elfcpp/ChangeLog:
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fstack-split, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. Returns the next
353 // available reloation index.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 this->reloc_counts_[i] = 0;
370 }
371 layout->incremental_inputs()->set_reloc_count(rindex);
372 }
373
374 // Class Sized_relobj.
375
376 template<int size, bool big_endian>
377 Sized_relobj<size, big_endian>::Sized_relobj(
378 const std::string& name,
379 Input_file* input_file,
380 off_t offset,
381 const elfcpp::Ehdr<size, big_endian>& ehdr)
382 : Relobj(name, input_file, offset),
383 elf_file_(this, ehdr),
384 symtab_shndx_(-1U),
385 local_symbol_count_(0),
386 output_local_symbol_count_(0),
387 output_local_dynsym_count_(0),
388 symbols_(),
389 defined_count_(0),
390 local_symbol_offset_(0),
391 local_dynsym_offset_(0),
392 local_values_(),
393 local_got_offsets_(),
394 kept_comdat_sections_(),
395 has_eh_frame_(false),
396 discarded_eh_frame_shndx_(-1U),
397 deferred_layout_(),
398 deferred_layout_relocs_(),
399 compressed_sections_()
400 {
401 }
402
403 template<int size, bool big_endian>
404 Sized_relobj<size, big_endian>::~Sized_relobj()
405 {
406 }
407
408 // Set up an object file based on the file header. This sets up the
409 // section information.
410
411 template<int size, bool big_endian>
412 void
413 Sized_relobj<size, big_endian>::do_setup()
414 {
415 const unsigned int shnum = this->elf_file_.shnum();
416 this->set_shnum(shnum);
417 }
418
419 // Find the SHT_SYMTAB section, given the section headers. The ELF
420 // standard says that maybe in the future there can be more than one
421 // SHT_SYMTAB section. Until somebody figures out how that could
422 // work, we assume there is only one.
423
424 template<int size, bool big_endian>
425 void
426 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
427 {
428 const unsigned int shnum = this->shnum();
429 this->symtab_shndx_ = 0;
430 if (shnum > 0)
431 {
432 // Look through the sections in reverse order, since gas tends
433 // to put the symbol table at the end.
434 const unsigned char* p = pshdrs + shnum * This::shdr_size;
435 unsigned int i = shnum;
436 unsigned int xindex_shndx = 0;
437 unsigned int xindex_link = 0;
438 while (i > 0)
439 {
440 --i;
441 p -= This::shdr_size;
442 typename This::Shdr shdr(p);
443 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
444 {
445 this->symtab_shndx_ = i;
446 if (xindex_shndx > 0 && xindex_link == i)
447 {
448 Xindex* xindex =
449 new Xindex(this->elf_file_.large_shndx_offset());
450 xindex->read_symtab_xindex<size, big_endian>(this,
451 xindex_shndx,
452 pshdrs);
453 this->set_xindex(xindex);
454 }
455 break;
456 }
457
458 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
459 // one. This will work if it follows the SHT_SYMTAB
460 // section.
461 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
462 {
463 xindex_shndx = i;
464 xindex_link = this->adjust_shndx(shdr.get_sh_link());
465 }
466 }
467 }
468 }
469
470 // Return the Xindex structure to use for object with lots of
471 // sections.
472
473 template<int size, bool big_endian>
474 Xindex*
475 Sized_relobj<size, big_endian>::do_initialize_xindex()
476 {
477 gold_assert(this->symtab_shndx_ != -1U);
478 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
479 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
480 return xindex;
481 }
482
483 // Return whether SHDR has the right type and flags to be a GNU
484 // .eh_frame section.
485
486 template<int size, bool big_endian>
487 bool
488 Sized_relobj<size, big_endian>::check_eh_frame_flags(
489 const elfcpp::Shdr<size, big_endian>* shdr) const
490 {
491 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
492 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
493 }
494
495 // Return whether there is a GNU .eh_frame section, given the section
496 // headers and the section names.
497
498 template<int size, bool big_endian>
499 bool
500 Sized_relobj<size, big_endian>::find_eh_frame(
501 const unsigned char* pshdrs,
502 const char* names,
503 section_size_type names_size) const
504 {
505 const unsigned int shnum = this->shnum();
506 const unsigned char* p = pshdrs + This::shdr_size;
507 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
508 {
509 typename This::Shdr shdr(p);
510 if (this->check_eh_frame_flags(&shdr))
511 {
512 if (shdr.get_sh_name() >= names_size)
513 {
514 this->error(_("bad section name offset for section %u: %lu"),
515 i, static_cast<unsigned long>(shdr.get_sh_name()));
516 continue;
517 }
518
519 const char* name = names + shdr.get_sh_name();
520 if (strcmp(name, ".eh_frame") == 0)
521 return true;
522 }
523 }
524 return false;
525 }
526
527 // Build a table for any compressed debug sections, mapping each section index
528 // to the uncompressed size.
529
530 template<int size, bool big_endian>
531 Compressed_section_map*
532 build_compressed_section_map(
533 const unsigned char* pshdrs,
534 unsigned int shnum,
535 const char* names,
536 section_size_type names_size,
537 Sized_relobj<size, big_endian>* obj)
538 {
539 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
540 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
541 const unsigned char* p = pshdrs + shdr_size;
542 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
543 {
544 typename elfcpp::Shdr<size, big_endian> shdr(p);
545 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
546 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
547 {
548 if (shdr.get_sh_name() >= names_size)
549 {
550 obj->error(_("bad section name offset for section %u: %lu"),
551 i, static_cast<unsigned long>(shdr.get_sh_name()));
552 continue;
553 }
554
555 const char* name = names + shdr.get_sh_name();
556 if (is_compressed_debug_section(name))
557 {
558 section_size_type len;
559 const unsigned char* contents =
560 obj->section_contents(i, &len, false);
561 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
562 if (uncompressed_size != -1ULL)
563 (*uncompressed_sizes)[i] =
564 convert_to_section_size_type(uncompressed_size);
565 }
566 }
567 }
568 return uncompressed_sizes;
569 }
570
571 // Read the sections and symbols from an object file.
572
573 template<int size, bool big_endian>
574 void
575 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
576 {
577 this->read_section_data(&this->elf_file_, sd);
578
579 const unsigned char* const pshdrs = sd->section_headers->data();
580
581 this->find_symtab(pshdrs);
582
583 const unsigned char* namesu = sd->section_names->data();
584 const char* names = reinterpret_cast<const char*>(namesu);
585 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
586 {
587 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
588 this->has_eh_frame_ = true;
589 }
590 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
591 this->compressed_sections_ =
592 build_compressed_section_map(pshdrs, this->shnum(), names,
593 sd->section_names_size, this);
594
595 sd->symbols = NULL;
596 sd->symbols_size = 0;
597 sd->external_symbols_offset = 0;
598 sd->symbol_names = NULL;
599 sd->symbol_names_size = 0;
600
601 if (this->symtab_shndx_ == 0)
602 {
603 // No symbol table. Weird but legal.
604 return;
605 }
606
607 // Get the symbol table section header.
608 typename This::Shdr symtabshdr(pshdrs
609 + this->symtab_shndx_ * This::shdr_size);
610 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
611
612 // If this object has a .eh_frame section, we need all the symbols.
613 // Otherwise we only need the external symbols. While it would be
614 // simpler to just always read all the symbols, I've seen object
615 // files with well over 2000 local symbols, which for a 64-bit
616 // object file format is over 5 pages that we don't need to read
617 // now.
618
619 const int sym_size = This::sym_size;
620 const unsigned int loccount = symtabshdr.get_sh_info();
621 this->local_symbol_count_ = loccount;
622 this->local_values_.resize(loccount);
623 section_offset_type locsize = loccount * sym_size;
624 off_t dataoff = symtabshdr.get_sh_offset();
625 section_size_type datasize =
626 convert_to_section_size_type(symtabshdr.get_sh_size());
627 off_t extoff = dataoff + locsize;
628 section_size_type extsize = datasize - locsize;
629
630 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
631 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
632
633 if (readsize == 0)
634 {
635 // No external symbols. Also weird but also legal.
636 return;
637 }
638
639 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
640
641 // Read the section header for the symbol names.
642 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
643 if (strtab_shndx >= this->shnum())
644 {
645 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
646 return;
647 }
648 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
649 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
650 {
651 this->error(_("symbol table name section has wrong type: %u"),
652 static_cast<unsigned int>(strtabshdr.get_sh_type()));
653 return;
654 }
655
656 // Read the symbol names.
657 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
658 strtabshdr.get_sh_size(),
659 false, true);
660
661 sd->symbols = fvsymtab;
662 sd->symbols_size = readsize;
663 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
664 sd->symbol_names = fvstrtab;
665 sd->symbol_names_size =
666 convert_to_section_size_type(strtabshdr.get_sh_size());
667 }
668
669 // Return the section index of symbol SYM. Set *VALUE to its value in
670 // the object file. Set *IS_ORDINARY if this is an ordinary section
671 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
672 // Note that for a symbol which is not defined in this object file,
673 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
674 // the final value of the symbol in the link.
675
676 template<int size, bool big_endian>
677 unsigned int
678 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
679 Address* value,
680 bool* is_ordinary)
681 {
682 section_size_type symbols_size;
683 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
684 &symbols_size,
685 false);
686
687 const size_t count = symbols_size / This::sym_size;
688 gold_assert(sym < count);
689
690 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
691 *value = elfsym.get_st_value();
692
693 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
694 }
695
696 // Return whether to include a section group in the link. LAYOUT is
697 // used to keep track of which section groups we have already seen.
