PR gold/12629
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 if (clear_counts)
370 this->reloc_counts_[i] = 0;
371 }
372 layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383 Got_offset_list::Visitor* v) const
384 {
385 unsigned int nsyms = this->local_symbol_count();
386 for (unsigned int i = 0; i < nsyms; i++)
387 {
388 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389 if (p != this->local_got_offsets_.end())
390 {
391 const Got_offset_list* got_offsets = p->second;
392 got_offsets->for_all_got_offsets(v);
393 }
394 }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401 const std::string& name,
402 Input_file* input_file,
403 off_t offset,
404 const elfcpp::Ehdr<size, big_endian>& ehdr)
405 : Sized_relobj<size, big_endian>(name, input_file, offset),
406 elf_file_(this, ehdr),
407 symtab_shndx_(-1U),
408 local_symbol_count_(0),
409 output_local_symbol_count_(0),
410 output_local_dynsym_count_(0),
411 symbols_(),
412 defined_count_(0),
413 local_symbol_offset_(0),
414 local_dynsym_offset_(0),
415 local_values_(),
416 local_plt_offsets_(),
417 kept_comdat_sections_(),
418 has_eh_frame_(false),
419 discarded_eh_frame_shndx_(-1U),
420 deferred_layout_(),
421 deferred_layout_relocs_(),
422 compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header. This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438 const unsigned int shnum = this->elf_file_.shnum();
439 this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers. The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section. Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451 const unsigned int shnum = this->shnum();
452 this->symtab_shndx_ = 0;
453 if (shnum > 0)
454 {
455 // Look through the sections in reverse order, since gas tends
456 // to put the symbol table at the end.
457 const unsigned char* p = pshdrs + shnum * This::shdr_size;
458 unsigned int i = shnum;
459 unsigned int xindex_shndx = 0;
460 unsigned int xindex_link = 0;
461 while (i > 0)
462 {
463 --i;
464 p -= This::shdr_size;
465 typename This::Shdr shdr(p);
466 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467 {
468 this->symtab_shndx_ = i;
469 if (xindex_shndx > 0 && xindex_link == i)
470 {
471 Xindex* xindex =
472 new Xindex(this->elf_file_.large_shndx_offset());
473 xindex->read_symtab_xindex<size, big_endian>(this,
474 xindex_shndx,
475 pshdrs);
476 this->set_xindex(xindex);
477 }
478 break;
479 }
480
481 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482 // one. This will work if it follows the SHT_SYMTAB
483 // section.
484 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485 {
486 xindex_shndx = i;
487 xindex_link = this->adjust_shndx(shdr.get_sh_link());
488 }
489 }
490 }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500 gold_assert(this->symtab_shndx_ != -1U);
501 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503 return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512 const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
515 return ((sh_type == elfcpp::SHT_PROGBITS
516 || sh_type == elfcpp::SHT_X86_64_UNWIND)
517 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
518 }
519
520 // Return whether there is a GNU .eh_frame section, given the section
521 // headers and the section names.
522
523 template<int size, bool big_endian>
524 bool
525 Sized_relobj_file<size, big_endian>::find_eh_frame(
526 const unsigned char* pshdrs,
527 const char* names,
528 section_size_type names_size) const
529 {
530 const unsigned int shnum = this->shnum();
531 const unsigned char* p = pshdrs + This::shdr_size;
532 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
533 {
534 typename This::Shdr shdr(p);
535 if (this->check_eh_frame_flags(&shdr))
536 {
537 if (shdr.get_sh_name() >= names_size)
538 {
539 this->error(_("bad section name offset for section %u: %lu"),
540 i, static_cast<unsigned long>(shdr.get_sh_name()));
541 continue;
542 }
543
544 const char* name = names + shdr.get_sh_name();
545 if (strcmp(name, ".eh_frame") == 0)
546 return true;
547 }
548 }
549 return false;
550 }
551
552 // Build a table for any compressed debug sections, mapping each section index
553 // to the uncompressed size.
554
555 template<int size, bool big_endian>
556 Compressed_section_map*
557 build_compressed_section_map(
558 const unsigned char* pshdrs,
559 unsigned int shnum,
560 const char* names,
561 section_size_type names_size,
562 Sized_relobj_file<size, big_endian>* obj)
563 {
564 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
565 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
566 const unsigned char* p = pshdrs + shdr_size;
567 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
568 {
569 typename elfcpp::Shdr<size, big_endian> shdr(p);
570 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
571 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
572 {
573 if (shdr.get_sh_name() >= names_size)
574 {
575 obj->error(_("bad section name offset for section %u: %lu"),
576 i, static_cast<unsigned long>(shdr.get_sh_name()));
577 continue;
578 }
579
580 const char* name = names + shdr.get_sh_name();
581 if (is_compressed_debug_section(name))
582 {
583 section_size_type len;
584 const unsigned char* contents =
585 obj->section_contents(i, &len, false);
586 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
587 if (uncompressed_size != -1ULL)
588 (*uncompressed_sizes)[i] =
589 convert_to_section_size_type(uncompressed_size);
590 }
591 }
592 }
593 return uncompressed_sizes;
594 }
595
596 // Read the sections and symbols from an object file.
597
598 template<int size, bool big_endian>
599 void
600 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
601 {
602 this->read_section_data(&this->elf_file_, sd);
603
604 const unsigned char* const pshdrs = sd->section_headers->data();
605
606 this->find_symtab(pshdrs);
607
608 const unsigned char* namesu = sd->section_names->data();
609 const char* names = reinterpret_cast<const char*>(namesu);
610 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
611 {
612 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
613 this->has_eh_frame_ = true;
614 }
615 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
616 this->compressed_sections_ =
617 build_compressed_section_map(pshdrs, this->shnum(), names,
618 sd->section_names_size, this);
619
620 sd->symbols = NULL;
621 sd->symbols_size = 0;
622 sd->external_symbols_offset = 0;
623 sd->symbol_names = NULL;
624 sd->symbol_names_size = 0;
625
626 if (this->symtab_shndx_ == 0)
627 {
628 // No symbol table. Weird but legal.
629 return;
630 }
631
632 // Get the symbol table section header.
633 typename This::Shdr symtabshdr(pshdrs
634 + this->symtab_shndx_ * This::shdr_size);
635 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
636
637 // If this object has a .eh_frame section, we need all the symbols.
638 // Otherwise we only need the external symbols. While it would be
639 // simpler to just always read all the symbols, I've seen object
640 // files with well over 2000 local symbols, which for a 64-bit
641 // object file format is over 5 pages that we don't need to read
642 // now.
643
644 const int sym_size = This::sym_size;
645 const unsigned int loccount = symtabshdr.get_sh_info();
646 this->local_symbol_count_ = loccount;
647 this->local_values_.resize(loccount);
648 section_offset_type locsize = loccount * sym_size;
649 off_t dataoff = symtabshdr.get_sh_offset();
650 section_size_type datasize =
651 convert_to_section_size_type(symtabshdr.get_sh_size());
652 off_t extoff = dataoff + locsize;
653 section_size_type extsize = datasize - locsize;
654
655 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
656 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
657
658 if (readsize == 0)
659 {
660 // No external symbols. Also weird but also legal.
661 return;
662 }
663
664 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
665
666 // Read the section header for the symbol names.
667 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
668 if (strtab_shndx >= this->shnum())
669 {
670 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
671 return;
672 }
673 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
674 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
675 {
676 this->error(_("symbol table name section has wrong type: %u"),
677 static_cast<unsigned int>(strtabshdr.get_sh_type()));
678 return;
679 }
680
681 // Read the symbol names.
682 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
683 strtabshdr.get_sh_size(),
684 false, true);
685
686 sd->symbols = fvsymtab;
687 sd->symbols_size = readsize;
688 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
689 sd->symbol_names = fvstrtab;
690 sd->symbol_names_size =
691 convert_to_section_size_type(strtabshdr.get_sh_size());
692 }
693
694 // Return the section index of symbol SYM. Set *VALUE to its value in
695 // the object file. Set *IS_ORDINARY if this is an ordinary section
696 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
697 // Note that for a symbol which is not defined in this object file,
698 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
699 // the final value of the symbol in the link.
700
701 template<int size, bool big_endian>
702 unsigned int
703 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
704 Address* value,
705 bool* is_ordinary)
706 {
707 section_size_type symbols_size;
708 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
709 &symbols_size,
710 false);
711
712 const size_t count = symbols_size / This::sym_size;
713 gold_assert(sym < count);
714
715 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
716 *value = elfsym.get_st_value();
717
718 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
719 }
720
721 // Return whether to include a section group in the link. LAYOUT is
722 // used to keep track of which section groups we have already seen.
723 // INDEX is the index of the section group and SHDR is the section
724 // header. If we do not want to include this group, we set bits in
725 // OMIT for each section which should be discarded.
726
727 template<int size, bool big_endian>
728 bool
729 Sized_relobj_file<size, big_endian>::include_section_group(
730 Symbol_table* symtab,
731 Layout* layout,
732 unsigned int index,
733 const char* name,
734 const unsigned char* shdrs,
735 const char* section_names,
736 section_size_type section_names_size,
737 std::vector<bool>* omit)
738 {
739 // Read the section contents.
740 typename This::Shdr shdr(shdrs + index * This::shdr_size);
741 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
742 shdr.get_sh_size(), true, false);
743 const elfcpp::Elf_Word* pword =
744 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
745
746 // The first word contains flags. We only care about COMDAT section
747 // groups. Other section groups are always included in the link
748 // just like ordinary sections.
749 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
750
751 // Look up the group signature, which is the name of a symbol. This
752 // is a lot of effort to go to to read a string. Why didn't they
753 // just have the group signature point into the string table, rather
754 // than indirect through a symbol?
755
756 // Get the appropriate symbol table header (this will normally be
757 // the single SHT_SYMTAB section, but in principle it need not be).
758 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
759 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
760
761 // Read the symbol table entry.
