PR gold/14727
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <cstdarg>
29 #include "demangle.h"
30 #include "libiberty.h"
31
32 #include "gc.h"
33 #include "target-select.h"
34 #include "dwarf_reader.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "symtab.h"
38 #include "cref.h"
39 #include "reloc.h"
40 #include "object.h"
41 #include "dynobj.h"
42 #include "plugin.h"
43 #include "compressed_output.h"
44 #include "incremental.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 // To copy the symbols data read from the file to a local data structure.
273 // This function is called from do_layout only while doing garbage
274 // collection.
275
276 void
277 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
278 unsigned int section_header_size)
279 {
280 gc_sd->section_headers_data =
281 new unsigned char[(section_header_size)];
282 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
283 section_header_size);
284 gc_sd->section_names_data =
285 new unsigned char[sd->section_names_size];
286 memcpy(gc_sd->section_names_data, sd->section_names->data(),
287 sd->section_names_size);
288 gc_sd->section_names_size = sd->section_names_size;
289 if (sd->symbols != NULL)
290 {
291 gc_sd->symbols_data =
292 new unsigned char[sd->symbols_size];
293 memcpy(gc_sd->symbols_data, sd->symbols->data(),
294 sd->symbols_size);
295 }
296 else
297 {
298 gc_sd->symbols_data = NULL;
299 }
300 gc_sd->symbols_size = sd->symbols_size;
301 gc_sd->external_symbols_offset = sd->external_symbols_offset;
302 if (sd->symbol_names != NULL)
303 {
304 gc_sd->symbol_names_data =
305 new unsigned char[sd->symbol_names_size];
306 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
307 sd->symbol_names_size);
308 }
309 else
310 {
311 gc_sd->symbol_names_data = NULL;
312 }
313 gc_sd->symbol_names_size = sd->symbol_names_size;
314 }
315
316 // This function determines if a particular section name must be included
317 // in the link. This is used during garbage collection to determine the
318 // roots of the worklist.
319
320 bool
321 Relobj::is_section_name_included(const char* name)
322 {
323 if (is_prefix_of(".ctors", name)
324 || is_prefix_of(".dtors", name)
325 || is_prefix_of(".note", name)
326 || is_prefix_of(".init", name)
327 || is_prefix_of(".fini", name)
328 || is_prefix_of(".gcc_except_table", name)
329 || is_prefix_of(".jcr", name)
330 || is_prefix_of(".preinit_array", name)
331 || (is_prefix_of(".text", name)
332 && strstr(name, "personality"))
333 || (is_prefix_of(".data", name)
334 && strstr(name, "personality"))
335 || (is_prefix_of(".sdata", name)
336 && strstr(name, "personality"))
337 || (is_prefix_of(".gnu.linkonce.d", name)
338 && strstr(name, "personality")))
339 {
340 return true;
341 }
342 return false;
343 }
344
345 // Finalize the incremental relocation information. Allocates a block
346 // of relocation entries for each symbol, and sets the reloc_bases_
347 // array to point to the first entry in each block. If CLEAR_COUNTS
348 // is TRUE, also clear the per-symbol relocation counters.
349
350 void
351 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
352 {
353 unsigned int nsyms = this->get_global_symbols()->size();
354 this->reloc_bases_ = new unsigned int[nsyms];
355
356 gold_assert(this->reloc_bases_ != NULL);
357 gold_assert(layout->incremental_inputs() != NULL);
358
359 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
360 for (unsigned int i = 0; i < nsyms; ++i)
361 {
362 this->reloc_bases_[i] = rindex;
363 rindex += this->reloc_counts_[i];
364 if (clear_counts)
365 this->reloc_counts_[i] = 0;
366 }
367 layout->incremental_inputs()->set_reloc_count(rindex);
368 }
369
370 // Class Sized_relobj.
371
372 // Iterate over local symbols, calling a visitor class V for each GOT offset
373 // associated with a local symbol.
374
375 template<int size, bool big_endian>
376 void
377 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
378 Got_offset_list::Visitor* v) const
379 {
380 unsigned int nsyms = this->local_symbol_count();
381 for (unsigned int i = 0; i < nsyms; i++)
382 {
383 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
384 if (p != this->local_got_offsets_.end())
385 {
386 const Got_offset_list* got_offsets = p->second;
387 got_offsets->for_all_got_offsets(v);
388 }
389 }
390 }
391
392 // Class Sized_relobj_file.
393
394 template<int size, bool big_endian>
395 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
396 const std::string& name,
397 Input_file* input_file,
398 off_t offset,
399 const elfcpp::Ehdr<size, big_endian>& ehdr)
400 : Sized_relobj<size, big_endian>(name, input_file, offset),
401 elf_file_(this, ehdr),
402 symtab_shndx_(-1U),
403 local_symbol_count_(0),
404 output_local_symbol_count_(0),
405 output_local_dynsym_count_(0),
406 symbols_(),
407 defined_count_(0),
408 local_symbol_offset_(0),
409 local_dynsym_offset_(0),
410 local_values_(),
411 local_plt_offsets_(),
412 kept_comdat_sections_(),
413 has_eh_frame_(false),
414 discarded_eh_frame_shndx_(-1U),
415 deferred_layout_(),
416 deferred_layout_relocs_(),
417 compressed_sections_()
418 {
419 this->e_type_ = ehdr.get_e_type();
420 }
421
422 template<int size, bool big_endian>
423 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
424 {
425 }
426
427 // Set up an object file based on the file header. This sets up the
428 // section information.
429
430 template<int size, bool big_endian>
431 void
432 Sized_relobj_file<size, big_endian>::do_setup()
433 {
434 const unsigned int shnum = this->elf_file_.shnum();
435 this->set_shnum(shnum);
436 }
437
438 // Find the SHT_SYMTAB section, given the section headers. The ELF
439 // standard says that maybe in the future there can be more than one
440 // SHT_SYMTAB section. Until somebody figures out how that could
441 // work, we assume there is only one.
442
443 template<int size, bool big_endian>
444 void
445 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
446 {
447 const unsigned int shnum = this->shnum();
448 this->symtab_shndx_ = 0;
449 if (shnum > 0)
450 {
451 // Look through the sections in reverse order, since gas tends
452 // to put the symbol table at the end.
453 const unsigned char* p = pshdrs + shnum * This::shdr_size;
454 unsigned int i = shnum;
455 unsigned int xindex_shndx = 0;
456 unsigned int xindex_link = 0;
457 while (i > 0)
458 {
459 --i;
460 p -= This::shdr_size;
461 typename This::Shdr shdr(p);
462 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
463 {
464 this->symtab_shndx_ = i;
465 if (xindex_shndx > 0 && xindex_link == i)
466 {
467 Xindex* xindex =
468 new Xindex(this->elf_file_.large_shndx_offset());
469 xindex->read_symtab_xindex<size, big_endian>(this,
470 xindex_shndx,
471 pshdrs);
472 this->set_xindex(xindex);
473 }
474 break;
475 }
476
477 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
478 // one. This will work if it follows the SHT_SYMTAB
479 // section.
480 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
481 {
482 xindex_shndx = i;
483 xindex_link = this->adjust_shndx(shdr.get_sh_link());
484 }
485 }
486 }
487 }
488
489 // Return the Xindex structure to use for object with lots of
490 // sections.
491
492 template<int size, bool big_endian>
493 Xindex*
494 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
495 {
496 gold_assert(this->symtab_shndx_ != -1U);
497 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
498 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
499 return xindex;
500 }
501
502 // Return whether SHDR has the right type and flags to be a GNU
503 // .eh_frame section.
504
505 template<int size, bool big_endian>
506 bool
507 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
508 const elfcpp::Shdr<size, big_endian>* shdr) const
509 {
510 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
511 return ((sh_type == elfcpp::SHT_PROGBITS
512 || sh_type == elfcpp::SHT_X86_64_UNWIND)
513 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
514 }
515
516 // Find the section header with the given name.
517
518 template<int size, bool big_endian>
519 const unsigned char*
520 Sized_relobj_file<size, big_endian>::find_shdr(
521 const unsigned char* pshdrs,
522 const char* name,
523 const char* names,
524 section_size_type names_size,
525 const unsigned char* hdr) const
526 {
527 const unsigned int shnum = this->shnum();
528 const unsigned char* hdr_end = pshdrs + This::shdr_size * shnum;
529 size_t sh_name = 0;
530
531 while (1)
532 {
533 if (hdr)
534 {
535 // We found HDR last time we were called, continue looking.
536 typename This::Shdr shdr(hdr);
537 sh_name = shdr.get_sh_name();
538 }
539 else
540 {
541 // Look for the next occurrence of NAME in NAMES.
542 // The fact that .shstrtab produced by current GNU tools is
543 // string merged means we shouldn't have both .not.foo and
544 // .foo in .shstrtab, and multiple .foo sections should all
545 // have the same sh_name. However, this is not guaranteed
546 // by the ELF spec and not all ELF object file producers may
547 // be so clever.
548 size_t len = strlen(name) + 1;
549 const char *p = sh_name ? names + sh_name + len : names;
550 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
551 name, len));
552 if (p == NULL)
553 return NULL;
554 sh_name = p - names;
555 hdr = pshdrs;
556 if (sh_name == 0)
557 return hdr;
558 }
559
560 hdr += This::shdr_size;
561 while (hdr < hdr_end)
562 {
563 typename This::Shdr shdr(hdr);
564 if (shdr.get_sh_name() == sh_name)
565 return hdr;
566 hdr += This::shdr_size;
567 }
568 hdr = NULL;
569 if (sh_name == 0)
570 return hdr;
571 }
572 }
573
574 // Return whether there is a GNU .eh_frame section, given the section
575 // headers and the section names.
576
577 template<int size, bool big_endian>
578 bool
579 Sized_relobj_file<size, big_endian>::find_eh_frame(
580 const unsigned char* pshdrs,
581 const char* names,
582 section_size_type names_size) const
583 {
584 const unsigned char* s = NULL;
585
586 while (1)
587 {
588 s = this->find_shdr(pshdrs, ".eh_frame", names, names_size, s);
589 if (s == NULL)
590 return false;
591
592 typename This::Shdr shdr(s);
593 if (this->check_eh_frame_flags(&shdr))
594 return true;
595 }
596 }
597
598 // Return TRUE if this is a section whose contents will be needed in the
599 // Add_symbols task. This function is only called for sections that have
600 // already passed the test in is_compressed_debug_section(), so we know
601 // that the section name begins with ".zdebug".
602
603 static bool
604 need_decompressed_section(const char* name)
605 {
606 // Skip over the ".zdebug" and a quick check for the "_".
607 name += 7;
608 if (*name++ != '_')
609 return false;
610
611 #ifdef ENABLE_THREADS
612 // Decompressing these sections now will help only if we're
613 // multithreaded.
614 if (parameters->options().threads())
615 {
616 // We will need .zdebug_str if this is not an incremental link
617 // (i.e., we are processing string merge sections) or if we need
618 // to build a gdb index.
619 if ((!parameters->incremental() || parameters->options().gdb_index())
620 && strcmp(name, "str") == 0)
621 return true;
622
623 // We will need these other sections when building a gdb index.
624 if (parameters->options().gdb_index()
625 && (strcmp(name, "info") == 0
626 || strcmp(name, "types") == 0
627 || strcmp(name, "pubnames") == 0
628 || strcmp(name, "pubtypes") == 0
629 || strcmp(name, "ranges") == 0
630 || strcmp(name, "abbrev") == 0))
631 return true;
632 }
633 #endif
634
635 // Even when single-threaded, we will need .zdebug_str if this is
636 // not an incremental link and we are building a gdb index.
637 // Otherwise, we would decompress the section twice: once for
638 // string merge processing, and once for building the gdb index.
