 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4914 : addend_a;
4915
4916 Valtype x = psymval->value(object, addend) - address;
4917 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4918
4919 if (calculate_only)
4920 {
4921 *calculated_value = x >> 1;
4922 return This::STATUS_OKAY;
4923 }
4924 else
4925 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4926
4927 return check_overflow<8>(x);
4928 }
4929
4930 // R_MICROMIPS_PC10_S1
4931 static inline typename This::Status
4932 relmicromips_pc10_s1(unsigned char* view,
4933 const Mips_relobj<size, big_endian>* object,
4934 const Symbol_value<size>* psymval, Mips_address address,
4935 Mips_address addend_a, bool extract_addend,
4936 bool calculate_only, Valtype* calculated_value)
4937 {
4938 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4939 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4940
4941 Valtype addend = (extract_addend
4942 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4943 : addend_a);
4944
4945 Valtype x = psymval->value(object, addend) - address;
4946 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4947
4948 if (calculate_only)
4949 {
4950 *calculated_value = x >> 1;
4951 return This::STATUS_OKAY;
4952 }
4953 else
4954 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4955
4956 return check_overflow<11>(x);
4957 }
4958
4959 // R_MICROMIPS_PC16_S1
4960 static inline typename This::Status
4961 relmicromips_pc16_s1(unsigned char* view,
4962 const Mips_relobj<size, big_endian>* object,
4963 const Symbol_value<size>* psymval, Mips_address address,
4964 Mips_address addend_a, bool extract_addend,
4965 bool calculate_only, Valtype* calculated_value)
4966 {
4967 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4968 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4969
4970 Valtype addend = (extract_addend
4971 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
4972 : addend_a);
4973
4974 Valtype x = psymval->value(object, addend) - address;
4975 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4976
4977 if (calculate_only)
4978 {
4979 *calculated_value = x >> 1;
4980 return This::STATUS_OKAY;
4981 }
4982 else
4983 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4984
4985 return check_overflow<17>(x);
4986 }
4987
4988 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4989 static inline typename This::Status
4990 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4991 const Symbol_value<size>* psymval, Mips_address addend,
4992 Mips_address address, bool gp_disp, unsigned int r_type,
4993 unsigned int r_sym, bool extract_addend)
4994 {
4995 // Record the relocation. It will be resolved when we find lo16 part.
4996 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4997 addend, r_type, r_sym, extract_addend, address,
4998 gp_disp));
4999 return This::STATUS_OKAY;
5000 }
5001
5002 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5003 static inline typename This::Status
5004 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5005 const Symbol_value<size>* psymval, Mips_address addend_hi,
5006 Mips_address address, bool is_gp_disp, unsigned int r_type,
5007 bool extract_addend, Valtype32 addend_lo,
5008 Target_mips<size, big_endian>* target, bool calculate_only,
5009 Valtype* calculated_value)
5010 {
5011 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5012 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5013
5014 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5015 : addend_hi);
5016
5017 Valtype32 value;
5018 if (!is_gp_disp)
5019 value = psymval->value(object, addend);
5020 else
5021 {
5022 // For MIPS16 ABI code we generate this sequence
5023 // 0: li $v0,%hi(_gp_disp)
5024 // 4: addiupc $v1,%lo(_gp_disp)
5025 // 8: sll $v0,16
5026 // 12: addu $v0,$v1
5027 // 14: move $gp,$v0
5028 // So the offsets of hi and lo relocs are the same, but the
5029 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5030 // ADDIUPC clears the low two bits of the instruction address,
5031 // so the base is ($t9 + 4) & ~3.
5032 Valtype32 gp_disp;
5033 if (r_type == elfcpp::R_MIPS16_HI16)
5034 gp_disp = (target->adjusted_gp_value(object)
5035 - ((address + 4) & ~0x3));
5036 // The microMIPS .cpload sequence uses the same assembly
5037 // instructions as the traditional psABI version, but the
5038 // incoming $t9 has the low bit set.
5039 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5040 gp_disp = target->adjusted_gp_value(object) - address - 1;
5041 else
5042 gp_disp = target->adjusted_gp_value(object) - address;
5043 value = gp_disp + addend;
5044 }
5045 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5046 val = Bits<32>::bit_select32(val, x, 0xffff);
5047
5048 if (calculate_only)
5049 {
5050 *calculated_value = x;
5051 return This::STATUS_OKAY;
5052 }
5053 else
5054 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5055
5056 return (is_gp_disp ? check_overflow<16>(x)
5057 : This::STATUS_OKAY);
5058 }
5059
5060 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5061 static inline typename This::Status
5062 relgot16_local(unsigned char* view,
5063 const Mips_relobj<size, big_endian>* object,
5064 const Symbol_value<size>* psymval, Mips_address addend_a,
5065 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5066 {
5067 // Record the relocation. It will be resolved when we find lo16 part.
5068 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5069 addend_a, r_type, r_sym, extract_addend));
5070 return This::STATUS_OKAY;
5071 }
5072
5073 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5074 static inline typename This::Status
5075 do_relgot16_local(unsigned char* view,
5076 const Mips_relobj<size, big_endian>* object,
5077 const Symbol_value<size>* psymval, Mips_address addend_hi,
5078 bool extract_addend, Valtype32 addend_lo,
5079 Target_mips<size, big_endian>* target, bool calculate_only,
5080 Valtype* calculated_value)
5081 {
5082 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5083 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5084
5085 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5086 : addend_hi);
5087
5088 // Find GOT page entry.
5089 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5090 & 0xffff;
5091 value <<= 16;
5092 unsigned int got_offset =
5093 target->got_section()->get_got_page_offset(value, object);
5094
5095 // Resolve the relocation.
5096 Valtype x = target->got_section()->gp_offset(got_offset, object);
5097 val = Bits<32>::bit_select32(val, x, 0xffff);
5098
5099 if (calculate_only)
5100 {
5101 *calculated_value = x;
5102 return This::STATUS_OKAY;
5103 }
5104 else
5105 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5106
5107 return check_overflow<16>(x);
5108 }
5109
5110 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5111 static inline typename This::Status
5112 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5113 const Mips_relobj<size, big_endian>* object,
5114 const Symbol_value<size>* psymval, Mips_address addend_a,
5115 bool extract_addend, Mips_address address, bool is_gp_disp,
5116 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5117 bool calculate_only, Valtype* calculated_value)
5118 {
5119 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5120 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5121
5122 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5123 : addend_a);
5124
5125 if (rel_type == elfcpp::SHT_REL)
5126 {
5127 typename This::Status reloc_status = This::STATUS_OKAY;
5128 // Resolve pending R_MIPS_HI16 relocations.
5129 typename std::list<reloc_high<size, big_endian> >::iterator it =
5130 hi16_relocs.begin();
5131 while (it != hi16_relocs.end())
5132 {
5133 reloc_high<size, big_endian> hi16 = *it;
5134 if (hi16.r_sym == r_sym
5135 && is_matching_lo16_reloc(hi16.r_type, r_type))
5136 {
5137 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5138 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5139 hi16.addend, hi16.address, hi16.gp_disp,
5140 hi16.r_type, hi16.extract_addend, addend,
5141 target, calculate_only, calculated_value);
5142 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5143 if (reloc_status == This::STATUS_OVERFLOW)
5144 return This::STATUS_OVERFLOW;
5145 it = hi16_relocs.erase(it);
5146 }
5147 else
5148 ++it;
5149 }
5150
5151 // Resolve pending local R_MIPS_GOT16 relocations.
5152 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5153 got16_relocs.begin();
5154 while (it2 != got16_relocs.end())
5155 {
5156 reloc_high<size, big_endian> got16 = *it2;
5157 if (got16.r_sym == r_sym
5158 && is_matching_lo16_reloc(got16.r_type, r_type))
5159 {
5160 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5161
5162 reloc_status = do_relgot16_local(got16.view, got16.object,
5163 got16.psymval, got16.addend,
5164 got16.extract_addend, addend, target,
5165 calculate_only, calculated_value);
5166
5167 mips_reloc_shuffle(got16.view, got16.r_type, false);
5168 if (reloc_status == This::STATUS_OVERFLOW)
5169 return This::STATUS_OVERFLOW;
5170 it2 = got16_relocs.erase(it2);
5171 }
5172 else
5173 ++it2;
5174 }
5175 }
5176
5177 // Resolve R_MIPS_LO16 relocation.
5178 Valtype x;
5179 if (!is_gp_disp)
5180 x = psymval->value(object, addend);
5181 else
5182 {
5183 // See the comment for R_MIPS16_HI16 above for the reason
5184 // for this conditional.
5185 Valtype32 gp_disp;
5186 if (r_type == elfcpp::R_MIPS16_LO16)
5187 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5188 else if (r_type == elfcpp::R_MICROMIPS_LO16
5189 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5190 gp_disp = target->adjusted_gp_value(object) - address + 3;
5191 else
5192 gp_disp = target->adjusted_gp_value(object) - address + 4;
5193 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5194 // for overflow. Relocations against _gp_disp are normally
5195 // generated from the .cpload pseudo-op. It generates code
5196 // that normally looks like this:
5197
5198 // lui $gp,%hi(_gp_disp)
5199 // addiu $gp,$gp,%lo(_gp_disp)
5200 // addu $gp,$gp,$t9
5201
5202 // Here $t9 holds the address of the function being called,
5203 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5204 // relocation can easily overflow in this situation, but the
5205 // R_MIPS_HI16 relocation will handle the overflow.
5206 // Therefore, we consider this a bug in the MIPS ABI, and do
5207 // not check for overflow here.
5208 x = gp_disp + addend;
5209 }
5210 val = Bits<32>::bit_select32(val, x, 0xffff);
5211
5212 if (calculate_only)
5213 *calculated_value = x;
5214 else
5215 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5216
5217 return This::STATUS_OKAY;
5218 }
5219
5220 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5221 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5222 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5223 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5224 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5225 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5226 static inline typename This::Status
5227 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5228 Valtype* calculated_value)
5229 {
5230 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5231 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5232 Valtype x = gp_offset;
5233 val = Bits<32>::bit_select32(val, x, 0xffff);
5234
5235 if (calculate_only)
5236 {
5237 *calculated_value = x;
5238 return This::STATUS_OKAY;
5239 }
5240 else
5241 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5242
5243 return check_overflow<16>(x);
5244 }
5245
5246 // R_MIPS_EH
5247 static inline typename This::Status
5248 releh(unsigned char* view, int gp_offset, bool calculate_only,
5249 Valtype* calculated_value)
5250 {
5251 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5252 Valtype x = gp_offset;
5253
5254 if (calculate_only)
5255 {
5256 *calculated_value = x;
5257 return This::STATUS_OKAY;
5258 }
5259 else
5260 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5261
5262 return check_overflow<32>(x);
5263 }
5264
5265 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5266 static inline typename This::Status
5267 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5268 const Mips_relobj<size, big_endian>* object,
5269 const Symbol_value<size>* psymval, Mips_address addend_a,
5270 bool extract_addend, bool calculate_only,
5271 Valtype* calculated_value)
5272 {
5273 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5274 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5275 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5276
5277 // Find a GOT page entry that points to within 32KB of symbol + addend.
5278 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5279 unsigned int got_offset =
5280 target->got_section()->get_got_page_offset(value, object);
5281
5282 Valtype x = target->got_section()->gp_offset(got_offset, object);
5283 val = Bits<32>::bit_select32(val, x, 0xffff);
5284
5285 if (calculate_only)
5286 {
5287 *calculated_value = x;
5288 return This::STATUS_OKAY;
5289 }
5290 else
5291 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5292
5293 return check_overflow<16>(x);
5294 }
5295
5296 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5297 static inline typename This::Status
5298 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5299 const Mips_relobj<size, big_endian>* object,
5300 const Symbol_value<size>* psymval, Mips_address addend_a,
5301 bool extract_addend, bool local, bool calculate_only,
5302 Valtype* calculated_value)
5303 {
5304 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5305 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5306 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5307
5308 // For a local symbol, find a GOT page entry that points to within 32KB of
5309 // symbol + addend. Relocation value is the offset of the GOT page entry's
5310 // value from symbol + addend.
5311 // For a global symbol, relocation value is addend.
5312 Valtype x;
5313 if (local)
5314 {
5315 // Find GOT page entry.
5316 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5317 & ~0xffff);
5318 target->got_section()->get_got_page_offset(value, object);
5319
5320 x = psymval->value(object, addend) - value;
5321 }
5322 else
5323 x = addend;
5324 val = Bits<32>::bit_select32(val, x, 0xffff);
5325
5326 if (calculate_only)
5327 {
5328 *calculated_value = x;
5329 return This::STATUS_OKAY;
5330 }
5331 else
5332 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5333
5334 return check_overflow<16>(x);
5335 }
5336
5337 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5338 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5339 static inline typename This::Status
5340 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5341 Valtype* calculated_value)
5342 {
5343 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5344 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5345 Valtype x = gp_offset;
5346 x = ((x + 0x8000) >> 16) & 0xffff;
5347 val = Bits<32>::bit_select32(val, x, 0xffff);
5348
5349 if (calculate_only)
5350 *calculated_value = x;
5351 else
5352 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5353
5354 return This::STATUS_OKAY;
5355 }
5356
5357 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5358 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5359 static inline typename This::Status
5360 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5361 Valtype* calculated_value)
5362 {
5363 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5364 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5365 Valtype x = gp_offset;
5366 val = Bits<32>::bit_select32(val, x, 0xffff);
5367
5368 if (calculate_only)
5369 *calculated_value = x;
5370 else
5371 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5372
5373 return This::STATUS_OKAY;
5374 }
5375
5376 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5377 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5378 static inline typename This::Status
5379 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5380 const Symbol_value<size>* psymval, Mips_address gp,
5381 Mips_address addend_a, bool extract_addend, bool local,
5382 unsigned int r_type, bool calculate_only,
5383 Valtype* calculated_value)
5384 {
5385 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5386 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5387
5388 Valtype addend;
5389 if (extract_addend)
5390 {
5391 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5392 addend = (val & 0x7f) << 2;
5393 else
5394 addend = val & 0xffff;
5395 // Only sign-extend the addend if it was extracted from the
5396 // instruction. If the addend was separate, leave it alone,
5397 // otherwise we may lose significant bits.
5398 addend = Bits<16>::sign_extend32(addend);
5399 }
5400 else
5401 addend = addend_a;
5402
5403 Valtype x = psymval->value(object, addend) - gp;
5404
5405 // If the symbol was local, any earlier relocatable links will
5406 // have adjusted its addend with the gp offset, so compensate
5407 // for that now. Don't do it for symbols forced local in this
5408 // link, though, since they won't have had the gp offset applied
5409 // to them before.
5410 if (local)
5411 x += object->gp_value();
5412
5413 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5414 val = Bits<32>::bit_select32(val, x, 0x7f);
5415 else
5416 val = Bits<32>::bit_select32(val, x, 0xffff);
5417
5418 if (calculate_only)
5419 {
5420 *calculated_value = x;
5421 return This::STATUS_OKAY;
5422 }
5423 else
5424 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5425
5426 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5427 {
5428 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5429 "limit (see option -G)"));
5430 return This::STATUS_OVERFLOW;
5431 }
5432 return This::STATUS_OKAY;
5433 }
5434
5435 // R_MIPS_GPREL32
5436 static inline typename This::Status
5437 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5438 const Symbol_value<size>* psymval, Mips_address gp,
5439 Mips_address addend_a, bool extract_addend, bool calculate_only,
5440 Valtype* calculated_value)
5441 {
5442 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5443 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5444 Valtype addend = extract_addend ? val : addend_a;
5445
5446 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5447 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5448
5449 if (calculate_only)
5450 *calculated_value = x;
5451 else
5452 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5453
5454 return This::STATUS_OKAY;
5455 }
5456
5457 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5458 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5459 // R_MICROMIPS_TLS_DTPREL_HI16
5460 static inline typename This::Status
5461 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5462 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5463 Mips_address addend_a, bool extract_addend, bool calculate_only,
5464 Valtype* calculated_value)
5465 {
5466 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5467 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5468 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5469
5470 // tls symbol values are relative to tls_segment()->vaddr()
5471 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5472 val = Bits<32>::bit_select32(val, x, 0xffff);
5473
5474 if (calculate_only)
5475 *calculated_value = x;
5476 else
5477 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5478
5479 return This::STATUS_OKAY;
5480 }
5481
5482 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5483 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5484 // R_MICROMIPS_TLS_DTPREL_LO16,
5485 static inline typename This::Status
5486 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5487 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5488 Mips_address addend_a, bool extract_addend, bool calculate_only,
5489 Valtype* calculated_value)
5490 {
5491 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5492 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5493 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5494
5495 // tls symbol values are relative to tls_segment()->vaddr()
5496 Valtype x = psymval->value(object, addend) - tp_offset;
5497 val = Bits<32>::bit_select32(val, x, 0xffff);
5498
5499 if (calculate_only)
5500 *calculated_value = x;
5501 else
5502 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5503
5504 return This::STATUS_OKAY;
5505 }
5506
5507 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5508 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5509 static inline typename This::Status
5510 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5511 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5512 Mips_address addend_a, bool extract_addend, bool calculate_only,
5513 Valtype* calculated_value)
5514 {
5515 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5516 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5517 Valtype addend = extract_addend ? val : addend_a;
5518
5519 // tls symbol values are relative to tls_segment()->vaddr()
5520 Valtype x = psymval->value(object, addend) - tp_offset;
5521
5522 if (calculate_only)
5523 *calculated_value = x;
5524 else
5525 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5526
5527 return This::STATUS_OKAY;
5528 }
5529
5530 // R_MIPS_SUB, R_MICROMIPS_SUB
5531 static inline typename This::Status
5532 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5533 const Symbol_value<size>* psymval, Mips_address addend_a,
5534 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5535 {
5536 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5537 Valtype64 addend = (extract_addend
5538 ? elfcpp::Swap<64, big_endian>::readval(wv)
5539 : addend_a);
5540
5541 Valtype64 x = psymval->value(object, -addend);
5542 if (calculate_only)
5543 *calculated_value = x;
5544 else
5545 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5546
5547 return This::STATUS_OKAY;
5548 }
5549
5550 // R_MIPS_64: S + A
5551 static inline typename This::Status
5552 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5553 const Symbol_value<size>* psymval, Mips_address addend_a,
5554 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5555 bool apply_addend_only)
5556 {
5557 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5558 Valtype64 addend = (extract_addend
5559 ? elfcpp::Swap<64, big_endian>::readval(wv)
5560 : addend_a);
5561
5562 Valtype64 x = psymval->value(object, addend);
5563 if (calculate_only)
5564 *calculated_value = x;
5565 else
5566 {
5567 if (apply_addend_only)
5568 x = addend;
5569 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5570 }
5571
5572 return This::STATUS_OKAY;
5573 }
5574
5575 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5576 static inline typename This::Status
5577 relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5578 const Symbol_value<size>* psymval, Mips_address addend_a,
5579 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5580 {
5581 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5582 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5583 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5584 : addend_a);
5585
5586 Valtype x = psymval->value(object, addend);
5587 x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5588 val = Bits<32>::bit_select32(val, x, 0xffff);
5589
5590 if (calculate_only)
5591 *calculated_value = x;
5592 else
5593 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5594
5595 return This::STATUS_OKAY;
5596 }
5597
5598 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5599 static inline typename This::Status
5600 relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5601 const Symbol_value<size>* psymval, Mips_address addend_a,
5602 bool extract_addend, bool calculate_only,
5603 Valtype* calculated_value)
5604 {
5605 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5606 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5607 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5608 : addend_a);
5609
5610 Valtype x = psymval->value(object, addend);
5611 x = ((x + (uint64_t) 0x800080008000) >> 48) & 0xffff;
5612 val = Bits<32>::bit_select32(val, x, 0xffff);
5613
5614 if (calculate_only)
5615 *calculated_value = x;
5616 else
5617 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5618
5619 return This::STATUS_OKAY;
5620 }
5621 };
5622
5623 template<int size, bool big_endian>
5624 typename std::list<reloc_high<size, big_endian> >
5625 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5626
5627 template<int size, bool big_endian>
5628 typename std::list<reloc_high<size, big_endian> >
5629 Mips_relocate_functions<size, big_endian>::got16_relocs;
5630
5631 template<int size, bool big_endian>
5632 typename std::list<reloc_high<size, big_endian> >
5633 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5634
5635 // Mips_got_info methods.
5636
5637 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5638 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5639
5640 template<int size, bool big_endian>
5641 void
5642 Mips_got_info<size, big_endian>::record_local_got_symbol(
5643 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5644 Mips_address addend, unsigned int r_type, unsigned int shndx,
5645 bool is_section_symbol)
5646 {
5647 Mips_got_entry<size, big_endian>* entry =
5648 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5649 mips_elf_reloc_tls_type(r_type),
5650 shndx, is_section_symbol);
5651 this->record_got_entry(entry, object);
5652 }
5653
5654 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5655 // in OBJECT. FOR_CALL is true if the caller is only interested in
5656 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5657 // relocation.
5658
5659 template<int size, bool big_endian>
5660 void
5661 Mips_got_info<size, big_endian>::record_global_got_symbol(
5662 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5663 unsigned int r_type, bool dyn_reloc, bool for_call)
5664 {
5665 if (!for_call)
5666 mips_sym->set_got_not_only_for_calls();
5667
5668 // A global symbol in the GOT must also be in the dynamic symbol table.
5669 if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5670 {
5671 switch (mips_sym->visibility())
5672 {
5673 case elfcpp::STV_INTERNAL:
5674 case elfcpp::STV_HIDDEN:
5675 mips_sym->set_is_forced_local();
5676 break;
5677 default:
5678 mips_sym->set_needs_dynsym_entry();
5679 break;
5680 }
5681 }
5682
5683 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5684 if (tls_type == GOT_TLS_NONE)
5685 this->global_got_symbols_.insert(mips_sym);
5686
5687 if (dyn_reloc)
5688 {
5689 if (mips_sym->global_got_area() == GGA_NONE)
5690 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5691 return;
5692 }
5693
5694 Mips_got_entry<size, big_endian>* entry =
5695 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5696
5697 this->record_got_entry(entry, object);
5698 }
5699
5700 // Add ENTRY to master GOT and to OBJECT's GOT.
5701
5702 template<int size, bool big_endian>
5703 void
5704 Mips_got_info<size, big_endian>::record_got_entry(
5705 Mips_got_entry<size, big_endian>* entry,
5706 Mips_relobj<size, big_endian>* object)
5707 {
5708 this->got_entries_.insert(entry);
5709
5710 // Create the GOT entry for the OBJECT's GOT.
5711 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5712 Mips_got_entry<size, big_endian>* entry2 =
5713 new Mips_got_entry<size, big_endian>(*entry);
5714
5715 g->got_entries_.insert(entry2);
5716 }
5717
5718 // Record that OBJECT has a page relocation against symbol SYMNDX and
5719 // that ADDEND is the addend for that relocation.
5720 // This function creates an upper bound on the number of GOT slots
5721 // required; no attempt is made to combine references to non-overridable
5722 // global symbols across multiple input files.
5723
5724 template<int size, bool big_endian>
5725 void
5726 Mips_got_info<size, big_endian>::record_got_page_entry(
5727 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5728 {
5729 struct Got_page_range **range_ptr, *range;
5730 int old_pages, new_pages;
5731
5732 // Find the Got_page_entry for this symbol.
5733 Got_page_entry* entry = new Got_page_entry(object, symndx);
5734 typename Got_page_entry_set::iterator it =
5735 this->got_page_entries_.find(entry);
5736 if (it != this->got_page_entries_.end())
5737 entry = *it;
5738 else
5739 this->got_page_entries_.insert(entry);
5740
5741 // Add the same entry to the OBJECT's GOT.
5742 Got_page_entry* entry2 = NULL;
5743 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5744 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5745 {
5746 entry2 = new Got_page_entry(*entry);
5747 g2->got_page_entries_.insert(entry2);
5748 }
5749
5750 // Skip over ranges whose maximum extent cannot share a page entry
5751 // with ADDEND.
5752 range_ptr = &entry->ranges;
5753 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5754 range_ptr = &(*range_ptr)->next;
5755
5756 // If we scanned to the end of the list, or found a range whose
5757 // minimum extent cannot share a page entry with ADDEND, create
5758 // a new singleton range.
5759 range = *range_ptr;
5760 if (!range || addend < range->min_addend - 0xffff)
5761 {
5762 range = new Got_page_range();
5763 range->next = *range_ptr;
5764 range->min_addend = addend;
5765 range->max_addend = addend;
5766
5767 *range_ptr = range;
5768 ++entry->num_pages;
5769 if (entry2 != NULL)
5770 ++entry2->num_pages;
5771 ++this->page_gotno_;
5772 ++g2->page_gotno_;
5773 return;
5774 }
5775
5776 // Remember how many pages the old range contributed.
5777 old_pages = range->get_max_pages();
5778
5779 // Update the ranges.
5780 if (addend < range->min_addend)
5781 range->min_addend = addend;
5782 else if (addend > range->max_addend)
5783 {
5784 if (range->next && addend >= range->next->min_addend - 0xffff)
5785 {
5786 old_pages += range->next->get_max_pages();
5787 range->max_addend = range->next->max_addend;
5788 range->next = range->next->next;
5789 }
5790 else
5791 range->max_addend = addend;
5792 }
5793
5794 // Record any change in the total estimate.
5795 new_pages = range->get_max_pages();
5796 if (old_pages != new_pages)
5797 {
5798 entry->num_pages += new_pages - old_pages;
5799 if (entry2 != NULL)
5800 entry2->num_pages += new_pages - old_pages;
5801 this->page_gotno_ += new_pages - old_pages;
5802 g2->page_gotno_ += new_pages - old_pages;
5803 }
5804 }
5805
5806 // Create all entries that should be in the local part of the GOT.
5807
5808 template<int size, bool big_endian>
5809 void
5810 Mips_got_info<size, big_endian>::add_local_entries(
5811 Target_mips<size, big_endian>* target, Layout* layout)
5812 {
5813 Mips_output_data_got<size, big_endian>* got = target->got_section();
5814 // First two GOT entries are reserved. The first entry will be filled at
5815 // runtime. The second entry will be used by some runtime loaders.
5816 got->add_constant(0);
5817 got->add_constant(target->mips_elf_gnu_got1_mask());
5818
5819 for (typename Got_entry_set::iterator
5820 p = this->got_entries_.begin();
5821 p != this->got_entries_.end();
5822 ++p)
5823 {
5824 Mips_got_entry<size, big_endian>* entry = *p;
5825 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5826 {
5827 got->add_local(entry->object(), entry->symndx(),
5828 GOT_TYPE_STANDARD, entry->addend());
5829 unsigned int got_offset = entry->object()->local_got_offset(
5830 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5831 if (got->multi_got() && this->index_ > 0
5832 && parameters->options().output_is_position_independent())
5833 {
5834 if (!entry->is_section_symbol())
5835 target->rel_dyn_section(layout)->add_local(entry->object(),
5836 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5837 else
5838 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5839 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5840 got, got_offset);
5841 }
5842 }
5843 }
5844
5845 this->add_page_entries(target, layout);
5846
5847 // Add global entries that should be in the local area.
5848 for (typename Got_entry_set::iterator
5849 p = this->got_entries_.begin();
5850 p != this->got_entries_.end();
5851 ++p)
5852 {
5853 Mips_got_entry<size, big_endian>* entry = *p;
5854 if (!entry->is_for_global_symbol())
5855 continue;
5856
5857 Mips_symbol<size>* mips_sym = entry->sym();
5858 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5859 {
5860 unsigned int got_type;
5861 if (!got->multi_got())
5862 got_type = GOT_TYPE_STANDARD;
5863 else
5864 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5865 if (got->add_global(mips_sym, got_type))
5866 {
5867 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5868 if (got->multi_got() && this->index_ > 0
5869 && parameters->options().output_is_position_independent())
5870 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5871 mips_sym, elfcpp::R_MIPS_REL32, got,
5872 mips_sym->got_offset(got_type));
5873 }
5874 }
5875 }
5876 }
5877
5878 // Create GOT page entries.
5879
5880 template<int size, bool big_endian>
5881 void
5882 Mips_got_info<size, big_endian>::add_page_entries(
5883 Target_mips<size, big_endian>* target, Layout* layout)
5884 {
5885 if (this->page_gotno_ == 0)
5886 return;
5887
5888 Mips_output_data_got<size, big_endian>* got = target->got_section();
5889 this->got_page_offset_start_ = got->add_constant(0);
5890 if (got->multi_got() && this->index_ > 0
5891 && parameters->options().output_is_position_independent())
5892 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5893 this->got_page_offset_start_);
5894 int num_entries = this->page_gotno_;
5895 unsigned int prev_offset = this->got_page_offset_start_;
5896 while (--num_entries > 0)
5897 {
5898 unsigned int next_offset = got->add_constant(0);
5899 if (got->multi_got() && this->index_ > 0
5900 && parameters->options().output_is_position_independent())
5901 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5902 next_offset);
5903 gold_assert(next_offset == prev_offset + size/8);
5904 prev_offset = next_offset;
5905 }
5906 this->got_page_offset_next_ = this->got_page_offset_start_;
5907 }
5908
5909 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5910
5911 template<int size, bool big_endian>
5912 void
5913 Mips_got_info<size, big_endian>::add_global_entries(
5914 Target_mips<size, big_endian>* target, Layout* layout,
5915 unsigned int non_reloc_only_global_gotno)
5916 {
5917 Mips_output_data_got<size, big_endian>* got = target->got_section();
5918 // Add GGA_NORMAL entries.
