Fix symbol values and relocation addends for relocatable links.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_entry_key key(i, 0);
431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432 if (p != this->local_got_offsets_.end())
433 {
434 const Got_offset_list* got_offsets = p->second;
435 got_offsets->for_all_got_offsets(v);
436 }
437 }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445 unsigned int shndx)
446 {
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx);
451
452 const Output_section* os = this->do_output_section(shndx);
453 gold_assert(os != NULL);
454 return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461 const std::string& name,
462 Input_file* input_file,
463 off_t offset,
464 const elfcpp::Ehdr<size, big_endian>& ehdr)
465 : Sized_relobj<size, big_endian>(name, input_file, offset),
466 elf_file_(this, ehdr),
467 symtab_shndx_(-1U),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
471 symbols_(),
472 defined_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
475 local_values_(),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 discarded_eh_frame_shndx_(-1U),
480 is_deferred_layout_(false),
481 deferred_layout_(),
482 deferred_layout_relocs_(),
483 output_views_(NULL)
484 {
485 this->e_type_ = ehdr.get_e_type();
486 }
487
488 template<int size, bool big_endian>
489 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
490 {
491 }
492
493 // Set up an object file based on the file header. This sets up the
494 // section information.
495
496 template<int size, bool big_endian>
497 void
498 Sized_relobj_file<size, big_endian>::do_setup()
499 {
500 const unsigned int shnum = this->elf_file_.shnum();
501 this->set_shnum(shnum);
502 }
503
504 // Find the SHT_SYMTAB section, given the section headers. The ELF
505 // standard says that maybe in the future there can be more than one
506 // SHT_SYMTAB section. Until somebody figures out how that could
507 // work, we assume there is only one.
508
509 template<int size, bool big_endian>
510 void
511 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
512 {
513 const unsigned int shnum = this->shnum();
514 this->symtab_shndx_ = 0;
515 if (shnum > 0)
516 {
517 // Look through the sections in reverse order, since gas tends
518 // to put the symbol table at the end.
519 const unsigned char* p = pshdrs + shnum * This::shdr_size;
520 unsigned int i = shnum;
521 unsigned int xindex_shndx = 0;
522 unsigned int xindex_link = 0;
523 while (i > 0)
524 {
525 --i;
526 p -= This::shdr_size;
527 typename This::Shdr shdr(p);
528 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
529 {
530 this->symtab_shndx_ = i;
531 if (xindex_shndx > 0 && xindex_link == i)
532 {
533 Xindex* xindex =
534 new Xindex(this->elf_file_.large_shndx_offset());
535 xindex->read_symtab_xindex<size, big_endian>(this,
536 xindex_shndx,
537 pshdrs);
538 this->set_xindex(xindex);
539 }
540 break;
541 }
542
543 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
544 // one. This will work if it follows the SHT_SYMTAB
545 // section.
546 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
547 {
548 xindex_shndx = i;
549 xindex_link = this->adjust_shndx(shdr.get_sh_link());
550 }
551 }
552 }
553 }
554
555 // Return the Xindex structure to use for object with lots of
556 // sections.
557
558 template<int size, bool big_endian>
559 Xindex*
560 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
561 {
562 gold_assert(this->symtab_shndx_ != -1U);
563 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
564 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
565 return xindex;
566 }
567
568 // Return whether SHDR has the right type and flags to be a GNU
569 // .eh_frame section.
570
571 template<int size, bool big_endian>
572 bool
573 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
574 const elfcpp::Shdr<size, big_endian>* shdr) const
575 {
576 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
577 return ((sh_type == elfcpp::SHT_PROGBITS
578 || sh_type == elfcpp::SHT_X86_64_UNWIND)
579 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
580 }
581
582 // Find the section header with the given name.
583
584 template<int size, bool big_endian>
585 const unsigned char*
586 Object::find_shdr(
587 const unsigned char* pshdrs,
588 const char* name,
589 const char* names,
590 section_size_type names_size,
591 const unsigned char* hdr) const
592 {
593 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
594 const unsigned int shnum = this->shnum();
595 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
596 size_t sh_name = 0;
597
598 while (1)
599 {
600 if (hdr)
601 {
602 // We found HDR last time we were called, continue looking.
603 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
604 sh_name = shdr.get_sh_name();
605 }
606 else
607 {
608 // Look for the next occurrence of NAME in NAMES.
609 // The fact that .shstrtab produced by current GNU tools is
610 // string merged means we shouldn't have both .not.foo and
611 // .foo in .shstrtab, and multiple .foo sections should all
612 // have the same sh_name. However, this is not guaranteed
613 // by the ELF spec and not all ELF object file producers may
614 // be so clever.
615 size_t len = strlen(name) + 1;
616 const char *p = sh_name ? names + sh_name + len : names;
617 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
618 name, len));
619 if (p == NULL)
620 return NULL;
621 sh_name = p - names;
622 hdr = pshdrs;
623 if (sh_name == 0)
624 return hdr;
625 }
626
627 hdr += shdr_size;
628 while (hdr < hdr_end)
629 {
630 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
631 if (shdr.get_sh_name() == sh_name)
632 return hdr;
633 hdr += shdr_size;
634 }
635 hdr = NULL;
636 if (sh_name == 0)
637 return hdr;
638 }
639 }
640
641 // Return whether there is a GNU .eh_frame section, given the section
642 // headers and the section names.
643
644 template<int size, bool big_endian>
645 bool
646 Sized_relobj_file<size, big_endian>::find_eh_frame(
647 const unsigned char* pshdrs,
648 const char* names,
649 section_size_type names_size) const
650 {
651 const unsigned char* s = NULL;
652
653 while (1)
654 {
655 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
656 names, names_size, s);
657 if (s == NULL)
658 return false;
659
660 typename This::Shdr shdr(s);
661 if (this->check_eh_frame_flags(&shdr))
662 return true;
663 }
664 }
665
666 // Return TRUE if this is a section whose contents will be needed in the
667 // Add_symbols task. This function is only called for sections that have
668 // already passed the test in is_compressed_debug_section() and the debug
669 // section name prefix, ".debug"/".zdebug", has been skipped.
670
671 static bool
672 need_decompressed_section(const char* name)
673 {
674 if (*name++ != '_')
675 return false;
676
677 #ifdef ENABLE_THREADS
678 // Decompressing these sections now will help only if we're
679 // multithreaded.
680 if (parameters->options().threads())
681 {
682 // We will need .zdebug_str if this is not an incremental link
683 // (i.e., we are processing string merge sections) or if we need
684 // to build a gdb index.
685 if ((!parameters->incremental() || parameters->options().gdb_index())
686 && strcmp(name, "str") == 0)
687 return true;
688
689 // We will need these other sections when building a gdb index.
690 if (parameters->options().gdb_index()
691 && (strcmp(name, "info") == 0
692 || strcmp(name, "types") == 0
693 || strcmp(name, "pubnames") == 0
694 || strcmp(name, "pubtypes") == 0
695 || strcmp(name, "ranges") == 0
696 || strcmp(name, "abbrev") == 0))
697 return true;
698 }
699 #endif
700
701 // Even when single-threaded, we will need .zdebug_str if this is
702 // not an incremental link and we are building a gdb index.
703 // Otherwise, we would decompress the section twice: once for
704 // string merge processing, and once for building the gdb index.
705 if (!parameters->incremental()
706 && parameters->options().gdb_index()
707 && strcmp(name, "str") == 0)
708 return true;
709
710 return false;
711 }
712
713 // Build a table for any compressed debug sections, mapping each section index
714 // to the uncompressed size and (if needed) the decompressed contents.
715
716 template<int size, bool big_endian>
717 Compressed_section_map*
718 build_compressed_section_map(
719 const unsigned char* pshdrs,
720 unsigned int shnum,
721 const char* names,
722 section_size_type names_size,
723 Object* obj,
724 bool decompress_if_needed)
725 {
726 Compressed_section_map* uncompressed_map = new Compressed_section_map();
727 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
728 const unsigned char* p = pshdrs + shdr_size;
729
730 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
731 {
732 typename elfcpp::Shdr<size, big_endian> shdr(p);
733 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
734 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735 {
736 if (shdr.get_sh_name() >= names_size)
737 {
738 obj->error(_("bad section name offset for section %u: %lu"),
739 i, static_cast<unsigned long>(shdr.get_sh_name()));
740 continue;
741 }
742
743 const char* name = names + shdr.get_sh_name();
744 bool is_compressed = ((shdr.get_sh_flags()
745 & elfcpp::SHF_COMPRESSED) != 0);
746 bool is_zcompressed = (!is_compressed
747 && is_compressed_debug_section(name));
748
749 if (is_zcompressed || is_compressed)
750 {
751 section_size_type len;
752 const unsigned char* contents =
753 obj->section_contents(i, &len, false);
754 uint64_t uncompressed_size;
755 if (is_zcompressed)
756 {
757 // Skip over the ".zdebug" prefix.
758 name += 7;
759 uncompressed_size = get_uncompressed_size(contents, len);
760 }
761 else
762 {
763 // Skip over the ".debug" prefix.
764 name += 6;
765 elfcpp::Chdr<size, big_endian> chdr(contents);
766 uncompressed_size = chdr.get_ch_size();
767 }
768 Compressed_section_info info;
769 info.size = convert_to_section_size_type(uncompressed_size);
770 info.flag = shdr.get_sh_flags();
771 info.contents = NULL;
772 if (uncompressed_size != -1ULL)
773 {
774 unsigned char* uncompressed_data = NULL;
775 if (decompress_if_needed && need_decompressed_section(name))
776 {
777 uncompressed_data = new unsigned char[uncompressed_size];
778 if (decompress_input_section(contents, len,
779 uncompressed_data,
780 uncompressed_size,
781 size, big_endian,
782 shdr.get_sh_flags()))
783 info.contents = uncompressed_data;
784 else
785 delete[] uncompressed_data;
786 }
787 (*uncompressed_map)[i] = info;
788 }
789 }
790 }
791 }
792 return uncompressed_map;
793 }
794
795 // Stash away info for a number of special sections.
796 // Return true if any of the sections found require local symbols to be read.
797
798 template<int size, bool big_endian>
799 bool
800 Sized_relobj_file<size, big_endian>::do_find_special_sections(
801 Read_symbols_data* sd)
802 {
803 const unsigned char* const pshdrs = sd->section_headers->data();
804 const unsigned char* namesu = sd->section_names->data();
805 const char* names = reinterpret_cast<const char*>(namesu);
806
807 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
808 this->has_eh_frame_ = true;
809
810 Compressed_section_map* compressed_sections =
811 build_compressed_section_map<size, big_endian>(
812 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
813 if (compressed_sections != NULL)
814 this->set_compressed_sections(compressed_sections);
815
816 return (this->has_eh_frame_
817 || (!parameters->options().relocatable()
818 && parameters->options().gdb_index()
819 && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
820 || memmem(names, sd->section_names_size,
821 "debug_types", 12) != NULL)));
822 }
823
824 // Read the sections and symbols from an object file.
825
826 template<int size, bool big_endian>
827 void
828 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
829 {
830 this->base_read_symbols(sd);
831 }
832
833 // Read the sections and symbols from an object file. This is common
834 // code for all target-specific overrides of do_read_symbols().
835
836 template<int size, bool big_endian>
837 void
838 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
839 {
840 this->read_section_data(&this->elf_file_, sd);
841
842 const unsigned char* const pshdrs = sd->section_headers->data();
843
844 this->find_symtab(pshdrs);
845
846 bool need_local_symbols = this->do_find_special_sections(sd);
847
848 sd->symbols = NULL;
849 sd->symbols_size = 0;
850 sd->external_symbols_offset = 0;
851 sd->symbol_names = NULL;
852 sd->symbol_names_size = 0;
853
854 if (this->symtab_shndx_ == 0)
855 {
856 // No symbol table. Weird but legal.