762 unsigned int symndx = shdr.get_sh_info();
763 if (symndx >= symshdr.get_sh_size() / This::sym_size)
764 {
765 this->error(_("section group %u info %u out of range"),
766 index, symndx);
767 return false;
768 }
769 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
770 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
771 false);
772 elfcpp::Sym<size, big_endian> sym(psym);
773
774 // Read the symbol table names.
775 section_size_type symnamelen;
776 const unsigned char* psymnamesu;
777 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
778 &symnamelen, true);
779 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
780
781 // Get the section group signature.
782 if (sym.get_st_name() >= symnamelen)
783 {
784 this->error(_("symbol %u name offset %u out of range"),
785 symndx, sym.get_st_name());
786 return false;
787 }
788
789 std::string signature(psymnames + sym.get_st_name());
790
791 // It seems that some versions of gas will create a section group
792 // associated with a section symbol, and then fail to give a name to
793 // the section symbol. In such a case, use the name of the section.
794 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
795 {
796 bool is_ordinary;
797 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
798 sym.get_st_shndx(),
799 &is_ordinary);
800 if (!is_ordinary || sym_shndx >= this->shnum())
801 {
802 this->error(_("symbol %u invalid section index %u"),
803 symndx, sym_shndx);
804 return false;
805 }
806 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
807 if (member_shdr.get_sh_name() < section_names_size)
808 signature = section_names + member_shdr.get_sh_name();
809 }
810
811 // Record this section group in the layout, and see whether we've already
812 // seen one with the same signature.
813 bool include_group;
814 bool is_comdat;
815 Kept_section* kept_section = NULL;
816
817 if ((flags & elfcpp::GRP_COMDAT) == 0)
818 {
819 include_group = true;
820 is_comdat = false;
821 }
822 else
823 {
824 include_group = layout->find_or_add_kept_section(signature,
825 this, index, true,
826 true, &kept_section);
827 is_comdat = true;
828 }
829
830 if (is_comdat && include_group)
831 {
832 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
833 if (incremental_inputs != NULL)
834 incremental_inputs->report_comdat_group(this, signature.c_str());
835 }
836
837 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
838
839 std::vector<unsigned int> shndxes;
840 bool relocate_group = include_group && parameters->options().relocatable();
841 if (relocate_group)
842 shndxes.reserve(count - 1);
843
844 for (size_t i = 1; i < count; ++i)
845 {
846 elfcpp::Elf_Word shndx =
847 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
848
849 if (relocate_group)
850 shndxes.push_back(shndx);
851
852 if (shndx >= this->shnum())
853 {
854 this->error(_("section %u in section group %u out of range"),
855 shndx, index);
856 continue;
857 }
858
859 // Check for an earlier section number, since we're going to get
860 // it wrong--we may have already decided to include the section.
861 if (shndx < index)
862 this->error(_("invalid section group %u refers to earlier section %u"),
863 index, shndx);
864
865 // Get the name of the member section.
866 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
867 if (member_shdr.get_sh_name() >= section_names_size)
868 {
869 // This is an error, but it will be diagnosed eventually
870 // in do_layout, so we don't need to do anything here but
871 // ignore it.
872 continue;
873 }
874 std::string mname(section_names + member_shdr.get_sh_name());
875
876 if (include_group)
877 {
878 if (is_comdat)
879 kept_section->add_comdat_section(mname, shndx,
880 member_shdr.get_sh_size());
881 }
882 else
883 {
884 (*omit)[shndx] = true;
885
886 if (is_comdat)
887 {
888 Relobj* kept_object = kept_section->object();
889 if (kept_section->is_comdat())
890 {
891 // Find the corresponding kept section, and store
892 // that info in the discarded section table.
893 unsigned int kept_shndx;
894 uint64_t kept_size;
895 if (kept_section->find_comdat_section(mname, &kept_shndx,
896 &kept_size))
897 {
898 // We don't keep a mapping for this section if
899 // it has a different size. The mapping is only
900 // used for relocation processing, and we don't
901 // want to treat the sections as similar if the
902 // sizes are different. Checking the section
903 // size is the approach used by the GNU linker.
904 if (kept_size == member_shdr.get_sh_size())
905 this->set_kept_comdat_section(shndx, kept_object,
906 kept_shndx);
907 }
908 }
909 else
910 {
911 // The existing section is a linkonce section. Add
912 // a mapping if there is exactly one section in the
913 // group (which is true when COUNT == 2) and if it
914 // is the same size.
915 if (count == 2
916 && (kept_section->linkonce_size()
917 == member_shdr.get_sh_size()))
918 this->set_kept_comdat_section(shndx, kept_object,
919 kept_section->shndx());
920 }
921 }
922 }
923 }
924
925 if (relocate_group)
926 layout->layout_group(symtab, this, index, name, signature.c_str(),
927 shdr, flags, &shndxes);
928
929 return include_group;
930 }
931
932 // Whether to include a linkonce section in the link. NAME is the
933 // name of the section and SHDR is the section header.
934
935 // Linkonce sections are a GNU extension implemented in the original
936 // GNU linker before section groups were defined. The semantics are
937 // that we only include one linkonce section with a given name. The
938 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
939 // where T is the type of section and SYMNAME is the name of a symbol.
940 // In an attempt to make linkonce sections interact well with section
941 // groups, we try to identify SYMNAME and use it like a section group
942 // signature. We want to block section groups with that signature,
943 // but not other linkonce sections with that signature. We also use
944 // the full name of the linkonce section as a normal section group
945 // signature.
946
947 template<int size, bool big_endian>
948 bool
949 Sized_relobj_file<size, big_endian>::include_linkonce_section(
950 Layout* layout,
951 unsigned int index,
952 const char* name,
953 const elfcpp::Shdr<size, big_endian>& shdr)
954 {
955 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
956 // In general the symbol name we want will be the string following
957 // the last '.'. However, we have to handle the case of
958 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
959 // some versions of gcc. So we use a heuristic: if the name starts
960 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
961 // we look for the last '.'. We can't always simply skip
962 // ".gnu.linkonce.X", because we have to deal with cases like
963 // ".gnu.linkonce.d.rel.ro.local".
964 const char* const linkonce_t = ".gnu.linkonce.t.";
965 const char* symname;
966 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
967 symname = name + strlen(linkonce_t);
968 else
969 symname = strrchr(name, '.') + 1;
970 std::string sig1(symname);
971 std::string sig2(name);
972 Kept_section* kept1;
973 Kept_section* kept2;
974 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
975 false, &kept1);
976 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
977 true, &kept2);
978
979 if (!include2)
980 {
981 // We are not including this section because we already saw the
982 // name of the section as a signature. This normally implies
983 // that the kept section is another linkonce section. If it is
984 // the same size, record it as the section which corresponds to
985 // this one.
986 if (kept2->object() != NULL
987 && !kept2->is_comdat()
988 && kept2->linkonce_size() == sh_size)
989 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
990 }
991 else if (!include1)
992 {
993 // The section is being discarded on the basis of its symbol
994 // name. This means that the corresponding kept section was
995 // part of a comdat group, and it will be difficult to identify
996 // the specific section within that group that corresponds to
997 // this linkonce section. We'll handle the simple case where
998 // the group has only one member section. Otherwise, it's not
999 // worth the effort.
1000 unsigned int kept_shndx;
1001 uint64_t kept_size;
1002 if (kept1->object() != NULL
1003 && kept1->is_comdat()
1004 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1005 && kept_size == sh_size)
1006 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1007 }
1008 else
1009 {
1010 kept1->set_linkonce_size(sh_size);
1011 kept2->set_linkonce_size(sh_size);
1012 }
1013
1014 return include1 && include2;
1015 }
1016
1017 // Layout an input section.
1018
1019 template<int size, bool big_endian>
1020 inline void
1021 Sized_relobj_file<size, big_endian>::layout_section(
1022 Layout* layout,
1023 unsigned int shndx,
1024 const char* name,
1025 const typename This::Shdr& shdr,
1026 unsigned int reloc_shndx,
1027 unsigned int reloc_type)
1028 {
1029 off_t offset;
1030 Output_section* os = layout->layout(this, shndx, name, shdr,
1031 reloc_shndx, reloc_type, &offset);
1032
1033 this->output_sections()[shndx] = os;
1034 if (offset == -1)
1035 this->section_offsets()[shndx] = invalid_address;
1036 else
1037 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1038
1039 // If this section requires special handling, and if there are
1040 // relocs that apply to it, then we must do the special handling
1041 // before we apply the relocs.
1042 if (offset == -1 && reloc_shndx != 0)
1043 this->set_relocs_must_follow_section_writes();
1044 }
1045
1046 // Layout an input .eh_frame section.
1047
1048 template<int size, bool big_endian>
1049 void
1050 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1051 Layout* layout,
1052 const unsigned char* symbols_data,
1053 section_size_type symbols_size,
1054 const unsigned char* symbol_names_data,
1055 section_size_type symbol_names_size,
1056 unsigned int shndx,
1057 const typename This::Shdr& shdr,
1058 unsigned int reloc_shndx,
1059 unsigned int reloc_type)
1060 {
1061 gold_assert(this->has_eh_frame_);
1062
1063 off_t offset;
1064 Output_section* os = layout->layout_eh_frame(this,
1065 symbols_data,
1066 symbols_size,
1067 symbol_names_data,
1068 symbol_names_size,
1069 shndx,
1070 shdr,
1071 reloc_shndx,
1072 reloc_type,
1073 &offset);
1074 this->output_sections()[shndx] = os;
1075 if (os == NULL || offset == -1)
1076 {
1077 // An object can contain at most one section holding exception
1078 // frame information.
1079 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1080 this->discarded_eh_frame_shndx_ = shndx;
1081 this->section_offsets()[shndx] = invalid_address;
1082 }
1083 else
1084 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1085
1086 // If this section requires special handling, and if there are
1087 // relocs that aply to it, then we must do the special handling
1088 // before we apply the relocs.