5919 unsigned int count = 0;
5920 for (typename Got_entry_set::iterator
5921 p = this->got_entries_.begin();
5922 p != this->got_entries_.end();
5923 ++p)
5924 {
5925 Mips_got_entry<size, big_endian>* entry = *p;
5926 if (!entry->is_for_global_symbol())
5927 continue;
5928
5929 Mips_symbol<size>* mips_sym = entry->sym();
5930 if (mips_sym->global_got_area() != GGA_NORMAL)
5931 continue;
5932
5933 unsigned int got_type;
5934 if (!got->multi_got())
5935 got_type = GOT_TYPE_STANDARD;
5936 else
5937 // In multi-GOT links, global symbol can be in both primary and
5938 // secondary GOT(s). By creating custom GOT type
5939 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5940 // is added to secondary GOT(s).
5941 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5942 if (!got->add_global(mips_sym, got_type))
5943 continue;
5944
5945 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5946 if (got->multi_got() && this->index_ == 0)
5947 count++;
5948 if (got->multi_got() && this->index_ > 0)
5949 {
5950 if (parameters->options().output_is_position_independent()
5951 || (!parameters->doing_static_link()
5952 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5953 {
5954 target->rel_dyn_section(layout)->add_global(
5955 mips_sym, elfcpp::R_MIPS_REL32, got,
5956 mips_sym->got_offset(got_type));
5957 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5958 elfcpp::R_MIPS_REL32, mips_sym);
5959 }
5960 }
5961 }
5962
5963 if (!got->multi_got() || this->index_ == 0)
5964 {
5965 if (got->multi_got())
5966 {
5967 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5968 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5969 // entries correspond to dynamic symbol indexes.
5970 while (count < non_reloc_only_global_gotno)
5971 {
5972 got->add_constant(0);
5973 ++count;
5974 }
5975 }
5976
5977 // Add GGA_RELOC_ONLY entries.
5978 got->add_reloc_only_entries();
5979 }
5980 }
5981
5982 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5983
5984 template<int size, bool big_endian>
5985 void
5986 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5987 Mips_output_data_got<size, big_endian>* got)
5988 {
5989 for (typename Global_got_entry_set::iterator
5990 p = this->global_got_symbols_.begin();
5991 p != this->global_got_symbols_.end();
5992 ++p)
5993 {
5994 Mips_symbol<size>* mips_sym = *p;
5995 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5996 {
5997 unsigned int got_type;
5998 if (!got->multi_got())
5999 got_type = GOT_TYPE_STANDARD;
6000 else
6001 got_type = GOT_TYPE_STANDARD_MULTIGOT;
6002 if (got->add_global(mips_sym, got_type))
6003 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6004 }
6005 }
6006 }
6007
6008 // Create TLS GOT entries.
6009
6010 template<int size, bool big_endian>
6011 void
6012 Mips_got_info<size, big_endian>::add_tls_entries(
6013 Target_mips<size, big_endian>* target, Layout* layout)
6014 {
6015 Mips_output_data_got<size, big_endian>* got = target->got_section();
6016 // Add local tls entries.
6017 for (typename Got_entry_set::iterator
6018 p = this->got_entries_.begin();
6019 p != this->got_entries_.end();
6020 ++p)
6021 {
6022 Mips_got_entry<size, big_endian>* entry = *p;
6023 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6024 continue;
6025
6026 if (entry->tls_type() == GOT_TLS_GD)
6027 {
6028 unsigned int got_type = GOT_TYPE_TLS_PAIR;
6029 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6030 : elfcpp::R_MIPS_TLS_DTPMOD64);
6031 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6032 : elfcpp::R_MIPS_TLS_DTPREL64);
6033
6034 if (!parameters->doing_static_link())
6035 {
6036 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6037 entry->shndx(), got_type,
6038 target->rel_dyn_section(layout),
6039 r_type1, entry->addend());
6040 unsigned int got_offset =
6041 entry->object()->local_got_offset(entry->symndx(), got_type,
6042 entry->addend());
6043 got->add_static_reloc(got_offset + size/8, r_type2,
6044 entry->object(), entry->symndx());
6045 }
6046 else
6047 {
6048 // We are doing a static link. Mark it as belong to module 1,
6049 // the executable.
6050 unsigned int got_offset = got->add_constant(1);
6051 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6052 got_offset,
6053 entry->addend());
6054 got->add_constant(0);
6055 got->add_static_reloc(got_offset + size/8, r_type2,
6056 entry->object(), entry->symndx());
6057 }
6058 }
6059 else if (entry->tls_type() == GOT_TLS_IE)
6060 {
6061 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6062 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6063 : elfcpp::R_MIPS_TLS_TPREL64);
6064 if (!parameters->doing_static_link())
6065 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6066 target->rel_dyn_section(layout), r_type,
6067 entry->addend());
6068 else
6069 {
6070 got->add_local(entry->object(), entry->symndx(), got_type,
6071 entry->addend());
6072 unsigned int got_offset =
6073 entry->object()->local_got_offset(entry->symndx(), got_type,
6074 entry->addend());
6075 got->add_static_reloc(got_offset, r_type, entry->object(),
6076 entry->symndx());
6077 }
6078 }
6079 else if (entry->tls_type() == GOT_TLS_LDM)
6080 {
6081 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6082 : elfcpp::R_MIPS_TLS_DTPMOD64);
6083 unsigned int got_offset;
6084 if (!parameters->doing_static_link())
6085 {
6086 got_offset = got->add_constant(0);
6087 target->rel_dyn_section(layout)->add_local(
6088 entry->object(), 0, r_type, got, got_offset);
6089 }
6090 else
6091 // We are doing a static link. Just mark it as belong to module 1,
6092 // the executable.
6093 got_offset = got->add_constant(1);
6094
6095 got->add_constant(0);
6096 got->set_tls_ldm_offset(got_offset, entry->object());
6097 }
6098 else
6099 gold_unreachable();
6100 }
6101
6102 // Add global tls entries.
6103 for (typename Got_entry_set::iterator
6104 p = this->got_entries_.begin();
6105 p != this->got_entries_.end();
6106 ++p)
6107 {
6108 Mips_got_entry<size, big_endian>* entry = *p;
6109 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6110 continue;
6111
6112 Mips_symbol<size>* mips_sym = entry->sym();
6113 if (entry->tls_type() == GOT_TLS_GD)
6114 {
6115 unsigned int got_type;
6116 if (!got->multi_got())
6117 got_type = GOT_TYPE_TLS_PAIR;
6118 else
6119 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6120 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6121 : elfcpp::R_MIPS_TLS_DTPMOD64);
6122 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6123 : elfcpp::R_MIPS_TLS_DTPREL64);
6124 if (!parameters->doing_static_link())
6125 got->add_global_pair_with_rel(mips_sym, got_type,
6126 target->rel_dyn_section(layout), r_type1, r_type2);
6127 else
6128 {
6129 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6130 // GOT entries. The first one is initialized to be 1, which is the
6131 // module index for the main executable and the second one 0. A
6132 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6133 // the second GOT entry and will be applied by gold.
6134 unsigned int got_offset = got->add_constant(1);
6135 mips_sym->set_got_offset(got_type, got_offset);
6136 got->add_constant(0);
6137 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6138 }
6139 }
6140 else if (entry->tls_type() == GOT_TLS_IE)
6141 {
6142 unsigned int got_type;
6143 if (!got->multi_got())
6144 got_type = GOT_TYPE_TLS_OFFSET;
6145 else
6146 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6147 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6148 : elfcpp::R_MIPS_TLS_TPREL64);
6149 if (!parameters->doing_static_link())
6150 got->add_global_with_rel(mips_sym, got_type,
6151 target->rel_dyn_section(layout), r_type);
6152 else
6153 {
6154 got->add_global(mips_sym, got_type);
6155 unsigned int got_offset = mips_sym->got_offset(got_type);
6156 got->add_static_reloc(got_offset, r_type, mips_sym);
6157 }
6158 }
6159 else
6160 gold_unreachable();
6161 }
6162 }
6163
6164 // Decide whether the symbol needs an entry in the global part of the primary
6165 // GOT, setting global_got_area accordingly. Count the number of global
6166 // symbols that are in the primary GOT only because they have dynamic
6167 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6168
6169 template<int size, bool big_endian>
6170 void
6171 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6172 {
6173 for (typename Global_got_entry_set::iterator
6174 p = this->global_got_symbols_.begin();
6175 p != this->global_got_symbols_.end();
6176 ++p)
6177 {
6178 Mips_symbol<size>* sym = *p;
6179 // Make a final decision about whether the symbol belongs in the
6180 // local or global GOT. Symbols that bind locally can (and in the
6181 // case of forced-local symbols, must) live in the local GOT.
6182 // Those that are aren't in the dynamic symbol table must also
6183 // live in the local GOT.
6184
6185 if (!sym->should_add_dynsym_entry(symtab)
6186 || (sym->got_only_for_calls()
6187 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6188 : symbol_references_local(sym,
6189 sym->should_add_dynsym_entry(symtab))))
6190 // The symbol belongs in the local GOT. We no longer need this
6191 // entry if it was only used for relocations; those relocations
6192 // will be against the null or section symbol instead.
6193 sym->set_global_got_area(GGA_NONE);
6194 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6195 {
6196 ++this->reloc_only_gotno_;
6197 ++this->global_gotno_ ;
6198 }
6199 }
6200 }
6201
6202 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6203 // VALUE if it is not initialized.
6204
6205 template<int size, bool big_endian>
6206 unsigned int
6207 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6208 Mips_output_data_got<size, big_endian>* got)
6209 {
6210 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6211 if (it != this->got_page_offsets_.end())
6212 return it->second;
6213
6214 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6215 + (size/8) * this->page_gotno_);
6216
6217 unsigned int got_offset = this->got_page_offset_next_;
6218 this->got_page_offsets_[value] = got_offset;
6219 this->got_page_offset_next_ += size/8;
6220 got->update_got_entry(got_offset, value);
6221 return got_offset;
6222 }
6223
6224 // Remove lazy-binding stubs for global symbols in this GOT.
6225
6226 template<int size, bool big_endian>
6227 void
6228 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6229 Target_mips<size, big_endian>* target)
6230 {
6231 for (typename Got_entry_set::iterator
6232 p = this->got_entries_.begin();
6233 p != this->got_entries_.end();
6234 ++p)
6235 {
6236 Mips_got_entry<size, big_endian>* entry = *p;
6237 if (entry->is_for_global_symbol())
6238 target->remove_lazy_stub_entry(entry->sym());
6239 }
6240 }
6241
6242 // Count the number of GOT entries required.
6243
6244 template<int size, bool big_endian>
6245 void
6246 Mips_got_info<size, big_endian>::count_got_entries()
6247 {
6248 for (typename Got_entry_set::iterator
6249 p = this->got_entries_.begin();
6250 p != this->got_entries_.end();
6251 ++p)
6252 {
6253 this->count_got_entry(*p);
6254 }
6255 }
6256
6257 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6258
6259 template<int size, bool big_endian>
6260 void
6261 Mips_got_info<size, big_endian>::count_got_entry(
6262 Mips_got_entry<size, big_endian>* entry)
6263 {
6264 if (entry->is_tls_entry())
6265 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6266 else if (entry->is_for_local_symbol()
6267 || entry->sym()->global_got_area() == GGA_NONE)
6268 ++this->local_gotno_;
6269 else
6270 ++this->global_gotno_;
6271 }
6272
6273 // Add FROM's GOT entries.
6274
6275 template<int size, bool big_endian>
6276 void
6277 Mips_got_info<size, big_endian>::add_got_entries(
6278 Mips_got_info<size, big_endian>* from)
6279 {
6280 for (typename Got_entry_set::iterator
6281 p = from->got_entries_.begin();
6282 p != from->got_entries_.end();
6283 ++p)
6284 {
6285 Mips_got_entry<size, big_endian>* entry = *p;
6286 if (this->got_entries_.find(entry) == this->got_entries_.end())
6287 {
6288 Mips_got_entry<size, big_endian>* entry2 =
6289 new Mips_got_entry<size, big_endian>(*entry);
6290 this->got_entries_.insert(entry2);
6291 this->count_got_entry(entry);
6292 }
6293 }
6294 }
6295
6296 // Add FROM's GOT page entries.
6297
6298 template<int size, bool big_endian>
6299 void
6300 Mips_got_info<size, big_endian>::add_got_page_entries(
6301 Mips_got_info<size, big_endian>* from)
6302 {
6303 for (typename Got_page_entry_set::iterator
6304 p = from->got_page_entries_.begin();
6305 p != from->got_page_entries_.end();
6306 ++p)
6307 {
6308 Got_page_entry* entry = *p;
6309 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6310 {
6311 Got_page_entry* entry2 = new Got_page_entry(*entry);
6312 this->got_page_entries_.insert(entry2);
6313 this->page_gotno_ += entry->num_pages;
6314 }
6315 }
6316 }
6317
6318 // Mips_output_data_got methods.
6319
6320 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6321 // larger than 64K, create multi-GOT.
6322
6323 template<int size, bool big_endian>
6324 void
6325 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6326 Symbol_table* symtab, const Input_objects* input_objects)
6327 {
6328 // Decide which symbols need to go in the global part of the GOT and
6329 // count the number of reloc-only GOT symbols.
6330 this->master_got_info_->count_got_symbols(symtab);
6331
6332 // Count the number of GOT entries.
6333 this->master_got_info_->count_got_entries();
6334
6335 unsigned int got_size = this->master_got_info_->got_size();
6336 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6337 this->lay_out_multi_got(layout, input_objects);
6338 else
6339 {
6340 // Record that all objects use single GOT.
6341 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6342 p != input_objects->relobj_end();
6343 ++p)
6344 {
6345 Mips_relobj<size, big_endian>* object =
6346 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6347 if (object->get_got_info() != NULL)
6348 object->set_got_info(this->master_got_info_);
6349 }
6350
6351 this->master_got_info_->add_local_entries(this->target_, layout);
6352 this->master_got_info_->add_global_entries(this->target_, layout,
6353 /*not used*/-1U);
6354 this->master_got_info_->add_tls_entries(this->target_, layout);
6355 }
6356 }
6357
6358 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6359
6360 template<int size, bool big_endian>
6361 void
6362 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6363 const Input_objects* input_objects)
6364 {
6365 // Try to merge the GOTs of input objects together, as long as they
6366 // don't seem to exceed the maximum GOT size, choosing one of them
6367 // to be the primary GOT.
6368 this->merge_gots(input_objects);
6369
6370 // Every symbol that is referenced in a dynamic relocation must be
6371 // present in the primary GOT.
6372 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6373
6374 // Add GOT entries.
6375 unsigned int i = 0;
6376 unsigned int offset = 0;
6377 Mips_got_info<size, big_endian>* g = this->primary_got_;
6378 do
6379 {
6380 g->set_index(i);
6381 g->set_offset(offset);
6382
6383 g->add_local_entries(this->target_, layout);
6384 if (i == 0)
6385 g->add_global_entries(this->target_, layout,
6386 (this->master_got_info_->global_gotno()
6387 - this->master_got_info_->reloc_only_gotno()));
6388 else
6389 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6390 g->add_tls_entries(this->target_, layout);
6391
6392 // Forbid global symbols in every non-primary GOT from having
6393 // lazy-binding stubs.
6394 if (i > 0)
6395 g->remove_lazy_stubs(this->target_);
6396
6397 ++i;
6398 offset += g->got_size();
6399 g = g->next();
6400 }
6401 while (g);
6402 }
6403
6404 // Attempt to merge GOTs of different input objects. Try to use as much as
6405 // possible of the primary GOT, since it doesn't require explicit dynamic
6406 // relocations, but don't use objects that would reference global symbols
6407 // out of the addressable range. Failing the primary GOT, attempt to merge
6408 // with the current GOT, or finish the current GOT and then make make the new
6409 // GOT current.
6410
6411 template<int size, bool big_endian>
6412 void
6413 Mips_output_data_got<size, big_endian>::merge_gots(
6414 const Input_objects* input_objects)
6415 {
6416 gold_assert(this->primary_got_ == NULL);
6417 Mips_got_info<size, big_endian>* current = NULL;
6418
6419 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6420 p != input_objects->relobj_end();
6421 ++p)
6422 {
6423 Mips_relobj<size, big_endian>* object =
6424 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6425
6426 Mips_got_info<size, big_endian>* g = object->get_got_info();
6427 if (g == NULL)
6428 continue;
6429
6430 g->count_got_entries();
6431
6432 // Work out the number of page, local and TLS entries.
6433 unsigned int estimate = this->master_got_info_->page_gotno();
6434 if (estimate > g->page_gotno())
6435 estimate = g->page_gotno();
6436 estimate += g->local_gotno() + g->tls_gotno();
6437
6438 // We place TLS GOT entries after both locals and globals. The globals
6439 // for the primary GOT may overflow the normal GOT size limit, so be
6440 // sure not to merge a GOT which requires TLS with the primary GOT in that
6441 // case. This doesn't affect non-primary GOTs.
6442 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6443 : g->global_gotno());
6444
6445 unsigned int max_count =
6446 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6447 if (estimate <= max_count)
6448 {
6449 // If we don't have a primary GOT, use it as
6450 // a starting point for the primary GOT.
6451 if (!this->primary_got_)
6452 {
6453 this->primary_got_ = g;
6454 continue;
6455 }
6456
6457 // Try merging with the primary GOT.
6458 if (this->merge_got_with(g, object, this->primary_got_))
6459 continue;
6460 }
6461
6462 // If we can merge with the last-created GOT, do it.
6463 if (current && this->merge_got_with(g, object, current))
6464 continue;
6465
6466 // Well, we couldn't merge, so create a new GOT. Don't check if it
6467 // fits; if it turns out that it doesn't, we'll get relocation
6468 // overflows anyway.
6469 g->set_next(current);
6470 current = g;
6471 }
6472
6473 // If we do not find any suitable primary GOT, create an empty one.
6474 if (this->primary_got_ == NULL)
6475 this->primary_got_ = new Mips_got_info<size, big_endian>();
6476
6477 // Link primary GOT with secondary GOTs.
6478 this->primary_got_->set_next(current);
6479 }
6480
6481 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6482 // this would lead to overflow, true if they were merged successfully.
6483
6484 template<int size, bool big_endian>
6485 bool
6486 Mips_output_data_got<size, big_endian>::merge_got_with(
6487 Mips_got_info<size, big_endian>* from,
6488 Mips_relobj<size, big_endian>* object,
6489 Mips_got_info<size, big_endian>* to)
6490 {
6491 // Work out how many page entries we would need for the combined GOT.
6492 unsigned int estimate = this->master_got_info_->page_gotno();
6493 if (estimate >= from->page_gotno() + to->page_gotno())
6494 estimate = from->page_gotno() + to->page_gotno();
6495
6496 // Conservatively estimate how many local and TLS entries would be needed.
6497 estimate += from->local_gotno() + to->local_gotno();
6498 estimate += from->tls_gotno() + to->tls_gotno();
6499
6500 // If we're merging with the primary got, any TLS relocations will
6501 // come after the full set of global entries. Otherwise estimate those
6502 // conservatively as well.
6503 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6504 estimate += this->master_got_info_->global_gotno();
6505 else
6506 estimate += from->global_gotno() + to->global_gotno();
6507
6508 // Bail out if the combined GOT might be too big.
6509 unsigned int max_count =
6510 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6511 if (estimate > max_count)
6512 return false;
6513
6514 // Transfer the object's GOT information from FROM to TO.
6515 to->add_got_entries(from);
6516 to->add_got_page_entries(from);
6517
6518 // Record that OBJECT should use output GOT TO.
6519 object->set_got_info(to);
6520
6521 return true;
6522 }
6523
6524 // Write out the GOT.
6525
6526 template<int size, bool big_endian>
6527 void
6528 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6529 {
6530 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6531 Mips_stubs_entry_set;
6532
6533 // Call parent to write out GOT.
6534 Output_data_got<size, big_endian>::do_write(of);
6535
6536 const off_t offset = this->offset();
6537 const section_size_type oview_size =
6538 convert_to_section_size_type(this->data_size());
6539 unsigned char* const oview = of->get_output_view(offset, oview_size);
6540
6541 // Needed for fixing values of .got section.
6542 this->got_view_ = oview;
6543
6544 // Write lazy stub addresses.
6545 for (typename Mips_stubs_entry_set::iterator
6546 p = this->master_got_info_->global_got_symbols().begin();
6547 p != this->master_got_info_->global_got_symbols().end();
6548 ++p)
6549 {
6550 Mips_symbol<size>* mips_sym = *p;
6551 if (mips_sym->has_lazy_stub())
6552 {
6553 Valtype* wv = reinterpret_cast<Valtype*>(
6554 oview + this->get_primary_got_offset(mips_sym));
6555 Valtype value =
6556 this->target_->mips_stubs_section()->stub_address(mips_sym);
6557 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6558 }
6559 }
6560
6561 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6562 for (typename Mips_stubs_entry_set::iterator
6563 p = this->master_got_info_->global_got_symbols().begin();
6564 p != this->master_got_info_->global_got_symbols().end();
6565 ++p)
6566 {
6567 Mips_symbol<size>* mips_sym = *p;
6568 if (!this->multi_got()
6569 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6570 && mips_sym->global_got_area() == GGA_NONE
6571 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6572 {
6573 Valtype* wv = reinterpret_cast<Valtype*>(
6574 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6575 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6576 if (value != 0)
6577 {
6578 value |= 1;
6579 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6580 }
6581 }
6582 }
6583
6584 if (!this->secondary_got_relocs_.empty())
6585 {
6586 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6587 // secondary GOT entries with non-zero initial value copy the value
6588 // to the corresponding primary GOT entry, and set the secondary GOT
6589 // entry to zero.
6590 // TODO(sasa): This is workaround. It needs to be investigated further.
6591
6592 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6593 {
6594 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6595 if (reloc.symbol_is_global())
6596 {
6597 Mips_symbol<size>* gsym = reloc.symbol();
6598 gold_assert(gsym != NULL);
6599
6600 unsigned got_offset = reloc.got_offset();
6601 gold_assert(got_offset < oview_size);
6602
6603 // Find primary GOT entry.
6604 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6605 oview + this->get_primary_got_offset(gsym));
6606
6607 // Find secondary GOT entry.
6608 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6609
6610 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6611 if (value != 0)
6612 {
6613 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6614 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6615 gsym->set_applied_secondary_got_fixup();
6616 }
6617 }
6618 }
6619
6620 of->write_output_view(offset, oview_size, oview);
6621 }
6622
6623 // We are done if there is no fix up.
6624 if (this->static_relocs_.empty())
6625 return;
6626
6627 Output_segment* tls_segment = this->layout_->tls_segment();
6628 gold_assert(tls_segment != NULL);
6629
6630 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6631 {
6632 Static_reloc& reloc(this->static_relocs_[i]);
6633
6634 Mips_address value;
6635 if (!reloc.symbol_is_global())
6636 {
6637 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6638 const Symbol_value<size>* psymval =
6639 object->local_symbol(reloc.index());
6640
6641 // We are doing static linking. Issue an error and skip this
6642 // relocation if the symbol is undefined or in a discarded_section.
6643 bool is_ordinary;
6644 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6645 if ((shndx == elfcpp::SHN_UNDEF)
6646 || (is_ordinary
6647 && shndx != elfcpp::SHN_UNDEF
6648 && !object->is_section_included(shndx)
6649 && !this->symbol_table_->is_section_folded(object, shndx)))
6650 {
6651 gold_error(_("undefined or discarded local symbol %u from "
6652 " object %s in GOT"),
6653 reloc.index(), reloc.relobj()->name().c_str());
6654 continue;
6655 }
6656
6657 value = psymval->value(object, 0);
6658 }
6659 else
6660 {
6661 const Mips_symbol<size>* gsym = reloc.symbol();
6662 gold_assert(gsym != NULL);
6663
6664 // We are doing static linking. Issue an error and skip this
6665 // relocation if the symbol is undefined or in a discarded_section
6666 // unless it is a weakly_undefined symbol.
6667 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6668 && !gsym->is_weak_undefined())
6669 {
6670 gold_error(_("undefined or discarded symbol %s in GOT"),
6671 gsym->name());
6672 continue;
6673 }
6674
6675 if (!gsym->is_weak_undefined())
6676 value = gsym->value();
6677 else
6678 value = 0;
6679 }
6680
6681 unsigned got_offset = reloc.got_offset();
6682 gold_assert(got_offset < oview_size);
6683
6684 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6685 Valtype x;
6686
6687 switch (reloc.r_type())
6688 {
6689 case elfcpp::R_MIPS_TLS_DTPMOD32:
6690 case elfcpp::R_MIPS_TLS_DTPMOD64:
6691 x = value;
6692 break;
6693 case elfcpp::R_MIPS_TLS_DTPREL32:
6694 case elfcpp::R_MIPS_TLS_DTPREL64:
6695 x = value - elfcpp::DTP_OFFSET;
6696 break;
6697 case elfcpp::R_MIPS_TLS_TPREL32:
6698 case elfcpp::R_MIPS_TLS_TPREL64:
6699 x = value - elfcpp::TP_OFFSET;
6700 break;
6701 default:
6702 gold_unreachable();
6703 break;
6704 }
6705
6706 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6707 }
6708
6709 of->write_output_view(offset, oview_size, oview);
6710 }
6711
6712 // Mips_relobj methods.
6713
6714 // Count the local symbols. The Mips backend needs to know if a symbol
6715 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6716 // because the Symbol object keeps the ELF symbol type and st_other field.
6717 // For local symbol it is harder because we cannot access this information.
6718 // So we override the do_count_local_symbol in parent and scan local symbols to
6719 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6720 // I do not want to slow down other ports by calling a per symbol target hook
6721 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6722
6723 template<int size, bool big_endian>
6724 void
6725 Mips_relobj<size, big_endian>::do_count_local_symbols(
6726 Stringpool_template<char>* pool,
6727 Stringpool_template<char>* dynpool)
6728 {
6729 // Ask parent to count the local symbols.
6730 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6731 const unsigned int loccount = this->local_symbol_count();
6732 if (loccount == 0)
6733 return;
6734
6735 // Initialize the mips16 and micromips function bit-vector.
6736 this->local_symbol_is_mips16_.resize(loccount, false);
6737 this->local_symbol_is_micromips_.resize(loccount, false);
6738
6739 // Read the symbol table section header.
6740 const unsigned int symtab_shndx = this->symtab_shndx();
6741 elfcpp::Shdr<size, big_endian>
6742 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6743 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6744
6745 // Read the local symbols.
6746 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6747 gold_assert(loccount == symtabshdr.get_sh_info());
6748 off_t locsize = loccount * sym_size;
6749 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6750 locsize, true, true);
6751
6752 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6753
6754 // Skip the first dummy symbol.
6755 psyms += sym_size;
6756 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6757 {
6758 elfcpp::Sym<size, big_endian> sym(psyms);
6759 unsigned char st_other = sym.get_st_other();
6760 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6761 this->local_symbol_is_micromips_[i] =
6762 elfcpp::elf_st_is_micromips(st_other);
6763 }
6764 }
6765
6766 // Read the symbol information.
6767
6768 template<int size, bool big_endian>
6769 void
6770 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6771 {
6772 // Call parent class to read symbol information.
6773 this->base_read_symbols(sd);
6774
6775 // Read processor-specific flags in ELF file header.
6776 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6777 elfcpp::Elf_sizes<size>::ehdr_size,
6778 true, false);
6779 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6780 this->processor_specific_flags_ = ehdr.get_e_flags();
6781
6782 // Get the section names.
6783 const unsigned char* pnamesu = sd->section_names->data();
6784 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6785
6786 // Initialize the mips16 stub section bit-vectors.
6787 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6788 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6789 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6790
6791 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6792 const unsigned char* pshdrs = sd->section_headers->data();
6793 const unsigned char* ps = pshdrs + shdr_size;
6794 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6795 {
6796 elfcpp::Shdr<size, big_endian> shdr(ps);
6797
6798 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6799 {
6800 this->has_reginfo_section_ = true;
6801 // Read the gp value that was used to create this object. We need the
6802 // gp value while processing relocs. The .reginfo section is not used
6803 // in the 64-bit MIPS ELF ABI.
6804 section_offset_type section_offset = shdr.get_sh_offset();
6805 section_size_type section_size =
6806 convert_to_section_size_type(shdr.get_sh_size());
6807 const unsigned char* view =
6808 this->get_view(section_offset, section_size, true, false);
6809
6810 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6811
6812 // Read the rest of .reginfo.
6813 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6814 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6815 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6816 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6817 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6818 }
6819
6820 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6821 {
6822 gold_assert(this->attributes_section_data_ == NULL);
6823 section_offset_type section_offset = shdr.get_sh_offset();
6824 section_size_type section_size =
6825 convert_to_section_size_type(shdr.get_sh_size());
6826 const unsigned char* view =
6827 this->get_view(section_offset, section_size, true, false);
6828 this->attributes_section_data_ =
6829 new Attributes_section_data(view, section_size);
6830 }
6831
6832 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6833 {
6834 gold_assert(this->abiflags_ == NULL);
6835 section_offset_type section_offset = shdr.get_sh_offset();
6836 section_size_type section_size =
6837 convert_to_section_size_type(shdr.get_sh_size());
6838 const unsigned char* view =
6839 this->get_view(section_offset, section_size, true, false);
6840 this->abiflags_ = new Mips_abiflags<big_endian>();
6841
6842 this->abiflags_->version =
6843 elfcpp::Swap<16, big_endian>::readval(view);
6844 if (this->abiflags_->version != 0)
6845 {
6846 gold_error(_("%s: .MIPS.abiflags section has "
6847 "unsupported version %u"),
6848 this->name().c_str(),
6849 this->abiflags_->version);
6850 break;
6851 }
6852 this->abiflags_->isa_level =
6853 elfcpp::Swap<8, big_endian>::readval(view + 2);
6854 this->abiflags_->isa_rev =
6855 elfcpp::Swap<8, big_endian>::readval(view + 3);
6856 this->abiflags_->gpr_size =
6857 elfcpp::Swap<8, big_endian>::readval(view + 4);
6858 this->abiflags_->cpr1_size =
6859 elfcpp::Swap<8, big_endian>::readval(view + 5);
6860 this->abiflags_->cpr2_size =
6861 elfcpp::Swap<8, big_endian>::readval(view + 6);
6862 this->abiflags_->fp_abi =
6863 elfcpp::Swap<8, big_endian>::readval(view + 7);
6864 this->abiflags_->isa_ext =
6865 elfcpp::Swap<32, big_endian>::readval(view + 8);
6866 this->abiflags_->ases =
6867 elfcpp::Swap<32, big_endian>::readval(view + 12);
6868 this->abiflags_->flags1 =
6869 elfcpp::Swap<32, big_endian>::readval(view + 16);
6870 this->abiflags_->flags2 =
6871 elfcpp::Swap<32, big_endian>::readval(view + 20);
6872 }
6873
6874 // In the 64-bit ABI, .MIPS.options section holds register information.