857 return;
858 }
859
860 // Get the symbol table section header.
861 typename This::Shdr symtabshdr(pshdrs
862 + this->symtab_shndx_ * This::shdr_size);
863 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
864
865 // If this object has a .eh_frame section, or if building a .gdb_index
866 // section and there is debug info, we need all the symbols.
867 // Otherwise we only need the external symbols. While it would be
868 // simpler to just always read all the symbols, I've seen object
869 // files with well over 2000 local symbols, which for a 64-bit
870 // object file format is over 5 pages that we don't need to read
871 // now.
872
873 const int sym_size = This::sym_size;
874 const unsigned int loccount = symtabshdr.get_sh_info();
875 this->local_symbol_count_ = loccount;
876 this->local_values_.resize(loccount);
877 section_offset_type locsize = loccount * sym_size;
878 off_t dataoff = symtabshdr.get_sh_offset();
879 section_size_type datasize =
880 convert_to_section_size_type(symtabshdr.get_sh_size());
881 off_t extoff = dataoff + locsize;
882 section_size_type extsize = datasize - locsize;
883
884 off_t readoff = need_local_symbols ? dataoff : extoff;
885 section_size_type readsize = need_local_symbols ? datasize : extsize;
886
887 if (readsize == 0)
888 {
889 // No external symbols. Also weird but also legal.
890 return;
891 }
892
893 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
894
895 // Read the section header for the symbol names.
896 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
897 if (strtab_shndx >= this->shnum())
898 {
899 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
900 return;
901 }
902 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
903 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
904 {
905 this->error(_("symbol table name section has wrong type: %u"),
906 static_cast<unsigned int>(strtabshdr.get_sh_type()));
907 return;
908 }
909
910 // Read the symbol names.
911 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
912 strtabshdr.get_sh_size(),
913 false, true);
914
915 sd->symbols = fvsymtab;
916 sd->symbols_size = readsize;
917 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
918 sd->symbol_names = fvstrtab;
919 sd->symbol_names_size =
920 convert_to_section_size_type(strtabshdr.get_sh_size());
921 }
922
923 // Return the section index of symbol SYM. Set *VALUE to its value in
924 // the object file. Set *IS_ORDINARY if this is an ordinary section
925 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
926 // Note that for a symbol which is not defined in this object file,
927 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
928 // the final value of the symbol in the link.
929
930 template<int size, bool big_endian>
931 unsigned int
932 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
933 Address* value,
934 bool* is_ordinary)
935 {
936 section_size_type symbols_size;
937 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
938 &symbols_size,
939 false);
940
941 const size_t count = symbols_size / This::sym_size;
942 gold_assert(sym < count);
943
944 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
945 *value = elfsym.get_st_value();
946
947 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
948 }
949
950 // Return whether to include a section group in the link. LAYOUT is
951 // used to keep track of which section groups we have already seen.
952 // INDEX is the index of the section group and SHDR is the section
953 // header. If we do not want to include this group, we set bits in
954 // OMIT for each section which should be discarded.
955
956 template<int size, bool big_endian>
957 bool
958 Sized_relobj_file<size, big_endian>::include_section_group(
959 Symbol_table* symtab,
960 Layout* layout,
961 unsigned int index,
962 const char* name,
963 const unsigned char* shdrs,
964 const char* section_names,
965 section_size_type section_names_size,
966 std::vector<bool>* omit)
967 {
968 // Read the section contents.
969 typename This::Shdr shdr(shdrs + index * This::shdr_size);
970 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
971 shdr.get_sh_size(), true, false);
972 const elfcpp::Elf_Word* pword =
973 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
974
975 // The first word contains flags. We only care about COMDAT section
976 // groups. Other section groups are always included in the link
977 // just like ordinary sections.
978 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
979
980 // Look up the group signature, which is the name of a symbol. ELF
981 // uses a symbol name because some group signatures are long, and
982 // the name is generally already in the symbol table, so it makes
983 // sense to put the long string just once in .strtab rather than in
984 // both .strtab and .shstrtab.
985
986 // Get the appropriate symbol table header (this will normally be
987 // the single SHT_SYMTAB section, but in principle it need not be).
988 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
989 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
990
991 // Read the symbol table entry.
992 unsigned int symndx = shdr.get_sh_info();
993 if (symndx >= symshdr.get_sh_size() / This::sym_size)
994 {
995 this->error(_("section group %u info %u out of range"),
996 index, symndx);
997 return false;
998 }
999 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1000 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1001 false);
1002 elfcpp::Sym<size, big_endian> sym(psym);
1003
1004 // Read the symbol table names.
1005 section_size_type symnamelen;
1006 const unsigned char* psymnamesu;
1007 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1008 &symnamelen, true);
1009 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1010
1011 // Get the section group signature.
1012 if (sym.get_st_name() >= symnamelen)
1013 {
1014 this->error(_("symbol %u name offset %u out of range"),
1015 symndx, sym.get_st_name());
1016 return false;
1017 }
1018
1019 std::string signature(psymnames + sym.get_st_name());
1020
1021 // It seems that some versions of gas will create a section group
1022 // associated with a section symbol, and then fail to give a name to
1023 // the section symbol. In such a case, use the name of the section.
1024 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1025 {
1026 bool is_ordinary;
1027 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1028 sym.get_st_shndx(),
1029 &is_ordinary);
1030 if (!is_ordinary || sym_shndx >= this->shnum())
1031 {
1032 this->error(_("symbol %u invalid section index %u"),
1033 symndx, sym_shndx);
1034 return false;
1035 }
1036 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1037 if (member_shdr.get_sh_name() < section_names_size)
1038 signature = section_names + member_shdr.get_sh_name();
1039 }
1040
1041 // Record this section group in the layout, and see whether we've already
1042 // seen one with the same signature.
1043 bool include_group;
1044 bool is_comdat;
1045 Kept_section* kept_section = NULL;
1046
1047 if ((flags & elfcpp::GRP_COMDAT) == 0)
1048 {
1049 include_group = true;
1050 is_comdat = false;
1051 }
1052 else
1053 {
1054 include_group = layout->find_or_add_kept_section(signature,
1055 this, index, true,
1056 true, &kept_section);
1057 is_comdat = true;
1058 }
1059
1060 if (is_comdat && include_group)
1061 {
1062 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1063 if (incremental_inputs != NULL)
1064 incremental_inputs->report_comdat_group(this, signature.c_str());
1065 }
1066
1067 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1068
1069 std::vector<unsigned int> shndxes;
1070 bool relocate_group = include_group && parameters->options().relocatable();
1071 if (relocate_group)
1072 shndxes.reserve(count - 1);
1073
1074 for (size_t i = 1; i < count; ++i)
1075 {
1076 elfcpp::Elf_Word shndx =
1077 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1078
1079 if (relocate_group)
1080 shndxes.push_back(shndx);
1081
1082 if (shndx >= this->shnum())
1083 {
1084 this->error(_("section %u in section group %u out of range"),
1085 shndx, index);
1086 continue;
1087 }
1088
1089 // Check for an earlier section number, since we're going to get
1090 // it wrong--we may have already decided to include the section.
1091 if (shndx < index)
1092 this->error(_("invalid section group %u refers to earlier section %u"),
1093 index, shndx);
1094
1095 // Get the name of the member section.
1096 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1097 if (member_shdr.get_sh_name() >= section_names_size)
1098 {
1099 // This is an error, but it will be diagnosed eventually
1100 // in do_layout, so we don't need to do anything here but
1101 // ignore it.
1102 continue;
1103 }
1104 std::string mname(section_names + member_shdr.get_sh_name());
1105
1106 if (include_group)
1107 {
1108 if (is_comdat)
1109 kept_section->add_comdat_section(mname, shndx,
1110 member_shdr.get_sh_size());
1111 }
1112 else
1113 {
1114 (*omit)[shndx] = true;
1115
1116 if (is_comdat)
1117 {
1118 Relobj* kept_object = kept_section->object();
1119 if (kept_section->is_comdat())
1120 {
1121 // Find the corresponding kept section, and store
1122 // that info in the discarded section table.
1123 unsigned int kept_shndx;
1124 uint64_t kept_size;
1125 if (kept_section->find_comdat_section(mname, &kept_shndx,
1126 &kept_size))
1127 {
1128 // We don't keep a mapping for this section if
1129 // it has a different size. The mapping is only
1130 // used for relocation processing, and we don't
1131 // want to treat the sections as similar if the
1132 // sizes are different. Checking the section
1133 // size is the approach used by the GNU linker.
1134 if (kept_size == member_shdr.get_sh_size())
1135 this->set_kept_comdat_section(shndx, kept_object,
1136 kept_shndx);
1137 }
1138 }
1139 else
1140 {
1141 // The existing section is a linkonce section. Add
1142 // a mapping if there is exactly one section in the
1143 // group (which is true when COUNT == 2) and if it
1144 // is the same size.
1145 if (count == 2
1146 && (kept_section->linkonce_size()
1147 == member_shdr.get_sh_size()))
1148 this->set_kept_comdat_section(shndx, kept_object,
1149 kept_section->shndx());
1150 }
1151 }
1152 }
1153 }
1154
1155 if (relocate_group)
1156 layout->layout_group(symtab, this, index, name, signature.c_str(),
1157 shdr, flags, &shndxes);
1158
1159 return include_group;
1160 }
1161
1162 // Whether to include a linkonce section in the link. NAME is the
1163 // name of the section and SHDR is the section header.
1164
1165 // Linkonce sections are a GNU extension implemented in the original
1166 // GNU linker before section groups were defined. The semantics are
1167 // that we only include one linkonce section with a given name. The
1168 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1169 // where T is the type of section and SYMNAME is the name of a symbol.
1170 // In an attempt to make linkonce sections interact well with section
1171 // groups, we try to identify SYMNAME and use it like a section group
1172 // signature. We want to block section groups with that signature,
1173 // but not other linkonce sections with that signature. We also use
1174 // the full name of the linkonce section as a normal section group
1175 // signature.
1176
1177 template<int size, bool big_endian>
1178 bool
1179 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1180 Layout* layout,
1181 unsigned int index,
1182 const char* name,
1183 const elfcpp::Shdr<size, big_endian>& shdr)
1184 {
1185 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1186 // In general the symbol name we want will be the string following
1187 // the last '.'. However, we have to handle the case of
1188 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1189 // some versions of gcc. So we use a heuristic: if the name starts
1190 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1191 // we look for the last '.'. We can't always simply skip
1192 // ".gnu.linkonce.X", because we have to deal with cases like
1193 // ".gnu.linkonce.d.rel.ro.local".
1194 const char* const linkonce_t = ".gnu.linkonce.t.";
1195 const char* symname;
1196 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1197 symname = name + strlen(linkonce_t);
1198 else
1199 symname = strrchr(name, '.') + 1;
1200 std::string sig1(symname);
1201 std::string sig2(name);
1202 Kept_section* kept1;
1203 Kept_section* kept2;
1204 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1205 false, &kept1);
1206 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1207 true, &kept2);
1208
1209 if (!include2)
1210 {
1211 // We are not including this section because we already saw the
1212 // name of the section as a signature. This normally implies
1213 // that the kept section is another linkonce section. If it is
1214 // the same size, record it as the section which corresponds to
1215 // this one.
1216 if (kept2->object() != NULL
1217 && !kept2->is_comdat()
1218 && kept2->linkonce_size() == sh_size)
1219 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1220 }
1221 else if (!include1)
1222 {
1223 // The section is being discarded on the basis of its symbol
1224 // name. This means that the corresponding kept section was
1225 // part of a comdat group, and it will be difficult to identify
1226 // the specific section within that group that corresponds to
1227 // this linkonce section. We'll handle the simple case where
1228 // the group has only one member section. Otherwise, it's not
1229 // worth the effort.
