Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_entry_key key(i, 0);
431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432 if (p != this->local_got_offsets_.end())
433 {
434 const Got_offset_list* got_offsets = p->second;
435 got_offsets->for_all_got_offsets(v);
436 }
437 }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445 unsigned int shndx)
446 {
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx);
451
452 const Output_section* os = this->do_output_section(shndx);
453 gold_assert(os != NULL);
454 return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461 const std::string& name,
462 Input_file* input_file,
463 off_t offset,
464 const elfcpp::Ehdr<size, big_endian>& ehdr)
465 : Sized_relobj<size, big_endian>(name, input_file, offset),
466 elf_file_(this, ehdr),
467 symtab_shndx_(-1U),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
471 symbols_(),
472 defined_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
475 local_values_(),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 is_deferred_layout_(false),
480 deferred_layout_(),
481 deferred_layout_relocs_(),
482 output_views_(NULL)
483 {
484 this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header. This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499 const unsigned int shnum = this->elf_file_.shnum();
500 this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers. The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section. Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512 const unsigned int shnum = this->shnum();
513 this->symtab_shndx_ = 0;
514 if (shnum > 0)
515 {
516 // Look through the sections in reverse order, since gas tends
517 // to put the symbol table at the end.
518 const unsigned char* p = pshdrs + shnum * This::shdr_size;
519 unsigned int i = shnum;
520 unsigned int xindex_shndx = 0;
521 unsigned int xindex_link = 0;
522 while (i > 0)
523 {
524 --i;
525 p -= This::shdr_size;
526 typename This::Shdr shdr(p);
527 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528 {
529 this->symtab_shndx_ = i;
530 if (xindex_shndx > 0 && xindex_link == i)
531 {
532 Xindex* xindex =
533 new Xindex(this->elf_file_.large_shndx_offset());
534 xindex->read_symtab_xindex<size, big_endian>(this,
535 xindex_shndx,
536 pshdrs);
537 this->set_xindex(xindex);
538 }
539 break;
540 }
541
542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 // one. This will work if it follows the SHT_SYMTAB
544 // section.
545 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546 {
547 xindex_shndx = i;
548 xindex_link = this->adjust_shndx(shdr.get_sh_link());
549 }
550 }
551 }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561 gold_assert(this->symtab_shndx_ != -1U);
562 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564 return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573 const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576 return ((sh_type == elfcpp::SHT_PROGBITS
577 || sh_type == elfcpp::SHT_X86_64_UNWIND)
578 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586 const unsigned char* pshdrs,
587 const char* name,
588 const char* names,
589 section_size_type names_size,
590 const unsigned char* hdr) const
591 {
592 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593 const unsigned int shnum = this->shnum();
594 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595 size_t sh_name = 0;
596
597 while (1)
598 {
599 if (hdr)
600 {
601 // We found HDR last time we were called, continue looking.
602 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603 sh_name = shdr.get_sh_name();
604 }
605 else
606 {
607 // Look for the next occurrence of NAME in NAMES.
608 // The fact that .shstrtab produced by current GNU tools is
609 // string merged means we shouldn't have both .not.foo and
610 // .foo in .shstrtab, and multiple .foo sections should all
611 // have the same sh_name. However, this is not guaranteed
612 // by the ELF spec and not all ELF object file producers may
613 // be so clever.
614 size_t len = strlen(name) + 1;
615 const char *p = sh_name ? names + sh_name + len : names;
616 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617 name, len));
618 if (p == NULL)
619 return NULL;
620 sh_name = p - names;
621 hdr = pshdrs;
622 if (sh_name == 0)
623 return hdr;
624 }
625
626 hdr += shdr_size;
627 while (hdr < hdr_end)
628 {
629 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630 if (shdr.get_sh_name() == sh_name)
631 return hdr;
632 hdr += shdr_size;
633 }
634 hdr = NULL;
635 if (sh_name == 0)
636 return hdr;
637 }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646 const unsigned char* pshdrs,
647 const char* names,
648 section_size_type names_size) const
649 {
650 const unsigned char* s = NULL;
651
652 while (1)
653 {
654 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655 names, names_size, s);
656 if (s == NULL)
657 return false;
658
659 typename This::Shdr shdr(s);
660 if (this->check_eh_frame_flags(&shdr))
661 return true;
662 }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task. This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673 if (*name++ != '_')
674 return false;
675
676 #ifdef ENABLE_THREADS
677 // Decompressing these sections now will help only if we're
678 // multithreaded.
679 if (parameters->options().threads())
680 {
681 // We will need .zdebug_str if this is not an incremental link
682 // (i.e., we are processing string merge sections) or if we need
683 // to build a gdb index.
684 if ((!parameters->incremental() || parameters->options().gdb_index())
685 && strcmp(name, "str") == 0)
686 return true;
687
688 // We will need these other sections when building a gdb index.
689 if (parameters->options().gdb_index()
690 && (strcmp(name, "info") == 0
691 || strcmp(name, "types") == 0
692 || strcmp(name, "pubnames") == 0
693 || strcmp(name, "pubtypes") == 0
694 || strcmp(name, "ranges") == 0
695 || strcmp(name, "abbrev") == 0))
696 return true;
697 }
698 #endif
699
700 // Even when single-threaded, we will need .zdebug_str if this is
701 // not an incremental link and we are building a gdb index.
702 // Otherwise, we would decompress the section twice: once for
703 // string merge processing, and once for building the gdb index.
704 if (!parameters->incremental()
705 && parameters->options().gdb_index()
706 && strcmp(name, "str") == 0)
707 return true;
708
709 return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718 const unsigned char* pshdrs,
719 unsigned int shnum,
720 const char* names,
721 section_size_type names_size,
722 Object* obj,
723 bool decompress_if_needed)
724 {
725 Compressed_section_map* uncompressed_map = new Compressed_section_map();
726 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727 const unsigned char* p = pshdrs + shdr_size;
728
729 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730 {
731 typename elfcpp::Shdr<size, big_endian> shdr(p);
732 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 {
735 if (shdr.get_sh_name() >= names_size)
736 {
737 obj->error(_("bad section name offset for section %u: %lu"),
738 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 continue;
740 }
741
742 const char* name = names + shdr.get_sh_name();
743 bool is_compressed = ((shdr.get_sh_flags()
744 & elfcpp::SHF_COMPRESSED) != 0);
745 bool is_zcompressed = (!is_compressed
746 && is_compressed_debug_section(name));
747
748 if (is_zcompressed || is_compressed)
749 {
750 section_size_type len;
751 const unsigned char* contents =
752 obj->section_contents(i, &len, false);
753 uint64_t uncompressed_size;
754 if (is_zcompressed)
755 {
756 // Skip over the ".zdebug" prefix.
757 name += 7;
758 uncompressed_size = get_uncompressed_size(contents, len);
759 }
760 else
761 {
762 // Skip over the ".debug" prefix.
763 name += 6;
764 elfcpp::Chdr<size, big_endian> chdr(contents);
765 uncompressed_size = chdr.get_ch_size();
766 }
767 Compressed_section_info info;
768 info.size = convert_to_section_size_type(uncompressed_size);
769 info.flag = shdr.get_sh_flags();
770 info.contents = NULL;
771 if (uncompressed_size != -1ULL)
772 {
773 unsigned char* uncompressed_data = NULL;
774 if (decompress_if_needed && need_decompressed_section(name))
775 {
776 uncompressed_data = new unsigned char[uncompressed_size];
777 if (decompress_input_section(contents, len,
778 uncompressed_data,
779 uncompressed_size,
780 size, big_endian,
781 shdr.get_sh_flags()))
782 info.contents = uncompressed_data;
783 else
784 delete[] uncompressed_data;
785 }
786 (*uncompressed_map)[i] = info;
787 }
788 }
789 }
790 }
791 return uncompressed_map;
792 }
793
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
796
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj_file<size, big_endian>::do_find_special_sections(
800 Read_symbols_data* sd)
801 {
802 const unsigned char* const pshdrs = sd->section_headers->data();
803 const unsigned char* namesu = sd->section_names->data();
804 const char* names = reinterpret_cast<const char*>(namesu);
805
806 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
807 this->has_eh_frame_ = true;
808
809 Compressed_section_map* compressed_sections =
810 build_compressed_section_map<size, big_endian>(
811 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
812 if (compressed_sections != NULL)
813 this->set_compressed_sections(compressed_sections);
814
815 return (this->has_eh_frame_
816 || (!parameters->options().relocatable()
817 && parameters->options().gdb_index()
818 && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
819 || memmem(names, sd->section_names_size,
820 "debug_types", 12) != NULL)));
821 }
822
823 // Read the sections and symbols from an object file.