6875 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6876 // starts with this header:
6877 //
6878 // typedef struct
6879 // {
6880 // // Type of option.
6881 // unsigned char kind[1];
6882 // // Size of option descriptor, including header.
6883 // unsigned char size[1];
6884 // // Section index of affected section, or 0 for global option.
6885 // unsigned char section[2];
6886 // // Information specific to this kind of option.
6887 // unsigned char info[4];
6888 // };
6889 //
6890 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6891 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6892 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6893
6894 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6895 {
6896 section_offset_type section_offset = shdr.get_sh_offset();
6897 section_size_type section_size =
6898 convert_to_section_size_type(shdr.get_sh_size());
6899 const unsigned char* view =
6900 this->get_view(section_offset, section_size, true, false);
6901 const unsigned char* end = view + section_size;
6902
6903 while (view + 8 <= end)
6904 {
6905 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6906 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6907 if (sz < 8)
6908 {
6909 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6910 "than its header"),
6911 this->name().c_str(),
6912 this->mips_elf_options_section_name(), sz);
6913 break;
6914 }
6915
6916 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6917 {
6918 // In the 64 bit ABI, an ODK_REGINFO option is the following
6919 // structure. The info field of the options header is not
6920 // used.
6921 //
6922 // typedef struct
6923 // {
6924 // // Mask of general purpose registers used.
6925 // unsigned char ri_gprmask[4];
6926 // // Padding.
6927 // unsigned char ri_pad[4];
6928 // // Mask of co-processor registers used.
6929 // unsigned char ri_cprmask[4][4];
6930 // // GP register value for this object file.
6931 // unsigned char ri_gp_value[8];
6932 // };
6933
6934 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6935 + 32);
6936 }
6937 else if (kind == elfcpp::ODK_REGINFO)
6938 {
6939 // In the 32 bit ABI, an ODK_REGINFO option is the following
6940 // structure. The info field of the options header is not
6941 // used. The same structure is used in .reginfo section.
6942 //
6943 // typedef struct
6944 // {
6945 // unsigned char ri_gprmask[4];
6946 // unsigned char ri_cprmask[4][4];
6947 // unsigned char ri_gp_value[4];
6948 // };
6949
6950 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6951 + 28);
6952 }
6953 view += sz;
6954 }
6955 }
6956
6957 const char* name = pnames + shdr.get_sh_name();
6958 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6959 this->section_is_mips16_call_stub_[i] =
6960 is_prefix_of(".mips16.call.", name);
6961 this->section_is_mips16_call_fp_stub_[i] =
6962 is_prefix_of(".mips16.call.fp.", name);
6963
6964 if (strcmp(name, ".pdr") == 0)
6965 {
6966 gold_assert(this->pdr_shndx_ == -1U);
6967 this->pdr_shndx_ = i;
6968 }
6969 }
6970 }
6971
6972 // Discard MIPS16 stub secions that are not needed.
6973
6974 template<int size, bool big_endian>
6975 void
6976 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6977 {
6978 for (typename Mips16_stubs_int_map::const_iterator
6979 it = this->mips16_stub_sections_.begin();
6980 it != this->mips16_stub_sections_.end(); ++it)
6981 {
6982 Mips16_stub_section<size, big_endian>* stub_section = it->second;
6983 if (!stub_section->is_target_found())
6984 {
6985 gold_error(_("no relocation found in mips16 stub section '%s'"),
6986 stub_section->object()
6987 ->section_name(stub_section->shndx()).c_str());
6988 }
6989
6990 bool discard = false;
6991 if (stub_section->is_for_local_function())
6992 {
6993 if (stub_section->is_fn_stub())
6994 {
6995 // This stub is for a local symbol. This stub will only
6996 // be needed if there is some relocation in this object,
6997 // other than a 16 bit function call, which refers to this
6998 // symbol.
6999 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7000 discard = true;
7001 else
7002 this->add_local_mips16_fn_stub(stub_section);
7003 }
7004 else
7005 {
7006 // This stub is for a local symbol. This stub will only
7007 // be needed if there is some relocation (R_MIPS16_26) in
7008 // this object that refers to this symbol.
7009 gold_assert(stub_section->is_call_stub()
7010 || stub_section->is_call_fp_stub());
7011 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7012 discard = true;
7013 else
7014 this->add_local_mips16_call_stub(stub_section);
7015 }
7016 }
7017 else
7018 {
7019 Mips_symbol<size>* gsym = stub_section->gsym();
7020 if (stub_section->is_fn_stub())
7021 {
7022 if (gsym->has_mips16_fn_stub())
7023 // We already have a stub for this function.
7024 discard = true;
7025 else
7026 {
7027 gsym->set_mips16_fn_stub(stub_section);
7028 if (gsym->should_add_dynsym_entry(symtab))
7029 {
7030 // If we have a MIPS16 function with a stub, the
7031 // dynamic symbol must refer to the stub, since only
7032 // the stub uses the standard calling conventions.
7033 gsym->set_need_fn_stub();
7034 if (gsym->is_from_dynobj())
7035 gsym->set_needs_dynsym_value();
7036 }
7037 }
7038 if (!gsym->need_fn_stub())
7039 discard = true;
7040 }
7041 else if (stub_section->is_call_stub())
7042 {
7043 if (gsym->is_mips16())
7044 // We don't need the call_stub; this is a 16 bit
7045 // function, so calls from other 16 bit functions are
7046 // OK.
7047 discard = true;
7048 else if (gsym->has_mips16_call_stub())
7049 // We already have a stub for this function.
7050 discard = true;
7051 else
7052 gsym->set_mips16_call_stub(stub_section);
7053 }
7054 else
7055 {
7056 gold_assert(stub_section->is_call_fp_stub());
7057 if (gsym->is_mips16())
7058 // We don't need the call_stub; this is a 16 bit
7059 // function, so calls from other 16 bit functions are
7060 // OK.
7061 discard = true;
7062 else if (gsym->has_mips16_call_fp_stub())
7063 // We already have a stub for this function.
7064 discard = true;
7065 else
7066 gsym->set_mips16_call_fp_stub(stub_section);
7067 }
7068 }
7069 if (discard)
7070 this->set_output_section(stub_section->shndx(), NULL);
7071 }
7072 }
7073
7074 // Mips_output_data_la25_stub methods.
7075
7076 // Template for standard LA25 stub.
7077 template<int size, bool big_endian>
7078 const uint32_t
7079 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7080 {
7081 0x3c190000, // lui $25,%hi(func)
7082 0x08000000, // j func
7083 0x27390000, // add $25,$25,%lo(func)
7084 0x00000000 // nop
7085 };
7086
7087 // Template for microMIPS LA25 stub.
7088 template<int size, bool big_endian>
7089 const uint32_t
7090 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7091 {
7092 0x41b9, 0x0000, // lui t9,%hi(func)
7093 0xd400, 0x0000, // j func
7094 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7095 0x0000, 0x0000 // nop
7096 };
7097
7098 // Create la25 stub for a symbol.
7099
7100 template<int size, bool big_endian>
7101 void
7102 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7103 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7104 Mips_symbol<size>* gsym)
7105 {
7106 if (!gsym->has_la25_stub())
7107 {
7108 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7109 this->symbols_.push_back(gsym);
7110 this->create_stub_symbol(gsym, symtab, target, 16);
7111 }
7112 }
7113
7114 // Create a symbol for SYM stub's value and size, to help make the disassembly
7115 // easier to read.
7116
7117 template<int size, bool big_endian>
7118 void
7119 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7120 Mips_symbol<size>* sym, Symbol_table* symtab,
7121 Target_mips<size, big_endian>* target, uint64_t symsize)
7122 {
7123 std::string name(".pic.");
7124 name += sym->name();
7125
7126 unsigned int offset = sym->la25_stub_offset();
7127 if (sym->is_micromips())
7128 offset |= 1;
7129
7130 // Make it a local function.
7131 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7132 Symbol_table::PREDEFINED,
7133 target->la25_stub_section(),
7134 offset, symsize, elfcpp::STT_FUNC,
7135 elfcpp::STB_LOCAL,
7136 elfcpp::STV_DEFAULT, 0,
7137 false, false);
7138 new_sym->set_is_forced_local();
7139 }
7140
7141 // Write out la25 stubs. This uses the hand-coded instructions above,
7142 // and adjusts them as needed.
7143
7144 template<int size, bool big_endian>
7145 void
7146 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7147 {
7148 const off_t offset = this->offset();
7149 const section_size_type oview_size =
7150 convert_to_section_size_type(this->data_size());
7151 unsigned char* const oview = of->get_output_view(offset, oview_size);
7152
7153 for (typename std::vector<Mips_symbol<size>*>::iterator
7154 p = this->symbols_.begin();
7155 p != this->symbols_.end();
7156 ++p)
7157 {
7158 Mips_symbol<size>* sym = *p;
7159 unsigned char* pov = oview + sym->la25_stub_offset();
7160
7161 Mips_address target = sym->value();
7162 if (!sym->is_micromips())
7163 {
7164 elfcpp::Swap<32, big_endian>::writeval(pov,
7165 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7166 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7167 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7168 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7169 la25_stub_entry[2] | (target & 0xffff));
7170 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7171 }
7172 else
7173 {
7174 target |= 1;
7175 // First stub instruction. Paste high 16-bits of the target.
7176 elfcpp::Swap<16, big_endian>::writeval(pov,
7177 la25_stub_micromips_entry[0]);
7178 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7179 ((target + 0x8000) >> 16) & 0xffff);
7180 // Second stub instruction. Paste low 26-bits of the target, shifted
7181 // right by 1.
7182 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7183 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7184 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7185 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7186 // Third stub instruction. Paste low 16-bits of the target.
7187 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7188 la25_stub_micromips_entry[4]);
7189 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7190 // Fourth stub instruction.
7191 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7192 la25_stub_micromips_entry[6]);
7193 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7194 la25_stub_micromips_entry[7]);
7195 }
7196 }
7197
7198 of->write_output_view(offset, oview_size, oview);
7199 }
7200
7201 // Mips_output_data_plt methods.
7202
7203 // The format of the first PLT entry in an O32 executable.
7204 template<int size, bool big_endian>
7205 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7206 {
7207 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7208 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7209 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7210 0x031cc023, // subu $24, $24, $28
7211 0x03e07825, // or $15, $31, zero
7212 0x0018c082, // srl $24, $24, 2
7213 0x0320f809, // jalr $25
7214 0x2718fffe // subu $24, $24, 2
7215 };
7216
7217 // The format of the first PLT entry in an N32 executable. Different
7218 // because gp ($28) is not available; we use t2 ($14) instead.
7219 template<int size, bool big_endian>
7220 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7221 {
7222 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7223 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7224 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7225 0x030ec023, // subu $24, $24, $14
7226 0x03e07825, // or $15, $31, zero
7227 0x0018c082, // srl $24, $24, 2
7228 0x0320f809, // jalr $25
7229 0x2718fffe // subu $24, $24, 2
7230 };
7231
7232 // The format of the first PLT entry in an N64 executable. Different
7233 // from N32 because of the increased size of GOT entries.
7234 template<int size, bool big_endian>
7235 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7236 {
7237 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7238 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7239 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7240 0x030ec023, // subu $24, $24, $14
7241 0x03e07825, // or $15, $31, zero
7242 0x0018c0c2, // srl $24, $24, 3
7243 0x0320f809, // jalr $25
7244 0x2718fffe // subu $24, $24, 2
7245 };
7246
7247 // The format of the microMIPS first PLT entry in an O32 executable.
7248 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7249 // of the GOTPLT entry handled, so this stub may only be used when
7250 // all the subsequent PLT entries are microMIPS code too.
7251 //
7252 // The trailing NOP is for alignment and correct disassembly only.
7253 template<int size, bool big_endian>
7254 const uint32_t Mips_output_data_plt<size, big_endian>::
7255 plt0_entry_micromips_o32[] =
7256 {
7257 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7258 0xff23, 0x0000, // lw $25, 0($3)
7259 0x0535, // subu $2, $2, $3
7260 0x2525, // srl $2, $2, 2
7261 0x3302, 0xfffe, // subu $24, $2, 2
7262 0x0dff, // move $15, $31
7263 0x45f9, // jalrs $25
7264 0x0f83, // move $28, $3
7265 0x0c00 // nop
7266 };
7267
7268 // The format of the microMIPS first PLT entry in an O32 executable
7269 // in the insn32 mode.
7270 template<int size, bool big_endian>
7271 const uint32_t Mips_output_data_plt<size, big_endian>::
7272 plt0_entry_micromips32_o32[] =
7273 {
7274 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7275 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7276 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7277 0x0398, 0xc1d0, // subu $24, $24, $28
7278 0x001f, 0x7a90, // or $15, $31, zero
7279 0x0318, 0x1040, // srl $24, $24, 2
7280 0x03f9, 0x0f3c, // jalr $25
7281 0x3318, 0xfffe // subu $24, $24, 2
7282 };
7283
7284 // The format of subsequent standard entries in the PLT.
7285 template<int size, bool big_endian>
7286 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7287 {
7288 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7289 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7290 0x03200008, // jr $25
7291 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7292 };
7293
7294 // The format of subsequent R6 PLT entries.
7295 template<int size, bool big_endian>
7296 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7297 {
7298 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7299 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7300 0x03200009, // jr $25
7301 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7302 };
7303
7304 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7305 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7306 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7307 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7308 // target function address in register v0.
7309 template<int size, bool big_endian>
7310 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7311 {
7312 0xb303, // lw $3, 12($pc)
7313 0x651b, // move $24, $3
7314 0x9b60, // lw $3, 0($3)
7315 0xeb00, // jr $3
7316 0x653b, // move $25, $3
7317 0x6500, // nop
7318 0x0000, 0x0000 // .word (.got.plt entry)
7319 };
7320
7321 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7322 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7323 template<int size, bool big_endian>
7324 const uint32_t Mips_output_data_plt<size, big_endian>::
7325 plt_entry_micromips_o32[] =
7326 {
7327 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7328 0xff22, 0x0000, // lw $25, 0($2)
7329 0x4599, // jr $25
7330 0x0f02 // move $24, $2
7331 };
7332
7333 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7334 template<int size, bool big_endian>
7335 const uint32_t Mips_output_data_plt<size, big_endian>::
7336 plt_entry_micromips32_o32[] =
7337 {
7338 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7339 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7340 0x0019, 0x0f3c, // jr $25
7341 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7342 };
7343
7344 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7345
7346 template<int size, bool big_endian>
7347 void
7348 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7349 unsigned int r_type)
7350 {
7351 gold_assert(!gsym->has_plt_offset());
7352
7353 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7354 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7355 + sizeof(plt0_entry_o32));
7356 this->symbols_.push_back(gsym);
7357
7358 // Record whether the relocation requires a standard MIPS
7359 // or a compressed code entry.
7360 if (jal_reloc(r_type))
7361 {
7362 if (r_type == elfcpp::R_MIPS_26)
7363 gsym->set_needs_mips_plt(true);
7364 else
7365 gsym->set_needs_comp_plt(true);
7366 }
7367
7368 section_offset_type got_offset = this->got_plt_->current_data_size();
7369
7370 // Every PLT entry needs a GOT entry which points back to the PLT
7371 // entry (this will be changed by the dynamic linker, normally
7372 // lazily when the function is called).
7373 this->got_plt_->set_current_data_size(got_offset + size/8);
7374
7375 gsym->set_needs_dynsym_entry();
7376 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7377 got_offset);
7378 }
7379
7380 // Set final PLT offsets. For each symbol, determine whether standard or
7381 // compressed (MIPS16 or microMIPS) PLT entry is used.
7382
7383 template<int size, bool big_endian>
7384 void
7385 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7386 {
7387 // The sizes of individual PLT entries.
7388 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7389 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7390 ? this->compressed_plt_entry_size() : 0);
7391
7392 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7393 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7394 {
7395 Mips_symbol<size>* mips_sym = *p;
7396
7397 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7398 // so always use a standard entry there.
7399 //
7400 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7401 // all MIPS16 calls will go via that stub, and there is no benefit
7402 // to having a MIPS16 entry. And in the case of call_stub a
7403 // standard entry actually has to be used as the stub ends with a J
7404 // instruction.
7405 if (this->target_->is_output_newabi()
7406 || mips_sym->has_mips16_call_stub()
7407 || mips_sym->has_mips16_call_fp_stub())
7408 {
7409 mips_sym->set_needs_mips_plt(true);
7410 mips_sym->set_needs_comp_plt(false);
7411 }
7412
7413 // Otherwise, if there are no direct calls to the function, we
7414 // have a free choice of whether to use standard or compressed
7415 // entries. Prefer microMIPS entries if the object is known to
7416 // contain microMIPS code, so that it becomes possible to create
7417 // pure microMIPS binaries. Prefer standard entries otherwise,
7418 // because MIPS16 ones are no smaller and are usually slower.
7419 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7420 {
7421 if (this->target_->is_output_micromips())
7422 mips_sym->set_needs_comp_plt(true);
7423 else
7424 mips_sym->set_needs_mips_plt(true);
7425 }
7426
7427 if (mips_sym->needs_mips_plt())
7428 {
7429 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7430 this->plt_mips_offset_ += plt_mips_entry_size;
7431 }
7432 if (mips_sym->needs_comp_plt())
7433 {
7434 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7435 this->plt_comp_offset_ += plt_comp_entry_size;
7436 }
7437 }
7438
7439 // Figure out the size of the PLT header if we know that we are using it.
7440 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7441 this->plt_header_size_ = this->get_plt_header_size();
7442 }
7443
7444 // Write out the PLT. This uses the hand-coded instructions above,
7445 // and adjusts them as needed.
7446
7447 template<int size, bool big_endian>
7448 void
7449 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7450 {
7451 const off_t offset = this->offset();
7452 const section_size_type oview_size =
7453 convert_to_section_size_type(this->data_size());
7454 unsigned char* const oview = of->get_output_view(offset, oview_size);
7455
7456 const off_t gotplt_file_offset = this->got_plt_->offset();
7457 const section_size_type gotplt_size =
7458 convert_to_section_size_type(this->got_plt_->data_size());
7459 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7460 gotplt_size);
7461 unsigned char* pov = oview;
7462
7463 Mips_address plt_address = this->address();
7464
7465 // Calculate the address of .got.plt.
7466 Mips_address gotplt_addr = this->got_plt_->address();
7467 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7468 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7469
7470 // The PLT sequence is not safe for N64 if .got.plt's address can
7471 // not be loaded in two instructions.
7472 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7473 || ~(gotplt_addr | 0x7fffffff) == 0);
7474
7475 // Write the PLT header.
7476 const uint32_t* plt0_entry = this->get_plt_header_entry();
7477 if (plt0_entry == plt0_entry_micromips_o32)
7478 {
7479 // Write microMIPS PLT header.
7480 gold_assert(gotplt_addr % 4 == 0);
7481
7482 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7483
7484 // ADDIUPC has a span of +/-16MB, check we're in range.
7485 if (gotpc_offset + 0x1000000 >= 0x2000000)
7486 {
7487 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7488 "ADDIUPC"), (long)gotpc_offset);
7489 return;
7490 }
7491
7492 elfcpp::Swap<16, big_endian>::writeval(pov,
7493 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7494 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7495 (gotpc_offset >> 2) & 0xffff);
7496 pov += 4;
7497 for (unsigned int i = 2;
7498 i < (sizeof(plt0_entry_micromips_o32)
7499 / sizeof(plt0_entry_micromips_o32[0]));
7500 i++)
7501 {
7502 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7503 pov += 2;
7504 }
7505 }
7506 else if (plt0_entry == plt0_entry_micromips32_o32)
7507 {
7508 // Write microMIPS PLT header in insn32 mode.
7509 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7510 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7511 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7512 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7513 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7514 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7515 pov += 12;
7516 for (unsigned int i = 6;
7517 i < (sizeof(plt0_entry_micromips32_o32)
7518 / sizeof(plt0_entry_micromips32_o32[0]));
7519 i++)
7520 {
7521 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7522 pov += 2;
7523 }
7524 }
7525 else
7526 {
7527 // Write standard PLT header.
7528 elfcpp::Swap<32, big_endian>::writeval(pov,
7529 plt0_entry[0] | gotplt_addr_high);
7530 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7531 plt0_entry[1] | gotplt_addr_low);
7532 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7533 plt0_entry[2] | gotplt_addr_low);
7534 pov += 12;
7535 for (int i = 3; i < 8; i++)
7536 {
7537 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7538 pov += 4;
7539 }
7540 }
7541
7542
7543 unsigned char* gotplt_pov = gotplt_view;
7544 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7545
7546 // The first two entries in .got.plt are reserved.
7547 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7548 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7549
7550 unsigned int gotplt_offset = 2 * got_entry_size;
7551 gotplt_pov += 2 * got_entry_size;
7552
7553 // Calculate the address of the PLT header.
7554 Mips_address header_address = (plt_address
7555 + (this->is_plt_header_compressed() ? 1 : 0));
7556
7557 // Initialize compressed PLT area view.
7558 unsigned char* pov2 = pov + this->plt_mips_offset_;
7559
7560 // Write the PLT entries.
7561 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7562 p = this->symbols_.begin();
7563 p != this->symbols_.end();
7564 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7565 {
7566 Mips_symbol<size>* mips_sym = *p;
7567
7568 // Calculate the address of the .got.plt entry.
7569 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7570 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7571 & 0xffff);
7572 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7573
7574 // Initially point the .got.plt entry at the PLT header.
7575 if (this->target_->is_output_n64())
7576 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7577 else
7578 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7579
7580 // Now handle the PLT itself. First the standard entry.
7581 if (mips_sym->has_mips_plt_offset())
7582 {
7583 // Pick the load opcode (LW or LD).
7584 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7585 : 0x8c000000;
7586
7587 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7588 : plt_entry;
7589
7590 // Fill in the PLT entry itself.
7591 elfcpp::Swap<32, big_endian>::writeval(pov,
7592 entry[0] | gotplt_entry_addr_hi);
7593 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7594 entry[1] | gotplt_entry_addr_lo | load);
7595 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7596 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7597 entry[3] | gotplt_entry_addr_lo);
7598 pov += 16;
7599 }
7600
7601 // Now the compressed entry. They come after any standard ones.
7602 if (mips_sym->has_comp_plt_offset())
7603 {
7604 if (!this->target_->is_output_micromips())
7605 {
7606 // Write MIPS16 PLT entry.
7607 const uint32_t* plt_entry = plt_entry_mips16_o32;
7608
7609 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7610 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7611 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7612 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7613 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7614 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7615 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7616 gotplt_entry_addr);
7617 pov2 += 16;
7618 }
7619 else if (this->target_->use_32bit_micromips_instructions())
7620 {
7621 // Write microMIPS PLT entry in insn32 mode.
7622 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7623
7624 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7625 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7626 gotplt_entry_addr_hi);
7627 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7628 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7629 gotplt_entry_addr_lo);
7630 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7631 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7632 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7633 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7634 gotplt_entry_addr_lo);
7635 pov2 += 16;
7636 }
7637 else
7638 {
7639 // Write microMIPS PLT entry.
7640 const uint32_t* plt_entry = plt_entry_micromips_o32;
7641
7642 gold_assert(gotplt_entry_addr % 4 == 0);
7643
7644 Mips_address loc_address = plt_address + pov2 - oview;
7645 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7646
7647 // ADDIUPC has a span of +/-16MB, check we're in range.
7648 if (gotpc_offset + 0x1000000 >= 0x2000000)
7649 {
7650 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7651 "range of ADDIUPC"), (long)gotpc_offset);
7652 return;
7653 }
7654
7655 elfcpp::Swap<16, big_endian>::writeval(pov2,
7656 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7657 elfcpp::Swap<16, big_endian>::writeval(
7658 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7659 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7660 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7661 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7662 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7663 pov2 += 12;
7664 }
7665 }
7666 }
7667
7668 // Check the number of bytes written for standard entries.
7669 gold_assert(static_cast<section_size_type>(
7670 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7671 // Check the number of bytes written for compressed entries.
7672 gold_assert((static_cast<section_size_type>(pov2 - pov)
7673 == this->plt_comp_offset_));
7674 // Check the total number of bytes written.
7675 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7676
7677 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7678 == gotplt_size);
7679
7680 of->write_output_view(offset, oview_size, oview);
7681 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7682 }
7683
7684 // Mips_output_data_mips_stubs methods.
7685
7686 // The format of the lazy binding stub when dynamic symbol count is less than
7687 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7688 template<int size, bool big_endian>
7689 const uint32_t
7690 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7691 {
7692 0x8f998010, // lw t9,0x8010(gp)
7693 0x03e07825, // or t7,ra,zero
7694 0x0320f809, // jalr t9,ra
7695 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7696 };
7697
7698 // The format of the lazy binding stub when dynamic symbol count is less than
7699 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7700 template<int size, bool big_endian>
7701 const uint32_t
7702 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7703 {
7704 0xdf998010, // ld t9,0x8010(gp)
7705 0x03e07825, // or t7,ra,zero
7706 0x0320f809, // jalr t9,ra
7707 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7708 };
7709
7710 // The format of the lazy binding stub when dynamic symbol count is less than
7711 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7712 template<int size, bool big_endian>
7713 const uint32_t
7714 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7715 {
7716 0x8f998010, // lw t9,0x8010(gp)
7717 0x03e07825, // or t7,ra,zero
7718 0x0320f809, // jalr t9,ra
7719 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7720 };
7721
7722 // The format of the lazy binding stub when dynamic symbol count is less than
7723 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7724 template<int size, bool big_endian>
7725 const uint32_t
7726 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7727 {
7728 0xdf998010, // ld t9,0x8010(gp)
7729 0x03e07825, // or t7,ra,zero
7730 0x0320f809, // jalr t9,ra
7731 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7732 };
7733
7734 // The format of the lazy binding stub when dynamic symbol count is greater than
7735 // 64K, and ABI is not N64.
7736 template<int size, bool big_endian>
7737 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7738 {
7739 0x8f998010, // lw t9,0x8010(gp)
7740 0x03e07825, // or t7,ra,zero
7741 0x3c180000, // lui t8,DYN_INDEX
7742 0x0320f809, // jalr t9,ra
7743 0x37180000 // ori t8,t8,DYN_INDEX
7744 };
7745
7746 // The format of the lazy binding stub when dynamic symbol count is greater than
7747 // 64K, and ABI is N64.
7748 template<int size, bool big_endian>
7749 const uint32_t
7750 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7751 {
7752 0xdf998010, // ld t9,0x8010(gp)
7753 0x03e07825, // or t7,ra,zero
7754 0x3c180000, // lui t8,DYN_INDEX
7755 0x0320f809, // jalr t9,ra
7756 0x37180000 // ori t8,t8,DYN_INDEX
7757 };
7758
7759 // microMIPS stubs.
7760
7761 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7762 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7763 template<int size, bool big_endian>
7764 const uint32_t
7765 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7766 {
7767 0xff3c, 0x8010, // lw t9,0x8010(gp)
7768 0x0dff, // move t7,ra
7769 0x45d9, // jalr t9
7770 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7771 };
7772
7773 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7774 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7775 template<int size, bool big_endian>
7776 const uint32_t
7777 Mips_output_data_mips_stubs<size, big_endian>::
7778 lazy_stub_micromips_normal_1_n64[] =
7779 {
7780 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7781 0x0dff, // move t7,ra
7782 0x45d9, // jalr t9
7783 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7784 };
7785
7786 // The format of the microMIPS lazy binding stub when dynamic symbol
7787 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7788 // and ABI is not N64.
7789 template<int size, bool big_endian>
7790 const uint32_t
7791 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7792 {
7793 0xff3c, 0x8010, // lw t9,0x8010(gp)
7794 0x0dff, // move t7,ra
7795 0x45d9, // jalr t9
7796 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7797 };
7798
7799 // The format of the microMIPS lazy binding stub when dynamic symbol
7800 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7801 // and ABI is N64.
7802 template<int size, bool big_endian>
7803 const uint32_t
7804 Mips_output_data_mips_stubs<size, big_endian>::
7805 lazy_stub_micromips_normal_2_n64[] =
7806 {
7807 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7808 0x0dff, // move t7,ra
7809 0x45d9, // jalr t9
7810 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7811 };
7812
7813 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7814 // greater than 64K, and ABI is not N64.
7815 template<int size, bool big_endian>
7816 const uint32_t
7817 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7818 {
7819 0xff3c, 0x8010, // lw t9,0x8010(gp)
7820 0x0dff, // move t7,ra
7821 0x41b8, 0x0000, // lui t8,DYN_INDEX
7822 0x45d9, // jalr t9
7823 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7824 };
7825
7826 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7827 // greater than 64K, and ABI is N64.
7828 template<int size, bool big_endian>
7829 const uint32_t
7830 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7831 {
7832 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7833 0x0dff, // move t7,ra
7834 0x41b8, 0x0000, // lui t8,DYN_INDEX
7835 0x45d9, // jalr t9
7836 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7837 };
7838
7839 // 32-bit microMIPS stubs.
7840
7841 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7842 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7843 // can use only 32-bit instructions.
