Patch adds support to allow plugins to map selected subset of sections to unique
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <cstdarg>
29 #include "demangle.h"
30 #include "libiberty.h"
31
32 #include "gc.h"
33 #include "target-select.h"
34 #include "dwarf_reader.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "symtab.h"
38 #include "cref.h"
39 #include "reloc.h"
40 #include "object.h"
41 #include "dynobj.h"
42 #include "plugin.h"
43 #include "compressed_output.h"
44 #include "incremental.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects.
52
53 Read_symbols_data::~Read_symbols_data()
54 {
55 if (this->section_headers != NULL)
56 delete this->section_headers;
57 if (this->section_names != NULL)
58 delete this->section_names;
59 if (this->symbols != NULL)
60 delete this->symbols;
61 if (this->symbol_names != NULL)
62 delete this->symbol_names;
63 if (this->versym != NULL)
64 delete this->versym;
65 if (this->verdef != NULL)
66 delete this->verdef;
67 if (this->verneed != NULL)
68 delete this->verneed;
69 }
70
71 // Class Xindex.
72
73 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
74 // section and read it in. SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
76
77 template<int size, bool big_endian>
78 void
79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 {
81 if (!this->symtab_xindex_.empty())
82 return;
83
84 gold_assert(symtab_shndx != 0);
85
86 // Look through the sections in reverse order, on the theory that it
87 // is more likely to be near the end than the beginning.
88 unsigned int i = object->shnum();
89 while (i > 0)
90 {
91 --i;
92 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94 {
95 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
96 return;
97 }
98 }
99
100 object->error(_("missing SHT_SYMTAB_SHNDX section"));
101 }
102
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
105 // section headers.
106
107 template<int size, bool big_endian>
108 void
109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110 const unsigned char* pshdrs)
111 {
112 section_size_type bytecount;
113 const unsigned char* contents;
114 if (pshdrs == NULL)
115 contents = object->section_contents(xindex_shndx, &bytecount, false);
116 else
117 {
118 const unsigned char* p = (pshdrs
119 + (xindex_shndx
120 * elfcpp::Elf_sizes<size>::shdr_size));
121 typename elfcpp::Shdr<size, big_endian> shdr(p);
122 bytecount = convert_to_section_size_type(shdr.get_sh_size());
123 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
124 }
125
126 gold_assert(this->symtab_xindex_.empty());
127 this->symtab_xindex_.reserve(bytecount / 4);
128 for (section_size_type i = 0; i < bytecount; i += 4)
129 {
130 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131 // We preadjust the section indexes we save.
132 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
133 }
134 }
135
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 // index.
138
139 unsigned int
140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 {
142 if (symndx >= this->symtab_xindex_.size())
143 {
144 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145 symndx);
146 return elfcpp::SHN_UNDEF;
147 }
148 unsigned int shndx = this->symtab_xindex_[symndx];
149 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150 {
151 object->error(_("extended index for symbol %u out of range: %u"),
152 symndx, shndx);
153 return elfcpp::SHN_UNDEF;
154 }
155 return shndx;
156 }
157
158 // Class Object.
159
160 // Report an error for this object file. This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
162 // itself.
163
164 void
165 Object::error(const char* format, ...) const
166 {
167 va_list args;
168 va_start(args, format);
169 char* buf = NULL;
170 if (vasprintf(&buf, format, args) < 0)
171 gold_nomem();
172 va_end(args);
173 gold_error(_("%s: %s"), this->name().c_str(), buf);
174 free(buf);
175 }
176
177 // Return a view of the contents of a section.
178
179 const unsigned char*
180 Object::section_contents(unsigned int shndx, section_size_type* plen,
181 bool cache)
182 { return this->do_section_contents(shndx, plen, cache); }
183
184 // Read the section data into SD. This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
186
187 template<int size, bool big_endian>
188 void
189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190 Read_symbols_data* sd)
191 {
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193
194 // Read the section headers.
195 const off_t shoff = elf_file->shoff();
196 const unsigned int shnum = this->shnum();
197 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
198 true, true);
199
200 // Read the section names.
201 const unsigned char* pshdrs = sd->section_headers->data();
202 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
204
205 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206 this->error(_("section name section has wrong type: %u"),
207 static_cast<unsigned int>(shdrnames.get_sh_type()));
208
209 sd->section_names_size =
210 convert_to_section_size_type(shdrnames.get_sh_size());
211 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212 sd->section_names_size, false,
213 false);
214 }
215
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued. SHNDX is the section index. Return
218 // whether it is a warning section.
219
220 bool
221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222 Symbol_table* symtab)
223 {
224 const char warn_prefix[] = ".gnu.warning.";
225 const int warn_prefix_len = sizeof warn_prefix - 1;
226 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
227 {
228 // Read the section contents to get the warning text. It would
229 // be nicer if we only did this if we have to actually issue a
230 // warning. Unfortunately, warnings are issued as we relocate
231 // sections. That means that we can not lock the object then,
232 // as we might try to issue the same warning multiple times
233 // simultaneously.
234 section_size_type len;
235 const unsigned char* contents = this->section_contents(shndx, &len,
236 false);
237 if (len == 0)
238 {
239 const char* warning = name + warn_prefix_len;
240 contents = reinterpret_cast<const unsigned char*>(warning);
241 len = strlen(warning);
242 }
243 std::string warning(reinterpret_cast<const char*>(contents), len);
244 symtab->add_warning(name + warn_prefix_len, this, warning);
245 return true;
246 }
247 return false;
248 }
249
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
252
253 bool
254 Object::handle_split_stack_section(const char* name)
255 {
256 if (strcmp(name, ".note.GNU-split-stack") == 0)
257 {
258 this->uses_split_stack_ = true;
259 return true;
260 }
261 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
262 {
263 this->has_no_split_stack_ = true;
264 return true;
265 }
266 return false;
267 }
268
269 // Class Relobj
270
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
273 // collection.
274
275 void
276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277 unsigned int section_header_size)
278 {
279 gc_sd->section_headers_data =
280 new unsigned char[(section_header_size)];
281 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282 section_header_size);
283 gc_sd->section_names_data =
284 new unsigned char[sd->section_names_size];
285 memcpy(gc_sd->section_names_data, sd->section_names->data(),
286 sd->section_names_size);
287 gc_sd->section_names_size = sd->section_names_size;
288 if (sd->symbols != NULL)
289 {
290 gc_sd->symbols_data =
291 new unsigned char[sd->symbols_size];
292 memcpy(gc_sd->symbols_data, sd->symbols->data(),
293 sd->symbols_size);
294 }
295 else
296 {
297 gc_sd->symbols_data = NULL;
298 }
299 gc_sd->symbols_size = sd->symbols_size;
300 gc_sd->external_symbols_offset = sd->external_symbols_offset;
301 if (sd->symbol_names != NULL)
302 {
303 gc_sd->symbol_names_data =
304 new unsigned char[sd->symbol_names_size];
305 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306 sd->symbol_names_size);
307 }
308 else
309 {
310 gc_sd->symbol_names_data = NULL;
311 }
312 gc_sd->symbol_names_size = sd->symbol_names_size;
313 }
314
315 // This function determines if a particular section name must be included
316 // in the link. This is used during garbage collection to determine the
317 // roots of the worklist.
318
319 bool
320 Relobj::is_section_name_included(const char* name)
321 {
322 if (is_prefix_of(".ctors", name)
323 || is_prefix_of(".dtors", name)
324 || is_prefix_of(".note", name)
325 || is_prefix_of(".init", name)
326 || is_prefix_of(".fini", name)
327 || is_prefix_of(".gcc_except_table", name)
328 || is_prefix_of(".jcr", name)
329 || is_prefix_of(".preinit_array", name)
330 || (is_prefix_of(".text", name)
331 && strstr(name, "personality"))
332 || (is_prefix_of(".data", name)
333 && strstr(name, "personality"))
334 || (is_prefix_of(".gnu.linkonce.d", name)
335 && strstr(name, "personality")))
336 {
337 return true;
338 }
339 return false;
340 }
341
342 // Finalize the incremental relocation information. Allocates a block
343 // of relocation entries for each symbol, and sets the reloc_bases_
344 // array to point to the first entry in each block. If CLEAR_COUNTS
345 // is TRUE, also clear the per-symbol relocation counters.
346
347 void
348 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
349 {
350 unsigned int nsyms = this->get_global_symbols()->size();
351 this->reloc_bases_ = new unsigned int[nsyms];
352
353 gold_assert(this->reloc_bases_ != NULL);
354 gold_assert(layout->incremental_inputs() != NULL);
355
356 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
357 for (unsigned int i = 0; i < nsyms; ++i)
358 {
359 this->reloc_bases_[i] = rindex;
360 rindex += this->reloc_counts_[i];
361 if (clear_counts)
362 this->reloc_counts_[i] = 0;
363 }
364 layout->incremental_inputs()->set_reloc_count(rindex);
365 }
366
367 // Class Sized_relobj.
368
369 // Iterate over local symbols, calling a visitor class V for each GOT offset
370 // associated with a local symbol.
371
372 template<int size, bool big_endian>
373 void
374 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
375 Got_offset_list::Visitor* v) const
376 {
377 unsigned int nsyms = this->local_symbol_count();
378 for (unsigned int i = 0; i < nsyms; i++)
379 {
380 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
381 if (p != this->local_got_offsets_.end())
382 {
383 const Got_offset_list* got_offsets = p->second;
384 got_offsets->for_all_got_offsets(v);
385 }
386 }
387 }
388
389 // Class Sized_relobj_file.
390
391 template<int size, bool big_endian>
392 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
393 const std::string& name,
394 Input_file* input_file,
395 off_t offset,
396 const elfcpp::Ehdr<size, big_endian>& ehdr)
397 : Sized_relobj<size, big_endian>(name, input_file, offset),
398 elf_file_(this, ehdr),
399 symtab_shndx_(-1U),
400 local_symbol_count_(0),
401 output_local_symbol_count_(0),
402 output_local_dynsym_count_(0),
403 symbols_(),
404 defined_count_(0),
405 local_symbol_offset_(0),
406 local_dynsym_offset_(0),
407 local_values_(),
408 local_plt_offsets_(),
409 kept_comdat_sections_(),
410 has_eh_frame_(false),
411 discarded_eh_frame_shndx_(-1U),
412 deferred_layout_(),
413 deferred_layout_relocs_(),
414 compressed_sections_()
415 {
416 this->e_type_ = ehdr.get_e_type();
417 }
418
419 template<int size, bool big_endian>
420 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
421 {
422 }
423
424 // Set up an object file based on the file header. This sets up the
425 // section information.
426
427 template<int size, bool big_endian>
428 void
429 Sized_relobj_file<size, big_endian>::do_setup()
430 {
431 const unsigned int shnum = this->elf_file_.shnum();
432 this->set_shnum(shnum);
433 }
434
435 // Find the SHT_SYMTAB section, given the section headers. The ELF
436 // standard says that maybe in the future there can be more than one
437 // SHT_SYMTAB section. Until somebody figures out how that could
438 // work, we assume there is only one.
439
440 template<int size, bool big_endian>
441 void
442 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
443 {
444 const unsigned int shnum = this->shnum();
445 this->symtab_shndx_ = 0;
446 if (shnum > 0)
447 {
448 // Look through the sections in reverse order, since gas tends
449 // to put the symbol table at the end.
450 const unsigned char* p = pshdrs + shnum * This::shdr_size;
451 unsigned int i = shnum;
452 unsigned int xindex_shndx = 0;
453 unsigned int xindex_link = 0;
454 while (i > 0)
455 {
456 --i;
457 p -= This::shdr_size;
458 typename This::Shdr shdr(p);
459 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
460 {
461 this->symtab_shndx_ = i;
462 if (xindex_shndx > 0 && xindex_link == i)
463 {
464 Xindex* xindex =
465 new Xindex(this->elf_file_.large_shndx_offset());
466 xindex->read_symtab_xindex<size, big_endian>(this,
467 xindex_shndx,
468 pshdrs);
469 this->set_xindex(xindex);
470 }
471 break;
472 }
473
474 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
475 // one. This will work if it follows the SHT_SYMTAB
476 // section.
477 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
478 {
479 xindex_shndx = i;
480 xindex_link = this->adjust_shndx(shdr.get_sh_link());
481 }
482 }
483 }
484 }
485
486 // Return the Xindex structure to use for object with lots of
487 // sections.
