2b58f04ce6646d10158c7e2fe10417b144dc6ce3
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_entry_key key(i, 0);
431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432 if (p != this->local_got_offsets_.end())
433 {
434 const Got_offset_list* got_offsets = p->second;
435 got_offsets->for_all_got_offsets(v);
436 }
437 }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445 unsigned int shndx)
446 {
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx);
451
452 const Output_section* os = this->do_output_section(shndx);
453 gold_assert(os != NULL);
454 return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461 const std::string& name,
462 Input_file* input_file,
463 off_t offset,
464 const elfcpp::Ehdr<size, big_endian>& ehdr)
465 : Sized_relobj<size, big_endian>(name, input_file, offset),
466 elf_file_(this, ehdr),
467 symtab_shndx_(-1U),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
471 symbols_(),
472 defined_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
475 local_values_(),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 is_deferred_layout_(false),
480 deferred_layout_(),
481 deferred_layout_relocs_(),
482 output_views_(NULL)
483 {
484 this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header. This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499 const unsigned int shnum = this->elf_file_.shnum();
500 this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers. The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section. Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512 const unsigned int shnum = this->shnum();
513 this->symtab_shndx_ = 0;
514 if (shnum > 0)
515 {
516 // Look through the sections in reverse order, since gas tends
517 // to put the symbol table at the end.
518 const unsigned char* p = pshdrs + shnum * This::shdr_size;
519 unsigned int i = shnum;
520 unsigned int xindex_shndx = 0;
521 unsigned int xindex_link = 0;
522 while (i > 0)
523 {
524 --i;
525 p -= This::shdr_size;
526 typename This::Shdr shdr(p);
527 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528 {
529 this->symtab_shndx_ = i;
530 if (xindex_shndx > 0 && xindex_link == i)
531 {
532 Xindex* xindex =
533 new Xindex(this->elf_file_.large_shndx_offset());
534 xindex->read_symtab_xindex<size, big_endian>(this,
535 xindex_shndx,
536 pshdrs);
537 this->set_xindex(xindex);
538 }
539 break;
540 }
541
542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 // one. This will work if it follows the SHT_SYMTAB
544 // section.
545 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546 {
547 xindex_shndx = i;
548 xindex_link = this->adjust_shndx(shdr.get_sh_link());
549 }
550 }
551 }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561 gold_assert(this->symtab_shndx_ != -1U);
562 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564 return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573 const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576 return ((sh_type == elfcpp::SHT_PROGBITS
577 || sh_type == parameters->target().unwind_section_type())
578 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586 const unsigned char* pshdrs,
587 const char* name,
588 const char* names,
589 section_size_type names_size,
590 const unsigned char* hdr) const
591 {
592 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593 const unsigned int shnum = this->shnum();
594 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595 size_t sh_name = 0;
596
597 while (1)
598 {
599 if (hdr)
600 {
601 // We found HDR last time we were called, continue looking.
602 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603 sh_name = shdr.get_sh_name();
604 }
605 else
606 {
607 // Look for the next occurrence of NAME in NAMES.
608 // The fact that .shstrtab produced by current GNU tools is
609 // string merged means we shouldn't have both .not.foo and
610 // .foo in .shstrtab, and multiple .foo sections should all
611 // have the same sh_name. However, this is not guaranteed
612 // by the ELF spec and not all ELF object file producers may
613 // be so clever.
614 size_t len = strlen(name) + 1;
615 const char *p = sh_name ? names + sh_name + len : names;
616 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617 name, len));
618 if (p == NULL)
619 return NULL;
620 sh_name = p - names;
621 hdr = pshdrs;
622 if (sh_name == 0)
623 return hdr;
624 }
625
626 hdr += shdr_size;
627 while (hdr < hdr_end)
628 {
629 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630 if (shdr.get_sh_name() == sh_name)
631 return hdr;
632 hdr += shdr_size;
633 }
634 hdr = NULL;
635 if (sh_name == 0)
636 return hdr;
637 }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646 const unsigned char* pshdrs,
647 const char* names,
648 section_size_type names_size) const
649 {
650 const unsigned char* s = NULL;
651
652 while (1)
653 {
654 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655 names, names_size, s);
656 if (s == NULL)
657 return false;
658
659 typename This::Shdr shdr(s);
660 if (this->check_eh_frame_flags(&shdr))
661 return true;
662 }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task. This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673 if (*name++ != '_')
674 return false;
675
676 #ifdef ENABLE_THREADS
677 // Decompressing these sections now will help only if we're
678 // multithreaded.
679 if (parameters->options().threads())
680 {
681 // We will need .zdebug_str if this is not an incremental link
682 // (i.e., we are processing string merge sections) or if we need
683 // to build a gdb index.
684 if ((!parameters->incremental() || parameters->options().gdb_index())
685 && strcmp(name, "str") == 0)
686 return true;
687
688 // We will need these other sections when building a gdb index.
689 if (parameters->options().gdb_index()
690 && (strcmp(name, "info") == 0
691 || strcmp(name, "types") == 0
692 || strcmp(name, "pubnames") == 0
693 || strcmp(name, "pubtypes") == 0
694 || strcmp(name, "ranges") == 0
695 || strcmp(name, "abbrev") == 0))
696 return true;
697 }
698 #endif
699
700 // Even when single-threaded, we will need .zdebug_str if this is
701 // not an incremental link and we are building a gdb index.
702 // Otherwise, we would decompress the section twice: once for
703 // string merge processing, and once for building the gdb index.
704 if (!parameters->incremental()
705 && parameters->options().gdb_index()
706 && strcmp(name, "str") == 0)
707 return true;
708
709 return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718 const unsigned char* pshdrs,
719 unsigned int shnum,
720 const char* names,
721 section_size_type names_size,
722 Object* obj,
723 bool decompress_if_needed)
724 {
725 Compressed_section_map* uncompressed_map = new Compressed_section_map();
726 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727 const unsigned char* p = pshdrs + shdr_size;
728
729 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730 {
731 typename elfcpp::Shdr<size, big_endian> shdr(p);
732 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 {
735 if (shdr.get_sh_name() >= names_size)
736 {
737 obj->error(_("bad section name offset for section %u: %lu"),
738 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 continue;
740 }
741
742 const char* name = names + shdr.get_sh_name();
743 bool is_compressed = ((shdr.get_sh_flags()
744 & elfcpp::SHF_COMPRESSED) != 0);
745 bool is_zcompressed = (!is_compressed
746 && is_compressed_debug_section(name));
747
748 if (is_zcompressed || is_compressed)
749 {
750 section_size_type len;
751 const unsigned char* contents =
752 obj->section_contents(i, &len, false);
753 uint64_t uncompressed_size;
754 if (is_zcompressed)
755 {
756 // Skip over the ".zdebug" prefix.
757 name += 7;
758 uncompressed_size = get_uncompressed_size(contents, len);
759 }
760 else
761 {
762 // Skip over the ".debug" prefix.
763 name += 6;
764 elfcpp::Chdr<size, big_endian> chdr(contents);
765 uncompressed_size = chdr.get_ch_size();
766 }
767 Compressed_section_info info;
768 info.size = convert_to_section_size_type(uncompressed_size);
769 info.flag = shdr.get_sh_flags();
770 info.contents = NULL;
771 if (uncompressed_size != -1ULL)
772 {
773 unsigned char* uncompressed_data = NULL;
774 if (decompress_if_needed && need_decompressed_section(name))
775 {
776 uncompressed_data = new unsigned char[uncompressed_size];
777 if (decompress_input_section(contents, len,
778 uncompressed_data,
779 uncompressed_size,
780 size, big_endian,
781 shdr.get_sh_flags()))
782 info.contents = uncompressed_data;
783 else
784 delete[] uncompressed_data;
785 }
786 (*uncompressed_map)[i] = info;
787 }
788 }
789 }
790 }
791 return uncompressed_map;
792 }
793
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
796
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj_file<size, big_endian>::do_find_special_sections(
800 Read_symbols_data* sd)
801 {
802 const unsigned char* const pshdrs = sd->section_headers->data();
803 const unsigned char* namesu = sd->section_names->data();
804 const char* names = reinterpret_cast<const char*>(namesu);
805
806 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
807 this->has_eh_frame_ = true;
808
809 Compressed_section_map* compressed_sections =
810 build_compressed_section_map<size, big_endian>(
811 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
812 if (compressed_sections != NULL)
813 this->set_compressed_sections(compressed_sections);
814
815 return (this->has_eh_frame_
816 || (!parameters->options().relocatable()
817 && parameters->options().gdb_index()
818 && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
819 || memmem(names, sd->section_names_size,
820 "debug_types", 12) != NULL)));
821 }
822
823 // Read the sections and symbols from an object file.
824
825 template<int size, bool big_endian>
826 void
827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
828 {
829 this->base_read_symbols(sd);
830 }
831
832 // Read the sections and symbols from an object file. This is common
833 // code for all target-specific overrides of do_read_symbols().
834
835 template<int size, bool big_endian>
836 void
837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
838 {
839 this->read_section_data(&this->elf_file_, sd);
840
841 const unsigned char* const pshdrs = sd->section_headers->data();
842
843 this->find_symtab(pshdrs);
844
845 bool need_local_symbols = this->do_find_special_sections(sd);
846
847 sd->symbols = NULL;
848 sd->symbols_size = 0;
849 sd->external_symbols_offset = 0;
850 sd->symbol_names = NULL;
851 sd->symbol_names_size = 0;
852
853 if (this->symtab_shndx_ == 0)
854 {
855 // No symbol table. Weird but legal.
856 return;
857 }
858
859 // Get the symbol table section header.
860 typename This::Shdr symtabshdr(pshdrs
861 + this->symtab_shndx_ * This::shdr_size);
862 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
863
864 // If this object has a .eh_frame section, or if building a .gdb_index
865 // section and there is debug info, we need all the symbols.
866 // Otherwise we only need the external symbols. While it would be
867 // simpler to just always read all the symbols, I've seen object
868 // files with well over 2000 local symbols, which for a 64-bit
869 // object file format is over 5 pages that we don't need to read
870 // now.
871
872 const int sym_size = This::sym_size;
873 const unsigned int loccount = symtabshdr.get_sh_info();
874 this->local_symbol_count_ = loccount;
875 this->local_values_.resize(loccount);
876 section_offset_type locsize = loccount * sym_size;
877 off_t dataoff = symtabshdr.get_sh_offset();
878 section_size_type datasize =
879 convert_to_section_size_type(symtabshdr.get_sh_size());
880 off_t extoff = dataoff + locsize;
881 section_size_type extsize = datasize - locsize;
882
883 off_t readoff = need_local_symbols ? dataoff : extoff;
884 section_size_type readsize = need_local_symbols ? datasize : extsize;
885
886 if (readsize == 0)
887 {
888 // No external symbols. Also weird but also legal.
889 return;
890 }
891
892 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
893
894 // Read the section header for the symbol names.
895 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
896 if (strtab_shndx >= this->shnum())
897 {
898 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
899 return;
900 }
901 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
902 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
903 {
904 this->error(_("symbol table name section has wrong type: %u"),
905 static_cast<unsigned int>(strtabshdr.get_sh_type()));
906 return;
907 }
908
909 // Read the symbol names.