639 if (!parameters->incremental()
640 && parameters->options().gdb_index()
641 && strcmp(name, "str") == 0)
642 return true;
643
644 return false;
645 }
646
647 // Build a table for any compressed debug sections, mapping each section index
648 // to the uncompressed size and (if needed) the decompressed contents.
649
650 template<int size, bool big_endian>
651 Compressed_section_map*
652 build_compressed_section_map(
653 const unsigned char* pshdrs,
654 unsigned int shnum,
655 const char* names,
656 section_size_type names_size,
657 Sized_relobj_file<size, big_endian>* obj)
658 {
659 Compressed_section_map* uncompressed_map = new Compressed_section_map();
660 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
661 const unsigned char* p = pshdrs + shdr_size;
662
663 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
664 {
665 typename elfcpp::Shdr<size, big_endian> shdr(p);
666 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
667 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
668 {
669 if (shdr.get_sh_name() >= names_size)
670 {
671 obj->error(_("bad section name offset for section %u: %lu"),
672 i, static_cast<unsigned long>(shdr.get_sh_name()));
673 continue;
674 }
675
676 const char* name = names + shdr.get_sh_name();
677 if (is_compressed_debug_section(name))
678 {
679 section_size_type len;
680 const unsigned char* contents =
681 obj->section_contents(i, &len, false);
682 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
683 Compressed_section_info info;
684 info.size = convert_to_section_size_type(uncompressed_size);
685 info.contents = NULL;
686 if (uncompressed_size != -1ULL)
687 {
688 unsigned char* uncompressed_data = NULL;
689 if (need_decompressed_section(name))
690 {
691 uncompressed_data = new unsigned char[uncompressed_size];
692 if (decompress_input_section(contents, len,
693 uncompressed_data,
694 uncompressed_size))
695 info.contents = uncompressed_data;
696 else
697 delete[] uncompressed_data;
698 }
699 (*uncompressed_map)[i] = info;
700 }
701 }
702 }
703 }
704 return uncompressed_map;
705 }
706
707 // Stash away info for a number of special sections.
708 // Return true if any of the sections found require local symbols to be read.
709
710 template<int size, bool big_endian>
711 bool
712 Sized_relobj_file<size, big_endian>::do_find_special_sections(
713 Read_symbols_data* sd)
714 {
715 const unsigned char* const pshdrs = sd->section_headers->data();
716 const unsigned char* namesu = sd->section_names->data();
717 const char* names = reinterpret_cast<const char*>(namesu);
718
719 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
720 this->has_eh_frame_ = true;
721
722 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
723 this->compressed_sections_
724 = build_compressed_section_map(pshdrs, this->shnum(), names,
725 sd->section_names_size, this);
726 return (this->has_eh_frame_
727 || (!parameters->options().relocatable()
728 && parameters->options().gdb_index()
729 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
730 || memmem(names, sd->section_names_size, "debug_types",
731 13) == 0)));
732 }
733
734 // Read the sections and symbols from an object file.
735
736 template<int size, bool big_endian>
737 void
738 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
739 {
740 this->read_section_data(&this->elf_file_, sd);
741
742 const unsigned char* const pshdrs = sd->section_headers->data();
743
744 this->find_symtab(pshdrs);
745
746 bool need_local_symbols = this->do_find_special_sections(sd);
747
748 sd->symbols = NULL;
749 sd->symbols_size = 0;
750 sd->external_symbols_offset = 0;
751 sd->symbol_names = NULL;
752 sd->symbol_names_size = 0;
753
754 if (this->symtab_shndx_ == 0)
755 {
756 // No symbol table. Weird but legal.
757 return;
758 }
759
760 // Get the symbol table section header.
761 typename This::Shdr symtabshdr(pshdrs
762 + this->symtab_shndx_ * This::shdr_size);
763 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
764
765 // If this object has a .eh_frame section, or if building a .gdb_index
766 // section and there is debug info, we need all the symbols.
767 // Otherwise we only need the external symbols. While it would be
768 // simpler to just always read all the symbols, I've seen object
769 // files with well over 2000 local symbols, which for a 64-bit
770 // object file format is over 5 pages that we don't need to read
771 // now.
772
773 const int sym_size = This::sym_size;
774 const unsigned int loccount = symtabshdr.get_sh_info();
775 this->local_symbol_count_ = loccount;
776 this->local_values_.resize(loccount);
777 section_offset_type locsize = loccount * sym_size;
778 off_t dataoff = symtabshdr.get_sh_offset();
779 section_size_type datasize =
780 convert_to_section_size_type(symtabshdr.get_sh_size());
781 off_t extoff = dataoff + locsize;
782 section_size_type extsize = datasize - locsize;
783
784 off_t readoff = need_local_symbols ? dataoff : extoff;
785 section_size_type readsize = need_local_symbols ? datasize : extsize;
786
787 if (readsize == 0)
788 {
789 // No external symbols. Also weird but also legal.
790 return;
791 }
792
793 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
794
795 // Read the section header for the symbol names.
796 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
797 if (strtab_shndx >= this->shnum())
798 {
799 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
800 return;
801 }
802 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
803 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
804 {
805 this->error(_("symbol table name section has wrong type: %u"),
806 static_cast<unsigned int>(strtabshdr.get_sh_type()));
807 return;
808 }
809
810 // Read the symbol names.
811 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
812 strtabshdr.get_sh_size(),
813 false, true);
814
815 sd->symbols = fvsymtab;
816 sd->symbols_size = readsize;
817 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
818 sd->symbol_names = fvstrtab;
819 sd->symbol_names_size =
820 convert_to_section_size_type(strtabshdr.get_sh_size());
821 }
822
823 // Return the section index of symbol SYM. Set *VALUE to its value in
824 // the object file. Set *IS_ORDINARY if this is an ordinary section
825 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
826 // Note that for a symbol which is not defined in this object file,
827 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
828 // the final value of the symbol in the link.
829
830 template<int size, bool big_endian>
831 unsigned int
832 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
833 Address* value,
834 bool* is_ordinary)
835 {
836 section_size_type symbols_size;
837 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
838 &symbols_size,
839 false);
840
841 const size_t count = symbols_size / This::sym_size;
842 gold_assert(sym < count);
843
844 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
845 *value = elfsym.get_st_value();
846
847 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
848 }
849
850 // Return whether to include a section group in the link. LAYOUT is
851 // used to keep track of which section groups we have already seen.
852 // INDEX is the index of the section group and SHDR is the section
853 // header. If we do not want to include this group, we set bits in
854 // OMIT for each section which should be discarded.
855
856 template<int size, bool big_endian>
857 bool
858 Sized_relobj_file<size, big_endian>::include_section_group(
859 Symbol_table* symtab,
860 Layout* layout,
861 unsigned int index,
862 const char* name,
863 const unsigned char* shdrs,
864 const char* section_names,
865 section_size_type section_names_size,
866 std::vector<bool>* omit)
867 {
868 // Read the section contents.
869 typename This::Shdr shdr(shdrs + index * This::shdr_size);
870 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
871 shdr.get_sh_size(), true, false);
872 const elfcpp::Elf_Word* pword =
873 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
874
875 // The first word contains flags. We only care about COMDAT section
876 // groups. Other section groups are always included in the link
877 // just like ordinary sections.
878 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
879
880 // Look up the group signature, which is the name of a symbol. ELF
881 // uses a symbol name because some group signatures are long, and
882 // the name is generally already in the symbol table, so it makes
883 // sense to put the long string just once in .strtab rather than in
884 // both .strtab and .shstrtab.
885
886 // Get the appropriate symbol table header (this will normally be
887 // the single SHT_SYMTAB section, but in principle it need not be).
888 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
889 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
890
891 // Read the symbol table entry.
892 unsigned int symndx = shdr.get_sh_info();
893 if (symndx >= symshdr.get_sh_size() / This::sym_size)
894 {
895 this->error(_("section group %u info %u out of range"),
896 index, symndx);
897 return false;
898 }
899 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
900 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
901 false);
902 elfcpp::Sym<size, big_endian> sym(psym);
903
904 // Read the symbol table names.
905 section_size_type symnamelen;
906 const unsigned char* psymnamesu;
907 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
908 &symnamelen, true);
909 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
910
911 // Get the section group signature.
912 if (sym.get_st_name() >= symnamelen)
913 {
914 this->error(_("symbol %u name offset %u out of range"),
915 symndx, sym.get_st_name());
916 return false;
917 }
918
919 std::string signature(psymnames + sym.get_st_name());
920
921 // It seems that some versions of gas will create a section group
922 // associated with a section symbol, and then fail to give a name to
923 // the section symbol. In such a case, use the name of the section.
924 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
925 {
926 bool is_ordinary;
927 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
928 sym.get_st_shndx(),
929 &is_ordinary);
930 if (!is_ordinary || sym_shndx >= this->shnum())
931 {
932 this->error(_("symbol %u invalid section index %u"),
933 symndx, sym_shndx);
934 return false;
935 }
936 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
937 if (member_shdr.get_sh_name() < section_names_size)
938 signature = section_names + member_shdr.get_sh_name();
939 }
940
941 // Record this section group in the layout, and see whether we've already
942 // seen one with the same signature.
943 bool include_group;
944 bool is_comdat;
945 Kept_section* kept_section = NULL;
946
947 if ((flags & elfcpp::GRP_COMDAT) == 0)
948 {
949 include_group = true;
950 is_comdat = false;
951 }
952 else
953 {
954 include_group = layout->find_or_add_kept_section(signature,
955 this, index, true,
956 true, &kept_section);
957 is_comdat = true;
958 }
959
960 if (is_comdat && include_group)
961 {
962 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
963 if (incremental_inputs != NULL)
964 incremental_inputs->report_comdat_group(this, signature.c_str());
965 }
966
967 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
968
969 std::vector<unsigned int> shndxes;
970 bool relocate_group = include_group && parameters->options().relocatable();
971 if (relocate_group)
972 shndxes.reserve(count - 1);
973
974 for (size_t i = 1; i < count; ++i)
975 {
976 elfcpp::Elf_Word shndx =
977 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
978
979 if (relocate_group)
980 shndxes.push_back(shndx);
981
982 if (shndx >= this->shnum())
983 {
984 this->error(_("section %u in section group %u out of range"),
985 shndx, index);
986 continue;
987 }
988
989 // Check for an earlier section number, since we're going to get
990 // it wrong--we may have already decided to include the section.
991 if (shndx < index)
992 this->error(_("invalid section group %u refers to earlier section %u"),
993 index, shndx);
994
995 // Get the name of the member section.
996 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
997 if (member_shdr.get_sh_name() >= section_names_size)
998 {
999 // This is an error, but it will be diagnosed eventually
1000 // in do_layout, so we don't need to do anything here but
1001 // ignore it.
1002 continue;
1003 }
1004 std::string mname(section_names + member_shdr.get_sh_name());
1005
1006 if (include_group)
1007 {
1008 if (is_comdat)
1009 kept_section->add_comdat_section(mname, shndx,
1010 member_shdr.get_sh_size());
1011 }
1012 else
1013 {
1014 (*omit)[shndx] = true;
1015
1016 if (is_comdat)
1017 {
1018 Relobj* kept_object = kept_section->object();
1019 if (kept_section->is_comdat())
1020 {
1021 // Find the corresponding kept section, and store
1022 // that info in the discarded section table.
1023 unsigned int kept_shndx;
1024 uint64_t kept_size;
1025 if (kept_section->find_comdat_section(mname, &kept_shndx,
1026 &kept_size))
1027 {
1028 // We don't keep a mapping for this section if
1029 // it has a different size. The mapping is only
1030 // used for relocation processing, and we don't
1031 // want to treat the sections as similar if the
1032 // sizes are different. Checking the section
1033 // size is the approach used by the GNU linker.