1230 unsigned int kept_shndx;
1231 uint64_t kept_size;
1232 if (kept1->object() != NULL
1233 && kept1->is_comdat()
1234 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1235 && kept_size == sh_size)
1236 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1237 }
1238 else
1239 {
1240 kept1->set_linkonce_size(sh_size);
1241 kept2->set_linkonce_size(sh_size);
1242 }
1243
1244 return include1 && include2;
1245 }
1246
1247 // Layout an input section.
1248
1249 template<int size, bool big_endian>
1250 inline void
1251 Sized_relobj_file<size, big_endian>::layout_section(
1252 Layout* layout,
1253 unsigned int shndx,
1254 const char* name,
1255 const typename This::Shdr& shdr,
1256 unsigned int reloc_shndx,
1257 unsigned int reloc_type)
1258 {
1259 off_t offset;
1260 Output_section* os = layout->layout(this, shndx, name, shdr,
1261 reloc_shndx, reloc_type, &offset);
1262
1263 this->output_sections()[shndx] = os;
1264 if (offset == -1)
1265 this->section_offsets()[shndx] = invalid_address;
1266 else
1267 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1268
1269 // If this section requires special handling, and if there are
1270 // relocs that apply to it, then we must do the special handling
1271 // before we apply the relocs.
1272 if (offset == -1 && reloc_shndx != 0)
1273 this->set_relocs_must_follow_section_writes();
1274 }
1275
1276 // Layout an input .eh_frame section.
1277
1278 template<int size, bool big_endian>
1279 void
1280 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1281 Layout* layout,
1282 const unsigned char* symbols_data,
1283 section_size_type symbols_size,
1284 const unsigned char* symbol_names_data,
1285 section_size_type symbol_names_size,
1286 unsigned int shndx,
1287 const typename This::Shdr& shdr,
1288 unsigned int reloc_shndx,
1289 unsigned int reloc_type)
1290 {
1291 gold_assert(this->has_eh_frame_);
1292
1293 off_t offset;
1294 Output_section* os = layout->layout_eh_frame(this,
1295 symbols_data,
1296 symbols_size,
1297 symbol_names_data,
1298 symbol_names_size,
1299 shndx,
1300 shdr,
1301 reloc_shndx,
1302 reloc_type,
1303 &offset);
1304 this->output_sections()[shndx] = os;
1305 if (os == NULL || offset == -1)
1306 {
1307 // An object can contain at most one section holding exception
1308 // frame information.
1309 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1310 this->discarded_eh_frame_shndx_ = shndx;
1311 this->section_offsets()[shndx] = invalid_address;
1312 }
1313 else
1314 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1315
1316 // If this section requires special handling, and if there are
1317 // relocs that aply to it, then we must do the special handling
1318 // before we apply the relocs.
1319 if (os != NULL && offset == -1 && reloc_shndx != 0)
1320 this->set_relocs_must_follow_section_writes();
1321 }
1322
1323 // Lay out the input sections. We walk through the sections and check
1324 // whether they should be included in the link. If they should, we
1325 // pass them to the Layout object, which will return an output section
1326 // and an offset.
1327 // This function is called twice sometimes, two passes, when mapping
1328 // of input sections to output sections must be delayed.
1329 // This is true for the following :
1330 // * Garbage collection (--gc-sections): Some input sections will be
1331 // discarded and hence the assignment must wait until the second pass.
1332 // In the first pass, it is for setting up some sections as roots to
1333 // a work-list for --gc-sections and to do comdat processing.
1334 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1335 // will be folded and hence the assignment must wait.
1336 // * Using plugins to map some sections to unique segments: Mapping
1337 // some sections to unique segments requires mapping them to unique
1338 // output sections too. This can be done via plugins now and this
1339 // information is not available in the first pass.
1340
1341 template<int size, bool big_endian>
1342 void
1343 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1344 Layout* layout,
1345 Read_symbols_data* sd)
1346 {
1347 const unsigned int shnum = this->shnum();
1348
1349 /* Should this function be called twice? */
1350 bool is_two_pass = (parameters->options().gc_sections()
1351 || parameters->options().icf_enabled()
1352 || layout->is_unique_segment_for_sections_specified());
1353
1354 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1355 a two-pass approach is not needed. */
1356 bool is_pass_one = false;
1357 bool is_pass_two = false;
1358
1359 Symbols_data* gc_sd = NULL;
1360
1361 /* Check if do_layout needs to be two-pass. If so, find out which pass
1362 should happen. In the first pass, the data in sd is saved to be used
1363 later in the second pass. */
1364 if (is_two_pass)
1365 {
1366 gc_sd = this->get_symbols_data();
1367 if (gc_sd == NULL)
1368 {
1369 gold_assert(sd != NULL);
1370 is_pass_one = true;
1371 }
1372 else
1373 {
1374 if (parameters->options().gc_sections())
1375 gold_assert(symtab->gc()->is_worklist_ready());
1376 if (parameters->options().icf_enabled())
1377 gold_assert(symtab->icf()->is_icf_ready());
1378 is_pass_two = true;
1379 }
1380 }
1381
1382 if (shnum == 0)
1383 return;
1384
1385 if (is_pass_one)
1386 {
1387 // During garbage collection save the symbols data to use it when
1388 // re-entering this function.
1389 gc_sd = new Symbols_data;
1390 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1391 this->set_symbols_data(gc_sd);
1392 }
1393
1394 const unsigned char* section_headers_data = NULL;
1395 section_size_type section_names_size;
1396 const unsigned char* symbols_data = NULL;
1397 section_size_type symbols_size;
1398 const unsigned char* symbol_names_data = NULL;
1399 section_size_type symbol_names_size;
1400
1401 if (is_two_pass)
1402 {
1403 section_headers_data = gc_sd->section_headers_data;
1404 section_names_size = gc_sd->section_names_size;
1405 symbols_data = gc_sd->symbols_data;
1406 symbols_size = gc_sd->symbols_size;
1407 symbol_names_data = gc_sd->symbol_names_data;
1408 symbol_names_size = gc_sd->symbol_names_size;
1409 }
1410 else
1411 {
1412 section_headers_data = sd->section_headers->data();
1413 section_names_size = sd->section_names_size;
1414 if (sd->symbols != NULL)
1415 symbols_data = sd->symbols->data();
1416 symbols_size = sd->symbols_size;
1417 if (sd->symbol_names != NULL)
1418 symbol_names_data = sd->symbol_names->data();
1419 symbol_names_size = sd->symbol_names_size;
1420 }
1421
1422 // Get the section headers.
1423 const unsigned char* shdrs = section_headers_data;
1424 const unsigned char* pshdrs;
1425
1426 // Get the section names.
1427 const unsigned char* pnamesu = (is_two_pass
1428 ? gc_sd->section_names_data
1429 : sd->section_names->data());
1430
1431 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1432
1433 // If any input files have been claimed by plugins, we need to defer
1434 // actual layout until the replacement files have arrived.
1435 const bool should_defer_layout =
1436 (parameters->options().has_plugins()
1437 && parameters->options().plugins()->should_defer_layout());
1438 unsigned int num_sections_to_defer = 0;
1439
1440 // For each section, record the index of the reloc section if any.
1441 // Use 0 to mean that there is no reloc section, -1U to mean that
1442 // there is more than one.
1443 std::vector<unsigned int> reloc_shndx(shnum, 0);
1444 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1445 // Skip the first, dummy, section.
1446 pshdrs = shdrs + This::shdr_size;
1447 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1448 {
1449 typename This::Shdr shdr(pshdrs);
1450
1451 // Count the number of sections whose layout will be deferred.
1452 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1453 ++num_sections_to_defer;
1454
1455 unsigned int sh_type = shdr.get_sh_type();
1456 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1457 {
1458 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1459 if (target_shndx == 0 || target_shndx >= shnum)
1460 {
1461 this->error(_("relocation section %u has bad info %u"),
1462 i, target_shndx);
1463 continue;
1464 }
1465
1466 if (reloc_shndx[target_shndx] != 0)
1467 reloc_shndx[target_shndx] = -1U;
1468 else
1469 {
1470 reloc_shndx[target_shndx] = i;
1471 reloc_type[target_shndx] = sh_type;
1472 }
1473 }
1474 }
1475
1476 Output_sections& out_sections(this->output_sections());
1477 std::vector<Address>& out_section_offsets(this->section_offsets());
1478
1479 if (!is_pass_two)
1480 {
1481 out_sections.resize(shnum);
1482 out_section_offsets.resize(shnum);
1483 }
1484
1485 // If we are only linking for symbols, then there is nothing else to
1486 // do here.
1487 if (this->input_file()->just_symbols())
1488 {
1489 if (!is_pass_two)
1490 {
1491 delete sd->section_headers;
1492 sd->section_headers = NULL;
1493 delete sd->section_names;
1494 sd->section_names = NULL;
1495 }
1496 return;
1497 }
1498
1499 if (num_sections_to_defer > 0)
1500 {
1501 parameters->options().plugins()->add_deferred_layout_object(this);
1502 this->deferred_layout_.reserve(num_sections_to_defer);
1503 this->is_deferred_layout_ = true;
1504 }
1505
1506 // Whether we've seen a .note.GNU-stack section.
1507 bool seen_gnu_stack = false;
1508 // The flags of a .note.GNU-stack section.
1509 uint64_t gnu_stack_flags = 0;
1510
1511 // Keep track of which sections to omit.
1512 std::vector<bool> omit(shnum, false);
1513
1514 // Keep track of reloc sections when emitting relocations.
1515 const bool relocatable = parameters->options().relocatable();
1516 const bool emit_relocs = (relocatable
1517 || parameters->options().emit_relocs());
1518 std::vector<unsigned int> reloc_sections;
1519
1520 // Keep track of .eh_frame sections.
1521 std::vector<unsigned int> eh_frame_sections;
1522
1523 // Keep track of .debug_info and .debug_types sections.
1524 std::vector<unsigned int> debug_info_sections;
1525 std::vector<unsigned int> debug_types_sections;
1526
1527 // Skip the first, dummy, section.
1528 pshdrs = shdrs + This::shdr_size;
1529 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1530 {
1531 typename This::Shdr shdr(pshdrs);
1532
1533 if (shdr.get_sh_name() >= section_names_size)
1534 {
1535 this->error(_("bad section name offset for section %u: %lu"),
1536 i, static_cast<unsigned long>(shdr.get_sh_name()));
1537 return;
1538 }
1539
1540 const char* name = pnames + shdr.get_sh_name();
1541
1542 if (!is_pass_two)
1543 {
1544 if (this->handle_gnu_warning_section(name, i, symtab))
1545 {
1546 if (!relocatable && !parameters->options().shared())
1547 omit[i] = true;
1548 }
1549
1550 // The .note.GNU-stack section is special. It gives the
1551 // protection flags that this object file requires for the stack
1552 // in memory.
1553 if (strcmp(name, ".note.GNU-stack") == 0)
1554 {
1555 seen_gnu_stack = true;
1556 gnu_stack_flags |= shdr.get_sh_flags();
1557 omit[i] = true;
1558 }
1559
1560 // The .note.GNU-split-stack section is also special. It
1561 // indicates that the object was compiled with
1562 // -fsplit-stack.
1563 if (this->handle_split_stack_section(name))
1564 {
1565 if (!relocatable && !parameters->options().shared())
1566 omit[i] = true;
1567 }
1568
1569 // Skip attributes section.