7844 template<int size, bool big_endian>
7845 const uint32_t
7846 Mips_output_data_mips_stubs<size, big_endian>::
7847 lazy_stub_micromips32_normal_1[] =
7848 {
7849 0xff3c, 0x8010, // lw t9,0x8010(gp)
7850 0x001f, 0x7a90, // or t7,ra,zero
7851 0x03f9, 0x0f3c, // jalr ra,t9
7852 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7853 };
7854
7855 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7856 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7857 // use only 32-bit instructions.
7858 template<int size, bool big_endian>
7859 const uint32_t
7860 Mips_output_data_mips_stubs<size, big_endian>::
7861 lazy_stub_micromips32_normal_1_n64[] =
7862 {
7863 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7864 0x001f, 0x7a90, // or t7,ra,zero
7865 0x03f9, 0x0f3c, // jalr ra,t9
7866 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7867 };
7868
7869 // The format of the microMIPS lazy binding stub when dynamic symbol
7870 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7871 // ABI is not N64, and we can use only 32-bit instructions.
7872 template<int size, bool big_endian>
7873 const uint32_t
7874 Mips_output_data_mips_stubs<size, big_endian>::
7875 lazy_stub_micromips32_normal_2[] =
7876 {
7877 0xff3c, 0x8010, // lw t9,0x8010(gp)
7878 0x001f, 0x7a90, // or t7,ra,zero
7879 0x03f9, 0x0f3c, // jalr ra,t9
7880 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7881 };
7882
7883 // The format of the microMIPS lazy binding stub when dynamic symbol
7884 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7885 // ABI is N64, and we can use only 32-bit instructions.
7886 template<int size, bool big_endian>
7887 const uint32_t
7888 Mips_output_data_mips_stubs<size, big_endian>::
7889 lazy_stub_micromips32_normal_2_n64[] =
7890 {
7891 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7892 0x001f, 0x7a90, // or t7,ra,zero
7893 0x03f9, 0x0f3c, // jalr ra,t9
7894 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7895 };
7896
7897 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7898 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7899 template<int size, bool big_endian>
7900 const uint32_t
7901 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7902 {
7903 0xff3c, 0x8010, // lw t9,0x8010(gp)
7904 0x001f, 0x7a90, // or t7,ra,zero
7905 0x41b8, 0x0000, // lui t8,DYN_INDEX
7906 0x03f9, 0x0f3c, // jalr ra,t9
7907 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7908 };
7909
7910 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7911 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7912 template<int size, bool big_endian>
7913 const uint32_t
7914 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7915 {
7916 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7917 0x001f, 0x7a90, // or t7,ra,zero
7918 0x41b8, 0x0000, // lui t8,DYN_INDEX
7919 0x03f9, 0x0f3c, // jalr ra,t9
7920 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7921 };
7922
7923 // Create entry for a symbol.
7924
7925 template<int size, bool big_endian>
7926 void
7927 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7928 Mips_symbol<size>* gsym)
7929 {
7930 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7931 {
7932 this->symbols_.insert(gsym);
7933 gsym->set_has_lazy_stub(true);
7934 }
7935 }
7936
7937 // Remove entry for a symbol.
7938
7939 template<int size, bool big_endian>
7940 void
7941 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7942 Mips_symbol<size>* gsym)
7943 {
7944 if (gsym->has_lazy_stub())
7945 {
7946 this->symbols_.erase(gsym);
7947 gsym->set_has_lazy_stub(false);
7948 }
7949 }
7950
7951 // Set stub offsets for symbols. This method expects that the number of
7952 // entries in dynamic symbol table is set.
7953
7954 template<int size, bool big_endian>
7955 void
7956 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7957 {
7958 gold_assert(this->dynsym_count_ != -1U);
7959
7960 if (this->stub_offsets_are_set_)
7961 return;
7962
7963 unsigned int stub_size = this->stub_size();
7964 unsigned int offset = 0;
7965 for (typename Mips_stubs_entry_set::const_iterator
7966 p = this->symbols_.begin();
7967 p != this->symbols_.end();
7968 ++p, offset += stub_size)
7969 {
7970 Mips_symbol<size>* mips_sym = *p;
7971 mips_sym->set_lazy_stub_offset(offset);
7972 }
7973 this->stub_offsets_are_set_ = true;
7974 }
7975
7976 template<int size, bool big_endian>
7977 void
7978 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7979 {
7980 for (typename Mips_stubs_entry_set::const_iterator
7981 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7982 {
7983 Mips_symbol<size>* sym = *p;
7984 if (sym->is_from_dynobj())
7985 sym->set_needs_dynsym_value();
7986 }
7987 }
7988
7989 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
7990 // adjusts them as needed.
7991
7992 template<int size, bool big_endian>
7993 void
7994 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
7995 {
7996 const off_t offset = this->offset();
7997 const section_size_type oview_size =
7998 convert_to_section_size_type(this->data_size());
7999 unsigned char* const oview = of->get_output_view(offset, oview_size);
8000
8001 bool big_stub = this->dynsym_count_ > 0x10000;
8002
8003 unsigned char* pov = oview;
8004 for (typename Mips_stubs_entry_set::const_iterator
8005 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8006 {
8007 Mips_symbol<size>* sym = *p;
8008 const uint32_t* lazy_stub;
8009 bool n64 = this->target_->is_output_n64();
8010
8011 if (!this->target_->is_output_micromips())
8012 {
8013 // Write standard (non-microMIPS) stub.
8014 if (!big_stub)
8015 {
8016 if (sym->dynsym_index() & ~0x7fff)
8017 // Dynsym index is between 32K and 64K.
8018 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8019 else
8020 // Dynsym index is less than 32K.
8021 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8022 }
8023 else
8024 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8025
8026 unsigned int i = 0;
8027 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8028 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8029 pov += 8;
8030
8031 i += 2;
8032 if (big_stub)
8033 {
8034 // LUI instruction of the big stub. Paste high 16 bits of the
8035 // dynsym index.
8036 elfcpp::Swap<32, big_endian>::writeval(pov,
8037 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8038 pov += 4;
8039 i += 1;
8040 }
8041 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8042 // Last stub instruction. Paste low 16 bits of the dynsym index.
8043 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8044 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8045 pov += 8;
8046 }
8047 else if (this->target_->use_32bit_micromips_instructions())
8048 {
8049 // Write microMIPS stub in insn32 mode.
8050 if (!big_stub)
8051 {
8052 if (sym->dynsym_index() & ~0x7fff)
8053 // Dynsym index is between 32K and 64K.
8054 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8055 : lazy_stub_micromips32_normal_2;
8056 else
8057 // Dynsym index is less than 32K.
8058 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8059 : lazy_stub_micromips32_normal_1;
8060 }
8061 else
8062 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8063 : lazy_stub_micromips32_big;
8064
8065 unsigned int i = 0;
8066 // First stub instruction. We emit 32-bit microMIPS instructions by
8067 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8068 // the instruction where the opcode is must always come first, for
8069 // both little and big endian.
8070 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8071 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8072 // Second stub instruction.
8073 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8074 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8075 pov += 8;
8076 i += 4;
8077 if (big_stub)
8078 {
8079 // LUI instruction of the big stub. Paste high 16 bits of the
8080 // dynsym index.
8081 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8082 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8083 (sym->dynsym_index() >> 16) & 0x7fff);
8084 pov += 4;
8085 i += 2;
8086 }
8087 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8088 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8089 // Last stub instruction. Paste low 16 bits of the dynsym index.
8090 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8091 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8092 sym->dynsym_index() & 0xffff);
8093 pov += 8;
8094 }
8095 else
8096 {
8097 // Write microMIPS stub.
8098 if (!big_stub)
8099 {
8100 if (sym->dynsym_index() & ~0x7fff)
8101 // Dynsym index is between 32K and 64K.
8102 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8103 : lazy_stub_micromips_normal_2;
8104 else
8105 // Dynsym index is less than 32K.
8106 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8107 : lazy_stub_micromips_normal_1;
8108 }
8109 else
8110 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8111 : lazy_stub_micromips_big;
8112
8113 unsigned int i = 0;
8114 // First stub instruction. We emit 32-bit microMIPS instructions by
8115 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8116 // the instruction where the opcode is must always come first, for
8117 // both little and big endian.
8118 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8119 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8120 // Second stub instruction.
8121 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8122 pov += 6;
8123 i += 3;
8124 if (big_stub)
8125 {
8126 // LUI instruction of the big stub. Paste high 16 bits of the
8127 // dynsym index.
8128 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8129 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8130 (sym->dynsym_index() >> 16) & 0x7fff);
8131 pov += 4;
8132 i += 2;
8133 }
8134 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8135 // Last stub instruction. Paste low 16 bits of the dynsym index.
8136 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8137 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8138 sym->dynsym_index() & 0xffff);
8139 pov += 6;
8140 }
8141 }
8142
8143 // We always allocate 20 bytes for every stub, because final dynsym count is
8144 // not known in method do_finalize_sections. There are 4 unused bytes per
8145 // stub if final dynsym count is less than 0x10000.
8146 unsigned int used = pov - oview;
8147 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8148 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8149
8150 // Fill the unused space with zeroes.
8151 // TODO(sasa): Can we strip unused bytes during the relaxation?
8152 if (unused > 0)
8153 memset(pov, 0, unused);
8154
8155 of->write_output_view(offset, oview_size, oview);
8156 }
8157
8158 // Mips_output_section_reginfo methods.
8159
8160 template<int size, bool big_endian>
8161 void
8162 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8163 {
8164 off_t offset = this->offset();
8165 off_t data_size = this->data_size();
8166
8167 unsigned char* view = of->get_output_view(offset, data_size);
8168 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8169 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8170 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8171 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8172 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8173 // Write the gp value.
8174 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8175 this->target_->gp_value());
8176
8177 of->write_output_view(offset, data_size, view);
8178 }
8179
8180 // Mips_output_section_abiflags methods.
8181
8182 template<int size, bool big_endian>
8183 void
8184 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8185 {
8186 off_t offset = this->offset();
8187 off_t data_size = this->data_size();
8188
8189 unsigned char* view = of->get_output_view(offset, data_size);
8190 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8191 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8192 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8193 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8194 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8195 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8196 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8197 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8198 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8199 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8200 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8201
8202 of->write_output_view(offset, data_size, view);
8203 }
8204
8205 // Mips_copy_relocs methods.
8206
8207 // Emit any saved relocs.
8208
8209 template<int sh_type, int size, bool big_endian>
8210 void
8211 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8212 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8213 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8214 {
8215 for (typename Copy_relocs<sh_type, size, big_endian>::
8216 Copy_reloc_entries::iterator p = this->entries_.begin();
8217 p != this->entries_.end();
8218 ++p)
8219 emit_entry(*p, reloc_section, symtab, layout, target);
8220
8221 // We no longer need the saved information.
8222 this->entries_.clear();
8223 }
8224
8225 // Emit the reloc if appropriate.
8226
8227 template<int sh_type, int size, bool big_endian>
8228 void
8229 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8230 Copy_reloc_entry& entry,
8231 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8232 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8233 {
8234 // If the symbol is no longer defined in a dynamic object, then we
8235 // emitted a COPY relocation, and we do not want to emit this
8236 // dynamic relocation.
8237 if (!entry.sym_->is_from_dynobj())
8238 return;
8239
8240 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8241 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8242 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8243
8244 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8245 if (can_make_dynamic && !sym->has_static_relocs())
8246 {
8247 Mips_relobj<size, big_endian>* object =
8248 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8249 target->got_section(symtab, layout)->record_global_got_symbol(
8250 sym, object, entry.reloc_type_, true, false);
8251 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8252 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8253 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8254 else
8255 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8256 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8257 entry.shndx_, entry.address_);
8258 }
8259 else
8260 this->make_copy_reloc(symtab, layout,
8261 static_cast<Sized_symbol<size>*>(entry.sym_),
8262 entry.relobj_,
8263 reloc_section);
8264 }
8265
8266 // Target_mips methods.
8267
8268 // Return the value to use for a dynamic symbol which requires special
8269 // treatment. This is how we support equality comparisons of function
8270 // pointers across shared library boundaries, as described in the
8271 // processor specific ABI supplement.
8272
8273 template<int size, bool big_endian>
8274 uint64_t
8275 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8276 {
8277 uint64_t value = 0;
8278 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8279
8280 if (!mips_sym->has_lazy_stub())
8281 {
8282 if (mips_sym->has_plt_offset())
8283 {
8284 // We distinguish between PLT entries and lazy-binding stubs by
8285 // giving the former an st_other value of STO_MIPS_PLT. Set the
8286 // value to the stub address if there are any relocations in the
8287 // binary where pointer equality matters.
8288 if (mips_sym->pointer_equality_needed())
8289 {
8290 // Prefer a standard MIPS PLT entry.
8291 if (mips_sym->has_mips_plt_offset())
8292 value = this->plt_section()->mips_entry_address(mips_sym);
8293 else
8294 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8295 }
8296 else
8297 value = 0;
8298 }
8299 }
8300 else
8301 {
8302 // First, set stub offsets for symbols. This method expects that the
8303 // number of entries in dynamic symbol table is set.
8304 this->mips_stubs_section()->set_lazy_stub_offsets();
8305
8306 // The run-time linker uses the st_value field of the symbol
8307 // to reset the global offset table entry for this external
8308 // to its stub address when unlinking a shared object.
8309 value = this->mips_stubs_section()->stub_address(mips_sym);
8310 }
8311
8312 if (mips_sym->has_mips16_fn_stub())
8313 {
8314 // If we have a MIPS16 function with a stub, the dynamic symbol must
8315 // refer to the stub, since only the stub uses the standard calling
8316 // conventions.
8317 value = mips_sym->template
8318 get_mips16_fn_stub<big_endian>()->output_address();
8319 }
8320
8321 return value;
8322 }
8323
8324 // Get the dynamic reloc section, creating it if necessary. It's always
8325 // .rel.dyn, even for MIPS64.
8326
8327 template<int size, bool big_endian>
8328 typename Target_mips<size, big_endian>::Reloc_section*
8329 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8330 {
8331 if (this->rel_dyn_ == NULL)
8332 {
8333 gold_assert(layout != NULL);
8334 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8335 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8336 elfcpp::SHF_ALLOC, this->rel_dyn_,
8337 ORDER_DYNAMIC_RELOCS, false);
8338
8339 // First entry in .rel.dyn has to be null.
8340 // This is hack - we define dummy output data and set its address to 0,
8341 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8342 // This ensures that the entry is null.
8343 Output_data* od = new Output_data_zero_fill(0, 0);
8344 od->set_address(0);
8345 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8346 }
8347 return this->rel_dyn_;
8348 }
8349
8350 // Get the GOT section, creating it if necessary.
8351
8352 template<int size, bool big_endian>
8353 Mips_output_data_got<size, big_endian>*
8354 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8355 Layout* layout)
8356 {
8357 if (this->got_ == NULL)
8358 {
8359 gold_assert(symtab != NULL && layout != NULL);
8360
8361 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8362 layout);
8363 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8364 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8365 elfcpp::SHF_MIPS_GPREL),
8366 this->got_, ORDER_DATA, false);
8367
8368 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8369 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8370 Symbol_table::PREDEFINED,
8371 this->got_,
8372 0, 0, elfcpp::STT_OBJECT,
8373 elfcpp::STB_GLOBAL,
8374 elfcpp::STV_HIDDEN, 0,
8375 false, false);
8376 }
8377
8378 return this->got_;
8379 }
8380
8381 // Calculate value of _gp symbol.
8382
8383 template<int size, bool big_endian>
8384 void
8385 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8386 {
8387 gold_assert(this->gp_ == NULL);
8388
8389 Sized_symbol<size>* gp =
8390 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8391
8392 // Set _gp symbol if the linker script hasn't created it.
8393 if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8394 {
8395 // If there is no .got section, gp should be based on .sdata.
8396 Output_data* gp_section = (this->got_ != NULL
8397 ? this->got_->output_section()
8398 : layout->find_output_section(".sdata"));
8399
8400 if (gp_section != NULL)
8401 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8402 "_gp", NULL, Symbol_table::PREDEFINED,
8403 gp_section, MIPS_GP_OFFSET, 0,
8404 elfcpp::STT_NOTYPE,
8405 elfcpp::STB_LOCAL,
8406 elfcpp::STV_DEFAULT,
8407 0, false, false));
8408 }
8409
8410 this->gp_ = gp;
8411 }
8412
8413 // Set the dynamic symbol indexes. INDEX is the index of the first
8414 // global dynamic symbol. Pointers to the symbols are stored into the
8415 // vector SYMS. The names are added to DYNPOOL. This returns an
8416 // updated dynamic symbol index.
8417
8418 template<int size, bool big_endian>
8419 unsigned int
8420 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8421 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8422 std::vector<Symbol*>* syms, Stringpool* dynpool,
8423 Versions* versions, Symbol_table* symtab) const
8424 {
8425 std::vector<Symbol*> non_got_symbols;
8426 std::vector<Symbol*> got_symbols;
8427
8428 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8429 &got_symbols);
8430
8431 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8432 p != non_got_symbols.end();
8433 ++p)
8434 {
8435 Symbol* sym = *p;
8436
8437 // Note that SYM may already have a dynamic symbol index, since
8438 // some symbols appear more than once in the symbol table, with
8439 // and without a version.
8440
8441 if (!sym->has_dynsym_index())
8442 {
8443 sym->set_dynsym_index(index);
8444 ++index;
8445 syms->push_back(sym);
8446 dynpool->add(sym->name(), false, NULL);
8447
8448 // Record any version information.
8449 if (sym->version() != NULL)
8450 versions->record_version(symtab, dynpool, sym);
8451
8452 // If the symbol is defined in a dynamic object and is
8453 // referenced in a regular object, then mark the dynamic
8454 // object as needed. This is used to implement --as-needed.
8455 if (sym->is_from_dynobj() && sym->in_reg())
8456 sym->object()->set_is_needed();
8457 }
8458 }
8459
8460 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8461 p != got_symbols.end();
8462 ++p)
8463 {
8464 Symbol* sym = *p;
8465 if (!sym->has_dynsym_index())
8466 {
8467 // Record any version information.
8468 if (sym->version() != NULL)
8469 versions->record_version(symtab, dynpool, sym);
8470 }
8471 }
8472
8473 index = versions->finalize(symtab, index, syms);
8474
8475 int got_sym_count = 0;
8476 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8477 p != got_symbols.end();
8478 ++p)
8479 {
8480 Symbol* sym = *p;
8481
8482 if (!sym->has_dynsym_index())
8483 {
8484 ++got_sym_count;
8485 sym->set_dynsym_index(index);
8486 ++index;
8487 syms->push_back(sym);
8488 dynpool->add(sym->name(), false, NULL);
8489
8490 // If the symbol is defined in a dynamic object and is
8491 // referenced in a regular object, then mark the dynamic
8492 // object as needed. This is used to implement --as-needed.
8493 if (sym->is_from_dynobj() && sym->in_reg())
8494 sym->object()->set_is_needed();
8495 }
8496 }
8497
8498 // Set index of the first symbol that has .got entry.
8499 this->got_->set_first_global_got_dynsym_index(
8500 got_sym_count > 0 ? index - got_sym_count : -1U);
8501
8502 if (this->mips_stubs_ != NULL)
8503 this->mips_stubs_->set_dynsym_count(index);
8504
8505 return index;
8506 }
8507
8508 // Create a PLT entry for a global symbol referenced by r_type relocation.
8509
8510 template<int size, bool big_endian>
8511 void
8512 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8513 Layout* layout,
8514 Mips_symbol<size>* gsym,
8515 unsigned int r_type)
8516 {
8517 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8518 return;
8519
8520 if (this->plt_ == NULL)
8521 {
8522 // Create the GOT section first.
8523 this->got_section(symtab, layout);
8524
8525 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8526 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8527 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8528 this->got_plt_, ORDER_DATA, false);
8529
8530 // The first two entries are reserved.
8531 this->got_plt_->set_current_data_size(2 * size/8);
8532
8533 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8534 this->got_plt_,
8535 this);
8536 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8537 (elfcpp::SHF_ALLOC
8538 | elfcpp::SHF_EXECINSTR),
8539 this->plt_, ORDER_PLT, false);
8540
8541 // Make the sh_info field of .rel.plt point to .plt.
8542 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8543 rel_plt_os->set_info_section(this->plt_->output_section());
8544 }
8545
8546 this->plt_->add_entry(gsym, r_type);
8547 }
8548
8549
8550 // Get the .MIPS.stubs section, creating it if necessary.
8551
8552 template<int size, bool big_endian>
8553 Mips_output_data_mips_stubs<size, big_endian>*
8554 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8555 {
8556 if (this->mips_stubs_ == NULL)
8557 {
8558 this->mips_stubs_ =
8559 new Mips_output_data_mips_stubs<size, big_endian>(this);
8560 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8561 (elfcpp::SHF_ALLOC
8562 | elfcpp::SHF_EXECINSTR),
8563 this->mips_stubs_, ORDER_PLT, false);
8564 }
8565 return this->mips_stubs_;
8566 }
8567
8568 // Get the LA25 stub section, creating it if necessary.
8569
8570 template<int size, bool big_endian>
8571 Mips_output_data_la25_stub<size, big_endian>*
8572 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8573 {
8574 if (this->la25_stub_ == NULL)
8575 {
8576 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8577 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8578 (elfcpp::SHF_ALLOC
8579 | elfcpp::SHF_EXECINSTR),
8580 this->la25_stub_, ORDER_TEXT, false);
8581 }
8582 return this->la25_stub_;
8583 }
8584
8585 // Process the relocations to determine unreferenced sections for
8586 // garbage collection.
8587
8588 template<int size, bool big_endian>
8589 void
8590 Target_mips<size, big_endian>::gc_process_relocs(
8591 Symbol_table* symtab,
8592 Layout* layout,
8593 Sized_relobj_file<size, big_endian>* object,
8594 unsigned int data_shndx,
8595 unsigned int sh_type,
8596 const unsigned char* prelocs,
8597 size_t reloc_count,
8598 Output_section* output_section,
8599 bool needs_special_offset_handling,
8600 size_t local_symbol_count,
8601 const unsigned char* plocal_symbols)
8602 {
8603 typedef Target_mips<size, big_endian> Mips;
8604
8605 if (sh_type == elfcpp::SHT_REL)
8606 {
8607 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8608 Classify_reloc;
8609
8610 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8611 symtab,
8612 layout,
8613 this,
8614 object,
8615 data_shndx,
8616 prelocs,
8617 reloc_count,
8618 output_section,
8619 needs_special_offset_handling,
8620 local_symbol_count,
8621 plocal_symbols);
8622 }
8623 else if (sh_type == elfcpp::SHT_RELA)
8624 {
8625 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8626 Classify_reloc;
8627
8628 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8629 symtab,
8630 layout,
8631 this,
8632 object,
8633 data_shndx,
8634 prelocs,
8635 reloc_count,
8636 output_section,
8637 needs_special_offset_handling,
8638 local_symbol_count,
8639 plocal_symbols);
8640 }
8641 else
8642 gold_unreachable();
8643 }
8644
8645 // Scan relocations for a section.
8646
8647 template<int size, bool big_endian>
8648 void
8649 Target_mips<size, big_endian>::scan_relocs(
8650 Symbol_table* symtab,
8651 Layout* layout,
8652 Sized_relobj_file<size, big_endian>* object,
8653 unsigned int data_shndx,
8654 unsigned int sh_type,
8655 const unsigned char* prelocs,
8656 size_t reloc_count,
8657 Output_section* output_section,
8658 bool needs_special_offset_handling,
8659 size_t local_symbol_count,
8660 const unsigned char* plocal_symbols)
8661 {
8662 typedef Target_mips<size, big_endian> Mips;
8663
8664 if (sh_type == elfcpp::SHT_REL)
8665 {
8666 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8667 Classify_reloc;
8668
8669 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8670 symtab,
8671 layout,
8672 this,
8673 object,
8674 data_shndx,
8675 prelocs,
8676 reloc_count,
8677 output_section,
8678 needs_special_offset_handling,
8679 local_symbol_count,
8680 plocal_symbols);
8681 }
8682 else if (sh_type == elfcpp::SHT_RELA)
8683 {
8684 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8685 Classify_reloc;
8686
8687 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8688 symtab,
8689 layout,
8690 this,
8691 object,
8692 data_shndx,
8693 prelocs,
8694 reloc_count,
8695 output_section,
8696 needs_special_offset_handling,
8697 local_symbol_count,
8698 plocal_symbols);
8699 }
8700 }
8701
8702 template<int size, bool big_endian>
8703 bool
8704 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8705 {
8706 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8707 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8708 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8709 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8710 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8711 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8712 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8713 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8714 }
8715
8716 // Return the MACH for a MIPS e_flags value.
8717 template<int size, bool big_endian>
8718 unsigned int
8719 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8720 {
8721 switch (flags & elfcpp::EF_MIPS_MACH)
8722 {
8723 case elfcpp::E_MIPS_MACH_3900:
8724 return mach_mips3900;
8725
8726 case elfcpp::E_MIPS_MACH_4010:
8727 return mach_mips4010;
8728
8729 case elfcpp::E_MIPS_MACH_4100:
8730 return mach_mips4100;
8731
8732 case elfcpp::E_MIPS_MACH_4111:
8733 return mach_mips4111;
8734
8735 case elfcpp::E_MIPS_MACH_4120:
8736 return mach_mips4120;
8737
8738 case elfcpp::E_MIPS_MACH_4650:
8739 return mach_mips4650;
8740
8741 case elfcpp::E_MIPS_MACH_5400:
8742 return mach_mips5400;
8743
8744 case elfcpp::E_MIPS_MACH_5500:
8745 return mach_mips5500;
8746
8747 case elfcpp::E_MIPS_MACH_5900:
8748 return mach_mips5900;
8749
8750 case elfcpp::E_MIPS_MACH_9000:
8751 return mach_mips9000;
8752
8753 case elfcpp::E_MIPS_MACH_SB1:
8754 return mach_mips_sb1;
8755
8756 case elfcpp::E_MIPS_MACH_LS2E:
8757 return mach_mips_loongson_2e;
8758
8759 case elfcpp::E_MIPS_MACH_LS2F:
8760 return mach_mips_loongson_2f;
8761
8762 case elfcpp::E_MIPS_MACH_LS3A:
8763 return mach_mips_loongson_3a;
8764
8765 case elfcpp::E_MIPS_MACH_OCTEON3:
8766 return mach_mips_octeon3;
8767
8768 case elfcpp::E_MIPS_MACH_OCTEON2:
8769 return mach_mips_octeon2;
8770
8771 case elfcpp::E_MIPS_MACH_OCTEON:
8772 return mach_mips_octeon;
8773
8774 case elfcpp::E_MIPS_MACH_XLR:
8775 return mach_mips_xlr;
8776
8777 default:
8778 switch (flags & elfcpp::EF_MIPS_ARCH)
8779 {
8780 default:
8781 case elfcpp::E_MIPS_ARCH_1:
8782 return mach_mips3000;
8783
8784 case elfcpp::E_MIPS_ARCH_2:
8785 return mach_mips6000;
8786
8787 case elfcpp::E_MIPS_ARCH_3:
8788 return mach_mips4000;
8789
8790 case elfcpp::E_MIPS_ARCH_4:
8791 return mach_mips8000;
8792
8793 case elfcpp::E_MIPS_ARCH_5:
8794 return mach_mips5;
8795
8796 case elfcpp::E_MIPS_ARCH_32:
8797 return mach_mipsisa32;
8798
8799 case elfcpp::E_MIPS_ARCH_64:
8800 return mach_mipsisa64;
8801
8802 case elfcpp::E_MIPS_ARCH_32R2:
8803 return mach_mipsisa32r2;
8804
8805 case elfcpp::E_MIPS_ARCH_32R6:
8806 return mach_mipsisa32r6;
8807
8808 case elfcpp::E_MIPS_ARCH_64R2:
8809 return mach_mipsisa64r2;
8810
8811 case elfcpp::E_MIPS_ARCH_64R6:
8812 return mach_mipsisa64r6;
8813 }
8814 }
8815
8816 return 0;
8817 }
8818
8819 // Return the MACH for each .MIPS.abiflags ISA Extension.
8820
8821 template<int size, bool big_endian>
8822 unsigned int
8823 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8824 {
8825 switch (isa_ext)
8826 {
8827 case elfcpp::AFL_EXT_3900:
8828 return mach_mips3900;
8829
8830 case elfcpp::AFL_EXT_4010:
8831 return mach_mips4010;
8832
8833 case elfcpp::AFL_EXT_4100:
8834 return mach_mips4100;
8835
8836 case elfcpp::AFL_EXT_4111:
8837 return mach_mips4111;
8838
8839 case elfcpp::AFL_EXT_4120:
8840 return mach_mips4120;
8841
8842 case elfcpp::AFL_EXT_4650:
8843 return mach_mips4650;
8844
8845 case elfcpp::AFL_EXT_5400:
8846 return mach_mips5400;
8847
8848 case elfcpp::AFL_EXT_5500:
8849 return mach_mips5500;
8850
8851 case elfcpp::AFL_EXT_5900:
8852 return mach_mips5900;
8853
8854 case elfcpp::AFL_EXT_10000:
8855 return mach_mips10000;
8856
8857 case elfcpp::AFL_EXT_LOONGSON_2E:
8858 return mach_mips_loongson_2e;
8859
8860 case elfcpp::AFL_EXT_LOONGSON_2F:
8861 return mach_mips_loongson_2f;
8862
8863 case elfcpp::AFL_EXT_LOONGSON_3A:
8864 return mach_mips_loongson_3a;
8865
8866 case elfcpp::AFL_EXT_SB1:
8867 return mach_mips_sb1;
8868
8869 case elfcpp::AFL_EXT_OCTEON:
8870 return mach_mips_octeon;
8871
8872 case elfcpp::AFL_EXT_OCTEONP:
8873 return mach_mips_octeonp;
8874
8875 case elfcpp::AFL_EXT_OCTEON2:
8876 return mach_mips_octeon2;
8877
8878 case elfcpp::AFL_EXT_XLR:
8879 return mach_mips_xlr;
8880
8881 default:
8882 return mach_mips3000;
8883 }
8884 }
8885
8886 // Return the .MIPS.abiflags value representing each ISA Extension.