910 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
911 strtabshdr.get_sh_size(),
912 false, true);
913
914 sd->symbols = fvsymtab;
915 sd->symbols_size = readsize;
916 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
917 sd->symbol_names = fvstrtab;
918 sd->symbol_names_size =
919 convert_to_section_size_type(strtabshdr.get_sh_size());
920 }
921
922 // Return the section index of symbol SYM. Set *VALUE to its value in
923 // the object file. Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
928
929 template<int size, bool big_endian>
930 unsigned int
931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
932 Address* value,
933 bool* is_ordinary)
934 {
935 section_size_type symbols_size;
936 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
937 &symbols_size,
938 false);
939
940 const size_t count = symbols_size / This::sym_size;
941 gold_assert(sym < count);
942
943 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
944 *value = elfsym.get_st_value();
945
946 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
947 }
948
949 // Return whether to include a section group in the link. LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header. If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
954
955 template<int size, bool big_endian>
956 bool
957 Sized_relobj_file<size, big_endian>::include_section_group(
958 Symbol_table* symtab,
959 Layout* layout,
960 unsigned int index,
961 const char* name,
962 const unsigned char* shdrs,
963 const char* section_names,
964 section_size_type section_names_size,
965 std::vector<bool>* omit)
966 {
967 // Read the section contents.
968 typename This::Shdr shdr(shdrs + index * This::shdr_size);
969 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
970 shdr.get_sh_size(), true, false);
971 const elfcpp::Elf_Word* pword =
972 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
973
974 // The first word contains flags. We only care about COMDAT section
975 // groups. Other section groups are always included in the link
976 // just like ordinary sections.
977 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
978
979 // Look up the group signature, which is the name of a symbol. ELF
980 // uses a symbol name because some group signatures are long, and
981 // the name is generally already in the symbol table, so it makes
982 // sense to put the long string just once in .strtab rather than in
983 // both .strtab and .shstrtab.
984
985 // Get the appropriate symbol table header (this will normally be
986 // the single SHT_SYMTAB section, but in principle it need not be).
987 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
988 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
989
990 // Read the symbol table entry.
991 unsigned int symndx = shdr.get_sh_info();
992 if (symndx >= symshdr.get_sh_size() / This::sym_size)
993 {
994 this->error(_("section group %u info %u out of range"),
995 index, symndx);
996 return false;
997 }
998 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
999 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1000 false);
1001 elfcpp::Sym<size, big_endian> sym(psym);
1002
1003 // Read the symbol table names.
1004 section_size_type symnamelen;
1005 const unsigned char* psymnamesu;
1006 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1007 &symnamelen, true);
1008 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1009
1010 // Get the section group signature.
1011 if (sym.get_st_name() >= symnamelen)
1012 {
1013 this->error(_("symbol %u name offset %u out of range"),
1014 symndx, sym.get_st_name());
1015 return false;
1016 }
1017
1018 std::string signature(psymnames + sym.get_st_name());
1019
1020 // It seems that some versions of gas will create a section group
1021 // associated with a section symbol, and then fail to give a name to
1022 // the section symbol. In such a case, use the name of the section.
1023 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1024 {
1025 bool is_ordinary;
1026 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1027 sym.get_st_shndx(),
1028 &is_ordinary);
1029 if (!is_ordinary || sym_shndx >= this->shnum())
1030 {
1031 this->error(_("symbol %u invalid section index %u"),
1032 symndx, sym_shndx);
1033 return false;
1034 }
1035 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1036 if (member_shdr.get_sh_name() < section_names_size)
1037 signature = section_names + member_shdr.get_sh_name();
1038 }
1039
1040 // Record this section group in the layout, and see whether we've already
1041 // seen one with the same signature.
1042 bool include_group;
1043 bool is_comdat;
1044 Kept_section* kept_section = NULL;
1045
1046 if ((flags & elfcpp::GRP_COMDAT) == 0)
1047 {
1048 include_group = true;
1049 is_comdat = false;
1050 }
1051 else
1052 {
1053 include_group = layout->find_or_add_kept_section(signature,
1054 this, index, true,
1055 true, &kept_section);
1056 is_comdat = true;
1057 }
1058
1059 if (is_comdat && include_group)
1060 {
1061 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1062 if (incremental_inputs != NULL)
1063 incremental_inputs->report_comdat_group(this, signature.c_str());
1064 }
1065
1066 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1067
1068 std::vector<unsigned int> shndxes;
1069 bool relocate_group = include_group && parameters->options().relocatable();
1070 if (relocate_group)
1071 shndxes.reserve(count - 1);
1072
1073 for (size_t i = 1; i < count; ++i)
1074 {
1075 elfcpp::Elf_Word shndx =
1076 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1077
1078 if (relocate_group)
1079 shndxes.push_back(shndx);
1080
1081 if (shndx >= this->shnum())
1082 {
1083 this->error(_("section %u in section group %u out of range"),
1084 shndx, index);
1085 continue;
1086 }
1087
1088 // Check for an earlier section number, since we're going to get
1089 // it wrong--we may have already decided to include the section.
1090 if (shndx < index)
1091 this->error(_("invalid section group %u refers to earlier section %u"),
1092 index, shndx);
1093
1094 // Get the name of the member section.
1095 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1096 if (member_shdr.get_sh_name() >= section_names_size)
1097 {
1098 // This is an error, but it will be diagnosed eventually
1099 // in do_layout, so we don't need to do anything here but
1100 // ignore it.
1101 continue;
1102 }
1103 std::string mname(section_names + member_shdr.get_sh_name());
1104
1105 if (include_group)
1106 {
1107 if (is_comdat)
1108 kept_section->add_comdat_section(mname, shndx,
1109 member_shdr.get_sh_size());
1110 }
1111 else
1112 {
1113 (*omit)[shndx] = true;
1114
1115 // Store a mapping from this section to the Kept_section
1116 // information for the group. This mapping is used for
1117 // relocation processing and diagnostics.
1118 // If the kept section is a linkonce section, we don't
1119 // bother with it unless the comdat group contains just
1120 // a single section, making it easy to match up.
1121 if (is_comdat
1122 && (kept_section->is_comdat() || count == 2))
1123 this->set_kept_comdat_section(shndx, true, symndx,
1124 member_shdr.get_sh_size(),
1125 kept_section);
1126 }
1127 }
1128
1129 if (relocate_group)
1130 layout->layout_group(symtab, this, index, name, signature.c_str(),
1131 shdr, flags, &shndxes);
1132
1133 return include_group;
1134 }
1135
1136 // Whether to include a linkonce section in the link. NAME is the
1137 // name of the section and SHDR is the section header.
1138
1139 // Linkonce sections are a GNU extension implemented in the original
1140 // GNU linker before section groups were defined. The semantics are
1141 // that we only include one linkonce section with a given name. The
1142 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1143 // where T is the type of section and SYMNAME is the name of a symbol.
1144 // In an attempt to make linkonce sections interact well with section
1145 // groups, we try to identify SYMNAME and use it like a section group
1146 // signature. We want to block section groups with that signature,
1147 // but not other linkonce sections with that signature. We also use
1148 // the full name of the linkonce section as a normal section group
1149 // signature.
1150
1151 template<int size, bool big_endian>
1152 bool
1153 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1154 Layout* layout,
1155 unsigned int index,
1156 const char* name,
1157 const elfcpp::Shdr<size, big_endian>& shdr)
1158 {
1159 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1160 // In general the symbol name we want will be the string following
1161 // the last '.'. However, we have to handle the case of
1162 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1163 // some versions of gcc. So we use a heuristic: if the name starts
1164 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1165 // we look for the last '.'. We can't always simply skip
1166 // ".gnu.linkonce.X", because we have to deal with cases like
1167 // ".gnu.linkonce.d.rel.ro.local".
1168 const char* const linkonce_t = ".gnu.linkonce.t.";
1169 const char* symname;
1170 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1171 symname = name + strlen(linkonce_t);
1172 else
1173 symname = strrchr(name, '.') + 1;
1174 std::string sig1(symname);
1175 std::string sig2(name);
1176 Kept_section* kept1;
1177 Kept_section* kept2;
1178 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1179 false, &kept1);
1180 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1181 true, &kept2);
1182
1183 if (!include2)
1184 {
1185 // We are not including this section because we already saw the
1186 // name of the section as a signature. This normally implies
1187 // that the kept section is another linkonce section. If it is
1188 // the same size, record it as the section which corresponds to
1189 // this one.
1190 if (kept2->object() != NULL && !kept2->is_comdat())
1191 this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1192 }
1193 else if (!include1)
1194 {
1195 // The section is being discarded on the basis of its symbol
1196 // name. This means that the corresponding kept section was
1197 // part of a comdat group, and it will be difficult to identify
1198 // the specific section within that group that corresponds to
1199 // this linkonce section. We'll handle the simple case where
1200 // the group has only one member section. Otherwise, it's not
1201 // worth the effort.
1202 if (kept1->object() != NULL && kept1->is_comdat())
1203 this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1204 }
1205 else
1206 {
1207 kept1->set_linkonce_size(sh_size);
1208 kept2->set_linkonce_size(sh_size);
1209 }
1210
1211 return include1 && include2;
1212 }
1213
1214 // Layout an input section.
1215
1216 template<int size, bool big_endian>
1217 inline void
1218 Sized_relobj_file<size, big_endian>::layout_section(
1219 Layout* layout,
1220 unsigned int shndx,
1221 const char* name,
1222 const typename This::Shdr& shdr,
1223 unsigned int sh_type,
1224 unsigned int reloc_shndx,
1225 unsigned int reloc_type)
1226 {
1227 off_t offset;
1228 Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1229 reloc_shndx, reloc_type, &offset);
1230
1231 this->output_sections()[shndx] = os;
1232 if (offset == -1)
1233 this->section_offsets()[shndx] = invalid_address;
1234 else
1235 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1236
1237 // If this section requires special handling, and if there are
1238 // relocs that apply to it, then we must do the special handling
1239 // before we apply the relocs.
1240 if (offset == -1 && reloc_shndx != 0)
1241 this->set_relocs_must_follow_section_writes();
1242 }
1243
1244 // Layout an input .eh_frame section.
1245
1246 template<int size, bool big_endian>
1247 void
1248 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1249 Layout* layout,
1250 const unsigned char* symbols_data,
1251 section_size_type symbols_size,
1252 const unsigned char* symbol_names_data,
1253 section_size_type symbol_names_size,
1254 unsigned int shndx,
1255 const typename This::Shdr& shdr,
1256 unsigned int reloc_shndx,
1257 unsigned int reloc_type)
1258 {
1259 gold_assert(this->has_eh_frame_);
1260
1261 off_t offset;
1262 Output_section* os = layout->layout_eh_frame(this,
1263 symbols_data,
1264 symbols_size,
1265 symbol_names_data,
1266 symbol_names_size,
1267 shndx,
1268 shdr,
1269 reloc_shndx,
1270 reloc_type,
1271 &offset);
1272 this->output_sections()[shndx] = os;
1273 if (os == NULL || offset == -1)
1274 this->section_offsets()[shndx] = invalid_address;
1275 else
1276 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1277
1278 // If this section requires special handling, and if there are
1279 // relocs that aply to it, then we must do the special handling
1280 // before we apply the relocs.
1281 if (os != NULL && offset == -1 && reloc_shndx != 0)
1282 this->set_relocs_must_follow_section_writes();
1283 }
1284
1285 // Lay out the input sections. We walk through the sections and check
1286 // whether they should be included in the link. If they should, we
1287 // pass them to the Layout object, which will return an output section
1288 // and an offset.
1289 // This function is called twice sometimes, two passes, when mapping
1290 // of input sections to output sections must be delayed.
1291 // This is true for the following :
1292 // * Garbage collection (--gc-sections): Some input sections will be
1293 // discarded and hence the assignment must wait until the second pass.
1294 // In the first pass, it is for setting up some sections as roots to
1295 // a work-list for --gc-sections and to do comdat processing.
1296 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1297 // will be folded and hence the assignment must wait.