1089 if (os != NULL && offset == -1 && reloc_shndx != 0)
1090 this->set_relocs_must_follow_section_writes();
1091 }
1092
1093 // Lay out the input sections. We walk through the sections and check
1094 // whether they should be included in the link. If they should, we
1095 // pass them to the Layout object, which will return an output section
1096 // and an offset.
1097 // During garbage collection (--gc-sections) and identical code folding
1098 // (--icf), this function is called twice. When it is called the first
1099 // time, it is for setting up some sections as roots to a work-list for
1100 // --gc-sections and to do comdat processing. Actual layout happens the
1101 // second time around after all the relevant sections have been determined.
1102 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1103 // set to true after the garbage collection worklist or identical code
1104 // folding is processed and the relevant sections to be kept are
1105 // determined. Then, this function is called again to layout the sections.
1106
1107 template<int size, bool big_endian>
1108 void
1109 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1110 Layout* layout,
1111 Read_symbols_data* sd)
1112 {
1113 const unsigned int shnum = this->shnum();
1114 bool is_gc_pass_one = ((parameters->options().gc_sections()
1115 && !symtab->gc()->is_worklist_ready())
1116 || (parameters->options().icf_enabled()
1117 && !symtab->icf()->is_icf_ready()));
1118
1119 bool is_gc_pass_two = ((parameters->options().gc_sections()
1120 && symtab->gc()->is_worklist_ready())
1121 || (parameters->options().icf_enabled()
1122 && symtab->icf()->is_icf_ready()));
1123
1124 bool is_gc_or_icf = (parameters->options().gc_sections()
1125 || parameters->options().icf_enabled());
1126
1127 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1128 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1129
1130 if (shnum == 0)
1131 return;
1132 Symbols_data* gc_sd = NULL;
1133 if (is_gc_pass_one)
1134 {
1135 // During garbage collection save the symbols data to use it when
1136 // re-entering this function.
1137 gc_sd = new Symbols_data;
1138 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1139 this->set_symbols_data(gc_sd);
1140 }
1141 else if (is_gc_pass_two)
1142 {
1143 gc_sd = this->get_symbols_data();
1144 }
1145
1146 const unsigned char* section_headers_data = NULL;
1147 section_size_type section_names_size;
1148 const unsigned char* symbols_data = NULL;
1149 section_size_type symbols_size;
1150 section_offset_type external_symbols_offset;
1151 const unsigned char* symbol_names_data = NULL;
1152 section_size_type symbol_names_size;
1153
1154 if (is_gc_or_icf)
1155 {
1156 section_headers_data = gc_sd->section_headers_data;
1157 section_names_size = gc_sd->section_names_size;
1158 symbols_data = gc_sd->symbols_data;
1159 symbols_size = gc_sd->symbols_size;
1160 external_symbols_offset = gc_sd->external_symbols_offset;
1161 symbol_names_data = gc_sd->symbol_names_data;
1162 symbol_names_size = gc_sd->symbol_names_size;
1163 }
1164 else
1165 {
1166 section_headers_data = sd->section_headers->data();
1167 section_names_size = sd->section_names_size;
1168 if (sd->symbols != NULL)
1169 symbols_data = sd->symbols->data();
1170 symbols_size = sd->symbols_size;
1171 external_symbols_offset = sd->external_symbols_offset;
1172 if (sd->symbol_names != NULL)
1173 symbol_names_data = sd->symbol_names->data();
1174 symbol_names_size = sd->symbol_names_size;
1175 }
1176
1177 // Get the section headers.
1178 const unsigned char* shdrs = section_headers_data;
1179 const unsigned char* pshdrs;
1180
1181 // Get the section names.
1182 const unsigned char* pnamesu = (is_gc_or_icf)
1183 ? gc_sd->section_names_data
1184 : sd->section_names->data();
1185
1186 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1187
1188 // If any input files have been claimed by plugins, we need to defer
1189 // actual layout until the replacement files have arrived.
1190 const bool should_defer_layout =
1191 (parameters->options().has_plugins()
1192 && parameters->options().plugins()->should_defer_layout());
1193 unsigned int num_sections_to_defer = 0;
1194
1195 // For each section, record the index of the reloc section if any.
1196 // Use 0 to mean that there is no reloc section, -1U to mean that
1197 // there is more than one.
1198 std::vector<unsigned int> reloc_shndx(shnum, 0);
1199 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1200 // Skip the first, dummy, section.
1201 pshdrs = shdrs + This::shdr_size;
1202 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1203 {
1204 typename This::Shdr shdr(pshdrs);
1205
1206 // Count the number of sections whose layout will be deferred.
1207 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1208 ++num_sections_to_defer;
1209
1210 unsigned int sh_type = shdr.get_sh_type();
1211 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1212 {
1213 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1214 if (target_shndx == 0 || target_shndx >= shnum)
1215 {
1216 this->error(_("relocation section %u has bad info %u"),
1217 i, target_shndx);
1218 continue;
1219 }
1220
1221 if (reloc_shndx[target_shndx] != 0)
1222 reloc_shndx[target_shndx] = -1U;
1223 else
1224 {
1225 reloc_shndx[target_shndx] = i;
1226 reloc_type[target_shndx] = sh_type;
1227 }
1228 }
1229 }
1230
1231 Output_sections& out_sections(this->output_sections());
1232 std::vector<Address>& out_section_offsets(this->section_offsets());
1233
1234 if (!is_gc_pass_two)
1235 {
1236 out_sections.resize(shnum);
1237 out_section_offsets.resize(shnum);
1238 }
1239
1240 // If we are only linking for symbols, then there is nothing else to
1241 // do here.
1242 if (this->input_file()->just_symbols())
1243 {
1244 if (!is_gc_pass_two)
1245 {
1246 delete sd->section_headers;
1247 sd->section_headers = NULL;
1248 delete sd->section_names;
1249 sd->section_names = NULL;
1250 }
1251 return;
1252 }
1253
1254 if (num_sections_to_defer > 0)
1255 {
1256 parameters->options().plugins()->add_deferred_layout_object(this);
1257 this->deferred_layout_.reserve(num_sections_to_defer);
1258 }
1259
1260 // Whether we've seen a .note.GNU-stack section.
1261 bool seen_gnu_stack = false;
1262 // The flags of a .note.GNU-stack section.
1263 uint64_t gnu_stack_flags = 0;
1264
1265 // Keep track of which sections to omit.
1266 std::vector<bool> omit(shnum, false);
1267
1268 // Keep track of reloc sections when emitting relocations.
1269 const bool relocatable = parameters->options().relocatable();
1270 const bool emit_relocs = (relocatable
1271 || parameters->options().emit_relocs());
1272 std::vector<unsigned int> reloc_sections;
1273
1274 // Keep track of .eh_frame sections.
1275 std::vector<unsigned int> eh_frame_sections;
1276
1277 // Skip the first, dummy, section.
1278 pshdrs = shdrs + This::shdr_size;
1279 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1280 {
1281 typename This::Shdr shdr(pshdrs);
1282
1283 if (shdr.get_sh_name() >= section_names_size)
1284 {
1285 this->error(_("bad section name offset for section %u: %lu"),
1286 i, static_cast<unsigned long>(shdr.get_sh_name()));
1287 return;
1288 }
1289
1290 const char* name = pnames + shdr.get_sh_name();
1291
1292 if (!is_gc_pass_two)
1293 {
1294 if (this->handle_gnu_warning_section(name, i, symtab))
1295 {
1296 if (!relocatable && !parameters->options().shared())
1297 omit[i] = true;
1298 }
1299
1300 // The .note.GNU-stack section is special. It gives the
1301 // protection flags that this object file requires for the stack
1302 // in memory.
1303 if (strcmp(name, ".note.GNU-stack") == 0)
1304 {
1305 seen_gnu_stack = true;
1306 gnu_stack_flags |= shdr.get_sh_flags();
1307 omit[i] = true;
1308 }
1309
1310 // The .note.GNU-split-stack section is also special. It
1311 // indicates that the object was compiled with
1312 // -fsplit-stack.
1313 if (this->handle_split_stack_section(name))
1314 {
1315 if (!relocatable && !parameters->options().shared())
1316 omit[i] = true;
1317 }
1318
1319 // Skip attributes section.
1320 if (parameters->target().is_attributes_section(name))
1321 {
1322 omit[i] = true;
1323 }
1324
1325 bool discard = omit[i];
1326 if (!discard)
1327 {
1328 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1329 {
1330 if (!this->include_section_group(symtab, layout, i, name,
1331 shdrs, pnames,
1332 section_names_size,
1333 &omit))
1334 discard = true;
1335 }
1336 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1337 && Layout::is_linkonce(name))
1338 {
1339 if (!this->include_linkonce_section(layout, i, name, shdr))
1340 discard = true;
1341 }
1342 }
1343
1344 // Add the section to the incremental inputs layout.
1345 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1346 if (incremental_inputs != NULL
1347 && !discard
1348 && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1349 || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1350 || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1351 {
1352 off_t sh_size = shdr.get_sh_size();
1353 section_size_type uncompressed_size;
1354 if (this->section_is_compressed(i, &uncompressed_size))
1355 sh_size = uncompressed_size;
1356 incremental_inputs->report_input_section(this, i, name, sh_size);
1357 }
1358
1359 if (discard)
1360 {
1361 // Do not include this section in the link.
1362 out_sections[i] = NULL;
1363 out_section_offsets[i] = invalid_address;
1364 continue;
1365 }
1366 }
1367
1368 if (is_gc_pass_one && parameters->options().gc_sections())
1369 {
1370 if (this->is_section_name_included(name)
1371 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1372 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1373 {
1374 symtab->gc()->worklist().push(Section_id(this, i));
1375 }
1376 // If the section name XXX can be represented as a C identifier
1377 // it cannot be discarded if there are references to
1378 // __start_XXX and __stop_XXX symbols. These need to be
1379 // specially handled.
1380 if (is_cident(name))
1381 {
1382 symtab->gc()->add_cident_section(name, Section_id(this, i));
1383 }
1384 }
1385
1386 // When doing a relocatable link we are going to copy input
1387 // reloc sections into the output. We only want to copy the
1388 // ones associated with sections which are not being discarded.