698 // INDEX is the index of the section group and SHDR is the section
699 // header. If we do not want to include this group, we set bits in
700 // OMIT for each section which should be discarded.
701
702 template<int size, bool big_endian>
703 bool
704 Sized_relobj<size, big_endian>::include_section_group(
705 Symbol_table* symtab,
706 Layout* layout,
707 unsigned int index,
708 const char* name,
709 const unsigned char* shdrs,
710 const char* section_names,
711 section_size_type section_names_size,
712 std::vector<bool>* omit)
713 {
714 // Read the section contents.
715 typename This::Shdr shdr(shdrs + index * This::shdr_size);
716 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
717 shdr.get_sh_size(), true, false);
718 const elfcpp::Elf_Word* pword =
719 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
720
721 // The first word contains flags. We only care about COMDAT section
722 // groups. Other section groups are always included in the link
723 // just like ordinary sections.
724 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
725
726 // Look up the group signature, which is the name of a symbol. This
727 // is a lot of effort to go to to read a string. Why didn't they
728 // just have the group signature point into the string table, rather
729 // than indirect through a symbol?
730
731 // Get the appropriate symbol table header (this will normally be
732 // the single SHT_SYMTAB section, but in principle it need not be).
733 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
734 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
735
736 // Read the symbol table entry.
737 unsigned int symndx = shdr.get_sh_info();
738 if (symndx >= symshdr.get_sh_size() / This::sym_size)
739 {
740 this->error(_("section group %u info %u out of range"),
741 index, symndx);
742 return false;
743 }
744 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
745 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
746 false);
747 elfcpp::Sym<size, big_endian> sym(psym);
748
749 // Read the symbol table names.
750 section_size_type symnamelen;
751 const unsigned char* psymnamesu;
752 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
753 &symnamelen, true);
754 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
755
756 // Get the section group signature.
757 if (sym.get_st_name() >= symnamelen)
758 {
759 this->error(_("symbol %u name offset %u out of range"),
760 symndx, sym.get_st_name());
761 return false;
762 }
763
764 std::string signature(psymnames + sym.get_st_name());
765
766 // It seems that some versions of gas will create a section group
767 // associated with a section symbol, and then fail to give a name to
768 // the section symbol. In such a case, use the name of the section.
769 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
770 {
771 bool is_ordinary;
772 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
773 sym.get_st_shndx(),
774 &is_ordinary);
775 if (!is_ordinary || sym_shndx >= this->shnum())
776 {
777 this->error(_("symbol %u invalid section index %u"),
778 symndx, sym_shndx);
779 return false;
780 }
781 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
782 if (member_shdr.get_sh_name() < section_names_size)
783 signature = section_names + member_shdr.get_sh_name();
784 }
785
786 // Record this section group in the layout, and see whether we've already
787 // seen one with the same signature.
788 bool include_group;
789 bool is_comdat;
790 Kept_section* kept_section = NULL;
791
792 if ((flags & elfcpp::GRP_COMDAT) == 0)
793 {
794 include_group = true;
795 is_comdat = false;
796 }
797 else
798 {
799 include_group = layout->find_or_add_kept_section(signature,
800 this, index, true,
801 true, &kept_section);
802 is_comdat = true;
803 }
804
805 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
806
807 std::vector<unsigned int> shndxes;
808 bool relocate_group = include_group && parameters->options().relocatable();
809 if (relocate_group)
810 shndxes.reserve(count - 1);
811
812 for (size_t i = 1; i < count; ++i)
813 {
814 elfcpp::Elf_Word shndx =
815 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
816
817 if (relocate_group)
818 shndxes.push_back(shndx);
819
820 if (shndx >= this->shnum())
821 {
822 this->error(_("section %u in section group %u out of range"),
823 shndx, index);
824 continue;
825 }
826
827 // Check for an earlier section number, since we're going to get
828 // it wrong--we may have already decided to include the section.
829 if (shndx < index)
830 this->error(_("invalid section group %u refers to earlier section %u"),
831 index, shndx);
832
833 // Get the name of the member section.
834 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
835 if (member_shdr.get_sh_name() >= section_names_size)
836 {
837 // This is an error, but it will be diagnosed eventually
838 // in do_layout, so we don't need to do anything here but
839 // ignore it.
840 continue;
841 }
842 std::string mname(section_names + member_shdr.get_sh_name());
843
844 if (include_group)
845 {
846 if (is_comdat)
847 kept_section->add_comdat_section(mname, shndx,
848 member_shdr.get_sh_size());
849 }
850 else
851 {
852 (*omit)[shndx] = true;
853
854 if (is_comdat)
855 {
856 Relobj* kept_object = kept_section->object();
857 if (kept_section->is_comdat())
858 {
859 // Find the corresponding kept section, and store
860 // that info in the discarded section table.
861 unsigned int kept_shndx;
862 uint64_t kept_size;
863 if (kept_section->find_comdat_section(mname, &kept_shndx,
864 &kept_size))
865 {
866 // We don't keep a mapping for this section if
867 // it has a different size. The mapping is only
868 // used for relocation processing, and we don't
869 // want to treat the sections as similar if the
870 // sizes are different. Checking the section
871 // size is the approach used by the GNU linker.
872 if (kept_size == member_shdr.get_sh_size())
873 this->set_kept_comdat_section(shndx, kept_object,
874 kept_shndx);
875 }
876 }
877 else
878 {
879 // The existing section is a linkonce section. Add
880 // a mapping if there is exactly one section in the
881 // group (which is true when COUNT == 2) and if it
882 // is the same size.
883 if (count == 2
884 && (kept_section->linkonce_size()
885 == member_shdr.get_sh_size()))
886 this->set_kept_comdat_section(shndx, kept_object,
887 kept_section->shndx());
888 }
889 }
890 }
891 }
892
893 if (relocate_group)
894 layout->layout_group(symtab, this, index, name, signature.c_str(),
895 shdr, flags, &shndxes);
896
897 return include_group;
898 }
899
900 // Whether to include a linkonce section in the link. NAME is the
901 // name of the section and SHDR is the section header.
902
903 // Linkonce sections are a GNU extension implemented in the original
904 // GNU linker before section groups were defined. The semantics are
905 // that we only include one linkonce section with a given name. The
906 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
907 // where T is the type of section and SYMNAME is the name of a symbol.
908 // In an attempt to make linkonce sections interact well with section
909 // groups, we try to identify SYMNAME and use it like a section group
910 // signature. We want to block section groups with that signature,
911 // but not other linkonce sections with that signature. We also use
912 // the full name of the linkonce section as a normal section group
913 // signature.
914
915 template<int size, bool big_endian>
916 bool
917 Sized_relobj<size, big_endian>::include_linkonce_section(
918 Layout* layout,
919 unsigned int index,
920 const char* name,
921 const elfcpp::Shdr<size, big_endian>& shdr)
922 {
923 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
924 // In general the symbol name we want will be the string following
925 // the last '.'. However, we have to handle the case of
926 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
927 // some versions of gcc. So we use a heuristic: if the name starts
928 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
929 // we look for the last '.'. We can't always simply skip
930 // ".gnu.linkonce.X", because we have to deal with cases like
931 // ".gnu.linkonce.d.rel.ro.local".
932 const char* const linkonce_t = ".gnu.linkonce.t.";
933 const char* symname;
934 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
935 symname = name + strlen(linkonce_t);
936 else
937 symname = strrchr(name, '.') + 1;
938 std::string sig1(symname);
939 std::string sig2(name);
940 Kept_section* kept1;
941 Kept_section* kept2;
942 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
943 false, &kept1);
944 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
945 true, &kept2);
946
947 if (!include2)
948 {
949 // We are not including this section because we already saw the
950 // name of the section as a signature. This normally implies
951 // that the kept section is another linkonce section. If it is
952 // the same size, record it as the section which corresponds to
953 // this one.
954 if (kept2->object() != NULL
955 && !kept2->is_comdat()
956 && kept2->linkonce_size() == sh_size)
957 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
958 }
959 else if (!include1)
960 {
961 // The section is being discarded on the basis of its symbol
962 // name. This means that the corresponding kept section was
963 // part of a comdat group, and it will be difficult to identify
964 // the specific section within that group that corresponds to
965 // this linkonce section. We'll handle the simple case where
966 // the group has only one member section. Otherwise, it's not
967 // worth the effort.
968 unsigned int kept_shndx;
969 uint64_t kept_size;
970 if (kept1->object() != NULL
971 && kept1->is_comdat()
972 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
973 && kept_size == sh_size)
974 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
975 }
976 else
977 {
978 kept1->set_linkonce_size(sh_size);
979 kept2->set_linkonce_size(sh_size);
980 }
981
982 return include1 && include2;
983 }
984
985 // Layout an input section.
986
987 template<int size, bool big_endian>
988 inline void
989 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
990 unsigned int shndx,
991 const char* name,
992 typename This::Shdr& shdr,
993 unsigned int reloc_shndx,
994 unsigned int reloc_type)
995 {
996 off_t offset;
997 Output_section* os = layout->layout(this, shndx, name, shdr,
998 reloc_shndx, reloc_type, &offset);
999
1000 this->output_sections()[shndx] = os;
1001 if (offset == -1)
1002 this->section_offsets_[shndx] = invalid_address;
1003 else
1004 this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
1005
1006 // If this section requires special handling, and if there are
1007 // relocs that apply to it, then we must do the special handling
1008 // before we apply the relocs.