824
825 template<int size, bool big_endian>
826 void
827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
828 {
829 this->base_read_symbols(sd);
830 }
831
832 // Read the sections and symbols from an object file. This is common
833 // code for all target-specific overrides of do_read_symbols().
834
835 template<int size, bool big_endian>
836 void
837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
838 {
839 this->read_section_data(&this->elf_file_, sd);
840
841 const unsigned char* const pshdrs = sd->section_headers->data();
842
843 this->find_symtab(pshdrs);
844
845 bool need_local_symbols = this->do_find_special_sections(sd);
846
847 sd->symbols = NULL;
848 sd->symbols_size = 0;
849 sd->external_symbols_offset = 0;
850 sd->symbol_names = NULL;
851 sd->symbol_names_size = 0;
852
853 if (this->symtab_shndx_ == 0)
854 {
855 // No symbol table. Weird but legal.
856 return;
857 }
858
859 // Get the symbol table section header.
860 typename This::Shdr symtabshdr(pshdrs
861 + this->symtab_shndx_ * This::shdr_size);
862 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
863
864 // If this object has a .eh_frame section, or if building a .gdb_index
865 // section and there is debug info, we need all the symbols.
866 // Otherwise we only need the external symbols. While it would be
867 // simpler to just always read all the symbols, I've seen object
868 // files with well over 2000 local symbols, which for a 64-bit
869 // object file format is over 5 pages that we don't need to read
870 // now.
871
872 const int sym_size = This::sym_size;
873 const unsigned int loccount = symtabshdr.get_sh_info();
874 this->local_symbol_count_ = loccount;
875 this->local_values_.resize(loccount);
876 section_offset_type locsize = loccount * sym_size;
877 off_t dataoff = symtabshdr.get_sh_offset();
878 section_size_type datasize =
879 convert_to_section_size_type(symtabshdr.get_sh_size());
880 off_t extoff = dataoff + locsize;
881 section_size_type extsize = datasize - locsize;
882
883 off_t readoff = need_local_symbols ? dataoff : extoff;
884 section_size_type readsize = need_local_symbols ? datasize : extsize;
885
886 if (readsize == 0)
887 {
888 // No external symbols. Also weird but also legal.
889 return;
890 }
891
892 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
893
894 // Read the section header for the symbol names.
895 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
896 if (strtab_shndx >= this->shnum())
897 {
898 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
899 return;
900 }
901 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
902 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
903 {
904 this->error(_("symbol table name section has wrong type: %u"),
905 static_cast<unsigned int>(strtabshdr.get_sh_type()));
906 return;
907 }
908
909 // Read the symbol names.
910 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
911 strtabshdr.get_sh_size(),
912 false, true);
913
914 sd->symbols = fvsymtab;
915 sd->symbols_size = readsize;
916 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
917 sd->symbol_names = fvstrtab;
918 sd->symbol_names_size =
919 convert_to_section_size_type(strtabshdr.get_sh_size());
920 }
921
922 // Return the section index of symbol SYM. Set *VALUE to its value in
923 // the object file. Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
928
929 template<int size, bool big_endian>
930 unsigned int
931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
932 Address* value,
933 bool* is_ordinary)
934 {
935 section_size_type symbols_size;
936 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
937 &symbols_size,
938 false);
939
940 const size_t count = symbols_size / This::sym_size;
941 gold_assert(sym < count);
942
943 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
944 *value = elfsym.get_st_value();
945
946 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
947 }
948
949 // Return whether to include a section group in the link. LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header. If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
954
955 template<int size, bool big_endian>
956 bool
957 Sized_relobj_file<size, big_endian>::include_section_group(
958 Symbol_table* symtab,
959 Layout* layout,
960 unsigned int index,
961 const char* name,
962 const unsigned char* shdrs,
963 const char* section_names,
964 section_size_type section_names_size,
965 std::vector<bool>* omit)
966 {
967 // Read the section contents.
968 typename This::Shdr shdr(shdrs + index * This::shdr_size);
969 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
970 shdr.get_sh_size(), true, false);
971 const elfcpp::Elf_Word* pword =
972 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
973
974 // The first word contains flags. We only care about COMDAT section
975 // groups. Other section groups are always included in the link
976 // just like ordinary sections.
977 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
978
979 // Look up the group signature, which is the name of a symbol. ELF
980 // uses a symbol name because some group signatures are long, and
981 // the name is generally already in the symbol table, so it makes
982 // sense to put the long string just once in .strtab rather than in
983 // both .strtab and .shstrtab.
984
985 // Get the appropriate symbol table header (this will normally be
986 // the single SHT_SYMTAB section, but in principle it need not be).
987 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
988 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
989
990 // Read the symbol table entry.
991 unsigned int symndx = shdr.get_sh_info();
992 if (symndx >= symshdr.get_sh_size() / This::sym_size)
993 {
994 this->error(_("section group %u info %u out of range"),
995 index, symndx);
996 return false;
997 }
998 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
999 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1000 false);
1001 elfcpp::Sym<size, big_endian> sym(psym);
1002
1003 // Read the symbol table names.
1004 section_size_type symnamelen;
1005 const unsigned char* psymnamesu;
1006 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1007 &symnamelen, true);
1008 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1009
1010 // Get the section group signature.
1011 if (sym.get_st_name() >= symnamelen)
1012 {
1013 this->error(_("symbol %u name offset %u out of range"),
1014 symndx, sym.get_st_name());
1015 return false;
1016 }
1017
1018 std::string signature(psymnames + sym.get_st_name());
1019
1020 // It seems that some versions of gas will create a section group
1021 // associated with a section symbol, and then fail to give a name to
1022 // the section symbol. In such a case, use the name of the section.
1023 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1024 {
1025 bool is_ordinary;
1026 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1027 sym.get_st_shndx(),
1028 &is_ordinary);
1029 if (!is_ordinary || sym_shndx >= this->shnum())
1030 {
1031 this->error(_("symbol %u invalid section index %u"),
1032 symndx, sym_shndx);
1033 return false;
1034 }
1035 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1036 if (member_shdr.get_sh_name() < section_names_size)
1037 signature = section_names + member_shdr.get_sh_name();
1038 }
1039
1040 // Record this section group in the layout, and see whether we've already
1041 // seen one with the same signature.
1042 bool include_group;
1043 bool is_comdat;
1044 Kept_section* kept_section = NULL;
1045
1046 if ((flags & elfcpp::GRP_COMDAT) == 0)
1047 {
1048 include_group = true;
1049 is_comdat = false;
1050 }
1051 else
1052 {
1053 include_group = layout->find_or_add_kept_section(signature,
1054 this, index, true,
1055 true, &kept_section);
1056 is_comdat = true;
1057 }
1058
1059 if (is_comdat && include_group)
1060 {
1061 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1062 if (incremental_inputs != NULL)
1063 incremental_inputs->report_comdat_group(this, signature.c_str());
1064 }
1065
1066 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1067
1068 std::vector<unsigned int> shndxes;
1069 bool relocate_group = include_group && parameters->options().relocatable();
1070 if (relocate_group)
1071 shndxes.reserve(count - 1);
1072
1073 for (size_t i = 1; i < count; ++i)
1074 {
1075 elfcpp::Elf_Word shndx =
1076 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1077
1078 if (relocate_group)
1079 shndxes.push_back(shndx);
1080
1081 if (shndx >= this->shnum())
1082 {
1083 this->error(_("section %u in section group %u out of range"),
1084 shndx, index);
1085 continue;
1086 }
1087
1088 // Check for an earlier section number, since we're going to get
1089 // it wrong--we may have already decided to include the section.
1090 if (shndx < index)
1091 this->error(_("invalid section group %u refers to earlier section %u"),
1092 index, shndx);
1093
1094 // Get the name of the member section.
1095 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1096 if (member_shdr.get_sh_name() >= section_names_size)
1097 {
1098 // This is an error, but it will be diagnosed eventually
1099 // in do_layout, so we don't need to do anything here but
1100 // ignore it.