8887
8888 template<int size, bool big_endian>
8889 unsigned int
8890 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8891 {
8892 switch (mips_mach)
8893 {
8894 case mach_mips3900:
8895 return elfcpp::AFL_EXT_3900;
8896
8897 case mach_mips4010:
8898 return elfcpp::AFL_EXT_4010;
8899
8900 case mach_mips4100:
8901 return elfcpp::AFL_EXT_4100;
8902
8903 case mach_mips4111:
8904 return elfcpp::AFL_EXT_4111;
8905
8906 case mach_mips4120:
8907 return elfcpp::AFL_EXT_4120;
8908
8909 case mach_mips4650:
8910 return elfcpp::AFL_EXT_4650;
8911
8912 case mach_mips5400:
8913 return elfcpp::AFL_EXT_5400;
8914
8915 case mach_mips5500:
8916 return elfcpp::AFL_EXT_5500;
8917
8918 case mach_mips5900:
8919 return elfcpp::AFL_EXT_5900;
8920
8921 case mach_mips10000:
8922 return elfcpp::AFL_EXT_10000;
8923
8924 case mach_mips_loongson_2e:
8925 return elfcpp::AFL_EXT_LOONGSON_2E;
8926
8927 case mach_mips_loongson_2f:
8928 return elfcpp::AFL_EXT_LOONGSON_2F;
8929
8930 case mach_mips_loongson_3a:
8931 return elfcpp::AFL_EXT_LOONGSON_3A;
8932
8933 case mach_mips_sb1:
8934 return elfcpp::AFL_EXT_SB1;
8935
8936 case mach_mips_octeon:
8937 return elfcpp::AFL_EXT_OCTEON;
8938
8939 case mach_mips_octeonp:
8940 return elfcpp::AFL_EXT_OCTEONP;
8941
8942 case mach_mips_octeon3:
8943 return elfcpp::AFL_EXT_OCTEON3;
8944
8945 case mach_mips_octeon2:
8946 return elfcpp::AFL_EXT_OCTEON2;
8947
8948 case mach_mips_xlr:
8949 return elfcpp::AFL_EXT_XLR;
8950
8951 default:
8952 return 0;
8953 }
8954 }
8955
8956 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
8957
8958 template<int size, bool big_endian>
8959 void
8960 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
8961 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
8962 {
8963 int new_isa = 0;
8964 switch (e_flags & elfcpp::EF_MIPS_ARCH)
8965 {
8966 case elfcpp::E_MIPS_ARCH_1:
8967 new_isa = this->level_rev(1, 0);
8968 break;
8969 case elfcpp::E_MIPS_ARCH_2:
8970 new_isa = this->level_rev(2, 0);
8971 break;
8972 case elfcpp::E_MIPS_ARCH_3:
8973 new_isa = this->level_rev(3, 0);
8974 break;
8975 case elfcpp::E_MIPS_ARCH_4:
8976 new_isa = this->level_rev(4, 0);
8977 break;
8978 case elfcpp::E_MIPS_ARCH_5:
8979 new_isa = this->level_rev(5, 0);
8980 break;
8981 case elfcpp::E_MIPS_ARCH_32:
8982 new_isa = this->level_rev(32, 1);
8983 break;
8984 case elfcpp::E_MIPS_ARCH_32R2:
8985 new_isa = this->level_rev(32, 2);
8986 break;
8987 case elfcpp::E_MIPS_ARCH_32R6:
8988 new_isa = this->level_rev(32, 6);
8989 break;
8990 case elfcpp::E_MIPS_ARCH_64:
8991 new_isa = this->level_rev(64, 1);
8992 break;
8993 case elfcpp::E_MIPS_ARCH_64R2:
8994 new_isa = this->level_rev(64, 2);
8995 break;
8996 case elfcpp::E_MIPS_ARCH_64R6:
8997 new_isa = this->level_rev(64, 6);
8998 break;
8999 default:
9000 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9001 this->elf_mips_mach_name(e_flags));
9002 }
9003
9004 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9005 {
9006 // Decode a single value into level and revision.
9007 abiflags->isa_level = new_isa >> 3;
9008 abiflags->isa_rev = new_isa & 0x7;
9009 }
9010
9011 // Update the isa_ext if needed.
9012 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9013 this->elf_mips_mach(e_flags)))
9014 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9015 }
9016
9017 // Infer the content of the ABI flags based on the elf header.
9018
9019 template<int size, bool big_endian>
9020 void
9021 Target_mips<size, big_endian>::infer_abiflags(
9022 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9023 {
9024 const Attributes_section_data* pasd = relobj->attributes_section_data();
9025 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9026 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9027
9028 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9029 if (pasd != NULL)
9030 {
9031 // Read fp_abi from the .gnu.attribute section.
9032 const Object_attribute* attr =
9033 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9034 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9035 }
9036
9037 abiflags->fp_abi = attr_fp_abi;
9038 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9039 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9040 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9041 : elfcpp::AFL_REG_64;
9042
9043 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9044 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9045 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9046 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9047 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9048 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9049 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9050 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9051 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9052
9053 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9054 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9055 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9056 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9057 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9058 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9059
9060 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9061 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9062 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9063 && abiflags->isa_level >= 32
9064 && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9065 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9066 }
9067
9068 // Create abiflags from elf header or from .MIPS.abiflags section.
9069
9070 template<int size, bool big_endian>
9071 void
9072 Target_mips<size, big_endian>::create_abiflags(
9073 Mips_relobj<size, big_endian>* relobj,
9074 Mips_abiflags<big_endian>* abiflags)
9075 {
9076 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9077 Mips_abiflags<big_endian> header_abiflags;
9078
9079 this->infer_abiflags(relobj, &header_abiflags);
9080
9081 if (sec_abiflags == NULL)
9082 {
9083 // If there is no input .MIPS.abiflags section, use abiflags created
9084 // from elf header.
9085 *abiflags = header_abiflags;
9086 return;
9087 }
9088
9089 this->has_abiflags_section_ = true;
9090
9091 // It is not possible to infer the correct ISA revision for R3 or R5
9092 // so drop down to R2 for the checks.
9093 unsigned char isa_rev = sec_abiflags->isa_rev;
9094 if (isa_rev == 3 || isa_rev == 5)
9095 isa_rev = 2;
9096
9097 // Check compatibility between abiflags created from elf header
9098 // and abiflags from .MIPS.abiflags section in this object file.
9099 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9100 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9101 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9102 relobj->name().c_str());
9103 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9104 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9105 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9106 ".MIPS.abiflags"), relobj->name().c_str());
9107 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9108 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9109 relobj->name().c_str());
9110 // The isa_ext is allowed to be an extension of what can be inferred
9111 // from e_flags.
9112 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9113 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9114 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9115 ".MIPS.abiflags"), relobj->name().c_str());
9116 if (sec_abiflags->flags2 != 0)
9117 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9118 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9119 sec_abiflags->flags2);
9120 // Use abiflags from .MIPS.abiflags section.
9121 *abiflags = *sec_abiflags;
9122 }
9123
9124 // Return the meaning of fp_abi, or "unknown" if not known.
9125
9126 template<int size, bool big_endian>
9127 const char*
9128 Target_mips<size, big_endian>::fp_abi_string(int fp)
9129 {
9130 switch (fp)
9131 {
9132 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9133 return "-mdouble-float";
9134 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9135 return "-msingle-float";
9136 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9137 return "-msoft-float";
9138 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9139 return _("-mips32r2 -mfp64 (12 callee-saved)");
9140 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9141 return "-mfpxx";
9142 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9143 return "-mgp32 -mfp64";
9144 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9145 return "-mgp32 -mfp64 -mno-odd-spreg";
9146 default:
9147 return "unknown";
9148 }
9149 }
9150
9151 // Select fp_abi.
9152
9153 template<int size, bool big_endian>
9154 int
9155 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9156 int out_fp)
9157 {
9158 if (in_fp == out_fp)
9159 return out_fp;
9160
9161 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9162 return in_fp;
9163 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9164 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9165 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9166 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9167 return in_fp;
9168 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9169 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9170 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9171 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9172 return out_fp; // Keep the current setting.
9173 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9174 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9175 return in_fp;
9176 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9177 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9178 return out_fp; // Keep the current setting.
9179 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9180 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9181 fp_abi_string(in_fp), fp_abi_string(out_fp));
9182 return out_fp;
9183 }
9184
9185 // Merge attributes from input object.
9186
9187 template<int size, bool big_endian>
9188 void
9189 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9190 const Attributes_section_data* pasd)
9191 {
9192 // Return if there is no attributes section data.
9193 if (pasd == NULL)
9194 return;
9195
9196 // If output has no object attributes, just copy.
9197 if (this->attributes_section_data_ == NULL)
9198 {
9199 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9200 return;
9201 }
9202
9203 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9204 Object_attribute::OBJ_ATTR_GNU);
9205
9206 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9207 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9208
9209 // Merge Tag_compatibility attributes and any common GNU ones.
9210 this->attributes_section_data_->merge(name.c_str(), pasd);
9211 }
9212
9213 // Merge abiflags from input object.
9214
9215 template<int size, bool big_endian>
9216 void
9217 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9218 Mips_abiflags<big_endian>* in_abiflags)
9219 {
9220 // If output has no abiflags, just copy.
9221 if (this->abiflags_ == NULL)
9222 {
9223 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9224 return;
9225 }
9226
9227 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9228 this->abiflags_->fp_abi);
9229
9230 // Merge abiflags.
9231 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9232 in_abiflags->isa_level);
9233 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9234 in_abiflags->isa_rev);
9235 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9236 in_abiflags->gpr_size);
9237 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9238 in_abiflags->cpr1_size);
9239 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9240 in_abiflags->cpr2_size);
9241 this->abiflags_->ases |= in_abiflags->ases;
9242 this->abiflags_->flags1 |= in_abiflags->flags1;
9243 }
9244
9245 // Check whether machine EXTENSION is an extension of machine BASE.
9246 template<int size, bool big_endian>
9247 bool
9248 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9249 unsigned int extension)
9250 {
9251 if (extension == base)
9252 return true;
9253
9254 if ((base == mach_mipsisa32)
9255 && this->mips_mach_extends(mach_mipsisa64, extension))
9256 return true;
9257
9258 if ((base == mach_mipsisa32r2)
9259 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9260 return true;
9261
9262 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9263 if (extension == this->mips_mach_extensions_[i].first)
9264 {
9265 extension = this->mips_mach_extensions_[i].second;
9266 if (extension == base)
9267 return true;
9268 }
9269
9270 return false;
9271 }
9272
9273 // Merge file header flags from input object.
9274
9275 template<int size, bool big_endian>
9276 void
9277 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9278 elfcpp::Elf_Word in_flags)
9279 {
9280 // If flags are not set yet, just copy them.
9281 if (!this->are_processor_specific_flags_set())
9282 {
9283 this->set_processor_specific_flags(in_flags);
9284 this->mach_ = this->elf_mips_mach(in_flags);
9285 return;
9286 }
9287
9288 elfcpp::Elf_Word new_flags = in_flags;
9289 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9290 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9291 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9292
9293 // Check flag compatibility.
9294 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9295 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9296
9297 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9298 // doesn't seem to matter.
9299 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9300 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9301
9302 // MIPSpro generates ucode info in n64 objects. Again, we should
9303 // just be able to ignore this.
9304 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9305 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9306
9307 if (new_flags == old_flags)
9308 {
9309 this->set_processor_specific_flags(merged_flags);
9310 return;
9311 }
9312
9313 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9314 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9315 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9316 name.c_str());
9317
9318 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9319 merged_flags |= elfcpp::EF_MIPS_CPIC;
9320 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9321 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9322
9323 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9324 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9325
9326 // Compare the ISAs.
9327 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9328 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9329 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9330 {
9331 // Output ISA isn't the same as, or an extension of, input ISA.
9332 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9333 {
9334 // Copy the architecture info from input object to output. Also copy
9335 // the 32-bit flag (if set) so that we continue to recognise
9336 // output as a 32-bit binary.
9337 this->mach_ = this->elf_mips_mach(in_flags);
9338 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9339 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9340 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9341
9342 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9343 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9344
9345 // Copy across the ABI flags if output doesn't use them
9346 // and if that was what caused us to treat input object as 32-bit.
9347 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9348 && this->mips_32bit_flags(new_flags)
9349 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9350 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9351 }
9352 else
9353 // The ISAs aren't compatible.
9354 gold_error(_("%s: linking %s module with previous %s modules"),
9355 name.c_str(), this->elf_mips_mach_name(in_flags),
9356 this->elf_mips_mach_name(merged_flags));
9357 }
9358
9359 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9360 | elfcpp::EF_MIPS_32BITMODE));
9361 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9362 | elfcpp::EF_MIPS_32BITMODE));
9363
9364 // Compare ABIs.
9365 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9366 {
9367 // Only error if both are set (to different values).
9368 if ((new_flags & elfcpp::EF_MIPS_ABI)
9369 && (old_flags & elfcpp::EF_MIPS_ABI))
9370 gold_error(_("%s: ABI mismatch: linking %s module with "
9371 "previous %s modules"), name.c_str(),
9372 this->elf_mips_abi_name(in_flags),
9373 this->elf_mips_abi_name(merged_flags));
9374
9375 new_flags &= ~elfcpp::EF_MIPS_ABI;
9376 old_flags &= ~elfcpp::EF_MIPS_ABI;
9377 }
9378
9379 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9380 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9381 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9382 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9383 {
9384 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9385 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9386 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9387 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9388 int micro_mis = old_m16 && new_micro;
9389 int m16_mis = old_micro && new_m16;
9390
9391 if (m16_mis || micro_mis)
9392 gold_error(_("%s: ASE mismatch: linking %s module with "
9393 "previous %s modules"), name.c_str(),
9394 m16_mis ? "MIPS16" : "microMIPS",
9395 m16_mis ? "microMIPS" : "MIPS16");
9396
9397 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9398
9399 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9400 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9401 }
9402
9403 // Compare NaN encodings.
9404 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9405 {
9406 gold_error(_("%s: linking %s module with previous %s modules"),
9407 name.c_str(),
9408 (new_flags & elfcpp::EF_MIPS_NAN2008
9409 ? "-mnan=2008" : "-mnan=legacy"),
9410 (old_flags & elfcpp::EF_MIPS_NAN2008
9411 ? "-mnan=2008" : "-mnan=legacy"));
9412
9413 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9414 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9415 }
9416
9417 // Compare FP64 state.
9418 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9419 {
9420 gold_error(_("%s: linking %s module with previous %s modules"),
9421 name.c_str(),
9422 (new_flags & elfcpp::EF_MIPS_FP64
9423 ? "-mfp64" : "-mfp32"),
9424 (old_flags & elfcpp::EF_MIPS_FP64
9425 ? "-mfp64" : "-mfp32"));
9426
9427 new_flags &= ~elfcpp::EF_MIPS_FP64;
9428 old_flags &= ~elfcpp::EF_MIPS_FP64;
9429 }
9430
9431 // Warn about any other mismatches.
9432 if (new_flags != old_flags)
9433 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9434 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9435
9436 this->set_processor_specific_flags(merged_flags);
9437 }
9438
9439 // Adjust ELF file header.
9440
9441 template<int size, bool big_endian>
9442 void
9443 Target_mips<size, big_endian>::do_adjust_elf_header(
9444 unsigned char* view,
9445 int len)
9446 {
9447 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9448
9449 elfcpp::Ehdr<size, big_endian> ehdr(view);
9450 unsigned char e_ident[elfcpp::EI_NIDENT];
9451 elfcpp::Elf_Word flags = this->processor_specific_flags();
9452 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9453
9454 unsigned char ei_abiversion = 0;
9455 elfcpp::Elf_Half type = ehdr.get_e_type();
9456 if (type == elfcpp::ET_EXEC
9457 && parameters->options().copyreloc()
9458 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9459 == elfcpp::EF_MIPS_CPIC)
9460 ei_abiversion = 1;
9461
9462 if (this->abiflags_ != NULL
9463 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9464 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9465 ei_abiversion = 3;
9466
9467 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9468 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9469 oehdr.put_e_ident(e_ident);
9470
9471 if (this->entry_symbol_is_compressed_)
9472 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9473 }
9474
9475 // do_make_elf_object to override the same function in the base class.
9476 // We need to use a target-specific sub-class of
9477 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9478 // Hence we need to have our own ELF object creation.
9479
9480 template<int size, bool big_endian>
9481 Object*
9482 Target_mips<size, big_endian>::do_make_elf_object(
9483 const std::string& name,
9484 Input_file* input_file,
9485 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9486 {
9487 int et = ehdr.get_e_type();
9488 // ET_EXEC files are valid input for --just-symbols/-R,
9489 // and we treat them as relocatable objects.
9490 if (et == elfcpp::ET_REL
9491 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9492 {
9493 Mips_relobj<size, big_endian>* obj =
9494 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9495 obj->setup();
9496 return obj;
9497 }
9498 else if (et == elfcpp::ET_DYN)
9499 {
9500 // TODO(sasa): Should we create Mips_dynobj?
9501 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9502 }
9503 else
9504 {
9505 gold_error(_("%s: unsupported ELF file type %d"),
9506 name.c_str(), et);
9507 return NULL;
9508 }
9509 }
9510
9511 // Finalize the sections.
9512
9513 template <int size, bool big_endian>
9514 void
9515 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9516 const Input_objects* input_objects,
9517 Symbol_table* symtab)
9518 {
9519 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9520 // DT_FINI have correct values.
9521 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9522 symtab->lookup(parameters->options().init()));
9523 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9524 init->set_value(init->value() | 1);
9525 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9526 symtab->lookup(parameters->options().fini()));
9527 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9528 fini->set_value(fini->value() | 1);
9529
9530 // Check whether the entry symbol is mips16 or micromips. This is needed to
9531 // adjust entry address in ELF header.
9532 Mips_symbol<size>* entry =
9533 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9534 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9535 || entry->is_micromips()));
9536
9537 if (!parameters->doing_static_link()
9538 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9539 || strcmp(parameters->options().hash_style(), "both") == 0))
9540 {
9541 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9542 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9543 // MIPS ABI requires a mapping between the GOT and the symbol table.
9544 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9545 }
9546
9547 // Check whether the final section that was scanned has HI16 or GOT16
9548 // relocations without the corresponding LO16 part.
9549 if (this->got16_addends_.size() > 0)
9550 gold_error("Can't find matching LO16 reloc");
9551
9552 // Check for any mips16 stub sections that we can discard.
9553 if (!parameters->options().relocatable())
9554 {
9555 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9556 p != input_objects->relobj_end();
9557 ++p)
9558 {
9559 Mips_relobj<size, big_endian>* object =
9560 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9561 object->discard_mips16_stub_sections(symtab);
9562 }
9563 }
9564
9565 Valtype gprmask = 0;
9566 Valtype cprmask1 = 0;
9567 Valtype cprmask2 = 0;
9568 Valtype cprmask3 = 0;
9569 Valtype cprmask4 = 0;
9570 bool has_reginfo_section = false;
9571
9572 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9573 p != input_objects->relobj_end();
9574 ++p)
9575 {
9576 Mips_relobj<size, big_endian>* relobj =
9577 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9578
9579 // Merge .reginfo contents of input objects.
9580 if (relobj->has_reginfo_section())
9581 {
9582 has_reginfo_section = true;
9583 gprmask |= relobj->gprmask();
9584 cprmask1 |= relobj->cprmask1();
9585 cprmask2 |= relobj->cprmask2();
9586 cprmask3 |= relobj->cprmask3();
9587 cprmask4 |= relobj->cprmask4();
9588 }
9589
9590 Input_file::Format format = relobj->input_file()->format();
9591 if (format != Input_file::FORMAT_ELF)
9592 continue;
9593
9594 // If all input sections will be discarded, don't use this object
9595 // file for merging processor specific flags.
9596 bool should_merge_processor_specific_flags = false;
9597
9598 for (unsigned int i = 1; i < relobj->shnum(); ++i)
9599 if (relobj->output_section(i) != NULL)
9600 {
9601 should_merge_processor_specific_flags = true;
9602 break;
9603 }
9604
9605 if (!should_merge_processor_specific_flags)
9606 continue;
9607
9608 // Merge processor specific flags.
9609 Mips_abiflags<big_endian> in_abiflags;
9610
9611 this->create_abiflags(relobj, &in_abiflags);
9612 this->merge_obj_e_flags(relobj->name(),
9613 relobj->processor_specific_flags());
9614 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9615 this->merge_obj_attributes(relobj->name(),
9616 relobj->attributes_section_data());
9617 }
9618
9619 // Create a .gnu.attributes section if we have merged any attributes
9620 // from inputs.
9621 if (this->attributes_section_data_ != NULL)
9622 {
9623 Output_attributes_section_data* attributes_section =
9624 new Output_attributes_section_data(*this->attributes_section_data_);
9625 layout->add_output_section_data(".gnu.attributes",
9626 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9627 attributes_section, ORDER_INVALID, false);
9628 }
9629
9630 // Create .MIPS.abiflags output section if there is an input section.
9631 if (this->has_abiflags_section_)
9632 {
9633 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9634 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9635
9636 Output_section* os =
9637 layout->add_output_section_data(".MIPS.abiflags",
9638 elfcpp::SHT_MIPS_ABIFLAGS,
9639 elfcpp::SHF_ALLOC,
9640 abiflags_section, ORDER_INVALID, false);
9641
9642 if (!parameters->options().relocatable() && os != NULL)
9643 {
9644 Output_segment* abiflags_segment =
9645 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9646 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9647 }
9648 }
9649
9650 if (has_reginfo_section && !parameters->options().gc_sections())
9651 {
9652 // Create .reginfo output section.
9653 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9654 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9655 cprmask1, cprmask2,
9656 cprmask3, cprmask4);
9657
9658 Output_section* os =
9659 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9660 elfcpp::SHF_ALLOC, reginfo_section,
9661 ORDER_INVALID, false);
9662
9663 if (!parameters->options().relocatable() && os != NULL)
9664 {
9665 Output_segment* reginfo_segment =
9666 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9667 elfcpp::PF_R);
9668 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9669 }
9670 }
9671
9672 if (this->plt_ != NULL)
9673 {
9674 // Set final PLT offsets for symbols.
9675 this->plt_section()->set_plt_offsets();
9676
9677 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9678 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9679 // there are no standard PLT entries present.
9680 unsigned char nonvis = 0;
9681 if (this->is_output_micromips()
9682 && !this->plt_section()->has_standard_entries())
9683 nonvis = elfcpp::STO_MICROMIPS >> 2;
9684 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9685 Symbol_table::PREDEFINED,
9686 this->plt_,
9687 0, 0, elfcpp::STT_FUNC,
9688 elfcpp::STB_LOCAL,
9689 elfcpp::STV_DEFAULT, nonvis,
9690 false, false);
9691 }
9692
9693 if (this->mips_stubs_ != NULL)
9694 {
9695 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9696 unsigned char nonvis = 0;
9697 if (this->is_output_micromips())
9698 nonvis = elfcpp::STO_MICROMIPS >> 2;
9699 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9700 Symbol_table::PREDEFINED,
9701 this->mips_stubs_,
9702 0, 0, elfcpp::STT_FUNC,
9703 elfcpp::STB_LOCAL,
9704 elfcpp::STV_DEFAULT, nonvis,
9705 false, false);
9706 }
9707
9708 if (!parameters->options().relocatable() && !parameters->doing_static_link())
9709 // In case there is no .got section, create one.
9710 this->got_section(symtab, layout);
9711
9712 // Emit any relocs we saved in an attempt to avoid generating COPY
9713 // relocs.
9714 if (this->copy_relocs_.any_saved_relocs())
9715 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9716 this);
9717
9718 // Set _gp value.
9719 this->set_gp(layout, symtab);
9720
9721 // Emit dynamic relocs.
9722 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9723 p != this->dyn_relocs_.end();
9724 ++p)
9725 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9726
9727 if (this->has_got_section())
9728 this->got_section()->lay_out_got(layout, symtab, input_objects);
9729
9730 if (this->mips_stubs_ != NULL)
9731 this->mips_stubs_->set_needs_dynsym_value();
9732
9733 // Check for functions that might need $25 to be valid on entry.
9734 // TODO(sasa): Can we do this without iterating over all symbols?
9735 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9736 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9737 symtab));
9738
9739 // Add NULL segment.
9740 if (!parameters->options().relocatable())
9741 layout->make_output_segment(elfcpp::PT_NULL, 0);
9742
9743 // Fill in some more dynamic tags.
9744 // TODO(sasa): Add more dynamic tags.
9745 const Reloc_section* rel_plt = (this->plt_ == NULL
9746 ? NULL : this->plt_->rel_plt());
9747 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9748 this->rel_dyn_, true, false);
9749
9750 Output_data_dynamic* const odyn = layout->dynamic_data();
9751 if (odyn != NULL
9752 && !parameters->options().relocatable()
9753 && !parameters->doing_static_link())
9754 {
9755 unsigned int d_val;
9756 // This element holds a 32-bit version id for the Runtime
9757 // Linker Interface. This will start at integer value 1.
9758 d_val = 0x01;
9759 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9760
9761 // Dynamic flags
9762 d_val = elfcpp::RHF_NOTPOT;
9763 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9764
9765 // Save layout for using when emitting custom dynamic tags.
9766 this->layout_ = layout;
9767
9768 // This member holds the base address of the segment.
9769 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9770
9771 // This member holds the number of entries in the .dynsym section.
9772 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9773
9774 // This member holds the index of the first dynamic symbol
9775 // table entry that corresponds to an entry in the global offset table.
9776 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9777
9778 // This member holds the number of local GOT entries.
9779 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9780 this->got_->get_local_gotno());
9781
9782 if (this->plt_ != NULL)
9783 // DT_MIPS_PLTGOT dynamic tag
9784 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9785
9786 if (!parameters->options().shared())
9787 {
9788 this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9789
9790 layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9791 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9792 this->rld_map_, ORDER_INVALID, false);
9793
9794 // __RLD_MAP will be filled in by the runtime loader to contain
9795 // a pointer to the _r_debug structure.
9796 Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9797 Symbol_table::PREDEFINED,
9798 this->rld_map_,
9799 0, 0, elfcpp::STT_OBJECT,
9800 elfcpp::STB_GLOBAL,
9801 elfcpp::STV_DEFAULT, 0,
9802 false, false);
9803
9804 if (!rld_map->is_forced_local())
9805 rld_map->set_needs_dynsym_entry();
9806
9807 if (!parameters->options().pie())
9808 // This member holds the absolute address of the debug pointer.
9809 odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9810 else
9811 // This member holds the offset to the debug pointer,
9812 // relative to the address of the tag.
9813 odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9814 }
9815 }
9816 }
9817
9818 // Get the custom dynamic tag value.
9819 template<int size, bool big_endian>
9820 unsigned int
9821 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9822 {
9823 switch (tag)
9824 {
9825 case elfcpp::DT_MIPS_BASE_ADDRESS:
9826 {
9827 // The base address of the segment.
9828 // At this point, the segment list has been sorted into final order,
9829 // so just return vaddr of the first readable PT_LOAD segment.
9830 Output_segment* seg =
9831 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9832 gold_assert(seg != NULL);
9833 return seg->vaddr();
9834 }
9835
9836 case elfcpp::DT_MIPS_SYMTABNO:
9837 // The number of entries in the .dynsym section.
9838 return this->get_dt_mips_symtabno();
9839
9840 case elfcpp::DT_MIPS_GOTSYM:
9841 {
9842 // The index of the first dynamic symbol table entry that corresponds
9843 // to an entry in the GOT.
9844 if (this->got_->first_global_got_dynsym_index() != -1U)
9845 return this->got_->first_global_got_dynsym_index();
9846 else
9847 // In case if we don't have global GOT symbols we default to setting
9848 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9849 return this->get_dt_mips_symtabno();
9850 }
9851
9852 case elfcpp::DT_MIPS_RLD_MAP_REL:
9853 {
9854 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9855 // relative to the address of the tag.
9856 Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9857 unsigned int entry_offset =
9858 odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9859 gold_assert(entry_offset != -1U);
9860 return this->rld_map_->address() - (odyn->address() + entry_offset);
9861 }
9862 default:
9863 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9864 }
9865
9866 return (unsigned int)-1;
9867 }
9868
9869 // Relocate section data.
9870
9871 template<int size, bool big_endian>
9872 void
9873 Target_mips<size, big_endian>::relocate_section(
9874 const Relocate_info<size, big_endian>* relinfo,
9875 unsigned int sh_type,
9876 const unsigned char* prelocs,
9877 size_t reloc_count,
9878 Output_section* output_section,
9879 bool needs_special_offset_handling,
9880 unsigned char* view,
9881 Mips_address address,
9882 section_size_type view_size,
9883 const Reloc_symbol_changes* reloc_symbol_changes)
9884 {
9885 typedef Target_mips<size, big_endian> Mips;
9886 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9887
9888 if (sh_type == elfcpp::SHT_REL)
9889 {
9890 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9891 Classify_reloc;
9892
9893 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9894 gold::Default_comdat_behavior, Classify_reloc>(
9895 relinfo,
9896 this,
9897 prelocs,
9898 reloc_count,
9899 output_section,
9900 needs_special_offset_handling,
9901 view,
9902 address,
9903 view_size,
9904 reloc_symbol_changes);
9905 }
9906 else if (sh_type == elfcpp::SHT_RELA)
9907 {
9908 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9909 Classify_reloc;
9910
9911 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9912 gold::Default_comdat_behavior, Classify_reloc>(
9913 relinfo,
9914 this,
9915 prelocs,
9916 reloc_count,
9917 output_section,
9918 needs_special_offset_handling,
9919 view,
9920 address,
9921 view_size,
9922 reloc_symbol_changes);
9923 }
9924 }
9925
9926 // Return the size of a relocation while scanning during a relocatable
9927 // link.