1034 if (kept_size == member_shdr.get_sh_size())
1035 this->set_kept_comdat_section(shndx, kept_object,
1036 kept_shndx);
1037 }
1038 }
1039 else
1040 {
1041 // The existing section is a linkonce section. Add
1042 // a mapping if there is exactly one section in the
1043 // group (which is true when COUNT == 2) and if it
1044 // is the same size.
1045 if (count == 2
1046 && (kept_section->linkonce_size()
1047 == member_shdr.get_sh_size()))
1048 this->set_kept_comdat_section(shndx, kept_object,
1049 kept_section->shndx());
1050 }
1051 }
1052 }
1053 }
1054
1055 if (relocate_group)
1056 layout->layout_group(symtab, this, index, name, signature.c_str(),
1057 shdr, flags, &shndxes);
1058
1059 return include_group;
1060 }
1061
1062 // Whether to include a linkonce section in the link. NAME is the
1063 // name of the section and SHDR is the section header.
1064
1065 // Linkonce sections are a GNU extension implemented in the original
1066 // GNU linker before section groups were defined. The semantics are
1067 // that we only include one linkonce section with a given name. The
1068 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1069 // where T is the type of section and SYMNAME is the name of a symbol.
1070 // In an attempt to make linkonce sections interact well with section
1071 // groups, we try to identify SYMNAME and use it like a section group
1072 // signature. We want to block section groups with that signature,
1073 // but not other linkonce sections with that signature. We also use
1074 // the full name of the linkonce section as a normal section group
1075 // signature.
1076
1077 template<int size, bool big_endian>
1078 bool
1079 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1080 Layout* layout,
1081 unsigned int index,
1082 const char* name,
1083 const elfcpp::Shdr<size, big_endian>& shdr)
1084 {
1085 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1086 // In general the symbol name we want will be the string following
1087 // the last '.'. However, we have to handle the case of
1088 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1089 // some versions of gcc. So we use a heuristic: if the name starts
1090 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1091 // we look for the last '.'. We can't always simply skip
1092 // ".gnu.linkonce.X", because we have to deal with cases like
1093 // ".gnu.linkonce.d.rel.ro.local".
1094 const char* const linkonce_t = ".gnu.linkonce.t.";
1095 const char* symname;
1096 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1097 symname = name + strlen(linkonce_t);
1098 else
1099 symname = strrchr(name, '.') + 1;
1100 std::string sig1(symname);
1101 std::string sig2(name);
1102 Kept_section* kept1;
1103 Kept_section* kept2;
1104 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1105 false, &kept1);
1106 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1107 true, &kept2);
1108
1109 if (!include2)
1110 {
1111 // We are not including this section because we already saw the
1112 // name of the section as a signature. This normally implies
1113 // that the kept section is another linkonce section. If it is
1114 // the same size, record it as the section which corresponds to
1115 // this one.
1116 if (kept2->object() != NULL
1117 && !kept2->is_comdat()
1118 && kept2->linkonce_size() == sh_size)
1119 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1120 }
1121 else if (!include1)
1122 {
1123 // The section is being discarded on the basis of its symbol
1124 // name. This means that the corresponding kept section was
1125 // part of a comdat group, and it will be difficult to identify
1126 // the specific section within that group that corresponds to
1127 // this linkonce section. We'll handle the simple case where
1128 // the group has only one member section. Otherwise, it's not
1129 // worth the effort.
1130 unsigned int kept_shndx;
1131 uint64_t kept_size;
1132 if (kept1->object() != NULL
1133 && kept1->is_comdat()
1134 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1135 && kept_size == sh_size)
1136 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1137 }
1138 else
1139 {
1140 kept1->set_linkonce_size(sh_size);
1141 kept2->set_linkonce_size(sh_size);
1142 }
1143
1144 return include1 && include2;
1145 }
1146
1147 // Layout an input section.
1148
1149 template<int size, bool big_endian>
1150 inline void
1151 Sized_relobj_file<size, big_endian>::layout_section(
1152 Layout* layout,
1153 unsigned int shndx,
1154 const char* name,
1155 const typename This::Shdr& shdr,
1156 unsigned int reloc_shndx,
1157 unsigned int reloc_type)
1158 {
1159 off_t offset;
1160 Output_section* os = layout->layout(this, shndx, name, shdr,
1161 reloc_shndx, reloc_type, &offset);
1162
1163 this->output_sections()[shndx] = os;
1164 if (offset == -1)
1165 this->section_offsets()[shndx] = invalid_address;
1166 else
1167 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1168
1169 // If this section requires special handling, and if there are
1170 // relocs that apply to it, then we must do the special handling
1171 // before we apply the relocs.
1172 if (offset == -1 && reloc_shndx != 0)
1173 this->set_relocs_must_follow_section_writes();
1174 }
1175
1176 // Layout an input .eh_frame section.
1177
1178 template<int size, bool big_endian>
1179 void
1180 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1181 Layout* layout,
1182 const unsigned char* symbols_data,
1183 section_size_type symbols_size,
1184 const unsigned char* symbol_names_data,
1185 section_size_type symbol_names_size,
1186 unsigned int shndx,
1187 const typename This::Shdr& shdr,
1188 unsigned int reloc_shndx,
1189 unsigned int reloc_type)
1190 {
1191 gold_assert(this->has_eh_frame_);
1192
1193 off_t offset;
1194 Output_section* os = layout->layout_eh_frame(this,
1195 symbols_data,
1196 symbols_size,
1197 symbol_names_data,
1198 symbol_names_size,
1199 shndx,
1200 shdr,
1201 reloc_shndx,
1202 reloc_type,
1203 &offset);
1204 this->output_sections()[shndx] = os;
1205 if (os == NULL || offset == -1)
1206 {
1207 // An object can contain at most one section holding exception
1208 // frame information.
1209 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1210 this->discarded_eh_frame_shndx_ = shndx;
1211 this->section_offsets()[shndx] = invalid_address;
1212 }
1213 else
1214 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1215
1216 // If this section requires special handling, and if there are
1217 // relocs that aply to it, then we must do the special handling
1218 // before we apply the relocs.
1219 if (os != NULL && offset == -1 && reloc_shndx != 0)
1220 this->set_relocs_must_follow_section_writes();
1221 }
1222
1223 // Lay out the input sections. We walk through the sections and check
1224 // whether they should be included in the link. If they should, we
1225 // pass them to the Layout object, which will return an output section
1226 // and an offset.
1227 // This function is called twice sometimes, two passes, when mapping
1228 // of input sections to output sections must be delayed.
1229 // This is true for the following :
1230 // * Garbage collection (--gc-sections): Some input sections will be
1231 // discarded and hence the assignment must wait until the second pass.
1232 // In the first pass, it is for setting up some sections as roots to
1233 // a work-list for --gc-sections and to do comdat processing.
1234 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1235 // will be folded and hence the assignment must wait.
1236 // * Using plugins to map some sections to unique segments: Mapping
1237 // some sections to unique segments requires mapping them to unique
1238 // output sections too. This can be done via plugins now and this
1239 // information is not available in the first pass.
1240
1241 template<int size, bool big_endian>
1242 void
1243 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1244 Layout* layout,
1245 Read_symbols_data* sd)
1246 {
1247 const unsigned int shnum = this->shnum();
1248
1249 /* Should this function be called twice? */
1250 bool is_two_pass = (parameters->options().gc_sections()
1251 || parameters->options().icf_enabled()
1252 || layout->is_unique_segment_for_sections_specified());
1253
1254 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1255 a two-pass approach is not needed. */
1256 bool is_pass_one = false;
1257 bool is_pass_two = false;
1258
1259 Symbols_data* gc_sd = NULL;
1260
1261 /* Check if do_layout needs to be two-pass. If so, find out which pass
1262 should happen. In the first pass, the data in sd is saved to be used
1263 later in the second pass. */
1264 if (is_two_pass)
1265 {
1266 gc_sd = this->get_symbols_data();
1267 if (gc_sd == NULL)
1268 {
1269 gold_assert(sd != NULL);
1270 is_pass_one = true;
1271 }
1272 else
1273 {
1274 if (parameters->options().gc_sections())
1275 gold_assert(symtab->gc()->is_worklist_ready());
1276 if (parameters->options().icf_enabled())
1277 gold_assert(symtab->icf()->is_icf_ready());
1278 is_pass_two = true;
1279 }
1280 }
1281
1282 if (shnum == 0)
1283 return;
1284
1285 if (is_pass_one)
1286 {
1287 // During garbage collection save the symbols data to use it when
1288 // re-entering this function.
1289 gc_sd = new Symbols_data;
1290 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1291 this->set_symbols_data(gc_sd);
1292 }
1293
1294 const unsigned char* section_headers_data = NULL;
1295 section_size_type section_names_size;
1296 const unsigned char* symbols_data = NULL;
1297 section_size_type symbols_size;
1298 const unsigned char* symbol_names_data = NULL;
1299 section_size_type symbol_names_size;
1300
1301 if (is_two_pass)
1302 {
1303 section_headers_data = gc_sd->section_headers_data;
1304 section_names_size = gc_sd->section_names_size;
1305 symbols_data = gc_sd->symbols_data;
1306 symbols_size = gc_sd->symbols_size;
1307 symbol_names_data = gc_sd->symbol_names_data;
1308 symbol_names_size = gc_sd->symbol_names_size;
1309 }
1310 else
1311 {
1312 section_headers_data = sd->section_headers->data();
1313 section_names_size = sd->section_names_size;
1314 if (sd->symbols != NULL)
1315 symbols_data = sd->symbols->data();
1316 symbols_size = sd->symbols_size;
1317 if (sd->symbol_names != NULL)
1318 symbol_names_data = sd->symbol_names->data();
1319 symbol_names_size = sd->symbol_names_size;
1320 }
1321
1322 // Get the section headers.
1323 const unsigned char* shdrs = section_headers_data;
1324 const unsigned char* pshdrs;
1325
1326 // Get the section names.
1327 const unsigned char* pnamesu = (is_two_pass
1328 ? gc_sd->section_names_data
1329 : sd->section_names->data());
1330
1331 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1332
1333 // If any input files have been claimed by plugins, we need to defer
1334 // actual layout until the replacement files have arrived.
1335 const bool should_defer_layout =
1336 (parameters->options().has_plugins()
1337 && parameters->options().plugins()->should_defer_layout());
1338 unsigned int num_sections_to_defer = 0;
1339
1340 // For each section, record the index of the reloc section if any.
1341 // Use 0 to mean that there is no reloc section, -1U to mean that
1342 // there is more than one.
1343 std::vector<unsigned int> reloc_shndx(shnum, 0);
1344 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1345 // Skip the first, dummy, section.
1346 pshdrs = shdrs + This::shdr_size;
1347 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1348 {
1349 typename This::Shdr shdr(pshdrs);
1350
1351 // Count the number of sections whose layout will be deferred.
1352 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1353 ++num_sections_to_defer;
1354
1355 unsigned int sh_type = shdr.get_sh_type();
1356 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1357 {
1358 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1359 if (target_shndx == 0 || target_shndx >= shnum)
1360 {
1361 this->error(_("relocation section %u has bad info %u"),
1362 i, target_shndx);
1363 continue;
1364 }
1365
1366 if (reloc_shndx[target_shndx] != 0)
1367 reloc_shndx[target_shndx] = -1U;
1368 else
1369 {
1370 reloc_shndx[target_shndx] = i;
1371 reloc_type[target_shndx] = sh_type;
1372 }
1373 }
1374 }
1375
1376 Output_sections& out_sections(this->output_sections());
1377 std::vector<Address>& out_section_offsets(this->section_offsets());
1378
1379 if (!is_pass_two)
1380 {
1381 out_sections.resize(shnum);
1382 out_section_offsets.resize(shnum);
1383 }
1384
1385 // If we are only linking for symbols, then there is nothing else to
1386 // do here.