1298 // * Using plugins to map some sections to unique segments: Mapping
1299 // some sections to unique segments requires mapping them to unique
1300 // output sections too. This can be done via plugins now and this
1301 // information is not available in the first pass.
1302
1303 template<int size, bool big_endian>
1304 void
1305 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1306 Layout* layout,
1307 Read_symbols_data* sd)
1308 {
1309 const unsigned int unwind_section_type =
1310 parameters->target().unwind_section_type();
1311 const unsigned int shnum = this->shnum();
1312
1313 /* Should this function be called twice? */
1314 bool is_two_pass = (parameters->options().gc_sections()
1315 || parameters->options().icf_enabled()
1316 || layout->is_unique_segment_for_sections_specified());
1317
1318 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1319 a two-pass approach is not needed. */
1320 bool is_pass_one = false;
1321 bool is_pass_two = false;
1322
1323 Symbols_data* gc_sd = NULL;
1324
1325 /* Check if do_layout needs to be two-pass. If so, find out which pass
1326 should happen. In the first pass, the data in sd is saved to be used
1327 later in the second pass. */
1328 if (is_two_pass)
1329 {
1330 gc_sd = this->get_symbols_data();
1331 if (gc_sd == NULL)
1332 {
1333 gold_assert(sd != NULL);
1334 is_pass_one = true;
1335 }
1336 else
1337 {
1338 if (parameters->options().gc_sections())
1339 gold_assert(symtab->gc()->is_worklist_ready());
1340 if (parameters->options().icf_enabled())
1341 gold_assert(symtab->icf()->is_icf_ready());
1342 is_pass_two = true;
1343 }
1344 }
1345
1346 if (shnum == 0)
1347 return;
1348
1349 if (is_pass_one)
1350 {
1351 // During garbage collection save the symbols data to use it when
1352 // re-entering this function.
1353 gc_sd = new Symbols_data;
1354 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1355 this->set_symbols_data(gc_sd);
1356 }
1357
1358 const unsigned char* section_headers_data = NULL;
1359 section_size_type section_names_size;
1360 const unsigned char* symbols_data = NULL;
1361 section_size_type symbols_size;
1362 const unsigned char* symbol_names_data = NULL;
1363 section_size_type symbol_names_size;
1364
1365 if (is_two_pass)
1366 {
1367 section_headers_data = gc_sd->section_headers_data;
1368 section_names_size = gc_sd->section_names_size;
1369 symbols_data = gc_sd->symbols_data;
1370 symbols_size = gc_sd->symbols_size;
1371 symbol_names_data = gc_sd->symbol_names_data;
1372 symbol_names_size = gc_sd->symbol_names_size;
1373 }
1374 else
1375 {
1376 section_headers_data = sd->section_headers->data();
1377 section_names_size = sd->section_names_size;
1378 if (sd->symbols != NULL)
1379 symbols_data = sd->symbols->data();
1380 symbols_size = sd->symbols_size;
1381 if (sd->symbol_names != NULL)
1382 symbol_names_data = sd->symbol_names->data();
1383 symbol_names_size = sd->symbol_names_size;
1384 }
1385
1386 // Get the section headers.
1387 const unsigned char* shdrs = section_headers_data;
1388 const unsigned char* pshdrs;
1389
1390 // Get the section names.
1391 const unsigned char* pnamesu = (is_two_pass
1392 ? gc_sd->section_names_data
1393 : sd->section_names->data());
1394
1395 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1396
1397 // If any input files have been claimed by plugins, we need to defer
1398 // actual layout until the replacement files have arrived.
1399 const bool should_defer_layout =
1400 (parameters->options().has_plugins()
1401 && parameters->options().plugins()->should_defer_layout());
1402 unsigned int num_sections_to_defer = 0;
1403
1404 // For each section, record the index of the reloc section if any.
1405 // Use 0 to mean that there is no reloc section, -1U to mean that
1406 // there is more than one.
1407 std::vector<unsigned int> reloc_shndx(shnum, 0);
1408 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1409 // Skip the first, dummy, section.
1410 pshdrs = shdrs + This::shdr_size;
1411 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1412 {
1413 typename This::Shdr shdr(pshdrs);
1414
1415 // Count the number of sections whose layout will be deferred.
1416 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1417 ++num_sections_to_defer;
1418
1419 unsigned int sh_type = shdr.get_sh_type();
1420 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1421 {
1422 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1423 if (target_shndx == 0 || target_shndx >= shnum)
1424 {
1425 this->error(_("relocation section %u has bad info %u"),
1426 i, target_shndx);
1427 continue;
1428 }
1429
1430 if (reloc_shndx[target_shndx] != 0)
1431 reloc_shndx[target_shndx] = -1U;
1432 else
1433 {
1434 reloc_shndx[target_shndx] = i;
1435 reloc_type[target_shndx] = sh_type;
1436 }
1437 }
1438 }
1439
1440 Output_sections& out_sections(this->output_sections());
1441 std::vector<Address>& out_section_offsets(this->section_offsets());
1442
1443 if (!is_pass_two)
1444 {
1445 out_sections.resize(shnum);
1446 out_section_offsets.resize(shnum);
1447 }
1448
1449 // If we are only linking for symbols, then there is nothing else to
1450 // do here.
1451 if (this->input_file()->just_symbols())
1452 {
1453 if (!is_pass_two)
1454 {
1455 delete sd->section_headers;
1456 sd->section_headers = NULL;
1457 delete sd->section_names;
1458 sd->section_names = NULL;
1459 }
1460 return;
1461 }
1462
1463 if (num_sections_to_defer > 0)
1464 {
1465 parameters->options().plugins()->add_deferred_layout_object(this);
1466 this->deferred_layout_.reserve(num_sections_to_defer);
1467 this->is_deferred_layout_ = true;
1468 }
1469
1470 // Whether we've seen a .note.GNU-stack section.
1471 bool seen_gnu_stack = false;
1472 // The flags of a .note.GNU-stack section.
1473 uint64_t gnu_stack_flags = 0;
1474
1475 // Keep track of which sections to omit.
1476 std::vector<bool> omit(shnum, false);
1477
1478 // Keep track of reloc sections when emitting relocations.
1479 const bool relocatable = parameters->options().relocatable();
1480 const bool emit_relocs = (relocatable
1481 || parameters->options().emit_relocs());
1482 std::vector<unsigned int> reloc_sections;
1483
1484 // Keep track of .eh_frame sections.
1485 std::vector<unsigned int> eh_frame_sections;
1486
1487 // Keep track of .debug_info and .debug_types sections.
1488 std::vector<unsigned int> debug_info_sections;
1489 std::vector<unsigned int> debug_types_sections;
1490
1491 // Skip the first, dummy, section.
1492 pshdrs = shdrs + This::shdr_size;
1493 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1494 {
1495 typename This::Shdr shdr(pshdrs);
1496 const unsigned int sh_name = shdr.get_sh_name();
1497 unsigned int sh_type = shdr.get_sh_type();
1498
1499 if (sh_name >= section_names_size)
1500 {
1501 this->error(_("bad section name offset for section %u: %lu"),
1502 i, static_cast<unsigned long>(sh_name));
1503 return;
1504 }
1505
1506 const char* name = pnames + sh_name;
1507
1508 if (!is_pass_two)
1509 {
1510 if (this->handle_gnu_warning_section(name, i, symtab))
1511 {
1512 if (!relocatable && !parameters->options().shared())
1513 omit[i] = true;
1514 }
1515
1516 // The .note.GNU-stack section is special. It gives the
1517 // protection flags that this object file requires for the stack
1518 // in memory.
1519 if (strcmp(name, ".note.GNU-stack") == 0)
1520 {
1521 seen_gnu_stack = true;
1522 gnu_stack_flags |= shdr.get_sh_flags();
1523 omit[i] = true;
1524 }
1525
1526 // The .note.GNU-split-stack section is also special. It
1527 // indicates that the object was compiled with
1528 // -fsplit-stack.
1529 if (this->handle_split_stack_section(name))
1530 {
1531 if (!relocatable && !parameters->options().shared())
1532 omit[i] = true;
1533 }
1534
1535 // Skip attributes section.
1536 if (parameters->target().is_attributes_section(name))
1537 {
1538 omit[i] = true;
1539 }
1540
1541 bool discard = omit[i];
1542 if (!discard)
1543 {
1544 if (sh_type == elfcpp::SHT_GROUP)
1545 {
1546 if (!this->include_section_group(symtab, layout, i, name,
1547 shdrs, pnames,
1548 section_names_size,
1549 &omit))
1550 discard = true;
1551 }
1552 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1553 && Layout::is_linkonce(name))
1554 {
1555 if (!this->include_linkonce_section(layout, i, name, shdr))
1556 discard = true;
1557 }
1558 }
1559
1560 // Add the section to the incremental inputs layout.
1561 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1562 if (incremental_inputs != NULL
1563 && !discard
1564 && can_incremental_update(sh_type))
1565 {
1566 off_t sh_size = shdr.get_sh_size();
1567 section_size_type uncompressed_size;
1568 if (this->section_is_compressed(i, &uncompressed_size))
1569 sh_size = uncompressed_size;
1570 incremental_inputs->report_input_section(this, i, name, sh_size);
1571 }
1572
1573 if (discard)
1574 {
1575 // Do not include this section in the link.
1576 out_sections[i] = NULL;
1577 out_section_offsets[i] = invalid_address;
1578 continue;
1579 }
1580 }
1581
1582 if (is_pass_one && parameters->options().gc_sections())
1583 {
1584 if (this->is_section_name_included(name)
1585 || layout->keep_input_section (this, name)
1586 || sh_type == elfcpp::SHT_INIT_ARRAY
1587 || sh_type == elfcpp::SHT_FINI_ARRAY)
1588 {
1589 symtab->gc()->worklist().push_back(Section_id(this, i));
1590 }
1591 // If the section name XXX can be represented as a C identifier
1592 // it cannot be discarded if there are references to
1593 // __start_XXX and __stop_XXX symbols. These need to be
1594 // specially handled.
1595 if (is_cident(name))
1596 {
1597 symtab->gc()->add_cident_section(name, Section_id(this, i));
1598 }
1599 }
1600
1601 // When doing a relocatable link we are going to copy input
1602 // reloc sections into the output. We only want to copy the
1603 // ones associated with sections which are not being discarded.
1604 // However, we don't know that yet for all sections. So save
1605 // reloc sections and process them later. Garbage collection is
1606 // not triggered when relocatable code is desired.
1607 if (emit_relocs
1608 && (sh_type == elfcpp::SHT_REL
1609 || sh_type == elfcpp::SHT_RELA))
1610 {
1611 reloc_sections.push_back(i);
1612 continue;
1613 }
1614
1615 if (relocatable && sh_type == elfcpp::SHT_GROUP)
1616 continue;
1617
1618 // The .eh_frame section is special. It holds exception frame
1619 // information that we need to read in order to generate the
1620 // exception frame header. We process these after all the other
1621 // sections so that the exception frame reader can reliably
1622 // determine which sections are being discarded, and discard the
1623 // corresponding information.
1624 if (this->check_eh_frame_flags(&shdr)
1625 && strcmp(name, ".eh_frame") == 0)
1626 {
1627 // If the target has a special unwind section type, let's
1628 // canonicalize it here.