1389 // However, we don't know that yet for all sections. So save
1390 // reloc sections and process them later. Garbage collection is
1391 // not triggered when relocatable code is desired.
1392 if (emit_relocs
1393 && (shdr.get_sh_type() == elfcpp::SHT_REL
1394 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1395 {
1396 reloc_sections.push_back(i);
1397 continue;
1398 }
1399
1400 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1401 continue;
1402
1403 // The .eh_frame section is special. It holds exception frame
1404 // information that we need to read in order to generate the
1405 // exception frame header. We process these after all the other
1406 // sections so that the exception frame reader can reliably
1407 // determine which sections are being discarded, and discard the
1408 // corresponding information.
1409 if (!relocatable
1410 && strcmp(name, ".eh_frame") == 0
1411 && this->check_eh_frame_flags(&shdr))
1412 {
1413 if (is_gc_pass_one)
1414 {
1415 out_sections[i] = reinterpret_cast<Output_section*>(1);
1416 out_section_offsets[i] = invalid_address;
1417 }
1418 else if (should_defer_layout)
1419 this->deferred_layout_.push_back(Deferred_layout(i, name,
1420 pshdrs,
1421 reloc_shndx[i],
1422 reloc_type[i]));
1423 else
1424 eh_frame_sections.push_back(i);
1425 continue;
1426 }
1427
1428 if (is_gc_pass_two && parameters->options().gc_sections())
1429 {
1430 // This is executed during the second pass of garbage
1431 // collection. do_layout has been called before and some
1432 // sections have been already discarded. Simply ignore
1433 // such sections this time around.
1434 if (out_sections[i] == NULL)
1435 {
1436 gold_assert(out_section_offsets[i] == invalid_address);
1437 continue;
1438 }
1439 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1440 && symtab->gc()->is_section_garbage(this, i))
1441 {
1442 if (parameters->options().print_gc_sections())
1443 gold_info(_("%s: removing unused section from '%s'"
1444 " in file '%s'"),
1445 program_name, this->section_name(i).c_str(),
1446 this->name().c_str());
1447 out_sections[i] = NULL;
1448 out_section_offsets[i] = invalid_address;
1449 continue;
1450 }
1451 }
1452
1453 if (is_gc_pass_two && parameters->options().icf_enabled())
1454 {
1455 if (out_sections[i] == NULL)
1456 {
1457 gold_assert(out_section_offsets[i] == invalid_address);
1458 continue;
1459 }
1460 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1461 && symtab->icf()->is_section_folded(this, i))
1462 {
1463 if (parameters->options().print_icf_sections())
1464 {
1465 Section_id folded =
1466 symtab->icf()->get_folded_section(this, i);
1467 Relobj* folded_obj =
1468 reinterpret_cast<Relobj*>(folded.first);
1469 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1470 "into '%s' in file '%s'"),
1471 program_name, this->section_name(i).c_str(),
1472 this->name().c_str(),
1473 folded_obj->section_name(folded.second).c_str(),
1474 folded_obj->name().c_str());
1475 }
1476 out_sections[i] = NULL;
1477 out_section_offsets[i] = invalid_address;
1478 continue;
1479 }
1480 }
1481
1482 // Defer layout here if input files are claimed by plugins. When gc
1483 // is turned on this function is called twice. For the second call
1484 // should_defer_layout should be false.
1485 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1486 {
1487 gold_assert(!is_gc_pass_two);
1488 this->deferred_layout_.push_back(Deferred_layout(i, name,
1489 pshdrs,
1490 reloc_shndx[i],
1491 reloc_type[i]));
1492 // Put dummy values here; real values will be supplied by
1493 // do_layout_deferred_sections.
1494 out_sections[i] = reinterpret_cast<Output_section*>(2);
1495 out_section_offsets[i] = invalid_address;
1496 continue;
1497 }
1498
1499 // During gc_pass_two if a section that was previously deferred is
1500 // found, do not layout the section as layout_deferred_sections will
1501 // do it later from gold.cc.
1502 if (is_gc_pass_two
1503 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1504 continue;
1505
1506 if (is_gc_pass_one)
1507 {
1508 // This is during garbage collection. The out_sections are
1509 // assigned in the second call to this function.
1510 out_sections[i] = reinterpret_cast<Output_section*>(1);
1511 out_section_offsets[i] = invalid_address;
1512 }
1513 else
1514 {
1515 // When garbage collection is switched on the actual layout
1516 // only happens in the second call.
1517 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1518 reloc_type[i]);
1519 }
1520 }
1521
1522 if (!is_gc_pass_two)
1523 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1524
1525 // When doing a relocatable link handle the reloc sections at the
1526 // end. Garbage collection and Identical Code Folding is not
1527 // turned on for relocatable code.
1528 if (emit_relocs)
1529 this->size_relocatable_relocs();
1530
1531 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1532
1533 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1534 p != reloc_sections.end();
1535 ++p)
1536 {
1537 unsigned int i = *p;
1538 const unsigned char* pshdr;
1539 pshdr = section_headers_data + i * This::shdr_size;
1540 typename This::Shdr shdr(pshdr);
1541
1542 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1543 if (data_shndx >= shnum)
1544 {
1545 // We already warned about this above.
1546 continue;
1547 }
1548
1549 Output_section* data_section = out_sections[data_shndx];
1550 if (data_section == reinterpret_cast<Output_section*>(2))
1551 {
1552 // The layout for the data section was deferred, so we need
1553 // to defer the relocation section, too.
1554 const char* name = pnames + shdr.get_sh_name();
1555 this->deferred_layout_relocs_.push_back(
1556 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1557 out_sections[i] = reinterpret_cast<Output_section*>(2);
1558 out_section_offsets[i] = invalid_address;
1559 continue;
1560 }
1561 if (data_section == NULL)
1562 {
1563 out_sections[i] = NULL;
1564 out_section_offsets[i] = invalid_address;
1565 continue;
1566 }
1567
1568 Relocatable_relocs* rr = new Relocatable_relocs();
1569 this->set_relocatable_relocs(i, rr);
1570
1571 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1572 rr);
1573 out_sections[i] = os;
1574 out_section_offsets[i] = invalid_address;
1575 }
1576
1577 // Handle the .eh_frame sections at the end.
1578 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1579 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1580 p != eh_frame_sections.end();
1581 ++p)
1582 {
1583 gold_assert(external_symbols_offset != 0);
1584
1585 unsigned int i = *p;
1586 const unsigned char* pshdr;
1587 pshdr = section_headers_data + i * This::shdr_size;
1588 typename This::Shdr shdr(pshdr);
1589
1590 this->layout_eh_frame_section(layout,
1591 symbols_data,
1592 symbols_size,
1593 symbol_names_data,
1594 symbol_names_size,
1595 i,
1596 shdr,
1597 reloc_shndx[i],
1598 reloc_type[i]);
1599 }
1600
1601 if (is_gc_pass_two)
1602 {
1603 delete[] gc_sd->section_headers_data;
1604 delete[] gc_sd->section_names_data;
1605 delete[] gc_sd->symbols_data;
1606 delete[] gc_sd->symbol_names_data;
1607 this->set_symbols_data(NULL);
1608 }
1609 else
1610 {
1611 delete sd->section_headers;
1612 sd->section_headers = NULL;
1613 delete sd->section_names;
1614 sd->section_names = NULL;
1615 }
1616 }
1617
1618 // Layout sections whose layout was deferred while waiting for
1619 // input files from a plugin.
1620
1621 template<int size, bool big_endian>
1622 void
1623 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1624 {
1625 typename std::vector<Deferred_layout>::iterator deferred;
1626
1627 for (deferred = this->deferred_layout_.begin();
1628 deferred != this->deferred_layout_.end();
1629 ++deferred)
1630 {
1631 typename This::Shdr shdr(deferred->shdr_data_);
1632 // If the section is not included, it is because the garbage collector
1633 // decided it is not needed. Avoid reverting that decision.
1634 if (!this->is_section_included(deferred->shndx_))
1635 continue;
1636
1637 if (parameters->options().relocatable()
1638 || deferred->name_ != ".eh_frame"
1639 || !this->check_eh_frame_flags(&shdr))
1640 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1641 shdr, deferred->reloc_shndx_,
1642 deferred->reloc_type_);
1643 else
1644 {
1645 // Reading the symbols again here may be slow.
1646 Read_symbols_data sd;
1647 this->read_symbols(&sd);
1648 this->layout_eh_frame_section(layout,
1649 sd.symbols->data(),
1650 sd.symbols_size,
1651 sd.symbol_names->data(),
1652 sd.symbol_names_size,
1653 deferred->shndx_,
1654 shdr,
1655 deferred->reloc_shndx_,
1656 deferred->reloc_type_);
1657 }
1658 }
1659
1660 this->deferred_layout_.clear();
1661
1662 // Now handle the deferred relocation sections.
1663
1664 Output_sections& out_sections(this->output_sections());
1665 std::vector<Address>& out_section_offsets(this->section_offsets());
1666
1667 for (deferred = this->deferred_layout_relocs_.begin();
1668 deferred != this->deferred_layout_relocs_.end();
1669 ++deferred)
1670 {
1671 unsigned int shndx = deferred->shndx_;
1672 typename This::Shdr shdr(deferred->shdr_data_);
1673 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1674
1675 Output_section* data_section = out_sections[data_shndx];
1676 if (data_section == NULL)
1677 {
1678 out_sections[shndx] = NULL;
1679 out_section_offsets[shndx] = invalid_address;
1680 continue;
1681 }
1682
1683 Relocatable_relocs* rr = new Relocatable_relocs();
1684 this->set_relocatable_relocs(shndx, rr);
1685
1686 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1687 data_section, rr);
1688 out_sections[shndx] = os;
1689 out_section_offsets[shndx] = invalid_address;
1690 }
1691 }
1692
1693 // Add the symbols to the symbol table.