1101 continue;
1102 }
1103 std::string mname(section_names + member_shdr.get_sh_name());
1104
1105 if (include_group)
1106 {
1107 if (is_comdat)
1108 kept_section->add_comdat_section(mname, shndx,
1109 member_shdr.get_sh_size());
1110 }
1111 else
1112 {
1113 (*omit)[shndx] = true;
1114
1115 if (is_comdat)
1116 {
1117 Relobj* kept_object = kept_section->object();
1118 if (kept_section->is_comdat())
1119 {
1120 // Find the corresponding kept section, and store
1121 // that info in the discarded section table.
1122 unsigned int kept_shndx;
1123 uint64_t kept_size;
1124 if (kept_section->find_comdat_section(mname, &kept_shndx,
1125 &kept_size))
1126 {
1127 // We don't keep a mapping for this section if
1128 // it has a different size. The mapping is only
1129 // used for relocation processing, and we don't
1130 // want to treat the sections as similar if the
1131 // sizes are different. Checking the section
1132 // size is the approach used by the GNU linker.
1133 if (kept_size == member_shdr.get_sh_size())
1134 this->set_kept_comdat_section(shndx, kept_object,
1135 kept_shndx);
1136 }
1137 }
1138 else
1139 {
1140 // The existing section is a linkonce section. Add
1141 // a mapping if there is exactly one section in the
1142 // group (which is true when COUNT == 2) and if it
1143 // is the same size.
1144 if (count == 2
1145 && (kept_section->linkonce_size()
1146 == member_shdr.get_sh_size()))
1147 this->set_kept_comdat_section(shndx, kept_object,
1148 kept_section->shndx());
1149 }
1150 }
1151 }
1152 }
1153
1154 if (relocate_group)
1155 layout->layout_group(symtab, this, index, name, signature.c_str(),
1156 shdr, flags, &shndxes);
1157
1158 return include_group;
1159 }
1160
1161 // Whether to include a linkonce section in the link. NAME is the
1162 // name of the section and SHDR is the section header.
1163
1164 // Linkonce sections are a GNU extension implemented in the original
1165 // GNU linker before section groups were defined. The semantics are
1166 // that we only include one linkonce section with a given name. The
1167 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1168 // where T is the type of section and SYMNAME is the name of a symbol.
1169 // In an attempt to make linkonce sections interact well with section
1170 // groups, we try to identify SYMNAME and use it like a section group
1171 // signature. We want to block section groups with that signature,
1172 // but not other linkonce sections with that signature. We also use
1173 // the full name of the linkonce section as a normal section group
1174 // signature.
1175
1176 template<int size, bool big_endian>
1177 bool
1178 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1179 Layout* layout,
1180 unsigned int index,
1181 const char* name,
1182 const elfcpp::Shdr<size, big_endian>& shdr)
1183 {
1184 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1185 // In general the symbol name we want will be the string following
1186 // the last '.'. However, we have to handle the case of
1187 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1188 // some versions of gcc. So we use a heuristic: if the name starts
1189 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1190 // we look for the last '.'. We can't always simply skip
1191 // ".gnu.linkonce.X", because we have to deal with cases like
1192 // ".gnu.linkonce.d.rel.ro.local".
1193 const char* const linkonce_t = ".gnu.linkonce.t.";
1194 const char* symname;
1195 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1196 symname = name + strlen(linkonce_t);
1197 else
1198 symname = strrchr(name, '.') + 1;
1199 std::string sig1(symname);
1200 std::string sig2(name);
1201 Kept_section* kept1;
1202 Kept_section* kept2;
1203 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1204 false, &kept1);
1205 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1206 true, &kept2);
1207
1208 if (!include2)
1209 {
1210 // We are not including this section because we already saw the
1211 // name of the section as a signature. This normally implies
1212 // that the kept section is another linkonce section. If it is
1213 // the same size, record it as the section which corresponds to
1214 // this one.
1215 if (kept2->object() != NULL
1216 && !kept2->is_comdat()
1217 && kept2->linkonce_size() == sh_size)
1218 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1219 }
1220 else if (!include1)
1221 {
1222 // The section is being discarded on the basis of its symbol
1223 // name. This means that the corresponding kept section was
1224 // part of a comdat group, and it will be difficult to identify
1225 // the specific section within that group that corresponds to
1226 // this linkonce section. We'll handle the simple case where
1227 // the group has only one member section. Otherwise, it's not
1228 // worth the effort.
1229 unsigned int kept_shndx;
1230 uint64_t kept_size;
1231 if (kept1->object() != NULL
1232 && kept1->is_comdat()
1233 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1234 && kept_size == sh_size)
1235 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1236 }
1237 else
1238 {
1239 kept1->set_linkonce_size(sh_size);
1240 kept2->set_linkonce_size(sh_size);
1241 }
1242
1243 return include1 && include2;
1244 }
1245
1246 // Layout an input section.
1247
1248 template<int size, bool big_endian>
1249 inline void
1250 Sized_relobj_file<size, big_endian>::layout_section(
1251 Layout* layout,
1252 unsigned int shndx,
1253 const char* name,
1254 const typename This::Shdr& shdr,
1255 unsigned int reloc_shndx,
1256 unsigned int reloc_type)
1257 {
1258 off_t offset;
1259 Output_section* os = layout->layout(this, shndx, name, shdr,
1260 reloc_shndx, reloc_type, &offset);
1261
1262 this->output_sections()[shndx] = os;
1263 if (offset == -1)
1264 this->section_offsets()[shndx] = invalid_address;
1265 else
1266 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1267
1268 // If this section requires special handling, and if there are
1269 // relocs that apply to it, then we must do the special handling
1270 // before we apply the relocs.
1271 if (offset == -1 && reloc_shndx != 0)
1272 this->set_relocs_must_follow_section_writes();
1273 }
1274
1275 // Layout an input .eh_frame section.
1276
1277 template<int size, bool big_endian>
1278 void
1279 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1280 Layout* layout,
1281 const unsigned char* symbols_data,
1282 section_size_type symbols_size,
1283 const unsigned char* symbol_names_data,
1284 section_size_type symbol_names_size,
1285 unsigned int shndx,
1286 const typename This::Shdr& shdr,
1287 unsigned int reloc_shndx,
1288 unsigned int reloc_type)
1289 {
1290 gold_assert(this->has_eh_frame_);
1291
1292 off_t offset;
1293 Output_section* os = layout->layout_eh_frame(this,
1294 symbols_data,
1295 symbols_size,
1296 symbol_names_data,
1297 symbol_names_size,
1298 shndx,
1299 shdr,
1300 reloc_shndx,
1301 reloc_type,
1302 &offset);
1303 this->output_sections()[shndx] = os;
1304 if (os == NULL || offset == -1)
1305 this->section_offsets()[shndx] = invalid_address;
1306 else
1307 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1308
1309 // If this section requires special handling, and if there are
1310 // relocs that aply to it, then we must do the special handling
1311 // before we apply the relocs.
1312 if (os != NULL && offset == -1 && reloc_shndx != 0)
1313 this->set_relocs_must_follow_section_writes();
1314 }
1315
1316 // Lay out the input sections. We walk through the sections and check
1317 // whether they should be included in the link. If they should, we
1318 // pass them to the Layout object, which will return an output section
1319 // and an offset.
1320 // This function is called twice sometimes, two passes, when mapping
1321 // of input sections to output sections must be delayed.
1322 // This is true for the following :
1323 // * Garbage collection (--gc-sections): Some input sections will be
1324 // discarded and hence the assignment must wait until the second pass.
1325 // In the first pass, it is for setting up some sections as roots to
1326 // a work-list for --gc-sections and to do comdat processing.
1327 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1328 // will be folded and hence the assignment must wait.
1329 // * Using plugins to map some sections to unique segments: Mapping
1330 // some sections to unique segments requires mapping them to unique
1331 // output sections too. This can be done via plugins now and this
1332 // information is not available in the first pass.
1333
1334 template<int size, bool big_endian>
1335 void
1336 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1337 Layout* layout,
1338 Read_symbols_data* sd)
1339 {
1340 const unsigned int shnum = this->shnum();
1341
1342 /* Should this function be called twice? */
1343 bool is_two_pass = (parameters->options().gc_sections()
1344 || parameters->options().icf_enabled()
1345 || layout->is_unique_segment_for_sections_specified());
1346
1347 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1348 a two-pass approach is not needed. */
1349 bool is_pass_one = false;
1350 bool is_pass_two = false;
1351
1352 Symbols_data* gc_sd = NULL;
1353
1354 /* Check if do_layout needs to be two-pass. If so, find out which pass
1355 should happen. In the first pass, the data in sd is saved to be used
1356 later in the second pass. */
1357 if (is_two_pass)
1358 {
1359 gc_sd = this->get_symbols_data();
1360 if (gc_sd == NULL)
1361 {
1362 gold_assert(sd != NULL);
1363 is_pass_one = true;
1364 }
1365 else
1366 {
1367 if (parameters->options().gc_sections())
1368 gold_assert(symtab->gc()->is_worklist_ready());
1369 if (parameters->options().icf_enabled())
1370 gold_assert(symtab->icf()->is_icf_ready());
1371 is_pass_two = true;
1372 }
1373 }
1374
1375 if (shnum == 0)
1376 return;
1377
1378 if (is_pass_one)
1379 {
1380 // During garbage collection save the symbols data to use it when
1381 // re-entering this function.