488
489 template<int size, bool big_endian>
490 Xindex*
491 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
492 {
493 gold_assert(this->symtab_shndx_ != -1U);
494 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
495 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
496 return xindex;
497 }
498
499 // Return whether SHDR has the right type and flags to be a GNU
500 // .eh_frame section.
501
502 template<int size, bool big_endian>
503 bool
504 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
505 const elfcpp::Shdr<size, big_endian>* shdr) const
506 {
507 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
508 return ((sh_type == elfcpp::SHT_PROGBITS
509 || sh_type == elfcpp::SHT_X86_64_UNWIND)
510 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
511 }
512
513 // Find the section header with the given name.
514
515 template<int size, bool big_endian>
516 const unsigned char*
517 Sized_relobj_file<size, big_endian>::find_shdr(
518 const unsigned char* pshdrs,
519 const char* name,
520 const char* names,
521 section_size_type names_size,
522 const unsigned char* hdr) const
523 {
524 const unsigned int shnum = this->shnum();
525 const unsigned char* hdr_end = pshdrs + This::shdr_size * shnum;
526 size_t sh_name = 0;
527
528 while (1)
529 {
530 if (hdr)
531 {
532 // We found HDR last time we were called, continue looking.
533 typename This::Shdr shdr(hdr);
534 sh_name = shdr.get_sh_name();
535 }
536 else
537 {
538 // Look for the next occurrence of NAME in NAMES.
539 // The fact that .shstrtab produced by current GNU tools is
540 // string merged means we shouldn't have both .not.foo and
541 // .foo in .shstrtab, and multiple .foo sections should all
542 // have the same sh_name. However, this is not guaranteed
543 // by the ELF spec and not all ELF object file producers may
544 // be so clever.
545 size_t len = strlen(name) + 1;
546 const char *p = sh_name ? names + sh_name + len : names;
547 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
548 name, len));
549 if (p == NULL)
550 return NULL;
551 sh_name = p - names;
552 hdr = pshdrs;
553 if (sh_name == 0)
554 return hdr;
555 }
556
557 hdr += This::shdr_size;
558 while (hdr < hdr_end)
559 {
560 typename This::Shdr shdr(hdr);
561 if (shdr.get_sh_name() == sh_name)
562 return hdr;
563 hdr += This::shdr_size;
564 }
565 hdr = NULL;
566 if (sh_name == 0)
567 return hdr;
568 }
569 }
570
571 // Return whether there is a GNU .eh_frame section, given the section
572 // headers and the section names.
573
574 template<int size, bool big_endian>
575 bool
576 Sized_relobj_file<size, big_endian>::find_eh_frame(
577 const unsigned char* pshdrs,
578 const char* names,
579 section_size_type names_size) const
580 {
581 const unsigned char* s = NULL;
582
583 while (1)
584 {
585 s = this->find_shdr(pshdrs, ".eh_frame", names, names_size, s);
586 if (s == NULL)
587 return false;
588
589 typename This::Shdr shdr(s);
590 if (this->check_eh_frame_flags(&shdr))
591 return true;
592 }
593 }
594
595 // Return TRUE if this is a section whose contents will be needed in the
596 // Add_symbols task. This function is only called for sections that have
597 // already passed the test in is_compressed_debug_section(), so we know
598 // that the section name begins with ".zdebug".
599
600 static bool
601 need_decompressed_section(const char* name)
602 {
603 // Skip over the ".zdebug" and a quick check for the "_".
604 name += 7;
605 if (*name++ != '_')
606 return false;
607
608 #ifdef ENABLE_THREADS
609 // Decompressing these sections now will help only if we're
610 // multithreaded.
611 if (parameters->options().threads())
612 {
613 // We will need .zdebug_str if this is not an incremental link
614 // (i.e., we are processing string merge sections) or if we need
615 // to build a gdb index.
616 if ((!parameters->incremental() || parameters->options().gdb_index())
617 && strcmp(name, "str") == 0)
618 return true;
619
620 // We will need these other sections when building a gdb index.
621 if (parameters->options().gdb_index()
622 && (strcmp(name, "info") == 0
623 || strcmp(name, "types") == 0
624 || strcmp(name, "pubnames") == 0
625 || strcmp(name, "pubtypes") == 0
626 || strcmp(name, "ranges") == 0
627 || strcmp(name, "abbrev") == 0))
628 return true;
629 }
630 #endif
631
632 // Even when single-threaded, we will need .zdebug_str if this is
633 // not an incremental link and we are building a gdb index.
634 // Otherwise, we would decompress the section twice: once for
635 // string merge processing, and once for building the gdb index.
636 if (!parameters->incremental()
637 && parameters->options().gdb_index()
638 && strcmp(name, "str") == 0)
639 return true;
640
641 return false;
642 }
643
644 // Build a table for any compressed debug sections, mapping each section index
645 // to the uncompressed size and (if needed) the decompressed contents.
646
647 template<int size, bool big_endian>
648 Compressed_section_map*
649 build_compressed_section_map(
650 const unsigned char* pshdrs,
651 unsigned int shnum,
652 const char* names,
653 section_size_type names_size,
654 Sized_relobj_file<size, big_endian>* obj)
655 {
656 Compressed_section_map* uncompressed_map = new Compressed_section_map();
657 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
658 const unsigned char* p = pshdrs + shdr_size;
659
660 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
661 {
662 typename elfcpp::Shdr<size, big_endian> shdr(p);
663 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
664 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
665 {
666 if (shdr.get_sh_name() >= names_size)
667 {
668 obj->error(_("bad section name offset for section %u: %lu"),
669 i, static_cast<unsigned long>(shdr.get_sh_name()));
670 continue;
671 }
672
673 const char* name = names + shdr.get_sh_name();
674 if (is_compressed_debug_section(name))
675 {
676 section_size_type len;
677 const unsigned char* contents =
678 obj->section_contents(i, &len, false);
679 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
680 Compressed_section_info info;
681 info.size = convert_to_section_size_type(uncompressed_size);
682 info.contents = NULL;
683 if (uncompressed_size != -1ULL)
684 {
685 unsigned char* uncompressed_data = NULL;
686 if (need_decompressed_section(name))
687 {
688 uncompressed_data = new unsigned char[uncompressed_size];
689 if (decompress_input_section(contents, len,
690 uncompressed_data,
691 uncompressed_size))
692 info.contents = uncompressed_data;
693 else
694 delete[] uncompressed_data;
695 }
696 (*uncompressed_map)[i] = info;
697 }
698 }
699 }
700 }
701 return uncompressed_map;
702 }
703
704 // Stash away info for a number of special sections.
705 // Return true if any of the sections found require local symbols to be read.
706
707 template<int size, bool big_endian>
708 bool
709 Sized_relobj_file<size, big_endian>::do_find_special_sections(
710 Read_symbols_data* sd)
711 {
712 const unsigned char* const pshdrs = sd->section_headers->data();
713 const unsigned char* namesu = sd->section_names->data();
714 const char* names = reinterpret_cast<const char*>(namesu);
715
716 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
717 this->has_eh_frame_ = true;
718
719 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
720 this->compressed_sections_
721 = build_compressed_section_map(pshdrs, this->shnum(), names,
722 sd->section_names_size, this);
723 return (this->has_eh_frame_
724 || (!parameters->options().relocatable()
725 && parameters->options().gdb_index()
726 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
727 || memmem(names, sd->section_names_size, "debug_types",
728 13) == 0)));
729 }
730
731 // Read the sections and symbols from an object file.
732
733 template<int size, bool big_endian>
734 void
735 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
736 {
737 this->read_section_data(&this->elf_file_, sd);
738
739 const unsigned char* const pshdrs = sd->section_headers->data();
740
741 this->find_symtab(pshdrs);
742
743 bool need_local_symbols = this->do_find_special_sections(sd);
744
745 sd->symbols = NULL;
746 sd->symbols_size = 0;
747 sd->external_symbols_offset = 0;
748 sd->symbol_names = NULL;
749 sd->symbol_names_size = 0;
750
751 if (this->symtab_shndx_ == 0)
752 {
753 // No symbol table. Weird but legal.
754 return;
755 }
756
757 // Get the symbol table section header.
758 typename This::Shdr symtabshdr(pshdrs
759 + this->symtab_shndx_ * This::shdr_size);
760 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
761
762 // If this object has a .eh_frame section, or if building a .gdb_index
763 // section and there is debug info, we need all the symbols.
764 // Otherwise we only need the external symbols. While it would be
765 // simpler to just always read all the symbols, I've seen object
766 // files with well over 2000 local symbols, which for a 64-bit
767 // object file format is over 5 pages that we don't need to read
768 // now.
769
770 const int sym_size = This::sym_size;
771 const unsigned int loccount = symtabshdr.get_sh_info();
772 this->local_symbol_count_ = loccount;
773 this->local_values_.resize(loccount);
774 section_offset_type locsize = loccount * sym_size;
775 off_t dataoff = symtabshdr.get_sh_offset();
776 section_size_type datasize =
777 convert_to_section_size_type(symtabshdr.get_sh_size());
778 off_t extoff = dataoff + locsize;
779 section_size_type extsize = datasize - locsize;
780
781 off_t readoff = need_local_symbols ? dataoff : extoff;
782 section_size_type readsize = need_local_symbols ? datasize : extsize;
783
784 if (readsize == 0)
785 {
786 // No external symbols. Also weird but also legal.
787 return;
788 }
789
790 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
791
792 // Read the section header for the symbol names.
793 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
794 if (strtab_shndx >= this->shnum())
795 {
796 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
797 return;
798 }
799 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
800 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
801 {
802 this->error(_("symbol table name section has wrong type: %u"),
803 static_cast<unsigned int>(strtabshdr.get_sh_type()));
804 return;
805 }
806
807 // Read the symbol names.
808 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
809 strtabshdr.get_sh_size(),
810 false, true);
811
812 sd->symbols = fvsymtab;
813 sd->symbols_size = readsize;
814 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
815 sd->symbol_names = fvstrtab;
816 sd->symbol_names_size =
817 convert_to_section_size_type(strtabshdr.get_sh_size());
818 }
819
820 // Return the section index of symbol SYM. Set *VALUE to its value in
821 // the object file. Set *IS_ORDINARY if this is an ordinary section
822 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
823 // Note that for a symbol which is not defined in this object file,
824 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
825 // the final value of the symbol in the link.
826
827 template<int size, bool big_endian>
828 unsigned int
829 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
830 Address* value,
831 bool* is_ordinary)
832 {
833 section_size_type symbols_size;
834 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
835 &symbols_size,
836 false);
837
838 const size_t count = symbols_size / This::sym_size;
839 gold_assert(sym < count);
840
841 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
842 *value = elfsym.get_st_value();
843
844 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
845 }
846
847 // Return whether to include a section group in the link. LAYOUT is
848 // used to keep track of which section groups we have already seen.
849 // INDEX is the index of the section group and SHDR is the section
850 // header. If we do not want to include this group, we set bits in
851 // OMIT for each section which should be discarded.
852
853 template<int size, bool big_endian>
854 bool
855 Sized_relobj_file<size, big_endian>::include_section_group(
856 Symbol_table* symtab,
857 Layout* layout,
858 unsigned int index,
859 const char* name,
860 const unsigned char* shdrs,
861 const char* section_names,
862 section_size_type section_names_size,
863 std::vector<bool>* omit)
864 {
865 // Read the section contents.
866 typename This::Shdr shdr(shdrs + index * This::shdr_size);
867 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
868 shdr.get_sh_size(), true, false);
869 const elfcpp::Elf_Word* pword =
870 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
871
872 // The first word contains flags. We only care about COMDAT section
873 // groups. Other section groups are always included in the link
874 // just like ordinary sections.
875 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
876
877 // Look up the group signature, which is the name of a symbol. ELF
878 // uses a symbol name because some group signatures are long, and
879 // the name is generally already in the symbol table, so it makes
880 // sense to put the long string just once in .strtab rather than in
881 // both .strtab and .shstrtab.
882
883 // Get the appropriate symbol table header (this will normally be
884 // the single SHT_SYMTAB section, but in principle it need not be).
885 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
886 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
887
888 // Read the symbol table entry.