1387 if (this->input_file()->just_symbols())
1388 {
1389 if (!is_pass_two)
1390 {
1391 delete sd->section_headers;
1392 sd->section_headers = NULL;
1393 delete sd->section_names;
1394 sd->section_names = NULL;
1395 }
1396 return;
1397 }
1398
1399 if (num_sections_to_defer > 0)
1400 {
1401 parameters->options().plugins()->add_deferred_layout_object(this);
1402 this->deferred_layout_.reserve(num_sections_to_defer);
1403 }
1404
1405 // Whether we've seen a .note.GNU-stack section.
1406 bool seen_gnu_stack = false;
1407 // The flags of a .note.GNU-stack section.
1408 uint64_t gnu_stack_flags = 0;
1409
1410 // Keep track of which sections to omit.
1411 std::vector<bool> omit(shnum, false);
1412
1413 // Keep track of reloc sections when emitting relocations.
1414 const bool relocatable = parameters->options().relocatable();
1415 const bool emit_relocs = (relocatable
1416 || parameters->options().emit_relocs());
1417 std::vector<unsigned int> reloc_sections;
1418
1419 // Keep track of .eh_frame sections.
1420 std::vector<unsigned int> eh_frame_sections;
1421
1422 // Keep track of .debug_info and .debug_types sections.
1423 std::vector<unsigned int> debug_info_sections;
1424 std::vector<unsigned int> debug_types_sections;
1425
1426 // Skip the first, dummy, section.
1427 pshdrs = shdrs + This::shdr_size;
1428 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1429 {
1430 typename This::Shdr shdr(pshdrs);
1431
1432 if (shdr.get_sh_name() >= section_names_size)
1433 {
1434 this->error(_("bad section name offset for section %u: %lu"),
1435 i, static_cast<unsigned long>(shdr.get_sh_name()));
1436 return;
1437 }
1438
1439 const char* name = pnames + shdr.get_sh_name();
1440
1441 if (!is_pass_two)
1442 {
1443 if (this->handle_gnu_warning_section(name, i, symtab))
1444 {
1445 if (!relocatable && !parameters->options().shared())
1446 omit[i] = true;
1447 }
1448
1449 // The .note.GNU-stack section is special. It gives the
1450 // protection flags that this object file requires for the stack
1451 // in memory.
1452 if (strcmp(name, ".note.GNU-stack") == 0)
1453 {
1454 seen_gnu_stack = true;
1455 gnu_stack_flags |= shdr.get_sh_flags();
1456 omit[i] = true;
1457 }
1458
1459 // The .note.GNU-split-stack section is also special. It
1460 // indicates that the object was compiled with
1461 // -fsplit-stack.
1462 if (this->handle_split_stack_section(name))
1463 {
1464 if (!relocatable && !parameters->options().shared())
1465 omit[i] = true;
1466 }
1467
1468 // Skip attributes section.
1469 if (parameters->target().is_attributes_section(name))
1470 {
1471 omit[i] = true;
1472 }
1473
1474 bool discard = omit[i];
1475 if (!discard)
1476 {
1477 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1478 {
1479 if (!this->include_section_group(symtab, layout, i, name,
1480 shdrs, pnames,
1481 section_names_size,
1482 &omit))
1483 discard = true;
1484 }
1485 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1486 && Layout::is_linkonce(name))
1487 {
1488 if (!this->include_linkonce_section(layout, i, name, shdr))
1489 discard = true;
1490 }
1491 }
1492
1493 // Add the section to the incremental inputs layout.
1494 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1495 if (incremental_inputs != NULL
1496 && !discard
1497 && can_incremental_update(shdr.get_sh_type()))
1498 {
1499 off_t sh_size = shdr.get_sh_size();
1500 section_size_type uncompressed_size;
1501 if (this->section_is_compressed(i, &uncompressed_size))
1502 sh_size = uncompressed_size;
1503 incremental_inputs->report_input_section(this, i, name, sh_size);
1504 }
1505
1506 if (discard)
1507 {
1508 // Do not include this section in the link.
1509 out_sections[i] = NULL;
1510 out_section_offsets[i] = invalid_address;
1511 continue;
1512 }
1513 }
1514
1515 if (is_pass_one && parameters->options().gc_sections())
1516 {
1517 if (this->is_section_name_included(name)
1518 || layout->keep_input_section (this, name)
1519 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1520 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1521 {
1522 symtab->gc()->worklist().push(Section_id(this, i));
1523 }
1524 // If the section name XXX can be represented as a C identifier
1525 // it cannot be discarded if there are references to
1526 // __start_XXX and __stop_XXX symbols. These need to be
1527 // specially handled.
1528 if (is_cident(name))
1529 {
1530 symtab->gc()->add_cident_section(name, Section_id(this, i));
1531 }
1532 }
1533
1534 // When doing a relocatable link we are going to copy input
1535 // reloc sections into the output. We only want to copy the
1536 // ones associated with sections which are not being discarded.
1537 // However, we don't know that yet for all sections. So save
1538 // reloc sections and process them later. Garbage collection is
1539 // not triggered when relocatable code is desired.
1540 if (emit_relocs
1541 && (shdr.get_sh_type() == elfcpp::SHT_REL
1542 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1543 {
1544 reloc_sections.push_back(i);
1545 continue;
1546 }
1547
1548 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1549 continue;
1550
1551 // The .eh_frame section is special. It holds exception frame
1552 // information that we need to read in order to generate the
1553 // exception frame header. We process these after all the other
1554 // sections so that the exception frame reader can reliably
1555 // determine which sections are being discarded, and discard the
1556 // corresponding information.
1557 if (!relocatable
1558 && strcmp(name, ".eh_frame") == 0
1559 && this->check_eh_frame_flags(&shdr))
1560 {
1561 if (is_pass_one)
1562 {
1563 out_sections[i] = reinterpret_cast<Output_section*>(1);
1564 out_section_offsets[i] = invalid_address;
1565 }
1566 else if (should_defer_layout)
1567 this->deferred_layout_.push_back(Deferred_layout(i, name,
1568 pshdrs,
1569 reloc_shndx[i],
1570 reloc_type[i]));
1571 else
1572 eh_frame_sections.push_back(i);
1573 continue;
1574 }
1575
1576 if (is_pass_two && parameters->options().gc_sections())
1577 {
1578 // This is executed during the second pass of garbage
1579 // collection. do_layout has been called before and some
1580 // sections have been already discarded. Simply ignore
1581 // such sections this time around.
1582 if (out_sections[i] == NULL)
1583 {
1584 gold_assert(out_section_offsets[i] == invalid_address);
1585 continue;
1586 }
1587 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1588 && symtab->gc()->is_section_garbage(this, i))
1589 {
1590 if (parameters->options().print_gc_sections())
1591 gold_info(_("%s: removing unused section from '%s'"
1592 " in file '%s'"),
1593 program_name, this->section_name(i).c_str(),
1594 this->name().c_str());
1595 out_sections[i] = NULL;
1596 out_section_offsets[i] = invalid_address;
1597 continue;
1598 }
1599 }
1600
1601 if (is_pass_two && parameters->options().icf_enabled())
1602 {
1603 if (out_sections[i] == NULL)
1604 {
1605 gold_assert(out_section_offsets[i] == invalid_address);
1606 continue;
1607 }
1608 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1609 && symtab->icf()->is_section_folded(this, i))
1610 {
1611 if (parameters->options().print_icf_sections())
1612 {
1613 Section_id folded =
1614 symtab->icf()->get_folded_section(this, i);
1615 Relobj* folded_obj =
1616 reinterpret_cast<Relobj*>(folded.first);
1617 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1618 "into '%s' in file '%s'"),
1619 program_name, this->section_name(i).c_str(),
1620 this->name().c_str(),
1621 folded_obj->section_name(folded.second).c_str(),
1622 folded_obj->name().c_str());
1623 }
1624 out_sections[i] = NULL;
1625 out_section_offsets[i] = invalid_address;
1626 continue;
1627 }
1628 }
1629
1630 // Defer layout here if input files are claimed by plugins. When gc
1631 // is turned on this function is called twice. For the second call
1632 // should_defer_layout should be false.
1633 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1634 {
1635 gold_assert(!is_pass_two);
1636 this->deferred_layout_.push_back(Deferred_layout(i, name,
1637 pshdrs,
1638 reloc_shndx[i],
1639 reloc_type[i]));
1640 // Put dummy values here; real values will be supplied by
1641 // do_layout_deferred_sections.
1642 out_sections[i] = reinterpret_cast<Output_section*>(2);
1643 out_section_offsets[i] = invalid_address;
1644 continue;
1645 }
1646
1647 // During gc_pass_two if a section that was previously deferred is
1648 // found, do not layout the section as layout_deferred_sections will
1649 // do it later from gold.cc.
1650 if (is_pass_two
1651 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1652 continue;
1653
1654 if (is_pass_one)
1655 {
1656 // This is during garbage collection. The out_sections are
1657 // assigned in the second call to this function.
1658 out_sections[i] = reinterpret_cast<Output_section*>(1);
1659 out_section_offsets[i] = invalid_address;
1660 }
1661 else
1662 {
1663 // When garbage collection is switched on the actual layout
1664 // only happens in the second call.
1665 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1666 reloc_type[i]);
1667
1668 // When generating a .gdb_index section, we do additional
1669 // processing of .debug_info and .debug_types sections after all
1670 // the other sections for the same reason as above.
1671 if (!relocatable
1672 && parameters->options().gdb_index()
1673 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1674 {
1675 if (strcmp(name, ".debug_info") == 0
1676 || strcmp(name, ".zdebug_info") == 0)
1677 debug_info_sections.push_back(i);
1678 else if (strcmp(name, ".debug_types") == 0
1679 || strcmp(name, ".zdebug_types") == 0)
1680 debug_types_sections.push_back(i);
1681 }
1682 }
1683 }
1684
1685 if (!is_pass_two)
1686 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1687
1688 // When doing a relocatable link handle the reloc sections at the
1689 // end. Garbage collection and Identical Code Folding is not
1690 // turned on for relocatable code.
1691 if (emit_relocs)
1692 this->size_relocatable_relocs();
1693
1694 gold_assert(!is_two_pass || reloc_sections.empty());
1695
1696 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1697 p != reloc_sections.end();
1698 ++p)
1699 {
1700 unsigned int i = *p;
1701 const unsigned char* pshdr;
1702 pshdr = section_headers_data + i * This::shdr_size;
1703 typename This::Shdr shdr(pshdr);
1704
1705 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1706 if (data_shndx >= shnum)
1707 {
1708 // We already warned about this above.
1709 continue;
1710 }
1711
1712 Output_section* data_section = out_sections[data_shndx];
1713 if (data_section == reinterpret_cast<Output_section*>(2))
1714 {
1715 // The layout for the data section was deferred, so we need
1716 // to defer the relocation section, too.
1717 const char* name = pnames + shdr.get_sh_name();
1718 this->deferred_layout_relocs_.push_back(
1719 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1720 out_sections[i] = reinterpret_cast<Output_section*>(2);
1721 out_section_offsets[i] = invalid_address;
1722 continue;
1723 }
1724 if (data_section == NULL)
1725 {
1726 out_sections[i] = NULL;
1727 out_section_offsets[i] = invalid_address;
1728 continue;
1729 }
1730
1731 Relocatable_relocs* rr = new Relocatable_relocs();
1732 this->set_relocatable_relocs(i, rr);
1733
1734 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1735 rr);
1736 out_sections[i] = os;
1737 out_section_offsets[i] = invalid_address;
1738 }
1739
1740 // Handle the .eh_frame sections at the end.