1570 if (parameters->target().is_attributes_section(name))
1571 {
1572 omit[i] = true;
1573 }
1574
1575 bool discard = omit[i];
1576 if (!discard)
1577 {
1578 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1579 {
1580 if (!this->include_section_group(symtab, layout, i, name,
1581 shdrs, pnames,
1582 section_names_size,
1583 &omit))
1584 discard = true;
1585 }
1586 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1587 && Layout::is_linkonce(name))
1588 {
1589 if (!this->include_linkonce_section(layout, i, name, shdr))
1590 discard = true;
1591 }
1592 }
1593
1594 // Add the section to the incremental inputs layout.
1595 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1596 if (incremental_inputs != NULL
1597 && !discard
1598 && can_incremental_update(shdr.get_sh_type()))
1599 {
1600 off_t sh_size = shdr.get_sh_size();
1601 section_size_type uncompressed_size;
1602 if (this->section_is_compressed(i, &uncompressed_size))
1603 sh_size = uncompressed_size;
1604 incremental_inputs->report_input_section(this, i, name, sh_size);
1605 }
1606
1607 if (discard)
1608 {
1609 // Do not include this section in the link.
1610 out_sections[i] = NULL;
1611 out_section_offsets[i] = invalid_address;
1612 continue;
1613 }
1614 }
1615
1616 if (is_pass_one && parameters->options().gc_sections())
1617 {
1618 if (this->is_section_name_included(name)
1619 || layout->keep_input_section (this, name)
1620 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1621 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1622 {
1623 symtab->gc()->worklist().push_back(Section_id(this, i));
1624 }
1625 // If the section name XXX can be represented as a C identifier
1626 // it cannot be discarded if there are references to
1627 // __start_XXX and __stop_XXX symbols. These need to be
1628 // specially handled.
1629 if (is_cident(name))
1630 {
1631 symtab->gc()->add_cident_section(name, Section_id(this, i));
1632 }
1633 }
1634
1635 // When doing a relocatable link we are going to copy input
1636 // reloc sections into the output. We only want to copy the
1637 // ones associated with sections which are not being discarded.
1638 // However, we don't know that yet for all sections. So save
1639 // reloc sections and process them later. Garbage collection is
1640 // not triggered when relocatable code is desired.
1641 if (emit_relocs
1642 && (shdr.get_sh_type() == elfcpp::SHT_REL
1643 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1644 {
1645 reloc_sections.push_back(i);
1646 continue;
1647 }
1648
1649 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1650 continue;
1651
1652 // The .eh_frame section is special. It holds exception frame
1653 // information that we need to read in order to generate the
1654 // exception frame header. We process these after all the other
1655 // sections so that the exception frame reader can reliably
1656 // determine which sections are being discarded, and discard the
1657 // corresponding information.
1658 if (!relocatable
1659 && strcmp(name, ".eh_frame") == 0
1660 && this->check_eh_frame_flags(&shdr))
1661 {
1662 if (is_pass_one)
1663 {
1664 if (this->is_deferred_layout())
1665 out_sections[i] = reinterpret_cast<Output_section*>(2);
1666 else
1667 out_sections[i] = reinterpret_cast<Output_section*>(1);
1668 out_section_offsets[i] = invalid_address;
1669 }
1670 else if (this->is_deferred_layout())
1671 this->deferred_layout_.push_back(Deferred_layout(i, name,
1672 pshdrs,
1673 reloc_shndx[i],
1674 reloc_type[i]));
1675 else
1676 eh_frame_sections.push_back(i);
1677 continue;
1678 }
1679
1680 if (is_pass_two && parameters->options().gc_sections())
1681 {
1682 // This is executed during the second pass of garbage
1683 // collection. do_layout has been called before and some
1684 // sections have been already discarded. Simply ignore
1685 // such sections this time around.
1686 if (out_sections[i] == NULL)
1687 {
1688 gold_assert(out_section_offsets[i] == invalid_address);
1689 continue;
1690 }
1691 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1692 && symtab->gc()->is_section_garbage(this, i))
1693 {
1694 if (parameters->options().print_gc_sections())
1695 gold_info(_("%s: removing unused section from '%s'"
1696 " in file '%s'"),
1697 program_name, this->section_name(i).c_str(),
1698 this->name().c_str());
1699 out_sections[i] = NULL;
1700 out_section_offsets[i] = invalid_address;
1701 continue;
1702 }
1703 }
1704
1705 if (is_pass_two && parameters->options().icf_enabled())
1706 {
1707 if (out_sections[i] == NULL)
1708 {
1709 gold_assert(out_section_offsets[i] == invalid_address);
1710 continue;
1711 }
1712 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1713 && symtab->icf()->is_section_folded(this, i))
1714 {
1715 if (parameters->options().print_icf_sections())
1716 {
1717 Section_id folded =
1718 symtab->icf()->get_folded_section(this, i);
1719 Relobj* folded_obj =
1720 reinterpret_cast<Relobj*>(folded.first);
1721 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1722 "into '%s' in file '%s'"),
1723 program_name, this->section_name(i).c_str(),
1724 this->name().c_str(),
1725 folded_obj->section_name(folded.second).c_str(),
1726 folded_obj->name().c_str());
1727 }
1728 out_sections[i] = NULL;
1729 out_section_offsets[i] = invalid_address;
1730 continue;
1731 }
1732 }
1733
1734 // Defer layout here if input files are claimed by plugins. When gc
1735 // is turned on this function is called twice; we only want to do this
1736 // on the first pass.
1737 if (!is_pass_two
1738 && this->is_deferred_layout()
1739 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1740 {
1741 this->deferred_layout_.push_back(Deferred_layout(i, name,
1742 pshdrs,
1743 reloc_shndx[i],
1744 reloc_type[i]));
1745 // Put dummy values here; real values will be supplied by
1746 // do_layout_deferred_sections.
1747 out_sections[i] = reinterpret_cast<Output_section*>(2);
1748 out_section_offsets[i] = invalid_address;
1749 continue;
1750 }
1751
1752 // During gc_pass_two if a section that was previously deferred is
1753 // found, do not layout the section as layout_deferred_sections will
1754 // do it later from gold.cc.
1755 if (is_pass_two
1756 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1757 continue;
1758
1759 if (is_pass_one)
1760 {
1761 // This is during garbage collection. The out_sections are
1762 // assigned in the second call to this function.
1763 out_sections[i] = reinterpret_cast<Output_section*>(1);
1764 out_section_offsets[i] = invalid_address;
1765 }
1766 else
1767 {
1768 // When garbage collection is switched on the actual layout
1769 // only happens in the second call.
1770 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1771 reloc_type[i]);
1772
1773 // When generating a .gdb_index section, we do additional
1774 // processing of .debug_info and .debug_types sections after all
1775 // the other sections for the same reason as above.
1776 if (!relocatable
1777 && parameters->options().gdb_index()
1778 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1779 {
1780 if (strcmp(name, ".debug_info") == 0
1781 || strcmp(name, ".zdebug_info") == 0)
1782 debug_info_sections.push_back(i);
1783 else if (strcmp(name, ".debug_types") == 0
1784 || strcmp(name, ".zdebug_types") == 0)
1785 debug_types_sections.push_back(i);
1786 }
1787 }
1788 }
1789
1790 if (!is_pass_two)
1791 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1792
1793 // Handle the .eh_frame sections after the other sections.
1794 gold_assert(!is_pass_one || eh_frame_sections.empty());
1795 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1796 p != eh_frame_sections.end();
1797 ++p)
1798 {
1799 unsigned int i = *p;
1800 const unsigned char* pshdr;
1801 pshdr = section_headers_data + i * This::shdr_size;
1802 typename This::Shdr shdr(pshdr);
1803
1804 this->layout_eh_frame_section(layout,
1805 symbols_data,
1806 symbols_size,
1807 symbol_names_data,
1808 symbol_names_size,
1809 i,
1810 shdr,
1811 reloc_shndx[i],
1812 reloc_type[i]);
1813 }
1814
1815 // When doing a relocatable link handle the reloc sections at the
1816 // end. Garbage collection and Identical Code Folding is not
1817 // turned on for relocatable code.
1818 if (emit_relocs)
1819 this->size_relocatable_relocs();
1820
1821 gold_assert(!is_two_pass || reloc_sections.empty());
1822
1823 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1824 p != reloc_sections.end();
1825 ++p)
1826 {
1827 unsigned int i = *p;
1828 const unsigned char* pshdr;
1829 pshdr = section_headers_data + i * This::shdr_size;
1830 typename This::Shdr shdr(pshdr);
1831
1832 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1833 if (data_shndx >= shnum)
1834 {
1835 // We already warned about this above.
1836 continue;
1837 }
1838
1839 Output_section* data_section = out_sections[data_shndx];
1840 if (data_section == reinterpret_cast<Output_section*>(2))
1841 {
1842 if (is_pass_two)
1843 continue;
1844 // The layout for the data section was deferred, so we need
1845 // to defer the relocation section, too.
1846 const char* name = pnames + shdr.get_sh_name();
1847 this->deferred_layout_relocs_.push_back(
1848 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1849 out_sections[i] = reinterpret_cast<Output_section*>(2);
1850 out_section_offsets[i] = invalid_address;
1851 continue;
1852 }
1853 if (data_section == NULL)
1854 {
1855 out_sections[i] = NULL;
1856 out_section_offsets[i] = invalid_address;
1857 continue;
1858 }
1859
1860 Relocatable_relocs* rr = new Relocatable_relocs();
1861 this->set_relocatable_relocs(i, rr);
1862
1863 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1864 rr);
1865 out_sections[i] = os;
1866 out_section_offsets[i] = invalid_address;
1867 }
1868
1869 // When building a .gdb_index section, scan the .debug_info and
1870 // .debug_types sections.
1871 gold_assert(!is_pass_one
1872 || (debug_info_sections.empty() && debug_types_sections.empty()));
1873 for (std::vector<unsigned int>::const_iterator p
1874 = debug_info_sections.begin();
1875 p != debug_info_sections.end();
1876 ++p)
1877 {
1878 unsigned int i = *p;
1879 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1880 i, reloc_shndx[i], reloc_type[i]);
1881 }
1882 for (std::vector<unsigned int>::const_iterator p
1883 = debug_types_sections.begin();
1884 p != debug_types_sections.end();
1885 ++p)
1886 {
1887 unsigned int i = *p;
1888 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1889 i, reloc_shndx[i], reloc_type[i]);
1890 }
1891
1892 if (is_pass_two)
1893 {
1894 delete[] gc_sd->section_headers_data;
1895 delete[] gc_sd->section_names_data;
1896 delete[] gc_sd->symbols_data;
1897 delete[] gc_sd->symbol_names_data;
1898 this->set_symbols_data(NULL);
1899 }
1900 else
1901 {
1902 delete sd->section_headers;
1903 sd->section_headers = NULL;
1904 delete sd->section_names;
1905 sd->section_names = NULL;
1906 }
1907 }
1908
1909 // Layout sections whose layout was deferred while waiting for
1910 // input files from a plugin.
1911
1912 template<int size, bool big_endian>
1913 void
1914 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1915 {
1916 typename std::vector<Deferred_layout>::iterator deferred;
1917
1918 for (deferred = this->deferred_layout_.begin();
1919 deferred != this->deferred_layout_.end();
1920 ++deferred)
1921 {
1922 typename This::Shdr shdr(deferred->shdr_data_);
1923
1924 if (!parameters->options().relocatable()
1925 && deferred->name_ == ".eh_frame"
1926 && this->check_eh_frame_flags(&shdr))
1927 {
1928 // Checking is_section_included is not reliable for
1929 // .eh_frame sections, because they do not have an output
1930 // section. This is not a problem normally because we call
1931 // layout_eh_frame_section unconditionally, but when
1932 // deferring sections that is not true. We don't want to
1933 // keep all .eh_frame sections because that will cause us to
1934 // keep all sections that they refer to, which is the wrong
1935 // way around. Instead, the eh_frame code will discard
1936 // .eh_frame sections that refer to discarded sections.