889 unsigned int symndx = shdr.get_sh_info();
890 if (symndx >= symshdr.get_sh_size() / This::sym_size)
891 {
892 this->error(_("section group %u info %u out of range"),
893 index, symndx);
894 return false;
895 }
896 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
897 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
898 false);
899 elfcpp::Sym<size, big_endian> sym(psym);
900
901 // Read the symbol table names.
902 section_size_type symnamelen;
903 const unsigned char* psymnamesu;
904 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
905 &symnamelen, true);
906 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
907
908 // Get the section group signature.
909 if (sym.get_st_name() >= symnamelen)
910 {
911 this->error(_("symbol %u name offset %u out of range"),
912 symndx, sym.get_st_name());
913 return false;
914 }
915
916 std::string signature(psymnames + sym.get_st_name());
917
918 // It seems that some versions of gas will create a section group
919 // associated with a section symbol, and then fail to give a name to
920 // the section symbol. In such a case, use the name of the section.
921 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
922 {
923 bool is_ordinary;
924 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
925 sym.get_st_shndx(),
926 &is_ordinary);
927 if (!is_ordinary || sym_shndx >= this->shnum())
928 {
929 this->error(_("symbol %u invalid section index %u"),
930 symndx, sym_shndx);
931 return false;
932 }
933 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
934 if (member_shdr.get_sh_name() < section_names_size)
935 signature = section_names + member_shdr.get_sh_name();
936 }
937
938 // Record this section group in the layout, and see whether we've already
939 // seen one with the same signature.
940 bool include_group;
941 bool is_comdat;
942 Kept_section* kept_section = NULL;
943
944 if ((flags & elfcpp::GRP_COMDAT) == 0)
945 {
946 include_group = true;
947 is_comdat = false;
948 }
949 else
950 {
951 include_group = layout->find_or_add_kept_section(signature,
952 this, index, true,
953 true, &kept_section);
954 is_comdat = true;
955 }
956
957 if (is_comdat && include_group)
958 {
959 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
960 if (incremental_inputs != NULL)
961 incremental_inputs->report_comdat_group(this, signature.c_str());
962 }
963
964 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
965
966 std::vector<unsigned int> shndxes;
967 bool relocate_group = include_group && parameters->options().relocatable();
968 if (relocate_group)
969 shndxes.reserve(count - 1);
970
971 for (size_t i = 1; i < count; ++i)
972 {
973 elfcpp::Elf_Word shndx =
974 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
975
976 if (relocate_group)
977 shndxes.push_back(shndx);
978
979 if (shndx >= this->shnum())
980 {
981 this->error(_("section %u in section group %u out of range"),
982 shndx, index);
983 continue;
984 }
985
986 // Check for an earlier section number, since we're going to get
987 // it wrong--we may have already decided to include the section.
988 if (shndx < index)
989 this->error(_("invalid section group %u refers to earlier section %u"),
990 index, shndx);
991
992 // Get the name of the member section.
993 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
994 if (member_shdr.get_sh_name() >= section_names_size)
995 {
996 // This is an error, but it will be diagnosed eventually
997 // in do_layout, so we don't need to do anything here but
998 // ignore it.
999 continue;
1000 }
1001 std::string mname(section_names + member_shdr.get_sh_name());
1002
1003 if (include_group)
1004 {
1005 if (is_comdat)
1006 kept_section->add_comdat_section(mname, shndx,
1007 member_shdr.get_sh_size());
1008 }
1009 else
1010 {
1011 (*omit)[shndx] = true;
1012
1013 if (is_comdat)
1014 {
1015 Relobj* kept_object = kept_section->object();
1016 if (kept_section->is_comdat())
1017 {
1018 // Find the corresponding kept section, and store
1019 // that info in the discarded section table.
1020 unsigned int kept_shndx;
1021 uint64_t kept_size;
1022 if (kept_section->find_comdat_section(mname, &kept_shndx,
1023 &kept_size))
1024 {
1025 // We don't keep a mapping for this section if
1026 // it has a different size. The mapping is only
1027 // used for relocation processing, and we don't
1028 // want to treat the sections as similar if the
1029 // sizes are different. Checking the section
1030 // size is the approach used by the GNU linker.
1031 if (kept_size == member_shdr.get_sh_size())
1032 this->set_kept_comdat_section(shndx, kept_object,
1033 kept_shndx);
1034 }
1035 }
1036 else
1037 {
1038 // The existing section is a linkonce section. Add
1039 // a mapping if there is exactly one section in the
1040 // group (which is true when COUNT == 2) and if it
1041 // is the same size.
1042 if (count == 2
1043 && (kept_section->linkonce_size()
1044 == member_shdr.get_sh_size()))
1045 this->set_kept_comdat_section(shndx, kept_object,
1046 kept_section->shndx());
1047 }
1048 }
1049 }
1050 }
1051
1052 if (relocate_group)
1053 layout->layout_group(symtab, this, index, name, signature.c_str(),
1054 shdr, flags, &shndxes);
1055
1056 return include_group;
1057 }
1058
1059 // Whether to include a linkonce section in the link. NAME is the
1060 // name of the section and SHDR is the section header.
1061
1062 // Linkonce sections are a GNU extension implemented in the original
1063 // GNU linker before section groups were defined. The semantics are
1064 // that we only include one linkonce section with a given name. The
1065 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1066 // where T is the type of section and SYMNAME is the name of a symbol.
1067 // In an attempt to make linkonce sections interact well with section
1068 // groups, we try to identify SYMNAME and use it like a section group
1069 // signature. We want to block section groups with that signature,
1070 // but not other linkonce sections with that signature. We also use
1071 // the full name of the linkonce section as a normal section group
1072 // signature.
1073
1074 template<int size, bool big_endian>
1075 bool
1076 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1077 Layout* layout,
1078 unsigned int index,
1079 const char* name,
1080 const elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1083 // In general the symbol name we want will be the string following
1084 // the last '.'. However, we have to handle the case of
1085 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1086 // some versions of gcc. So we use a heuristic: if the name starts
1087 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1088 // we look for the last '.'. We can't always simply skip
1089 // ".gnu.linkonce.X", because we have to deal with cases like
1090 // ".gnu.linkonce.d.rel.ro.local".
1091 const char* const linkonce_t = ".gnu.linkonce.t.";
1092 const char* symname;
1093 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1094 symname = name + strlen(linkonce_t);
1095 else
1096 symname = strrchr(name, '.') + 1;
1097 std::string sig1(symname);
1098 std::string sig2(name);
1099 Kept_section* kept1;
1100 Kept_section* kept2;
1101 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1102 false, &kept1);
1103 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1104 true, &kept2);
1105
1106 if (!include2)
1107 {
1108 // We are not including this section because we already saw the
1109 // name of the section as a signature. This normally implies
1110 // that the kept section is another linkonce section. If it is
1111 // the same size, record it as the section which corresponds to
1112 // this one.
1113 if (kept2->object() != NULL
1114 && !kept2->is_comdat()
1115 && kept2->linkonce_size() == sh_size)
1116 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1117 }
1118 else if (!include1)
1119 {
1120 // The section is being discarded on the basis of its symbol
1121 // name. This means that the corresponding kept section was
1122 // part of a comdat group, and it will be difficult to identify
1123 // the specific section within that group that corresponds to
1124 // this linkonce section. We'll handle the simple case where
1125 // the group has only one member section. Otherwise, it's not
1126 // worth the effort.
1127 unsigned int kept_shndx;
1128 uint64_t kept_size;
1129 if (kept1->object() != NULL
1130 && kept1->is_comdat()
1131 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1132 && kept_size == sh_size)
1133 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1134 }
1135 else
1136 {
1137 kept1->set_linkonce_size(sh_size);
1138 kept2->set_linkonce_size(sh_size);
1139 }
1140
1141 return include1 && include2;
1142 }
1143
1144 // Layout an input section.
1145
1146 template<int size, bool big_endian>
1147 inline void
1148 Sized_relobj_file<size, big_endian>::layout_section(
1149 Layout* layout,
1150 unsigned int shndx,
1151 const char* name,
1152 const typename This::Shdr& shdr,
1153 unsigned int reloc_shndx,
1154 unsigned int reloc_type)
1155 {
1156 off_t offset;
1157 Output_section* os = layout->layout(this, shndx, name, shdr,
1158 reloc_shndx, reloc_type, &offset);
1159
1160 this->output_sections()[shndx] = os;
1161 if (offset == -1)
1162 this->section_offsets()[shndx] = invalid_address;
1163 else
1164 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1165
1166 // If this section requires special handling, and if there are
1167 // relocs that apply to it, then we must do the special handling
1168 // before we apply the relocs.
1169 if (offset == -1 && reloc_shndx != 0)
1170 this->set_relocs_must_follow_section_writes();
1171 }
1172
1173 // Layout an input .eh_frame section.
1174
1175 template<int size, bool big_endian>
1176 void
1177 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1178 Layout* layout,
1179 const unsigned char* symbols_data,
1180 section_size_type symbols_size,
1181 const unsigned char* symbol_names_data,
1182 section_size_type symbol_names_size,
1183 unsigned int shndx,
1184 const typename This::Shdr& shdr,
1185 unsigned int reloc_shndx,
1186 unsigned int reloc_type)
1187 {
1188 gold_assert(this->has_eh_frame_);
1189
1190 off_t offset;
1191 Output_section* os = layout->layout_eh_frame(this,
1192 symbols_data,
1193 symbols_size,
1194 symbol_names_data,
1195 symbol_names_size,
1196 shndx,
1197 shdr,
1198 reloc_shndx,
1199 reloc_type,
1200 &offset);
1201 this->output_sections()[shndx] = os;
1202 if (os == NULL || offset == -1)
1203 {
1204 // An object can contain at most one section holding exception
1205 // frame information.
1206 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1207 this->discarded_eh_frame_shndx_ = shndx;
1208 this->section_offsets()[shndx] = invalid_address;
1209 }
1210 else
1211 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1212
1213 // If this section requires special handling, and if there are
1214 // relocs that aply to it, then we must do the special handling
1215 // before we apply the relocs.
1216 if (os != NULL && offset == -1 && reloc_shndx != 0)
1217 this->set_relocs_must_follow_section_writes();
1218 }
1219
1220 // Lay out the input sections. We walk through the sections and check
1221 // whether they should be included in the link. If they should, we
1222 // pass them to the Layout object, which will return an output section
1223 // and an offset.
1224 // This function is called twice sometimes, two passes, when mapping
1225 // of input sections to output sections must be delayed.
1226 // This is true for the following :
1227 // * Garbage collection (--gc-sections): Some input sections will be
1228 // discarded and hence the assignment must wait until the second pass.
1229 // In the first pass, it is for setting up some sections as roots to
1230 // a work-list for --gc-sections and to do comdat processing.
1231 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1232 // will be folded and hence the assignment must wait.
1233 // * Using plugins to map some sections to unique segments: Mapping
1234 // some sections to unique segments requires mapping them to unique
1235 // output sections too. This can be done via plugins now and this
1236 // information is not available in the first pass.
1237
1238 template<int size, bool big_endian>
1239 void
1240 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1241 Layout* layout,
1242 Read_symbols_data* sd)
1243 {
1244 const unsigned int shnum = this->shnum();
1245
1246 /* Should this function be called twice? */
1247 bool is_two_pass = (parameters->options().gc_sections()
1248 || parameters->options().icf_enabled()
1249 || layout->is_unique_segment_for_sections_specified());
1250
1251 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1252 a two-pass approach is not needed. */
1253 bool is_pass_one = false;
1254 bool is_pass_two = false;
1255
1256 Symbols_data* gc_sd = NULL;
1257
1258 /* Check if do_layout needs to be two-pass. If so, find out which pass
1259 should happen. In the first pass, the data in sd is saved to be used
1260 later in the second pass. */
1261 if (is_two_pass)
1262 {
1263 gc_sd = this->get_symbols_data();
1264 if (gc_sd == NULL)
1265 {
1266 gold_assert(sd != NULL);
1267 is_pass_one = true;
1268 }
1269 else
1270 {
1271 if (parameters->options().gc_sections())
1272 gold_assert(symtab->gc()->is_worklist_ready());
1273 if (parameters->options().icf_enabled())
1274 gold_assert(symtab->icf()->is_icf_ready());
1275 is_pass_two = true;
1276 }
1277 }
1278
1279 if (shnum == 0)
1280 return;
1281
1282 if (is_pass_one)
1283 {
1284 // During garbage collection save the symbols data to use it when
1285 // re-entering this function.