1382 gc_sd = new Symbols_data;
1383 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1384 this->set_symbols_data(gc_sd);
1385 }
1386
1387 const unsigned char* section_headers_data = NULL;
1388 section_size_type section_names_size;
1389 const unsigned char* symbols_data = NULL;
1390 section_size_type symbols_size;
1391 const unsigned char* symbol_names_data = NULL;
1392 section_size_type symbol_names_size;
1393
1394 if (is_two_pass)
1395 {
1396 section_headers_data = gc_sd->section_headers_data;
1397 section_names_size = gc_sd->section_names_size;
1398 symbols_data = gc_sd->symbols_data;
1399 symbols_size = gc_sd->symbols_size;
1400 symbol_names_data = gc_sd->symbol_names_data;
1401 symbol_names_size = gc_sd->symbol_names_size;
1402 }
1403 else
1404 {
1405 section_headers_data = sd->section_headers->data();
1406 section_names_size = sd->section_names_size;
1407 if (sd->symbols != NULL)
1408 symbols_data = sd->symbols->data();
1409 symbols_size = sd->symbols_size;
1410 if (sd->symbol_names != NULL)
1411 symbol_names_data = sd->symbol_names->data();
1412 symbol_names_size = sd->symbol_names_size;
1413 }
1414
1415 // Get the section headers.
1416 const unsigned char* shdrs = section_headers_data;
1417 const unsigned char* pshdrs;
1418
1419 // Get the section names.
1420 const unsigned char* pnamesu = (is_two_pass
1421 ? gc_sd->section_names_data
1422 : sd->section_names->data());
1423
1424 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1425
1426 // If any input files have been claimed by plugins, we need to defer
1427 // actual layout until the replacement files have arrived.
1428 const bool should_defer_layout =
1429 (parameters->options().has_plugins()
1430 && parameters->options().plugins()->should_defer_layout());
1431 unsigned int num_sections_to_defer = 0;
1432
1433 // For each section, record the index of the reloc section if any.
1434 // Use 0 to mean that there is no reloc section, -1U to mean that
1435 // there is more than one.
1436 std::vector<unsigned int> reloc_shndx(shnum, 0);
1437 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1438 // Skip the first, dummy, section.
1439 pshdrs = shdrs + This::shdr_size;
1440 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1441 {
1442 typename This::Shdr shdr(pshdrs);
1443
1444 // Count the number of sections whose layout will be deferred.
1445 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1446 ++num_sections_to_defer;
1447
1448 unsigned int sh_type = shdr.get_sh_type();
1449 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1450 {
1451 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1452 if (target_shndx == 0 || target_shndx >= shnum)
1453 {
1454 this->error(_("relocation section %u has bad info %u"),
1455 i, target_shndx);
1456 continue;
1457 }
1458
1459 if (reloc_shndx[target_shndx] != 0)
1460 reloc_shndx[target_shndx] = -1U;
1461 else
1462 {
1463 reloc_shndx[target_shndx] = i;
1464 reloc_type[target_shndx] = sh_type;
1465 }
1466 }
1467 }
1468
1469 Output_sections& out_sections(this->output_sections());
1470 std::vector<Address>& out_section_offsets(this->section_offsets());
1471
1472 if (!is_pass_two)
1473 {
1474 out_sections.resize(shnum);
1475 out_section_offsets.resize(shnum);
1476 }
1477
1478 // If we are only linking for symbols, then there is nothing else to
1479 // do here.
1480 if (this->input_file()->just_symbols())
1481 {
1482 if (!is_pass_two)
1483 {
1484 delete sd->section_headers;
1485 sd->section_headers = NULL;
1486 delete sd->section_names;
1487 sd->section_names = NULL;
1488 }
1489 return;
1490 }
1491
1492 if (num_sections_to_defer > 0)
1493 {
1494 parameters->options().plugins()->add_deferred_layout_object(this);
1495 this->deferred_layout_.reserve(num_sections_to_defer);
1496 this->is_deferred_layout_ = true;
1497 }
1498
1499 // Whether we've seen a .note.GNU-stack section.
1500 bool seen_gnu_stack = false;
1501 // The flags of a .note.GNU-stack section.
1502 uint64_t gnu_stack_flags = 0;
1503
1504 // Keep track of which sections to omit.
1505 std::vector<bool> omit(shnum, false);
1506
1507 // Keep track of reloc sections when emitting relocations.
1508 const bool relocatable = parameters->options().relocatable();
1509 const bool emit_relocs = (relocatable
1510 || parameters->options().emit_relocs());
1511 std::vector<unsigned int> reloc_sections;
1512
1513 // Keep track of .eh_frame sections.
1514 std::vector<unsigned int> eh_frame_sections;
1515
1516 // Keep track of .debug_info and .debug_types sections.
1517 std::vector<unsigned int> debug_info_sections;
1518 std::vector<unsigned int> debug_types_sections;
1519
1520 // Skip the first, dummy, section.
1521 pshdrs = shdrs + This::shdr_size;
1522 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1523 {
1524 typename This::Shdr shdr(pshdrs);
1525
1526 if (shdr.get_sh_name() >= section_names_size)
1527 {
1528 this->error(_("bad section name offset for section %u: %lu"),
1529 i, static_cast<unsigned long>(shdr.get_sh_name()));
1530 return;
1531 }
1532
1533 const char* name = pnames + shdr.get_sh_name();
1534
1535 if (!is_pass_two)
1536 {
1537 if (this->handle_gnu_warning_section(name, i, symtab))
1538 {
1539 if (!relocatable && !parameters->options().shared())
1540 omit[i] = true;
1541 }
1542
1543 // The .note.GNU-stack section is special. It gives the
1544 // protection flags that this object file requires for the stack
1545 // in memory.
1546 if (strcmp(name, ".note.GNU-stack") == 0)
1547 {
1548 seen_gnu_stack = true;
1549 gnu_stack_flags |= shdr.get_sh_flags();
1550 omit[i] = true;
1551 }
1552
1553 // The .note.GNU-split-stack section is also special. It
1554 // indicates that the object was compiled with
1555 // -fsplit-stack.
1556 if (this->handle_split_stack_section(name))
1557 {
1558 if (!relocatable && !parameters->options().shared())
1559 omit[i] = true;
1560 }
1561
1562 // Skip attributes section.
1563 if (parameters->target().is_attributes_section(name))
1564 {
1565 omit[i] = true;
1566 }
1567
1568 bool discard = omit[i];
1569 if (!discard)
1570 {
1571 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1572 {
1573 if (!this->include_section_group(symtab, layout, i, name,
1574 shdrs, pnames,
1575 section_names_size,
1576 &omit))
1577 discard = true;
1578 }
1579 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1580 && Layout::is_linkonce(name))
1581 {
1582 if (!this->include_linkonce_section(layout, i, name, shdr))
1583 discard = true;
1584 }
1585 }
1586
1587 // Add the section to the incremental inputs layout.
1588 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1589 if (incremental_inputs != NULL
1590 && !discard
1591 && can_incremental_update(shdr.get_sh_type()))
1592 {
1593 off_t sh_size = shdr.get_sh_size();
1594 section_size_type uncompressed_size;
1595 if (this->section_is_compressed(i, &uncompressed_size))
1596 sh_size = uncompressed_size;
1597 incremental_inputs->report_input_section(this, i, name, sh_size);
1598 }
1599
1600 if (discard)
1601 {
1602 // Do not include this section in the link.