1937
1938 // Reading the symbols again here may be slow.
1939 Read_symbols_data sd;
1940 this->base_read_symbols(&sd);
1941 this->layout_eh_frame_section(layout,
1942 sd.symbols->data(),
1943 sd.symbols_size,
1944 sd.symbol_names->data(),
1945 sd.symbol_names_size,
1946 deferred->shndx_,
1947 shdr,
1948 deferred->reloc_shndx_,
1949 deferred->reloc_type_);
1950 continue;
1951 }
1952
1953 // If the section is not included, it is because the garbage collector
1954 // decided it is not needed. Avoid reverting that decision.
1955 if (!this->is_section_included(deferred->shndx_))
1956 continue;
1957
1958 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1959 shdr, deferred->reloc_shndx_,
1960 deferred->reloc_type_);
1961 }
1962
1963 this->deferred_layout_.clear();
1964
1965 // Now handle the deferred relocation sections.
1966
1967 Output_sections& out_sections(this->output_sections());
1968 std::vector<Address>& out_section_offsets(this->section_offsets());
1969
1970 for (deferred = this->deferred_layout_relocs_.begin();
1971 deferred != this->deferred_layout_relocs_.end();
1972 ++deferred)
1973 {
1974 unsigned int shndx = deferred->shndx_;
1975 typename This::Shdr shdr(deferred->shdr_data_);
1976 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1977
1978 Output_section* data_section = out_sections[data_shndx];
1979 if (data_section == NULL)
1980 {
1981 out_sections[shndx] = NULL;
1982 out_section_offsets[shndx] = invalid_address;
1983 continue;
1984 }
1985
1986 Relocatable_relocs* rr = new Relocatable_relocs();
1987 this->set_relocatable_relocs(shndx, rr);
1988
1989 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1990 data_section, rr);
1991 out_sections[shndx] = os;
1992 out_section_offsets[shndx] = invalid_address;
1993 }
1994 }
1995
1996 // Add the symbols to the symbol table.
1997
1998 template<int size, bool big_endian>
1999 void
2000 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2001 Read_symbols_data* sd,
2002 Layout*)
2003 {
2004 if (sd->symbols == NULL)
2005 {
2006 gold_assert(sd->symbol_names == NULL);
2007 return;
2008 }
2009
2010 const int sym_size = This::sym_size;
2011 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2012 / sym_size);
2013 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2014 {
2015 this->error(_("size of symbols is not multiple of symbol size"));
2016 return;
2017 }
2018
2019 this->symbols_.resize(symcount);
2020
2021 const char* sym_names =
2022 reinterpret_cast<const char*>(sd->symbol_names->data());
2023 symtab->add_from_relobj(this,
2024 sd->symbols->data() + sd->external_symbols_offset,
2025 symcount, this->local_symbol_count_,
2026 sym_names, sd->symbol_names_size,
2027 &this->symbols_,
2028 &this->defined_count_);
2029
2030 delete sd->symbols;
2031 sd->symbols = NULL;
2032 delete sd->symbol_names;
2033 sd->symbol_names = NULL;
2034 }
2035
2036 // Find out if this object, that is a member of a lib group, should be included
2037 // in the link. We check every symbol defined by this object. If the symbol
2038 // table has a strong undefined reference to that symbol, we have to include
2039 // the object.
2040
2041 template<int size, bool big_endian>
2042 Archive::Should_include
2043 Sized_relobj_file<size, big_endian>::do_should_include_member(
2044 Symbol_table* symtab,
2045 Layout* layout,
2046 Read_symbols_data* sd,
2047 std::string* why)
2048 {
2049 char* tmpbuf = NULL;
2050 size_t tmpbuflen = 0;
2051 const char* sym_names =
2052 reinterpret_cast<const char*>(sd->symbol_names->data());
2053 const unsigned char* syms =
2054 sd->symbols->data() + sd->external_symbols_offset;
2055 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2056 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2057 / sym_size);
2058
2059 const unsigned char* p = syms;
2060
2061 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2062 {
2063 elfcpp::Sym<size, big_endian> sym(p);
2064 unsigned int st_shndx = sym.get_st_shndx();
2065 if (st_shndx == elfcpp::SHN_UNDEF)
2066 continue;
2067
2068 unsigned int st_name = sym.get_st_name();
2069 const char* name = sym_names + st_name;
2070 Symbol* symbol;
2071 Archive::Should_include t = Archive::should_include_member(symtab,
2072 layout,
2073 name,
2074 &symbol, why,
2075 &tmpbuf,
2076 &tmpbuflen);
2077 if (t == Archive::SHOULD_INCLUDE_YES)
2078 {
2079 if (tmpbuf != NULL)
2080 free(tmpbuf);
2081 return t;
2082 }
2083 }
2084 if (tmpbuf != NULL)
2085 free(tmpbuf);
2086 return Archive::SHOULD_INCLUDE_UNKNOWN;
2087 }
2088
2089 // Iterate over global defined symbols, calling a visitor class V for each.
2090
2091 template<int size, bool big_endian>
2092 void
2093 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2094 Read_symbols_data* sd,
2095 Library_base::Symbol_visitor_base* v)
2096 {
2097 const char* sym_names =
2098 reinterpret_cast<const char*>(sd->symbol_names->data());
2099 const unsigned char* syms =
2100 sd->symbols->data() + sd->external_symbols_offset;
2101 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2102 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2103 / sym_size);
2104 const unsigned char* p = syms;
2105
2106 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2107 {
2108 elfcpp::Sym<size, big_endian> sym(p);
2109 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2110 v->visit(sym_names + sym.get_st_name());
2111 }
2112 }
2113
2114 // Return whether the local symbol SYMNDX has a PLT offset.
2115
2116 template<int size, bool big_endian>
2117 bool
2118 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2119 unsigned int symndx) const
2120 {
2121 typename Local_plt_offsets::const_iterator p =
2122 this->local_plt_offsets_.find(symndx);
2123 return p != this->local_plt_offsets_.end();
2124 }
2125
2126 // Get the PLT offset of a local symbol.
2127
2128 template<int size, bool big_endian>
2129 unsigned int
2130 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2131 unsigned int symndx) const
2132 {
2133 typename Local_plt_offsets::const_iterator p =
2134 this->local_plt_offsets_.find(symndx);
2135 gold_assert(p != this->local_plt_offsets_.end());
2136 return p->second;
2137 }
2138
2139 // Set the PLT offset of a local symbol.
2140
2141 template<int size, bool big_endian>
2142 void
2143 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2144 unsigned int symndx, unsigned int plt_offset)
2145 {
2146 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2147 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2148 gold_assert(ins.second);
2149 }
2150
2151 // First pass over the local symbols. Here we add their names to
2152 // *POOL and *DYNPOOL, and we store the symbol value in
2153 // THIS->LOCAL_VALUES_. This function is always called from a
2154 // singleton thread. This is followed by a call to
2155 // finalize_local_symbols.
2156
2157 template<int size, bool big_endian>
2158 void
2159 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2160 Stringpool* dynpool)
2161 {
2162 gold_assert(this->symtab_shndx_ != -1U);
2163 if (this->symtab_shndx_ == 0)
2164 {
2165 // This object has no symbols. Weird but legal.
2166 return;
2167 }
2168
2169 // Read the symbol table section header.
2170 const unsigned int symtab_shndx = this->symtab_shndx_;
2171 typename This::Shdr symtabshdr(this,
2172 this->elf_file_.section_header(symtab_shndx));
2173 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2174
2175 // Read the local symbols.
2176 const int sym_size = This::sym_size;
2177 const unsigned int loccount = this->local_symbol_count_;
2178 gold_assert(loccount == symtabshdr.get_sh_info());
2179 off_t locsize = loccount * sym_size;
2180 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2181 locsize, true, true);
2182
2183 // Read the symbol names.
2184 const unsigned int strtab_shndx =
2185 this->adjust_shndx(symtabshdr.get_sh_link());
2186 section_size_type strtab_size;
2187 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2188 &strtab_size,
2189 true);
2190 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2191
2192 // Loop over the local symbols.
2193
2194 const Output_sections& out_sections(this->output_sections());
2195 std::vector<Address>& out_section_offsets(this->section_offsets());
2196 unsigned int shnum = this->shnum();
2197 unsigned int count = 0;
2198 unsigned int dyncount = 0;
2199 // Skip the first, dummy, symbol.
2200 psyms += sym_size;
2201 bool strip_all = parameters->options().strip_all();
2202 bool discard_all = parameters->options().discard_all();
2203 bool discard_locals = parameters->options().discard_locals();
2204 bool discard_sec_merge = parameters->options().discard_sec_merge();
2205 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2206 {
2207 elfcpp::Sym<size, big_endian> sym(psyms);
2208
2209 Symbol_value<size>& lv(this->local_values_[i]);
2210
2211 bool is_ordinary;
2212 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2213 &is_ordinary);
2214 lv.set_input_shndx(shndx, is_ordinary);
2215
2216 if (sym.get_st_type() == elfcpp::STT_SECTION)
2217 lv.set_is_section_symbol();
2218 else if (sym.get_st_type() == elfcpp::STT_TLS)
2219 lv.set_is_tls_symbol();
2220 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2221 lv.set_is_ifunc_symbol();
2222
2223 // Save the input symbol value for use in do_finalize_local_symbols().
2224 lv.set_input_value(sym.get_st_value());
2225
2226 // Decide whether this symbol should go into the output file.
2227
2228 if (is_ordinary
2229 && ((shndx < shnum && out_sections[shndx] == NULL)
2230 || shndx == this->discarded_eh_frame_shndx_))
2231 {
2232 lv.set_no_output_symtab_entry();
2233 gold_assert(!lv.needs_output_dynsym_entry());
2234 continue;
2235 }
2236
2237 if (sym.get_st_type() == elfcpp::STT_SECTION
2238 || !this->adjust_local_symbol(&lv))
2239 {
2240 lv.set_no_output_symtab_entry();
2241 gold_assert(!lv.needs_output_dynsym_entry());
2242 continue;
2243 }
2244
2245 if (sym.get_st_name() >= strtab_size)
2246 {
2247 this->error(_("local symbol %u section name out of range: %u >= %u"),
2248 i, sym.get_st_name(),
2249 static_cast<unsigned int>(strtab_size));
2250 lv.set_no_output_symtab_entry();
2251 continue;
2252 }
2253
2254 const char* name = pnames + sym.get_st_name();
2255
2256 // If needed, add the symbol to the dynamic symbol table string pool.
2257 if (lv.needs_output_dynsym_entry())
2258 {
2259 dynpool->add(name, true, NULL);
2260 ++dyncount;
2261 }
2262
2263 if (strip_all
2264 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2265 {
2266 lv.set_no_output_symtab_entry();
2267 continue;
2268 }
2269
2270 // By default, discard temporary local symbols in merge sections.
2271 // If --discard-locals option is used, discard all temporary local
2272 // symbols. These symbols start with system-specific local label
2273 // prefixes, typically .L for ELF system. We want to be compatible
2274 // with GNU ld so here we essentially use the same check in
2275 // bfd_is_local_label(). The code is different because we already
2276 // know that:
2277 //
2278 // - the symbol is local and thus cannot have global or weak binding.
2279 // - the symbol is not a section symbol.
2280 // - the symbol has a name.
2281 //
2282 // We do not discard a symbol if it needs a dynamic symbol entry.