1286 gc_sd = new Symbols_data;
1287 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1288 this->set_symbols_data(gc_sd);
1289 }
1290
1291 const unsigned char* section_headers_data = NULL;
1292 section_size_type section_names_size;
1293 const unsigned char* symbols_data = NULL;
1294 section_size_type symbols_size;
1295 const unsigned char* symbol_names_data = NULL;
1296 section_size_type symbol_names_size;
1297
1298 if (is_two_pass)
1299 {
1300 section_headers_data = gc_sd->section_headers_data;
1301 section_names_size = gc_sd->section_names_size;
1302 symbols_data = gc_sd->symbols_data;
1303 symbols_size = gc_sd->symbols_size;
1304 symbol_names_data = gc_sd->symbol_names_data;
1305 symbol_names_size = gc_sd->symbol_names_size;
1306 }
1307 else
1308 {
1309 section_headers_data = sd->section_headers->data();
1310 section_names_size = sd->section_names_size;
1311 if (sd->symbols != NULL)
1312 symbols_data = sd->symbols->data();
1313 symbols_size = sd->symbols_size;
1314 if (sd->symbol_names != NULL)
1315 symbol_names_data = sd->symbol_names->data();
1316 symbol_names_size = sd->symbol_names_size;
1317 }
1318
1319 // Get the section headers.
1320 const unsigned char* shdrs = section_headers_data;
1321 const unsigned char* pshdrs;
1322
1323 // Get the section names.
1324 const unsigned char* pnamesu = (is_two_pass
1325 ? gc_sd->section_names_data
1326 : sd->section_names->data());
1327
1328 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1329
1330 // If any input files have been claimed by plugins, we need to defer
1331 // actual layout until the replacement files have arrived.
1332 const bool should_defer_layout =
1333 (parameters->options().has_plugins()
1334 && parameters->options().plugins()->should_defer_layout());
1335 unsigned int num_sections_to_defer = 0;
1336
1337 // For each section, record the index of the reloc section if any.
1338 // Use 0 to mean that there is no reloc section, -1U to mean that
1339 // there is more than one.
1340 std::vector<unsigned int> reloc_shndx(shnum, 0);
1341 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1342 // Skip the first, dummy, section.
1343 pshdrs = shdrs + This::shdr_size;
1344 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1345 {
1346 typename This::Shdr shdr(pshdrs);
1347
1348 // Count the number of sections whose layout will be deferred.
1349 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1350 ++num_sections_to_defer;
1351
1352 unsigned int sh_type = shdr.get_sh_type();
1353 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1354 {
1355 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1356 if (target_shndx == 0 || target_shndx >= shnum)
1357 {
1358 this->error(_("relocation section %u has bad info %u"),
1359 i, target_shndx);
1360 continue;
1361 }
1362
1363 if (reloc_shndx[target_shndx] != 0)
1364 reloc_shndx[target_shndx] = -1U;
1365 else
1366 {
1367 reloc_shndx[target_shndx] = i;
1368 reloc_type[target_shndx] = sh_type;
1369 }
1370 }
1371 }
1372
1373 Output_sections& out_sections(this->output_sections());
1374 std::vector<Address>& out_section_offsets(this->section_offsets());
1375
1376 if (!is_pass_two)
1377 {
1378 out_sections.resize(shnum);
1379 out_section_offsets.resize(shnum);
1380 }
1381
1382 // If we are only linking for symbols, then there is nothing else to
1383 // do here.
1384 if (this->input_file()->just_symbols())
1385 {
1386 if (!is_pass_two)
1387 {
1388 delete sd->section_headers;
1389 sd->section_headers = NULL;
1390 delete sd->section_names;
1391 sd->section_names = NULL;
1392 }
1393 return;
1394 }
1395
1396 if (num_sections_to_defer > 0)
1397 {
1398 parameters->options().plugins()->add_deferred_layout_object(this);
1399 this->deferred_layout_.reserve(num_sections_to_defer);
1400 }
1401
1402 // Whether we've seen a .note.GNU-stack section.
1403 bool seen_gnu_stack = false;
1404 // The flags of a .note.GNU-stack section.
1405 uint64_t gnu_stack_flags = 0;
1406
1407 // Keep track of which sections to omit.
1408 std::vector<bool> omit(shnum, false);
1409
1410 // Keep track of reloc sections when emitting relocations.
1411 const bool relocatable = parameters->options().relocatable();
1412 const bool emit_relocs = (relocatable
1413 || parameters->options().emit_relocs());
1414 std::vector<unsigned int> reloc_sections;
1415
1416 // Keep track of .eh_frame sections.
1417 std::vector<unsigned int> eh_frame_sections;
1418
1419 // Keep track of .debug_info and .debug_types sections.
1420 std::vector<unsigned int> debug_info_sections;
1421 std::vector<unsigned int> debug_types_sections;
1422
1423 // Skip the first, dummy, section.
1424 pshdrs = shdrs + This::shdr_size;
1425 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1426 {
1427 typename This::Shdr shdr(pshdrs);
1428
1429 if (shdr.get_sh_name() >= section_names_size)
1430 {
1431 this->error(_("bad section name offset for section %u: %lu"),
1432 i, static_cast<unsigned long>(shdr.get_sh_name()));
1433 return;
1434 }
1435
1436 const char* name = pnames + shdr.get_sh_name();
1437
1438 if (!is_pass_two)
1439 {
1440 if (this->handle_gnu_warning_section(name, i, symtab))
1441 {
1442 if (!relocatable && !parameters->options().shared())
1443 omit[i] = true;
1444 }
1445
1446 // The .note.GNU-stack section is special. It gives the
1447 // protection flags that this object file requires for the stack
1448 // in memory.
1449 if (strcmp(name, ".note.GNU-stack") == 0)
1450 {
1451 seen_gnu_stack = true;
1452 gnu_stack_flags |= shdr.get_sh_flags();
1453 omit[i] = true;
1454 }
1455
1456 // The .note.GNU-split-stack section is also special. It
1457 // indicates that the object was compiled with
1458 // -fsplit-stack.
1459 if (this->handle_split_stack_section(name))
1460 {
1461 if (!relocatable && !parameters->options().shared())
1462 omit[i] = true;
1463 }
1464
1465 // Skip attributes section.
1466 if (parameters->target().is_attributes_section(name))
1467 {
1468 omit[i] = true;
1469 }
1470
1471 bool discard = omit[i];
1472 if (!discard)
1473 {
1474 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1475 {
1476 if (!this->include_section_group(symtab, layout, i, name,
1477 shdrs, pnames,
1478 section_names_size,
1479 &omit))
1480 discard = true;
1481 }
1482 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1483 && Layout::is_linkonce(name))
1484 {
1485 if (!this->include_linkonce_section(layout, i, name, shdr))
1486 discard = true;
1487 }
1488 }
1489
1490 // Add the section to the incremental inputs layout.
1491 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1492 if (incremental_inputs != NULL
1493 && !discard
1494 && can_incremental_update(shdr.get_sh_type()))
1495 {
1496 off_t sh_size = shdr.get_sh_size();
1497 section_size_type uncompressed_size;
1498 if (this->section_is_compressed(i, &uncompressed_size))
1499 sh_size = uncompressed_size;
1500 incremental_inputs->report_input_section(this, i, name, sh_size);
1501 }
1502
1503 if (discard)
1504 {
1505 // Do not include this section in the link.
1506 out_sections[i] = NULL;
1507 out_section_offsets[i] = invalid_address;
1508 continue;
1509 }
1510 }
1511
1512 if (is_pass_one && parameters->options().gc_sections())
1513 {
1514 if (this->is_section_name_included(name)
1515 || layout->keep_input_section (this, name)
1516 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1517 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1518 {
1519 symtab->gc()->worklist().push(Section_id(this, i));
1520 }
1521 // If the section name XXX can be represented as a C identifier
1522 // it cannot be discarded if there are references to
1523 // __start_XXX and __stop_XXX symbols. These need to be
1524 // specially handled.
1525 if (is_cident(name))
1526 {
1527 symtab->gc()->add_cident_section(name, Section_id(this, i));
1528 }
1529 }
1530
1531 // When doing a relocatable link we are going to copy input
1532 // reloc sections into the output. We only want to copy the
1533 // ones associated with sections which are not being discarded.
1534 // However, we don't know that yet for all sections. So save
1535 // reloc sections and process them later. Garbage collection is
1536 // not triggered when relocatable code is desired.
1537 if (emit_relocs
1538 && (shdr.get_sh_type() == elfcpp::SHT_REL
1539 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1540 {
1541 reloc_sections.push_back(i);
1542 continue;
1543 }
1544
1545 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1546 continue;
1547
1548 // The .eh_frame section is special. It holds exception frame
1549 // information that we need to read in order to generate the
1550 // exception frame header. We process these after all the other
1551 // sections so that the exception frame reader can reliably
1552 // determine which sections are being discarded, and discard the
1553 // corresponding information.
1554 if (!relocatable
1555 && strcmp(name, ".eh_frame") == 0
1556 && this->check_eh_frame_flags(&shdr))
1557 {
1558 if (is_pass_one)
1559 {
1560 out_sections[i] = reinterpret_cast<Output_section*>(1);
1561 out_section_offsets[i] = invalid_address;
1562 }
1563 else if (should_defer_layout)
1564 this->deferred_layout_.push_back(Deferred_layout(i, name,
1565 pshdrs,
1566 reloc_shndx[i],
1567 reloc_type[i]));
1568 else
1569 eh_frame_sections.push_back(i);
1570 continue;
1571 }
1572
1573 if (is_pass_two && parameters->options().gc_sections())
1574 {
1575 // This is executed during the second pass of garbage
1576 // collection. do_layout has been called before and some
1577 // sections have been already discarded. Simply ignore
1578 // such sections this time around.
1579 if (out_sections[i] == NULL)
1580 {
1581 gold_assert(out_section_offsets[i] == invalid_address);
1582 continue;
1583 }
1584 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1585 && symtab->gc()->is_section_garbage(this, i))
1586 {
1587 if (parameters->options().print_gc_sections())
1588 gold_info(_("%s: removing unused section from '%s'"
1589 " in file '%s'"),
1590 program_name, this->section_name(i).c_str(),
1591 this->name().c_str());
1592 out_sections[i] = NULL;
1593 out_section_offsets[i] = invalid_address;
1594 continue;
1595 }
1596 }
1597
1598 if (is_pass_two && parameters->options().icf_enabled())
1599 {
1600 if (out_sections[i] == NULL)
1601 {
1602 gold_assert(out_section_offsets[i] == invalid_address);
1603 continue;
1604 }
1605 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1606 && symtab->icf()->is_section_folded(this, i))
1607 {
1608 if (parameters->options().print_icf_sections())
1609 {
1610 Section_id folded =
1611 symtab->icf()->get_folded_section(this, i);
1612 Relobj* folded_obj =
1613 reinterpret_cast<Relobj*>(folded.first);
1614 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1615 "into '%s' in file '%s'"),
1616 program_name, this->section_name(i).c_str(),
1617 this->name().c_str(),
1618 folded_obj->section_name(folded.second).c_str(),
1619 folded_obj->name().c_str());
1620 }
1621 out_sections[i] = NULL;
1622 out_section_offsets[i] = invalid_address;
1623 continue;
1624 }
1625 }
1626
1627 // Defer layout here if input files are claimed by plugins. When gc
1628 // is turned on this function is called twice. For the second call
1629 // should_defer_layout should be false.
1630 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1631 {
1632 gold_assert(!is_pass_two);
1633 this->deferred_layout_.push_back(Deferred_layout(i, name,
1634 pshdrs,
1635 reloc_shndx[i],
1636 reloc_type[i]));
1637 // Put dummy values here; real values will be supplied by
1638 // do_layout_deferred_sections.
1639 out_sections[i] = reinterpret_cast<Output_section*>(2);
1640 out_section_offsets[i] = invalid_address;
1641 continue;
1642 }
1643
1644 // During gc_pass_two if a section that was previously deferred is
1645 // found, do not layout the section as layout_deferred_sections will
1646 // do it later from gold.cc.
1647 if (is_pass_two
1648 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1649 continue;
1650
1651 if (is_pass_one)
1652 {
1653 // This is during garbage collection. The out_sections are
1654 // assigned in the second call to this function.