1741 gold_assert(!is_pass_one || eh_frame_sections.empty());
1742 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1743 p != eh_frame_sections.end();
1744 ++p)
1745 {
1746 unsigned int i = *p;
1747 const unsigned char* pshdr;
1748 pshdr = section_headers_data + i * This::shdr_size;
1749 typename This::Shdr shdr(pshdr);
1750
1751 this->layout_eh_frame_section(layout,
1752 symbols_data,
1753 symbols_size,
1754 symbol_names_data,
1755 symbol_names_size,
1756 i,
1757 shdr,
1758 reloc_shndx[i],
1759 reloc_type[i]);
1760 }
1761
1762 // When building a .gdb_index section, scan the .debug_info and
1763 // .debug_types sections.
1764 gold_assert(!is_pass_one
1765 || (debug_info_sections.empty() && debug_types_sections.empty()));
1766 for (std::vector<unsigned int>::const_iterator p
1767 = debug_info_sections.begin();
1768 p != debug_info_sections.end();
1769 ++p)
1770 {
1771 unsigned int i = *p;
1772 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1773 i, reloc_shndx[i], reloc_type[i]);
1774 }
1775 for (std::vector<unsigned int>::const_iterator p
1776 = debug_types_sections.begin();
1777 p != debug_types_sections.end();
1778 ++p)
1779 {
1780 unsigned int i = *p;
1781 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1782 i, reloc_shndx[i], reloc_type[i]);
1783 }
1784
1785 if (is_pass_two)
1786 {
1787 delete[] gc_sd->section_headers_data;
1788 delete[] gc_sd->section_names_data;
1789 delete[] gc_sd->symbols_data;
1790 delete[] gc_sd->symbol_names_data;
1791 this->set_symbols_data(NULL);
1792 }
1793 else
1794 {
1795 delete sd->section_headers;
1796 sd->section_headers = NULL;
1797 delete sd->section_names;
1798 sd->section_names = NULL;
1799 }
1800 }
1801
1802 // Layout sections whose layout was deferred while waiting for
1803 // input files from a plugin.
1804
1805 template<int size, bool big_endian>
1806 void
1807 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1808 {
1809 typename std::vector<Deferred_layout>::iterator deferred;
1810
1811 for (deferred = this->deferred_layout_.begin();
1812 deferred != this->deferred_layout_.end();
1813 ++deferred)
1814 {
1815 typename This::Shdr shdr(deferred->shdr_data_);
1816 // If the section is not included, it is because the garbage collector
1817 // decided it is not needed. Avoid reverting that decision.
1818 if (!this->is_section_included(deferred->shndx_))
1819 continue;
1820
1821 if (parameters->options().relocatable()
1822 || deferred->name_ != ".eh_frame"
1823 || !this->check_eh_frame_flags(&shdr))
1824 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1825 shdr, deferred->reloc_shndx_,
1826 deferred->reloc_type_);
1827 else
1828 {
1829 // Reading the symbols again here may be slow.
1830 Read_symbols_data sd;
1831 this->read_symbols(&sd);
1832 this->layout_eh_frame_section(layout,
1833 sd.symbols->data(),
1834 sd.symbols_size,
1835 sd.symbol_names->data(),
1836 sd.symbol_names_size,
1837 deferred->shndx_,
1838 shdr,
1839 deferred->reloc_shndx_,
1840 deferred->reloc_type_);
1841 }
1842 }
1843
1844 this->deferred_layout_.clear();
1845
1846 // Now handle the deferred relocation sections.
1847
1848 Output_sections& out_sections(this->output_sections());
1849 std::vector<Address>& out_section_offsets(this->section_offsets());
1850
1851 for (deferred = this->deferred_layout_relocs_.begin();
1852 deferred != this->deferred_layout_relocs_.end();
1853 ++deferred)
1854 {
1855 unsigned int shndx = deferred->shndx_;
1856 typename This::Shdr shdr(deferred->shdr_data_);
1857 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1858
1859 Output_section* data_section = out_sections[data_shndx];
1860 if (data_section == NULL)
1861 {
1862 out_sections[shndx] = NULL;
1863 out_section_offsets[shndx] = invalid_address;
1864 continue;
1865 }
1866
1867 Relocatable_relocs* rr = new Relocatable_relocs();
1868 this->set_relocatable_relocs(shndx, rr);
1869
1870 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1871 data_section, rr);
1872 out_sections[shndx] = os;
1873 out_section_offsets[shndx] = invalid_address;
1874 }
1875 }
1876
1877 // Add the symbols to the symbol table.
1878
1879 template<int size, bool big_endian>
1880 void
1881 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1882 Read_symbols_data* sd,
1883 Layout*)
1884 {
1885 if (sd->symbols == NULL)
1886 {
1887 gold_assert(sd->symbol_names == NULL);
1888 return;
1889 }
1890
1891 const int sym_size = This::sym_size;
1892 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1893 / sym_size);
1894 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1895 {
1896 this->error(_("size of symbols is not multiple of symbol size"));
1897 return;
1898 }
1899
1900 this->symbols_.resize(symcount);
1901
1902 const char* sym_names =
1903 reinterpret_cast<const char*>(sd->symbol_names->data());
1904 symtab->add_from_relobj(this,
1905 sd->symbols->data() + sd->external_symbols_offset,
1906 symcount, this->local_symbol_count_,
1907 sym_names, sd->symbol_names_size,
1908 &this->symbols_,
1909 &this->defined_count_);
1910
1911 delete sd->symbols;
1912 sd->symbols = NULL;
1913 delete sd->symbol_names;
1914 sd->symbol_names = NULL;
1915 }
1916
1917 // Find out if this object, that is a member of a lib group, should be included
1918 // in the link. We check every symbol defined by this object. If the symbol
1919 // table has a strong undefined reference to that symbol, we have to include
1920 // the object.
1921
1922 template<int size, bool big_endian>
1923 Archive::Should_include
1924 Sized_relobj_file<size, big_endian>::do_should_include_member(
1925 Symbol_table* symtab,
1926 Layout* layout,
1927 Read_symbols_data* sd,
1928 std::string* why)
1929 {
1930 char* tmpbuf = NULL;
1931 size_t tmpbuflen = 0;
1932 const char* sym_names =
1933 reinterpret_cast<const char*>(sd->symbol_names->data());
1934 const unsigned char* syms =
1935 sd->symbols->data() + sd->external_symbols_offset;
1936 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1937 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1938 / sym_size);
1939
1940 const unsigned char* p = syms;
1941
1942 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1943 {
1944 elfcpp::Sym<size, big_endian> sym(p);
1945 unsigned int st_shndx = sym.get_st_shndx();
1946 if (st_shndx == elfcpp::SHN_UNDEF)
1947 continue;
1948
1949 unsigned int st_name = sym.get_st_name();
1950 const char* name = sym_names + st_name;
1951 Symbol* symbol;
1952 Archive::Should_include t = Archive::should_include_member(symtab,
1953 layout,
1954 name,
1955 &symbol, why,
1956 &tmpbuf,
1957 &tmpbuflen);
1958 if (t == Archive::SHOULD_INCLUDE_YES)
1959 {
1960 if (tmpbuf != NULL)
1961 free(tmpbuf);
1962 return t;
1963 }
1964 }
1965 if (tmpbuf != NULL)
1966 free(tmpbuf);
1967 return Archive::SHOULD_INCLUDE_UNKNOWN;
1968 }
1969
1970 // Iterate over global defined symbols, calling a visitor class V for each.
1971
1972 template<int size, bool big_endian>
1973 void
1974 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1975 Read_symbols_data* sd,
1976 Library_base::Symbol_visitor_base* v)
1977 {
1978 const char* sym_names =
1979 reinterpret_cast<const char*>(sd->symbol_names->data());
1980 const unsigned char* syms =
1981 sd->symbols->data() + sd->external_symbols_offset;
1982 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1983 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1984 / sym_size);
1985 const unsigned char* p = syms;
1986
1987 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1988 {
1989 elfcpp::Sym<size, big_endian> sym(p);
1990 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1991 v->visit(sym_names + sym.get_st_name());
1992 }
1993 }
1994
1995 // Return whether the local symbol SYMNDX has a PLT offset.
1996
1997 template<int size, bool big_endian>
1998 bool
1999 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2000 unsigned int symndx) const
2001 {
2002 typename Local_plt_offsets::const_iterator p =
2003 this->local_plt_offsets_.find(symndx);
2004 return p != this->local_plt_offsets_.end();
2005 }
2006
2007 // Get the PLT offset of a local symbol.
2008
2009 template<int size, bool big_endian>
2010 unsigned int
2011 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2012 unsigned int symndx) const
2013 {
2014 typename Local_plt_offsets::const_iterator p =
2015 this->local_plt_offsets_.find(symndx);
2016 gold_assert(p != this->local_plt_offsets_.end());
2017 return p->second;
2018 }
2019
2020 // Set the PLT offset of a local symbol.
2021
2022 template<int size, bool big_endian>
2023 void
2024 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2025 unsigned int symndx, unsigned int plt_offset)
2026 {
2027 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2028 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2029 gold_assert(ins.second);
2030 }
2031
2032 // First pass over the local symbols. Here we add their names to
2033 // *POOL and *DYNPOOL, and we store the symbol value in
2034 // THIS->LOCAL_VALUES_. This function is always called from a
2035 // singleton thread. This is followed by a call to
2036 // finalize_local_symbols.
2037
2038 template<int size, bool big_endian>
2039 void
2040 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2041 Stringpool* dynpool)
2042 {
2043 gold_assert(this->symtab_shndx_ != -1U);
2044 if (this->symtab_shndx_ == 0)
2045 {
2046 // This object has no symbols. Weird but legal.
2047 return;
2048 }
2049
2050 // Read the symbol table section header.
2051 const unsigned int symtab_shndx = this->symtab_shndx_;
2052 typename This::Shdr symtabshdr(this,
2053 this->elf_file_.section_header(symtab_shndx));
2054 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2055
2056 // Read the local symbols.
2057 const int sym_size = This::sym_size;
2058 const unsigned int loccount = this->local_symbol_count_;
2059 gold_assert(loccount == symtabshdr.get_sh_info());
2060 off_t locsize = loccount * sym_size;
2061 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2062 locsize, true, true);
2063
2064 // Read the symbol names.
2065 const unsigned int strtab_shndx =
2066 this->adjust_shndx(symtabshdr.get_sh_link());
2067 section_size_type strtab_size;
2068 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2069 &strtab_size,
2070 true);
2071 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2072
2073 // Loop over the local symbols.
2074
2075 const Output_sections& out_sections(this->output_sections());
2076 unsigned int shnum = this->shnum();
2077 unsigned int count = 0;
2078 unsigned int dyncount = 0;
2079 // Skip the first, dummy, symbol.
2080 psyms += sym_size;
2081 bool strip_all = parameters->options().strip_all();
2082 bool discard_all = parameters->options().discard_all();
2083 bool discard_locals = parameters->options().discard_locals();
2084 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2085 {
2086 elfcpp::Sym<size, big_endian> sym(psyms);
2087
2088 Symbol_value<size>& lv(this->local_values_[i]);
2089
2090 bool is_ordinary;
2091 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2092 &is_ordinary);
2093 lv.set_input_shndx(shndx, is_ordinary);
2094
2095 if (sym.get_st_type() == elfcpp::STT_SECTION)
2096 lv.set_is_section_symbol();
2097 else if (sym.get_st_type() == elfcpp::STT_TLS)
2098 lv.set_is_tls_symbol();
2099 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2100 lv.set_is_ifunc_symbol();
2101
2102 // Save the input symbol value for use in do_finalize_local_symbols().