2283 if ((discard_locals
2284 || (discard_sec_merge
2285 && is_ordinary
2286 && out_section_offsets[shndx] == invalid_address))
2287 && sym.get_st_type() != elfcpp::STT_FILE
2288 && !lv.needs_output_dynsym_entry()
2289 && lv.may_be_discarded_from_output_symtab()
2290 && parameters->target().is_local_label_name(name))
2291 {
2292 lv.set_no_output_symtab_entry();
2293 continue;
2294 }
2295
2296 // Discard the local symbol if -retain_symbols_file is specified
2297 // and the local symbol is not in that file.
2298 if (!parameters->options().should_retain_symbol(name))
2299 {
2300 lv.set_no_output_symtab_entry();
2301 continue;
2302 }
2303
2304 // Add the symbol to the symbol table string pool.
2305 pool->add(name, true, NULL);
2306 ++count;
2307 }
2308
2309 this->output_local_symbol_count_ = count;
2310 this->output_local_dynsym_count_ = dyncount;
2311 }
2312
2313 // Compute the final value of a local symbol.
2314
2315 template<int size, bool big_endian>
2316 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2317 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2318 unsigned int r_sym,
2319 const Symbol_value<size>* lv_in,
2320 Symbol_value<size>* lv_out,
2321 bool relocatable,
2322 const Output_sections& out_sections,
2323 const std::vector<Address>& out_offsets,
2324 const Symbol_table* symtab)
2325 {
2326 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2327 // we may have a memory leak.
2328 gold_assert(lv_out->has_output_value());
2329
2330 bool is_ordinary;
2331 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2332
2333 // Set the output symbol value.
2334
2335 if (!is_ordinary)
2336 {
2337 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2338 lv_out->set_output_value(lv_in->input_value());
2339 else
2340 {
2341 this->error(_("unknown section index %u for local symbol %u"),
2342 shndx, r_sym);
2343 lv_out->set_output_value(0);
2344 return This::CFLV_ERROR;
2345 }
2346 }
2347 else
2348 {
2349 if (shndx >= this->shnum())
2350 {
2351 this->error(_("local symbol %u section index %u out of range"),
2352 r_sym, shndx);
2353 lv_out->set_output_value(0);
2354 return This::CFLV_ERROR;
2355 }
2356
2357 Output_section* os = out_sections[shndx];
2358 Address secoffset = out_offsets[shndx];
2359 if (symtab->is_section_folded(this, shndx))
2360 {
2361 gold_assert(os == NULL && secoffset == invalid_address);
2362 // Get the os of the section it is folded onto.
2363 Section_id folded = symtab->icf()->get_folded_section(this,
2364 shndx);
2365 gold_assert(folded.first != NULL);
2366 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2367 <Sized_relobj_file<size, big_endian>*>(folded.first);
2368 os = folded_obj->output_section(folded.second);
2369 gold_assert(os != NULL);
2370 secoffset = folded_obj->get_output_section_offset(folded.second);
2371
2372 // This could be a relaxed input section.
2373 if (secoffset == invalid_address)
2374 {
2375 const Output_relaxed_input_section* relaxed_section =
2376 os->find_relaxed_input_section(folded_obj, folded.second);
2377 gold_assert(relaxed_section != NULL);
2378 secoffset = relaxed_section->address() - os->address();
2379 }
2380 }
2381
2382 if (os == NULL)
2383 {
2384 // This local symbol belongs to a section we are discarding.
2385 // In some cases when applying relocations later, we will
2386 // attempt to match it to the corresponding kept section,
2387 // so we leave the input value unchanged here.
2388 return This::CFLV_DISCARDED;
2389 }
2390 else if (secoffset == invalid_address)
2391 {
2392 uint64_t start;
2393
2394 // This is a SHF_MERGE section or one which otherwise
2395 // requires special handling.
2396 if (shndx == this->discarded_eh_frame_shndx_)
2397 {
2398 // This local symbol belongs to a discarded .eh_frame
2399 // section. Just treat it like the case in which
2400 // os == NULL above.
2401 gold_assert(this->has_eh_frame_);
2402 return This::CFLV_DISCARDED;
2403 }
2404 else if (!lv_in->is_section_symbol())
2405 {
2406 // This is not a section symbol. We can determine
2407 // the final value now.
2408 uint64_t value =
2409 os->output_address(this, shndx, lv_in->input_value());
2410 if (relocatable)
2411 value -= os->address();
2412 lv_out->set_output_value(value);
2413 }
2414 else if (!os->find_starting_output_address(this, shndx, &start))
2415 {
2416 // This is a section symbol, but apparently not one in a
2417 // merged section. First check to see if this is a relaxed
2418 // input section. If so, use its address. Otherwise just
2419 // use the start of the output section. This happens with
2420 // relocatable links when the input object has section
2421 // symbols for arbitrary non-merge sections.
2422 const Output_section_data* posd =
2423 os->find_relaxed_input_section(this, shndx);
2424 if (posd != NULL)
2425 {
2426 uint64_t value = posd->address();
2427 if (relocatable)
2428 value -= os->address();
2429 lv_out->set_output_value(value);
2430 }
2431 else
2432 lv_out->set_output_value(os->address());
2433 }
2434 else
2435 {
2436 // We have to consider the addend to determine the
2437 // value to use in a relocation. START is the start
2438 // of this input section. If we are doing a relocatable
2439 // link, use offset from start output section instead of
2440 // address.
2441 Address adjusted_start =
2442 relocatable ? start - os->address() : start;
2443 Merged_symbol_value<size>* msv =
2444 new Merged_symbol_value<size>(lv_in->input_value(),
2445 adjusted_start);
2446 lv_out->set_merged_symbol_value(msv);
2447 }
2448 }
2449 else if (lv_in->is_tls_symbol()
2450 || (lv_in->is_section_symbol()
2451 && (os->flags() & elfcpp::SHF_TLS)))
2452 lv_out->set_output_value(os->tls_offset()
2453 + secoffset
2454 + lv_in->input_value());
2455 else
2456 lv_out->set_output_value((relocatable ? 0 : os->address())
2457 + secoffset
2458 + lv_in->input_value());
2459 }
2460 return This::CFLV_OK;
2461 }
2462
2463 // Compute final local symbol value. R_SYM is the index of a local
2464 // symbol in symbol table. LV points to a symbol value, which is
2465 // expected to hold the input value and to be over-written by the
2466 // final value. SYMTAB points to a symbol table. Some targets may want
2467 // to know would-be-finalized local symbol values in relaxation.
2468 // Hence we provide this method. Since this method updates *LV, a
2469 // callee should make a copy of the original local symbol value and
2470 // use the copy instead of modifying an object's local symbols before
2471 // everything is finalized. The caller should also free up any allocated
2472 // memory in the return value in *LV.
2473 template<int size, bool big_endian>
2474 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2475 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2476 unsigned int r_sym,
2477 const Symbol_value<size>* lv_in,
2478 Symbol_value<size>* lv_out,
2479 const Symbol_table* symtab)
2480 {
2481 // This is just a wrapper of compute_final_local_value_internal.
2482 const bool relocatable = parameters->options().relocatable();
2483 const Output_sections& out_sections(this->output_sections());
2484 const std::vector<Address>& out_offsets(this->section_offsets());
2485 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2486 relocatable, out_sections,
2487 out_offsets, symtab);
2488 }
2489
2490 // Finalize the local symbols. Here we set the final value in
2491 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2492 // This function is always called from a singleton thread. The actual
2493 // output of the local symbols will occur in a separate task.
2494
2495 template<int size, bool big_endian>
2496 unsigned int
2497 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2498 unsigned int index,
2499 off_t off,
2500 Symbol_table* symtab)
2501 {
2502 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2503
2504 const unsigned int loccount = this->local_symbol_count_;
2505 this->local_symbol_offset_ = off;
2506
2507 const bool relocatable = parameters->options().relocatable();
2508 const Output_sections& out_sections(this->output_sections());
2509 const std::vector<Address>& out_offsets(this->section_offsets());
2510
2511 for (unsigned int i = 1; i < loccount; ++i)
2512 {
2513 Symbol_value<size>* lv = &this->local_values_[i];
2514
2515 Compute_final_local_value_status cflv_status =
2516 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2517 out_sections, out_offsets,
2518 symtab);
2519 switch (cflv_status)
2520 {
2521 case CFLV_OK:
2522 if (!lv->is_output_symtab_index_set())
2523 {
2524 lv->set_output_symtab_index(index);
2525 ++index;
2526 }
2527 break;
2528 case CFLV_DISCARDED:
2529 case CFLV_ERROR:
2530 // Do nothing.
2531 break;
2532 default:
2533 gold_unreachable();
2534 }
2535 }
2536 return index;
2537 }
2538
2539 // Set the output dynamic symbol table indexes for the local variables.
2540
2541 template<int size, bool big_endian>
2542 unsigned int
2543 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2544 unsigned int index)
2545 {
2546 const unsigned int loccount = this->local_symbol_count_;
2547 for (unsigned int i = 1; i < loccount; ++i)
2548 {
2549 Symbol_value<size>& lv(this->local_values_[i]);
2550 if (lv.needs_output_dynsym_entry())
2551 {
2552 lv.set_output_dynsym_index(index);
2553 ++index;
2554 }
2555 }
2556 return index;
2557 }
2558
2559 // Set the offset where local dynamic symbol information will be stored.
2560 // Returns the count of local symbols contributed to the symbol table by
2561 // this object.
2562
2563 template<int size, bool big_endian>
2564 unsigned int
2565 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2566 {
2567 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2568 this->local_dynsym_offset_ = off;
2569 return this->output_local_dynsym_count_;
2570 }
2571
2572 // If Symbols_data is not NULL get the section flags from here otherwise
2573 // get it from the file.
2574
2575 template<int size, bool big_endian>
2576 uint64_t
2577 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2578 {
2579 Symbols_data* sd = this->get_symbols_data();
2580 if (sd != NULL)
2581 {
2582 const unsigned char* pshdrs = sd->section_headers_data
2583 + This::shdr_size * shndx;
2584 typename This::Shdr shdr(pshdrs);
2585 return shdr.get_sh_flags();
2586 }
2587 // If sd is NULL, read the section header from the file.
2588 return this->elf_file_.section_flags(shndx);
2589 }
2590
2591 // Get the section's ent size from Symbols_data. Called by get_section_contents
2592 // in icf.cc
2593
2594 template<int size, bool big_endian>
2595 uint64_t
2596 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2597 {
2598 Symbols_data* sd = this->get_symbols_data();
2599 gold_assert(sd != NULL);
2600
2601 const unsigned char* pshdrs = sd->section_headers_data
2602 + This::shdr_size * shndx;
2603 typename This::Shdr shdr(pshdrs);
2604 return shdr.get_sh_entsize();
2605 }
2606
2607 // Write out the local symbols.
2608
2609 template<int size, bool big_endian>
2610 void
2611 Sized_relobj_file<size, big_endian>::write_local_symbols(
2612 Output_file* of,
2613 const Stringpool* sympool,
2614 const Stringpool* dynpool,
2615 Output_symtab_xindex* symtab_xindex,
2616 Output_symtab_xindex* dynsym_xindex,
2617 off_t symtab_off)
2618 {
2619 const bool strip_all = parameters->options().strip_all();
2620 if (strip_all)
2621 {
2622 if (this->output_local_dynsym_count_ == 0)
2623 return;
2624 this->output_local_symbol_count_ = 0;
2625 }
2626
2627 gold_assert(this->symtab_shndx_ != -1U);
2628 if (this->symtab_shndx_ == 0)
2629 {
2630 // This object has no symbols. Weird but legal.
2631 return;
2632 }
2633
2634 // Read the symbol table section header.
2635 const unsigned int symtab_shndx = this->symtab_shndx_;
2636 typename This::Shdr symtabshdr(this,
2637 this->elf_file_.section_header(symtab_shndx));
2638 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2639 const unsigned int loccount = this->local_symbol_count_;
2640 gold_assert(loccount == symtabshdr.get_sh_info());
2641
2642 // Read the local symbols.