1655 out_sections[i] = reinterpret_cast<Output_section*>(1);
1656 out_section_offsets[i] = invalid_address;
1657 }
1658 else
1659 {
1660 // When garbage collection is switched on the actual layout
1661 // only happens in the second call.
1662 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1663 reloc_type[i]);
1664
1665 // When generating a .gdb_index section, we do additional
1666 // processing of .debug_info and .debug_types sections after all
1667 // the other sections for the same reason as above.
1668 if (!relocatable
1669 && parameters->options().gdb_index()
1670 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1671 {
1672 if (strcmp(name, ".debug_info") == 0
1673 || strcmp(name, ".zdebug_info") == 0)
1674 debug_info_sections.push_back(i);
1675 else if (strcmp(name, ".debug_types") == 0
1676 || strcmp(name, ".zdebug_types") == 0)
1677 debug_types_sections.push_back(i);
1678 }
1679 }
1680 }
1681
1682 if (!is_pass_two)
1683 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1684
1685 // When doing a relocatable link handle the reloc sections at the
1686 // end. Garbage collection and Identical Code Folding is not
1687 // turned on for relocatable code.
1688 if (emit_relocs)
1689 this->size_relocatable_relocs();
1690
1691 gold_assert(!is_two_pass || reloc_sections.empty());
1692
1693 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1694 p != reloc_sections.end();
1695 ++p)
1696 {
1697 unsigned int i = *p;
1698 const unsigned char* pshdr;
1699 pshdr = section_headers_data + i * This::shdr_size;
1700 typename This::Shdr shdr(pshdr);
1701
1702 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1703 if (data_shndx >= shnum)
1704 {
1705 // We already warned about this above.
1706 continue;
1707 }
1708
1709 Output_section* data_section = out_sections[data_shndx];
1710 if (data_section == reinterpret_cast<Output_section*>(2))
1711 {
1712 // The layout for the data section was deferred, so we need
1713 // to defer the relocation section, too.
1714 const char* name = pnames + shdr.get_sh_name();
1715 this->deferred_layout_relocs_.push_back(
1716 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1717 out_sections[i] = reinterpret_cast<Output_section*>(2);
1718 out_section_offsets[i] = invalid_address;
1719 continue;
1720 }
1721 if (data_section == NULL)
1722 {
1723 out_sections[i] = NULL;
1724 out_section_offsets[i] = invalid_address;
1725 continue;
1726 }
1727
1728 Relocatable_relocs* rr = new Relocatable_relocs();
1729 this->set_relocatable_relocs(i, rr);
1730
1731 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1732 rr);
1733 out_sections[i] = os;
1734 out_section_offsets[i] = invalid_address;
1735 }
1736
1737 // Handle the .eh_frame sections at the end.
1738 gold_assert(!is_pass_one || eh_frame_sections.empty());
1739 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1740 p != eh_frame_sections.end();
1741 ++p)
1742 {
1743 unsigned int i = *p;
1744 const unsigned char* pshdr;
1745 pshdr = section_headers_data + i * This::shdr_size;
1746 typename This::Shdr shdr(pshdr);
1747
1748 this->layout_eh_frame_section(layout,
1749 symbols_data,
1750 symbols_size,
1751 symbol_names_data,
1752 symbol_names_size,
1753 i,
1754 shdr,
1755 reloc_shndx[i],
1756 reloc_type[i]);
1757 }
1758
1759 // When building a .gdb_index section, scan the .debug_info and
1760 // .debug_types sections.
1761 gold_assert(!is_pass_one
1762 || (debug_info_sections.empty() && debug_types_sections.empty()));
1763 for (std::vector<unsigned int>::const_iterator p
1764 = debug_info_sections.begin();
1765 p != debug_info_sections.end();
1766 ++p)
1767 {
1768 unsigned int i = *p;
1769 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1770 i, reloc_shndx[i], reloc_type[i]);
1771 }
1772 for (std::vector<unsigned int>::const_iterator p
1773 = debug_types_sections.begin();
1774 p != debug_types_sections.end();
1775 ++p)
1776 {
1777 unsigned int i = *p;
1778 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1779 i, reloc_shndx[i], reloc_type[i]);
1780 }
1781
1782 if (is_pass_two)
1783 {
1784 delete[] gc_sd->section_headers_data;
1785 delete[] gc_sd->section_names_data;
1786 delete[] gc_sd->symbols_data;
1787 delete[] gc_sd->symbol_names_data;
1788 this->set_symbols_data(NULL);
1789 }
1790 else
1791 {
1792 delete sd->section_headers;
1793 sd->section_headers = NULL;
1794 delete sd->section_names;
1795 sd->section_names = NULL;
1796 }
1797 }
1798
1799 // Layout sections whose layout was deferred while waiting for
1800 // input files from a plugin.
1801
1802 template<int size, bool big_endian>
1803 void
1804 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1805 {
1806 typename std::vector<Deferred_layout>::iterator deferred;
1807
1808 for (deferred = this->deferred_layout_.begin();
1809 deferred != this->deferred_layout_.end();
1810 ++deferred)
1811 {
1812 typename This::Shdr shdr(deferred->shdr_data_);
1813 // If the section is not included, it is because the garbage collector
1814 // decided it is not needed. Avoid reverting that decision.
1815 if (!this->is_section_included(deferred->shndx_))
1816 continue;
1817
1818 if (parameters->options().relocatable()
1819 || deferred->name_ != ".eh_frame"
1820 || !this->check_eh_frame_flags(&shdr))
1821 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1822 shdr, deferred->reloc_shndx_,
1823 deferred->reloc_type_);
1824 else
1825 {
1826 // Reading the symbols again here may be slow.
1827 Read_symbols_data sd;
1828 this->read_symbols(&sd);
1829 this->layout_eh_frame_section(layout,
1830 sd.symbols->data(),
1831 sd.symbols_size,
1832 sd.symbol_names->data(),
1833 sd.symbol_names_size,
1834 deferred->shndx_,
1835 shdr,
1836 deferred->reloc_shndx_,
1837 deferred->reloc_type_);
1838 }
1839 }
1840
1841 this->deferred_layout_.clear();
1842
1843 // Now handle the deferred relocation sections.
1844
1845 Output_sections& out_sections(this->output_sections());
1846 std::vector<Address>& out_section_offsets(this->section_offsets());
1847
1848 for (deferred = this->deferred_layout_relocs_.begin();
1849 deferred != this->deferred_layout_relocs_.end();
1850 ++deferred)
1851 {
1852 unsigned int shndx = deferred->shndx_;
1853 typename This::Shdr shdr(deferred->shdr_data_);
1854 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1855
1856 Output_section* data_section = out_sections[data_shndx];
1857 if (data_section == NULL)
1858 {
1859 out_sections[shndx] = NULL;
1860 out_section_offsets[shndx] = invalid_address;
1861 continue;
1862 }
1863
1864 Relocatable_relocs* rr = new Relocatable_relocs();
1865 this->set_relocatable_relocs(shndx, rr);
1866
1867 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1868 data_section, rr);
1869 out_sections[shndx] = os;
1870 out_section_offsets[shndx] = invalid_address;
1871 }
1872 }
1873
1874 // Add the symbols to the symbol table.
1875
1876 template<int size, bool big_endian>
1877 void
1878 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1879 Read_symbols_data* sd,
1880 Layout*)
1881 {
1882 if (sd->symbols == NULL)
1883 {
1884 gold_assert(sd->symbol_names == NULL);
1885 return;
1886 }
1887
1888 const int sym_size = This::sym_size;
1889 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1890 / sym_size);
1891 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1892 {
1893 this->error(_("size of symbols is not multiple of symbol size"));
1894 return;
1895 }
1896
1897 this->symbols_.resize(symcount);
1898
1899 const char* sym_names =
1900 reinterpret_cast<const char*>(sd->symbol_names->data());
1901 symtab->add_from_relobj(this,
1902 sd->symbols->data() + sd->external_symbols_offset,
1903 symcount, this->local_symbol_count_,
1904 sym_names, sd->symbol_names_size,
1905 &this->symbols_,
1906 &this->defined_count_);
1907
1908 delete sd->symbols;
1909 sd->symbols = NULL;
1910 delete sd->symbol_names;
1911 sd->symbol_names = NULL;
1912 }
1913
1914 // Find out if this object, that is a member of a lib group, should be included
1915 // in the link. We check every symbol defined by this object. If the symbol
1916 // table has a strong undefined reference to that symbol, we have to include
1917 // the object.
1918
1919 template<int size, bool big_endian>
1920 Archive::Should_include
1921 Sized_relobj_file<size, big_endian>::do_should_include_member(
1922 Symbol_table* symtab,
1923 Layout* layout,
1924 Read_symbols_data* sd,
1925 std::string* why)
1926 {
1927 char* tmpbuf = NULL;
1928 size_t tmpbuflen = 0;
1929 const char* sym_names =
1930 reinterpret_cast<const char*>(sd->symbol_names->data());
1931 const unsigned char* syms =
1932 sd->symbols->data() + sd->external_symbols_offset;
1933 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1934 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1935 / sym_size);
1936
1937 const unsigned char* p = syms;
1938
1939 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1940 {
1941 elfcpp::Sym<size, big_endian> sym(p);
1942 unsigned int st_shndx = sym.get_st_shndx();
1943 if (st_shndx == elfcpp::SHN_UNDEF)
1944 continue;
1945
1946 unsigned int st_name = sym.get_st_name();
1947 const char* name = sym_names + st_name;
1948 Symbol* symbol;
1949 Archive::Should_include t = Archive::should_include_member(symtab,
1950 layout,
1951 name,
1952 &symbol, why,
1953 &tmpbuf,
1954 &tmpbuflen);
1955 if (t == Archive::SHOULD_INCLUDE_YES)
1956 {
1957 if (tmpbuf != NULL)
1958 free(tmpbuf);
1959 return t;
1960 }
1961 }
1962 if (tmpbuf != NULL)
1963 free(tmpbuf);
1964 return Archive::SHOULD_INCLUDE_UNKNOWN;
1965 }
1966
1967 // Iterate over global defined symbols, calling a visitor class V for each.
1968
1969 template<int size, bool big_endian>
1970 void
1971 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1972 Read_symbols_data* sd,
1973 Library_base::Symbol_visitor_base* v)
1974 {
1975 const char* sym_names =
1976 reinterpret_cast<const char*>(sd->symbol_names->data());
1977 const unsigned char* syms =
1978 sd->symbols->data() + sd->external_symbols_offset;
1979 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1980 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1981 / sym_size);
1982 const unsigned char* p = syms;
1983
1984 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1985 {
1986 elfcpp::Sym<size, big_endian> sym(p);
1987 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1988 v->visit(sym_names + sym.get_st_name());
1989 }
1990 }
1991
1992 // Return whether the local symbol SYMNDX has a PLT offset.
1993
1994 template<int size, bool big_endian>
1995 bool
1996 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1997 unsigned int symndx) const
1998 {
1999 typename Local_plt_offsets::const_iterator p =
2000 this->local_plt_offsets_.find(symndx);
2001 return p != this->local_plt_offsets_.end();
2002 }
2003
2004 // Get the PLT offset of a local symbol.
2005
2006 template<int size, bool big_endian>
2007 unsigned int
2008 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2009 unsigned int symndx) const
2010 {
2011 typename Local_plt_offsets::const_iterator p =
2012 this->local_plt_offsets_.find(symndx);
2013 gold_assert(p != this->local_plt_offsets_.end());
2014 return p->second;
2015 }
2016
2017 // Set the PLT offset of a local symbol.
2018
2019 template<int size, bool big_endian>
2020 void
2021 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2022 unsigned int symndx, unsigned int plt_offset)
2023 {
2024 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2025 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2026 gold_assert(ins.second);
2027 }
2028
2029 // First pass over the local symbols. Here we add their names to
2030 // *POOL and *DYNPOOL, and we store the symbol value in
2031 // THIS->LOCAL_VALUES_. This function is always called from a
2032 // singleton thread. This is followed by a call to
2033 // finalize_local_symbols.
2034
2035 template<int size, bool big_endian>
2036 void
2037 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2038 Stringpool* dynpool)
2039 {
2040 gold_assert(this->symtab_shndx_ != -1U);
2041 if (this->symtab_shndx_ == 0)
2042 {
2043 // This object has no symbols. Weird but legal.