1629 sh_type = unwind_section_type;
1630 if (!relocatable)
1631 {
1632 if (is_pass_one)
1633 {
1634 if (this->is_deferred_layout())
1635 out_sections[i] = reinterpret_cast<Output_section*>(2);
1636 else
1637 out_sections[i] = reinterpret_cast<Output_section*>(1);
1638 out_section_offsets[i] = invalid_address;
1639 }
1640 else if (this->is_deferred_layout())
1641 this->deferred_layout_.push_back(
1642 Deferred_layout(i, name, sh_type, pshdrs,
1643 reloc_shndx[i], reloc_type[i]));
1644 else
1645 eh_frame_sections.push_back(i);
1646 continue;
1647 }
1648 }
1649
1650 if (is_pass_two && parameters->options().gc_sections())
1651 {
1652 // This is executed during the second pass of garbage
1653 // collection. do_layout has been called before and some
1654 // sections have been already discarded. Simply ignore
1655 // such sections this time around.
1656 if (out_sections[i] == NULL)
1657 {
1658 gold_assert(out_section_offsets[i] == invalid_address);
1659 continue;
1660 }
1661 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1662 && symtab->gc()->is_section_garbage(this, i))
1663 {
1664 if (parameters->options().print_gc_sections())
1665 gold_info(_("%s: removing unused section from '%s'"
1666 " in file '%s'"),
1667 program_name, this->section_name(i).c_str(),
1668 this->name().c_str());
1669 out_sections[i] = NULL;
1670 out_section_offsets[i] = invalid_address;
1671 continue;
1672 }
1673 }
1674
1675 if (is_pass_two && parameters->options().icf_enabled())
1676 {
1677 if (out_sections[i] == NULL)
1678 {
1679 gold_assert(out_section_offsets[i] == invalid_address);
1680 continue;
1681 }
1682 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1683 && symtab->icf()->is_section_folded(this, i))
1684 {
1685 if (parameters->options().print_icf_sections())
1686 {
1687 Section_id folded =
1688 symtab->icf()->get_folded_section(this, i);
1689 Relobj* folded_obj =
1690 reinterpret_cast<Relobj*>(folded.first);
1691 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1692 "into '%s' in file '%s'"),
1693 program_name, this->section_name(i).c_str(),
1694 this->name().c_str(),
1695 folded_obj->section_name(folded.second).c_str(),
1696 folded_obj->name().c_str());
1697 }
1698 out_sections[i] = NULL;
1699 out_section_offsets[i] = invalid_address;
1700 continue;
1701 }
1702 }
1703
1704 // Defer layout here if input files are claimed by plugins. When gc
1705 // is turned on this function is called twice; we only want to do this
1706 // on the first pass.
1707 if (!is_pass_two
1708 && this->is_deferred_layout()
1709 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1710 {
1711 this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1712 pshdrs,
1713 reloc_shndx[i],
1714 reloc_type[i]));
1715 // Put dummy values here; real values will be supplied by
1716 // do_layout_deferred_sections.
1717 out_sections[i] = reinterpret_cast<Output_section*>(2);
1718 out_section_offsets[i] = invalid_address;
1719 continue;
1720 }
1721
1722 // During gc_pass_two if a section that was previously deferred is
1723 // found, do not layout the section as layout_deferred_sections will
1724 // do it later from gold.cc.
1725 if (is_pass_two
1726 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1727 continue;
1728
1729 if (is_pass_one)
1730 {
1731 // This is during garbage collection. The out_sections are
1732 // assigned in the second call to this function.
1733 out_sections[i] = reinterpret_cast<Output_section*>(1);
1734 out_section_offsets[i] = invalid_address;
1735 }
1736 else
1737 {
1738 // When garbage collection is switched on the actual layout
1739 // only happens in the second call.
1740 this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1741 reloc_type[i]);
1742
1743 // When generating a .gdb_index section, we do additional
1744 // processing of .debug_info and .debug_types sections after all
1745 // the other sections for the same reason as above.
1746 if (!relocatable
1747 && parameters->options().gdb_index()
1748 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1749 {
1750 if (strcmp(name, ".debug_info") == 0
1751 || strcmp(name, ".zdebug_info") == 0)
1752 debug_info_sections.push_back(i);
1753 else if (strcmp(name, ".debug_types") == 0
1754 || strcmp(name, ".zdebug_types") == 0)
1755 debug_types_sections.push_back(i);
1756 }
1757 }
1758 }
1759
1760 if (!is_pass_two)
1761 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1762
1763 // Handle the .eh_frame sections after the other sections.
1764 gold_assert(!is_pass_one || eh_frame_sections.empty());
1765 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1766 p != eh_frame_sections.end();
1767 ++p)
1768 {
1769 unsigned int i = *p;
1770 const unsigned char* pshdr;
1771 pshdr = section_headers_data + i * This::shdr_size;
1772 typename This::Shdr shdr(pshdr);
1773
1774 this->layout_eh_frame_section(layout,
1775 symbols_data,
1776 symbols_size,
1777 symbol_names_data,
1778 symbol_names_size,
1779 i,
1780 shdr,
1781 reloc_shndx[i],
1782 reloc_type[i]);
1783 }
1784
1785 // When doing a relocatable link handle the reloc sections at the
1786 // end. Garbage collection and Identical Code Folding is not
1787 // turned on for relocatable code.
1788 if (emit_relocs)
1789 this->size_relocatable_relocs();
1790
1791 gold_assert(!is_two_pass || reloc_sections.empty());
1792
1793 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1794 p != reloc_sections.end();
1795 ++p)
1796 {
1797 unsigned int i = *p;
1798 const unsigned char* pshdr;
1799 pshdr = section_headers_data + i * This::shdr_size;
1800 typename This::Shdr shdr(pshdr);
1801
1802 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1803 if (data_shndx >= shnum)
1804 {
1805 // We already warned about this above.
1806 continue;
1807 }
1808
1809 Output_section* data_section = out_sections[data_shndx];
1810 if (data_section == reinterpret_cast<Output_section*>(2))
1811 {
1812 if (is_pass_two)
1813 continue;
1814 // The layout for the data section was deferred, so we need
1815 // to defer the relocation section, too.
1816 const char* name = pnames + shdr.get_sh_name();
1817 this->deferred_layout_relocs_.push_back(
1818 Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1819 elfcpp::SHT_NULL));
1820 out_sections[i] = reinterpret_cast<Output_section*>(2);
1821 out_section_offsets[i] = invalid_address;
1822 continue;
1823 }
1824 if (data_section == NULL)
1825 {
1826 out_sections[i] = NULL;
1827 out_section_offsets[i] = invalid_address;
1828 continue;
1829 }
1830
1831 Relocatable_relocs* rr = new Relocatable_relocs();
1832 this->set_relocatable_relocs(i, rr);
1833
1834 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1835 rr);
1836 out_sections[i] = os;
1837 out_section_offsets[i] = invalid_address;
1838 }
1839
1840 // When building a .gdb_index section, scan the .debug_info and
1841 // .debug_types sections.
1842 gold_assert(!is_pass_one
1843 || (debug_info_sections.empty() && debug_types_sections.empty()));
1844 for (std::vector<unsigned int>::const_iterator p
1845 = debug_info_sections.begin();
1846 p != debug_info_sections.end();
1847 ++p)
1848 {
1849 unsigned int i = *p;
1850 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1851 i, reloc_shndx[i], reloc_type[i]);
1852 }
1853 for (std::vector<unsigned int>::const_iterator p
1854 = debug_types_sections.begin();
1855 p != debug_types_sections.end();
1856 ++p)
1857 {
1858 unsigned int i = *p;
1859 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1860 i, reloc_shndx[i], reloc_type[i]);
1861 }
1862
1863 if (is_pass_two)
1864 {
1865 delete[] gc_sd->section_headers_data;
1866 delete[] gc_sd->section_names_data;
1867 delete[] gc_sd->symbols_data;
1868 delete[] gc_sd->symbol_names_data;
1869 this->set_symbols_data(NULL);
1870 }
1871 else
1872 {
1873 delete sd->section_headers;
1874 sd->section_headers = NULL;
1875 delete sd->section_names;
1876 sd->section_names = NULL;
1877 }
1878 }
1879
1880 // Layout sections whose layout was deferred while waiting for
1881 // input files from a plugin.
1882
1883 template<int size, bool big_endian>
1884 void
1885 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1886 {
1887 typename std::vector<Deferred_layout>::iterator deferred;
1888
1889 for (deferred = this->deferred_layout_.begin();
1890 deferred != this->deferred_layout_.end();
1891 ++deferred)
1892 {
1893 typename This::Shdr shdr(deferred->shdr_data_);
1894
1895 if (!parameters->options().relocatable()
1896 && deferred->name_ == ".eh_frame"
1897 && this->check_eh_frame_flags(&shdr))
1898 {
1899 // Checking is_section_included is not reliable for
1900 // .eh_frame sections, because they do not have an output
1901 // section. This is not a problem normally because we call
1902 // layout_eh_frame_section unconditionally, but when
1903 // deferring sections that is not true. We don't want to
1904 // keep all .eh_frame sections because that will cause us to
1905 // keep all sections that they refer to, which is the wrong
1906 // way around. Instead, the eh_frame code will discard
1907 // .eh_frame sections that refer to discarded sections.
1908
1909 // Reading the symbols again here may be slow.
1910 Read_symbols_data sd;
1911 this->base_read_symbols(&sd);
1912 this->layout_eh_frame_section(layout,
1913 sd.symbols->data(),
1914 sd.symbols_size,
1915 sd.symbol_names->data(),
1916 sd.symbol_names_size,
1917 deferred->shndx_,
1918 shdr,
1919 deferred->reloc_shndx_,
1920 deferred->reloc_type_);
1921 continue;
1922 }
1923
1924 // If the section is not included, it is because the garbage collector
1925 // decided it is not needed. Avoid reverting that decision.
1926 if (!this->is_section_included(deferred->shndx_))
1927 continue;
1928
1929 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1930 shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
1931 deferred->reloc_type_);
1932 }
1933
1934 this->deferred_layout_.clear();
1935
1936 // Now handle the deferred relocation sections.
1937
1938 Output_sections& out_sections(this->output_sections());
1939 std::vector<Address>& out_section_offsets(this->section_offsets());
1940
1941 for (deferred = this->deferred_layout_relocs_.begin();
1942 deferred != this->deferred_layout_relocs_.end();
1943 ++deferred)
1944 {
1945 unsigned int shndx = deferred->shndx_;
1946 typename This::Shdr shdr(deferred->shdr_data_);
1947 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1948
1949 Output_section* data_section = out_sections[data_shndx];
1950 if (data_section == NULL)
1951 {
1952 out_sections[shndx] = NULL;
1953 out_section_offsets[shndx] = invalid_address;
1954 continue;
1955 }
1956
1957 Relocatable_relocs* rr = new Relocatable_relocs();
1958 this->set_relocatable_relocs(shndx, rr);
1959
1960 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1961 data_section, rr);
1962 out_sections[shndx] = os;
1963 out_section_offsets[shndx] = invalid_address;
1964 }
1965 }
1966
1967 // Add the symbols to the symbol table.
1968
1969 template<int size, bool big_endian>
1970 void
1971 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1972 Read_symbols_data* sd,
1973 Layout*)
1974 {
1975 if (sd->symbols == NULL)
1976 {
1977 gold_assert(sd->symbol_names == NULL);
1978 return;
1979 }
1980
1981 const int sym_size = This::sym_size;
1982 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1983 / sym_size);
1984 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1985 {
1986 this->error(_("size of symbols is not multiple of symbol size"));
1987 return;
1988 }
1989
1990 this->symbols_.resize(symcount);
1991
1992 const char* sym_names =
1993 reinterpret_cast<const char*>(sd->symbol_names->data());
1994 symtab->add_from_relobj(this,
1995 sd->symbols->data() + sd->external_symbols_offset,
1996 symcount, this->local_symbol_count_,
1997 sym_names, sd->symbol_names_size,
1998 &this->symbols_,
1999 &this->defined_count_);
2000
2001 delete sd->symbols;
2002 sd->symbols = NULL;
2003 delete sd->symbol_names;
2004 sd->symbol_names = NULL;
2005 }
2006
2007 // Find out if this object, that is a member of a lib group, should be included
2008 // in the link. We check every symbol defined by this object. If the symbol
2009 // table has a strong undefined reference to that symbol, we have to include
2010 // the object.