1009 if (offset == -1 && reloc_shndx != 0)
1010 this->set_relocs_must_follow_section_writes();
1011 }
1012
1013 // Lay out the input sections. We walk through the sections and check
1014 // whether they should be included in the link. If they should, we
1015 // pass them to the Layout object, which will return an output section
1016 // and an offset.
1017 // During garbage collection (--gc-sections) and identical code folding
1018 // (--icf), this function is called twice. When it is called the first
1019 // time, it is for setting up some sections as roots to a work-list for
1020 // --gc-sections and to do comdat processing. Actual layout happens the
1021 // second time around after all the relevant sections have been determined.
1022 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1023 // set to true after the garbage collection worklist or identical code
1024 // folding is processed and the relevant sections to be kept are
1025 // determined. Then, this function is called again to layout the sections.
1026
1027 template<int size, bool big_endian>
1028 void
1029 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
1030 Layout* layout,
1031 Read_symbols_data* sd)
1032 {
1033 const unsigned int shnum = this->shnum();
1034 bool is_gc_pass_one = ((parameters->options().gc_sections()
1035 && !symtab->gc()->is_worklist_ready())
1036 || (parameters->options().icf_enabled()
1037 && !symtab->icf()->is_icf_ready()));
1038
1039 bool is_gc_pass_two = ((parameters->options().gc_sections()
1040 && symtab->gc()->is_worklist_ready())
1041 || (parameters->options().icf_enabled()
1042 && symtab->icf()->is_icf_ready()));
1043
1044 bool is_gc_or_icf = (parameters->options().gc_sections()
1045 || parameters->options().icf_enabled());
1046
1047 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1048 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1049
1050 if (shnum == 0)
1051 return;
1052 Symbols_data* gc_sd = NULL;
1053 if (is_gc_pass_one)
1054 {
1055 // During garbage collection save the symbols data to use it when
1056 // re-entering this function.
1057 gc_sd = new Symbols_data;
1058 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1059 this->set_symbols_data(gc_sd);
1060 }
1061 else if (is_gc_pass_two)
1062 {
1063 gc_sd = this->get_symbols_data();
1064 }
1065
1066 const unsigned char* section_headers_data = NULL;
1067 section_size_type section_names_size;
1068 const unsigned char* symbols_data = NULL;
1069 section_size_type symbols_size;
1070 section_offset_type external_symbols_offset;
1071 const unsigned char* symbol_names_data = NULL;
1072 section_size_type symbol_names_size;
1073
1074 if (is_gc_or_icf)
1075 {
1076 section_headers_data = gc_sd->section_headers_data;
1077 section_names_size = gc_sd->section_names_size;
1078 symbols_data = gc_sd->symbols_data;
1079 symbols_size = gc_sd->symbols_size;
1080 external_symbols_offset = gc_sd->external_symbols_offset;
1081 symbol_names_data = gc_sd->symbol_names_data;
1082 symbol_names_size = gc_sd->symbol_names_size;
1083 }
1084 else
1085 {
1086 section_headers_data = sd->section_headers->data();
1087 section_names_size = sd->section_names_size;
1088 if (sd->symbols != NULL)
1089 symbols_data = sd->symbols->data();
1090 symbols_size = sd->symbols_size;
1091 external_symbols_offset = sd->external_symbols_offset;
1092 if (sd->symbol_names != NULL)
1093 symbol_names_data = sd->symbol_names->data();
1094 symbol_names_size = sd->symbol_names_size;
1095 }
1096
1097 // Get the section headers.
1098 const unsigned char* shdrs = section_headers_data;
1099 const unsigned char* pshdrs;
1100
1101 // Get the section names.
1102 const unsigned char* pnamesu = (is_gc_or_icf)
1103 ? gc_sd->section_names_data
1104 : sd->section_names->data();
1105
1106 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1107
1108 // If any input files have been claimed by plugins, we need to defer
1109 // actual layout until the replacement files have arrived.
1110 const bool should_defer_layout =
1111 (parameters->options().has_plugins()
1112 && parameters->options().plugins()->should_defer_layout());
1113 unsigned int num_sections_to_defer = 0;
1114
1115 // For each section, record the index of the reloc section if any.
1116 // Use 0 to mean that there is no reloc section, -1U to mean that
1117 // there is more than one.
1118 std::vector<unsigned int> reloc_shndx(shnum, 0);
1119 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1120 // Skip the first, dummy, section.
1121 pshdrs = shdrs + This::shdr_size;
1122 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1123 {
1124 typename This::Shdr shdr(pshdrs);
1125
1126 // Count the number of sections whose layout will be deferred.
1127 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1128 ++num_sections_to_defer;
1129
1130 unsigned int sh_type = shdr.get_sh_type();
1131 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1132 {
1133 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1134 if (target_shndx == 0 || target_shndx >= shnum)
1135 {
1136 this->error(_("relocation section %u has bad info %u"),
1137 i, target_shndx);
1138 continue;
1139 }
1140
1141 if (reloc_shndx[target_shndx] != 0)
1142 reloc_shndx[target_shndx] = -1U;
1143 else
1144 {
1145 reloc_shndx[target_shndx] = i;
1146 reloc_type[target_shndx] = sh_type;
1147 }
1148 }
1149 }
1150
1151 Output_sections& out_sections(this->output_sections());
1152 std::vector<Address>& out_section_offsets(this->section_offsets_);
1153
1154 if (!is_gc_pass_two)
1155 {
1156 out_sections.resize(shnum);
1157 out_section_offsets.resize(shnum);
1158 }
1159
1160 // If we are only linking for symbols, then there is nothing else to
1161 // do here.
1162 if (this->input_file()->just_symbols())
1163 {
1164 if (!is_gc_pass_two)
1165 {
1166 delete sd->section_headers;
1167 sd->section_headers = NULL;
1168 delete sd->section_names;
1169 sd->section_names = NULL;
1170 }
1171 return;
1172 }
1173
1174 if (num_sections_to_defer > 0)
1175 {
1176 parameters->options().plugins()->add_deferred_layout_object(this);
1177 this->deferred_layout_.reserve(num_sections_to_defer);
1178 }
1179
1180 // Whether we've seen a .note.GNU-stack section.
1181 bool seen_gnu_stack = false;
1182 // The flags of a .note.GNU-stack section.
1183 uint64_t gnu_stack_flags = 0;
1184
1185 // Keep track of which sections to omit.
1186 std::vector<bool> omit(shnum, false);
1187
1188 // Keep track of reloc sections when emitting relocations.
1189 const bool relocatable = parameters->options().relocatable();
1190 const bool emit_relocs = (relocatable
1191 || parameters->options().emit_relocs());
1192 std::vector<unsigned int> reloc_sections;
1193
1194 // Keep track of .eh_frame sections.
1195 std::vector<unsigned int> eh_frame_sections;
1196
1197 // Skip the first, dummy, section.
1198 pshdrs = shdrs + This::shdr_size;
1199 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1200 {
1201 typename This::Shdr shdr(pshdrs);
1202
1203 if (shdr.get_sh_name() >= section_names_size)
1204 {
1205 this->error(_("bad section name offset for section %u: %lu"),
1206 i, static_cast<unsigned long>(shdr.get_sh_name()));
1207 return;
1208 }
1209
1210 const char* name = pnames + shdr.get_sh_name();
1211
1212 if (!is_gc_pass_two)
1213 {
1214 if (this->handle_gnu_warning_section(name, i, symtab))
1215 {
1216 if (!relocatable)
1217 omit[i] = true;
1218 }
1219
1220 // The .note.GNU-stack section is special. It gives the
1221 // protection flags that this object file requires for the stack
1222 // in memory.
1223 if (strcmp(name, ".note.GNU-stack") == 0)
1224 {
1225 seen_gnu_stack = true;
1226 gnu_stack_flags |= shdr.get_sh_flags();
1227 omit[i] = true;
1228 }
1229
1230 // The .note.GNU-split-stack section is also special. It
1231 // indicates that the object was compiled with
1232 // -fsplit-stack.
1233 if (this->handle_split_stack_section(name))
1234 {
1235 if (!parameters->options().relocatable()
1236 && !parameters->options().shared())
1237 omit[i] = true;
1238 }
1239
1240 // Skip attributes section.
1241 if (parameters->target().is_attributes_section(name))
1242 {
1243 omit[i] = true;
1244 }
1245
1246 bool discard = omit[i];
1247 if (!discard)
1248 {
1249 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1250 {
1251 if (!this->include_section_group(symtab, layout, i, name,
1252 shdrs, pnames,
1253 section_names_size,
1254 &omit))
1255 discard = true;
1256 }
1257 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1258 && Layout::is_linkonce(name))
1259 {
1260 if (!this->include_linkonce_section(layout, i, name, shdr))
1261 discard = true;
1262 }
1263 }
1264
1265 // Add the section to the incremental inputs layout.
1266 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1267 if (incremental_inputs != NULL)
1268 incremental_inputs->report_input_section(this, i,
1269 discard ? NULL : name,
1270 shdr.get_sh_size());
1271
1272 if (discard)
1273 {
1274 // Do not include this section in the link.