1694
1695 template<int size, bool big_endian>
1696 void
1697 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1698 Read_symbols_data* sd,
1699 Layout*)
1700 {
1701 if (sd->symbols == NULL)
1702 {
1703 gold_assert(sd->symbol_names == NULL);
1704 return;
1705 }
1706
1707 const int sym_size = This::sym_size;
1708 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1709 / sym_size);
1710 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1711 {
1712 this->error(_("size of symbols is not multiple of symbol size"));
1713 return;
1714 }
1715
1716 this->symbols_.resize(symcount);
1717
1718 const char* sym_names =
1719 reinterpret_cast<const char*>(sd->symbol_names->data());
1720 symtab->add_from_relobj(this,
1721 sd->symbols->data() + sd->external_symbols_offset,
1722 symcount, this->local_symbol_count_,
1723 sym_names, sd->symbol_names_size,
1724 &this->symbols_,
1725 &this->defined_count_);
1726
1727 delete sd->symbols;
1728 sd->symbols = NULL;
1729 delete sd->symbol_names;
1730 sd->symbol_names = NULL;
1731 }
1732
1733 // Find out if this object, that is a member of a lib group, should be included
1734 // in the link. We check every symbol defined by this object. If the symbol
1735 // table has a strong undefined reference to that symbol, we have to include
1736 // the object.
1737
1738 template<int size, bool big_endian>
1739 Archive::Should_include
1740 Sized_relobj_file<size, big_endian>::do_should_include_member(
1741 Symbol_table* symtab,
1742 Layout* layout,
1743 Read_symbols_data* sd,
1744 std::string* why)
1745 {
1746 char* tmpbuf = NULL;
1747 size_t tmpbuflen = 0;
1748 const char* sym_names =
1749 reinterpret_cast<const char*>(sd->symbol_names->data());
1750 const unsigned char* syms =
1751 sd->symbols->data() + sd->external_symbols_offset;
1752 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1753 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1754 / sym_size);
1755
1756 const unsigned char* p = syms;
1757
1758 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1759 {
1760 elfcpp::Sym<size, big_endian> sym(p);
1761 unsigned int st_shndx = sym.get_st_shndx();
1762 if (st_shndx == elfcpp::SHN_UNDEF)
1763 continue;
1764
1765 unsigned int st_name = sym.get_st_name();
1766 const char* name = sym_names + st_name;
1767 Symbol* symbol;
1768 Archive::Should_include t = Archive::should_include_member(symtab,
1769 layout,
1770 name,
1771 &symbol, why,
1772 &tmpbuf,
1773 &tmpbuflen);
1774 if (t == Archive::SHOULD_INCLUDE_YES)
1775 {
1776 if (tmpbuf != NULL)
1777 free(tmpbuf);
1778 return t;
1779 }
1780 }
1781 if (tmpbuf != NULL)
1782 free(tmpbuf);
1783 return Archive::SHOULD_INCLUDE_UNKNOWN;
1784 }
1785
1786 // Iterate over global defined symbols, calling a visitor class V for each.
1787
1788 template<int size, bool big_endian>
1789 void
1790 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1791 Read_symbols_data* sd,
1792 Library_base::Symbol_visitor_base* v)
1793 {
1794 const char* sym_names =
1795 reinterpret_cast<const char*>(sd->symbol_names->data());
1796 const unsigned char* syms =
1797 sd->symbols->data() + sd->external_symbols_offset;
1798 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1799 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1800 / sym_size);
1801 const unsigned char* p = syms;
1802
1803 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1804 {
1805 elfcpp::Sym<size, big_endian> sym(p);
1806 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1807 v->visit(sym_names + sym.get_st_name());
1808 }
1809 }
1810
1811 // Return whether the local symbol SYMNDX has a PLT offset.
1812
1813 template<int size, bool big_endian>
1814 bool
1815 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1816 unsigned int symndx) const
1817 {
1818 typename Local_plt_offsets::const_iterator p =
1819 this->local_plt_offsets_.find(symndx);
1820 return p != this->local_plt_offsets_.end();
1821 }
1822
1823 // Get the PLT offset of a local symbol.
1824
1825 template<int size, bool big_endian>
1826 unsigned int
1827 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1828 {
1829 typename Local_plt_offsets::const_iterator p =
1830 this->local_plt_offsets_.find(symndx);
1831 gold_assert(p != this->local_plt_offsets_.end());
1832 return p->second;
1833 }
1834
1835 // Set the PLT offset of a local symbol.
1836
1837 template<int size, bool big_endian>
1838 void
1839 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1840 unsigned int symndx, unsigned int plt_offset)
1841 {
1842 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1843 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1844 gold_assert(ins.second);
1845 }
1846
1847 // First pass over the local symbols. Here we add their names to
1848 // *POOL and *DYNPOOL, and we store the symbol value in
1849 // THIS->LOCAL_VALUES_. This function is always called from a
1850 // singleton thread. This is followed by a call to
1851 // finalize_local_symbols.
1852
1853 template<int size, bool big_endian>
1854 void
1855 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1856 Stringpool* dynpool)
1857 {
1858 gold_assert(this->symtab_shndx_ != -1U);
1859 if (this->symtab_shndx_ == 0)
1860 {
1861 // This object has no symbols. Weird but legal.
1862 return;
1863 }
1864
1865 // Read the symbol table section header.
1866 const unsigned int symtab_shndx = this->symtab_shndx_;
1867 typename This::Shdr symtabshdr(this,
1868 this->elf_file_.section_header(symtab_shndx));
1869 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1870
1871 // Read the local symbols.
1872 const int sym_size = This::sym_size;
1873 const unsigned int loccount = this->local_symbol_count_;
1874 gold_assert(loccount == symtabshdr.get_sh_info());
1875 off_t locsize = loccount * sym_size;
1876 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1877 locsize, true, true);
1878
1879 // Read the symbol names.
1880 const unsigned int strtab_shndx =
1881 this->adjust_shndx(symtabshdr.get_sh_link());
1882 section_size_type strtab_size;
1883 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1884 &strtab_size,
1885 true);
1886 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1887
1888 // Loop over the local symbols.
1889
1890 const Output_sections& out_sections(this->output_sections());
1891 unsigned int shnum = this->shnum();
1892 unsigned int count = 0;
1893 unsigned int dyncount = 0;
1894 // Skip the first, dummy, symbol.
1895 psyms += sym_size;
1896 bool strip_all = parameters->options().strip_all();
1897 bool discard_all = parameters->options().discard_all();
1898 bool discard_locals = parameters->options().discard_locals();
1899 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1900 {
1901 elfcpp::Sym<size, big_endian> sym(psyms);
1902
1903 Symbol_value<size>& lv(this->local_values_[i]);
1904
1905 bool is_ordinary;
1906 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1907 &is_ordinary);
1908 lv.set_input_shndx(shndx, is_ordinary);
1909
1910 if (sym.get_st_type() == elfcpp::STT_SECTION)
1911 lv.set_is_section_symbol();
1912 else if (sym.get_st_type() == elfcpp::STT_TLS)
1913 lv.set_is_tls_symbol();
1914 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1915 lv.set_is_ifunc_symbol();
1916
1917 // Save the input symbol value for use in do_finalize_local_symbols().
1918 lv.set_input_value(sym.get_st_value());
1919
1920 // Decide whether this symbol should go into the output file.
1921
1922 if ((shndx < shnum && out_sections[shndx] == NULL)
1923 || shndx == this->discarded_eh_frame_shndx_)
1924 {
1925 lv.set_no_output_symtab_entry();
1926 gold_assert(!lv.needs_output_dynsym_entry());
1927 continue;
1928 }
1929
1930 if (sym.get_st_type() == elfcpp::STT_SECTION)
1931 {
1932 lv.set_no_output_symtab_entry();
1933 gold_assert(!lv.needs_output_dynsym_entry());
1934 continue;
1935 }
1936
1937 if (sym.get_st_name() >= strtab_size)
1938 {
1939 this->error(_("local symbol %u section name out of range: %u >= %u"),
1940 i, sym.get_st_name(),
1941 static_cast<unsigned int>(strtab_size));
1942 lv.set_no_output_symtab_entry();
1943 continue;
1944 }
1945
1946 const char* name = pnames + sym.get_st_name();
1947
1948 // If needed, add the symbol to the dynamic symbol table string pool.
1949 if (lv.needs_output_dynsym_entry())
1950 {
1951 dynpool->add(name, true, NULL);
1952 ++dyncount;
1953 }
1954
1955 if (strip_all
1956 || (discard_all && lv.may_be_discarded_from_output_symtab()))
1957 {
1958 lv.set_no_output_symtab_entry();
1959 continue;
1960 }
1961
1962 // If --discard-locals option is used, discard all temporary local
1963 // symbols. These symbols start with system-specific local label
1964 // prefixes, typically .L for ELF system. We want to be compatible
1965 // with GNU ld so here we essentially use the same check in
1966 // bfd_is_local_label(). The code is different because we already
1967 // know that:
1968 //
1969 // - the symbol is local and thus cannot have global or weak binding.
1970 // - the symbol is not a section symbol.
1971 // - the symbol has a name.
1972 //
1973 // We do not discard a symbol if it needs a dynamic symbol entry.
1974 if (discard_locals
1975 && sym.get_st_type() != elfcpp::STT_FILE
1976 && !lv.needs_output_dynsym_entry()
1977 && lv.may_be_discarded_from_output_symtab()
1978 && parameters->target().is_local_label_name(name))
1979 {
1980 lv.set_no_output_symtab_entry();
1981 continue;
1982 }
1983
1984 // Discard the local symbol if -retain_symbols_file is specified
1985 // and the local symbol is not in that file.
1986 if (!parameters->options().should_retain_symbol(name))
1987 {
1988 lv.set_no_output_symtab_entry();
1989 continue;
1990 }
1991
1992 // Add the symbol to the symbol table string pool.
1993 pool->add(name, true, NULL);
1994 ++count;
1995 }
1996
1997 this->output_local_symbol_count_ = count;
1998 this->output_local_dynsym_count_ = dyncount;
1999 }
2000
2001 // Compute the final value of a local symbol.