2044 return;
2045 }
2046
2047 // Read the symbol table section header.
2048 const unsigned int symtab_shndx = this->symtab_shndx_;
2049 typename This::Shdr symtabshdr(this,
2050 this->elf_file_.section_header(symtab_shndx));
2051 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2052
2053 // Read the local symbols.
2054 const int sym_size = This::sym_size;
2055 const unsigned int loccount = this->local_symbol_count_;
2056 gold_assert(loccount == symtabshdr.get_sh_info());
2057 off_t locsize = loccount * sym_size;
2058 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2059 locsize, true, true);
2060
2061 // Read the symbol names.
2062 const unsigned int strtab_shndx =
2063 this->adjust_shndx(symtabshdr.get_sh_link());
2064 section_size_type strtab_size;
2065 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2066 &strtab_size,
2067 true);
2068 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2069
2070 // Loop over the local symbols.
2071
2072 const Output_sections& out_sections(this->output_sections());
2073 unsigned int shnum = this->shnum();
2074 unsigned int count = 0;
2075 unsigned int dyncount = 0;
2076 // Skip the first, dummy, symbol.
2077 psyms += sym_size;
2078 bool strip_all = parameters->options().strip_all();
2079 bool discard_all = parameters->options().discard_all();
2080 bool discard_locals = parameters->options().discard_locals();
2081 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2082 {
2083 elfcpp::Sym<size, big_endian> sym(psyms);
2084
2085 Symbol_value<size>& lv(this->local_values_[i]);
2086
2087 bool is_ordinary;
2088 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2089 &is_ordinary);
2090 lv.set_input_shndx(shndx, is_ordinary);
2091
2092 if (sym.get_st_type() == elfcpp::STT_SECTION)
2093 lv.set_is_section_symbol();
2094 else if (sym.get_st_type() == elfcpp::STT_TLS)
2095 lv.set_is_tls_symbol();
2096 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2097 lv.set_is_ifunc_symbol();
2098
2099 // Save the input symbol value for use in do_finalize_local_symbols().
2100 lv.set_input_value(sym.get_st_value());
2101
2102 // Decide whether this symbol should go into the output file.
2103
2104 if ((shndx < shnum && out_sections[shndx] == NULL)
2105 || shndx == this->discarded_eh_frame_shndx_)
2106 {
2107 lv.set_no_output_symtab_entry();
2108 gold_assert(!lv.needs_output_dynsym_entry());
2109 continue;
2110 }
2111
2112 if (sym.get_st_type() == elfcpp::STT_SECTION)
2113 {
2114 lv.set_no_output_symtab_entry();
2115 gold_assert(!lv.needs_output_dynsym_entry());
2116 continue;
2117 }
2118
2119 if (sym.get_st_name() >= strtab_size)
2120 {
2121 this->error(_("local symbol %u section name out of range: %u >= %u"),
2122 i, sym.get_st_name(),
2123 static_cast<unsigned int>(strtab_size));
2124 lv.set_no_output_symtab_entry();
2125 continue;
2126 }
2127
2128 const char* name = pnames + sym.get_st_name();
2129
2130 // If needed, add the symbol to the dynamic symbol table string pool.
2131 if (lv.needs_output_dynsym_entry())
2132 {
2133 dynpool->add(name, true, NULL);
2134 ++dyncount;
2135 }
2136
2137 if (strip_all
2138 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2139 {
2140 lv.set_no_output_symtab_entry();
2141 continue;
2142 }
2143
2144 // If --discard-locals option is used, discard all temporary local
2145 // symbols. These symbols start with system-specific local label
2146 // prefixes, typically .L for ELF system. We want to be compatible
2147 // with GNU ld so here we essentially use the same check in
2148 // bfd_is_local_label(). The code is different because we already
2149 // know that:
2150 //
2151 // - the symbol is local and thus cannot have global or weak binding.
2152 // - the symbol is not a section symbol.
2153 // - the symbol has a name.
2154 //
2155 // We do not discard a symbol if it needs a dynamic symbol entry.
2156 if (discard_locals
2157 && sym.get_st_type() != elfcpp::STT_FILE
2158 && !lv.needs_output_dynsym_entry()
2159 && lv.may_be_discarded_from_output_symtab()
2160 && parameters->target().is_local_label_name(name))
2161 {
2162 lv.set_no_output_symtab_entry();
2163 continue;
2164 }
2165
2166 // Discard the local symbol if -retain_symbols_file is specified
2167 // and the local symbol is not in that file.
2168 if (!parameters->options().should_retain_symbol(name))
2169 {
2170 lv.set_no_output_symtab_entry();
2171 continue;
2172 }
2173
2174 // Add the symbol to the symbol table string pool.
2175 pool->add(name, true, NULL);
2176 ++count;
2177 }
2178
2179 this->output_local_symbol_count_ = count;
2180 this->output_local_dynsym_count_ = dyncount;
2181 }
2182
2183 // Compute the final value of a local symbol.
2184
2185 template<int size, bool big_endian>
2186 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2187 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2188 unsigned int r_sym,
2189 const Symbol_value<size>* lv_in,
2190 Symbol_value<size>* lv_out,
2191 bool relocatable,
2192 const Output_sections& out_sections,
2193 const std::vector<Address>& out_offsets,
2194 const Symbol_table* symtab)
2195 {
2196 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2197 // we may have a memory leak.
2198 gold_assert(lv_out->has_output_value());
2199
2200 bool is_ordinary;
2201 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2202
2203 // Set the output symbol value.
2204
2205 if (!is_ordinary)
2206 {
2207 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2208 lv_out->set_output_value(lv_in->input_value());
2209 else
2210 {
2211 this->error(_("unknown section index %u for local symbol %u"),
2212 shndx, r_sym);
2213 lv_out->set_output_value(0);
2214 return This::CFLV_ERROR;
2215 }
2216 }
2217 else
2218 {
2219 if (shndx >= this->shnum())
2220 {
2221 this->error(_("local symbol %u section index %u out of range"),
2222 r_sym, shndx);
2223 lv_out->set_output_value(0);
2224 return This::CFLV_ERROR;
2225 }
2226
2227 Output_section* os = out_sections[shndx];
2228 Address secoffset = out_offsets[shndx];
2229 if (symtab->is_section_folded(this, shndx))
2230 {
2231 gold_assert(os == NULL && secoffset == invalid_address);
2232 // Get the os of the section it is folded onto.
2233 Section_id folded = symtab->icf()->get_folded_section(this,
2234 shndx);
2235 gold_assert(folded.first != NULL);
2236 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2237 <Sized_relobj_file<size, big_endian>*>(folded.first);
2238 os = folded_obj->output_section(folded.second);
2239 gold_assert(os != NULL);
2240 secoffset = folded_obj->get_output_section_offset(folded.second);
2241
2242 // This could be a relaxed input section.
2243 if (secoffset == invalid_address)
2244 {
2245 const Output_relaxed_input_section* relaxed_section =
2246 os->find_relaxed_input_section(folded_obj, folded.second);
2247 gold_assert(relaxed_section != NULL);
2248 secoffset = relaxed_section->address() - os->address();
2249 }
2250 }
2251
2252 if (os == NULL)
2253 {
2254 // This local symbol belongs to a section we are discarding.
2255 // In some cases when applying relocations later, we will
2256 // attempt to match it to the corresponding kept section,
2257 // so we leave the input value unchanged here.
2258 return This::CFLV_DISCARDED;
2259 }
2260 else if (secoffset == invalid_address)
2261 {
2262 uint64_t start;
2263
2264 // This is a SHF_MERGE section or one which otherwise
2265 // requires special handling.
2266 if (shndx == this->discarded_eh_frame_shndx_)
2267 {
2268 // This local symbol belongs to a discarded .eh_frame
2269 // section. Just treat it like the case in which
2270 // os == NULL above.
2271 gold_assert(this->has_eh_frame_);
2272 return This::CFLV_DISCARDED;
2273 }
2274 else if (!lv_in->is_section_symbol())
2275 {
2276 // This is not a section symbol. We can determine
2277 // the final value now.
2278 lv_out->set_output_value(
2279 os->output_address(this, shndx, lv_in->input_value()));
2280 }
2281 else if (!os->find_starting_output_address(this, shndx, &start))
2282 {
2283 // This is a section symbol, but apparently not one in a
2284 // merged section. First check to see if this is a relaxed
2285 // input section. If so, use its address. Otherwise just
2286 // use the start of the output section. This happens with
2287 // relocatable links when the input object has section
2288 // symbols for arbitrary non-merge sections.
2289 const Output_section_data* posd =
2290 os->find_relaxed_input_section(this, shndx);
2291 if (posd != NULL)
2292 {
2293 Address relocatable_link_adjustment =
2294 relocatable ? os->address() : 0;
2295 lv_out->set_output_value(posd->address()
2296 - relocatable_link_adjustment);
2297 }
2298 else
2299 lv_out->set_output_value(os->address());
2300 }
2301 else
2302 {
2303 // We have to consider the addend to determine the
2304 // value to use in a relocation. START is the start
2305 // of this input section. If we are doing a relocatable
2306 // link, use offset from start output section instead of
2307 // address.
2308 Address adjusted_start =
2309 relocatable ? start - os->address() : start;
2310 Merged_symbol_value<size>* msv =
2311 new Merged_symbol_value<size>(lv_in->input_value(),
2312 adjusted_start);
2313 lv_out->set_merged_symbol_value(msv);
2314 }
2315 }
2316 else if (lv_in->is_tls_symbol())
2317 lv_out->set_output_value(os->tls_offset()
2318 + secoffset
2319 + lv_in->input_value());
2320 else
2321 lv_out->set_output_value((relocatable ? 0 : os->address())
2322 + secoffset
2323 + lv_in->input_value());
2324 }
2325 return This::CFLV_OK;
2326 }
2327
2328 // Compute final local symbol value. R_SYM is the index of a local
2329 // symbol in symbol table. LV points to a symbol value, which is
2330 // expected to hold the input value and to be over-written by the
2331 // final value. SYMTAB points to a symbol table. Some targets may want
2332 // to know would-be-finalized local symbol values in relaxation.
2333 // Hence we provide this method. Since this method updates *LV, a
2334 // callee should make a copy of the original local symbol value and
2335 // use the copy instead of modifying an object's local symbols before
2336 // everything is finalized. The caller should also free up any allocated
2337 // memory in the return value in *LV.
2338 template<int size, bool big_endian>
2339 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2340 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2341 unsigned int r_sym,
2342 const Symbol_value<size>* lv_in,
2343 Symbol_value<size>* lv_out,
2344 const Symbol_table* symtab)
2345 {
2346 // This is just a wrapper of compute_final_local_value_internal.
2347 const bool relocatable = parameters->options().relocatable();
2348 const Output_sections& out_sections(this->output_sections());
2349 const std::vector<Address>& out_offsets(this->section_offsets());
2350 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2351 relocatable, out_sections,
2352 out_offsets, symtab);
2353 }
2354
2355 // Finalize the local symbols. Here we set the final value in
2356 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2357 // This function is always called from a singleton thread. The actual
2358 // output of the local symbols will occur in a separate task.
2359
2360 template<int size, bool big_endian>
2361 unsigned int
2362 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2363 unsigned int index,
2364 off_t off,
2365 Symbol_table* symtab)
2366 {
2367 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2368
2369 const unsigned int loccount = this->local_symbol_count_;
2370 this->local_symbol_offset_ = off;
2371
2372 const bool relocatable = parameters->options().relocatable();
2373 const Output_sections& out_sections(this->output_sections());
2374 const std::vector<Address>& out_offsets(this->section_offsets());
2375
2376 for (unsigned int i = 1; i < loccount; ++i)
2377 {
2378 Symbol_value<size>* lv = &this->local_values_[i];
2379
2380 Compute_final_local_value_status cflv_status =
2381 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2382 out_sections, out_offsets,
2383 symtab);
2384 switch (cflv_status)
2385 {
2386 case CFLV_OK:
2387 if (!lv->is_output_symtab_index_set())
2388 {
2389 lv->set_output_symtab_index(index);
2390 ++index;
2391 }
2392 break;
2393 case CFLV_DISCARDED:
2394 case CFLV_ERROR:
2395 // Do nothing.
2396 break;
2397 default:
2398 gold_unreachable();
2399 }
2400 }
2401 return index;
2402 }
2403
2404 // Set the output dynamic symbol table indexes for the local variables.