1275 out_sections[i] = NULL;
1276 out_section_offsets[i] = invalid_address;
1277 continue;
1278 }
1279 }
1280
1281 if (is_gc_pass_one && parameters->options().gc_sections())
1282 {
1283 if (is_section_name_included(name)
1284 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1285 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1286 {
1287 symtab->gc()->worklist().push(Section_id(this, i));
1288 }
1289 // If the section name XXX can be represented as a C identifier
1290 // it cannot be discarded if there are references to
1291 // __start_XXX and __stop_XXX symbols. These need to be
1292 // specially handled.
1293 if (is_cident(name))
1294 {
1295 symtab->gc()->add_cident_section(name, Section_id(this, i));
1296 }
1297 }
1298
1299 // When doing a relocatable link we are going to copy input
1300 // reloc sections into the output. We only want to copy the
1301 // ones associated with sections which are not being discarded.
1302 // However, we don't know that yet for all sections. So save
1303 // reloc sections and process them later. Garbage collection is
1304 // not triggered when relocatable code is desired.
1305 if (emit_relocs
1306 && (shdr.get_sh_type() == elfcpp::SHT_REL
1307 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1308 {
1309 reloc_sections.push_back(i);
1310 continue;
1311 }
1312
1313 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1314 continue;
1315
1316 // The .eh_frame section is special. It holds exception frame
1317 // information that we need to read in order to generate the
1318 // exception frame header. We process these after all the other
1319 // sections so that the exception frame reader can reliably
1320 // determine which sections are being discarded, and discard the
1321 // corresponding information.
1322 if (!relocatable
1323 && strcmp(name, ".eh_frame") == 0
1324 && this->check_eh_frame_flags(&shdr))
1325 {
1326 if (is_gc_pass_one)
1327 {
1328 out_sections[i] = reinterpret_cast<Output_section*>(1);
1329 out_section_offsets[i] = invalid_address;
1330 }
1331 else
1332 eh_frame_sections.push_back(i);
1333 continue;
1334 }
1335
1336 if (is_gc_pass_two && parameters->options().gc_sections())
1337 {
1338 // This is executed during the second pass of garbage
1339 // collection. do_layout has been called before and some
1340 // sections have been already discarded. Simply ignore
1341 // such sections this time around.
1342 if (out_sections[i] == NULL)
1343 {
1344 gold_assert(out_section_offsets[i] == invalid_address);
1345 continue;
1346 }
1347 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1348 && symtab->gc()->is_section_garbage(this, i))
1349 {
1350 if (parameters->options().print_gc_sections())
1351 gold_info(_("%s: removing unused section from '%s'"
1352 " in file '%s'"),
1353 program_name, this->section_name(i).c_str(),
1354 this->name().c_str());
1355 out_sections[i] = NULL;
1356 out_section_offsets[i] = invalid_address;
1357 continue;
1358 }
1359 }
1360
1361 if (is_gc_pass_two && parameters->options().icf_enabled())
1362 {
1363 if (out_sections[i] == NULL)
1364 {
1365 gold_assert(out_section_offsets[i] == invalid_address);
1366 continue;
1367 }
1368 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1369 && symtab->icf()->is_section_folded(this, i))
1370 {
1371 if (parameters->options().print_icf_sections())
1372 {
1373 Section_id folded =
1374 symtab->icf()->get_folded_section(this, i);
1375 Relobj* folded_obj =
1376 reinterpret_cast<Relobj*>(folded.first);
1377 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1378 "into '%s' in file '%s'"),
1379 program_name, this->section_name(i).c_str(),
1380 this->name().c_str(),
1381 folded_obj->section_name(folded.second).c_str(),
1382 folded_obj->name().c_str());
1383 }
1384 out_sections[i] = NULL;
1385 out_section_offsets[i] = invalid_address;
1386 continue;
1387 }
1388 }
1389
1390 // Defer layout here if input files are claimed by plugins. When gc
1391 // is turned on this function is called twice. For the second call
1392 // should_defer_layout should be false.
1393 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1394 {
1395 gold_assert(!is_gc_pass_two);
1396 this->deferred_layout_.push_back(Deferred_layout(i, name,
1397 pshdrs,
1398 reloc_shndx[i],
1399 reloc_type[i]));
1400 // Put dummy values here; real values will be supplied by
1401 // do_layout_deferred_sections.
1402 out_sections[i] = reinterpret_cast<Output_section*>(2);
1403 out_section_offsets[i] = invalid_address;
1404 continue;
1405 }
1406
1407 // During gc_pass_two if a section that was previously deferred is
1408 // found, do not layout the section as layout_deferred_sections will
1409 // do it later from gold.cc.
1410 if (is_gc_pass_two
1411 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1412 continue;
1413
1414 if (is_gc_pass_one)
1415 {
1416 // This is during garbage collection. The out_sections are
1417 // assigned in the second call to this function.
1418 out_sections[i] = reinterpret_cast<Output_section*>(1);
1419 out_section_offsets[i] = invalid_address;
1420 }
1421 else
1422 {
1423 // When garbage collection is switched on the actual layout
1424 // only happens in the second call.
1425 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1426 reloc_type[i]);
1427 }
1428 }
1429
1430 if (!is_gc_pass_two)
1431 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
1432
1433 // When doing a relocatable link handle the reloc sections at the
1434 // end. Garbage collection and Identical Code Folding is not
1435 // turned on for relocatable code.
1436 if (emit_relocs)
1437 this->size_relocatable_relocs();
1438
1439 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1440
1441 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1442 p != reloc_sections.end();
1443 ++p)
1444 {
1445 unsigned int i = *p;
1446 const unsigned char* pshdr;
1447 pshdr = section_headers_data + i * This::shdr_size;
1448 typename This::Shdr shdr(pshdr);
1449
1450 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1451 if (data_shndx >= shnum)
1452 {
1453 // We already warned about this above.
1454 continue;
1455 }
1456
1457 Output_section* data_section = out_sections[data_shndx];
1458 if (data_section == reinterpret_cast<Output_section*>(2))
1459 {
1460 // The layout for the data section was deferred, so we need
1461 // to defer the relocation section, too.
1462 const char* name = pnames + shdr.get_sh_name();
1463 this->deferred_layout_relocs_.push_back(
1464 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1465 out_sections[i] = reinterpret_cast<Output_section*>(2);
1466 out_section_offsets[i] = invalid_address;
1467 continue;
1468 }
1469 if (data_section == NULL)
1470 {
1471 out_sections[i] = NULL;
1472 out_section_offsets[i] = invalid_address;
1473 continue;
1474 }
1475
1476 Relocatable_relocs* rr = new Relocatable_relocs();
1477 this->set_relocatable_relocs(i, rr);
1478
1479 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1480 rr);
1481 out_sections[i] = os;
1482 out_section_offsets[i] = invalid_address;
1483 }
1484
1485 // Handle the .eh_frame sections at the end.
1486 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1487 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1488 p != eh_frame_sections.end();
1489 ++p)
1490 {
1491 gold_assert(this->has_eh_frame_);
1492 gold_assert(external_symbols_offset != 0);
1493
1494 unsigned int i = *p;
1495 const unsigned char *pshdr;
1496 pshdr = section_headers_data + i * This::shdr_size;
1497 typename This::Shdr shdr(pshdr);
1498
1499 off_t offset;
1500 Output_section* os = layout->layout_eh_frame(this,
1501 symbols_data,
1502 symbols_size,
1503 symbol_names_data,
1504 symbol_names_size,
1505 i, shdr,
1506 reloc_shndx[i],
1507 reloc_type[i],
1508 &offset);
1509 out_sections[i] = os;
1510 if (os == NULL || offset == -1)
1511 {
1512 // An object can contain at most one section holding exception
1513 // frame information.
1514 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1515 this->discarded_eh_frame_shndx_ = i;
1516 out_section_offsets[i] = invalid_address;
1517 }
1518 else
1519 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1520
1521 // If this section requires special handling, and if there are
1522 // relocs that apply to it, then we must do the special handling
1523 // before we apply the relocs.
1524 if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1525 this->set_relocs_must_follow_section_writes();
1526 }
1527
1528 if (is_gc_pass_two)
1529 {
1530 delete[] gc_sd->section_headers_data;
1531 delete[] gc_sd->section_names_data;
1532 delete[] gc_sd->symbols_data;
1533 delete[] gc_sd->symbol_names_data;
1534 this->set_symbols_data(NULL);
1535 }
1536 else
1537 {
1538 delete sd->section_headers;
1539 sd->section_headers = NULL;
1540 delete sd->section_names;
1541 sd->section_names = NULL;
1542 }
1543 }
1544
1545 // Layout sections whose layout was deferred while waiting for
1546 // input files from a plugin.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1551 {
1552 typename std::vector<Deferred_layout>::iterator deferred;
1553
1554 for (deferred = this->deferred_layout_.begin();
1555 deferred != this->deferred_layout_.end();
1556 ++deferred)
1557 {
1558 typename This::Shdr shdr(deferred->shdr_data_);
1559 // If the section is not included, it is because the garbage collector
1560 // decided it is not needed. Avoid reverting that decision.
1561 if (!this->is_section_included(deferred->shndx_))
1562 continue;
1563
1564 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1565 shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1566 }
1567
1568 this->deferred_layout_.clear();
1569
1570 // Now handle the deferred relocation sections.