2002
2003 template<int size, bool big_endian>
2004 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2005 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2006 unsigned int r_sym,
2007 const Symbol_value<size>* lv_in,
2008 Symbol_value<size>* lv_out,
2009 bool relocatable,
2010 const Output_sections& out_sections,
2011 const std::vector<Address>& out_offsets,
2012 const Symbol_table* symtab)
2013 {
2014 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2015 // we may have a memory leak.
2016 gold_assert(lv_out->has_output_value());
2017
2018 bool is_ordinary;
2019 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2020
2021 // Set the output symbol value.
2022
2023 if (!is_ordinary)
2024 {
2025 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2026 lv_out->set_output_value(lv_in->input_value());
2027 else
2028 {
2029 this->error(_("unknown section index %u for local symbol %u"),
2030 shndx, r_sym);
2031 lv_out->set_output_value(0);
2032 return This::CFLV_ERROR;
2033 }
2034 }
2035 else
2036 {
2037 if (shndx >= this->shnum())
2038 {
2039 this->error(_("local symbol %u section index %u out of range"),
2040 r_sym, shndx);
2041 lv_out->set_output_value(0);
2042 return This::CFLV_ERROR;
2043 }
2044
2045 Output_section* os = out_sections[shndx];
2046 Address secoffset = out_offsets[shndx];
2047 if (symtab->is_section_folded(this, shndx))
2048 {
2049 gold_assert(os == NULL && secoffset == invalid_address);
2050 // Get the os of the section it is folded onto.
2051 Section_id folded = symtab->icf()->get_folded_section(this,
2052 shndx);
2053 gold_assert(folded.first != NULL);
2054 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2055 <Sized_relobj_file<size, big_endian>*>(folded.first);
2056 os = folded_obj->output_section(folded.second);
2057 gold_assert(os != NULL);
2058 secoffset = folded_obj->get_output_section_offset(folded.second);
2059
2060 // This could be a relaxed input section.
2061 if (secoffset == invalid_address)
2062 {
2063 const Output_relaxed_input_section* relaxed_section =
2064 os->find_relaxed_input_section(folded_obj, folded.second);
2065 gold_assert(relaxed_section != NULL);
2066 secoffset = relaxed_section->address() - os->address();
2067 }
2068 }
2069
2070 if (os == NULL)
2071 {
2072 // This local symbol belongs to a section we are discarding.
2073 // In some cases when applying relocations later, we will
2074 // attempt to match it to the corresponding kept section,
2075 // so we leave the input value unchanged here.
2076 return This::CFLV_DISCARDED;
2077 }
2078 else if (secoffset == invalid_address)
2079 {
2080 uint64_t start;
2081
2082 // This is a SHF_MERGE section or one which otherwise
2083 // requires special handling.
2084 if (shndx == this->discarded_eh_frame_shndx_)
2085 {
2086 // This local symbol belongs to a discarded .eh_frame
2087 // section. Just treat it like the case in which
2088 // os == NULL above.
2089 gold_assert(this->has_eh_frame_);
2090 return This::CFLV_DISCARDED;
2091 }
2092 else if (!lv_in->is_section_symbol())
2093 {
2094 // This is not a section symbol. We can determine
2095 // the final value now.
2096 lv_out->set_output_value(
2097 os->output_address(this, shndx, lv_in->input_value()));
2098 }
2099 else if (!os->find_starting_output_address(this, shndx, &start))
2100 {
2101 // This is a section symbol, but apparently not one in a
2102 // merged section. First check to see if this is a relaxed
2103 // input section. If so, use its address. Otherwise just
2104 // use the start of the output section. This happens with
2105 // relocatable links when the input object has section
2106 // symbols for arbitrary non-merge sections.
2107 const Output_section_data* posd =
2108 os->find_relaxed_input_section(this, shndx);
2109 if (posd != NULL)
2110 {
2111 Address relocatable_link_adjustment =
2112 relocatable ? os->address() : 0;
2113 lv_out->set_output_value(posd->address()
2114 - relocatable_link_adjustment);
2115 }
2116 else
2117 lv_out->set_output_value(os->address());
2118 }
2119 else
2120 {
2121 // We have to consider the addend to determine the
2122 // value to use in a relocation. START is the start
2123 // of this input section. If we are doing a relocatable
2124 // link, use offset from start output section instead of
2125 // address.
2126 Address adjusted_start =
2127 relocatable ? start - os->address() : start;
2128 Merged_symbol_value<size>* msv =
2129 new Merged_symbol_value<size>(lv_in->input_value(),
2130 adjusted_start);
2131 lv_out->set_merged_symbol_value(msv);
2132 }
2133 }
2134 else if (lv_in->is_tls_symbol())
2135 lv_out->set_output_value(os->tls_offset()
2136 + secoffset
2137 + lv_in->input_value());
2138 else
2139 lv_out->set_output_value((relocatable ? 0 : os->address())
2140 + secoffset
2141 + lv_in->input_value());
2142 }
2143 return This::CFLV_OK;
2144 }
2145
2146 // Compute final local symbol value. R_SYM is the index of a local
2147 // symbol in symbol table. LV points to a symbol value, which is
2148 // expected to hold the input value and to be over-written by the
2149 // final value. SYMTAB points to a symbol table. Some targets may want
2150 // to know would-be-finalized local symbol values in relaxation.
2151 // Hence we provide this method. Since this method updates *LV, a
2152 // callee should make a copy of the original local symbol value and
2153 // use the copy instead of modifying an object's local symbols before
2154 // everything is finalized. The caller should also free up any allocated
2155 // memory in the return value in *LV.
2156 template<int size, bool big_endian>
2157 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2158 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2159 unsigned int r_sym,
2160 const Symbol_value<size>* lv_in,
2161 Symbol_value<size>* lv_out,
2162 const Symbol_table* symtab)
2163 {
2164 // This is just a wrapper of compute_final_local_value_internal.
2165 const bool relocatable = parameters->options().relocatable();
2166 const Output_sections& out_sections(this->output_sections());
2167 const std::vector<Address>& out_offsets(this->section_offsets());
2168 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2169 relocatable, out_sections,
2170 out_offsets, symtab);
2171 }
2172
2173 // Finalize the local symbols. Here we set the final value in
2174 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2175 // This function is always called from a singleton thread. The actual
2176 // output of the local symbols will occur in a separate task.
2177
2178 template<int size, bool big_endian>
2179 unsigned int
2180 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2181 unsigned int index,
2182 off_t off,
2183 Symbol_table* symtab)
2184 {
2185 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2186
2187 const unsigned int loccount = this->local_symbol_count_;
2188 this->local_symbol_offset_ = off;
2189
2190 const bool relocatable = parameters->options().relocatable();
2191 const Output_sections& out_sections(this->output_sections());
2192 const std::vector<Address>& out_offsets(this->section_offsets());
2193
2194 for (unsigned int i = 1; i < loccount; ++i)
2195 {
2196 Symbol_value<size>* lv = &this->local_values_[i];
2197
2198 Compute_final_local_value_status cflv_status =
2199 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2200 out_sections, out_offsets,
2201 symtab);
2202 switch (cflv_status)
2203 {
2204 case CFLV_OK:
2205 if (!lv->is_output_symtab_index_set())
2206 {
2207 lv->set_output_symtab_index(index);
2208 ++index;
2209 }
2210 break;
2211 case CFLV_DISCARDED:
2212 case CFLV_ERROR:
2213 // Do nothing.
2214 break;
2215 default:
2216 gold_unreachable();
2217 }
2218 }
2219 return index;
2220 }
2221
2222 // Set the output dynamic symbol table indexes for the local variables.
2223
2224 template<int size, bool big_endian>
2225 unsigned int
2226 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2227 unsigned int index)
2228 {
2229 const unsigned int loccount = this->local_symbol_count_;
2230 for (unsigned int i = 1; i < loccount; ++i)
2231 {
2232 Symbol_value<size>& lv(this->local_values_[i]);
2233 if (lv.needs_output_dynsym_entry())
2234 {
2235 lv.set_output_dynsym_index(index);
2236 ++index;
2237 }
2238 }
2239 return index;
2240 }
2241
2242 // Set the offset where local dynamic symbol information will be stored.
2243 // Returns the count of local symbols contributed to the symbol table by
2244 // this object.
2245
2246 template<int size, bool big_endian>
2247 unsigned int
2248 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2249 {
2250 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2251 this->local_dynsym_offset_ = off;
2252 return this->output_local_dynsym_count_;
2253 }
2254
2255 // If Symbols_data is not NULL get the section flags from here otherwise
2256 // get it from the file.
2257
2258 template<int size, bool big_endian>
2259 uint64_t
2260 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2261 {
2262 Symbols_data* sd = this->get_symbols_data();
2263 if (sd != NULL)
2264 {
2265 const unsigned char* pshdrs = sd->section_headers_data
2266 + This::shdr_size * shndx;
2267 typename This::Shdr shdr(pshdrs);
2268 return shdr.get_sh_flags();
2269 }
2270 // If sd is NULL, read the section header from the file.
2271 return this->elf_file_.section_flags(shndx);
2272 }
2273
2274 // Get the section's ent size from Symbols_data. Called by get_section_contents
2275 // in icf.cc
2276
2277 template<int size, bool big_endian>
2278 uint64_t
2279 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2280 {
2281 Symbols_data* sd = this->get_symbols_data();
2282 gold_assert(sd != NULL);
2283
2284 const unsigned char* pshdrs = sd->section_headers_data
2285 + This::shdr_size * shndx;
2286 typename This::Shdr shdr(pshdrs);
2287 return shdr.get_sh_entsize();
2288 }
2289
2290 // Write out the local symbols.