9928
9929 unsigned int
9930 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
9931 {
9932 switch (r_type)
9933 {
9934 case elfcpp::R_MIPS_NONE:
9935 case elfcpp::R_MIPS_TLS_DTPMOD64:
9936 case elfcpp::R_MIPS_TLS_DTPREL64:
9937 case elfcpp::R_MIPS_TLS_TPREL64:
9938 return 0;
9939
9940 case elfcpp::R_MIPS_32:
9941 case elfcpp::R_MIPS_TLS_DTPMOD32:
9942 case elfcpp::R_MIPS_TLS_DTPREL32:
9943 case elfcpp::R_MIPS_TLS_TPREL32:
9944 case elfcpp::R_MIPS_REL32:
9945 case elfcpp::R_MIPS_PC32:
9946 case elfcpp::R_MIPS_GPREL32:
9947 case elfcpp::R_MIPS_JALR:
9948 case elfcpp::R_MIPS_EH:
9949 return 4;
9950
9951 case elfcpp::R_MIPS_16:
9952 case elfcpp::R_MIPS_HI16:
9953 case elfcpp::R_MIPS_LO16:
9954 case elfcpp::R_MIPS_HIGHER:
9955 case elfcpp::R_MIPS_HIGHEST:
9956 case elfcpp::R_MIPS_GPREL16:
9957 case elfcpp::R_MIPS16_HI16:
9958 case elfcpp::R_MIPS16_LO16:
9959 case elfcpp::R_MIPS_PC16:
9960 case elfcpp::R_MIPS_PCHI16:
9961 case elfcpp::R_MIPS_PCLO16:
9962 case elfcpp::R_MIPS_GOT16:
9963 case elfcpp::R_MIPS16_GOT16:
9964 case elfcpp::R_MIPS_CALL16:
9965 case elfcpp::R_MIPS16_CALL16:
9966 case elfcpp::R_MIPS_GOT_HI16:
9967 case elfcpp::R_MIPS_CALL_HI16:
9968 case elfcpp::R_MIPS_GOT_LO16:
9969 case elfcpp::R_MIPS_CALL_LO16:
9970 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
9971 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
9972 case elfcpp::R_MIPS_TLS_TPREL_HI16:
9973 case elfcpp::R_MIPS_TLS_TPREL_LO16:
9974 case elfcpp::R_MIPS16_GPREL:
9975 case elfcpp::R_MIPS_GOT_DISP:
9976 case elfcpp::R_MIPS_LITERAL:
9977 case elfcpp::R_MIPS_GOT_PAGE:
9978 case elfcpp::R_MIPS_GOT_OFST:
9979 case elfcpp::R_MIPS_TLS_GD:
9980 case elfcpp::R_MIPS_TLS_LDM:
9981 case elfcpp::R_MIPS_TLS_GOTTPREL:
9982 return 2;
9983
9984 // These relocations are not byte sized
9985 case elfcpp::R_MIPS_26:
9986 case elfcpp::R_MIPS16_26:
9987 case elfcpp::R_MIPS_PC21_S2:
9988 case elfcpp::R_MIPS_PC26_S2:
9989 case elfcpp::R_MIPS_PC18_S3:
9990 case elfcpp::R_MIPS_PC19_S2:
9991 return 4;
9992
9993 case elfcpp::R_MIPS_COPY:
9994 case elfcpp::R_MIPS_JUMP_SLOT:
9995 object->error(_("unexpected reloc %u in object file"), r_type);
9996 return 0;
9997
9998 default:
9999 object->error(_("unsupported reloc %u in object file"), r_type);
10000 return 0;
10001 }
10002 }
10003
10004 // Scan the relocs during a relocatable link.
10005
10006 template<int size, bool big_endian>
10007 void
10008 Target_mips<size, big_endian>::scan_relocatable_relocs(
10009 Symbol_table* symtab,
10010 Layout* layout,
10011 Sized_relobj_file<size, big_endian>* object,
10012 unsigned int data_shndx,
10013 unsigned int sh_type,
10014 const unsigned char* prelocs,
10015 size_t reloc_count,
10016 Output_section* output_section,
10017 bool needs_special_offset_handling,
10018 size_t local_symbol_count,
10019 const unsigned char* plocal_symbols,
10020 Relocatable_relocs* rr)
10021 {
10022 if (sh_type == elfcpp::SHT_REL)
10023 {
10024 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10025 Classify_reloc;
10026 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10027 Scan_relocatable_relocs;
10028
10029 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10030 symtab,
10031 layout,
10032 object,
10033 data_shndx,
10034 prelocs,
10035 reloc_count,
10036 output_section,
10037 needs_special_offset_handling,
10038 local_symbol_count,
10039 plocal_symbols,
10040 rr);
10041 }
10042 else if (sh_type == elfcpp::SHT_RELA)
10043 {
10044 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10045 Classify_reloc;
10046 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10047 Scan_relocatable_relocs;
10048
10049 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10050 symtab,
10051 layout,
10052 object,
10053 data_shndx,
10054 prelocs,
10055 reloc_count,
10056 output_section,
10057 needs_special_offset_handling,
10058 local_symbol_count,
10059 plocal_symbols,
10060 rr);
10061 }
10062 else
10063 gold_unreachable();
10064 }
10065
10066 // Scan the relocs for --emit-relocs.
10067
10068 template<int size, bool big_endian>
10069 void
10070 Target_mips<size, big_endian>::emit_relocs_scan(
10071 Symbol_table* symtab,
10072 Layout* layout,
10073 Sized_relobj_file<size, big_endian>* object,
10074 unsigned int data_shndx,
10075 unsigned int sh_type,
10076 const unsigned char* prelocs,
10077 size_t reloc_count,
10078 Output_section* output_section,
10079 bool needs_special_offset_handling,
10080 size_t local_symbol_count,
10081 const unsigned char* plocal_syms,
10082 Relocatable_relocs* rr)
10083 {
10084 if (sh_type == elfcpp::SHT_REL)
10085 {
10086 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10087 Classify_reloc;
10088 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10089 Emit_relocs_strategy;
10090
10091 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10092 symtab,
10093 layout,
10094 object,
10095 data_shndx,
10096 prelocs,
10097 reloc_count,
10098 output_section,
10099 needs_special_offset_handling,
10100 local_symbol_count,
10101 plocal_syms,
10102 rr);
10103 }
10104 else if (sh_type == elfcpp::SHT_RELA)
10105 {
10106 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10107 Classify_reloc;
10108 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10109 Emit_relocs_strategy;
10110
10111 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10112 symtab,
10113 layout,
10114 object,
10115 data_shndx,
10116 prelocs,
10117 reloc_count,
10118 output_section,
10119 needs_special_offset_handling,
10120 local_symbol_count,
10121 plocal_syms,
10122 rr);
10123 }
10124 else
10125 gold_unreachable();
10126 }
10127
10128 // Emit relocations for a section.
10129
10130 template<int size, bool big_endian>
10131 void
10132 Target_mips<size, big_endian>::relocate_relocs(
10133 const Relocate_info<size, big_endian>* relinfo,
10134 unsigned int sh_type,
10135 const unsigned char* prelocs,
10136 size_t reloc_count,
10137 Output_section* output_section,
10138 typename elfcpp::Elf_types<size>::Elf_Off
10139 offset_in_output_section,
10140 unsigned char* view,
10141 Mips_address view_address,
10142 section_size_type view_size,
10143 unsigned char* reloc_view,
10144 section_size_type reloc_view_size)
10145 {
10146 if (sh_type == elfcpp::SHT_REL)
10147 {
10148 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10149 Classify_reloc;
10150
10151 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10152 relinfo,
10153 prelocs,
10154 reloc_count,
10155 output_section,
10156 offset_in_output_section,
10157 view,
10158 view_address,
10159 view_size,
10160 reloc_view,
10161 reloc_view_size);
10162 }
10163 else if (sh_type == elfcpp::SHT_RELA)
10164 {
10165 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10166 Classify_reloc;
10167
10168 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10169 relinfo,
10170 prelocs,
10171 reloc_count,
10172 output_section,
10173 offset_in_output_section,
10174 view,
10175 view_address,
10176 view_size,
10177 reloc_view,
10178 reloc_view_size);
10179 }
10180 else
10181 gold_unreachable();
10182 }
10183
10184 // Perform target-specific processing in a relocatable link. This is
10185 // only used if we use the relocation strategy RELOC_SPECIAL.
10186
10187 template<int size, bool big_endian>
10188 void
10189 Target_mips<size, big_endian>::relocate_special_relocatable(
10190 const Relocate_info<size, big_endian>* relinfo,
10191 unsigned int sh_type,
10192 const unsigned char* preloc_in,
10193 size_t relnum,
10194 Output_section* output_section,
10195 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10196 unsigned char* view,
10197 Mips_address view_address,
10198 section_size_type,
10199 unsigned char* preloc_out)
10200 {
10201 // We can only handle REL type relocation sections.
10202 gold_assert(sh_type == elfcpp::SHT_REL);
10203
10204 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10205 Reltype;
10206 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10207 Reltype_write;
10208
10209 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10210
10211 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10212
10213 Mips_relobj<size, big_endian>* object =
10214 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10215 const unsigned int local_count = object->local_symbol_count();
10216
10217 Reltype reloc(preloc_in);
10218 Reltype_write reloc_write(preloc_out);
10219
10220 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10221 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10222 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10223
10224 // Get the new symbol index.
10225 // We only use RELOC_SPECIAL strategy in local relocations.
10226 gold_assert(r_sym < local_count);
10227
10228 // We are adjusting a section symbol. We need to find
10229 // the symbol table index of the section symbol for
10230 // the output section corresponding to input section
10231 // in which this symbol is defined.
10232 bool is_ordinary;
10233 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10234 gold_assert(is_ordinary);
10235 Output_section* os = object->output_section(shndx);
10236 gold_assert(os != NULL);
10237 gold_assert(os->needs_symtab_index());
10238 unsigned int new_symndx = os->symtab_index();
10239
10240 // Get the new offset--the location in the output section where
10241 // this relocation should be applied.
10242
10243 Mips_address offset = reloc.get_r_offset();
10244 Mips_address new_offset;
10245 if (offset_in_output_section != invalid_address)
10246 new_offset = offset + offset_in_output_section;
10247 else
10248 {
10249 section_offset_type sot_offset =
10250 convert_types<section_offset_type, Mips_address>(offset);
10251 section_offset_type new_sot_offset =
10252 output_section->output_offset(object, relinfo->data_shndx,
10253 sot_offset);
10254 gold_assert(new_sot_offset != -1);
10255 new_offset = new_sot_offset;
10256 }
10257
10258 // In an object file, r_offset is an offset within the section.
10259 // In an executable or dynamic object, generated by
10260 // --emit-relocs, r_offset is an absolute address.
10261 if (!parameters->options().relocatable())
10262 {
10263 new_offset += view_address;
10264 if (offset_in_output_section != invalid_address)
10265 new_offset -= offset_in_output_section;
10266 }
10267
10268 reloc_write.put_r_offset(new_offset);
10269 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10270
10271 // Handle the reloc addend.
10272 // The relocation uses a section symbol in the input file.
10273 // We are adjusting it to use a section symbol in the output
10274 // file. The input section symbol refers to some address in
10275 // the input section. We need the relocation in the output
10276 // file to refer to that same address. This adjustment to
10277 // the addend is the same calculation we use for a simple
10278 // absolute relocation for the input section symbol.
10279 Valtype calculated_value = 0;
10280 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10281
10282 unsigned char* paddend = view + offset;
10283 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10284 switch (r_type)
10285 {
10286 case elfcpp::R_MIPS_26:
10287 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10288 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10289 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10290 false, &calculated_value);
10291 break;
10292
10293 default:
10294 gold_unreachable();
10295 }
10296
10297 // Report any errors.
10298 switch (reloc_status)
10299 {
10300 case Reloc_funcs::STATUS_OKAY:
10301 break;
10302 case Reloc_funcs::STATUS_OVERFLOW:
10303 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10304 _("relocation overflow: "
10305 "%u against local symbol %u in %s"),
10306 r_type, r_sym, object->name().c_str());
10307 break;
10308 case Reloc_funcs::STATUS_BAD_RELOC:
10309 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10310 _("unexpected opcode while processing relocation"));
10311 break;
10312 default:
10313 gold_unreachable();
10314 }
10315 }
10316
10317 // Optimize the TLS relocation type based on what we know about the
10318 // symbol. IS_FINAL is true if the final address of this symbol is
10319 // known at link time.
10320
10321 template<int size, bool big_endian>
10322 tls::Tls_optimization
10323 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10324 {
10325 // FIXME: Currently we do not do any TLS optimization.
10326 return tls::TLSOPT_NONE;
10327 }
10328
10329 // Scan a relocation for a local symbol.
10330
10331 template<int size, bool big_endian>
10332 inline void
10333 Target_mips<size, big_endian>::Scan::local(
10334 Symbol_table* symtab,
10335 Layout* layout,
10336 Target_mips<size, big_endian>* target,
10337 Sized_relobj_file<size, big_endian>* object,
10338 unsigned int data_shndx,
10339 Output_section* output_section,
10340 const Relatype* rela,
10341 const Reltype* rel,
10342 unsigned int rel_type,
10343 unsigned int r_type,
10344 const elfcpp::Sym<size, big_endian>& lsym,
10345 bool is_discarded)
10346 {
10347 if (is_discarded)
10348 return;
10349
10350 Mips_address r_offset;
10351 unsigned int r_sym;
10352 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10353
10354 if (rel_type == elfcpp::SHT_RELA)
10355 {
10356 r_offset = rela->get_r_offset();
10357 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10358 get_r_sym(rela);
10359 r_addend = rela->get_r_addend();
10360 }
10361 else
10362 {
10363 r_offset = rel->get_r_offset();
10364 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10365 get_r_sym(rel);
10366 r_addend = 0;
10367 }
10368
10369 Mips_relobj<size, big_endian>* mips_obj =
10370 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10371
10372 if (mips_obj->is_mips16_stub_section(data_shndx))
10373 {
10374 mips_obj->get_mips16_stub_section(data_shndx)
10375 ->new_local_reloc_found(r_type, r_sym);
10376 }
10377
10378 if (r_type == elfcpp::R_MIPS_NONE)
10379 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10380 // mips16 stub.
10381 return;
10382
10383 if (!mips16_call_reloc(r_type)
10384 && !mips_obj->section_allows_mips16_refs(data_shndx))
10385 // This reloc would need to refer to a MIPS16 hard-float stub, if
10386 // there is one. We ignore MIPS16 stub sections and .pdr section when
10387 // looking for relocs that would need to refer to MIPS16 stubs.
10388 mips_obj->add_local_non_16bit_call(r_sym);
10389
10390 if (r_type == elfcpp::R_MIPS16_26
10391 && !mips_obj->section_allows_mips16_refs(data_shndx))
10392 mips_obj->add_local_16bit_call(r_sym);
10393
10394 switch (r_type)
10395 {
10396 case elfcpp::R_MIPS_GOT16:
10397 case elfcpp::R_MIPS_CALL16:
10398 case elfcpp::R_MIPS_CALL_HI16:
10399 case elfcpp::R_MIPS_CALL_LO16:
10400 case elfcpp::R_MIPS_GOT_HI16:
10401 case elfcpp::R_MIPS_GOT_LO16:
10402 case elfcpp::R_MIPS_GOT_PAGE:
10403 case elfcpp::R_MIPS_GOT_OFST:
10404 case elfcpp::R_MIPS_GOT_DISP:
10405 case elfcpp::R_MIPS_TLS_GOTTPREL:
10406 case elfcpp::R_MIPS_TLS_GD:
10407 case elfcpp::R_MIPS_TLS_LDM:
10408 case elfcpp::R_MIPS16_GOT16:
10409 case elfcpp::R_MIPS16_CALL16:
10410 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10411 case elfcpp::R_MIPS16_TLS_GD:
10412 case elfcpp::R_MIPS16_TLS_LDM:
10413 case elfcpp::R_MICROMIPS_GOT16:
10414 case elfcpp::R_MICROMIPS_CALL16:
10415 case elfcpp::R_MICROMIPS_CALL_HI16:
10416 case elfcpp::R_MICROMIPS_CALL_LO16:
10417 case elfcpp::R_MICROMIPS_GOT_HI16:
10418 case elfcpp::R_MICROMIPS_GOT_LO16:
10419 case elfcpp::R_MICROMIPS_GOT_PAGE:
10420 case elfcpp::R_MICROMIPS_GOT_OFST:
10421 case elfcpp::R_MICROMIPS_GOT_DISP:
10422 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10423 case elfcpp::R_MICROMIPS_TLS_GD:
10424 case elfcpp::R_MICROMIPS_TLS_LDM:
10425 case elfcpp::R_MIPS_EH:
10426 // We need a GOT section.
10427 target->got_section(symtab, layout);
10428 break;
10429
10430 default:
10431 break;
10432 }
10433
10434 if (call_lo16_reloc(r_type)
10435 || got_lo16_reloc(r_type)
10436 || got_disp_reloc(r_type)
10437 || eh_reloc(r_type))
10438 {
10439 // We may need a local GOT entry for this relocation. We
10440 // don't count R_MIPS_GOT_PAGE because we can estimate the
10441 // maximum number of pages needed by looking at the size of
10442 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10443 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10444 // R_MIPS_CALL_HI16 because these are always followed by an
10445 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10446 Mips_output_data_got<size, big_endian>* got =
10447 target->got_section(symtab, layout);
10448 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10449 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10450 is_section_symbol);
10451 }
10452
10453 switch (r_type)
10454 {
10455 case elfcpp::R_MIPS_CALL16:
10456 case elfcpp::R_MIPS16_CALL16:
10457 case elfcpp::R_MICROMIPS_CALL16:
10458 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10459 (unsigned long)r_offset);
10460 return;
10461
10462 case elfcpp::R_MIPS_GOT_PAGE:
10463 case elfcpp::R_MICROMIPS_GOT_PAGE:
10464 case elfcpp::R_MIPS16_GOT16:
10465 case elfcpp::R_MIPS_GOT16:
10466 case elfcpp::R_MIPS_GOT_HI16:
10467 case elfcpp::R_MIPS_GOT_LO16:
10468 case elfcpp::R_MICROMIPS_GOT16:
10469 case elfcpp::R_MICROMIPS_GOT_HI16:
10470 case elfcpp::R_MICROMIPS_GOT_LO16:
10471 {
10472 // This relocation needs a page entry in the GOT.
10473 // Get the section contents.
10474 section_size_type view_size = 0;
10475 const unsigned char* view = object->section_contents(data_shndx,
10476 &view_size, false);
10477 view += r_offset;
10478
10479 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10480 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10481 : r_addend);
10482
10483 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10484 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10485 object, data_shndx, r_type, r_sym, addend));
10486 else
10487 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10488 break;
10489 }
10490
10491 case elfcpp::R_MIPS_HI16:
10492 case elfcpp::R_MIPS_PCHI16:
10493 case elfcpp::R_MIPS16_HI16:
10494 case elfcpp::R_MICROMIPS_HI16:
10495 // Record the reloc so that we can check whether the corresponding LO16
10496 // part exists.
10497 if (rel_type == elfcpp::SHT_REL)
10498 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10499 object, data_shndx, r_type, r_sym, 0));
10500 break;
10501
10502 case elfcpp::R_MIPS_LO16:
10503 case elfcpp::R_MIPS_PCLO16:
10504 case elfcpp::R_MIPS16_LO16:
10505 case elfcpp::R_MICROMIPS_LO16:
10506 {
10507 if (rel_type != elfcpp::SHT_REL)
10508 break;
10509
10510 // Find corresponding GOT16/HI16 relocation.
10511
10512 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10513 // be immediately following. However, for the IRIX6 ABI, the next
10514 // relocation may be a composed relocation consisting of several
10515 // relocations for the same address. In that case, the R_MIPS_LO16
10516 // relocation may occur as one of these. We permit a similar
10517 // extension in general, as that is useful for GCC.
10518
10519 // In some cases GCC dead code elimination removes the LO16 but
10520 // keeps the corresponding HI16. This is strictly speaking a
10521 // violation of the ABI but not immediately harmful.
10522
10523 typename std::list<got16_addend<size, big_endian> >::iterator it =
10524 target->got16_addends_.begin();
10525 while (it != target->got16_addends_.end())
10526 {
10527 got16_addend<size, big_endian> _got16_addend = *it;
10528
10529 // TODO(sasa): Split got16_addends_ list into two lists - one for
10530 // GOT16 relocs and the other for HI16 relocs.
10531
10532 // Report an error if we find HI16 or GOT16 reloc from the
10533 // previous section without the matching LO16 part.
10534 if (_got16_addend.object != object
10535 || _got16_addend.shndx != data_shndx)
10536 {
10537 gold_error("Can't find matching LO16 reloc");
10538 break;
10539 }
10540
10541 if (_got16_addend.r_sym != r_sym
10542 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10543 {
10544 ++it;
10545 continue;
10546 }
10547
10548 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10549 // For GOT16, we need to calculate combined addend and record GOT page
10550 // entry.
10551 if (got16_reloc(_got16_addend.r_type))
10552 {
10553
10554 section_size_type view_size = 0;
10555 const unsigned char* view = object->section_contents(data_shndx,
10556 &view_size,
10557 false);
10558 view += r_offset;
10559
10560 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10561 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10562
10563 addend = (_got16_addend.addend << 16) + addend;
10564 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10565 addend);
10566 }
10567
10568 it = target->got16_addends_.erase(it);
10569 }
10570 break;
10571 }
10572 }
10573
10574 switch (r_type)
10575 {
10576 case elfcpp::R_MIPS_32:
10577 case elfcpp::R_MIPS_REL32:
10578 case elfcpp::R_MIPS_64:
10579 {
10580 if (parameters->options().output_is_position_independent())
10581 {
10582 // If building a shared library (or a position-independent
10583 // executable), we need to create a dynamic relocation for
10584 // this location.
10585 if (is_readonly_section(output_section))
10586 break;
10587 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10588 rel_dyn->add_symbolless_local_addend(object, r_sym,
10589 elfcpp::R_MIPS_REL32,
10590 output_section, data_shndx,
10591 r_offset);
10592 }
10593 break;
10594 }
10595
10596 case elfcpp::R_MIPS_TLS_GOTTPREL:
10597 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10598 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10599 case elfcpp::R_MIPS_TLS_LDM:
10600 case elfcpp::R_MIPS16_TLS_LDM:
10601 case elfcpp::R_MICROMIPS_TLS_LDM:
10602 case elfcpp::R_MIPS_TLS_GD:
10603 case elfcpp::R_MIPS16_TLS_GD:
10604 case elfcpp::R_MICROMIPS_TLS_GD:
10605 {
10606 bool output_is_shared = parameters->options().shared();
10607 const tls::Tls_optimization optimized_type
10608 = Target_mips<size, big_endian>::optimize_tls_reloc(
10609 !output_is_shared, r_type);
10610 switch (r_type)
10611 {
10612 case elfcpp::R_MIPS_TLS_GD:
10613 case elfcpp::R_MIPS16_TLS_GD:
10614 case elfcpp::R_MICROMIPS_TLS_GD:
10615 if (optimized_type == tls::TLSOPT_NONE)
10616 {
10617 // Create a pair of GOT entries for the module index and
10618 // dtv-relative offset.
10619 Mips_output_data_got<size, big_endian>* got =
10620 target->got_section(symtab, layout);
10621 unsigned int shndx = lsym.get_st_shndx();
10622 bool is_ordinary;
10623 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10624 if (!is_ordinary)
10625 {
10626 object->error(_("local symbol %u has bad shndx %u"),
10627 r_sym, shndx);
10628 break;
10629 }
10630 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10631 shndx, false);
10632 }
10633 else
10634 {
10635 // FIXME: TLS optimization not supported yet.
10636 gold_unreachable();
10637 }
10638 break;
10639
10640 case elfcpp::R_MIPS_TLS_LDM:
10641 case elfcpp::R_MIPS16_TLS_LDM:
10642 case elfcpp::R_MICROMIPS_TLS_LDM:
10643 if (optimized_type == tls::TLSOPT_NONE)
10644 {
10645 // We always record LDM symbols as local with index 0.
10646 target->got_section()->record_local_got_symbol(mips_obj, 0,
10647 r_addend, r_type,
10648 -1U, false);
10649 }
10650 else
10651 {
10652 // FIXME: TLS optimization not supported yet.
10653 gold_unreachable();
10654 }
10655 break;
10656 case elfcpp::R_MIPS_TLS_GOTTPREL:
10657 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10658 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10659 layout->set_has_static_tls();
10660 if (optimized_type == tls::TLSOPT_NONE)
10661 {
10662 // Create a GOT entry for the tp-relative offset.
10663 Mips_output_data_got<size, big_endian>* got =
10664 target->got_section(symtab, layout);
10665 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10666 -1U, false);
10667 }
10668 else
10669 {
10670 // FIXME: TLS optimization not supported yet.
10671 gold_unreachable();
10672 }
10673 break;
10674
10675 default:
10676 gold_unreachable();
10677 }
10678 }
10679 break;
10680
10681 default:
10682 break;
10683 }
10684
10685 // Refuse some position-dependent relocations when creating a
10686 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10687 // not PIC, but we can create dynamic relocations and the result
10688 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10689 // combined with R_MIPS_GOT16.
10690 if (parameters->options().shared())
10691 {
10692 switch (r_type)
10693 {
10694 case elfcpp::R_MIPS16_HI16:
10695 case elfcpp::R_MIPS_HI16:
10696 case elfcpp::R_MIPS_HIGHER:
10697 case elfcpp::R_MIPS_HIGHEST:
10698 case elfcpp::R_MICROMIPS_HI16:
10699 case elfcpp::R_MICROMIPS_HIGHER:
10700 case elfcpp::R_MICROMIPS_HIGHEST:
10701 // Don't refuse a high part relocation if it's against
10702 // no symbol (e.g. part of a compound relocation).
10703 if (r_sym == 0)
10704 break;
10705 // Fall through.
10706
10707 case elfcpp::R_MIPS16_26:
10708 case elfcpp::R_MIPS_26:
10709 case elfcpp::R_MICROMIPS_26_S1:
10710 gold_error(_("%s: relocation %u against `%s' can not be used when "
10711 "making a shared object; recompile with -fPIC"),
10712 object->name().c_str(), r_type, "a local symbol");
10713 default:
10714 break;
10715 }
10716 }
10717 }
10718
10719 template<int size, bool big_endian>
10720 inline void
10721 Target_mips<size, big_endian>::Scan::local(
10722 Symbol_table* symtab,
10723 Layout* layout,
10724 Target_mips<size, big_endian>* target,
10725 Sized_relobj_file<size, big_endian>* object,
10726 unsigned int data_shndx,
10727 Output_section* output_section,
10728 const Reltype& reloc,
10729 unsigned int r_type,
10730 const elfcpp::Sym<size, big_endian>& lsym,
10731 bool is_discarded)
10732 {
10733 if (is_discarded)
10734 return;
10735
10736 local(
10737 symtab,
10738 layout,
10739 target,
10740 object,
10741 data_shndx,
10742 output_section,
10743 (const Relatype*) NULL,
10744 &reloc,
10745 elfcpp::SHT_REL,
10746 r_type,
10747 lsym, is_discarded);
10748 }
10749
10750
10751 template<int size, bool big_endian>
10752 inline void
10753 Target_mips<size, big_endian>::Scan::local(
10754 Symbol_table* symtab,
10755 Layout* layout,
10756 Target_mips<size, big_endian>* target,
10757 Sized_relobj_file<size, big_endian>* object,
10758 unsigned int data_shndx,
10759 Output_section* output_section,
10760 const Relatype& reloc,
10761 unsigned int r_type,
10762 const elfcpp::Sym<size, big_endian>& lsym,
10763 bool is_discarded)
10764 {
10765 if (is_discarded)
10766 return;
10767
10768 local(
10769 symtab,
10770 layout,
10771 target,
10772 object,
10773 data_shndx,
10774 output_section,
10775 &reloc,
10776 (const Reltype*) NULL,
10777 elfcpp::SHT_RELA,
10778 r_type,
10779 lsym, is_discarded);
10780 }
10781
10782 // Scan a relocation for a global symbol.
10783
10784 template<int size, bool big_endian>
10785 inline void
10786 Target_mips<size, big_endian>::Scan::global(
10787 Symbol_table* symtab,
10788 Layout* layout,
10789 Target_mips<size, big_endian>* target,
10790 Sized_relobj_file<size, big_endian>* object,
10791 unsigned int data_shndx,
10792 Output_section* output_section,
10793 const Relatype* rela,
10794 const Reltype* rel,
10795 unsigned int rel_type,
10796 unsigned int r_type,
10797 Symbol* gsym)
10798 {
10799 Mips_address r_offset;
10800 unsigned int r_sym;
10801 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10802
10803 if (rel_type == elfcpp::SHT_RELA)
10804 {
10805 r_offset = rela->get_r_offset();
10806 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10807 get_r_sym(rela);
10808 r_addend = rela->get_r_addend();
10809 }
10810 else
10811 {
10812 r_offset = rel->get_r_offset();
10813 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10814 get_r_sym(rel);
10815 r_addend = 0;
10816 }
10817
10818 Mips_relobj<size, big_endian>* mips_obj =
10819 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10820 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10821
10822 if (mips_obj->is_mips16_stub_section(data_shndx))
10823 {
10824 mips_obj->get_mips16_stub_section(data_shndx)
10825 ->new_global_reloc_found(r_type, mips_sym);
10826 }
10827
10828 if (r_type == elfcpp::R_MIPS_NONE)
10829 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10830 // mips16 stub.