2011
2012 template<int size, bool big_endian>
2013 Archive::Should_include
2014 Sized_relobj_file<size, big_endian>::do_should_include_member(
2015 Symbol_table* symtab,
2016 Layout* layout,
2017 Read_symbols_data* sd,
2018 std::string* why)
2019 {
2020 char* tmpbuf = NULL;
2021 size_t tmpbuflen = 0;
2022 const char* sym_names =
2023 reinterpret_cast<const char*>(sd->symbol_names->data());
2024 const unsigned char* syms =
2025 sd->symbols->data() + sd->external_symbols_offset;
2026 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2027 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2028 / sym_size);
2029
2030 const unsigned char* p = syms;
2031
2032 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2033 {
2034 elfcpp::Sym<size, big_endian> sym(p);
2035 unsigned int st_shndx = sym.get_st_shndx();
2036 if (st_shndx == elfcpp::SHN_UNDEF)
2037 continue;
2038
2039 unsigned int st_name = sym.get_st_name();
2040 const char* name = sym_names + st_name;
2041 Symbol* symbol;
2042 Archive::Should_include t = Archive::should_include_member(symtab,
2043 layout,
2044 name,
2045 &symbol, why,
2046 &tmpbuf,
2047 &tmpbuflen);
2048 if (t == Archive::SHOULD_INCLUDE_YES)
2049 {
2050 if (tmpbuf != NULL)
2051 free(tmpbuf);
2052 return t;
2053 }
2054 }
2055 if (tmpbuf != NULL)
2056 free(tmpbuf);
2057 return Archive::SHOULD_INCLUDE_UNKNOWN;
2058 }
2059
2060 // Iterate over global defined symbols, calling a visitor class V for each.
2061
2062 template<int size, bool big_endian>
2063 void
2064 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2065 Read_symbols_data* sd,
2066 Library_base::Symbol_visitor_base* v)
2067 {
2068 const char* sym_names =
2069 reinterpret_cast<const char*>(sd->symbol_names->data());
2070 const unsigned char* syms =
2071 sd->symbols->data() + sd->external_symbols_offset;
2072 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2073 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2074 / sym_size);
2075 const unsigned char* p = syms;
2076
2077 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2078 {
2079 elfcpp::Sym<size, big_endian> sym(p);
2080 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2081 v->visit(sym_names + sym.get_st_name());
2082 }
2083 }
2084
2085 // Return whether the local symbol SYMNDX has a PLT offset.
2086
2087 template<int size, bool big_endian>
2088 bool
2089 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2090 unsigned int symndx) const
2091 {
2092 typename Local_plt_offsets::const_iterator p =
2093 this->local_plt_offsets_.find(symndx);
2094 return p != this->local_plt_offsets_.end();
2095 }
2096
2097 // Get the PLT offset of a local symbol.
2098
2099 template<int size, bool big_endian>
2100 unsigned int
2101 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2102 unsigned int symndx) const
2103 {
2104 typename Local_plt_offsets::const_iterator p =
2105 this->local_plt_offsets_.find(symndx);
2106 gold_assert(p != this->local_plt_offsets_.end());
2107 return p->second;
2108 }
2109
2110 // Set the PLT offset of a local symbol.
2111
2112 template<int size, bool big_endian>
2113 void
2114 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2115 unsigned int symndx, unsigned int plt_offset)
2116 {
2117 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2118 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2119 gold_assert(ins.second);
2120 }
2121
2122 // First pass over the local symbols. Here we add their names to
2123 // *POOL and *DYNPOOL, and we store the symbol value in
2124 // THIS->LOCAL_VALUES_. This function is always called from a
2125 // singleton thread. This is followed by a call to
2126 // finalize_local_symbols.
2127
2128 template<int size, bool big_endian>
2129 void
2130 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2131 Stringpool* dynpool)
2132 {
2133 gold_assert(this->symtab_shndx_ != -1U);
2134 if (this->symtab_shndx_ == 0)
2135 {
2136 // This object has no symbols. Weird but legal.
2137 return;
2138 }
2139
2140 // Read the symbol table section header.
2141 const unsigned int symtab_shndx = this->symtab_shndx_;
2142 typename This::Shdr symtabshdr(this,
2143 this->elf_file_.section_header(symtab_shndx));
2144 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2145
2146 // Read the local symbols.
2147 const int sym_size = This::sym_size;
2148 const unsigned int loccount = this->local_symbol_count_;
2149 gold_assert(loccount == symtabshdr.get_sh_info());
2150 off_t locsize = loccount * sym_size;
2151 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2152 locsize, true, true);
2153
2154 // Read the symbol names.
2155 const unsigned int strtab_shndx =
2156 this->adjust_shndx(symtabshdr.get_sh_link());
2157 section_size_type strtab_size;
2158 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2159 &strtab_size,
2160 true);
2161 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2162
2163 // Loop over the local symbols.
2164
2165 const Output_sections& out_sections(this->output_sections());
2166 std::vector<Address>& out_section_offsets(this->section_offsets());
2167 unsigned int shnum = this->shnum();
2168 unsigned int count = 0;
2169 unsigned int dyncount = 0;
2170 // Skip the first, dummy, symbol.
2171 psyms += sym_size;
2172 bool strip_all = parameters->options().strip_all();
2173 bool discard_all = parameters->options().discard_all();
2174 bool discard_locals = parameters->options().discard_locals();
2175 bool discard_sec_merge = parameters->options().discard_sec_merge();
2176 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2177 {
2178 elfcpp::Sym<size, big_endian> sym(psyms);
2179
2180 Symbol_value<size>& lv(this->local_values_[i]);
2181
2182 bool is_ordinary;
2183 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2184 &is_ordinary);
2185 lv.set_input_shndx(shndx, is_ordinary);
2186
2187 if (sym.get_st_type() == elfcpp::STT_SECTION)
2188 lv.set_is_section_symbol();
2189 else if (sym.get_st_type() == elfcpp::STT_TLS)
2190 lv.set_is_tls_symbol();
2191 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2192 lv.set_is_ifunc_symbol();
2193
2194 // Save the input symbol value for use in do_finalize_local_symbols().
2195 lv.set_input_value(sym.get_st_value());
2196
2197 // Decide whether this symbol should go into the output file.
2198
2199 if (is_ordinary
2200 && shndx < shnum
2201 && (out_sections[shndx] == NULL
2202 || (out_sections[shndx]->order() == ORDER_EHFRAME
2203 && out_section_offsets[shndx] == invalid_address)))
2204 {
2205 // This is either a discarded section or an optimized .eh_frame
2206 // section.
2207 lv.set_no_output_symtab_entry();
2208 gold_assert(!lv.needs_output_dynsym_entry());
2209 continue;
2210 }
2211
2212 if (sym.get_st_type() == elfcpp::STT_SECTION
2213 || !this->adjust_local_symbol(&lv))
2214 {
2215 lv.set_no_output_symtab_entry();
2216 gold_assert(!lv.needs_output_dynsym_entry());
2217 continue;
2218 }
2219
2220 if (sym.get_st_name() >= strtab_size)
2221 {
2222 this->error(_("local symbol %u section name out of range: %u >= %u"),
2223 i, sym.get_st_name(),
2224 static_cast<unsigned int>(strtab_size));
2225 lv.set_no_output_symtab_entry();
2226 continue;
2227 }
2228
2229 const char* name = pnames + sym.get_st_name();
2230
2231 // If needed, add the symbol to the dynamic symbol table string pool.
2232 if (lv.needs_output_dynsym_entry())
2233 {
2234 dynpool->add(name, true, NULL);
2235 ++dyncount;
2236 }
2237
2238 if (strip_all
2239 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2240 {
2241 lv.set_no_output_symtab_entry();
2242 continue;
2243 }
2244
2245 // By default, discard temporary local symbols in merge sections.
2246 // If --discard-locals option is used, discard all temporary local
2247 // symbols. These symbols start with system-specific local label
2248 // prefixes, typically .L for ELF system. We want to be compatible
2249 // with GNU ld so here we essentially use the same check in
2250 // bfd_is_local_label(). The code is different because we already
2251 // know that:
2252 //
2253 // - the symbol is local and thus cannot have global or weak binding.
2254 // - the symbol is not a section symbol.
2255 // - the symbol has a name.
2256 //
2257 // We do not discard a symbol if it needs a dynamic symbol entry.
2258 if ((discard_locals
2259 || (discard_sec_merge
2260 && is_ordinary
2261 && out_section_offsets[shndx] == invalid_address))
2262 && sym.get_st_type() != elfcpp::STT_FILE
2263 && !lv.needs_output_dynsym_entry()
2264 && lv.may_be_discarded_from_output_symtab()
2265 && parameters->target().is_local_label_name(name))
2266 {
2267 lv.set_no_output_symtab_entry();
2268 continue;
2269 }
2270
2271 // Discard the local symbol if -retain_symbols_file is specified
2272 // and the local symbol is not in that file.
2273 if (!parameters->options().should_retain_symbol(name))
2274 {
2275 lv.set_no_output_symtab_entry();
2276 continue;
2277 }
2278
2279 // Add the symbol to the symbol table string pool.
2280 pool->add(name, true, NULL);
2281 ++count;
2282 }
2283
2284 this->output_local_symbol_count_ = count;
2285 this->output_local_dynsym_count_ = dyncount;
2286 }
2287
2288 // Compute the final value of a local symbol.
2289
2290 template<int size, bool big_endian>
2291 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2292 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2293 unsigned int r_sym,
2294 const Symbol_value<size>* lv_in,
2295 Symbol_value<size>* lv_out,
2296 bool relocatable,
2297 const Output_sections& out_sections,
2298 const std::vector<Address>& out_offsets,
2299 const Symbol_table* symtab)
2300 {
2301 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2302 // we may have a memory leak.
2303 gold_assert(lv_out->has_output_value());
2304
2305 bool is_ordinary;
2306 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2307
2308 // Set the output symbol value.
2309
2310 if (!is_ordinary)
2311 {
2312 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2313 lv_out->set_output_value(lv_in->input_value());
2314 else
2315 {
2316 this->error(_("unknown section index %u for local symbol %u"),
2317 shndx, r_sym);
2318 lv_out->set_output_value(0);
2319 return This::CFLV_ERROR;
2320 }
2321 }
2322 else
2323 {
2324 if (shndx >= this->shnum())
2325 {
2326 this->error(_("local symbol %u section index %u out of range"),
2327 r_sym, shndx);
2328 lv_out->set_output_value(0);
2329 return This::CFLV_ERROR;
2330 }
2331
2332 Output_section* os = out_sections[shndx];
2333 Address secoffset = out_offsets[shndx];
2334 if (symtab->is_section_folded(this, shndx))
2335 {
2336 gold_assert(os == NULL && secoffset == invalid_address);
2337 // Get the os of the section it is folded onto.
2338 Section_id folded = symtab->icf()->get_folded_section(this,
2339 shndx);
2340 gold_assert(folded.first != NULL);
2341 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2342 <Sized_relobj_file<size, big_endian>*>(folded.first);
2343 os = folded_obj->output_section(folded.second);
2344 gold_assert(os != NULL);
2345 secoffset = folded_obj->get_output_section_offset(folded.second);
2346
2347 // This could be a relaxed input section.