2103 lv.set_input_value(sym.get_st_value());
2104
2105 // Decide whether this symbol should go into the output file.
2106
2107 if ((shndx < shnum && out_sections[shndx] == NULL)
2108 || shndx == this->discarded_eh_frame_shndx_)
2109 {
2110 lv.set_no_output_symtab_entry();
2111 gold_assert(!lv.needs_output_dynsym_entry());
2112 continue;
2113 }
2114
2115 if (sym.get_st_type() == elfcpp::STT_SECTION
2116 || !this->adjust_local_symbol(&lv))
2117 {
2118 lv.set_no_output_symtab_entry();
2119 gold_assert(!lv.needs_output_dynsym_entry());
2120 continue;
2121 }
2122
2123 if (sym.get_st_name() >= strtab_size)
2124 {
2125 this->error(_("local symbol %u section name out of range: %u >= %u"),
2126 i, sym.get_st_name(),
2127 static_cast<unsigned int>(strtab_size));
2128 lv.set_no_output_symtab_entry();
2129 continue;
2130 }
2131
2132 const char* name = pnames + sym.get_st_name();
2133
2134 // If needed, add the symbol to the dynamic symbol table string pool.
2135 if (lv.needs_output_dynsym_entry())
2136 {
2137 dynpool->add(name, true, NULL);
2138 ++dyncount;
2139 }
2140
2141 if (strip_all
2142 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2143 {
2144 lv.set_no_output_symtab_entry();
2145 continue;
2146 }
2147
2148 // If --discard-locals option is used, discard all temporary local
2149 // symbols. These symbols start with system-specific local label
2150 // prefixes, typically .L for ELF system. We want to be compatible
2151 // with GNU ld so here we essentially use the same check in
2152 // bfd_is_local_label(). The code is different because we already
2153 // know that:
2154 //
2155 // - the symbol is local and thus cannot have global or weak binding.
2156 // - the symbol is not a section symbol.
2157 // - the symbol has a name.
2158 //
2159 // We do not discard a symbol if it needs a dynamic symbol entry.
2160 if (discard_locals
2161 && sym.get_st_type() != elfcpp::STT_FILE
2162 && !lv.needs_output_dynsym_entry()
2163 && lv.may_be_discarded_from_output_symtab()
2164 && parameters->target().is_local_label_name(name))
2165 {
2166 lv.set_no_output_symtab_entry();
2167 continue;
2168 }
2169
2170 // Discard the local symbol if -retain_symbols_file is specified
2171 // and the local symbol is not in that file.
2172 if (!parameters->options().should_retain_symbol(name))
2173 {
2174 lv.set_no_output_symtab_entry();
2175 continue;
2176 }
2177
2178 // Add the symbol to the symbol table string pool.
2179 pool->add(name, true, NULL);
2180 ++count;
2181 }
2182
2183 this->output_local_symbol_count_ = count;
2184 this->output_local_dynsym_count_ = dyncount;
2185 }
2186
2187 // Compute the final value of a local symbol.
2188
2189 template<int size, bool big_endian>
2190 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2191 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2192 unsigned int r_sym,
2193 const Symbol_value<size>* lv_in,
2194 Symbol_value<size>* lv_out,
2195 bool relocatable,
2196 const Output_sections& out_sections,
2197 const std::vector<Address>& out_offsets,
2198 const Symbol_table* symtab)
2199 {
2200 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2201 // we may have a memory leak.
2202 gold_assert(lv_out->has_output_value());
2203
2204 bool is_ordinary;
2205 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2206
2207 // Set the output symbol value.
2208
2209 if (!is_ordinary)
2210 {
2211 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2212 lv_out->set_output_value(lv_in->input_value());
2213 else
2214 {
2215 this->error(_("unknown section index %u for local symbol %u"),
2216 shndx, r_sym);
2217 lv_out->set_output_value(0);
2218 return This::CFLV_ERROR;
2219 }
2220 }
2221 else
2222 {
2223 if (shndx >= this->shnum())
2224 {
2225 this->error(_("local symbol %u section index %u out of range"),
2226 r_sym, shndx);
2227 lv_out->set_output_value(0);
2228 return This::CFLV_ERROR;
2229 }
2230
2231 Output_section* os = out_sections[shndx];
2232 Address secoffset = out_offsets[shndx];
2233 if (symtab->is_section_folded(this, shndx))
2234 {
2235 gold_assert(os == NULL && secoffset == invalid_address);
2236 // Get the os of the section it is folded onto.
2237 Section_id folded = symtab->icf()->get_folded_section(this,
2238 shndx);
2239 gold_assert(folded.first != NULL);
2240 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2241 <Sized_relobj_file<size, big_endian>*>(folded.first);
2242 os = folded_obj->output_section(folded.second);
2243 gold_assert(os != NULL);
2244 secoffset = folded_obj->get_output_section_offset(folded.second);
2245
2246 // This could be a relaxed input section.
2247 if (secoffset == invalid_address)
2248 {
2249 const Output_relaxed_input_section* relaxed_section =
2250 os->find_relaxed_input_section(folded_obj, folded.second);
2251 gold_assert(relaxed_section != NULL);
2252 secoffset = relaxed_section->address() - os->address();
2253 }
2254 }
2255
2256 if (os == NULL)
2257 {
2258 // This local symbol belongs to a section we are discarding.
2259 // In some cases when applying relocations later, we will
2260 // attempt to match it to the corresponding kept section,
2261 // so we leave the input value unchanged here.
2262 return This::CFLV_DISCARDED;
2263 }
2264 else if (secoffset == invalid_address)
2265 {
2266 uint64_t start;
2267
2268 // This is a SHF_MERGE section or one which otherwise
2269 // requires special handling.
2270 if (shndx == this->discarded_eh_frame_shndx_)
2271 {
2272 // This local symbol belongs to a discarded .eh_frame
2273 // section. Just treat it like the case in which
2274 // os == NULL above.
2275 gold_assert(this->has_eh_frame_);
2276 return This::CFLV_DISCARDED;
2277 }
2278 else if (!lv_in->is_section_symbol())
2279 {
2280 // This is not a section symbol. We can determine
2281 // the final value now.
2282 lv_out->set_output_value(
2283 os->output_address(this, shndx, lv_in->input_value()));
2284 }
2285 else if (!os->find_starting_output_address(this, shndx, &start))
2286 {
2287 // This is a section symbol, but apparently not one in a
2288 // merged section. First check to see if this is a relaxed
2289 // input section. If so, use its address. Otherwise just
2290 // use the start of the output section. This happens with
2291 // relocatable links when the input object has section
2292 // symbols for arbitrary non-merge sections.
2293 const Output_section_data* posd =
2294 os->find_relaxed_input_section(this, shndx);
2295 if (posd != NULL)
2296 {
2297 Address relocatable_link_adjustment =
2298 relocatable ? os->address() : 0;
2299 lv_out->set_output_value(posd->address()
2300 - relocatable_link_adjustment);
2301 }
2302 else
2303 lv_out->set_output_value(os->address());
2304 }
2305 else
2306 {
2307 // We have to consider the addend to determine the
2308 // value to use in a relocation. START is the start
2309 // of this input section. If we are doing a relocatable
2310 // link, use offset from start output section instead of
2311 // address.
2312 Address adjusted_start =
2313 relocatable ? start - os->address() : start;
2314 Merged_symbol_value<size>* msv =
2315 new Merged_symbol_value<size>(lv_in->input_value(),
2316 adjusted_start);
2317 lv_out->set_merged_symbol_value(msv);
2318 }
2319 }
2320 else if (lv_in->is_tls_symbol())
2321 lv_out->set_output_value(os->tls_offset()
2322 + secoffset
2323 + lv_in->input_value());
2324 else
2325 lv_out->set_output_value((relocatable ? 0 : os->address())
2326 + secoffset
2327 + lv_in->input_value());
2328 }
2329 return This::CFLV_OK;
2330 }
2331
2332 // Compute final local symbol value. R_SYM is the index of a local
2333 // symbol in symbol table. LV points to a symbol value, which is
2334 // expected to hold the input value and to be over-written by the
2335 // final value. SYMTAB points to a symbol table. Some targets may want
2336 // to know would-be-finalized local symbol values in relaxation.
2337 // Hence we provide this method. Since this method updates *LV, a
2338 // callee should make a copy of the original local symbol value and
2339 // use the copy instead of modifying an object's local symbols before
2340 // everything is finalized. The caller should also free up any allocated
2341 // memory in the return value in *LV.
2342 template<int size, bool big_endian>
2343 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2344 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2345 unsigned int r_sym,
2346 const Symbol_value<size>* lv_in,
2347 Symbol_value<size>* lv_out,
2348 const Symbol_table* symtab)
2349 {
2350 // This is just a wrapper of compute_final_local_value_internal.
2351 const bool relocatable = parameters->options().relocatable();
2352 const Output_sections& out_sections(this->output_sections());
2353 const std::vector<Address>& out_offsets(this->section_offsets());
2354 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2355 relocatable, out_sections,
2356 out_offsets, symtab);
2357 }
2358
2359 // Finalize the local symbols. Here we set the final value in
2360 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2361 // This function is always called from a singleton thread. The actual
2362 // output of the local symbols will occur in a separate task.
2363
2364 template<int size, bool big_endian>
2365 unsigned int
2366 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2367 unsigned int index,
2368 off_t off,
2369 Symbol_table* symtab)
2370 {
2371 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2372
2373 const unsigned int loccount = this->local_symbol_count_;
2374 this->local_symbol_offset_ = off;
2375
2376 const bool relocatable = parameters->options().relocatable();
2377 const Output_sections& out_sections(this->output_sections());
2378 const std::vector<Address>& out_offsets(this->section_offsets());
2379
2380 for (unsigned int i = 1; i < loccount; ++i)
2381 {
2382 Symbol_value<size>* lv = &this->local_values_[i];
2383
2384 Compute_final_local_value_status cflv_status =
2385 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2386 out_sections, out_offsets,
2387 symtab);
2388 switch (cflv_status)
2389 {
2390 case CFLV_OK:
2391 if (!lv->is_output_symtab_index_set())
2392 {
2393 lv->set_output_symtab_index(index);
2394 ++index;
2395 }
2396 break;
2397 case CFLV_DISCARDED:
2398 case CFLV_ERROR:
2399 // Do nothing.
2400 break;
2401 default:
2402 gold_unreachable();
2403 }
2404 }
2405 return index;
2406 }
2407
2408 // Set the output dynamic symbol table indexes for the local variables.
2409
2410 template<int size, bool big_endian>
2411 unsigned int
2412 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2413 unsigned int index)
2414 {
2415 const unsigned int loccount = this->local_symbol_count_;
2416 for (unsigned int i = 1; i < loccount; ++i)
2417 {
2418 Symbol_value<size>& lv(this->local_values_[i]);
2419 if (lv.needs_output_dynsym_entry())
2420 {
2421 lv.set_output_dynsym_index(index);
2422 ++index;
2423 }
2424 }
2425 return index;
2426 }
2427
2428 // Set the offset where local dynamic symbol information will be stored.
2429 // Returns the count of local symbols contributed to the symbol table by
2430 // this object.
2431
2432 template<int size, bool big_endian>
2433 unsigned int
2434 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2435 {
2436 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2437 this->local_dynsym_offset_ = off;
2438 return this->output_local_dynsym_count_;
2439 }
2440
2441 // If Symbols_data is not NULL get the section flags from here otherwise
2442 // get it from the file.