2405
2406 template<int size, bool big_endian>
2407 unsigned int
2408 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2409 unsigned int index)
2410 {
2411 const unsigned int loccount = this->local_symbol_count_;
2412 for (unsigned int i = 1; i < loccount; ++i)
2413 {
2414 Symbol_value<size>& lv(this->local_values_[i]);
2415 if (lv.needs_output_dynsym_entry())
2416 {
2417 lv.set_output_dynsym_index(index);
2418 ++index;
2419 }
2420 }
2421 return index;
2422 }
2423
2424 // Set the offset where local dynamic symbol information will be stored.
2425 // Returns the count of local symbols contributed to the symbol table by
2426 // this object.
2427
2428 template<int size, bool big_endian>
2429 unsigned int
2430 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2431 {
2432 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2433 this->local_dynsym_offset_ = off;
2434 return this->output_local_dynsym_count_;
2435 }
2436
2437 // If Symbols_data is not NULL get the section flags from here otherwise
2438 // get it from the file.
2439
2440 template<int size, bool big_endian>
2441 uint64_t
2442 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2443 {
2444 Symbols_data* sd = this->get_symbols_data();
2445 if (sd != NULL)
2446 {
2447 const unsigned char* pshdrs = sd->section_headers_data
2448 + This::shdr_size * shndx;
2449 typename This::Shdr shdr(pshdrs);
2450 return shdr.get_sh_flags();
2451 }
2452 // If sd is NULL, read the section header from the file.
2453 return this->elf_file_.section_flags(shndx);
2454 }
2455
2456 // Get the section's ent size from Symbols_data. Called by get_section_contents
2457 // in icf.cc
2458
2459 template<int size, bool big_endian>
2460 uint64_t
2461 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2462 {
2463 Symbols_data* sd = this->get_symbols_data();
2464 gold_assert(sd != NULL);
2465
2466 const unsigned char* pshdrs = sd->section_headers_data
2467 + This::shdr_size * shndx;
2468 typename This::Shdr shdr(pshdrs);
2469 return shdr.get_sh_entsize();
2470 }
2471
2472 // Write out the local symbols.
2473
2474 template<int size, bool big_endian>
2475 void
2476 Sized_relobj_file<size, big_endian>::write_local_symbols(
2477 Output_file* of,
2478 const Stringpool* sympool,
2479 const Stringpool* dynpool,
2480 Output_symtab_xindex* symtab_xindex,
2481 Output_symtab_xindex* dynsym_xindex,
2482 off_t symtab_off)
2483 {
2484 const bool strip_all = parameters->options().strip_all();
2485 if (strip_all)
2486 {
2487 if (this->output_local_dynsym_count_ == 0)
2488 return;
2489 this->output_local_symbol_count_ = 0;
2490 }
2491
2492 gold_assert(this->symtab_shndx_ != -1U);
2493 if (this->symtab_shndx_ == 0)
2494 {
2495 // This object has no symbols. Weird but legal.
2496 return;
2497 }
2498
2499 // Read the symbol table section header.
2500 const unsigned int symtab_shndx = this->symtab_shndx_;
2501 typename This::Shdr symtabshdr(this,
2502 this->elf_file_.section_header(symtab_shndx));
2503 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2504 const unsigned int loccount = this->local_symbol_count_;
2505 gold_assert(loccount == symtabshdr.get_sh_info());
2506
2507 // Read the local symbols.
2508 const int sym_size = This::sym_size;
2509 off_t locsize = loccount * sym_size;
2510 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2511 locsize, true, false);
2512
2513 // Read the symbol names.
2514 const unsigned int strtab_shndx =
2515 this->adjust_shndx(symtabshdr.get_sh_link());
2516 section_size_type strtab_size;
2517 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2518 &strtab_size,
2519 false);
2520 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2521
2522 // Get views into the output file for the portions of the symbol table
2523 // and the dynamic symbol table that we will be writing.
2524 off_t output_size = this->output_local_symbol_count_ * sym_size;
2525 unsigned char* oview = NULL;
2526 if (output_size > 0)
2527 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2528 output_size);
2529
2530 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2531 unsigned char* dyn_oview = NULL;
2532 if (dyn_output_size > 0)
2533 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2534 dyn_output_size);
2535
2536 const Output_sections out_sections(this->output_sections());
2537
2538 gold_assert(this->local_values_.size() == loccount);
2539
2540 unsigned char* ov = oview;
2541 unsigned char* dyn_ov = dyn_oview;
2542 psyms += sym_size;
2543 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2544 {
2545 elfcpp::Sym<size, big_endian> isym(psyms);
2546
2547 Symbol_value<size>& lv(this->local_values_[i]);
2548
2549 bool is_ordinary;
2550 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2551 &is_ordinary);
2552 if (is_ordinary)
2553 {
2554 gold_assert(st_shndx < out_sections.size());
2555 if (out_sections[st_shndx] == NULL)
2556 continue;
2557 st_shndx = out_sections[st_shndx]->out_shndx();
2558 if (st_shndx >= elfcpp::SHN_LORESERVE)
2559 {
2560 if (lv.has_output_symtab_entry())
2561 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2562 if (lv.has_output_dynsym_entry())
2563 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2564 st_shndx = elfcpp::SHN_XINDEX;
2565 }
2566 }
2567
2568 // Write the symbol to the output symbol table.
2569 if (lv.has_output_symtab_entry())
2570 {
2571 elfcpp::Sym_write<size, big_endian> osym(ov);
2572
2573 gold_assert(isym.get_st_name() < strtab_size);
2574 const char* name = pnames + isym.get_st_name();
2575 osym.put_st_name(sympool->get_offset(name));
2576 osym.put_st_value(this->local_values_[i].value(this, 0));
2577 osym.put_st_size(isym.get_st_size());
2578 osym.put_st_info(isym.get_st_info());
2579 osym.put_st_other(isym.get_st_other());
2580 osym.put_st_shndx(st_shndx);
2581
2582 ov += sym_size;
2583 }
2584
2585 // Write the symbol to the output dynamic symbol table.
2586 if (lv.has_output_dynsym_entry())
2587 {
2588 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2589 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2590
2591 gold_assert(isym.get_st_name() < strtab_size);
2592 const char* name = pnames + isym.get_st_name();
2593 osym.put_st_name(dynpool->get_offset(name));
2594 osym.put_st_value(this->local_values_[i].value(this, 0));
2595 osym.put_st_size(isym.get_st_size());
2596 osym.put_st_info(isym.get_st_info());
2597 osym.put_st_other(isym.get_st_other());
2598 osym.put_st_shndx(st_shndx);
2599
2600 dyn_ov += sym_size;
2601 }
2602 }
2603
2604
2605 if (output_size > 0)
2606 {
2607 gold_assert(ov - oview == output_size);
2608 of->write_output_view(symtab_off + this->local_symbol_offset_,
2609 output_size, oview);
2610 }
2611
2612 if (dyn_output_size > 0)
2613 {
2614 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2615 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2616 dyn_oview);
2617 }
2618 }
2619
2620 // Set *INFO to symbolic information about the offset OFFSET in the
2621 // section SHNDX. Return true if we found something, false if we
2622 // found nothing.
2623
2624 template<int size, bool big_endian>
2625 bool
2626 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2627 unsigned int shndx,
2628 off_t offset,
2629 Symbol_location_info* info)
2630 {
2631 if (this->symtab_shndx_ == 0)
2632 return false;
2633
2634 section_size_type symbols_size;
2635 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2636 &symbols_size,
2637 false);
2638
2639 unsigned int symbol_names_shndx =
2640 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2641 section_size_type names_size;
2642 const unsigned char* symbol_names_u =
2643 this->section_contents(symbol_names_shndx, &names_size, false);
2644 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2645
2646 const int sym_size = This::sym_size;
2647 const size_t count = symbols_size / sym_size;
2648
2649 const unsigned char* p = symbols;
2650 for (size_t i = 0; i < count; ++i, p += sym_size)
2651 {
2652 elfcpp::Sym<size, big_endian> sym(p);
2653
2654 if (sym.get_st_type() == elfcpp::STT_FILE)
2655 {
2656 if (sym.get_st_name() >= names_size)
2657 info->source_file = "(invalid)";
2658 else
2659 info->source_file = symbol_names + sym.get_st_name();
2660 continue;
2661 }
2662
2663 bool is_ordinary;
2664 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2665 &is_ordinary);
2666 if (is_ordinary
2667 && st_shndx == shndx
2668 && static_cast<off_t>(sym.get_st_value()) <= offset
2669 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2670 > offset))
2671 {
2672 if (sym.get_st_name() > names_size)
2673 info->enclosing_symbol_name = "(invalid)";
2674 else
2675 {
2676 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2677 if (parameters->options().do_demangle())
2678 {
2679 char* demangled_name = cplus_demangle(
2680 info->enclosing_symbol_name.c_str(),
2681 DMGL_ANSI | DMGL_PARAMS);
2682 if (demangled_name != NULL)
2683 {
2684 info->enclosing_symbol_name.assign(demangled_name);
2685 free(demangled_name);
2686 }
2687 }
2688 }
2689 return true;
2690 }
2691 }
2692
2693 return false;
2694 }
2695
2696 // Look for a kept section corresponding to the given discarded section,
2697 // and return its output address. This is used only for relocations in
2698 // debugging sections. If we can't find the kept section, return 0.
2699
2700 template<int size, bool big_endian>
2701 typename Sized_relobj_file<size, big_endian>::Address
2702 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2703 unsigned int shndx,
2704 bool* found) const
2705 {
2706 Relobj* kept_object;
2707 unsigned int kept_shndx;
2708 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2709 {
2710 Sized_relobj_file<size, big_endian>* kept_relobj =
2711 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2712 Output_section* os = kept_relobj->output_section(kept_shndx);
2713 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2714 if (os != NULL && offset != invalid_address)
2715 {
2716 *found = true;
2717 return os->address() + offset;
2718 }
2719 }
2720 *found = false;
2721 return 0;
2722 }
2723
2724 // Get symbol counts.
2725
2726 template<int size, bool big_endian>
2727 void
2728 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2729 const Symbol_table*,
2730 size_t* defined,
2731 size_t* used) const
2732 {
2733 *defined = this->defined_count_;
2734 size_t count = 0;
2735 for (typename Symbols::const_iterator p = this->symbols_.begin();
2736 p != this->symbols_.end();
2737 ++p)
2738 if (*p != NULL
2739 && (*p)->source() == Symbol::FROM_OBJECT
2740 && (*p)->object() == this
2741 && (*p)->is_defined())
2742 ++count;
2743 *used = count;
2744 }
2745
2746 // Return a view of the decompressed contents of a section. Set *PLEN
2747 // to the size. Set *IS_NEW to true if the contents need to be freed
2748 // by the caller.
2749
2750 template<int size, bool big_endian>
2751 const unsigned char*
2752 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2753 unsigned int shndx,
2754 section_size_type* plen,
2755 bool* is_new)
2756 {
2757 section_size_type buffer_size;
2758 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2759 false);
2760
2761 if (this->compressed_sections_ == NULL)
2762 {
2763 *plen = buffer_size;
2764 *is_new = false;
2765 return buffer;
2766 }
2767
2768 Compressed_section_map::const_iterator p =
2769 this->compressed_sections_->find(shndx);
2770 if (p == this->compressed_sections_->end())
2771 {
2772 *plen = buffer_size;
2773 *is_new = false;
2774 return buffer;
2775 }
2776
2777 section_size_type uncompressed_size = p->second.size;
2778 if (p->second.contents != NULL)
2779 {
2780 *plen = uncompressed_size;
2781 *is_new = false;
2782 return p->second.contents;
2783 }
2784
2785 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2786 if (!decompress_input_section(buffer,
2787 buffer_size,
2788 uncompressed_data,
2789 uncompressed_size))
2790 this->error(_("could not decompress section %s"),
2791 this->do_section_name(shndx).c_str());
2792
2793 // We could cache the results in p->second.contents and store
2794 // false in *IS_NEW, but build_compressed_section_map() would
2795 // have done so if it had expected it to be profitable. If
2796 // we reach this point, we expect to need the contents only
2797 // once in this pass.