1603 out_sections[i] = NULL;
1604 out_section_offsets[i] = invalid_address;
1605 continue;
1606 }
1607 }
1608
1609 if (is_pass_one && parameters->options().gc_sections())
1610 {
1611 if (this->is_section_name_included(name)
1612 || layout->keep_input_section (this, name)
1613 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1614 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1615 {
1616 symtab->gc()->worklist().push_back(Section_id(this, i));
1617 }
1618 // If the section name XXX can be represented as a C identifier
1619 // it cannot be discarded if there are references to
1620 // __start_XXX and __stop_XXX symbols. These need to be
1621 // specially handled.
1622 if (is_cident(name))
1623 {
1624 symtab->gc()->add_cident_section(name, Section_id(this, i));
1625 }
1626 }
1627
1628 // When doing a relocatable link we are going to copy input
1629 // reloc sections into the output. We only want to copy the
1630 // ones associated with sections which are not being discarded.
1631 // However, we don't know that yet for all sections. So save
1632 // reloc sections and process them later. Garbage collection is
1633 // not triggered when relocatable code is desired.
1634 if (emit_relocs
1635 && (shdr.get_sh_type() == elfcpp::SHT_REL
1636 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1637 {
1638 reloc_sections.push_back(i);
1639 continue;
1640 }
1641
1642 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1643 continue;
1644
1645 // The .eh_frame section is special. It holds exception frame
1646 // information that we need to read in order to generate the
1647 // exception frame header. We process these after all the other
1648 // sections so that the exception frame reader can reliably
1649 // determine which sections are being discarded, and discard the
1650 // corresponding information.
1651 if (!relocatable
1652 && strcmp(name, ".eh_frame") == 0
1653 && this->check_eh_frame_flags(&shdr))
1654 {
1655 if (is_pass_one)
1656 {
1657 if (this->is_deferred_layout())
1658 out_sections[i] = reinterpret_cast<Output_section*>(2);
1659 else
1660 out_sections[i] = reinterpret_cast<Output_section*>(1);
1661 out_section_offsets[i] = invalid_address;
1662 }
1663 else if (this->is_deferred_layout())
1664 this->deferred_layout_.push_back(Deferred_layout(i, name,
1665 pshdrs,
1666 reloc_shndx[i],
1667 reloc_type[i]));
1668 else
1669 eh_frame_sections.push_back(i);
1670 continue;
1671 }
1672
1673 if (is_pass_two && parameters->options().gc_sections())
1674 {
1675 // This is executed during the second pass of garbage
1676 // collection. do_layout has been called before and some
1677 // sections have been already discarded. Simply ignore
1678 // such sections this time around.
1679 if (out_sections[i] == NULL)
1680 {
1681 gold_assert(out_section_offsets[i] == invalid_address);
1682 continue;
1683 }
1684 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1685 && symtab->gc()->is_section_garbage(this, i))
1686 {
1687 if (parameters->options().print_gc_sections())
1688 gold_info(_("%s: removing unused section from '%s'"
1689 " in file '%s'"),
1690 program_name, this->section_name(i).c_str(),
1691 this->name().c_str());
1692 out_sections[i] = NULL;
1693 out_section_offsets[i] = invalid_address;
1694 continue;
1695 }
1696 }
1697
1698 if (is_pass_two && parameters->options().icf_enabled())
1699 {
1700 if (out_sections[i] == NULL)
1701 {
1702 gold_assert(out_section_offsets[i] == invalid_address);
1703 continue;
1704 }
1705 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1706 && symtab->icf()->is_section_folded(this, i))
1707 {
1708 if (parameters->options().print_icf_sections())
1709 {
1710 Section_id folded =
1711 symtab->icf()->get_folded_section(this, i);
1712 Relobj* folded_obj =
1713 reinterpret_cast<Relobj*>(folded.first);
1714 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1715 "into '%s' in file '%s'"),
1716 program_name, this->section_name(i).c_str(),
1717 this->name().c_str(),
1718 folded_obj->section_name(folded.second).c_str(),
1719 folded_obj->name().c_str());
1720 }
1721 out_sections[i] = NULL;
1722 out_section_offsets[i] = invalid_address;
1723 continue;
1724 }
1725 }
1726
1727 // Defer layout here if input files are claimed by plugins. When gc
1728 // is turned on this function is called twice; we only want to do this
1729 // on the first pass.
1730 if (!is_pass_two
1731 && this->is_deferred_layout()
1732 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1733 {
1734 this->deferred_layout_.push_back(Deferred_layout(i, name,
1735 pshdrs,
1736 reloc_shndx[i],
1737 reloc_type[i]));
1738 // Put dummy values here; real values will be supplied by
1739 // do_layout_deferred_sections.
1740 out_sections[i] = reinterpret_cast<Output_section*>(2);
1741 out_section_offsets[i] = invalid_address;
1742 continue;
1743 }
1744
1745 // During gc_pass_two if a section that was previously deferred is
1746 // found, do not layout the section as layout_deferred_sections will
1747 // do it later from gold.cc.
1748 if (is_pass_two
1749 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1750 continue;
1751
1752 if (is_pass_one)
1753 {
1754 // This is during garbage collection. The out_sections are
1755 // assigned in the second call to this function.
1756 out_sections[i] = reinterpret_cast<Output_section*>(1);
1757 out_section_offsets[i] = invalid_address;
1758 }
1759 else
1760 {
1761 // When garbage collection is switched on the actual layout
1762 // only happens in the second call.
1763 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1764 reloc_type[i]);
1765
1766 // When generating a .gdb_index section, we do additional
1767 // processing of .debug_info and .debug_types sections after all
1768 // the other sections for the same reason as above.
1769 if (!relocatable
1770 && parameters->options().gdb_index()
1771 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1772 {
1773 if (strcmp(name, ".debug_info") == 0
1774 || strcmp(name, ".zdebug_info") == 0)
1775 debug_info_sections.push_back(i);
1776 else if (strcmp(name, ".debug_types") == 0
1777 || strcmp(name, ".zdebug_types") == 0)
1778 debug_types_sections.push_back(i);
1779 }
1780 }
1781 }
1782
1783 if (!is_pass_two)
1784 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1785
1786 // Handle the .eh_frame sections after the other sections.
1787 gold_assert(!is_pass_one || eh_frame_sections.empty());
1788 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1789 p != eh_frame_sections.end();
1790 ++p)
1791 {
1792 unsigned int i = *p;
1793 const unsigned char* pshdr;
1794 pshdr = section_headers_data + i * This::shdr_size;
1795 typename This::Shdr shdr(pshdr);
1796
1797 this->layout_eh_frame_section(layout,
1798 symbols_data,
1799 symbols_size,
1800 symbol_names_data,
1801 symbol_names_size,
1802 i,
1803 shdr,
1804 reloc_shndx[i],
1805 reloc_type[i]);
1806 }
1807
1808 // When doing a relocatable link handle the reloc sections at the
1809 // end. Garbage collection and Identical Code Folding is not
1810 // turned on for relocatable code.
1811 if (emit_relocs)
1812 this->size_relocatable_relocs();
1813
1814 gold_assert(!is_two_pass || reloc_sections.empty());
1815
1816 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1817 p != reloc_sections.end();
1818 ++p)
1819 {
1820 unsigned int i = *p;
1821 const unsigned char* pshdr;
1822 pshdr = section_headers_data + i * This::shdr_size;
1823 typename This::Shdr shdr(pshdr);
1824
1825 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1826 if (data_shndx >= shnum)
1827 {
1828 // We already warned about this above.
1829 continue;
1830 }
1831
1832 Output_section* data_section = out_sections[data_shndx];
1833 if (data_section == reinterpret_cast<Output_section*>(2))
1834 {
1835 if (is_pass_two)
1836 continue;
1837 // The layout for the data section was deferred, so we need
1838 // to defer the relocation section, too.
1839 const char* name = pnames + shdr.get_sh_name();
1840 this->deferred_layout_relocs_.push_back(
1841 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1842 out_sections[i] = reinterpret_cast<Output_section*>(2);
1843 out_section_offsets[i] = invalid_address;
1844 continue;
1845 }
1846 if (data_section == NULL)
1847 {
1848 out_sections[i] = NULL;
1849 out_section_offsets[i] = invalid_address;
1850 continue;
1851 }
1852
1853 Relocatable_relocs* rr = new Relocatable_relocs();
1854 this->set_relocatable_relocs(i, rr);
1855
1856 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1857 rr);
1858 out_sections[i] = os;
1859 out_section_offsets[i] = invalid_address;
1860 }
1861
1862 // When building a .gdb_index section, scan the .debug_info and
1863 // .debug_types sections.