10831 return;
10832
10833 if (!mips16_call_reloc(r_type)
10834 && !mips_obj->section_allows_mips16_refs(data_shndx))
10835 // This reloc would need to refer to a MIPS16 hard-float stub, if
10836 // there is one. We ignore MIPS16 stub sections and .pdr section when
10837 // looking for relocs that would need to refer to MIPS16 stubs.
10838 mips_sym->set_need_fn_stub();
10839
10840 // We need PLT entries if there are static-only relocations against
10841 // an externally-defined function. This can technically occur for
10842 // shared libraries if there are branches to the symbol, although it
10843 // is unlikely that this will be used in practice due to the short
10844 // ranges involved. It can occur for any relative or absolute relocation
10845 // in executables; in that case, the PLT entry becomes the function's
10846 // canonical address.
10847 bool static_reloc = false;
10848
10849 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10850 // relocation into a dynamic one.
10851 bool can_make_dynamic = false;
10852 switch (r_type)
10853 {
10854 case elfcpp::R_MIPS_GOT16:
10855 case elfcpp::R_MIPS_CALL16:
10856 case elfcpp::R_MIPS_CALL_HI16:
10857 case elfcpp::R_MIPS_CALL_LO16:
10858 case elfcpp::R_MIPS_GOT_HI16:
10859 case elfcpp::R_MIPS_GOT_LO16:
10860 case elfcpp::R_MIPS_GOT_PAGE:
10861 case elfcpp::R_MIPS_GOT_OFST:
10862 case elfcpp::R_MIPS_GOT_DISP:
10863 case elfcpp::R_MIPS_TLS_GOTTPREL:
10864 case elfcpp::R_MIPS_TLS_GD:
10865 case elfcpp::R_MIPS_TLS_LDM:
10866 case elfcpp::R_MIPS16_GOT16:
10867 case elfcpp::R_MIPS16_CALL16:
10868 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10869 case elfcpp::R_MIPS16_TLS_GD:
10870 case elfcpp::R_MIPS16_TLS_LDM:
10871 case elfcpp::R_MICROMIPS_GOT16:
10872 case elfcpp::R_MICROMIPS_CALL16:
10873 case elfcpp::R_MICROMIPS_CALL_HI16:
10874 case elfcpp::R_MICROMIPS_CALL_LO16:
10875 case elfcpp::R_MICROMIPS_GOT_HI16:
10876 case elfcpp::R_MICROMIPS_GOT_LO16:
10877 case elfcpp::R_MICROMIPS_GOT_PAGE:
10878 case elfcpp::R_MICROMIPS_GOT_OFST:
10879 case elfcpp::R_MICROMIPS_GOT_DISP:
10880 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10881 case elfcpp::R_MICROMIPS_TLS_GD:
10882 case elfcpp::R_MICROMIPS_TLS_LDM:
10883 case elfcpp::R_MIPS_EH:
10884 // We need a GOT section.
10885 target->got_section(symtab, layout);
10886 break;
10887
10888 // This is just a hint; it can safely be ignored. Don't set
10889 // has_static_relocs for the corresponding symbol.
10890 case elfcpp::R_MIPS_JALR:
10891 case elfcpp::R_MICROMIPS_JALR:
10892 break;
10893
10894 case elfcpp::R_MIPS_GPREL16:
10895 case elfcpp::R_MIPS_GPREL32:
10896 case elfcpp::R_MIPS16_GPREL:
10897 case elfcpp::R_MICROMIPS_GPREL16:
10898 // TODO(sasa)
10899 // GP-relative relocations always resolve to a definition in a
10900 // regular input file, ignoring the one-definition rule. This is
10901 // important for the GP setup sequence in NewABI code, which
10902 // always resolves to a local function even if other relocations
10903 // against the symbol wouldn't.
10904 //constrain_symbol_p = FALSE;
10905 break;
10906
10907 case elfcpp::R_MIPS_32:
10908 case elfcpp::R_MIPS_REL32:
10909 case elfcpp::R_MIPS_64:
10910 if ((parameters->options().shared()
10911 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10912 && (!is_readonly_section(output_section)
10913 || mips_obj->is_pic())))
10914 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10915 {
10916 if (r_type != elfcpp::R_MIPS_REL32)
10917 mips_sym->set_pointer_equality_needed();
10918 can_make_dynamic = true;
10919 break;
10920 }
10921 // Fall through.
10922
10923 default:
10924 // Most static relocations require pointer equality, except
10925 // for branches.
10926 mips_sym->set_pointer_equality_needed();
10927 // Fall through.
10928
10929 case elfcpp::R_MIPS_26:
10930 case elfcpp::R_MIPS_PC16:
10931 case elfcpp::R_MIPS_PC21_S2:
10932 case elfcpp::R_MIPS_PC26_S2:
10933 case elfcpp::R_MIPS16_26:
10934 case elfcpp::R_MICROMIPS_26_S1:
10935 case elfcpp::R_MICROMIPS_PC7_S1:
10936 case elfcpp::R_MICROMIPS_PC10_S1:
10937 case elfcpp::R_MICROMIPS_PC16_S1:
10938 case elfcpp::R_MICROMIPS_PC23_S2:
10939 static_reloc = true;
10940 mips_sym->set_has_static_relocs();
10941 break;
10942 }
10943
10944 // If there are call relocations against an externally-defined symbol,
10945 // see whether we can create a MIPS lazy-binding stub for it. We can
10946 // only do this if all references to the function are through call
10947 // relocations, and in that case, the traditional lazy-binding stubs
10948 // are much more efficient than PLT entries.
10949 switch (r_type)
10950 {
10951 case elfcpp::R_MIPS16_CALL16:
10952 case elfcpp::R_MIPS_CALL16:
10953 case elfcpp::R_MIPS_CALL_HI16:
10954 case elfcpp::R_MIPS_CALL_LO16:
10955 case elfcpp::R_MIPS_JALR:
10956 case elfcpp::R_MICROMIPS_CALL16:
10957 case elfcpp::R_MICROMIPS_CALL_HI16:
10958 case elfcpp::R_MICROMIPS_CALL_LO16:
10959 case elfcpp::R_MICROMIPS_JALR:
10960 if (!mips_sym->no_lazy_stub())
10961 {
10962 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
10963 // Calls from shared objects to undefined symbols of type
10964 // STT_NOTYPE need lazy-binding stub.
10965 || (mips_sym->is_undefined() && parameters->options().shared()))
10966 target->mips_stubs_section(layout)->make_entry(mips_sym);
10967 }
10968 break;
10969 default:
10970 {
10971 // We must not create a stub for a symbol that has relocations
10972 // related to taking the function's address.
10973 mips_sym->set_no_lazy_stub();
10974 target->remove_lazy_stub_entry(mips_sym);
10975 break;
10976 }
10977 }
10978
10979 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
10980 mips_sym->is_mips16()))
10981 mips_sym->set_has_nonpic_branches();
10982
10983 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
10984 // and has a special meaning.
10985 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
10986 && strcmp(gsym->name(), "_gp_disp") == 0
10987 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
10988 if (static_reloc && gsym->needs_plt_entry())
10989 {
10990 target->make_plt_entry(symtab, layout, mips_sym, r_type);
10991
10992 // Since this is not a PC-relative relocation, we may be
10993 // taking the address of a function. In that case we need to
10994 // set the entry in the dynamic symbol table to the address of
10995 // the PLT entry.
10996 if (gsym->is_from_dynobj() && !parameters->options().shared())
10997 {
10998 gsym->set_needs_dynsym_value();
10999 // We distinguish between PLT entries and lazy-binding stubs by
11000 // giving the former an st_other value of STO_MIPS_PLT. Set the
11001 // flag if there are any relocations in the binary where pointer
11002 // equality matters.
11003 if (mips_sym->pointer_equality_needed())
11004 mips_sym->set_mips_plt();
11005 }
11006 }
11007 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11008 {
11009 // Absolute addressing relocations.
11010 // Make a dynamic relocation if necessary.
11011 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11012 {
11013 if (gsym->may_need_copy_reloc())
11014 {
11015 target->copy_reloc(symtab, layout, object, data_shndx,
11016 output_section, gsym, r_type, r_offset);
11017 }
11018 else if (can_make_dynamic)
11019 {
11020 // Create .rel.dyn section.
11021 target->rel_dyn_section(layout);
11022 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11023 data_shndx, output_section, r_offset);
11024 }
11025 else
11026 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11027 gsym->name());
11028 }
11029 }
11030
11031 bool for_call = false;
11032 switch (r_type)
11033 {
11034 case elfcpp::R_MIPS_CALL16:
11035 case elfcpp::R_MIPS16_CALL16:
11036 case elfcpp::R_MICROMIPS_CALL16:
11037 case elfcpp::R_MIPS_CALL_HI16:
11038 case elfcpp::R_MIPS_CALL_LO16:
11039 case elfcpp::R_MICROMIPS_CALL_HI16:
11040 case elfcpp::R_MICROMIPS_CALL_LO16:
11041 for_call = true;
11042 // Fall through.
11043
11044 case elfcpp::R_MIPS16_GOT16:
11045 case elfcpp::R_MIPS_GOT16:
11046 case elfcpp::R_MIPS_GOT_HI16:
11047 case elfcpp::R_MIPS_GOT_LO16:
11048 case elfcpp::R_MICROMIPS_GOT16:
11049 case elfcpp::R_MICROMIPS_GOT_HI16:
11050 case elfcpp::R_MICROMIPS_GOT_LO16:
11051 case elfcpp::R_MIPS_GOT_DISP:
11052 case elfcpp::R_MICROMIPS_GOT_DISP:
11053 case elfcpp::R_MIPS_EH:
11054 {
11055 // The symbol requires a GOT entry.
11056 Mips_output_data_got<size, big_endian>* got =
11057 target->got_section(symtab, layout);
11058 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11059 for_call);
11060 mips_sym->set_global_got_area(GGA_NORMAL);
11061 }
11062 break;
11063
11064 case elfcpp::R_MIPS_GOT_PAGE:
11065 case elfcpp::R_MICROMIPS_GOT_PAGE:
11066 {
11067 // This relocation needs a page entry in the GOT.
11068 // Get the section contents.
11069 section_size_type view_size = 0;
11070 const unsigned char* view =
11071 object->section_contents(data_shndx, &view_size, false);
11072 view += r_offset;
11073
11074 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11075 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11076 : r_addend);
11077 Mips_output_data_got<size, big_endian>* got =
11078 target->got_section(symtab, layout);
11079 got->record_got_page_entry(mips_obj, r_sym, addend);
11080
11081 // If this is a global, overridable symbol, GOT_PAGE will
11082 // decay to GOT_DISP, so we'll need a GOT entry for it.
11083 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11084 && !mips_sym->object()->is_dynamic()
11085 && !mips_sym->is_undefined());
11086 if (!def_regular
11087 || (parameters->options().output_is_position_independent()
11088 && !parameters->options().Bsymbolic()
11089 && !mips_sym->is_forced_local()))
11090 {
11091 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11092 for_call);
11093 mips_sym->set_global_got_area(GGA_NORMAL);
11094 }
11095 }
11096 break;
11097
11098 case elfcpp::R_MIPS_TLS_GOTTPREL:
11099 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11100 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11101 case elfcpp::R_MIPS_TLS_LDM:
11102 case elfcpp::R_MIPS16_TLS_LDM:
11103 case elfcpp::R_MICROMIPS_TLS_LDM:
11104 case elfcpp::R_MIPS_TLS_GD:
11105 case elfcpp::R_MIPS16_TLS_GD:
11106 case elfcpp::R_MICROMIPS_TLS_GD:
11107 {
11108 const bool is_final = gsym->final_value_is_known();
11109 const tls::Tls_optimization optimized_type =
11110 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11111
11112 switch (r_type)
11113 {
11114 case elfcpp::R_MIPS_TLS_GD:
11115 case elfcpp::R_MIPS16_TLS_GD:
11116 case elfcpp::R_MICROMIPS_TLS_GD:
11117 if (optimized_type == tls::TLSOPT_NONE)
11118 {
11119 // Create a pair of GOT entries for the module index and
11120 // dtv-relative offset.
11121 Mips_output_data_got<size, big_endian>* got =
11122 target->got_section(symtab, layout);
11123 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11124 false);
11125 }
11126 else
11127 {
11128 // FIXME: TLS optimization not supported yet.
11129 gold_unreachable();
11130 }
11131 break;
11132
11133 case elfcpp::R_MIPS_TLS_LDM:
11134 case elfcpp::R_MIPS16_TLS_LDM:
11135 case elfcpp::R_MICROMIPS_TLS_LDM:
11136 if (optimized_type == tls::TLSOPT_NONE)
11137 {
11138 // We always record LDM symbols as local with index 0.
11139 target->got_section()->record_local_got_symbol(mips_obj, 0,
11140 r_addend, r_type,
11141 -1U, false);
11142 }
11143 else
11144 {
11145 // FIXME: TLS optimization not supported yet.
11146 gold_unreachable();
11147 }
11148 break;
11149 case elfcpp::R_MIPS_TLS_GOTTPREL:
11150 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11151 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11152 layout->set_has_static_tls();
11153 if (optimized_type == tls::TLSOPT_NONE)
11154 {
11155 // Create a GOT entry for the tp-relative offset.
11156 Mips_output_data_got<size, big_endian>* got =
11157 target->got_section(symtab, layout);
11158 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11159 false);
11160 }
11161 else
11162 {
11163 // FIXME: TLS optimization not supported yet.
11164 gold_unreachable();
11165 }
11166 break;
11167
11168 default:
11169 gold_unreachable();
11170 }
11171 }
11172 break;
11173 case elfcpp::R_MIPS_COPY:
11174 case elfcpp::R_MIPS_JUMP_SLOT:
11175 // These are relocations which should only be seen by the
11176 // dynamic linker, and should never be seen here.
11177 gold_error(_("%s: unexpected reloc %u in object file"),
11178 object->name().c_str(), r_type);
11179 break;
11180
11181 default:
11182 break;
11183 }
11184
11185 // Refuse some position-dependent relocations when creating a
11186 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11187 // not PIC, but we can create dynamic relocations and the result
11188 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11189 // combined with R_MIPS_GOT16.
11190 if (parameters->options().shared())
11191 {
11192 switch (r_type)
11193 {
11194 case elfcpp::R_MIPS16_HI16:
11195 case elfcpp::R_MIPS_HI16:
11196 case elfcpp::R_MIPS_HIGHER:
11197 case elfcpp::R_MIPS_HIGHEST:
11198 case elfcpp::R_MICROMIPS_HI16:
11199 case elfcpp::R_MICROMIPS_HIGHER:
11200 case elfcpp::R_MICROMIPS_HIGHEST:
11201 // Don't refuse a high part relocation if it's against
11202 // no symbol (e.g. part of a compound relocation).
11203 if (r_sym == 0)
11204 break;
11205
11206 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11207 // and has a special meaning.
11208 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11209 break;
11210 // Fall through.
11211
11212 case elfcpp::R_MIPS16_26:
11213 case elfcpp::R_MIPS_26:
11214 case elfcpp::R_MICROMIPS_26_S1:
11215 gold_error(_("%s: relocation %u against `%s' can not be used when "
11216 "making a shared object; recompile with -fPIC"),
11217 object->name().c_str(), r_type, gsym->name());
11218 default:
11219 break;
11220 }
11221 }
11222 }
11223
11224 template<int size, bool big_endian>
11225 inline void
11226 Target_mips<size, big_endian>::Scan::global(
11227 Symbol_table* symtab,
11228 Layout* layout,
11229 Target_mips<size, big_endian>* target,
11230 Sized_relobj_file<size, big_endian>* object,
11231 unsigned int data_shndx,
11232 Output_section* output_section,
11233 const Relatype& reloc,
11234 unsigned int r_type,
11235 Symbol* gsym)
11236 {
11237 global(
11238 symtab,
11239 layout,
11240 target,
11241 object,
11242 data_shndx,
11243 output_section,
11244 &reloc,
11245 (const Reltype*) NULL,
11246 elfcpp::SHT_RELA,
11247 r_type,
11248 gsym);
11249 }
11250
11251 template<int size, bool big_endian>
11252 inline void
11253 Target_mips<size, big_endian>::Scan::global(
11254 Symbol_table* symtab,
11255 Layout* layout,
11256 Target_mips<size, big_endian>* target,
11257 Sized_relobj_file<size, big_endian>* object,
11258 unsigned int data_shndx,
11259 Output_section* output_section,
11260 const Reltype& reloc,
11261 unsigned int r_type,
11262 Symbol* gsym)
11263 {
11264 global(
11265 symtab,
11266 layout,
11267 target,
11268 object,
11269 data_shndx,
11270 output_section,
11271 (const Relatype*) NULL,
11272 &reloc,
11273 elfcpp::SHT_REL,
11274 r_type,
11275 gsym);
11276 }
11277
11278 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11279 // In cases where Scan::local() or Scan::global() has created
11280 // a dynamic relocation, the addend of the relocation is carried
11281 // in the data, and we must not apply the static relocation.
11282
11283 template<int size, bool big_endian>
11284 inline bool
11285 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11286 const Mips_symbol<size>* gsym,
11287 unsigned int r_type,
11288 Output_section* output_section,
11289 Target_mips* target)
11290 {
11291 // If the output section is not allocated, then we didn't call
11292 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11293 // the reloc here.
11294 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11295 return true;
11296
11297 if (gsym == NULL)
11298 return true;
11299 else
11300 {
11301 // For global symbols, we use the same helper routines used in the
11302 // scan pass.
11303 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11304 && !gsym->may_need_copy_reloc())
11305 {
11306 // We have generated dynamic reloc (R_MIPS_REL32).
11307
11308 bool multi_got = false;
11309 if (target->has_got_section())
11310 multi_got = target->got_section()->multi_got();
11311 bool has_got_offset;
11312 if (!multi_got)
11313 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11314 else
11315 has_got_offset = gsym->global_gotoffset() != -1U;
11316 if (!has_got_offset)
11317 return true;
11318 else
11319 // Apply the relocation only if the symbol is in the local got.
11320 // Do not apply the relocation if the symbol is in the global
11321 // got.
11322 return symbol_references_local(gsym, gsym->has_dynsym_index());
11323 }
11324 else
11325 // We have not generated dynamic reloc.
11326 return true;
11327 }
11328 }
11329
11330 // Perform a relocation.
11331
11332 template<int size, bool big_endian>
11333 inline bool
11334 Target_mips<size, big_endian>::Relocate::relocate(
11335 const Relocate_info<size, big_endian>* relinfo,
11336 unsigned int rel_type,
11337 Target_mips* target,
11338 Output_section* output_section,
11339 size_t relnum,
11340 const unsigned char* preloc,
11341 const Sized_symbol<size>* gsym,
11342 const Symbol_value<size>* psymval,
11343 unsigned char* view,
11344 Mips_address address,
11345 section_size_type)
11346 {
11347 Mips_address r_offset;
11348 unsigned int r_sym;
11349 unsigned int r_type;
11350 unsigned int r_type2;
11351 unsigned int r_type3;
11352 unsigned char r_ssym;
11353 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11354
11355 if (rel_type == elfcpp::SHT_RELA)
11356 {
11357 const Relatype rela(preloc);
11358 r_offset = rela.get_r_offset();
11359 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11360 get_r_sym(&rela);
11361 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11362 get_r_type(&rela);
11363 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11364 get_r_type2(&rela);
11365 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11366 get_r_type3(&rela);
11367 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11368 get_r_ssym(&rela);
11369 r_addend = rela.get_r_addend();
11370 }
11371 else
11372 {
11373 const Reltype rel(preloc);
11374 r_offset = rel.get_r_offset();
11375 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11376 get_r_sym(&rel);
11377 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11378 get_r_type(&rel);
11379 r_ssym = 0;
11380 r_type2 = 0;
11381 r_type3 = 0;
11382 r_addend = 0;
11383 }
11384
11385 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11386 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11387
11388 Mips_relobj<size, big_endian>* object =
11389 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11390
11391 bool target_is_16_bit_code = false;
11392 bool target_is_micromips_code = false;
11393 bool cross_mode_jump;
11394
11395 Symbol_value<size> symval;
11396
11397 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11398
11399 bool changed_symbol_value = false;
11400 if (gsym == NULL)
11401 {
11402 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11403 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11404 if (target_is_16_bit_code || target_is_micromips_code)
11405 {
11406 // MIPS16/microMIPS text labels should be treated as odd.
11407 symval.set_output_value(psymval->value(object, 1));
11408 psymval = &symval;
11409 changed_symbol_value = true;
11410 }
11411 }
11412 else
11413 {
11414 target_is_16_bit_code = mips_sym->is_mips16();
11415 target_is_micromips_code = mips_sym->is_micromips();
11416
11417 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11418 // it odd. This will cause something like .word SYM to come up with
11419 // the right value when it is loaded into the PC.
11420
11421 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11422 && psymval->value(object, 0) != 0)
11423 {
11424 symval.set_output_value(psymval->value(object, 0) | 1);
11425 psymval = &symval;
11426 changed_symbol_value = true;
11427 }
11428
11429 // Pick the value to use for symbols defined in shared objects.
11430 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11431 || mips_sym->has_lazy_stub())
11432 {
11433 Mips_address value;
11434 if (!mips_sym->has_lazy_stub())
11435 {
11436 // Prefer a standard MIPS PLT entry.
11437 if (mips_sym->has_mips_plt_offset())
11438 {
11439 value = target->plt_section()->mips_entry_address(mips_sym);
11440 target_is_micromips_code = false;
11441 target_is_16_bit_code = false;
11442 }
11443 else
11444 {
11445 value = (target->plt_section()->comp_entry_address(mips_sym)
11446 + 1);
11447 if (target->is_output_micromips())
11448 target_is_micromips_code = true;
11449 else
11450 target_is_16_bit_code = true;
11451 }
11452 }
11453 else
11454 value = target->mips_stubs_section()->stub_address(mips_sym);
11455
11456 symval.set_output_value(value);
11457 psymval = &symval;
11458 }
11459 }
11460
11461 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11462 // Note that such a symbol must always be a global symbol.
11463 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11464 && !object->is_newabi());
11465
11466 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11467 // Note that such a symbol must always be a global symbol.
11468 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11469
11470
11471 if (gp_disp)
11472 {
11473 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11474 gold_error_at_location(relinfo, relnum, r_offset,
11475 _("relocations against _gp_disp are permitted only"
11476 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11477 }
11478 else if (gnu_local_gp)
11479 {
11480 // __gnu_local_gp is _gp symbol.
11481 symval.set_output_value(target->adjusted_gp_value(object));
11482 psymval = &symval;
11483 }
11484
11485 // If this is a reference to a 16-bit function with a stub, we need
11486 // to redirect the relocation to the stub unless:
11487 //
11488 // (a) the relocation is for a MIPS16 JAL;
11489 //
11490 // (b) the relocation is for a MIPS16 PIC call, and there are no
11491 // non-MIPS16 uses of the GOT slot; or
11492 //
11493 // (c) the section allows direct references to MIPS16 functions.
11494 if (r_type != elfcpp::R_MIPS16_26
11495 && !parameters->options().relocatable()
11496 && ((mips_sym != NULL
11497 && mips_sym->has_mips16_fn_stub()
11498 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11499 || (mips_sym == NULL
11500 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11501 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11502 {
11503 // This is a 32- or 64-bit call to a 16-bit function. We should
11504 // have already noticed that we were going to need the
11505 // stub.
11506 Mips_address value;
11507 if (mips_sym == NULL)
11508 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11509 else
11510 {
11511 gold_assert(mips_sym->need_fn_stub());
11512 if (mips_sym->has_la25_stub())
11513 value = target->la25_stub_section()->stub_address(mips_sym);
11514 else
11515 {
11516 value = mips_sym->template
11517 get_mips16_fn_stub<big_endian>()->output_address();
11518 }
11519 }
11520 symval.set_output_value(value);
11521 psymval = &symval;
11522 changed_symbol_value = true;
11523
11524 // The target is 16-bit, but the stub isn't.
11525 target_is_16_bit_code = false;
11526 }
11527 // If this is a MIPS16 call with a stub, that is made through the PLT or
11528 // to a standard MIPS function, we need to redirect the call to the stub.
11529 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11530 // indirect calls should use an indirect stub instead.
11531 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
11532 && ((mips_sym != NULL
11533 && (mips_sym->has_mips16_call_stub()
11534 || mips_sym->has_mips16_call_fp_stub()))
11535 || (mips_sym == NULL
11536 && object->get_local_mips16_call_stub(r_sym) != NULL))
11537 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11538 || !target_is_16_bit_code))
11539 {
11540 Mips16_stub_section<size, big_endian>* call_stub;
11541 if (mips_sym == NULL)
11542 call_stub = object->get_local_mips16_call_stub(r_sym);
11543 else
11544 {
11545 // If both call_stub and call_fp_stub are defined, we can figure
11546 // out which one to use by checking which one appears in the input
11547 // file.
11548 if (mips_sym->has_mips16_call_stub()
11549 && mips_sym->has_mips16_call_fp_stub())
11550 {
11551 call_stub = NULL;
11552 for (unsigned int i = 1; i < object->shnum(); ++i)
11553 {
11554 if (object->is_mips16_call_fp_stub_section(i))
11555 {
11556 call_stub = mips_sym->template
11557 get_mips16_call_fp_stub<big_endian>();
11558 break;
11559 }
11560
11561 }
11562 if (call_stub == NULL)
11563 call_stub =
11564 mips_sym->template get_mips16_call_stub<big_endian>();
11565 }
11566 else if (mips_sym->has_mips16_call_stub())
11567 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11568 else
11569 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11570 }
11571
11572 symval.set_output_value(call_stub->output_address());
11573 psymval = &symval;
11574 changed_symbol_value = true;
11575 }
11576 // If this is a direct call to a PIC function, redirect to the
11577 // non-PIC stub.
11578 else if (mips_sym != NULL
11579 && mips_sym->has_la25_stub()
11580 && relocation_needs_la25_stub<size, big_endian>(
11581 object, r_type, target_is_16_bit_code))
11582 {
11583 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11584 if (mips_sym->is_micromips())
11585 value += 1;
11586 symval.set_output_value(value);
11587 psymval = &symval;
11588 }
11589 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11590 // entry is used if a standard PLT entry has also been made.
11591 else if ((r_type == elfcpp::R_MIPS16_26
11592 || r_type == elfcpp::R_MICROMIPS_26_S1)
11593 && !parameters->options().relocatable()
11594 && mips_sym != NULL
11595 && mips_sym->has_plt_offset()
11596 && mips_sym->has_comp_plt_offset()
11597 && mips_sym->has_mips_plt_offset())
11598 {
11599 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11600 + 1);
11601 symval.set_output_value(value);
11602 psymval = &symval;
11603
11604 target_is_16_bit_code = !target->is_output_micromips();
11605 target_is_micromips_code = target->is_output_micromips();
11606 }
11607
11608 // Make sure MIPS16 and microMIPS are not used together.
11609 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11610 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11611 {
11612 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11613 }
11614
11615 // Calls from 16-bit code to 32-bit code and vice versa require the
11616 // mode change. However, we can ignore calls to undefined weak symbols,
11617 // which should never be executed at runtime. This exception is important
11618 // because the assembly writer may have "known" that any definition of the
11619 // symbol would be 16-bit code, and that direct jumps were therefore
11620 // acceptable.
11621 cross_mode_jump =
11622 (!parameters->options().relocatable()
11623 && !(gsym != NULL && gsym->is_weak_undefined())
11624 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11625 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11626 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11627 && (target_is_16_bit_code || target_is_micromips_code))));
11628
11629 bool local = (mips_sym == NULL
11630 || (mips_sym->got_only_for_calls()
11631 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11632 : symbol_references_local(mips_sym,
11633 mips_sym->has_dynsym_index())));
11634
11635 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11636 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11637 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11638 if (got_page_reloc(r_type) && !local)
11639 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11640 : elfcpp::R_MIPS_GOT_DISP);
11641
11642 unsigned int got_offset = 0;
11643 int gp_offset = 0;
11644
11645 bool calculate_only = false;
11646 Valtype calculated_value = 0;
11647 bool extract_addend = rel_type == elfcpp::SHT_REL;
11648 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11649
11650 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11651
11652 // For Mips64 N64 ABI, there may be up to three operations specified per
11653 // record, by the fields r_type, r_type2, and r_type3. The first operation
11654 // takes its addend from the relocation record. Each subsequent operation
11655 // takes as its addend the result of the previous operation.
11656 // The first operation in a record which references a symbol uses the symbol
11657 // implied by r_sym. The next operation in a record which references a symbol
11658 // uses the special symbol value given by the r_ssym field. A third operation
11659 // in a record which references a symbol will assume a NULL symbol,
11660 // i.e. value zero.
11661
11662 // TODO(Vladimir)
11663 // Check if a record references to a symbol.
11664 for (unsigned int i = 0; i < 3; ++i)
11665 {
11666 if (r_types[i] == elfcpp::R_MIPS_NONE)
11667 break;
11668
11669 // TODO(Vladimir)
11670 // Check if the next relocation is for the same instruction.
11671 calculate_only = i == 2 ? false
11672 : r_types[i+1] != elfcpp::R_MIPS_NONE;
11673
11674 if (object->is_n64())
11675 {
11676 if (i == 1)
11677 {
11678 // Handle special symbol for r_type2 relocation type.
11679 switch (r_ssym)
11680 {
11681 case RSS_UNDEF:
11682 symval.set_output_value(0);
11683 break;
11684 case RSS_GP:
11685 symval.set_output_value(target->gp_value());
11686 break;
11687 case RSS_GP0:
11688 symval.set_output_value(object->gp_value());
11689 break;
11690 case RSS_LOC:
11691 symval.set_output_value(address);
11692 break;
11693 default:
11694 gold_unreachable();
11695 }
11696 psymval = &symval;
11697 }
11698 else if (i == 2)
11699 {
11700 // For r_type3 symbol value is 0.