1571
1572 Output_sections& out_sections(this->output_sections());
1573 std::vector<Address>& out_section_offsets(this->section_offsets_);
1574
1575 for (deferred = this->deferred_layout_relocs_.begin();
1576 deferred != this->deferred_layout_relocs_.end();
1577 ++deferred)
1578 {
1579 unsigned int shndx = deferred->shndx_;
1580 typename This::Shdr shdr(deferred->shdr_data_);
1581 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1582
1583 Output_section* data_section = out_sections[data_shndx];
1584 if (data_section == NULL)
1585 {
1586 out_sections[shndx] = NULL;
1587 out_section_offsets[shndx] = invalid_address;
1588 continue;
1589 }
1590
1591 Relocatable_relocs* rr = new Relocatable_relocs();
1592 this->set_relocatable_relocs(shndx, rr);
1593
1594 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1595 data_section, rr);
1596 out_sections[shndx] = os;
1597 out_section_offsets[shndx] = invalid_address;
1598 }
1599 }
1600
1601 // Add the symbols to the symbol table.
1602
1603 template<int size, bool big_endian>
1604 void
1605 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1606 Read_symbols_data* sd,
1607 Layout*)
1608 {
1609 if (sd->symbols == NULL)
1610 {
1611 gold_assert(sd->symbol_names == NULL);
1612 return;
1613 }
1614
1615 const int sym_size = This::sym_size;
1616 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1617 / sym_size);
1618 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1619 {
1620 this->error(_("size of symbols is not multiple of symbol size"));
1621 return;
1622 }
1623
1624 this->symbols_.resize(symcount);
1625
1626 const char* sym_names =
1627 reinterpret_cast<const char*>(sd->symbol_names->data());
1628 symtab->add_from_relobj(this,
1629 sd->symbols->data() + sd->external_symbols_offset,
1630 symcount, this->local_symbol_count_,
1631 sym_names, sd->symbol_names_size,
1632 &this->symbols_,
1633 &this->defined_count_);
1634
1635 delete sd->symbols;
1636 sd->symbols = NULL;
1637 delete sd->symbol_names;
1638 sd->symbol_names = NULL;
1639 }
1640
1641 // Find out if this object, that is a member of a lib group, should be included
1642 // in the link. We check every symbol defined by this object. If the symbol
1643 // table has a strong undefined reference to that symbol, we have to include
1644 // the object.
1645
1646 template<int size, bool big_endian>
1647 Archive::Should_include
1648 Sized_relobj<size, big_endian>::do_should_include_member(Symbol_table* symtab,
1649 Layout* layout,
1650 Read_symbols_data* sd,
1651 std::string* why)
1652 {
1653 char* tmpbuf = NULL;
1654 size_t tmpbuflen = 0;
1655 const char* sym_names =
1656 reinterpret_cast<const char*>(sd->symbol_names->data());
1657 const unsigned char* syms =
1658 sd->symbols->data() + sd->external_symbols_offset;
1659 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1660 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1661 / sym_size);
1662
1663 const unsigned char* p = syms;
1664
1665 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1666 {
1667 elfcpp::Sym<size, big_endian> sym(p);
1668 unsigned int st_shndx = sym.get_st_shndx();
1669 if (st_shndx == elfcpp::SHN_UNDEF)
1670 continue;
1671
1672 unsigned int st_name = sym.get_st_name();
1673 const char* name = sym_names + st_name;
1674 Symbol* symbol;
1675 Archive::Should_include t = Archive::should_include_member(symtab,
1676 layout,
1677 name,
1678 &symbol, why,
1679 &tmpbuf,
1680 &tmpbuflen);
1681 if (t == Archive::SHOULD_INCLUDE_YES)
1682 {
1683 if (tmpbuf != NULL)
1684 free(tmpbuf);
1685 return t;
1686 }
1687 }
1688 if (tmpbuf != NULL)
1689 free(tmpbuf);
1690 return Archive::SHOULD_INCLUDE_UNKNOWN;
1691 }
1692
1693 // First pass over the local symbols. Here we add their names to
1694 // *POOL and *DYNPOOL, and we store the symbol value in
1695 // THIS->LOCAL_VALUES_. This function is always called from a
1696 // singleton thread. This is followed by a call to
1697 // finalize_local_symbols.
1698
1699 template<int size, bool big_endian>
1700 void
1701 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1702 Stringpool* dynpool)
1703 {
1704 gold_assert(this->symtab_shndx_ != -1U);
1705 if (this->symtab_shndx_ == 0)
1706 {
1707 // This object has no symbols. Weird but legal.
1708 return;
1709 }
1710
1711 // Read the symbol table section header.
1712 const unsigned int symtab_shndx = this->symtab_shndx_;
1713 typename This::Shdr symtabshdr(this,
1714 this->elf_file_.section_header(symtab_shndx));
1715 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1716
1717 // Read the local symbols.
1718 const int sym_size = This::sym_size;
1719 const unsigned int loccount = this->local_symbol_count_;
1720 gold_assert(loccount == symtabshdr.get_sh_info());
1721 off_t locsize = loccount * sym_size;
1722 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1723 locsize, true, true);
1724
1725 // Read the symbol names.
1726 const unsigned int strtab_shndx =
1727 this->adjust_shndx(symtabshdr.get_sh_link());
1728 section_size_type strtab_size;
1729 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1730 &strtab_size,
1731 true);
1732 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1733
1734 // Loop over the local symbols.
1735
1736 const Output_sections& out_sections(this->output_sections());
1737 unsigned int shnum = this->shnum();
1738 unsigned int count = 0;
1739 unsigned int dyncount = 0;
1740 // Skip the first, dummy, symbol.
1741 psyms += sym_size;
1742 bool discard_all = parameters->options().discard_all();
1743 bool discard_locals = parameters->options().discard_locals();
1744 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1745 {
1746 elfcpp::Sym<size, big_endian> sym(psyms);
1747
1748 Symbol_value<size>& lv(this->local_values_[i]);
1749
1750 bool is_ordinary;
1751 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1752 &is_ordinary);
1753 lv.set_input_shndx(shndx, is_ordinary);
1754
1755 if (sym.get_st_type() == elfcpp::STT_SECTION)
1756 lv.set_is_section_symbol();
1757 else if (sym.get_st_type() == elfcpp::STT_TLS)
1758 lv.set_is_tls_symbol();
1759
1760 // Save the input symbol value for use in do_finalize_local_symbols().
1761 lv.set_input_value(sym.get_st_value());
1762
1763 // Decide whether this symbol should go into the output file.
1764
1765 if ((shndx < shnum && out_sections[shndx] == NULL)
1766 || shndx == this->discarded_eh_frame_shndx_)
1767 {
1768 lv.set_no_output_symtab_entry();
1769 gold_assert(!lv.needs_output_dynsym_entry());
1770 continue;
1771 }
1772
1773 if (sym.get_st_type() == elfcpp::STT_SECTION)
1774 {
1775 lv.set_no_output_symtab_entry();
1776 gold_assert(!lv.needs_output_dynsym_entry());
1777 continue;
1778 }
1779
1780 if (sym.get_st_name() >= strtab_size)
1781 {
1782 this->error(_("local symbol %u section name out of range: %u >= %u"),
1783 i, sym.get_st_name(),
1784 static_cast<unsigned int>(strtab_size));
1785 lv.set_no_output_symtab_entry();
1786 continue;
1787 }
1788
1789 const char* name = pnames + sym.get_st_name();
1790
1791 // If needed, add the symbol to the dynamic symbol table string pool.
1792 if (lv.needs_output_dynsym_entry())
1793 {
1794 dynpool->add(name, true, NULL);
1795 ++dyncount;
1796 }
1797
1798 if (discard_all && lv.may_be_discarded_from_output_symtab())
1799 {
1800 lv.set_no_output_symtab_entry();
1801 continue;
1802 }
1803
1804 // If --discard-locals option is used, discard all temporary local
1805 // symbols. These symbols start with system-specific local label
1806 // prefixes, typically .L for ELF system. We want to be compatible
1807 // with GNU ld so here we essentially use the same check in
1808 // bfd_is_local_label(). The code is different because we already
1809 // know that:
1810 //
1811 // - the symbol is local and thus cannot have global or weak binding.
1812 // - the symbol is not a section symbol.
1813 // - the symbol has a name.
1814 //
1815 // We do not discard a symbol if it needs a dynamic symbol entry.
1816 if (discard_locals
1817 && sym.get_st_type() != elfcpp::STT_FILE
1818 && !lv.needs_output_dynsym_entry()
1819 && lv.may_be_discarded_from_output_symtab()
1820 && parameters->target().is_local_label_name(name))
1821 {
1822 lv.set_no_output_symtab_entry();
1823 continue;
1824 }
1825
1826 // Discard the local symbol if -retain_symbols_file is specified
1827 // and the local symbol is not in that file.
1828 if (!parameters->options().should_retain_symbol(name))
1829 {
1830 lv.set_no_output_symtab_entry();
1831 continue;
1832 }
1833
1834 // Add the symbol to the symbol table string pool.
1835 pool->add(name, true, NULL);
1836 ++count;
1837 }
1838
1839 this->output_local_symbol_count_ = count;
1840 this->output_local_dynsym_count_ = dyncount;
1841 }
1842
1843 // Finalize the local symbols. Here we set the final value in
1844 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1845 // This function is always called from a singleton thread. The actual
1846 // output of the local symbols will occur in a separate task.