1864 gold_assert(!is_pass_one
1865 || (debug_info_sections.empty() && debug_types_sections.empty()));
1866 for (std::vector<unsigned int>::const_iterator p
1867 = debug_info_sections.begin();
1868 p != debug_info_sections.end();
1869 ++p)
1870 {
1871 unsigned int i = *p;
1872 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1873 i, reloc_shndx[i], reloc_type[i]);
1874 }
1875 for (std::vector<unsigned int>::const_iterator p
1876 = debug_types_sections.begin();
1877 p != debug_types_sections.end();
1878 ++p)
1879 {
1880 unsigned int i = *p;
1881 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1882 i, reloc_shndx[i], reloc_type[i]);
1883 }
1884
1885 if (is_pass_two)
1886 {
1887 delete[] gc_sd->section_headers_data;
1888 delete[] gc_sd->section_names_data;
1889 delete[] gc_sd->symbols_data;
1890 delete[] gc_sd->symbol_names_data;
1891 this->set_symbols_data(NULL);
1892 }
1893 else
1894 {
1895 delete sd->section_headers;
1896 sd->section_headers = NULL;
1897 delete sd->section_names;
1898 sd->section_names = NULL;
1899 }
1900 }
1901
1902 // Layout sections whose layout was deferred while waiting for
1903 // input files from a plugin.
1904
1905 template<int size, bool big_endian>
1906 void
1907 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1908 {
1909 typename std::vector<Deferred_layout>::iterator deferred;
1910
1911 for (deferred = this->deferred_layout_.begin();
1912 deferred != this->deferred_layout_.end();
1913 ++deferred)
1914 {
1915 typename This::Shdr shdr(deferred->shdr_data_);
1916
1917 if (!parameters->options().relocatable()
1918 && deferred->name_ == ".eh_frame"
1919 && this->check_eh_frame_flags(&shdr))
1920 {
1921 // Checking is_section_included is not reliable for
1922 // .eh_frame sections, because they do not have an output
1923 // section. This is not a problem normally because we call
1924 // layout_eh_frame_section unconditionally, but when
1925 // deferring sections that is not true. We don't want to
1926 // keep all .eh_frame sections because that will cause us to
1927 // keep all sections that they refer to, which is the wrong
1928 // way around. Instead, the eh_frame code will discard
1929 // .eh_frame sections that refer to discarded sections.
1930
1931 // Reading the symbols again here may be slow.
1932 Read_symbols_data sd;
1933 this->base_read_symbols(&sd);
1934 this->layout_eh_frame_section(layout,
1935 sd.symbols->data(),
1936 sd.symbols_size,
1937 sd.symbol_names->data(),
1938 sd.symbol_names_size,
1939 deferred->shndx_,
1940 shdr,
1941 deferred->reloc_shndx_,
1942 deferred->reloc_type_);
1943 continue;
1944 }
1945
1946 // If the section is not included, it is because the garbage collector
1947 // decided it is not needed. Avoid reverting that decision.
1948 if (!this->is_section_included(deferred->shndx_))
1949 continue;
1950
1951 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1952 shdr, deferred->reloc_shndx_,
1953 deferred->reloc_type_);
1954 }
1955
1956 this->deferred_layout_.clear();
1957
1958 // Now handle the deferred relocation sections.
1959
1960 Output_sections& out_sections(this->output_sections());
1961 std::vector<Address>& out_section_offsets(this->section_offsets());
1962
1963 for (deferred = this->deferred_layout_relocs_.begin();
1964 deferred != this->deferred_layout_relocs_.end();
1965 ++deferred)
1966 {
1967 unsigned int shndx = deferred->shndx_;
1968 typename This::Shdr shdr(deferred->shdr_data_);
1969 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1970
1971 Output_section* data_section = out_sections[data_shndx];
1972 if (data_section == NULL)
1973 {
1974 out_sections[shndx] = NULL;
1975 out_section_offsets[shndx] = invalid_address;
1976 continue;
1977 }
1978
1979 Relocatable_relocs* rr = new Relocatable_relocs();
1980 this->set_relocatable_relocs(shndx, rr);
1981
1982 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1983 data_section, rr);
1984 out_sections[shndx] = os;
1985 out_section_offsets[shndx] = invalid_address;
1986 }
1987 }
1988
1989 // Add the symbols to the symbol table.
1990
1991 template<int size, bool big_endian>
1992 void
1993 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1994 Read_symbols_data* sd,
1995 Layout*)
1996 {
1997 if (sd->symbols == NULL)
1998 {
1999 gold_assert(sd->symbol_names == NULL);
2000 return;
2001 }
2002
2003 const int sym_size = This::sym_size;
2004 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2005 / sym_size);
2006 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2007 {
2008 this->error(_("size of symbols is not multiple of symbol size"));
2009 return;
2010 }
2011
2012 this->symbols_.resize(symcount);
2013
2014 const char* sym_names =
2015 reinterpret_cast<const char*>(sd->symbol_names->data());
2016 symtab->add_from_relobj(this,
2017 sd->symbols->data() + sd->external_symbols_offset,
2018 symcount, this->local_symbol_count_,
2019 sym_names, sd->symbol_names_size,
2020 &this->symbols_,
2021 &this->defined_count_);
2022
2023 delete sd->symbols;
2024 sd->symbols = NULL;
2025 delete sd->symbol_names;
2026 sd->symbol_names = NULL;
2027 }
2028
2029 // Find out if this object, that is a member of a lib group, should be included
2030 // in the link. We check every symbol defined by this object. If the symbol
2031 // table has a strong undefined reference to that symbol, we have to include
2032 // the object.
2033
2034 template<int size, bool big_endian>
2035 Archive::Should_include
2036 Sized_relobj_file<size, big_endian>::do_should_include_member(
2037 Symbol_table* symtab,
2038 Layout* layout,
2039 Read_symbols_data* sd,
2040 std::string* why)
2041 {
2042 char* tmpbuf = NULL;
2043 size_t tmpbuflen = 0;
2044 const char* sym_names =
2045 reinterpret_cast<const char*>(sd->symbol_names->data());
2046 const unsigned char* syms =
2047 sd->symbols->data() + sd->external_symbols_offset;
2048 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2049 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2050 / sym_size);
2051
2052 const unsigned char* p = syms;
2053
2054 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2055 {
2056 elfcpp::Sym<size, big_endian> sym(p);
2057 unsigned int st_shndx = sym.get_st_shndx();
2058 if (st_shndx == elfcpp::SHN_UNDEF)
2059 continue;
2060
2061 unsigned int st_name = sym.get_st_name();
2062 const char* name = sym_names + st_name;
2063 Symbol* symbol;
2064 Archive::Should_include t = Archive::should_include_member(symtab,
2065 layout,
2066 name,
2067 &symbol, why,
2068 &tmpbuf,
2069 &tmpbuflen);
2070 if (t == Archive::SHOULD_INCLUDE_YES)
2071 {
2072 if (tmpbuf != NULL)
2073 free(tmpbuf);
2074 return t;
2075 }
2076 }
2077 if (tmpbuf != NULL)
2078 free(tmpbuf);
2079 return Archive::SHOULD_INCLUDE_UNKNOWN;
2080 }
2081
2082 // Iterate over global defined symbols, calling a visitor class V for each.
2083
2084 template<int size, bool big_endian>
2085 void
2086 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2087 Read_symbols_data* sd,
2088 Library_base::Symbol_visitor_base* v)
2089 {
2090 const char* sym_names =
2091 reinterpret_cast<const char*>(sd->symbol_names->data());
2092 const unsigned char* syms =
2093 sd->symbols->data() + sd->external_symbols_offset;
2094 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2095 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2096 / sym_size);
2097 const unsigned char* p = syms;
2098
2099 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2100 {
2101 elfcpp::Sym<size, big_endian> sym(p);
2102 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2103 v->visit(sym_names + sym.get_st_name());
2104 }
2105 }
2106
2107 // Return whether the local symbol SYMNDX has a PLT offset.
2108
2109 template<int size, bool big_endian>
2110 bool
2111 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2112 unsigned int symndx) const
2113 {
2114 typename Local_plt_offsets::const_iterator p =
2115 this->local_plt_offsets_.find(symndx);
2116 return p != this->local_plt_offsets_.end();
2117 }
2118
2119 // Get the PLT offset of a local symbol.