2348 if (secoffset == invalid_address)
2349 {
2350 const Output_relaxed_input_section* relaxed_section =
2351 os->find_relaxed_input_section(folded_obj, folded.second);
2352 gold_assert(relaxed_section != NULL);
2353 secoffset = relaxed_section->address() - os->address();
2354 }
2355 }
2356
2357 if (os == NULL)
2358 {
2359 // This local symbol belongs to a section we are discarding.
2360 // In some cases when applying relocations later, we will
2361 // attempt to match it to the corresponding kept section,
2362 // so we leave the input value unchanged here.
2363 return This::CFLV_DISCARDED;
2364 }
2365 else if (secoffset == invalid_address)
2366 {
2367 uint64_t start;
2368
2369 // This is a SHF_MERGE section or one which otherwise
2370 // requires special handling.
2371 if (os->order() == ORDER_EHFRAME)
2372 {
2373 // This local symbol belongs to a discarded or optimized
2374 // .eh_frame section. Just treat it like the case in which
2375 // os == NULL above.
2376 gold_assert(this->has_eh_frame_);
2377 return This::CFLV_DISCARDED;
2378 }
2379 else if (!lv_in->is_section_symbol())
2380 {
2381 // This is not a section symbol. We can determine
2382 // the final value now.
2383 uint64_t value =
2384 os->output_address(this, shndx, lv_in->input_value());
2385 if (relocatable)
2386 value -= os->address();
2387 lv_out->set_output_value(value);
2388 }
2389 else if (!os->find_starting_output_address(this, shndx, &start))
2390 {
2391 // This is a section symbol, but apparently not one in a
2392 // merged section. First check to see if this is a relaxed
2393 // input section. If so, use its address. Otherwise just
2394 // use the start of the output section. This happens with
2395 // relocatable links when the input object has section
2396 // symbols for arbitrary non-merge sections.
2397 const Output_section_data* posd =
2398 os->find_relaxed_input_section(this, shndx);
2399 if (posd != NULL)
2400 {
2401 uint64_t value = posd->address();
2402 if (relocatable)
2403 value -= os->address();
2404 lv_out->set_output_value(value);
2405 }
2406 else
2407 lv_out->set_output_value(os->address());
2408 }
2409 else
2410 {
2411 // We have to consider the addend to determine the
2412 // value to use in a relocation. START is the start
2413 // of this input section. If we are doing a relocatable
2414 // link, use offset from start output section instead of
2415 // address.
2416 Address adjusted_start =
2417 relocatable ? start - os->address() : start;
2418 Merged_symbol_value<size>* msv =
2419 new Merged_symbol_value<size>(lv_in->input_value(),
2420 adjusted_start);
2421 lv_out->set_merged_symbol_value(msv);
2422 }
2423 }
2424 else if (lv_in->is_tls_symbol()
2425 || (lv_in->is_section_symbol()
2426 && (os->flags() & elfcpp::SHF_TLS)))
2427 lv_out->set_output_value(os->tls_offset()
2428 + secoffset
2429 + lv_in->input_value());
2430 else
2431 lv_out->set_output_value((relocatable ? 0 : os->address())
2432 + secoffset
2433 + lv_in->input_value());
2434 }
2435 return This::CFLV_OK;
2436 }
2437
2438 // Compute final local symbol value. R_SYM is the index of a local
2439 // symbol in symbol table. LV points to a symbol value, which is
2440 // expected to hold the input value and to be over-written by the
2441 // final value. SYMTAB points to a symbol table. Some targets may want
2442 // to know would-be-finalized local symbol values in relaxation.
2443 // Hence we provide this method. Since this method updates *LV, a
2444 // callee should make a copy of the original local symbol value and
2445 // use the copy instead of modifying an object's local symbols before
2446 // everything is finalized. The caller should also free up any allocated
2447 // memory in the return value in *LV.
2448 template<int size, bool big_endian>
2449 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2450 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2451 unsigned int r_sym,
2452 const Symbol_value<size>* lv_in,
2453 Symbol_value<size>* lv_out,
2454 const Symbol_table* symtab)
2455 {
2456 // This is just a wrapper of compute_final_local_value_internal.
2457 const bool relocatable = parameters->options().relocatable();
2458 const Output_sections& out_sections(this->output_sections());
2459 const std::vector<Address>& out_offsets(this->section_offsets());
2460 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2461 relocatable, out_sections,
2462 out_offsets, symtab);
2463 }
2464
2465 // Finalize the local symbols. Here we set the final value in
2466 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2467 // This function is always called from a singleton thread. The actual
2468 // output of the local symbols will occur in a separate task.
2469
2470 template<int size, bool big_endian>
2471 unsigned int
2472 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2473 unsigned int index,
2474 off_t off,
2475 Symbol_table* symtab)
2476 {
2477 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2478
2479 const unsigned int loccount = this->local_symbol_count_;
2480 this->local_symbol_offset_ = off;
2481
2482 const bool relocatable = parameters->options().relocatable();
2483 const Output_sections& out_sections(this->output_sections());
2484 const std::vector<Address>& out_offsets(this->section_offsets());
2485
2486 for (unsigned int i = 1; i < loccount; ++i)
2487 {
2488 Symbol_value<size>* lv = &this->local_values_[i];
2489
2490 Compute_final_local_value_status cflv_status =
2491 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2492 out_sections, out_offsets,
2493 symtab);
2494 switch (cflv_status)
2495 {
2496 case CFLV_OK:
2497 if (!lv->is_output_symtab_index_set())
2498 {
2499 lv->set_output_symtab_index(index);
2500 ++index;
2501 }
2502 break;
2503 case CFLV_DISCARDED:
2504 case CFLV_ERROR:
2505 // Do nothing.
2506 break;
2507 default:
2508 gold_unreachable();
2509 }
2510 }
2511 return index;
2512 }
2513
2514 // Set the output dynamic symbol table indexes for the local variables.
2515
2516 template<int size, bool big_endian>
2517 unsigned int
2518 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2519 unsigned int index)
2520 {
2521 const unsigned int loccount = this->local_symbol_count_;
2522 for (unsigned int i = 1; i < loccount; ++i)
2523 {
2524 Symbol_value<size>& lv(this->local_values_[i]);
2525 if (lv.needs_output_dynsym_entry())
2526 {
2527 lv.set_output_dynsym_index(index);
2528 ++index;
2529 }
2530 }
2531 return index;
2532 }
2533
2534 // Set the offset where local dynamic symbol information will be stored.
2535 // Returns the count of local symbols contributed to the symbol table by
2536 // this object.
2537
2538 template<int size, bool big_endian>
2539 unsigned int
2540 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2541 {
2542 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2543 this->local_dynsym_offset_ = off;
2544 return this->output_local_dynsym_count_;
2545 }
2546
2547 // If Symbols_data is not NULL get the section flags from here otherwise
2548 // get it from the file.
2549
2550 template<int size, bool big_endian>
2551 uint64_t
2552 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2553 {
2554 Symbols_data* sd = this->get_symbols_data();
2555 if (sd != NULL)
2556 {
2557 const unsigned char* pshdrs = sd->section_headers_data
2558 + This::shdr_size * shndx;
2559 typename This::Shdr shdr(pshdrs);
2560 return shdr.get_sh_flags();
2561 }
2562 // If sd is NULL, read the section header from the file.
2563 return this->elf_file_.section_flags(shndx);
2564 }
2565
2566 // Get the section's ent size from Symbols_data. Called by get_section_contents
2567 // in icf.cc
2568
2569 template<int size, bool big_endian>
2570 uint64_t
2571 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2572 {
2573 Symbols_data* sd = this->get_symbols_data();
2574 gold_assert(sd != NULL);
2575
2576 const unsigned char* pshdrs = sd->section_headers_data
2577 + This::shdr_size * shndx;
2578 typename This::Shdr shdr(pshdrs);
2579 return shdr.get_sh_entsize();
2580 }
2581
2582 // Write out the local symbols.
2583
2584 template<int size, bool big_endian>
2585 void
2586 Sized_relobj_file<size, big_endian>::write_local_symbols(
2587 Output_file* of,
2588 const Stringpool* sympool,
2589 const Stringpool* dynpool,
2590 Output_symtab_xindex* symtab_xindex,
2591 Output_symtab_xindex* dynsym_xindex,
2592 off_t symtab_off)
2593 {
2594 const bool strip_all = parameters->options().strip_all();
2595 if (strip_all)
2596 {
2597 if (this->output_local_dynsym_count_ == 0)
2598 return;
2599 this->output_local_symbol_count_ = 0;
2600 }
2601
2602 gold_assert(this->symtab_shndx_ != -1U);
2603 if (this->symtab_shndx_ == 0)
2604 {
2605 // This object has no symbols. Weird but legal.
2606 return;
2607 }
2608
2609 // Read the symbol table section header.
2610 const unsigned int symtab_shndx = this->symtab_shndx_;
2611 typename This::Shdr symtabshdr(this,
2612 this->elf_file_.section_header(symtab_shndx));
2613 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2614 const unsigned int loccount = this->local_symbol_count_;
2615 gold_assert(loccount == symtabshdr.get_sh_info());
2616
2617 // Read the local symbols.
2618 const int sym_size = This::sym_size;
2619 off_t locsize = loccount * sym_size;
2620 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2621 locsize, true, false);
2622
2623 // Read the symbol names.
2624 const unsigned int strtab_shndx =
2625 this->adjust_shndx(symtabshdr.get_sh_link());
2626 section_size_type strtab_size;
2627 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2628 &strtab_size,
2629 false);
2630 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2631
2632 // Get views into the output file for the portions of the symbol table
2633 // and the dynamic symbol table that we will be writing.
2634 off_t output_size = this->output_local_symbol_count_ * sym_size;
2635 unsigned char* oview = NULL;
2636 if (output_size > 0)
2637 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2638 output_size);
2639
2640 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2641 unsigned char* dyn_oview = NULL;
2642 if (dyn_output_size > 0)
2643 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2644 dyn_output_size);
2645
2646 const Output_sections& out_sections(this->output_sections());
2647
2648 gold_assert(this->local_values_.size() == loccount);
2649
2650 unsigned char* ov = oview;
2651 unsigned char* dyn_ov = dyn_oview;
2652 psyms += sym_size;
2653 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2654 {
2655 elfcpp::Sym<size, big_endian> isym(psyms);
2656
2657 Symbol_value<size>& lv(this->local_values_[i]);
2658
2659 bool is_ordinary;
2660 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2661 &is_ordinary);
2662 if (is_ordinary)
2663 {
2664 gold_assert(st_shndx < out_sections.size());
2665 if (out_sections[st_shndx] == NULL)
2666 continue;
2667 st_shndx = out_sections[st_shndx]->out_shndx();
2668 if (st_shndx >= elfcpp::SHN_LORESERVE)
2669 {
2670 if (lv.has_output_symtab_entry())
2671 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2672 if (lv.has_output_dynsym_entry())
2673 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2674 st_shndx = elfcpp::SHN_XINDEX;
2675 }
2676 }
2677
2678 // Write the symbol to the output symbol table.
2679 if (lv.has_output_symtab_entry())
2680 {
2681 elfcpp::Sym_write<size, big_endian> osym(ov);
2682
2683 gold_assert(isym.get_st_name() < strtab_size);
2684 const char* name = pnames + isym.get_st_name();
2685 osym.put_st_name(sympool->get_offset(name));
2686 osym.put_st_value(lv.value(this, 0));
2687 osym.put_st_size(isym.get_st_size());
2688 osym.put_st_info(isym.get_st_info());
2689 osym.put_st_other(isym.get_st_other());
2690 osym.put_st_shndx(st_shndx);
2691
2692 ov += sym_size;
2693 }
2694
2695 // Write the symbol to the output dynamic symbol table.