1847
1848 template<int size, bool big_endian>
1849 unsigned int
1850 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1851 off_t off,
1852 Symbol_table* symtab)
1853 {
1854 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1855
1856 const unsigned int loccount = this->local_symbol_count_;
1857 this->local_symbol_offset_ = off;
1858
1859 const bool relocatable = parameters->options().relocatable();
1860 const Output_sections& out_sections(this->output_sections());
1861 const std::vector<Address>& out_offsets(this->section_offsets_);
1862 unsigned int shnum = this->shnum();
1863
1864 for (unsigned int i = 1; i < loccount; ++i)
1865 {
1866 Symbol_value<size>& lv(this->local_values_[i]);
1867
1868 bool is_ordinary;
1869 unsigned int shndx = lv.input_shndx(&is_ordinary);
1870
1871 // Set the output symbol value.
1872
1873 if (!is_ordinary)
1874 {
1875 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1876 lv.set_output_value(lv.input_value());
1877 else
1878 {
1879 this->error(_("unknown section index %u for local symbol %u"),
1880 shndx, i);
1881 lv.set_output_value(0);
1882 }
1883 }
1884 else
1885 {
1886 if (shndx >= shnum)
1887 {
1888 this->error(_("local symbol %u section index %u out of range"),
1889 i, shndx);
1890 shndx = 0;
1891 }
1892
1893 Output_section* os = out_sections[shndx];
1894 Address secoffset = out_offsets[shndx];
1895 if (symtab->is_section_folded(this, shndx))
1896 {
1897 gold_assert (os == NULL && secoffset == invalid_address);
1898 // Get the os of the section it is folded onto.
1899 Section_id folded = symtab->icf()->get_folded_section(this,
1900 shndx);
1901 gold_assert(folded.first != NULL);
1902 Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
1903 <Sized_relobj<size, big_endian>*>(folded.first);
1904 os = folded_obj->output_section(folded.second);
1905 gold_assert(os != NULL);
1906 secoffset = folded_obj->get_output_section_offset(folded.second);
1907
1908 // This could be a relaxed input section.
1909 if (secoffset == invalid_address)
1910 {
1911 const Output_relaxed_input_section* relaxed_section =
1912 os->find_relaxed_input_section(folded_obj, folded.second);
1913 gold_assert(relaxed_section != NULL);
1914 secoffset = relaxed_section->address() - os->address();
1915 }
1916 }
1917
1918 if (os == NULL)
1919 {
1920 // This local symbol belongs to a section we are discarding.
1921 // In some cases when applying relocations later, we will
1922 // attempt to match it to the corresponding kept section,
1923 // so we leave the input value unchanged here.
1924 continue;
1925 }
1926 else if (secoffset == invalid_address)
1927 {
1928 uint64_t start;
1929
1930 // This is a SHF_MERGE section or one which otherwise
1931 // requires special handling.
1932 if (shndx == this->discarded_eh_frame_shndx_)
1933 {
1934 // This local symbol belongs to a discarded .eh_frame
1935 // section. Just treat it like the case in which
1936 // os == NULL above.
1937 gold_assert(this->has_eh_frame_);
1938 continue;
1939 }
1940 else if (!lv.is_section_symbol())
1941 {
1942 // This is not a section symbol. We can determine
1943 // the final value now.
1944 lv.set_output_value(os->output_address(this, shndx,
1945 lv.input_value()));
1946 }
1947 else if (!os->find_starting_output_address(this, shndx, &start))
1948 {
1949 // This is a section symbol, but apparently not one in a
1950 // merged section. First check to see if this is a relaxed
1951 // input section. If so, use its address. Otherwise just
1952 // use the start of the output section. This happens with
1953 // relocatable links when the input object has section
1954 // symbols for arbitrary non-merge sections.
1955 const Output_section_data* posd =
1956 os->find_relaxed_input_section(this, shndx);
1957 if (posd != NULL)
1958 {
1959 Address relocatable_link_adjustment =
1960 relocatable ? os->address() : 0;
1961 lv.set_output_value(posd->address()
1962 - relocatable_link_adjustment);
1963 }
1964 else
1965 lv.set_output_value(os->address());
1966 }
1967 else
1968 {
1969 // We have to consider the addend to determine the
1970 // value to use in a relocation. START is the start
1971 // of this input section. If we are doing a relocatable
1972 // link, use offset from start output section instead of
1973 // address.
1974 Address adjusted_start =
1975 relocatable ? start - os->address() : start;
1976 Merged_symbol_value<size>* msv =
1977 new Merged_symbol_value<size>(lv.input_value(),
1978 adjusted_start);
1979 lv.set_merged_symbol_value(msv);
1980 }
1981 }
1982 else if (lv.is_tls_symbol())
1983 lv.set_output_value(os->tls_offset()
1984 + secoffset
1985 + lv.input_value());
1986 else
1987 lv.set_output_value((relocatable ? 0 : os->address())
1988 + secoffset
1989 + lv.input_value());
1990 }
1991
1992 if (!lv.is_output_symtab_index_set())
1993 {
1994 lv.set_output_symtab_index(index);
1995 ++index;
1996 }
1997 }
1998 return index;
1999 }
2000
2001 // Set the output dynamic symbol table indexes for the local variables.
2002
2003 template<int size, bool big_endian>
2004 unsigned int
2005 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
2006 {
2007 const unsigned int loccount = this->local_symbol_count_;
2008 for (unsigned int i = 1; i < loccount; ++i)
2009 {
2010 Symbol_value<size>& lv(this->local_values_[i]);
2011 if (lv.needs_output_dynsym_entry())
2012 {
2013 lv.set_output_dynsym_index(index);
2014 ++index;
2015 }
2016 }
2017 return index;
2018 }
2019
2020 // Set the offset where local dynamic symbol information will be stored.
2021 // Returns the count of local symbols contributed to the symbol table by
2022 // this object.
2023
2024 template<int size, bool big_endian>
2025 unsigned int
2026 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2027 {
2028 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2029 this->local_dynsym_offset_ = off;
2030 return this->output_local_dynsym_count_;
2031 }
2032
2033 // If Symbols_data is not NULL get the section flags from here otherwise
2034 // get it from the file.
2035
2036 template<int size, bool big_endian>
2037 uint64_t
2038 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
2039 {
2040 Symbols_data* sd = this->get_symbols_data();
2041 if (sd != NULL)
2042 {
2043 const unsigned char* pshdrs = sd->section_headers_data
2044 + This::shdr_size * shndx;
2045 typename This::Shdr shdr(pshdrs);
2046 return shdr.get_sh_flags();
2047 }
2048 // If sd is NULL, read the section header from the file.
2049 return this->elf_file_.section_flags(shndx);
2050 }
2051
2052 // Get the section's ent size from Symbols_data. Called by get_section_contents
2053 // in icf.cc
2054
2055 template<int size, bool big_endian>
2056 uint64_t
2057 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
2058 {
2059 Symbols_data* sd = this->get_symbols_data();
2060 gold_assert (sd != NULL);
2061
2062 const unsigned char* pshdrs = sd->section_headers_data
2063 + This::shdr_size * shndx;
2064 typename This::Shdr shdr(pshdrs);
2065 return shdr.get_sh_entsize();
2066 }
2067
2068
2069 // Write out the local symbols.
2070
2071 template<int size, bool big_endian>
2072 void
2073 Sized_relobj<size, big_endian>::write_local_symbols(
2074 Output_file* of,
2075 const Stringpool* sympool,
2076 const Stringpool* dynpool,
2077 Output_symtab_xindex* symtab_xindex,
2078 Output_symtab_xindex* dynsym_xindex)
2079 {
2080 const bool strip_all = parameters->options().strip_all();
2081 if (strip_all)
2082 {
2083 if (this->output_local_dynsym_count_ == 0)
2084 return;
2085 this->output_local_symbol_count_ = 0;
2086 }
2087
2088 gold_assert(this->symtab_shndx_ != -1U);
2089 if (this->symtab_shndx_ == 0)
2090 {
2091 // This object has no symbols. Weird but legal.
2092 return;
2093 }
2094
2095 // Read the symbol table section header.
2096 const unsigned int symtab_shndx = this->symtab_shndx_;
2097 typename This::Shdr symtabshdr(this,
2098 this->elf_file_.section_header(symtab_shndx));
2099 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2100 const unsigned int loccount = this->local_symbol_count_;
2101 gold_assert(loccount == symtabshdr.get_sh_info());
2102
2103 // Read the local symbols.
2104 const int sym_size = This::sym_size;
2105 off_t locsize = loccount * sym_size;
2106 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2107 locsize, true, false);
2108
2109 // Read the symbol names.
2110 const unsigned int strtab_shndx =
2111 this->adjust_shndx(symtabshdr.get_sh_link());
2112 section_size_type strtab_size;
2113 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2114 &strtab_size,
2115 false);
2116 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2117
2118 // Get views into the output file for the portions of the symbol table
2119 // and the dynamic symbol table that we will be writing.