2443
2444 template<int size, bool big_endian>
2445 uint64_t
2446 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2447 {
2448 Symbols_data* sd = this->get_symbols_data();
2449 if (sd != NULL)
2450 {
2451 const unsigned char* pshdrs = sd->section_headers_data
2452 + This::shdr_size * shndx;
2453 typename This::Shdr shdr(pshdrs);
2454 return shdr.get_sh_flags();
2455 }
2456 // If sd is NULL, read the section header from the file.
2457 return this->elf_file_.section_flags(shndx);
2458 }
2459
2460 // Get the section's ent size from Symbols_data. Called by get_section_contents
2461 // in icf.cc
2462
2463 template<int size, bool big_endian>
2464 uint64_t
2465 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2466 {
2467 Symbols_data* sd = this->get_symbols_data();
2468 gold_assert(sd != NULL);
2469
2470 const unsigned char* pshdrs = sd->section_headers_data
2471 + This::shdr_size * shndx;
2472 typename This::Shdr shdr(pshdrs);
2473 return shdr.get_sh_entsize();
2474 }
2475
2476 // Write out the local symbols.
2477
2478 template<int size, bool big_endian>
2479 void
2480 Sized_relobj_file<size, big_endian>::write_local_symbols(
2481 Output_file* of,
2482 const Stringpool* sympool,
2483 const Stringpool* dynpool,
2484 Output_symtab_xindex* symtab_xindex,
2485 Output_symtab_xindex* dynsym_xindex,
2486 off_t symtab_off)
2487 {
2488 const bool strip_all = parameters->options().strip_all();
2489 if (strip_all)
2490 {
2491 if (this->output_local_dynsym_count_ == 0)
2492 return;
2493 this->output_local_symbol_count_ = 0;
2494 }
2495
2496 gold_assert(this->symtab_shndx_ != -1U);
2497 if (this->symtab_shndx_ == 0)
2498 {
2499 // This object has no symbols. Weird but legal.
2500 return;
2501 }
2502
2503 // Read the symbol table section header.
2504 const unsigned int symtab_shndx = this->symtab_shndx_;
2505 typename This::Shdr symtabshdr(this,
2506 this->elf_file_.section_header(symtab_shndx));
2507 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2508 const unsigned int loccount = this->local_symbol_count_;
2509 gold_assert(loccount == symtabshdr.get_sh_info());
2510
2511 // Read the local symbols.
2512 const int sym_size = This::sym_size;
2513 off_t locsize = loccount * sym_size;
2514 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2515 locsize, true, false);
2516
2517 // Read the symbol names.
2518 const unsigned int strtab_shndx =
2519 this->adjust_shndx(symtabshdr.get_sh_link());
2520 section_size_type strtab_size;
2521 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2522 &strtab_size,
2523 false);
2524 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2525
2526 // Get views into the output file for the portions of the symbol table
2527 // and the dynamic symbol table that we will be writing.
2528 off_t output_size = this->output_local_symbol_count_ * sym_size;
2529 unsigned char* oview = NULL;
2530 if (output_size > 0)
2531 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2532 output_size);
2533
2534 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2535 unsigned char* dyn_oview = NULL;
2536 if (dyn_output_size > 0)
2537 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2538 dyn_output_size);
2539
2540 const Output_sections out_sections(this->output_sections());
2541
2542 gold_assert(this->local_values_.size() == loccount);
2543
2544 unsigned char* ov = oview;
2545 unsigned char* dyn_ov = dyn_oview;
2546 psyms += sym_size;
2547 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2548 {
2549 elfcpp::Sym<size, big_endian> isym(psyms);
2550
2551 Symbol_value<size>& lv(this->local_values_[i]);
2552
2553 bool is_ordinary;
2554 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2555 &is_ordinary);
2556 if (is_ordinary)
2557 {
2558 gold_assert(st_shndx < out_sections.size());
2559 if (out_sections[st_shndx] == NULL)
2560 continue;
2561 st_shndx = out_sections[st_shndx]->out_shndx();
2562 if (st_shndx >= elfcpp::SHN_LORESERVE)
2563 {
2564 if (lv.has_output_symtab_entry())
2565 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2566 if (lv.has_output_dynsym_entry())
2567 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2568 st_shndx = elfcpp::SHN_XINDEX;
2569 }
2570 }
2571
2572 // Write the symbol to the output symbol table.
2573 if (lv.has_output_symtab_entry())
2574 {
2575 elfcpp::Sym_write<size, big_endian> osym(ov);
2576
2577 gold_assert(isym.get_st_name() < strtab_size);
2578 const char* name = pnames + isym.get_st_name();
2579 osym.put_st_name(sympool->get_offset(name));
2580 osym.put_st_value(this->local_values_[i].value(this, 0));
2581 osym.put_st_size(isym.get_st_size());
2582 osym.put_st_info(isym.get_st_info());
2583 osym.put_st_other(isym.get_st_other());
2584 osym.put_st_shndx(st_shndx);
2585
2586 ov += sym_size;
2587 }
2588
2589 // Write the symbol to the output dynamic symbol table.
2590 if (lv.has_output_dynsym_entry())
2591 {
2592 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2593 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2594
2595 gold_assert(isym.get_st_name() < strtab_size);
2596 const char* name = pnames + isym.get_st_name();
2597 osym.put_st_name(dynpool->get_offset(name));
2598 osym.put_st_value(this->local_values_[i].value(this, 0));
2599 osym.put_st_size(isym.get_st_size());
2600 osym.put_st_info(isym.get_st_info());
2601 osym.put_st_other(isym.get_st_other());
2602 osym.put_st_shndx(st_shndx);
2603
2604 dyn_ov += sym_size;
2605 }
2606 }
2607
2608
2609 if (output_size > 0)
2610 {
2611 gold_assert(ov - oview == output_size);
2612 of->write_output_view(symtab_off + this->local_symbol_offset_,
2613 output_size, oview);
2614 }
2615
2616 if (dyn_output_size > 0)
2617 {
2618 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2619 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2620 dyn_oview);
2621 }
2622 }
2623
2624 // Set *INFO to symbolic information about the offset OFFSET in the
2625 // section SHNDX. Return true if we found something, false if we
2626 // found nothing.
2627
2628 template<int size, bool big_endian>
2629 bool
2630 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2631 unsigned int shndx,
2632 off_t offset,
2633 Symbol_location_info* info)
2634 {
2635 if (this->symtab_shndx_ == 0)
2636 return false;
2637
2638 section_size_type symbols_size;
2639 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2640 &symbols_size,
2641 false);
2642
2643 unsigned int symbol_names_shndx =
2644 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2645 section_size_type names_size;
2646 const unsigned char* symbol_names_u =
2647 this->section_contents(symbol_names_shndx, &names_size, false);
2648 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2649
2650 const int sym_size = This::sym_size;
2651 const size_t count = symbols_size / sym_size;
2652
2653 const unsigned char* p = symbols;
2654 for (size_t i = 0; i < count; ++i, p += sym_size)
2655 {
2656 elfcpp::Sym<size, big_endian> sym(p);
2657
2658 if (sym.get_st_type() == elfcpp::STT_FILE)
2659 {
2660 if (sym.get_st_name() >= names_size)
2661 info->source_file = "(invalid)";
2662 else
2663 info->source_file = symbol_names + sym.get_st_name();
2664 continue;
2665 }
2666
2667 bool is_ordinary;
2668 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2669 &is_ordinary);
2670 if (is_ordinary
2671 && st_shndx == shndx
2672 && static_cast<off_t>(sym.get_st_value()) <= offset
2673 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2674 > offset))
2675 {
2676 if (sym.get_st_name() > names_size)
2677 info->enclosing_symbol_name = "(invalid)";
2678 else
2679 {
2680 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2681 if (parameters->options().do_demangle())
2682 {
2683 char* demangled_name = cplus_demangle(
2684 info->enclosing_symbol_name.c_str(),
2685 DMGL_ANSI | DMGL_PARAMS);
2686 if (demangled_name != NULL)
2687 {
2688 info->enclosing_symbol_name.assign(demangled_name);
2689 free(demangled_name);
2690 }
2691 }
2692 }
2693 return true;
2694 }
2695 }
2696
2697 return false;
2698 }
2699
2700 // Look for a kept section corresponding to the given discarded section,
2701 // and return its output address. This is used only for relocations in
2702 // debugging sections. If we can't find the kept section, return 0.
2703
2704 template<int size, bool big_endian>
2705 typename Sized_relobj_file<size, big_endian>::Address
2706 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2707 unsigned int shndx,
2708 bool* found) const
2709 {
2710 Relobj* kept_object;
2711 unsigned int kept_shndx;
2712 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2713 {
2714 Sized_relobj_file<size, big_endian>* kept_relobj =
2715 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2716 Output_section* os = kept_relobj->output_section(kept_shndx);
2717 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2718 if (os != NULL && offset != invalid_address)
2719 {
2720 *found = true;
2721 return os->address() + offset;
2722 }
2723 }
2724 *found = false;
2725 return 0;
2726 }
2727
2728 // Get symbol counts.
2729
2730 template<int size, bool big_endian>
2731 void
2732 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2733 const Symbol_table*,
2734 size_t* defined,
2735 size_t* used) const
2736 {
2737 *defined = this->defined_count_;
2738 size_t count = 0;
2739 for (typename Symbols::const_iterator p = this->symbols_.begin();
2740 p != this->symbols_.end();
2741 ++p)
2742 if (*p != NULL
2743 && (*p)->source() == Symbol::FROM_OBJECT
2744 && (*p)->object() == this
2745 && (*p)->is_defined())
2746 ++count;
2747 *used = count;
2748 }
2749
2750 // Return a view of the decompressed contents of a section. Set *PLEN
2751 // to the size. Set *IS_NEW to true if the contents need to be freed
2752 // by the caller.
2753
2754 template<int size, bool big_endian>
2755 const unsigned char*
2756 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2757 unsigned int shndx,
2758 section_size_type* plen,
2759 bool* is_new)
2760 {
2761 section_size_type buffer_size;
2762 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2763 false);
2764
2765 if (this->compressed_sections_ == NULL)
2766 {
2767 *plen = buffer_size;
2768 *is_new = false;
2769 return buffer;
2770 }
2771
2772 Compressed_section_map::const_iterator p =
2773 this->compressed_sections_->find(shndx);
2774 if (p == this->compressed_sections_->end())
2775 {
2776 *plen = buffer_size;
2777 *is_new = false;
2778 return buffer;
2779 }
2780
2781 section_size_type uncompressed_size = p->second.size;
2782 if (p->second.contents != NULL)
2783 {
2784 *plen = uncompressed_size;
2785 *is_new = false;
2786 return p->second.contents;
2787 }
2788
2789 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2790 if (!decompress_input_section(buffer,
2791 buffer_size,
2792 uncompressed_data,
2793 uncompressed_size))
2794 this->error(_("could not decompress section %s"),
2795 this->do_section_name(shndx).c_str());
2796
2797 // We could cache the results in p->second.contents and store
2798 // false in *IS_NEW, but build_compressed_section_map() would
2799 // have done so if it had expected it to be profitable. If
2800 // we reach this point, we expect to need the contents only
2801 // once in this pass.
2802 *plen = uncompressed_size;
2803 *is_new = true;
2804 return uncompressed_data;
2805 }
2806
2807 // Discard any buffers of uncompressed sections. This is done
2808 // at the end of the Add_symbols task.
2809
2810 template<int size, bool big_endian>
2811 void
2812 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2813 {
2814 if (this->compressed_sections_ == NULL)
2815 return;
2816
2817 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2818 p != this->compressed_sections_->end();
2819 ++p)
2820 {
2821 if (p->second.contents != NULL)
2822 {
2823 delete[] p->second.contents;
2824 p->second.contents = NULL;
2825 }
2826 }
2827 }
2828
2829 // Input_objects methods.
2830
2831 // Add a regular relocatable object to the list. Return false if this
2832 // object should be ignored.