11701 symval.set_output_value(0);
11702 }
11703 }
11704
11705 bool update_got_entry = false;
11706 switch (r_types[i])
11707 {
11708 case elfcpp::R_MIPS_NONE:
11709 break;
11710 case elfcpp::R_MIPS_16:
11711 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11712 extract_addend, calculate_only,
11713 &calculated_value);
11714 break;
11715
11716 case elfcpp::R_MIPS_32:
11717 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11718 target))
11719 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11720 extract_addend, calculate_only,
11721 &calculated_value);
11722 if (mips_sym != NULL
11723 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11724 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11725 {
11726 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11727 // already updated by adding +1.
11728 if (mips_sym->has_mips16_fn_stub())
11729 {
11730 gold_assert(mips_sym->need_fn_stub());
11731 Mips16_stub_section<size, big_endian>* fn_stub =
11732 mips_sym->template get_mips16_fn_stub<big_endian>();
11733
11734 symval.set_output_value(fn_stub->output_address());
11735 psymval = &symval;
11736 }
11737 got_offset = mips_sym->global_gotoffset();
11738 update_got_entry = true;
11739 }
11740 break;
11741
11742 case elfcpp::R_MIPS_64:
11743 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11744 target))
11745 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11746 extract_addend, calculate_only,
11747 &calculated_value, false);
11748 else if (target->is_output_n64() && r_addend != 0)
11749 // Only apply the addend. The static relocation was RELA, but the
11750 // dynamic relocation is REL, so we need to apply the addend.
11751 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11752 extract_addend, calculate_only,
11753 &calculated_value, true);
11754 break;
11755 case elfcpp::R_MIPS_REL32:
11756 gold_unreachable();
11757
11758 case elfcpp::R_MIPS_PC32:
11759 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11760 r_addend, extract_addend,
11761 calculate_only,
11762 &calculated_value);
11763 break;
11764
11765 case elfcpp::R_MIPS16_26:
11766 // The calculation for R_MIPS16_26 is just the same as for an
11767 // R_MIPS_26. It's only the storage of the relocated field into
11768 // the output file that's different. So, we just fall through to the
11769 // R_MIPS_26 case here.
11770 case elfcpp::R_MIPS_26:
11771 case elfcpp::R_MICROMIPS_26_S1:
11772 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11773 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11774 r_types[i], target->jal_to_bal(), calculate_only,
11775 &calculated_value);
11776 break;
11777
11778 case elfcpp::R_MIPS_HI16:
11779 case elfcpp::R_MIPS16_HI16:
11780 case elfcpp::R_MICROMIPS_HI16:
11781 if (rel_type == elfcpp::SHT_RELA)
11782 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11783 r_addend, address,
11784 gp_disp, r_types[i],
11785 extract_addend, 0,
11786 target, calculate_only,
11787 &calculated_value);
11788 else if (rel_type == elfcpp::SHT_REL)
11789 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11790 address, gp_disp, r_types[i],
11791 r_sym, extract_addend);
11792 else
11793 gold_unreachable();
11794 break;
11795
11796 case elfcpp::R_MIPS_LO16:
11797 case elfcpp::R_MIPS16_LO16:
11798 case elfcpp::R_MICROMIPS_LO16:
11799 case elfcpp::R_MICROMIPS_HI0_LO16:
11800 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11801 r_addend, extract_addend, address,
11802 gp_disp, r_types[i], r_sym,
11803 rel_type, calculate_only,
11804 &calculated_value);
11805 break;
11806
11807 case elfcpp::R_MIPS_LITERAL:
11808 case elfcpp::R_MICROMIPS_LITERAL:
11809 // Because we don't merge literal sections, we can handle this
11810 // just like R_MIPS_GPREL16. In the long run, we should merge
11811 // shared literals, and then we will need to additional work
11812 // here.
11813
11814 // Fall through.
11815
11816 case elfcpp::R_MIPS_GPREL16:
11817 case elfcpp::R_MIPS16_GPREL:
11818 case elfcpp::R_MICROMIPS_GPREL7_S2:
11819 case elfcpp::R_MICROMIPS_GPREL16:
11820 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11821 target->adjusted_gp_value(object),
11822 r_addend, extract_addend,
11823 gsym == NULL, r_types[i],
11824 calculate_only, &calculated_value);
11825 break;
11826
11827 case elfcpp::R_MIPS_PC16:
11828 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11829 r_addend, extract_addend,
11830 calculate_only,
11831 &calculated_value);
11832 break;
11833
11834 case elfcpp::R_MIPS_PC21_S2:
11835 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11836 r_addend, extract_addend,
11837 calculate_only,
11838 &calculated_value);
11839 break;
11840
11841 case elfcpp::R_MIPS_PC26_S2:
11842 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11843 r_addend, extract_addend,
11844 calculate_only,
11845 &calculated_value);
11846 break;
11847
11848 case elfcpp::R_MIPS_PC18_S3:
11849 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11850 r_addend, extract_addend,
11851 calculate_only,
11852 &calculated_value);
11853 break;
11854
11855 case elfcpp::R_MIPS_PC19_S2:
11856 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11857 r_addend, extract_addend,
11858 calculate_only,
11859 &calculated_value);
11860 break;
11861
11862 case elfcpp::R_MIPS_PCHI16:
11863 if (rel_type == elfcpp::SHT_RELA)
11864 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11865 r_addend, address,
11866 extract_addend, 0,
11867 calculate_only,
11868 &calculated_value);
11869 else if (rel_type == elfcpp::SHT_REL)
11870 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11871 r_addend, address, r_sym,
11872 extract_addend);
11873 else
11874 gold_unreachable();
11875 break;
11876
11877 case elfcpp::R_MIPS_PCLO16:
11878 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11879 extract_addend, address, r_sym,
11880 rel_type, calculate_only,
11881 &calculated_value);
11882 break;
11883 case elfcpp::R_MICROMIPS_PC7_S1:
11884 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11885 address, r_addend,
11886 extract_addend,
11887 calculate_only,
11888 &calculated_value);
11889 break;
11890 case elfcpp::R_MICROMIPS_PC10_S1:
11891 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11892 psymval, address,
11893 r_addend, extract_addend,
11894 calculate_only,
11895 &calculated_value);
11896 break;
11897 case elfcpp::R_MICROMIPS_PC16_S1:
11898 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11899 psymval, address,
11900 r_addend, extract_addend,
11901 calculate_only,
11902 &calculated_value);
11903 break;
11904 case elfcpp::R_MIPS_GPREL32:
11905 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11906 target->adjusted_gp_value(object),
11907 r_addend, extract_addend,
11908 calculate_only,
11909 &calculated_value);
11910 break;
11911 case elfcpp::R_MIPS_GOT_HI16:
11912 case elfcpp::R_MIPS_CALL_HI16:
11913 case elfcpp::R_MICROMIPS_GOT_HI16:
11914 case elfcpp::R_MICROMIPS_CALL_HI16:
11915 if (gsym != NULL)
11916 got_offset = target->got_section()->got_offset(gsym,
11917 GOT_TYPE_STANDARD,
11918 object);
11919 else
11920 got_offset = target->got_section()->got_offset(r_sym,
11921 GOT_TYPE_STANDARD,
11922 object, r_addend);
11923 gp_offset = target->got_section()->gp_offset(got_offset, object);
11924 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11925 calculate_only,
11926 &calculated_value);
11927 update_got_entry = changed_symbol_value;
11928 break;
11929
11930 case elfcpp::R_MIPS_GOT_LO16:
11931 case elfcpp::R_MIPS_CALL_LO16:
11932 case elfcpp::R_MICROMIPS_GOT_LO16:
11933 case elfcpp::R_MICROMIPS_CALL_LO16:
11934 if (gsym != NULL)
11935 got_offset = target->got_section()->got_offset(gsym,
11936 GOT_TYPE_STANDARD,
11937 object);
11938 else
11939 got_offset = target->got_section()->got_offset(r_sym,
11940 GOT_TYPE_STANDARD,
11941 object, r_addend);
11942 gp_offset = target->got_section()->gp_offset(got_offset, object);
11943 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
11944 calculate_only,
11945 &calculated_value);
11946 update_got_entry = changed_symbol_value;
11947 break;
11948
11949 case elfcpp::R_MIPS_GOT_DISP:
11950 case elfcpp::R_MICROMIPS_GOT_DISP:
11951 case elfcpp::R_MIPS_EH:
11952 if (gsym != NULL)
11953 got_offset = target->got_section()->got_offset(gsym,
11954 GOT_TYPE_STANDARD,
11955 object);
11956 else
11957 got_offset = target->got_section()->got_offset(r_sym,
11958 GOT_TYPE_STANDARD,
11959 object, r_addend);
11960 gp_offset = target->got_section()->gp_offset(got_offset, object);
11961 if (eh_reloc(r_types[i]))
11962 reloc_status = Reloc_funcs::releh(view, gp_offset,
11963 calculate_only,
11964 &calculated_value);
11965 else
11966 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11967 calculate_only,
11968 &calculated_value);
11969 break;
11970 case elfcpp::R_MIPS_CALL16:
11971 case elfcpp::R_MIPS16_CALL16:
11972 case elfcpp::R_MICROMIPS_CALL16:
11973 gold_assert(gsym != NULL);
11974 got_offset = target->got_section()->got_offset(gsym,
11975 GOT_TYPE_STANDARD,
11976 object);
11977 gp_offset = target->got_section()->gp_offset(got_offset, object);
11978 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11979 calculate_only, &calculated_value);
11980 // TODO(sasa): We should also initialize update_got_entry
11981 // in other place swhere relgot is called.
11982 update_got_entry = changed_symbol_value;
11983 break;
11984
11985 case elfcpp::R_MIPS_GOT16:
11986 case elfcpp::R_MIPS16_GOT16:
11987 case elfcpp::R_MICROMIPS_GOT16:
11988 if (gsym != NULL)
11989 {
11990 got_offset = target->got_section()->got_offset(gsym,
11991 GOT_TYPE_STANDARD,
11992 object);
11993 gp_offset = target->got_section()->gp_offset(got_offset, object);
11994 reloc_status = Reloc_funcs::relgot(view, gp_offset,
11995 calculate_only,
11996 &calculated_value);
11997 }
11998 else
11999 {
12000 if (rel_type == elfcpp::SHT_RELA)
12001 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12002 psymval, r_addend,
12003 extract_addend, 0,
12004 target,
12005 calculate_only,
12006 &calculated_value);
12007 else if (rel_type == elfcpp::SHT_REL)
12008 reloc_status = Reloc_funcs::relgot16_local(view, object,
12009 psymval, r_addend,
12010 extract_addend,
12011 r_types[i], r_sym);
12012 else
12013 gold_unreachable();
12014 }
12015 update_got_entry = changed_symbol_value;
12016 break;
12017
12018 case elfcpp::R_MIPS_TLS_GD:
12019 case elfcpp::R_MIPS16_TLS_GD:
12020 case elfcpp::R_MICROMIPS_TLS_GD:
12021 if (gsym != NULL)
12022 got_offset = target->got_section()->got_offset(gsym,
12023 GOT_TYPE_TLS_PAIR,
12024 object);
12025 else
12026 got_offset = target->got_section()->got_offset(r_sym,
12027 GOT_TYPE_TLS_PAIR,
12028 object, r_addend);
12029 gp_offset = target->got_section()->gp_offset(got_offset, object);
12030 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12031 &calculated_value);
12032 break;
12033
12034 case elfcpp::R_MIPS_TLS_GOTTPREL:
12035 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12036 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12037 if (gsym != NULL)
12038 got_offset = target->got_section()->got_offset(gsym,
12039 GOT_TYPE_TLS_OFFSET,
12040 object);
12041 else
12042 got_offset = target->got_section()->got_offset(r_sym,
12043 GOT_TYPE_TLS_OFFSET,
12044 object, r_addend);
12045 gp_offset = target->got_section()->gp_offset(got_offset, object);
12046 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12047 &calculated_value);
12048 break;
12049
12050 case elfcpp::R_MIPS_TLS_LDM:
12051 case elfcpp::R_MIPS16_TLS_LDM:
12052 case elfcpp::R_MICROMIPS_TLS_LDM:
12053 // Relocate the field with the offset of the GOT entry for
12054 // the module index.
12055 got_offset = target->got_section()->tls_ldm_offset(object);
12056 gp_offset = target->got_section()->gp_offset(got_offset, object);
12057 reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12058 &calculated_value);
12059 break;
12060
12061 case elfcpp::R_MIPS_GOT_PAGE:
12062 case elfcpp::R_MICROMIPS_GOT_PAGE:
12063 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12064 r_addend, extract_addend,
12065 calculate_only,
12066 &calculated_value);
12067 break;
12068
12069 case elfcpp::R_MIPS_GOT_OFST:
12070 case elfcpp::R_MICROMIPS_GOT_OFST:
12071 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12072 r_addend, extract_addend,
12073 local, calculate_only,
12074 &calculated_value);
12075 break;
12076
12077 case elfcpp::R_MIPS_JALR:
12078 case elfcpp::R_MICROMIPS_JALR:
12079 // This relocation is only a hint. In some cases, we optimize
12080 // it into a bal instruction. But we don't try to optimize
12081 // when the symbol does not resolve locally.
12082 if (gsym == NULL
12083 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12084 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12085 r_addend, extract_addend,
12086 cross_mode_jump, r_types[i],
12087 target->jalr_to_bal(),
12088 target->jr_to_b(),
12089 calculate_only,
12090 &calculated_value);
12091 break;
12092
12093 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12094 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12095 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12096 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12097 elfcpp::DTP_OFFSET, r_addend,
12098 extract_addend, calculate_only,
12099 &calculated_value);
12100 break;
12101 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12102 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12103 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12104 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12105 elfcpp::DTP_OFFSET, r_addend,
12106 extract_addend, calculate_only,
12107 &calculated_value);
12108 break;
12109 case elfcpp::R_MIPS_TLS_DTPREL32:
12110 case elfcpp::R_MIPS_TLS_DTPREL64:
12111 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12112 elfcpp::DTP_OFFSET, r_addend,
12113 extract_addend, calculate_only,
12114 &calculated_value);
12115 break;
12116 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12117 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12118 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12119 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12120 elfcpp::TP_OFFSET, r_addend,
12121 extract_addend, calculate_only,
12122 &calculated_value);
12123 break;
12124 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12125 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12126 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12127 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12128 elfcpp::TP_OFFSET, r_addend,
12129 extract_addend, calculate_only,
12130 &calculated_value);
12131 break;
12132 case elfcpp::R_MIPS_TLS_TPREL32:
12133 case elfcpp::R_MIPS_TLS_TPREL64:
12134 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12135 elfcpp::TP_OFFSET, r_addend,
12136 extract_addend, calculate_only,
12137 &calculated_value);
12138 break;
12139 case elfcpp::R_MIPS_SUB:
12140 case elfcpp::R_MICROMIPS_SUB:
12141 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12142 extract_addend,
12143 calculate_only, &calculated_value);
12144 break;
12145 case elfcpp::R_MIPS_HIGHER:
12146 case elfcpp::R_MICROMIPS_HIGHER:
12147 reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12148 extract_addend, calculate_only,
12149 &calculated_value);
12150 break;
12151 case elfcpp::R_MIPS_HIGHEST:
12152 case elfcpp::R_MICROMIPS_HIGHEST:
12153 reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12154 r_addend, extract_addend,
12155 calculate_only,
12156 &calculated_value);
12157 break;
12158 default:
12159 gold_error_at_location(relinfo, relnum, r_offset,
12160 _("unsupported reloc %u"), r_types[i]);
12161 break;
12162 }
12163
12164 if (update_got_entry)
12165 {
12166 Mips_output_data_got<size, big_endian>* got = target->got_section();
12167 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12168 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12169 psymval->value(object, 0));
12170 else
12171 got->update_got_entry(got_offset, psymval->value(object, 0));
12172 }
12173
12174 r_addend = calculated_value;
12175 }
12176
12177 bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable()
12178 : false;
12179 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12180
12181 // Report any errors.
12182 switch (reloc_status)
12183 {
12184 case Reloc_funcs::STATUS_OKAY:
12185 break;
12186 case Reloc_funcs::STATUS_OVERFLOW:
12187 if (gsym == NULL)
12188 gold_error_at_location(relinfo, relnum, r_offset,
12189 _("relocation overflow: "
12190 "%u against local symbol %u in %s"),
12191 r_type, r_sym, object->name().c_str());
12192 else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12193 gold_error_at_location(relinfo, relnum, r_offset,
12194 _("relocation overflow: "
12195 "%u against '%s' defined in %s"),
12196 r_type, gsym->demangled_name().c_str(),
12197 gsym->object()->name().c_str());
12198 else
12199 gold_error_at_location(relinfo, relnum, r_offset,
12200 _("relocation overflow: %u against '%s'"),
12201 r_type, gsym->demangled_name().c_str());
12202 break;
12203 case Reloc_funcs::STATUS_BAD_RELOC:
12204 gold_error_at_location(relinfo, relnum, r_offset,
12205 _("unexpected opcode while processing relocation"));
12206 break;
12207 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12208 gold_error_at_location(relinfo, relnum, r_offset,
12209 _("unaligned PC-relative relocation"));
12210 break;
12211 default:
12212 gold_unreachable();
12213 }
12214
12215 return true;
12216 }
12217
12218 // Get the Reference_flags for a particular relocation.
12219
12220 template<int size, bool big_endian>
12221 int
12222 Target_mips<size, big_endian>::Scan::get_reference_flags(
12223 unsigned int r_type)
12224 {
12225 switch (r_type)
12226 {
12227 case elfcpp::R_MIPS_NONE:
12228 // No symbol reference.
12229 return 0;
12230
12231 case elfcpp::R_MIPS_16:
12232 case elfcpp::R_MIPS_32:
12233 case elfcpp::R_MIPS_64:
12234 case elfcpp::R_MIPS_HI16:
12235 case elfcpp::R_MIPS_LO16:
12236 case elfcpp::R_MIPS_HIGHER:
12237 case elfcpp::R_MIPS_HIGHEST:
12238 case elfcpp::R_MIPS16_HI16:
12239 case elfcpp::R_MIPS16_LO16:
12240 case elfcpp::R_MICROMIPS_HI16:
12241 case elfcpp::R_MICROMIPS_LO16:
12242 case elfcpp::R_MICROMIPS_HIGHER:
12243 case elfcpp::R_MICROMIPS_HIGHEST:
12244 return Symbol::ABSOLUTE_REF;
12245
12246 case elfcpp::R_MIPS_26:
12247 case elfcpp::R_MIPS16_26:
12248 case elfcpp::R_MICROMIPS_26_S1:
12249 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12250
12251 case elfcpp::R_MIPS_PC18_S3:
12252 case elfcpp::R_MIPS_PC19_S2:
12253 case elfcpp::R_MIPS_PCHI16:
12254 case elfcpp::R_MIPS_PCLO16:
12255 case elfcpp::R_MIPS_GPREL32:
12256 case elfcpp::R_MIPS_GPREL16:
12257 case elfcpp::R_MIPS_REL32:
12258 case elfcpp::R_MIPS16_GPREL:
12259 return Symbol::RELATIVE_REF;
12260
12261 case elfcpp::R_MIPS_PC16:
12262 case elfcpp::R_MIPS_PC32:
12263 case elfcpp::R_MIPS_PC21_S2:
12264 case elfcpp::R_MIPS_PC26_S2:
12265 case elfcpp::R_MIPS_JALR:
12266 case elfcpp::R_MICROMIPS_JALR:
12267 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12268
12269 case elfcpp::R_MIPS_GOT16:
12270 case elfcpp::R_MIPS_CALL16:
12271 case elfcpp::R_MIPS_GOT_DISP:
12272 case elfcpp::R_MIPS_GOT_HI16:
12273 case elfcpp::R_MIPS_GOT_LO16:
12274 case elfcpp::R_MIPS_CALL_HI16:
12275 case elfcpp::R_MIPS_CALL_LO16:
12276 case elfcpp::R_MIPS_LITERAL:
12277 case elfcpp::R_MIPS_GOT_PAGE:
12278 case elfcpp::R_MIPS_GOT_OFST:
12279 case elfcpp::R_MIPS16_GOT16:
12280 case elfcpp::R_MIPS16_CALL16:
12281 case elfcpp::R_MICROMIPS_GOT16:
12282 case elfcpp::R_MICROMIPS_CALL16:
12283 case elfcpp::R_MICROMIPS_GOT_HI16:
12284 case elfcpp::R_MICROMIPS_GOT_LO16:
12285 case elfcpp::R_MICROMIPS_CALL_HI16:
12286 case elfcpp::R_MICROMIPS_CALL_LO16:
12287 case elfcpp::R_MIPS_EH:
12288 // Absolute in GOT.
12289 return Symbol::RELATIVE_REF;
12290
12291 case elfcpp::R_MIPS_TLS_DTPMOD32:
12292 case elfcpp::R_MIPS_TLS_DTPREL32:
12293 case elfcpp::R_MIPS_TLS_DTPMOD64:
12294 case elfcpp::R_MIPS_TLS_DTPREL64:
12295 case elfcpp::R_MIPS_TLS_GD:
12296 case elfcpp::R_MIPS_TLS_LDM:
12297 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12298 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12299 case elfcpp::R_MIPS_TLS_GOTTPREL:
12300 case elfcpp::R_MIPS_TLS_TPREL32:
12301 case elfcpp::R_MIPS_TLS_TPREL64:
12302 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12303 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12304 case elfcpp::R_MIPS16_TLS_GD:
12305 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12306 case elfcpp::R_MICROMIPS_TLS_GD:
12307 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12308 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12309 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12310 return Symbol::TLS_REF;
12311
12312 case elfcpp::R_MIPS_COPY:
12313 case elfcpp::R_MIPS_JUMP_SLOT:
12314 default:
12315 // Not expected. We will give an error later.
12316 return 0;
12317 }
12318 }
12319
12320 // Report an unsupported relocation against a local symbol.
12321
12322 template<int size, bool big_endian>
12323 void
12324 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12325 Sized_relobj_file<size, big_endian>* object,
12326 unsigned int r_type)
12327 {
12328 gold_error(_("%s: unsupported reloc %u against local symbol"),
12329 object->name().c_str(), r_type);
12330 }
12331
12332 // Report an unsupported relocation against a global symbol.
12333
12334 template<int size, bool big_endian>
12335 void
12336 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12337 Sized_relobj_file<size, big_endian>* object,
12338 unsigned int r_type,
12339 Symbol* gsym)
12340 {
12341 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12342 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12343 }
12344
12345 // Return printable name for ABI.
12346 template<int size, bool big_endian>
12347 const char*
12348 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12349 {
12350 switch (e_flags & elfcpp::EF_MIPS_ABI)
12351 {
12352 case 0:
12353 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12354 return "N32";
12355 else if (size == 64)
12356 return "64";
12357 else
12358 return "none";
12359 case elfcpp::E_MIPS_ABI_O32:
12360 return "O32";
12361 case elfcpp::E_MIPS_ABI_O64:
12362 return "O64";
12363 case elfcpp::E_MIPS_ABI_EABI32:
12364 return "EABI32";
12365 case elfcpp::E_MIPS_ABI_EABI64:
12366 return "EABI64";
12367 default:
12368 return "unknown abi";
12369 }
12370 }
12371
12372 template<int size, bool big_endian>
12373 const char*
12374 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12375 {
12376 switch (e_flags & elfcpp::EF_MIPS_MACH)
12377 {
12378 case elfcpp::E_MIPS_MACH_3900:
12379 return "mips:3900";
12380 case elfcpp::E_MIPS_MACH_4010:
12381 return "mips:4010";
12382 case elfcpp::E_MIPS_MACH_4100:
12383 return "mips:4100";
12384 case elfcpp::E_MIPS_MACH_4111:
12385 return "mips:4111";
12386 case elfcpp::E_MIPS_MACH_4120:
12387 return "mips:4120";
12388 case elfcpp::E_MIPS_MACH_4650:
12389 return "mips:4650";
12390 case elfcpp::E_MIPS_MACH_5400:
12391 return "mips:5400";
12392 case elfcpp::E_MIPS_MACH_5500:
12393 return "mips:5500";
12394 case elfcpp::E_MIPS_MACH_5900:
12395 return "mips:5900";
12396 case elfcpp::E_MIPS_MACH_SB1:
12397 return "mips:sb1";
12398 case elfcpp::E_MIPS_MACH_9000:
12399 return "mips:9000";
12400 case elfcpp::E_MIPS_MACH_LS2E:
12401 return "mips:loongson_2e";
12402 case elfcpp::E_MIPS_MACH_LS2F:
12403 return "mips:loongson_2f";
12404 case elfcpp::E_MIPS_MACH_LS3A:
12405 return "mips:loongson_3a";
12406 case elfcpp::E_MIPS_MACH_OCTEON:
12407 return "mips:octeon";
12408 case elfcpp::E_MIPS_MACH_OCTEON2:
12409 return "mips:octeon2";
12410 case elfcpp::E_MIPS_MACH_OCTEON3:
12411 return "mips:octeon3";
12412 case elfcpp::E_MIPS_MACH_XLR:
12413 return "mips:xlr";
12414 default:
12415 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12416 {
12417 default:
12418 case elfcpp::E_MIPS_ARCH_1:
12419 return "mips:3000";
12420
12421 case elfcpp::E_MIPS_ARCH_2:
12422 return "mips:6000";
12423
12424 case elfcpp::E_MIPS_ARCH_3:
12425 return "mips:4000";
12426
12427 case elfcpp::E_MIPS_ARCH_4:
12428 return "mips:8000";
12429
12430 case elfcpp::E_MIPS_ARCH_5:
12431 return "mips:mips5";
12432
12433 case elfcpp::E_MIPS_ARCH_32:
12434 return "mips:isa32";
12435
12436 case elfcpp::E_MIPS_ARCH_64:
12437 return "mips:isa64";
12438
12439 case elfcpp::E_MIPS_ARCH_32R2:
12440 return "mips:isa32r2";
12441
12442 case elfcpp::E_MIPS_ARCH_32R6:
12443 return "mips:isa32r6";
12444
12445 case elfcpp::E_MIPS_ARCH_64R2:
12446 return "mips:isa64r2";
12447
12448 case elfcpp::E_MIPS_ARCH_64R6:
12449 return "mips:isa64r6";
12450 }
12451 }
12452 return "unknown CPU";
12453 }
12454
12455 template<int size, bool big_endian>
12456 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12457 {
12458 size, // size
12459 big_endian, // is_big_endian
12460 elfcpp::EM_MIPS, // machine_code
12461 true, // has_make_symbol
12462 false, // has_resolve
12463 false, // has_code_fill
12464 true, // is_default_stack_executable
12465 false, // can_icf_inline_merge_sections
12466 '\0', // wrap_char
12467 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12468 0x400000, // default_text_segment_address
12469 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12470 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12471 false, // isolate_execinstr
12472 0, // rosegment_gap
12473 elfcpp::SHN_UNDEF, // small_common_shndx
12474 elfcpp::SHN_UNDEF, // large_common_shndx
12475 0, // small_common_section_flags
12476 0, // large_common_section_flags
12477 NULL, // attributes_section
12478 NULL, // attributes_vendor
12479 "__start", // entry_symbol_name
12480 32, // hash_entry_size
12481 };
12482
12483 template<int size, bool big_endian>
12484 class Target_mips_nacl : public Target_mips<size, big_endian>
12485 {
12486 public:
12487 Target_mips_nacl()
12488 : Target_mips<size, big_endian>(&mips_nacl_info)
12489 { }
12490
12491 private:
12492 static const Target::Target_info mips_nacl_info;
12493 };
12494
12495 template<int size, bool big_endian>
12496 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12497 {
12498 size, // size
12499 big_endian, // is_big_endian
12500 elfcpp::EM_MIPS, // machine_code
12501 true, // has_make_symbol
12502 false, // has_resolve
12503 false, // has_code_fill
12504 true, // is_default_stack_executable
12505 false, // can_icf_inline_merge_sections
12506 '\0', // wrap_char
12507 "/lib/ld.so.1", // dynamic_linker
12508 0x20000, // default_text_segment_address
12509 0x10000, // abi_pagesize (overridable by -z max-page-size)
12510 0x10000, // common_pagesize (overridable by -z common-page-size)
12511 true, // isolate_execinstr
12512 0x10000000, // rosegment_gap
12513 elfcpp::SHN_UNDEF, // small_common_shndx
12514 elfcpp::SHN_UNDEF, // large_common_shndx
12515 0, // small_common_section_flags
12516 0, // large_common_section_flags
12517 NULL, // attributes_section
12518 NULL, // attributes_vendor
12519 "_start", // entry_symbol_name
12520 32, // hash_entry_size
12521 };
12522
12523 // Target selector for Mips. Note this is never instantiated directly.
12524 // It's only used in Target_selector_mips_nacl, below.
12525
12526 template<int size, bool big_endian>
12527 class Target_selector_mips : public Target_selector
12528 {
12529 public:
12530 Target_selector_mips()
12531 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12532 (size == 64 ?
12533 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12534 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12535 (size == 64 ?
12536 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12537 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12538 { }
12539
12540 Target* do_instantiate_target()
12541 { return new Target_mips<size, big_endian>(); }
12542 };
12543
12544 template<int size, bool big_endian>
12545 class Target_selector_mips_nacl
12546 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12547 Target_mips_nacl<size, big_endian> >
12548 {
12549 public:
12550 Target_selector_mips_nacl()
12551 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12552 Target_mips_nacl<size, big_endian> >(
12553 // NaCl currently supports only MIPS32 little-endian.
12554 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12555 { }
12556 };
12557
12558 Target_selector_mips_nacl<32, true> target_selector_mips32;
12559 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12560 Target_selector_mips_nacl<64, true> target_selector_mips64;
12561 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12562
12563 } // End anonymous namespace.
This page took 0.431239 seconds and 5 git commands to generate.