2120 off_t output_size = this->output_local_symbol_count_ * sym_size;
2121 unsigned char* oview = NULL;
2122 if (output_size > 0)
2123 oview = of->get_output_view(this->local_symbol_offset_, output_size);
2124
2125 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2126 unsigned char* dyn_oview = NULL;
2127 if (dyn_output_size > 0)
2128 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2129 dyn_output_size);
2130
2131 const Output_sections out_sections(this->output_sections());
2132
2133 gold_assert(this->local_values_.size() == loccount);
2134
2135 unsigned char* ov = oview;
2136 unsigned char* dyn_ov = dyn_oview;
2137 psyms += sym_size;
2138 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2139 {
2140 elfcpp::Sym<size, big_endian> isym(psyms);
2141
2142 Symbol_value<size>& lv(this->local_values_[i]);
2143
2144 bool is_ordinary;
2145 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2146 &is_ordinary);
2147 if (is_ordinary)
2148 {
2149 gold_assert(st_shndx < out_sections.size());
2150 if (out_sections[st_shndx] == NULL)
2151 continue;
2152 st_shndx = out_sections[st_shndx]->out_shndx();
2153 if (st_shndx >= elfcpp::SHN_LORESERVE)
2154 {
2155 if (lv.has_output_symtab_entry())
2156 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2157 if (lv.has_output_dynsym_entry())
2158 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2159 st_shndx = elfcpp::SHN_XINDEX;
2160 }
2161 }
2162
2163 // Write the symbol to the output symbol table.
2164 if (lv.has_output_symtab_entry())
2165 {
2166 elfcpp::Sym_write<size, big_endian> osym(ov);
2167
2168 gold_assert(isym.get_st_name() < strtab_size);
2169 const char* name = pnames + isym.get_st_name();
2170 osym.put_st_name(sympool->get_offset(name));
2171 osym.put_st_value(this->local_values_[i].value(this, 0));
2172 osym.put_st_size(isym.get_st_size());
2173 osym.put_st_info(isym.get_st_info());
2174 osym.put_st_other(isym.get_st_other());
2175 osym.put_st_shndx(st_shndx);
2176
2177 ov += sym_size;
2178 }
2179
2180 // Write the symbol to the output dynamic symbol table.
2181 if (lv.has_output_dynsym_entry())
2182 {
2183 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2184 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2185
2186 gold_assert(isym.get_st_name() < strtab_size);
2187 const char* name = pnames + isym.get_st_name();
2188 osym.put_st_name(dynpool->get_offset(name));
2189 osym.put_st_value(this->local_values_[i].value(this, 0));
2190 osym.put_st_size(isym.get_st_size());
2191 osym.put_st_info(isym.get_st_info());
2192 osym.put_st_other(isym.get_st_other());
2193 osym.put_st_shndx(st_shndx);
2194
2195 dyn_ov += sym_size;
2196 }
2197 }
2198
2199
2200 if (output_size > 0)
2201 {
2202 gold_assert(ov - oview == output_size);
2203 of->write_output_view(this->local_symbol_offset_, output_size, oview);
2204 }
2205
2206 if (dyn_output_size > 0)
2207 {
2208 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2209 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2210 dyn_oview);
2211 }
2212 }
2213
2214 // Set *INFO to symbolic information about the offset OFFSET in the
2215 // section SHNDX. Return true if we found something, false if we
2216 // found nothing.
2217
2218 template<int size, bool big_endian>
2219 bool
2220 Sized_relobj<size, big_endian>::get_symbol_location_info(
2221 unsigned int shndx,
2222 off_t offset,
2223 Symbol_location_info* info)
2224 {
2225 if (this->symtab_shndx_ == 0)
2226 return false;
2227
2228 section_size_type symbols_size;
2229 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2230 &symbols_size,
2231 false);
2232
2233 unsigned int symbol_names_shndx =
2234 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2235 section_size_type names_size;
2236 const unsigned char* symbol_names_u =
2237 this->section_contents(symbol_names_shndx, &names_size, false);
2238 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2239
2240 const int sym_size = This::sym_size;
2241 const size_t count = symbols_size / sym_size;
2242
2243 const unsigned char* p = symbols;
2244 for (size_t i = 0; i < count; ++i, p += sym_size)
2245 {
2246 elfcpp::Sym<size, big_endian> sym(p);
2247
2248 if (sym.get_st_type() == elfcpp::STT_FILE)
2249 {
2250 if (sym.get_st_name() >= names_size)
2251 info->source_file = "(invalid)";
2252 else
2253 info->source_file = symbol_names + sym.get_st_name();
2254 continue;
2255 }
2256
2257 bool is_ordinary;
2258 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2259 &is_ordinary);
2260 if (is_ordinary
2261 && st_shndx == shndx
2262 && static_cast<off_t>(sym.get_st_value()) <= offset
2263 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2264 > offset))
2265 {
2266 if (sym.get_st_name() > names_size)
2267 info->enclosing_symbol_name = "(invalid)";
2268 else
2269 {
2270 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2271 if (parameters->options().do_demangle())
2272 {
2273 char* demangled_name = cplus_demangle(
2274 info->enclosing_symbol_name.c_str(),
2275 DMGL_ANSI | DMGL_PARAMS);
2276 if (demangled_name != NULL)
2277 {
2278 info->enclosing_symbol_name.assign(demangled_name);
2279 free(demangled_name);
2280 }
2281 }
2282 }
2283 return true;
2284 }
2285 }
2286
2287 return false;
2288 }
2289
2290 // Look for a kept section corresponding to the given discarded section,
2291 // and return its output address. This is used only for relocations in
2292 // debugging sections. If we can't find the kept section, return 0.
2293
2294 template<int size, bool big_endian>
2295 typename Sized_relobj<size, big_endian>::Address
2296 Sized_relobj<size, big_endian>::map_to_kept_section(
2297 unsigned int shndx,
2298 bool* found) const
2299 {
2300 Relobj* kept_object;
2301 unsigned int kept_shndx;
2302 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2303 {
2304 Sized_relobj<size, big_endian>* kept_relobj =
2305 static_cast<Sized_relobj<size, big_endian>*>(kept_object);
2306 Output_section* os = kept_relobj->output_section(kept_shndx);
2307 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2308 if (os != NULL && offset != invalid_address)
2309 {
2310 *found = true;
2311 return os->address() + offset;
2312 }
2313 }
2314 *found = false;
2315 return 0;
2316 }
2317
2318 // Get symbol counts.
2319
2320 template<int size, bool big_endian>
2321 void
2322 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
2323 const Symbol_table*,
2324 size_t* defined,
2325 size_t* used) const
2326 {
2327 *defined = this->defined_count_;
2328 size_t count = 0;
2329 for (Symbols::const_iterator p = this->symbols_.begin();
2330 p != this->symbols_.end();
2331 ++p)
2332 if (*p != NULL
2333 && (*p)->source() == Symbol::FROM_OBJECT
2334 && (*p)->object() == this
2335 && (*p)->is_defined())
2336 ++count;
2337 *used = count;
2338 }
2339
2340 // Input_objects methods.
2341
2342 // Add a regular relocatable object to the list. Return false if this
2343 // object should be ignored.
2344
2345 bool
2346 Input_objects::add_object(Object* obj)
2347 {
2348 // Print the filename if the -t/--trace option is selected.
2349 if (parameters->options().trace())
2350 gold_info("%s", obj->name().c_str());
2351
2352 if (!obj->is_dynamic())
2353 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2354 else
2355 {
2356 // See if this is a duplicate SONAME.
2357 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2358 const char* soname = dynobj->soname();
2359
2360 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2361 this->sonames_.insert(soname);
2362 if (!ins.second)
2363 {
2364 // We have already seen a dynamic object with this soname.
2365 return false;
2366 }
2367
2368 this->dynobj_list_.push_back(dynobj);
2369 }
2370
2371 // Add this object to the cross-referencer if requested.
2372 if (parameters->options().user_set_print_symbol_counts()
2373 || parameters->options().cref())
2374 {
2375 if (this->cref_ == NULL)
2376 this->cref_ = new Cref();
2377 this->cref_->add_object(obj);
2378 }
2379
2380 return true;
2381 }
2382
2383 // For each dynamic object, record whether we've seen all of its
2384 // explicit dependencies.
2385
2386 void
2387 Input_objects::check_dynamic_dependencies() const
2388 {
2389 bool issued_copy_dt_needed_error = false;
2390 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2391 p != this->dynobj_list_.end();
2392 ++p)
2393 {
2394 const Dynobj::Needed& needed((*p)->needed());
2395 bool found_all = true;
2396 Dynobj::Needed::const_iterator pneeded;
2397 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2398 {
2399 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2400 {
2401 found_all = false;
2402 break;
2403 }
2404 }
2405 (*p)->set_has_unknown_needed_entries(!found_all);
2406
2407 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2408 // that gold does not support. However, they cause no trouble
2409 // unless there is a DT_NEEDED entry that we don't know about;
2410 // warn only in that case.
2411 if (!found_all
2412 && !issued_copy_dt_needed_error
2413 && (parameters->options().copy_dt_needed_entries()
2414 || parameters->options().add_needed()))
2415 {
2416 const char* optname;
2417 if (parameters->options().copy_dt_needed_entries())
2418 optname = "--copy-dt-needed-entries";
2419 else
2420 optname = "--add-needed";
2421 gold_error(_("%s is not supported but is required for %s in %s"),
2422 optname, (*pneeded).c_str(), (*p)->name().c_str());
2423 issued_copy_dt_needed_error = true;
2424 }
2425 }
2426 }
2427
2428 // Start processing an archive.