2833
2834 bool
2835 Input_objects::add_object(Object* obj)
2836 {
2837 // Print the filename if the -t/--trace option is selected.
2838 if (parameters->options().trace())
2839 gold_info("%s", obj->name().c_str());
2840
2841 if (!obj->is_dynamic())
2842 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2843 else
2844 {
2845 // See if this is a duplicate SONAME.
2846 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2847 const char* soname = dynobj->soname();
2848
2849 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2850 this->sonames_.insert(soname);
2851 if (!ins.second)
2852 {
2853 // We have already seen a dynamic object with this soname.
2854 return false;
2855 }
2856
2857 this->dynobj_list_.push_back(dynobj);
2858 }
2859
2860 // Add this object to the cross-referencer if requested.
2861 if (parameters->options().user_set_print_symbol_counts()
2862 || parameters->options().cref())
2863 {
2864 if (this->cref_ == NULL)
2865 this->cref_ = new Cref();
2866 this->cref_->add_object(obj);
2867 }
2868
2869 return true;
2870 }
2871
2872 // For each dynamic object, record whether we've seen all of its
2873 // explicit dependencies.
2874
2875 void
2876 Input_objects::check_dynamic_dependencies() const
2877 {
2878 bool issued_copy_dt_needed_error = false;
2879 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2880 p != this->dynobj_list_.end();
2881 ++p)
2882 {
2883 const Dynobj::Needed& needed((*p)->needed());
2884 bool found_all = true;
2885 Dynobj::Needed::const_iterator pneeded;
2886 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2887 {
2888 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2889 {
2890 found_all = false;
2891 break;
2892 }
2893 }
2894 (*p)->set_has_unknown_needed_entries(!found_all);
2895
2896 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2897 // that gold does not support. However, they cause no trouble
2898 // unless there is a DT_NEEDED entry that we don't know about;
2899 // warn only in that case.
2900 if (!found_all
2901 && !issued_copy_dt_needed_error
2902 && (parameters->options().copy_dt_needed_entries()
2903 || parameters->options().add_needed()))
2904 {
2905 const char* optname;
2906 if (parameters->options().copy_dt_needed_entries())
2907 optname = "--copy-dt-needed-entries";
2908 else
2909 optname = "--add-needed";
2910 gold_error(_("%s is not supported but is required for %s in %s"),
2911 optname, (*pneeded).c_str(), (*p)->name().c_str());
2912 issued_copy_dt_needed_error = true;
2913 }
2914 }
2915 }
2916
2917 // Start processing an archive.
2918
2919 void
2920 Input_objects::archive_start(Archive* archive)
2921 {
2922 if (parameters->options().user_set_print_symbol_counts()
2923 || parameters->options().cref())
2924 {
2925 if (this->cref_ == NULL)
2926 this->cref_ = new Cref();
2927 this->cref_->add_archive_start(archive);
2928 }
2929 }
2930
2931 // Stop processing an archive.
2932
2933 void
2934 Input_objects::archive_stop(Archive* archive)
2935 {
2936 if (parameters->options().user_set_print_symbol_counts()
2937 || parameters->options().cref())
2938 this->cref_->add_archive_stop(archive);
2939 }
2940
2941 // Print symbol counts
2942
2943 void
2944 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2945 {
2946 if (parameters->options().user_set_print_symbol_counts()
2947 && this->cref_ != NULL)
2948 this->cref_->print_symbol_counts(symtab);
2949 }
2950
2951 // Print a cross reference table.
2952
2953 void
2954 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2955 {
2956 if (parameters->options().cref() && this->cref_ != NULL)
2957 this->cref_->print_cref(symtab, f);
2958 }
2959
2960 // Relocate_info methods.
2961
2962 // Return a string describing the location of a relocation when file
2963 // and lineno information is not available. This is only used in
2964 // error messages.
2965
2966 template<int size, bool big_endian>
2967 std::string
2968 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2969 {
2970 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2971 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2972 if (!ret.empty())
2973 return ret;
2974
2975 ret = this->object->name();
2976
2977 Symbol_location_info info;
2978 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2979 {
2980 if (!info.source_file.empty())
2981 {
2982 ret += ":";
2983 ret += info.source_file;
2984 }
2985 size_t len = info.enclosing_symbol_name.length() + 100;
2986 char* buf = new char[len];
2987 snprintf(buf, len, _(":function %s"),
2988 info.enclosing_symbol_name.c_str());
2989 ret += buf;
2990 delete[] buf;
2991 return ret;
2992 }
2993
2994 ret += "(";
2995 ret += this->object->section_name(this->data_shndx);
2996 char buf[100];
2997 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2998 ret += buf;
2999 return ret;
3000 }
3001
3002 } // End namespace gold.
3003
3004 namespace
3005 {
3006
3007 using namespace gold;
3008
3009 // Read an ELF file with the header and return the appropriate
3010 // instance of Object.
3011
3012 template<int size, bool big_endian>
3013 Object*
3014 make_elf_sized_object(const std::string& name, Input_file* input_file,
3015 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3016 bool* punconfigured)
3017 {
3018 Target* target = select_target(input_file, offset,
3019 ehdr.get_e_machine(), size, big_endian,
3020 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3021 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3022 if (target == NULL)
3023 gold_fatal(_("%s: unsupported ELF machine number %d"),
3024 name.c_str(), ehdr.get_e_machine());
3025
3026 if (!parameters->target_valid())
3027 set_parameters_target(target);
3028 else if (target != &parameters->target())
3029 {
3030 if (punconfigured != NULL)
3031 *punconfigured = true;
3032 else
3033 gold_error(_("%s: incompatible target"), name.c_str());
3034 return NULL;
3035 }
3036
3037 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3038 ehdr);
3039 }
3040
3041 } // End anonymous namespace.
3042
3043 namespace gold
3044 {
3045
3046 // Return whether INPUT_FILE is an ELF object.
3047
3048 bool
3049 is_elf_object(Input_file* input_file, off_t offset,
3050 const unsigned char** start, int* read_size)
3051 {
3052 off_t filesize = input_file->file().filesize();
3053 int want = elfcpp::Elf_recognizer::max_header_size;
3054 if (filesize - offset < want)
3055 want = filesize - offset;
3056
3057 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3058 true, false);
3059 *start = p;
3060 *read_size = want;
3061
3062 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3063 }
3064
3065 // Read an ELF file and return the appropriate instance of Object.
3066
3067 Object*
3068 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3069 const unsigned char* p, section_offset_type bytes,
3070 bool* punconfigured)
3071 {
3072 if (punconfigured != NULL)
3073 *punconfigured = false;
3074
3075 std::string error;
3076 bool big_endian = false;
3077 int size = 0;
3078 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3079 &big_endian, &error))
3080 {
3081 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3082 return NULL;
3083 }
3084
3085 if (size == 32)
3086 {
3087 if (big_endian)
3088 {
3089 #ifdef HAVE_TARGET_32_BIG
3090 elfcpp::Ehdr<32, true> ehdr(p);
3091 return make_elf_sized_object<32, true>(name, input_file,
3092 offset, ehdr, punconfigured);
3093 #else
3094 if (punconfigured != NULL)
3095 *punconfigured = true;
3096 else
3097 gold_error(_("%s: not configured to support "
3098 "32-bit big-endian object"),
3099 name.c_str());
3100 return NULL;
3101 #endif
3102 }
3103 else
3104 {
3105 #ifdef HAVE_TARGET_32_LITTLE
3106 elfcpp::Ehdr<32, false> ehdr(p);
3107 return make_elf_sized_object<32, false>(name, input_file,
3108 offset, ehdr, punconfigured);
3109 #else
3110 if (punconfigured != NULL)
3111 *punconfigured = true;
3112 else
3113 gold_error(_("%s: not configured to support "
3114 "32-bit little-endian object"),
3115 name.c_str());
3116 return NULL;
3117 #endif
3118 }
3119 }
3120 else if (size == 64)
3121 {
3122 if (big_endian)
3123 {
3124 #ifdef HAVE_TARGET_64_BIG
3125 elfcpp::Ehdr<64, true> ehdr(p);
3126 return make_elf_sized_object<64, true>(name, input_file,
3127 offset, ehdr, punconfigured);
3128 #else
3129 if (punconfigured != NULL)
3130 *punconfigured = true;
3131 else
3132 gold_error(_("%s: not configured to support "
3133 "64-bit big-endian object"),
3134 name.c_str());
3135 return NULL;
3136 #endif
3137 }
3138 else
3139 {
3140 #ifdef HAVE_TARGET_64_LITTLE
3141 elfcpp::Ehdr<64, false> ehdr(p);
3142 return make_elf_sized_object<64, false>(name, input_file,
3143 offset, ehdr, punconfigured);
3144 #else
3145 if (punconfigured != NULL)
3146 *punconfigured = true;
3147 else
3148 gold_error(_("%s: not configured to support "
3149 "64-bit little-endian object"),
3150 name.c_str());
3151 return NULL;
3152 #endif
3153 }
3154 }
3155 else
3156 gold_unreachable();
3157 }
3158
3159 // Instantiate the templates we need.
3160
3161 #ifdef HAVE_TARGET_32_LITTLE
3162 template
3163 void
3164 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3165 Read_symbols_data*);
3166 #endif
3167
3168 #ifdef HAVE_TARGET_32_BIG
3169 template
3170 void
3171 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3172 Read_symbols_data*);
3173 #endif
3174
3175 #ifdef HAVE_TARGET_64_LITTLE
3176 template
3177 void
3178 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3179 Read_symbols_data*);
3180 #endif
3181
3182 #ifdef HAVE_TARGET_64_BIG
3183 template
3184 void
3185 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3186 Read_symbols_data*);
3187 #endif
3188
3189 #ifdef HAVE_TARGET_32_LITTLE
3190 template
3191 class Sized_relobj_file<32, false>;
3192 #endif
3193
3194 #ifdef HAVE_TARGET_32_BIG
3195 template
3196 class Sized_relobj_file<32, true>;
3197 #endif
3198
3199 #ifdef HAVE_TARGET_64_LITTLE
3200 template
3201 class Sized_relobj_file<64, false>;
3202 #endif
3203
3204 #ifdef HAVE_TARGET_64_BIG
3205 template
3206 class Sized_relobj_file<64, true>;
3207 #endif
3208
3209 #ifdef HAVE_TARGET_32_LITTLE
3210 template
3211 struct Relocate_info<32, false>;
3212 #endif
3213
3214 #ifdef HAVE_TARGET_32_BIG
3215 template
3216 struct Relocate_info<32, true>;
3217 #endif
3218
3219 #ifdef HAVE_TARGET_64_LITTLE
3220 template
3221 struct Relocate_info<64, false>;
3222 #endif
3223
3224 #ifdef HAVE_TARGET_64_BIG
3225 template
3226 struct Relocate_info<64, true>;
3227 #endif
3228
3229 #ifdef HAVE_TARGET_32_LITTLE
3230 template
3231 void
3232 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3233
3234 template
3235 void
3236 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3237 const unsigned char*);
3238 #endif
3239
3240 #ifdef HAVE_TARGET_32_BIG
3241 template
3242 void
3243 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3244
3245 template
3246 void
3247 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3248 const unsigned char*);
3249 #endif
3250
3251 #ifdef HAVE_TARGET_64_LITTLE
3252 template
3253 void
3254 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3255
3256 template
3257 void
3258 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3259 const unsigned char*);
3260 #endif
3261
3262 #ifdef HAVE_TARGET_64_BIG
3263 template
3264 void
3265 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3266
3267 template
3268 void
3269 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3270 const unsigned char*);
3271 #endif
3272
3273 } // End namespace gold.
This page took 0.170595 seconds and 5 git commands to generate.