2696 if (lv.has_output_dynsym_entry())
2697 {
2698 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2699 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2700
2701 gold_assert(isym.get_st_name() < strtab_size);
2702 const char* name = pnames + isym.get_st_name();
2703 osym.put_st_name(dynpool->get_offset(name));
2704 osym.put_st_value(lv.value(this, 0));
2705 osym.put_st_size(isym.get_st_size());
2706 osym.put_st_info(isym.get_st_info());
2707 osym.put_st_other(isym.get_st_other());
2708 osym.put_st_shndx(st_shndx);
2709
2710 dyn_ov += sym_size;
2711 }
2712 }
2713
2714
2715 if (output_size > 0)
2716 {
2717 gold_assert(ov - oview == output_size);
2718 of->write_output_view(symtab_off + this->local_symbol_offset_,
2719 output_size, oview);
2720 }
2721
2722 if (dyn_output_size > 0)
2723 {
2724 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2725 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2726 dyn_oview);
2727 }
2728 }
2729
2730 // Set *INFO to symbolic information about the offset OFFSET in the
2731 // section SHNDX. Return true if we found something, false if we
2732 // found nothing.
2733
2734 template<int size, bool big_endian>
2735 bool
2736 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2737 unsigned int shndx,
2738 off_t offset,
2739 Symbol_location_info* info)
2740 {
2741 if (this->symtab_shndx_ == 0)
2742 return false;
2743
2744 section_size_type symbols_size;
2745 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2746 &symbols_size,
2747 false);
2748
2749 unsigned int symbol_names_shndx =
2750 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2751 section_size_type names_size;
2752 const unsigned char* symbol_names_u =
2753 this->section_contents(symbol_names_shndx, &names_size, false);
2754 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2755
2756 const int sym_size = This::sym_size;
2757 const size_t count = symbols_size / sym_size;
2758
2759 const unsigned char* p = symbols;
2760 for (size_t i = 0; i < count; ++i, p += sym_size)
2761 {
2762 elfcpp::Sym<size, big_endian> sym(p);
2763
2764 if (sym.get_st_type() == elfcpp::STT_FILE)
2765 {
2766 if (sym.get_st_name() >= names_size)
2767 info->source_file = "(invalid)";
2768 else
2769 info->source_file = symbol_names + sym.get_st_name();
2770 continue;
2771 }
2772
2773 bool is_ordinary;
2774 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2775 &is_ordinary);
2776 if (is_ordinary
2777 && st_shndx == shndx
2778 && static_cast<off_t>(sym.get_st_value()) <= offset
2779 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2780 > offset))
2781 {
2782 info->enclosing_symbol_type = sym.get_st_type();
2783 if (sym.get_st_name() > names_size)
2784 info->enclosing_symbol_name = "(invalid)";
2785 else
2786 {
2787 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2788 if (parameters->options().do_demangle())
2789 {
2790 char* demangled_name = cplus_demangle(
2791 info->enclosing_symbol_name.c_str(),
2792 DMGL_ANSI | DMGL_PARAMS);
2793 if (demangled_name != NULL)
2794 {
2795 info->enclosing_symbol_name.assign(demangled_name);
2796 free(demangled_name);
2797 }
2798 }
2799 }
2800 return true;
2801 }
2802 }
2803
2804 return false;
2805 }
2806
2807 // Look for a kept section corresponding to the given discarded section,
2808 // and return its output address. This is used only for relocations in
2809 // debugging sections. If we can't find the kept section, return 0.
2810
2811 template<int size, bool big_endian>
2812 typename Sized_relobj_file<size, big_endian>::Address
2813 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2814 unsigned int shndx,
2815 std::string& section_name,
2816 bool* pfound) const
2817 {
2818 Kept_section* kept_section;
2819 bool is_comdat;
2820 uint64_t sh_size;
2821 unsigned int symndx;
2822 bool found = false;
2823
2824 if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2825 &kept_section))
2826 {
2827 Relobj* kept_object = kept_section->object();
2828 unsigned int kept_shndx = 0;
2829 if (!kept_section->is_comdat())
2830 {
2831 // The kept section is a linkonce section.
2832 if (sh_size == kept_section->linkonce_size())
2833 found = true;
2834 }
2835 else
2836 {
2837 if (is_comdat)
2838 {
2839 // Find the corresponding kept section.
2840 // Since we're using this mapping for relocation processing,
2841 // we don't want to match sections unless they have the same
2842 // size.
2843 uint64_t kept_size;
2844 if (kept_section->find_comdat_section(section_name, &kept_shndx,
2845 &kept_size))
2846 {
2847 if (sh_size == kept_size)
2848 found = true;
2849 }
2850 }
2851 else
2852 {
2853 uint64_t kept_size;
2854 if (kept_section->find_single_comdat_section(&kept_shndx,
2855 &kept_size)
2856 && sh_size == kept_size)
2857 found = true;
2858 }
2859 }
2860
2861 if (found)
2862 {
2863 Sized_relobj_file<size, big_endian>* kept_relobj =
2864 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2865 Output_section* os = kept_relobj->output_section(kept_shndx);
2866 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2867 if (os != NULL && offset != invalid_address)
2868 {
2869 *pfound = true;
2870 return os->address() + offset;
2871 }
2872 }
2873 }
2874 *pfound = false;
2875 return 0;
2876 }
2877
2878 // Look for a kept section corresponding to the given discarded section,
2879 // and return its object file.
2880
2881 template<int size, bool big_endian>
2882 Relobj*
2883 Sized_relobj_file<size, big_endian>::find_kept_section_object(
2884 unsigned int shndx, unsigned int *symndx_p) const
2885 {
2886 Kept_section* kept_section;
2887 bool is_comdat;
2888 uint64_t sh_size;
2889 if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
2890 &kept_section))
2891 return kept_section->object();
2892 return NULL;
2893 }
2894
2895 // Return the name of symbol SYMNDX.
2896
2897 template<int size, bool big_endian>
2898 const char*
2899 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
2900 {
2901 if (this->symtab_shndx_ == 0)
2902 return NULL;
2903
2904 section_size_type symbols_size;
2905 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2906 &symbols_size,
2907 false);
2908
2909 unsigned int symbol_names_shndx =
2910 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2911 section_size_type names_size;
2912 const unsigned char* symbol_names_u =
2913 this->section_contents(symbol_names_shndx, &names_size, false);
2914 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2915
2916 const unsigned char* p = symbols + symndx * This::sym_size;
2917
2918 if (p >= symbols + symbols_size)
2919 return NULL;
2920
2921 elfcpp::Sym<size, big_endian> sym(p);
2922
2923 return symbol_names + sym.get_st_name();
2924 }
2925
2926 // Get symbol counts.
2927
2928 template<int size, bool big_endian>
2929 void
2930 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2931 const Symbol_table*,
2932 size_t* defined,
2933 size_t* used) const
2934 {
2935 *defined = this->defined_count_;
2936 size_t count = 0;
2937 for (typename Symbols::const_iterator p = this->symbols_.begin();
2938 p != this->symbols_.end();
2939 ++p)
2940 if (*p != NULL
2941 && (*p)->source() == Symbol::FROM_OBJECT
2942 && (*p)->object() == this
2943 && (*p)->is_defined())
2944 ++count;
2945 *used = count;
2946 }
2947
2948 // Return a view of the decompressed contents of a section. Set *PLEN
2949 // to the size. Set *IS_NEW to true if the contents need to be freed
2950 // by the caller.
2951
2952 const unsigned char*
2953 Object::decompressed_section_contents(
2954 unsigned int shndx,
2955 section_size_type* plen,
2956 bool* is_new)
2957 {
2958 section_size_type buffer_size;
2959 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2960 false);
2961
2962 if (this->compressed_sections_ == NULL)
2963 {
2964 *plen = buffer_size;
2965 *is_new = false;
2966 return buffer;
2967 }
2968
2969 Compressed_section_map::const_iterator p =
2970 this->compressed_sections_->find(shndx);
2971 if (p == this->compressed_sections_->end())
2972 {
2973 *plen = buffer_size;
2974 *is_new = false;
2975 return buffer;
2976 }
2977
2978 section_size_type uncompressed_size = p->second.size;
2979 if (p->second.contents != NULL)
2980 {
2981 *plen = uncompressed_size;
2982 *is_new = false;
2983 return p->second.contents;
2984 }
2985
2986 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2987 if (!decompress_input_section(buffer,
2988 buffer_size,
2989 uncompressed_data,
2990 uncompressed_size,
2991 elfsize(),
2992 is_big_endian(),
2993 p->second.flag))
2994 this->error(_("could not decompress section %s"),
2995 this->do_section_name(shndx).c_str());
2996
2997 // We could cache the results in p->second.contents and store
2998 // false in *IS_NEW, but build_compressed_section_map() would
2999 // have done so if it had expected it to be profitable. If
3000 // we reach this point, we expect to need the contents only
3001 // once in this pass.
3002 *plen = uncompressed_size;
3003 *is_new = true;
3004 return uncompressed_data;
3005 }
3006
3007 // Discard any buffers of uncompressed sections. This is done
3008 // at the end of the Add_symbols task.
3009
3010 void
3011 Object::discard_decompressed_sections()
3012 {
3013 if (this->compressed_sections_ == NULL)
3014 return;
3015
3016 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3017 p != this->compressed_sections_->end();
3018 ++p)
3019 {
3020 if (p->second.contents != NULL)
3021 {
3022 delete[] p->second.contents;
3023 p->second.contents = NULL;
3024 }
3025 }
3026 }
3027
3028 // Input_objects methods.
3029
3030 // Add a regular relocatable object to the list. Return false if this
3031 // object should be ignored.
3032
3033 bool
3034 Input_objects::add_object(Object* obj)
3035 {
3036 // Print the filename if the -t/--trace option is selected.
3037 if (parameters->options().trace())
3038 gold_info("%s", obj->name().c_str());
3039
3040 if (!obj->is_dynamic())
3041 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3042 else
3043 {
3044 // See if this is a duplicate SONAME.
3045 Dynobj* dynobj = static_cast<Dynobj*>(obj);
3046 const char* soname = dynobj->soname();
3047
3048 Unordered_map<std::string, Object*>::value_type val(soname, obj);
3049 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3050 this->sonames_.insert(val);
3051 if (!ins.second)
3052 {
3053 // We have already seen a dynamic object with this soname.
3054 // If any instances of this object on the command line have
3055 // the --no-as-needed flag, make sure the one we keep is
3056 // marked so.
3057 if (!obj->as_needed())
3058 {
3059 gold_assert(ins.first->second != NULL);
3060 ins.first->second->clear_as_needed();
3061 }
3062 return false;
3063 }
3064
3065 this->dynobj_list_.push_back(dynobj);
3066 }
3067
3068 // Add this object to the cross-referencer if requested.
3069 if (parameters->options().user_set_print_symbol_counts()
3070 || parameters->options().cref())
3071 {
3072 if (this->cref_ == NULL)
3073 this->cref_ = new Cref();
3074 this->cref_->add_object(obj);
3075 }
3076
3077 return true;
3078 }
3079
3080 // For each dynamic object, record whether we've seen all of its
3081 // explicit dependencies.
3082
3083 void
3084 Input_objects::check_dynamic_dependencies() const
3085 {
3086 bool issued_copy_dt_needed_error = false;
3087 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3088 p != this->dynobj_list_.end();
3089 ++p)
3090 {
3091 const Dynobj::Needed& needed((*p)->needed());
3092 bool found_all = true;
3093 Dynobj::Needed::const_iterator pneeded;
3094 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3095 {
3096 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3097 {
3098 found_all = false;
3099 break;
3100 }
3101 }
3102 (*p)->set_has_unknown_needed_entries(!found_all);
3103
3104 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3105 // that gold does not support. However, they cause no trouble
3106 // unless there is a DT_NEEDED entry that we don't know about;
3107 // warn only in that case.