2429
2430 void
2431 Input_objects::archive_start(Archive* archive)
2432 {
2433 if (parameters->options().user_set_print_symbol_counts()
2434 || parameters->options().cref())
2435 {
2436 if (this->cref_ == NULL)
2437 this->cref_ = new Cref();
2438 this->cref_->add_archive_start(archive);
2439 }
2440 }
2441
2442 // Stop processing an archive.
2443
2444 void
2445 Input_objects::archive_stop(Archive* archive)
2446 {
2447 if (parameters->options().user_set_print_symbol_counts()
2448 || parameters->options().cref())
2449 this->cref_->add_archive_stop(archive);
2450 }
2451
2452 // Print symbol counts
2453
2454 void
2455 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2456 {
2457 if (parameters->options().user_set_print_symbol_counts()
2458 && this->cref_ != NULL)
2459 this->cref_->print_symbol_counts(symtab);
2460 }
2461
2462 // Print a cross reference table.
2463
2464 void
2465 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2466 {
2467 if (parameters->options().cref() && this->cref_ != NULL)
2468 this->cref_->print_cref(symtab, f);
2469 }
2470
2471 // Relocate_info methods.
2472
2473 // Return a string describing the location of a relocation. This is
2474 // only used in error messages.
2475
2476 template<int size, bool big_endian>
2477 std::string
2478 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2479 {
2480 // See if we can get line-number information from debugging sections.
2481 std::string filename;
2482 std::string file_and_lineno; // Better than filename-only, if available.
2483
2484 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2485 // This will be "" if we failed to parse the debug info for any reason.
2486 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
2487
2488 std::string ret(this->object->name());
2489 ret += ':';
2490 Symbol_location_info info;
2491 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2492 {
2493 ret += " in function ";
2494 ret += info.enclosing_symbol_name;
2495 ret += ":";
2496 filename = info.source_file;
2497 }
2498
2499 if (!file_and_lineno.empty())
2500 ret += file_and_lineno;
2501 else
2502 {
2503 if (!filename.empty())
2504 ret += filename;
2505 ret += "(";
2506 ret += this->object->section_name(this->data_shndx);
2507 char buf[100];
2508 // Offsets into sections have to be positive.
2509 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
2510 ret += buf;
2511 ret += ")";
2512 }
2513 return ret;
2514 }
2515
2516 } // End namespace gold.
2517
2518 namespace
2519 {
2520
2521 using namespace gold;
2522
2523 // Read an ELF file with the header and return the appropriate
2524 // instance of Object.
2525
2526 template<int size, bool big_endian>
2527 Object*
2528 make_elf_sized_object(const std::string& name, Input_file* input_file,
2529 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2530 bool* punconfigured)
2531 {
2532 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2533 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2534 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2535 if (target == NULL)
2536 gold_fatal(_("%s: unsupported ELF machine number %d"),
2537 name.c_str(), ehdr.get_e_machine());
2538
2539 if (!parameters->target_valid())
2540 set_parameters_target(target);
2541 else if (target != &parameters->target())
2542 {
2543 if (punconfigured != NULL)
2544 *punconfigured = true;
2545 else
2546 gold_error(_("%s: incompatible target"), name.c_str());
2547 return NULL;
2548 }
2549
2550 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2551 ehdr);
2552 }
2553
2554 } // End anonymous namespace.
2555
2556 namespace gold
2557 {
2558
2559 // Return whether INPUT_FILE is an ELF object.
2560
2561 bool
2562 is_elf_object(Input_file* input_file, off_t offset,
2563 const unsigned char** start, int *read_size)
2564 {
2565 off_t filesize = input_file->file().filesize();
2566 int want = elfcpp::Elf_recognizer::max_header_size;
2567 if (filesize - offset < want)
2568 want = filesize - offset;
2569
2570 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2571 true, false);
2572 *start = p;
2573 *read_size = want;
2574
2575 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2576 }
2577
2578 // Read an ELF file and return the appropriate instance of Object.
2579
2580 Object*
2581 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2582 const unsigned char* p, section_offset_type bytes,
2583 bool* punconfigured)
2584 {
2585 if (punconfigured != NULL)
2586 *punconfigured = false;
2587
2588 std::string error;
2589 bool big_endian = false;
2590 int size = 0;
2591 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2592 &big_endian, &error))
2593 {
2594 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2595 return NULL;
2596 }
2597
2598 if (size == 32)
2599 {
2600 if (big_endian)
2601 {
2602 #ifdef HAVE_TARGET_32_BIG
2603 elfcpp::Ehdr<32, true> ehdr(p);
2604 return make_elf_sized_object<32, true>(name, input_file,
2605 offset, ehdr, punconfigured);
2606 #else
2607 if (punconfigured != NULL)
2608 *punconfigured = true;
2609 else
2610 gold_error(_("%s: not configured to support "
2611 "32-bit big-endian object"),
2612 name.c_str());
2613 return NULL;
2614 #endif
2615 }
2616 else
2617 {
2618 #ifdef HAVE_TARGET_32_LITTLE
2619 elfcpp::Ehdr<32, false> ehdr(p);
2620 return make_elf_sized_object<32, false>(name, input_file,
2621 offset, ehdr, punconfigured);
2622 #else
2623 if (punconfigured != NULL)
2624 *punconfigured = true;
2625 else
2626 gold_error(_("%s: not configured to support "
2627 "32-bit little-endian object"),
2628 name.c_str());
2629 return NULL;
2630 #endif
2631 }
2632 }
2633 else if (size == 64)
2634 {
2635 if (big_endian)
2636 {
2637 #ifdef HAVE_TARGET_64_BIG
2638 elfcpp::Ehdr<64, true> ehdr(p);
2639 return make_elf_sized_object<64, true>(name, input_file,
2640 offset, ehdr, punconfigured);
2641 #else
2642 if (punconfigured != NULL)
2643 *punconfigured = true;
2644 else
2645 gold_error(_("%s: not configured to support "
2646 "64-bit big-endian object"),
2647 name.c_str());
2648 return NULL;
2649 #endif
2650 }
2651 else
2652 {
2653 #ifdef HAVE_TARGET_64_LITTLE
2654 elfcpp::Ehdr<64, false> ehdr(p);
2655 return make_elf_sized_object<64, false>(name, input_file,
2656 offset, ehdr, punconfigured);
2657 #else
2658 if (punconfigured != NULL)
2659 *punconfigured = true;
2660 else
2661 gold_error(_("%s: not configured to support "
2662 "64-bit little-endian object"),
2663 name.c_str());
2664 return NULL;
2665 #endif
2666 }
2667 }
2668 else
2669 gold_unreachable();
2670 }
2671
2672 // Instantiate the templates we need.
2673
2674 #ifdef HAVE_TARGET_32_LITTLE
2675 template
2676 void
2677 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2678 Read_symbols_data*);
2679 #endif
2680
2681 #ifdef HAVE_TARGET_32_BIG
2682 template
2683 void
2684 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2685 Read_symbols_data*);
2686 #endif
2687
2688 #ifdef HAVE_TARGET_64_LITTLE
2689 template
2690 void
2691 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2692 Read_symbols_data*);
2693 #endif
2694
2695 #ifdef HAVE_TARGET_64_BIG
2696 template
2697 void
2698 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2699 Read_symbols_data*);
2700 #endif
2701
2702 #ifdef HAVE_TARGET_32_LITTLE
2703 template
2704 class Sized_relobj<32, false>;
2705 #endif
2706
2707 #ifdef HAVE_TARGET_32_BIG
2708 template
2709 class Sized_relobj<32, true>;
2710 #endif
2711
2712 #ifdef HAVE_TARGET_64_LITTLE
2713 template
2714 class Sized_relobj<64, false>;
2715 #endif
2716
2717 #ifdef HAVE_TARGET_64_BIG
2718 template
2719 class Sized_relobj<64, true>;
2720 #endif
2721
2722 #ifdef HAVE_TARGET_32_LITTLE
2723 template
2724 struct Relocate_info<32, false>;
2725 #endif
2726
2727 #ifdef HAVE_TARGET_32_BIG
2728 template
2729 struct Relocate_info<32, true>;
2730 #endif
2731
2732 #ifdef HAVE_TARGET_64_LITTLE
2733 template
2734 struct Relocate_info<64, false>;
2735 #endif
2736
2737 #ifdef HAVE_TARGET_64_BIG
2738 template
2739 struct Relocate_info<64, true>;
2740 #endif
2741
2742 #ifdef HAVE_TARGET_32_LITTLE
2743 template
2744 void
2745 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2746
2747 template
2748 void
2749 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2750 const unsigned char*);
2751 #endif
2752
2753 #ifdef HAVE_TARGET_32_BIG
2754 template
2755 void
2756 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2757
2758 template
2759 void
2760 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2761 const unsigned char*);
2762 #endif
2763
2764 #ifdef HAVE_TARGET_64_LITTLE
2765 template
2766 void
2767 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2768
2769 template
2770 void
2771 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2772 const unsigned char*);
2773 #endif
2774
2775 #ifdef HAVE_TARGET_64_BIG
2776 template
2777 void
2778 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2779
2780 template
2781 void
2782 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2783 const unsigned char*);
2784 #endif
2785
2786 } // End namespace gold.
This page took 0.125302 seconds and 5 git commands to generate.