2798 *plen = uncompressed_size;
2799 *is_new = true;
2800 return uncompressed_data;
2801 }
2802
2803 // Discard any buffers of uncompressed sections. This is done
2804 // at the end of the Add_symbols task.
2805
2806 template<int size, bool big_endian>
2807 void
2808 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2809 {
2810 if (this->compressed_sections_ == NULL)
2811 return;
2812
2813 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2814 p != this->compressed_sections_->end();
2815 ++p)
2816 {
2817 if (p->second.contents != NULL)
2818 {
2819 delete[] p->second.contents;
2820 p->second.contents = NULL;
2821 }
2822 }
2823 }
2824
2825 // Input_objects methods.
2826
2827 // Add a regular relocatable object to the list. Return false if this
2828 // object should be ignored.
2829
2830 bool
2831 Input_objects::add_object(Object* obj)
2832 {
2833 // Print the filename if the -t/--trace option is selected.
2834 if (parameters->options().trace())
2835 gold_info("%s", obj->name().c_str());
2836
2837 if (!obj->is_dynamic())
2838 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2839 else
2840 {
2841 // See if this is a duplicate SONAME.
2842 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2843 const char* soname = dynobj->soname();
2844
2845 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2846 this->sonames_.insert(soname);
2847 if (!ins.second)
2848 {
2849 // We have already seen a dynamic object with this soname.
2850 return false;
2851 }
2852
2853 this->dynobj_list_.push_back(dynobj);
2854 }
2855
2856 // Add this object to the cross-referencer if requested.
2857 if (parameters->options().user_set_print_symbol_counts()
2858 || parameters->options().cref())
2859 {
2860 if (this->cref_ == NULL)
2861 this->cref_ = new Cref();
2862 this->cref_->add_object(obj);
2863 }
2864
2865 return true;
2866 }
2867
2868 // For each dynamic object, record whether we've seen all of its
2869 // explicit dependencies.
2870
2871 void
2872 Input_objects::check_dynamic_dependencies() const
2873 {
2874 bool issued_copy_dt_needed_error = false;
2875 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2876 p != this->dynobj_list_.end();
2877 ++p)
2878 {
2879 const Dynobj::Needed& needed((*p)->needed());
2880 bool found_all = true;
2881 Dynobj::Needed::const_iterator pneeded;
2882 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2883 {
2884 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2885 {
2886 found_all = false;
2887 break;
2888 }
2889 }
2890 (*p)->set_has_unknown_needed_entries(!found_all);
2891
2892 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2893 // that gold does not support. However, they cause no trouble
2894 // unless there is a DT_NEEDED entry that we don't know about;
2895 // warn only in that case.
2896 if (!found_all
2897 && !issued_copy_dt_needed_error
2898 && (parameters->options().copy_dt_needed_entries()
2899 || parameters->options().add_needed()))
2900 {
2901 const char* optname;
2902 if (parameters->options().copy_dt_needed_entries())
2903 optname = "--copy-dt-needed-entries";
2904 else
2905 optname = "--add-needed";
2906 gold_error(_("%s is not supported but is required for %s in %s"),
2907 optname, (*pneeded).c_str(), (*p)->name().c_str());
2908 issued_copy_dt_needed_error = true;
2909 }
2910 }
2911 }
2912
2913 // Start processing an archive.
2914
2915 void
2916 Input_objects::archive_start(Archive* archive)
2917 {
2918 if (parameters->options().user_set_print_symbol_counts()
2919 || parameters->options().cref())
2920 {
2921 if (this->cref_ == NULL)
2922 this->cref_ = new Cref();
2923 this->cref_->add_archive_start(archive);
2924 }
2925 }
2926
2927 // Stop processing an archive.
2928
2929 void
2930 Input_objects::archive_stop(Archive* archive)
2931 {
2932 if (parameters->options().user_set_print_symbol_counts()
2933 || parameters->options().cref())
2934 this->cref_->add_archive_stop(archive);
2935 }
2936
2937 // Print symbol counts
2938
2939 void
2940 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2941 {
2942 if (parameters->options().user_set_print_symbol_counts()
2943 && this->cref_ != NULL)
2944 this->cref_->print_symbol_counts(symtab);
2945 }
2946
2947 // Print a cross reference table.
2948
2949 void
2950 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2951 {
2952 if (parameters->options().cref() && this->cref_ != NULL)
2953 this->cref_->print_cref(symtab, f);
2954 }
2955
2956 // Relocate_info methods.
2957
2958 // Return a string describing the location of a relocation when file
2959 // and lineno information is not available. This is only used in
2960 // error messages.
2961
2962 template<int size, bool big_endian>
2963 std::string
2964 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2965 {
2966 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2967 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2968 if (!ret.empty())
2969 return ret;
2970
2971 ret = this->object->name();
2972
2973 Symbol_location_info info;
2974 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2975 {
2976 if (!info.source_file.empty())
2977 {
2978 ret += ":";
2979 ret += info.source_file;
2980 }
2981 size_t len = info.enclosing_symbol_name.length() + 100;
2982 char* buf = new char[len];
2983 snprintf(buf, len, _(":function %s"),
2984 info.enclosing_symbol_name.c_str());
2985 ret += buf;
2986 delete[] buf;
2987 return ret;
2988 }
2989
2990 ret += "(";
2991 ret += this->object->section_name(this->data_shndx);
2992 char buf[100];
2993 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2994 ret += buf;
2995 return ret;
2996 }
2997
2998 } // End namespace gold.
2999
3000 namespace
3001 {
3002
3003 using namespace gold;
3004
3005 // Read an ELF file with the header and return the appropriate
3006 // instance of Object.
3007
3008 template<int size, bool big_endian>
3009 Object*
3010 make_elf_sized_object(const std::string& name, Input_file* input_file,
3011 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3012 bool* punconfigured)
3013 {
3014 Target* target = select_target(input_file, offset,
3015 ehdr.get_e_machine(), size, big_endian,
3016 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3017 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3018 if (target == NULL)
3019 gold_fatal(_("%s: unsupported ELF machine number %d"),
3020 name.c_str(), ehdr.get_e_machine());
3021
3022 if (!parameters->target_valid())
3023 set_parameters_target(target);
3024 else if (target != &parameters->target())
3025 {
3026 if (punconfigured != NULL)
3027 *punconfigured = true;
3028 else
3029 gold_error(_("%s: incompatible target"), name.c_str());
3030 return NULL;
3031 }
3032
3033 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3034 ehdr);
3035 }
3036
3037 } // End anonymous namespace.
3038
3039 namespace gold
3040 {
3041
3042 // Return whether INPUT_FILE is an ELF object.
3043
3044 bool
3045 is_elf_object(Input_file* input_file, off_t offset,
3046 const unsigned char** start, int* read_size)
3047 {
3048 off_t filesize = input_file->file().filesize();
3049 int want = elfcpp::Elf_recognizer::max_header_size;
3050 if (filesize - offset < want)
3051 want = filesize - offset;
3052
3053 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3054 true, false);
3055 *start = p;
3056 *read_size = want;
3057
3058 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3059 }
3060
3061 // Read an ELF file and return the appropriate instance of Object.
3062
3063 Object*
3064 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3065 const unsigned char* p, section_offset_type bytes,
3066 bool* punconfigured)
3067 {
3068 if (punconfigured != NULL)
3069 *punconfigured = false;
3070
3071 std::string error;
3072 bool big_endian = false;
3073 int size = 0;
3074 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3075 &big_endian, &error))
3076 {
3077 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3078 return NULL;
3079 }
3080
3081 if (size == 32)
3082 {
3083 if (big_endian)
3084 {
3085 #ifdef HAVE_TARGET_32_BIG
3086 elfcpp::Ehdr<32, true> ehdr(p);
3087 return make_elf_sized_object<32, true>(name, input_file,
3088 offset, ehdr, punconfigured);
3089 #else
3090 if (punconfigured != NULL)
3091 *punconfigured = true;
3092 else
3093 gold_error(_("%s: not configured to support "
3094 "32-bit big-endian object"),
3095 name.c_str());
3096 return NULL;
3097 #endif
3098 }
3099 else
3100 {
3101 #ifdef HAVE_TARGET_32_LITTLE
3102 elfcpp::Ehdr<32, false> ehdr(p);
3103 return make_elf_sized_object<32, false>(name, input_file,
3104 offset, ehdr, punconfigured);
3105 #else
3106 if (punconfigured != NULL)
3107 *punconfigured = true;
3108 else
3109 gold_error(_("%s: not configured to support "
3110 "32-bit little-endian object"),
3111 name.c_str());
3112 return NULL;
3113 #endif
3114 }
3115 }
3116 else if (size == 64)
3117 {
3118 if (big_endian)
3119 {
3120 #ifdef HAVE_TARGET_64_BIG
3121 elfcpp::Ehdr<64, true> ehdr(p);
3122 return make_elf_sized_object<64, true>(name, input_file,
3123 offset, ehdr, punconfigured);
3124 #else
3125 if (punconfigured != NULL)
3126 *punconfigured = true;
3127 else
3128 gold_error(_("%s: not configured to support "
3129 "64-bit big-endian object"),
3130 name.c_str());
3131 return NULL;
3132 #endif
3133 }
3134 else
3135 {
3136 #ifdef HAVE_TARGET_64_LITTLE
3137 elfcpp::Ehdr<64, false> ehdr(p);
3138 return make_elf_sized_object<64, false>(name, input_file,
3139 offset, ehdr, punconfigured);
3140 #else
3141 if (punconfigured != NULL)
3142 *punconfigured = true;
3143 else
3144 gold_error(_("%s: not configured to support "
3145 "64-bit little-endian object"),
3146 name.c_str());
3147 return NULL;
3148 #endif
3149 }
3150 }
3151 else
3152 gold_unreachable();
3153 }
3154
3155 // Instantiate the templates we need.
3156
3157 #ifdef HAVE_TARGET_32_LITTLE
3158 template
3159 void
3160 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3161 Read_symbols_data*);
3162 #endif
3163
3164 #ifdef HAVE_TARGET_32_BIG
3165 template
3166 void
3167 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3168 Read_symbols_data*);
3169 #endif
3170
3171 #ifdef HAVE_TARGET_64_LITTLE
3172 template
3173 void
3174 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3175 Read_symbols_data*);
3176 #endif
3177
3178 #ifdef HAVE_TARGET_64_BIG
3179 template
3180 void
3181 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3182 Read_symbols_data*);
3183 #endif
3184
3185 #ifdef HAVE_TARGET_32_LITTLE
3186 template
3187 class Sized_relobj_file<32, false>;
3188 #endif
3189
3190 #ifdef HAVE_TARGET_32_BIG
3191 template
3192 class Sized_relobj_file<32, true>;
3193 #endif
3194
3195 #ifdef HAVE_TARGET_64_LITTLE
3196 template
3197 class Sized_relobj_file<64, false>;
3198 #endif
3199
3200 #ifdef HAVE_TARGET_64_BIG
3201 template
3202 class Sized_relobj_file<64, true>;
3203 #endif
3204
3205 #ifdef HAVE_TARGET_32_LITTLE
3206 template
3207 struct Relocate_info<32, false>;
3208 #endif
3209
3210 #ifdef HAVE_TARGET_32_BIG
3211 template
3212 struct Relocate_info<32, true>;
3213 #endif
3214
3215 #ifdef HAVE_TARGET_64_LITTLE
3216 template
3217 struct Relocate_info<64, false>;
3218 #endif
3219
3220 #ifdef HAVE_TARGET_64_BIG
3221 template
3222 struct Relocate_info<64, true>;
3223 #endif
3224
3225 #ifdef HAVE_TARGET_32_LITTLE
3226 template
3227 void
3228 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3229
3230 template
3231 void
3232 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3233 const unsigned char*);
3234 #endif
3235
3236 #ifdef HAVE_TARGET_32_BIG
3237 template
3238 void
3239 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3240
3241 template
3242 void
3243 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3244 const unsigned char*);
3245 #endif
3246
3247 #ifdef HAVE_TARGET_64_LITTLE
3248 template
3249 void
3250 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3251
3252 template
3253 void
3254 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3255 const unsigned char*);
3256 #endif
3257
3258 #ifdef HAVE_TARGET_64_BIG
3259 template
3260 void
3261 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3262
3263 template
3264 void
3265 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3266 const unsigned char*);
3267 #endif
3268
3269 } // End namespace gold.
This page took 0.115716 seconds and 5 git commands to generate.