2120
2121 template<int size, bool big_endian>
2122 unsigned int
2123 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2124 unsigned int symndx) const
2125 {
2126 typename Local_plt_offsets::const_iterator p =
2127 this->local_plt_offsets_.find(symndx);
2128 gold_assert(p != this->local_plt_offsets_.end());
2129 return p->second;
2130 }
2131
2132 // Set the PLT offset of a local symbol.
2133
2134 template<int size, bool big_endian>
2135 void
2136 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2137 unsigned int symndx, unsigned int plt_offset)
2138 {
2139 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2140 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2141 gold_assert(ins.second);
2142 }
2143
2144 // First pass over the local symbols. Here we add their names to
2145 // *POOL and *DYNPOOL, and we store the symbol value in
2146 // THIS->LOCAL_VALUES_. This function is always called from a
2147 // singleton thread. This is followed by a call to
2148 // finalize_local_symbols.
2149
2150 template<int size, bool big_endian>
2151 void
2152 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2153 Stringpool* dynpool)
2154 {
2155 gold_assert(this->symtab_shndx_ != -1U);
2156 if (this->symtab_shndx_ == 0)
2157 {
2158 // This object has no symbols. Weird but legal.
2159 return;
2160 }
2161
2162 // Read the symbol table section header.
2163 const unsigned int symtab_shndx = this->symtab_shndx_;
2164 typename This::Shdr symtabshdr(this,
2165 this->elf_file_.section_header(symtab_shndx));
2166 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2167
2168 // Read the local symbols.
2169 const int sym_size = This::sym_size;
2170 const unsigned int loccount = this->local_symbol_count_;
2171 gold_assert(loccount == symtabshdr.get_sh_info());
2172 off_t locsize = loccount * sym_size;
2173 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2174 locsize, true, true);
2175
2176 // Read the symbol names.
2177 const unsigned int strtab_shndx =
2178 this->adjust_shndx(symtabshdr.get_sh_link());
2179 section_size_type strtab_size;
2180 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2181 &strtab_size,
2182 true);
2183 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2184
2185 // Loop over the local symbols.
2186
2187 const Output_sections& out_sections(this->output_sections());
2188 std::vector<Address>& out_section_offsets(this->section_offsets());
2189 unsigned int shnum = this->shnum();
2190 unsigned int count = 0;
2191 unsigned int dyncount = 0;
2192 // Skip the first, dummy, symbol.
2193 psyms += sym_size;
2194 bool strip_all = parameters->options().strip_all();
2195 bool discard_all = parameters->options().discard_all();
2196 bool discard_locals = parameters->options().discard_locals();
2197 bool discard_sec_merge = parameters->options().discard_sec_merge();
2198 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2199 {
2200 elfcpp::Sym<size, big_endian> sym(psyms);
2201
2202 Symbol_value<size>& lv(this->local_values_[i]);
2203
2204 bool is_ordinary;
2205 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2206 &is_ordinary);
2207 lv.set_input_shndx(shndx, is_ordinary);
2208
2209 if (sym.get_st_type() == elfcpp::STT_SECTION)
2210 lv.set_is_section_symbol();
2211 else if (sym.get_st_type() == elfcpp::STT_TLS)
2212 lv.set_is_tls_symbol();
2213 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2214 lv.set_is_ifunc_symbol();
2215
2216 // Save the input symbol value for use in do_finalize_local_symbols().
2217 lv.set_input_value(sym.get_st_value());
2218
2219 // Decide whether this symbol should go into the output file.
2220
2221 if (is_ordinary
2222 && shndx < shnum
2223 && (out_sections[shndx] == NULL
2224 || (out_sections[shndx]->order() == ORDER_EHFRAME
2225 && out_section_offsets[shndx] == invalid_address)))
2226 {
2227 // This is either a discarded section or an optimized .eh_frame
2228 // section.
2229 lv.set_no_output_symtab_entry();
2230 gold_assert(!lv.needs_output_dynsym_entry());
2231 continue;
2232 }
2233
2234 if (sym.get_st_type() == elfcpp::STT_SECTION
2235 || !this->adjust_local_symbol(&lv))
2236 {
2237 lv.set_no_output_symtab_entry();
2238 gold_assert(!lv.needs_output_dynsym_entry());
2239 continue;
2240 }
2241
2242 if (sym.get_st_name() >= strtab_size)
2243 {
2244 this->error(_("local symbol %u section name out of range: %u >= %u"),
2245 i, sym.get_st_name(),
2246 static_cast<unsigned int>(strtab_size));
2247 lv.set_no_output_symtab_entry();
2248 continue;
2249 }
2250
2251 const char* name = pnames + sym.get_st_name();
2252
2253 // If needed, add the symbol to the dynamic symbol table string pool.
2254 if (lv.needs_output_dynsym_entry())
2255 {
2256 dynpool->add(name, true, NULL);
2257 ++dyncount;
2258 }
2259
2260 if (strip_all
2261 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2262 {
2263 lv.set_no_output_symtab_entry();
2264 continue;
2265 }
2266
2267 // By default, discard temporary local symbols in merge sections.
2268 // If --discard-locals option is used, discard all temporary local
2269 // symbols. These symbols start with system-specific local label
2270 // prefixes, typically .L for ELF system. We want to be compatible
2271 // with GNU ld so here we essentially use the same check in
2272 // bfd_is_local_label(). The code is different because we already
2273 // know that:
2274 //
2275 // - the symbol is local and thus cannot have global or weak binding.
2276 // - the symbol is not a section symbol.
2277 // - the symbol has a name.
2278 //
2279 // We do not discard a symbol if it needs a dynamic symbol entry.
2280 if ((discard_locals
2281 || (discard_sec_merge
2282 && is_ordinary
2283 && out_section_offsets[shndx] == invalid_address))
2284 && sym.get_st_type() != elfcpp::STT_FILE
2285 && !lv.needs_output_dynsym_entry()
2286 && lv.may_be_discarded_from_output_symtab()
2287 && parameters->target().is_local_label_name(name))
2288 {
2289 lv.set_no_output_symtab_entry();
2290 continue;
2291 }
2292
2293 // Discard the local symbol if -retain_symbols_file is specified
2294 // and the local symbol is not in that file.
2295 if (!parameters->options().should_retain_symbol(name))
2296 {
2297 lv.set_no_output_symtab_entry();
2298 continue;
2299 }
2300
2301 // Add the symbol to the symbol table string pool.
2302 pool->add(name, true, NULL);
2303 ++count;
2304 }
2305
2306 this->output_local_symbol_count_ = count;
2307 this->output_local_dynsym_count_ = dyncount;
2308 }
2309
2310 // Compute the final value of a local symbol.
2311
2312 template<int size, bool big_endian>
2313 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2314 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2315 unsigned int r_sym,
2316 const Symbol_value<size>* lv_in,
2317 Symbol_value<size>* lv_out,
2318 bool relocatable,
2319 const Output_sections& out_sections,
2320 const std::vector<Address>& out_offsets,
2321 const Symbol_table* symtab)
2322 {
2323 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2324 // we may have a memory leak.
2325 gold_assert(lv_out->has_output_value());
2326
2327 bool is_ordinary;
2328 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2329
2330 // Set the output symbol value.
2331
2332 if (!is_ordinary)
2333 {
2334 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2335 lv_out->set_output_value(lv_in->input_value());
2336 else
2337 {
2338 this->error(_("unknown section index %u for local symbol %u"),
2339 shndx, r_sym);
2340 lv_out->set_output_value(0);
2341 return This::CFLV_ERROR;
2342 }
2343 }
2344 else
2345 {
2346 if (shndx >= this->shnum())
2347 {
2348 this->error(_("local symbol %u section index %u out of range"),
2349 r_sym, shndx);
2350 lv_out->set_output_value(0);
2351 return This::CFLV_ERROR;
2352 }
2353
2354 Output_section* os = out_sections[shndx];
2355 Address secoffset = out_offsets[shndx];
2356 if (symtab->is_section_folded(this, shndx))
2357 {
2358 gold_assert(os == NULL && secoffset == invalid_address);
2359 // Get the os of the section it is folded onto.
2360 Section_id folded = symtab->icf()->get_folded_section(this,
2361 shndx);
2362 gold_assert(folded.first != NULL);
2363 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2364 <Sized_relobj_file<size, big_endian>*>(folded.first);
2365 os = folded_obj->output_section(folded.second);
2366 gold_assert(os != NULL);
2367 secoffset = folded_obj->get_output_section_offset(folded.second);
2368
2369 // This could be a relaxed input section.