2291
2292 template<int size, bool big_endian>
2293 void
2294 Sized_relobj_file<size, big_endian>::write_local_symbols(
2295 Output_file* of,
2296 const Stringpool* sympool,
2297 const Stringpool* dynpool,
2298 Output_symtab_xindex* symtab_xindex,
2299 Output_symtab_xindex* dynsym_xindex,
2300 off_t symtab_off)
2301 {
2302 const bool strip_all = parameters->options().strip_all();
2303 if (strip_all)
2304 {
2305 if (this->output_local_dynsym_count_ == 0)
2306 return;
2307 this->output_local_symbol_count_ = 0;
2308 }
2309
2310 gold_assert(this->symtab_shndx_ != -1U);
2311 if (this->symtab_shndx_ == 0)
2312 {
2313 // This object has no symbols. Weird but legal.
2314 return;
2315 }
2316
2317 // Read the symbol table section header.
2318 const unsigned int symtab_shndx = this->symtab_shndx_;
2319 typename This::Shdr symtabshdr(this,
2320 this->elf_file_.section_header(symtab_shndx));
2321 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2322 const unsigned int loccount = this->local_symbol_count_;
2323 gold_assert(loccount == symtabshdr.get_sh_info());
2324
2325 // Read the local symbols.
2326 const int sym_size = This::sym_size;
2327 off_t locsize = loccount * sym_size;
2328 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2329 locsize, true, false);
2330
2331 // Read the symbol names.
2332 const unsigned int strtab_shndx =
2333 this->adjust_shndx(symtabshdr.get_sh_link());
2334 section_size_type strtab_size;
2335 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2336 &strtab_size,
2337 false);
2338 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2339
2340 // Get views into the output file for the portions of the symbol table
2341 // and the dynamic symbol table that we will be writing.
2342 off_t output_size = this->output_local_symbol_count_ * sym_size;
2343 unsigned char* oview = NULL;
2344 if (output_size > 0)
2345 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2346 output_size);
2347
2348 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2349 unsigned char* dyn_oview = NULL;
2350 if (dyn_output_size > 0)
2351 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2352 dyn_output_size);
2353
2354 const Output_sections out_sections(this->output_sections());
2355
2356 gold_assert(this->local_values_.size() == loccount);
2357
2358 unsigned char* ov = oview;
2359 unsigned char* dyn_ov = dyn_oview;
2360 psyms += sym_size;
2361 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2362 {
2363 elfcpp::Sym<size, big_endian> isym(psyms);
2364
2365 Symbol_value<size>& lv(this->local_values_[i]);
2366
2367 bool is_ordinary;
2368 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2369 &is_ordinary);
2370 if (is_ordinary)
2371 {
2372 gold_assert(st_shndx < out_sections.size());
2373 if (out_sections[st_shndx] == NULL)
2374 continue;
2375 st_shndx = out_sections[st_shndx]->out_shndx();
2376 if (st_shndx >= elfcpp::SHN_LORESERVE)
2377 {
2378 if (lv.has_output_symtab_entry())
2379 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2380 if (lv.has_output_dynsym_entry())
2381 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2382 st_shndx = elfcpp::SHN_XINDEX;
2383 }
2384 }
2385
2386 // Write the symbol to the output symbol table.
2387 if (lv.has_output_symtab_entry())
2388 {
2389 elfcpp::Sym_write<size, big_endian> osym(ov);
2390
2391 gold_assert(isym.get_st_name() < strtab_size);
2392 const char* name = pnames + isym.get_st_name();
2393 osym.put_st_name(sympool->get_offset(name));
2394 osym.put_st_value(this->local_values_[i].value(this, 0));
2395 osym.put_st_size(isym.get_st_size());
2396 osym.put_st_info(isym.get_st_info());
2397 osym.put_st_other(isym.get_st_other());
2398 osym.put_st_shndx(st_shndx);
2399
2400 ov += sym_size;
2401 }
2402
2403 // Write the symbol to the output dynamic symbol table.
2404 if (lv.has_output_dynsym_entry())
2405 {
2406 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2407 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2408
2409 gold_assert(isym.get_st_name() < strtab_size);
2410 const char* name = pnames + isym.get_st_name();
2411 osym.put_st_name(dynpool->get_offset(name));
2412 osym.put_st_value(this->local_values_[i].value(this, 0));
2413 osym.put_st_size(isym.get_st_size());
2414 osym.put_st_info(isym.get_st_info());
2415 osym.put_st_other(isym.get_st_other());
2416 osym.put_st_shndx(st_shndx);
2417
2418 dyn_ov += sym_size;
2419 }
2420 }
2421
2422
2423 if (output_size > 0)
2424 {
2425 gold_assert(ov - oview == output_size);
2426 of->write_output_view(symtab_off + this->local_symbol_offset_,
2427 output_size, oview);
2428 }
2429
2430 if (dyn_output_size > 0)
2431 {
2432 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2433 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2434 dyn_oview);
2435 }
2436 }
2437
2438 // Set *INFO to symbolic information about the offset OFFSET in the
2439 // section SHNDX. Return true if we found something, false if we
2440 // found nothing.
2441
2442 template<int size, bool big_endian>
2443 bool
2444 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2445 unsigned int shndx,
2446 off_t offset,
2447 Symbol_location_info* info)
2448 {
2449 if (this->symtab_shndx_ == 0)
2450 return false;
2451
2452 section_size_type symbols_size;
2453 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2454 &symbols_size,
2455 false);
2456
2457 unsigned int symbol_names_shndx =
2458 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2459 section_size_type names_size;
2460 const unsigned char* symbol_names_u =
2461 this->section_contents(symbol_names_shndx, &names_size, false);
2462 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2463
2464 const int sym_size = This::sym_size;
2465 const size_t count = symbols_size / sym_size;
2466
2467 const unsigned char* p = symbols;
2468 for (size_t i = 0; i < count; ++i, p += sym_size)
2469 {
2470 elfcpp::Sym<size, big_endian> sym(p);
2471
2472 if (sym.get_st_type() == elfcpp::STT_FILE)
2473 {
2474 if (sym.get_st_name() >= names_size)
2475 info->source_file = "(invalid)";
2476 else
2477 info->source_file = symbol_names + sym.get_st_name();
2478 continue;
2479 }
2480
2481 bool is_ordinary;
2482 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2483 &is_ordinary);
2484 if (is_ordinary
2485 && st_shndx == shndx
2486 && static_cast<off_t>(sym.get_st_value()) <= offset
2487 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2488 > offset))
2489 {
2490 if (sym.get_st_name() > names_size)
2491 info->enclosing_symbol_name = "(invalid)";
2492 else
2493 {
2494 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2495 if (parameters->options().do_demangle())
2496 {
2497 char* demangled_name = cplus_demangle(
2498 info->enclosing_symbol_name.c_str(),
2499 DMGL_ANSI | DMGL_PARAMS);
2500 if (demangled_name != NULL)
2501 {
2502 info->enclosing_symbol_name.assign(demangled_name);
2503 free(demangled_name);
2504 }
2505 }
2506 }
2507 return true;
2508 }
2509 }
2510
2511 return false;
2512 }
2513
2514 // Look for a kept section corresponding to the given discarded section,
2515 // and return its output address. This is used only for relocations in
2516 // debugging sections. If we can't find the kept section, return 0.
2517
2518 template<int size, bool big_endian>
2519 typename Sized_relobj_file<size, big_endian>::Address
2520 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2521 unsigned int shndx,
2522 bool* found) const
2523 {
2524 Relobj* kept_object;
2525 unsigned int kept_shndx;
2526 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2527 {
2528 Sized_relobj_file<size, big_endian>* kept_relobj =
2529 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2530 Output_section* os = kept_relobj->output_section(kept_shndx);
2531 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2532 if (os != NULL && offset != invalid_address)
2533 {
2534 *found = true;
2535 return os->address() + offset;
2536 }
2537 }
2538 *found = false;
2539 return 0;
2540 }
2541
2542 // Get symbol counts.
2543
2544 template<int size, bool big_endian>
2545 void
2546 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2547 const Symbol_table*,
2548 size_t* defined,
2549 size_t* used) const
2550 {
2551 *defined = this->defined_count_;
2552 size_t count = 0;
2553 for (typename Symbols::const_iterator p = this->symbols_.begin();
2554 p != this->symbols_.end();
2555 ++p)
2556 if (*p != NULL
2557 && (*p)->source() == Symbol::FROM_OBJECT
2558 && (*p)->object() == this
2559 && (*p)->is_defined())
2560 ++count;
2561 *used = count;
2562 }
2563
2564 // Input_objects methods.
2565
2566 // Add a regular relocatable object to the list. Return false if this
2567 // object should be ignored.
2568
2569 bool
2570 Input_objects::add_object(Object* obj)
2571 {
2572 // Print the filename if the -t/--trace option is selected.
2573 if (parameters->options().trace())
2574 gold_info("%s", obj->name().c_str());
2575
2576 if (!obj->is_dynamic())
2577 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2578 else
2579 {
2580 // See if this is a duplicate SONAME.
2581 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2582 const char* soname = dynobj->soname();
2583
2584 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2585 this->sonames_.insert(soname);
2586 if (!ins.second)
2587 {
2588 // We have already seen a dynamic object with this soname.
2589 return false;
2590 }
2591
2592 this->dynobj_list_.push_back(dynobj);
2593 }
2594
2595 // Add this object to the cross-referencer if requested.
2596 if (parameters->options().user_set_print_symbol_counts()
2597 || parameters->options().cref())
2598 {
2599 if (this->cref_ == NULL)
2600 this->cref_ = new Cref();
2601 this->cref_->add_object(obj);
2602 }
2603
2604 return true;
2605 }
2606
2607 // For each dynamic object, record whether we've seen all of its
2608 // explicit dependencies.
2609
2610 void
2611 Input_objects::check_dynamic_dependencies() const
2612 {
2613 bool issued_copy_dt_needed_error = false;
2614 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2615 p != this->dynobj_list_.end();
2616 ++p)
2617 {
2618 const Dynobj::Needed& needed((*p)->needed());
2619 bool found_all = true;
2620 Dynobj::Needed::const_iterator pneeded;
2621 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2622 {
2623 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2624 {
2625 found_all = false;
2626 break;
2627 }
2628 }
2629 (*p)->set_has_unknown_needed_entries(!found_all);
2630
2631 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2632 // that gold does not support. However, they cause no trouble
2633 // unless there is a DT_NEEDED entry that we don't know about;
2634 // warn only in that case.