3108 if (!found_all
3109 && !issued_copy_dt_needed_error
3110 && (parameters->options().copy_dt_needed_entries()
3111 || parameters->options().add_needed()))
3112 {
3113 const char* optname;
3114 if (parameters->options().copy_dt_needed_entries())
3115 optname = "--copy-dt-needed-entries";
3116 else
3117 optname = "--add-needed";
3118 gold_error(_("%s is not supported but is required for %s in %s"),
3119 optname, (*pneeded).c_str(), (*p)->name().c_str());
3120 issued_copy_dt_needed_error = true;
3121 }
3122 }
3123 }
3124
3125 // Start processing an archive.
3126
3127 void
3128 Input_objects::archive_start(Archive* archive)
3129 {
3130 if (parameters->options().user_set_print_symbol_counts()
3131 || parameters->options().cref())
3132 {
3133 if (this->cref_ == NULL)
3134 this->cref_ = new Cref();
3135 this->cref_->add_archive_start(archive);
3136 }
3137 }
3138
3139 // Stop processing an archive.
3140
3141 void
3142 Input_objects::archive_stop(Archive* archive)
3143 {
3144 if (parameters->options().user_set_print_symbol_counts()
3145 || parameters->options().cref())
3146 this->cref_->add_archive_stop(archive);
3147 }
3148
3149 // Print symbol counts
3150
3151 void
3152 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3153 {
3154 if (parameters->options().user_set_print_symbol_counts()
3155 && this->cref_ != NULL)
3156 this->cref_->print_symbol_counts(symtab);
3157 }
3158
3159 // Print a cross reference table.
3160
3161 void
3162 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3163 {
3164 if (parameters->options().cref() && this->cref_ != NULL)
3165 this->cref_->print_cref(symtab, f);
3166 }
3167
3168 // Relocate_info methods.
3169
3170 // Return a string describing the location of a relocation when file
3171 // and lineno information is not available. This is only used in
3172 // error messages.
3173
3174 template<int size, bool big_endian>
3175 std::string
3176 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3177 {
3178 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3179 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3180 if (!ret.empty())
3181 return ret;
3182
3183 ret = this->object->name();
3184
3185 Symbol_location_info info;
3186 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3187 {
3188 if (!info.source_file.empty())
3189 {
3190 ret += ":";
3191 ret += info.source_file;
3192 }
3193 ret += ":";
3194 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3195 ret += _("function ");
3196 ret += info.enclosing_symbol_name;
3197 return ret;
3198 }
3199
3200 ret += "(";
3201 ret += this->object->section_name(this->data_shndx);
3202 char buf[100];
3203 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3204 ret += buf;
3205 return ret;
3206 }
3207
3208 } // End namespace gold.
3209
3210 namespace
3211 {
3212
3213 using namespace gold;
3214
3215 // Read an ELF file with the header and return the appropriate
3216 // instance of Object.
3217
3218 template<int size, bool big_endian>
3219 Object*
3220 make_elf_sized_object(const std::string& name, Input_file* input_file,
3221 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3222 bool* punconfigured)
3223 {
3224 Target* target = select_target(input_file, offset,
3225 ehdr.get_e_machine(), size, big_endian,
3226 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3227 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3228 if (target == NULL)
3229 gold_fatal(_("%s: unsupported ELF machine number %d"),
3230 name.c_str(), ehdr.get_e_machine());
3231
3232 if (!parameters->target_valid())
3233 set_parameters_target(target);
3234 else if (target != &parameters->target())
3235 {
3236 if (punconfigured != NULL)
3237 *punconfigured = true;
3238 else
3239 gold_error(_("%s: incompatible target"), name.c_str());
3240 return NULL;
3241 }
3242
3243 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3244 ehdr);
3245 }
3246
3247 } // End anonymous namespace.
3248
3249 namespace gold
3250 {
3251
3252 // Return whether INPUT_FILE is an ELF object.
3253
3254 bool
3255 is_elf_object(Input_file* input_file, off_t offset,
3256 const unsigned char** start, int* read_size)
3257 {
3258 off_t filesize = input_file->file().filesize();
3259 int want = elfcpp::Elf_recognizer::max_header_size;
3260 if (filesize - offset < want)
3261 want = filesize - offset;
3262
3263 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3264 true, false);
3265 *start = p;
3266 *read_size = want;
3267
3268 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3269 }
3270
3271 // Read an ELF file and return the appropriate instance of Object.
3272
3273 Object*
3274 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3275 const unsigned char* p, section_offset_type bytes,
3276 bool* punconfigured)
3277 {
3278 if (punconfigured != NULL)
3279 *punconfigured = false;
3280
3281 std::string error;
3282 bool big_endian = false;
3283 int size = 0;
3284 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3285 &big_endian, &error))
3286 {
3287 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3288 return NULL;
3289 }
3290
3291 if (size == 32)
3292 {
3293 if (big_endian)
3294 {
3295 #ifdef HAVE_TARGET_32_BIG
3296 elfcpp::Ehdr<32, true> ehdr(p);
3297 return make_elf_sized_object<32, true>(name, input_file,
3298 offset, ehdr, punconfigured);
3299 #else
3300 if (punconfigured != NULL)
3301 *punconfigured = true;
3302 else
3303 gold_error(_("%s: not configured to support "
3304 "32-bit big-endian object"),
3305 name.c_str());
3306 return NULL;
3307 #endif
3308 }
3309 else
3310 {
3311 #ifdef HAVE_TARGET_32_LITTLE
3312 elfcpp::Ehdr<32, false> ehdr(p);
3313 return make_elf_sized_object<32, false>(name, input_file,
3314 offset, ehdr, punconfigured);
3315 #else
3316 if (punconfigured != NULL)
3317 *punconfigured = true;
3318 else
3319 gold_error(_("%s: not configured to support "
3320 "32-bit little-endian object"),
3321 name.c_str());
3322 return NULL;
3323 #endif
3324 }
3325 }
3326 else if (size == 64)
3327 {
3328 if (big_endian)
3329 {
3330 #ifdef HAVE_TARGET_64_BIG
3331 elfcpp::Ehdr<64, true> ehdr(p);
3332 return make_elf_sized_object<64, true>(name, input_file,
3333 offset, ehdr, punconfigured);
3334 #else
3335 if (punconfigured != NULL)
3336 *punconfigured = true;
3337 else
3338 gold_error(_("%s: not configured to support "
3339 "64-bit big-endian object"),
3340 name.c_str());
3341 return NULL;
3342 #endif
3343 }
3344 else
3345 {
3346 #ifdef HAVE_TARGET_64_LITTLE
3347 elfcpp::Ehdr<64, false> ehdr(p);
3348 return make_elf_sized_object<64, false>(name, input_file,
3349 offset, ehdr, punconfigured);
3350 #else
3351 if (punconfigured != NULL)
3352 *punconfigured = true;
3353 else
3354 gold_error(_("%s: not configured to support "
3355 "64-bit little-endian object"),
3356 name.c_str());
3357 return NULL;
3358 #endif
3359 }
3360 }
3361 else
3362 gold_unreachable();
3363 }
3364
3365 // Instantiate the templates we need.
3366
3367 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3368 template
3369 void
3370 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3371 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3372 Unordered_map<section_offset_type,
3373 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3374 #endif
3375
3376 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3377 template
3378 void
3379 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3380 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3381 Unordered_map<section_offset_type,
3382 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3383 #endif
3384
3385 #ifdef HAVE_TARGET_32_LITTLE
3386 template
3387 void
3388 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3389 Read_symbols_data*);
3390 template
3391 const unsigned char*
3392 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3393 section_size_type, const unsigned char*) const;
3394 #endif
3395
3396 #ifdef HAVE_TARGET_32_BIG
3397 template
3398 void
3399 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3400 Read_symbols_data*);
3401 template
3402 const unsigned char*
3403 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3404 section_size_type, const unsigned char*) const;
3405 #endif
3406
3407 #ifdef HAVE_TARGET_64_LITTLE
3408 template
3409 void
3410 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3411 Read_symbols_data*);
3412 template
3413 const unsigned char*
3414 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3415 section_size_type, const unsigned char*) const;
3416 #endif
3417
3418 #ifdef HAVE_TARGET_64_BIG
3419 template
3420 void
3421 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3422 Read_symbols_data*);
3423 template
3424 const unsigned char*
3425 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3426 section_size_type, const unsigned char*) const;
3427 #endif
3428
3429 #ifdef HAVE_TARGET_32_LITTLE
3430 template
3431 class Sized_relobj<32, false>;
3432
3433 template
3434 class Sized_relobj_file<32, false>;
3435 #endif
3436
3437 #ifdef HAVE_TARGET_32_BIG
3438 template
3439 class Sized_relobj<32, true>;
3440
3441 template
3442 class Sized_relobj_file<32, true>;
3443 #endif
3444
3445 #ifdef HAVE_TARGET_64_LITTLE
3446 template
3447 class Sized_relobj<64, false>;
3448
3449 template
3450 class Sized_relobj_file<64, false>;
3451 #endif
3452
3453 #ifdef HAVE_TARGET_64_BIG
3454 template
3455 class Sized_relobj<64, true>;
3456
3457 template
3458 class Sized_relobj_file<64, true>;
3459 #endif
3460
3461 #ifdef HAVE_TARGET_32_LITTLE
3462 template
3463 struct Relocate_info<32, false>;
3464 #endif
3465
3466 #ifdef HAVE_TARGET_32_BIG
3467 template
3468 struct Relocate_info<32, true>;
3469 #endif
3470
3471 #ifdef HAVE_TARGET_64_LITTLE
3472 template
3473 struct Relocate_info<64, false>;
3474 #endif
3475
3476 #ifdef HAVE_TARGET_64_BIG
3477 template
3478 struct Relocate_info<64, true>;
3479 #endif
3480
3481 #ifdef HAVE_TARGET_32_LITTLE
3482 template
3483 void
3484 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3485
3486 template
3487 void
3488 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3489 const unsigned char*);
3490 #endif
3491
3492 #ifdef HAVE_TARGET_32_BIG
3493 template
3494 void
3495 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3496
3497 template
3498 void
3499 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3500 const unsigned char*);
3501 #endif
3502
3503 #ifdef HAVE_TARGET_64_LITTLE
3504 template
3505 void
3506 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3507
3508 template
3509 void
3510 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3511 const unsigned char*);
3512 #endif
3513
3514 #ifdef HAVE_TARGET_64_BIG
3515 template
3516 void
3517 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3518
3519 template
3520 void
3521 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3522 const unsigned char*);
3523 #endif
3524
3525 #ifdef HAVE_TARGET_32_LITTLE
3526 template
3527 Compressed_section_map*
3528 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3529 const char*, section_size_type,
3530 Object*, bool);
3531 #endif
3532
3533 #ifdef HAVE_TARGET_32_BIG
3534 template
3535 Compressed_section_map*
3536 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3537 const char*, section_size_type,
3538 Object*, bool);
3539 #endif
3540
3541 #ifdef HAVE_TARGET_64_LITTLE
3542 template
3543 Compressed_section_map*
3544 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3545 const char*, section_size_type,
3546 Object*, bool);
3547 #endif
3548
3549 #ifdef HAVE_TARGET_64_BIG
3550 template
3551 Compressed_section_map*
3552 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3553 const char*, section_size_type,
3554 Object*, bool);
3555 #endif
3556
3557 } // End namespace gold.
This page took 0.155472 seconds and 3 git commands to generate.