2643 const int sym_size = This::sym_size;
2644 off_t locsize = loccount * sym_size;
2645 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2646 locsize, true, false);
2647
2648 // Read the symbol names.
2649 const unsigned int strtab_shndx =
2650 this->adjust_shndx(symtabshdr.get_sh_link());
2651 section_size_type strtab_size;
2652 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2653 &strtab_size,
2654 false);
2655 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2656
2657 // Get views into the output file for the portions of the symbol table
2658 // and the dynamic symbol table that we will be writing.
2659 off_t output_size = this->output_local_symbol_count_ * sym_size;
2660 unsigned char* oview = NULL;
2661 if (output_size > 0)
2662 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2663 output_size);
2664
2665 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2666 unsigned char* dyn_oview = NULL;
2667 if (dyn_output_size > 0)
2668 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2669 dyn_output_size);
2670
2671 const Output_sections& out_sections(this->output_sections());
2672
2673 gold_assert(this->local_values_.size() == loccount);
2674
2675 unsigned char* ov = oview;
2676 unsigned char* dyn_ov = dyn_oview;
2677 psyms += sym_size;
2678 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2679 {
2680 elfcpp::Sym<size, big_endian> isym(psyms);
2681
2682 Symbol_value<size>& lv(this->local_values_[i]);
2683
2684 bool is_ordinary;
2685 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2686 &is_ordinary);
2687 if (is_ordinary)
2688 {
2689 gold_assert(st_shndx < out_sections.size());
2690 if (out_sections[st_shndx] == NULL)
2691 continue;
2692 st_shndx = out_sections[st_shndx]->out_shndx();
2693 if (st_shndx >= elfcpp::SHN_LORESERVE)
2694 {
2695 if (lv.has_output_symtab_entry())
2696 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2697 if (lv.has_output_dynsym_entry())
2698 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2699 st_shndx = elfcpp::SHN_XINDEX;
2700 }
2701 }
2702
2703 // Write the symbol to the output symbol table.
2704 if (lv.has_output_symtab_entry())
2705 {
2706 elfcpp::Sym_write<size, big_endian> osym(ov);
2707
2708 gold_assert(isym.get_st_name() < strtab_size);
2709 const char* name = pnames + isym.get_st_name();
2710 osym.put_st_name(sympool->get_offset(name));
2711 osym.put_st_value(lv.value(this, 0));
2712 osym.put_st_size(isym.get_st_size());
2713 osym.put_st_info(isym.get_st_info());
2714 osym.put_st_other(isym.get_st_other());
2715 osym.put_st_shndx(st_shndx);
2716
2717 ov += sym_size;
2718 }
2719
2720 // Write the symbol to the output dynamic symbol table.
2721 if (lv.has_output_dynsym_entry())
2722 {
2723 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2724 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2725
2726 gold_assert(isym.get_st_name() < strtab_size);
2727 const char* name = pnames + isym.get_st_name();
2728 osym.put_st_name(dynpool->get_offset(name));
2729 osym.put_st_value(lv.value(this, 0));
2730 osym.put_st_size(isym.get_st_size());
2731 osym.put_st_info(isym.get_st_info());
2732 osym.put_st_other(isym.get_st_other());
2733 osym.put_st_shndx(st_shndx);
2734
2735 dyn_ov += sym_size;
2736 }
2737 }
2738
2739
2740 if (output_size > 0)
2741 {
2742 gold_assert(ov - oview == output_size);
2743 of->write_output_view(symtab_off + this->local_symbol_offset_,
2744 output_size, oview);
2745 }
2746
2747 if (dyn_output_size > 0)
2748 {
2749 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2750 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2751 dyn_oview);
2752 }
2753 }
2754
2755 // Set *INFO to symbolic information about the offset OFFSET in the
2756 // section SHNDX. Return true if we found something, false if we
2757 // found nothing.
2758
2759 template<int size, bool big_endian>
2760 bool
2761 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2762 unsigned int shndx,
2763 off_t offset,
2764 Symbol_location_info* info)
2765 {
2766 if (this->symtab_shndx_ == 0)
2767 return false;
2768
2769 section_size_type symbols_size;
2770 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2771 &symbols_size,
2772 false);
2773
2774 unsigned int symbol_names_shndx =
2775 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2776 section_size_type names_size;
2777 const unsigned char* symbol_names_u =
2778 this->section_contents(symbol_names_shndx, &names_size, false);
2779 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2780
2781 const int sym_size = This::sym_size;
2782 const size_t count = symbols_size / sym_size;
2783
2784 const unsigned char* p = symbols;
2785 for (size_t i = 0; i < count; ++i, p += sym_size)
2786 {
2787 elfcpp::Sym<size, big_endian> sym(p);
2788
2789 if (sym.get_st_type() == elfcpp::STT_FILE)
2790 {
2791 if (sym.get_st_name() >= names_size)
2792 info->source_file = "(invalid)";
2793 else
2794 info->source_file = symbol_names + sym.get_st_name();
2795 continue;
2796 }
2797
2798 bool is_ordinary;
2799 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2800 &is_ordinary);
2801 if (is_ordinary
2802 && st_shndx == shndx
2803 && static_cast<off_t>(sym.get_st_value()) <= offset
2804 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2805 > offset))
2806 {
2807 info->enclosing_symbol_type = sym.get_st_type();
2808 if (sym.get_st_name() > names_size)
2809 info->enclosing_symbol_name = "(invalid)";
2810 else
2811 {
2812 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2813 if (parameters->options().do_demangle())
2814 {
2815 char* demangled_name = cplus_demangle(
2816 info->enclosing_symbol_name.c_str(),
2817 DMGL_ANSI | DMGL_PARAMS);
2818 if (demangled_name != NULL)
2819 {
2820 info->enclosing_symbol_name.assign(demangled_name);
2821 free(demangled_name);
2822 }
2823 }
2824 }
2825 return true;
2826 }
2827 }
2828
2829 return false;
2830 }
2831
2832 // Look for a kept section corresponding to the given discarded section,
2833 // and return its output address. This is used only for relocations in
2834 // debugging sections. If we can't find the kept section, return 0.
2835
2836 template<int size, bool big_endian>
2837 typename Sized_relobj_file<size, big_endian>::Address
2838 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2839 unsigned int shndx,
2840 bool* found) const
2841 {
2842 Relobj* kept_object;
2843 unsigned int kept_shndx;
2844 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2845 {
2846 Sized_relobj_file<size, big_endian>* kept_relobj =
2847 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2848 Output_section* os = kept_relobj->output_section(kept_shndx);
2849 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2850 if (os != NULL && offset != invalid_address)
2851 {
2852 *found = true;
2853 return os->address() + offset;
2854 }
2855 }
2856 *found = false;
2857 return 0;
2858 }
2859
2860 // Get symbol counts.
2861
2862 template<int size, bool big_endian>
2863 void
2864 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2865 const Symbol_table*,
2866 size_t* defined,
2867 size_t* used) const
2868 {
2869 *defined = this->defined_count_;
2870 size_t count = 0;
2871 for (typename Symbols::const_iterator p = this->symbols_.begin();
2872 p != this->symbols_.end();
2873 ++p)
2874 if (*p != NULL
2875 && (*p)->source() == Symbol::FROM_OBJECT
2876 && (*p)->object() == this
2877 && (*p)->is_defined())
2878 ++count;
2879 *used = count;
2880 }
2881
2882 // Return a view of the decompressed contents of a section. Set *PLEN
2883 // to the size. Set *IS_NEW to true if the contents need to be freed
2884 // by the caller.
2885
2886 const unsigned char*
2887 Object::decompressed_section_contents(
2888 unsigned int shndx,
2889 section_size_type* plen,
2890 bool* is_new)
2891 {
2892 section_size_type buffer_size;
2893 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2894 false);
2895
2896 if (this->compressed_sections_ == NULL)
2897 {
2898 *plen = buffer_size;
2899 *is_new = false;
2900 return buffer;
2901 }
2902
2903 Compressed_section_map::const_iterator p =
2904 this->compressed_sections_->find(shndx);
2905 if (p == this->compressed_sections_->end())
2906 {
2907 *plen = buffer_size;
2908 *is_new = false;
2909 return buffer;
2910 }
2911
2912 section_size_type uncompressed_size = p->second.size;
2913 if (p->second.contents != NULL)
2914 {
2915 *plen = uncompressed_size;
2916 *is_new = false;
2917 return p->second.contents;
2918 }
2919
2920 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2921 if (!decompress_input_section(buffer,
2922 buffer_size,
2923 uncompressed_data,
2924 uncompressed_size,
2925 elfsize(),
2926 is_big_endian(),
2927 p->second.flag))
2928 this->error(_("could not decompress section %s"),
2929 this->do_section_name(shndx).c_str());
2930
2931 // We could cache the results in p->second.contents and store
2932 // false in *IS_NEW, but build_compressed_section_map() would
2933 // have done so if it had expected it to be profitable. If
2934 // we reach this point, we expect to need the contents only
2935 // once in this pass.
2936 *plen = uncompressed_size;
2937 *is_new = true;
2938 return uncompressed_data;
2939 }
2940
2941 // Discard any buffers of uncompressed sections. This is done
2942 // at the end of the Add_symbols task.
2943
2944 void
2945 Object::discard_decompressed_sections()
2946 {
2947 if (this->compressed_sections_ == NULL)
2948 return;
2949
2950 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2951 p != this->compressed_sections_->end();
2952 ++p)
2953 {
2954 if (p->second.contents != NULL)
2955 {
2956 delete[] p->second.contents;
2957 p->second.contents = NULL;
2958 }
2959 }
2960 }
2961
2962 // Input_objects methods.
2963
2964 // Add a regular relocatable object to the list. Return false if this
2965 // object should be ignored.
2966
2967 bool
2968 Input_objects::add_object(Object* obj)
2969 {
2970 // Print the filename if the -t/--trace option is selected.
2971 if (parameters->options().trace())
2972 gold_info("%s", obj->name().c_str());
2973
2974 if (!obj->is_dynamic())
2975 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2976 else
2977 {
2978 // See if this is a duplicate SONAME.
2979 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2980 const char* soname = dynobj->soname();
2981
2982 Unordered_map<std::string, Object*>::value_type val(soname, obj);
2983 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
2984 this->sonames_.insert(val);
2985 if (!ins.second)
2986 {
2987 // We have already seen a dynamic object with this soname.
2988 // If any instances of this object on the command line have
2989 // the --no-as-needed flag, make sure the one we keep is
2990 // marked so.
2991 if (!obj->as_needed())
2992 {
2993 gold_assert(ins.first->second != NULL);
2994 ins.first->second->clear_as_needed();
2995 }
2996 return false;
2997 }
2998
2999 this->dynobj_list_.push_back(dynobj);
3000 }
3001
3002 // Add this object to the cross-referencer if requested.
3003 if (parameters->options().user_set_print_symbol_counts()
3004 || parameters->options().cref())
3005 {
3006 if (this->cref_ == NULL)
3007 this->cref_ = new Cref();
3008 this->cref_->add_object(obj);
3009 }
3010
3011 return true;
3012 }
3013
3014 // For each dynamic object, record whether we've seen all of its
3015 // explicit dependencies.
3016
3017 void
3018 Input_objects::check_dynamic_dependencies() const
3019 {
3020 bool issued_copy_dt_needed_error = false;
3021 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3022 p != this->dynobj_list_.end();
3023 ++p)
3024 {
3025 const Dynobj::Needed& needed((*p)->needed());
3026 bool found_all = true;
3027 Dynobj::Needed::const_iterator pneeded;
3028 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3029 {
3030 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3031 {
3032 found_all = false;
3033 break;
3034 }
3035 }
3036 (*p)->set_has_unknown_needed_entries(!found_all);
3037
3038 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3039 // that gold does not support. However, they cause no trouble
3040 // unless there is a DT_NEEDED entry that we don't know about;
3041 // warn only in that case.