2635 if (!found_all
2636 && !issued_copy_dt_needed_error
2637 && (parameters->options().copy_dt_needed_entries()
2638 || parameters->options().add_needed()))
2639 {
2640 const char* optname;
2641 if (parameters->options().copy_dt_needed_entries())
2642 optname = "--copy-dt-needed-entries";
2643 else
2644 optname = "--add-needed";
2645 gold_error(_("%s is not supported but is required for %s in %s"),
2646 optname, (*pneeded).c_str(), (*p)->name().c_str());
2647 issued_copy_dt_needed_error = true;
2648 }
2649 }
2650 }
2651
2652 // Start processing an archive.
2653
2654 void
2655 Input_objects::archive_start(Archive* archive)
2656 {
2657 if (parameters->options().user_set_print_symbol_counts()
2658 || parameters->options().cref())
2659 {
2660 if (this->cref_ == NULL)
2661 this->cref_ = new Cref();
2662 this->cref_->add_archive_start(archive);
2663 }
2664 }
2665
2666 // Stop processing an archive.
2667
2668 void
2669 Input_objects::archive_stop(Archive* archive)
2670 {
2671 if (parameters->options().user_set_print_symbol_counts()
2672 || parameters->options().cref())
2673 this->cref_->add_archive_stop(archive);
2674 }
2675
2676 // Print symbol counts
2677
2678 void
2679 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2680 {
2681 if (parameters->options().user_set_print_symbol_counts()
2682 && this->cref_ != NULL)
2683 this->cref_->print_symbol_counts(symtab);
2684 }
2685
2686 // Print a cross reference table.
2687
2688 void
2689 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2690 {
2691 if (parameters->options().cref() && this->cref_ != NULL)
2692 this->cref_->print_cref(symtab, f);
2693 }
2694
2695 // Relocate_info methods.
2696
2697 // Return a string describing the location of a relocation when file
2698 // and lineno information is not available. This is only used in
2699 // error messages.
2700
2701 template<int size, bool big_endian>
2702 std::string
2703 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2704 {
2705 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2706 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2707 if (!ret.empty())
2708 return ret;
2709
2710 ret = this->object->name();
2711
2712 Symbol_location_info info;
2713 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2714 {
2715 if (!info.source_file.empty())
2716 {
2717 ret += ":";
2718 ret += info.source_file;
2719 }
2720 size_t len = info.enclosing_symbol_name.length() + 100;
2721 char* buf = new char[len];
2722 snprintf(buf, len, _(":function %s"),
2723 info.enclosing_symbol_name.c_str());
2724 ret += buf;
2725 delete[] buf;
2726 return ret;
2727 }
2728
2729 ret += "(";
2730 ret += this->object->section_name(this->data_shndx);
2731 char buf[100];
2732 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2733 ret += buf;
2734 return ret;
2735 }
2736
2737 } // End namespace gold.
2738
2739 namespace
2740 {
2741
2742 using namespace gold;
2743
2744 // Read an ELF file with the header and return the appropriate
2745 // instance of Object.
2746
2747 template<int size, bool big_endian>
2748 Object*
2749 make_elf_sized_object(const std::string& name, Input_file* input_file,
2750 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2751 bool* punconfigured)
2752 {
2753 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2754 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2755 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2756 if (target == NULL)
2757 gold_fatal(_("%s: unsupported ELF machine number %d"),
2758 name.c_str(), ehdr.get_e_machine());
2759
2760 if (!parameters->target_valid())
2761 set_parameters_target(target);
2762 else if (target != &parameters->target())
2763 {
2764 if (punconfigured != NULL)
2765 *punconfigured = true;
2766 else
2767 gold_error(_("%s: incompatible target"), name.c_str());
2768 return NULL;
2769 }
2770
2771 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2772 ehdr);
2773 }
2774
2775 } // End anonymous namespace.
2776
2777 namespace gold
2778 {
2779
2780 // Return whether INPUT_FILE is an ELF object.
2781
2782 bool
2783 is_elf_object(Input_file* input_file, off_t offset,
2784 const unsigned char** start, int* read_size)
2785 {
2786 off_t filesize = input_file->file().filesize();
2787 int want = elfcpp::Elf_recognizer::max_header_size;
2788 if (filesize - offset < want)
2789 want = filesize - offset;
2790
2791 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2792 true, false);
2793 *start = p;
2794 *read_size = want;
2795
2796 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2797 }
2798
2799 // Read an ELF file and return the appropriate instance of Object.
2800
2801 Object*
2802 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2803 const unsigned char* p, section_offset_type bytes,
2804 bool* punconfigured)
2805 {
2806 if (punconfigured != NULL)
2807 *punconfigured = false;
2808
2809 std::string error;
2810 bool big_endian = false;
2811 int size = 0;
2812 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2813 &big_endian, &error))
2814 {
2815 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2816 return NULL;
2817 }
2818
2819 if (size == 32)
2820 {
2821 if (big_endian)
2822 {
2823 #ifdef HAVE_TARGET_32_BIG
2824 elfcpp::Ehdr<32, true> ehdr(p);
2825 return make_elf_sized_object<32, true>(name, input_file,
2826 offset, ehdr, punconfigured);
2827 #else
2828 if (punconfigured != NULL)
2829 *punconfigured = true;
2830 else
2831 gold_error(_("%s: not configured to support "
2832 "32-bit big-endian object"),
2833 name.c_str());
2834 return NULL;
2835 #endif
2836 }
2837 else
2838 {
2839 #ifdef HAVE_TARGET_32_LITTLE
2840 elfcpp::Ehdr<32, false> ehdr(p);
2841 return make_elf_sized_object<32, false>(name, input_file,
2842 offset, ehdr, punconfigured);
2843 #else
2844 if (punconfigured != NULL)
2845 *punconfigured = true;
2846 else
2847 gold_error(_("%s: not configured to support "
2848 "32-bit little-endian object"),
2849 name.c_str());
2850 return NULL;
2851 #endif
2852 }
2853 }
2854 else if (size == 64)
2855 {
2856 if (big_endian)
2857 {
2858 #ifdef HAVE_TARGET_64_BIG
2859 elfcpp::Ehdr<64, true> ehdr(p);
2860 return make_elf_sized_object<64, true>(name, input_file,
2861 offset, ehdr, punconfigured);
2862 #else
2863 if (punconfigured != NULL)
2864 *punconfigured = true;
2865 else
2866 gold_error(_("%s: not configured to support "
2867 "64-bit big-endian object"),
2868 name.c_str());
2869 return NULL;
2870 #endif
2871 }
2872 else
2873 {
2874 #ifdef HAVE_TARGET_64_LITTLE
2875 elfcpp::Ehdr<64, false> ehdr(p);
2876 return make_elf_sized_object<64, false>(name, input_file,
2877 offset, ehdr, punconfigured);
2878 #else
2879 if (punconfigured != NULL)
2880 *punconfigured = true;
2881 else
2882 gold_error(_("%s: not configured to support "
2883 "64-bit little-endian object"),
2884 name.c_str());
2885 return NULL;
2886 #endif
2887 }
2888 }
2889 else
2890 gold_unreachable();
2891 }
2892
2893 // Instantiate the templates we need.
2894
2895 #ifdef HAVE_TARGET_32_LITTLE
2896 template
2897 void
2898 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2899 Read_symbols_data*);
2900 #endif
2901
2902 #ifdef HAVE_TARGET_32_BIG
2903 template
2904 void
2905 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2906 Read_symbols_data*);
2907 #endif
2908
2909 #ifdef HAVE_TARGET_64_LITTLE
2910 template
2911 void
2912 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2913 Read_symbols_data*);
2914 #endif
2915
2916 #ifdef HAVE_TARGET_64_BIG
2917 template
2918 void
2919 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2920 Read_symbols_data*);
2921 #endif
2922
2923 #ifdef HAVE_TARGET_32_LITTLE
2924 template
2925 class Sized_relobj_file<32, false>;
2926 #endif
2927
2928 #ifdef HAVE_TARGET_32_BIG
2929 template
2930 class Sized_relobj_file<32, true>;
2931 #endif
2932
2933 #ifdef HAVE_TARGET_64_LITTLE
2934 template
2935 class Sized_relobj_file<64, false>;
2936 #endif
2937
2938 #ifdef HAVE_TARGET_64_BIG
2939 template
2940 class Sized_relobj_file<64, true>;
2941 #endif
2942
2943 #ifdef HAVE_TARGET_32_LITTLE
2944 template
2945 struct Relocate_info<32, false>;
2946 #endif
2947
2948 #ifdef HAVE_TARGET_32_BIG
2949 template
2950 struct Relocate_info<32, true>;
2951 #endif
2952
2953 #ifdef HAVE_TARGET_64_LITTLE
2954 template
2955 struct Relocate_info<64, false>;
2956 #endif
2957
2958 #ifdef HAVE_TARGET_64_BIG
2959 template
2960 struct Relocate_info<64, true>;
2961 #endif
2962
2963 #ifdef HAVE_TARGET_32_LITTLE
2964 template
2965 void
2966 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2967
2968 template
2969 void
2970 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2971 const unsigned char*);
2972 #endif
2973
2974 #ifdef HAVE_TARGET_32_BIG
2975 template
2976 void
2977 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2978
2979 template
2980 void
2981 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2982 const unsigned char*);
2983 #endif
2984
2985 #ifdef HAVE_TARGET_64_LITTLE
2986 template
2987 void
2988 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2989
2990 template
2991 void
2992 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2993 const unsigned char*);
2994 #endif
2995
2996 #ifdef HAVE_TARGET_64_BIG
2997 template
2998 void
2999 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3000
3001 template
3002 void
3003 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3004 const unsigned char*);
3005 #endif
3006
3007 } // End namespace gold.
This page took 0.089398 seconds and 5 git commands to generate.