3042 if (!found_all
3043 && !issued_copy_dt_needed_error
3044 && (parameters->options().copy_dt_needed_entries()
3045 || parameters->options().add_needed()))
3046 {
3047 const char* optname;
3048 if (parameters->options().copy_dt_needed_entries())
3049 optname = "--copy-dt-needed-entries";
3050 else
3051 optname = "--add-needed";
3052 gold_error(_("%s is not supported but is required for %s in %s"),
3053 optname, (*pneeded).c_str(), (*p)->name().c_str());
3054 issued_copy_dt_needed_error = true;
3055 }
3056 }
3057 }
3058
3059 // Start processing an archive.
3060
3061 void
3062 Input_objects::archive_start(Archive* archive)
3063 {
3064 if (parameters->options().user_set_print_symbol_counts()
3065 || parameters->options().cref())
3066 {
3067 if (this->cref_ == NULL)
3068 this->cref_ = new Cref();
3069 this->cref_->add_archive_start(archive);
3070 }
3071 }
3072
3073 // Stop processing an archive.
3074
3075 void
3076 Input_objects::archive_stop(Archive* archive)
3077 {
3078 if (parameters->options().user_set_print_symbol_counts()
3079 || parameters->options().cref())
3080 this->cref_->add_archive_stop(archive);
3081 }
3082
3083 // Print symbol counts
3084
3085 void
3086 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3087 {
3088 if (parameters->options().user_set_print_symbol_counts()
3089 && this->cref_ != NULL)
3090 this->cref_->print_symbol_counts(symtab);
3091 }
3092
3093 // Print a cross reference table.
3094
3095 void
3096 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3097 {
3098 if (parameters->options().cref() && this->cref_ != NULL)
3099 this->cref_->print_cref(symtab, f);
3100 }
3101
3102 // Relocate_info methods.
3103
3104 // Return a string describing the location of a relocation when file
3105 // and lineno information is not available. This is only used in
3106 // error messages.
3107
3108 template<int size, bool big_endian>
3109 std::string
3110 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3111 {
3112 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3113 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3114 if (!ret.empty())
3115 return ret;
3116
3117 ret = this->object->name();
3118
3119 Symbol_location_info info;
3120 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3121 {
3122 if (!info.source_file.empty())
3123 {
3124 ret += ":";
3125 ret += info.source_file;
3126 }
3127 ret += ":";
3128 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3129 ret += _("function ");
3130 ret += info.enclosing_symbol_name;
3131 return ret;
3132 }
3133
3134 ret += "(";
3135 ret += this->object->section_name(this->data_shndx);
3136 char buf[100];
3137 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3138 ret += buf;
3139 return ret;
3140 }
3141
3142 } // End namespace gold.
3143
3144 namespace
3145 {
3146
3147 using namespace gold;
3148
3149 // Read an ELF file with the header and return the appropriate
3150 // instance of Object.
3151
3152 template<int size, bool big_endian>
3153 Object*
3154 make_elf_sized_object(const std::string& name, Input_file* input_file,
3155 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3156 bool* punconfigured)
3157 {
3158 Target* target = select_target(input_file, offset,
3159 ehdr.get_e_machine(), size, big_endian,
3160 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3161 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3162 if (target == NULL)
3163 gold_fatal(_("%s: unsupported ELF machine number %d"),
3164 name.c_str(), ehdr.get_e_machine());
3165
3166 if (!parameters->target_valid())
3167 set_parameters_target(target);
3168 else if (target != &parameters->target())
3169 {
3170 if (punconfigured != NULL)
3171 *punconfigured = true;
3172 else
3173 gold_error(_("%s: incompatible target"), name.c_str());
3174 return NULL;
3175 }
3176
3177 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3178 ehdr);
3179 }
3180
3181 } // End anonymous namespace.
3182
3183 namespace gold
3184 {
3185
3186 // Return whether INPUT_FILE is an ELF object.
3187
3188 bool
3189 is_elf_object(Input_file* input_file, off_t offset,
3190 const unsigned char** start, int* read_size)
3191 {
3192 off_t filesize = input_file->file().filesize();
3193 int want = elfcpp::Elf_recognizer::max_header_size;
3194 if (filesize - offset < want)
3195 want = filesize - offset;
3196
3197 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3198 true, false);
3199 *start = p;
3200 *read_size = want;
3201
3202 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3203 }
3204
3205 // Read an ELF file and return the appropriate instance of Object.
3206
3207 Object*
3208 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3209 const unsigned char* p, section_offset_type bytes,
3210 bool* punconfigured)
3211 {
3212 if (punconfigured != NULL)
3213 *punconfigured = false;
3214
3215 std::string error;
3216 bool big_endian = false;
3217 int size = 0;
3218 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3219 &big_endian, &error))
3220 {
3221 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3222 return NULL;
3223 }
3224
3225 if (size == 32)
3226 {
3227 if (big_endian)
3228 {
3229 #ifdef HAVE_TARGET_32_BIG
3230 elfcpp::Ehdr<32, true> ehdr(p);
3231 return make_elf_sized_object<32, true>(name, input_file,
3232 offset, ehdr, punconfigured);
3233 #else
3234 if (punconfigured != NULL)
3235 *punconfigured = true;
3236 else
3237 gold_error(_("%s: not configured to support "
3238 "32-bit big-endian object"),
3239 name.c_str());
3240 return NULL;
3241 #endif
3242 }
3243 else
3244 {
3245 #ifdef HAVE_TARGET_32_LITTLE
3246 elfcpp::Ehdr<32, false> ehdr(p);
3247 return make_elf_sized_object<32, false>(name, input_file,
3248 offset, ehdr, punconfigured);
3249 #else
3250 if (punconfigured != NULL)
3251 *punconfigured = true;
3252 else
3253 gold_error(_("%s: not configured to support "
3254 "32-bit little-endian object"),
3255 name.c_str());
3256 return NULL;
3257 #endif
3258 }
3259 }
3260 else if (size == 64)
3261 {
3262 if (big_endian)
3263 {
3264 #ifdef HAVE_TARGET_64_BIG
3265 elfcpp::Ehdr<64, true> ehdr(p);
3266 return make_elf_sized_object<64, true>(name, input_file,
3267 offset, ehdr, punconfigured);
3268 #else
3269 if (punconfigured != NULL)
3270 *punconfigured = true;
3271 else
3272 gold_error(_("%s: not configured to support "
3273 "64-bit big-endian object"),
3274 name.c_str());
3275 return NULL;
3276 #endif
3277 }
3278 else
3279 {
3280 #ifdef HAVE_TARGET_64_LITTLE
3281 elfcpp::Ehdr<64, false> ehdr(p);
3282 return make_elf_sized_object<64, false>(name, input_file,
3283 offset, ehdr, punconfigured);
3284 #else
3285 if (punconfigured != NULL)
3286 *punconfigured = true;
3287 else
3288 gold_error(_("%s: not configured to support "
3289 "64-bit little-endian object"),
3290 name.c_str());
3291 return NULL;
3292 #endif
3293 }
3294 }
3295 else
3296 gold_unreachable();
3297 }
3298
3299 // Instantiate the templates we need.
3300
3301 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3302 template
3303 void
3304 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3305 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3306 Unordered_map<section_offset_type,
3307 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3308 #endif
3309
3310 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3311 template
3312 void
3313 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3314 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3315 Unordered_map<section_offset_type,
3316 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3317 #endif
3318
3319 #ifdef HAVE_TARGET_32_LITTLE
3320 template
3321 void
3322 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3323 Read_symbols_data*);
3324 template
3325 const unsigned char*
3326 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3327 section_size_type, const unsigned char*) const;
3328 #endif
3329
3330 #ifdef HAVE_TARGET_32_BIG
3331 template
3332 void
3333 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3334 Read_symbols_data*);
3335 template
3336 const unsigned char*
3337 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3338 section_size_type, const unsigned char*) const;
3339 #endif
3340
3341 #ifdef HAVE_TARGET_64_LITTLE
3342 template
3343 void
3344 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3345 Read_symbols_data*);
3346 template
3347 const unsigned char*
3348 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3349 section_size_type, const unsigned char*) const;
3350 #endif
3351
3352 #ifdef HAVE_TARGET_64_BIG
3353 template
3354 void
3355 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3356 Read_symbols_data*);
3357 template
3358 const unsigned char*
3359 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3360 section_size_type, const unsigned char*) const;
3361 #endif
3362
3363 #ifdef HAVE_TARGET_32_LITTLE
3364 template
3365 class Sized_relobj<32, false>;
3366
3367 template
3368 class Sized_relobj_file<32, false>;
3369 #endif
3370
3371 #ifdef HAVE_TARGET_32_BIG
3372 template
3373 class Sized_relobj<32, true>;
3374
3375 template
3376 class Sized_relobj_file<32, true>;
3377 #endif
3378
3379 #ifdef HAVE_TARGET_64_LITTLE
3380 template
3381 class Sized_relobj<64, false>;
3382
3383 template
3384 class Sized_relobj_file<64, false>;
3385 #endif
3386
3387 #ifdef HAVE_TARGET_64_BIG
3388 template
3389 class Sized_relobj<64, true>;
3390
3391 template
3392 class Sized_relobj_file<64, true>;
3393 #endif
3394
3395 #ifdef HAVE_TARGET_32_LITTLE
3396 template
3397 struct Relocate_info<32, false>;
3398 #endif
3399
3400 #ifdef HAVE_TARGET_32_BIG
3401 template
3402 struct Relocate_info<32, true>;
3403 #endif
3404
3405 #ifdef HAVE_TARGET_64_LITTLE
3406 template
3407 struct Relocate_info<64, false>;
3408 #endif
3409
3410 #ifdef HAVE_TARGET_64_BIG
3411 template
3412 struct Relocate_info<64, true>;
3413 #endif
3414
3415 #ifdef HAVE_TARGET_32_LITTLE
3416 template
3417 void
3418 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3419
3420 template
3421 void
3422 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3423 const unsigned char*);
3424 #endif
3425
3426 #ifdef HAVE_TARGET_32_BIG
3427 template
3428 void
3429 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3430
3431 template
3432 void
3433 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3434 const unsigned char*);
3435 #endif
3436
3437 #ifdef HAVE_TARGET_64_LITTLE
3438 template
3439 void
3440 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3441
3442 template
3443 void
3444 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3445 const unsigned char*);
3446 #endif
3447
3448 #ifdef HAVE_TARGET_64_BIG
3449 template
3450 void
3451 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3452
3453 template
3454 void
3455 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3456 const unsigned char*);
3457 #endif
3458
3459 #ifdef HAVE_TARGET_32_LITTLE
3460 template
3461 Compressed_section_map*
3462 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3463 const char*, section_size_type,
3464 Object*, bool);
3465 #endif
3466
3467 #ifdef HAVE_TARGET_32_BIG
3468 template
3469 Compressed_section_map*
3470 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3471 const char*, section_size_type,
3472 Object*, bool);
3473 #endif
3474
3475 #ifdef HAVE_TARGET_64_LITTLE
3476 template
3477 Compressed_section_map*
3478 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3479 const char*, section_size_type,
3480 Object*, bool);
3481 #endif
3482
3483 #ifdef HAVE_TARGET_64_BIG
3484 template
3485 Compressed_section_map*
3486 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3487 const char*, section_size_type,
3488 Object*, bool);
3489 #endif
3490
3491 } // End namespace gold.
This page took 0.128697 seconds and 5 git commands to generate.