2370 if (secoffset == invalid_address)
2371 {
2372 const Output_relaxed_input_section* relaxed_section =
2373 os->find_relaxed_input_section(folded_obj, folded.second);
2374 gold_assert(relaxed_section != NULL);
2375 secoffset = relaxed_section->address() - os->address();
2376 }
2377 }
2378
2379 if (os == NULL)
2380 {
2381 // This local symbol belongs to a section we are discarding.
2382 // In some cases when applying relocations later, we will
2383 // attempt to match it to the corresponding kept section,
2384 // so we leave the input value unchanged here.
2385 return This::CFLV_DISCARDED;
2386 }
2387 else if (secoffset == invalid_address)
2388 {
2389 uint64_t start;
2390
2391 // This is a SHF_MERGE section or one which otherwise
2392 // requires special handling.
2393 if (os->order() == ORDER_EHFRAME)
2394 {
2395 // This local symbol belongs to a discarded or optimized
2396 // .eh_frame section. Just treat it like the case in which
2397 // os == NULL above.
2398 gold_assert(this->has_eh_frame_);
2399 return This::CFLV_DISCARDED;
2400 }
2401 else if (!lv_in->is_section_symbol())
2402 {
2403 // This is not a section symbol. We can determine
2404 // the final value now.
2405 uint64_t value =
2406 os->output_address(this, shndx, lv_in->input_value());
2407 if (relocatable)
2408 value -= os->address();
2409 lv_out->set_output_value(value);
2410 }
2411 else if (!os->find_starting_output_address(this, shndx, &start))
2412 {
2413 // This is a section symbol, but apparently not one in a
2414 // merged section. First check to see if this is a relaxed
2415 // input section. If so, use its address. Otherwise just
2416 // use the start of the output section. This happens with
2417 // relocatable links when the input object has section
2418 // symbols for arbitrary non-merge sections.
2419 const Output_section_data* posd =
2420 os->find_relaxed_input_section(this, shndx);
2421 if (posd != NULL)
2422 {
2423 uint64_t value = posd->address();
2424 if (relocatable)
2425 value -= os->address();
2426 lv_out->set_output_value(value);
2427 }
2428 else
2429 lv_out->set_output_value(os->address());
2430 }
2431 else
2432 {
2433 // We have to consider the addend to determine the
2434 // value to use in a relocation. START is the start
2435 // of this input section. If we are doing a relocatable
2436 // link, use offset from start output section instead of
2437 // address.
2438 Address adjusted_start =
2439 relocatable ? start - os->address() : start;
2440 Merged_symbol_value<size>* msv =
2441 new Merged_symbol_value<size>(lv_in->input_value(),
2442 adjusted_start);
2443 lv_out->set_merged_symbol_value(msv);
2444 }
2445 }
2446 else if (lv_in->is_tls_symbol()
2447 || (lv_in->is_section_symbol()
2448 && (os->flags() & elfcpp::SHF_TLS)))
2449 lv_out->set_output_value(os->tls_offset()
2450 + secoffset
2451 + lv_in->input_value());
2452 else
2453 lv_out->set_output_value((relocatable ? 0 : os->address())
2454 + secoffset
2455 + lv_in->input_value());
2456 }
2457 return This::CFLV_OK;
2458 }
2459
2460 // Compute final local symbol value. R_SYM is the index of a local
2461 // symbol in symbol table. LV points to a symbol value, which is
2462 // expected to hold the input value and to be over-written by the
2463 // final value. SYMTAB points to a symbol table. Some targets may want
2464 // to know would-be-finalized local symbol values in relaxation.
2465 // Hence we provide this method. Since this method updates *LV, a
2466 // callee should make a copy of the original local symbol value and
2467 // use the copy instead of modifying an object's local symbols before
2468 // everything is finalized. The caller should also free up any allocated
2469 // memory in the return value in *LV.
2470 template<int size, bool big_endian>
2471 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2472 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2473 unsigned int r_sym,
2474 const Symbol_value<size>* lv_in,
2475 Symbol_value<size>* lv_out,
2476 const Symbol_table* symtab)
2477 {
2478 // This is just a wrapper of compute_final_local_value_internal.
2479 const bool relocatable = parameters->options().relocatable();
2480 const Output_sections& out_sections(this->output_sections());
2481 const std::vector<Address>& out_offsets(this->section_offsets());
2482 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2483 relocatable, out_sections,
2484 out_offsets, symtab);
2485 }
2486
2487 // Finalize the local symbols. Here we set the final value in
2488 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2489 // This function is always called from a singleton thread. The actual
2490 // output of the local symbols will occur in a separate task.
2491
2492 template<int size, bool big_endian>
2493 unsigned int
2494 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2495 unsigned int index,
2496 off_t off,
2497 Symbol_table* symtab)
2498 {
2499 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2500
2501 const unsigned int loccount = this->local_symbol_count_;
2502 this->local_symbol_offset_ = off;
2503
2504 const bool relocatable = parameters->options().relocatable();
2505 const Output_sections& out_sections(this->output_sections());
2506 const std::vector<Address>& out_offsets(this->section_offsets());
2507
2508 for (unsigned int i = 1; i < loccount; ++i)
2509 {
2510 Symbol_value<size>* lv = &this->local_values_[i];
2511
2512 Compute_final_local_value_status cflv_status =
2513 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2514 out_sections, out_offsets,
2515 symtab);
2516 switch (cflv_status)
2517 {
2518 case CFLV_OK:
2519 if (!lv->is_output_symtab_index_set())
2520 {
2521 lv->set_output_symtab_index(index);
2522 ++index;
2523 }
2524 break;
2525 case CFLV_DISCARDED:
2526 case CFLV_ERROR:
2527 // Do nothing.
2528 break;
2529 default:
2530 gold_unreachable();
2531 }
2532 }
2533 return index;
2534 }
2535
2536 // Set the output dynamic symbol table indexes for the local variables.
2537
2538 template<int size, bool big_endian>
2539 unsigned int
2540 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2541 unsigned int index)
2542 {
2543 const unsigned int loccount = this->local_symbol_count_;
2544 for (unsigned int i = 1; i < loccount; ++i)
2545 {
2546 Symbol_value<size>& lv(this->local_values_[i]);
2547 if (lv.needs_output_dynsym_entry())
2548 {
2549 lv.set_output_dynsym_index(index);
2550 ++index;
2551 }
2552 }
2553 return index;
2554 }
2555
2556 // Set the offset where local dynamic symbol information will be stored.
2557 // Returns the count of local symbols contributed to the symbol table by
2558 // this object.
2559
2560 template<int size, bool big_endian>
2561 unsigned int
2562 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2563 {
2564 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2565 this->local_dynsym_offset_ = off;
2566 return this->output_local_dynsym_count_;
2567 }
2568
2569 // If Symbols_data is not NULL get the section flags from here otherwise
2570 // get it from the file.
2571
2572 template<int size, bool big_endian>
2573 uint64_t
2574 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2575 {
2576 Symbols_data* sd = this->get_symbols_data();
2577 if (sd != NULL)
2578 {
2579 const unsigned char* pshdrs = sd->section_headers_data
2580 + This::shdr_size * shndx;
2581 typename This::Shdr shdr(pshdrs);
2582 return shdr.get_sh_flags();
2583 }
2584 // If sd is NULL, read the section header from the file.
2585 return this->elf_file_.section_flags(shndx);
2586 }
2587
2588 // Get the section's ent size from Symbols_data. Called by get_section_contents
2589 // in icf.cc
2590
2591 template<int size, bool big_endian>
2592 uint64_t
2593 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2594 {
2595 Symbols_data* sd = this->get_symbols_data();
2596 gold_assert(sd != NULL);
2597
2598 const unsigned char* pshdrs = sd->section_headers_data
2599 + This::shdr_size * shndx;
2600 typename This::Shdr shdr(pshdrs);
2601 return shdr.get_sh_entsize();
2602 }
2603
2604 // Write out the local symbols.
2605
2606 template<int size, bool big_endian>
2607 void
2608 Sized_relobj_file<size, big_endian>::write_local_symbols(
2609 Output_file* of,
2610 const Stringpool* sympool,
2611 const Stringpool* dynpool,
2612 Output_symtab_xindex* symtab_xindex,
2613 Output_symtab_xindex* dynsym_xindex,
2614 off_t symtab_off)
2615 {
2616 const bool strip_all = parameters->options().strip_all();
2617 if (strip_all)
2618 {
2619 if (this->output_local_dynsym_count_ == 0)
2620 return;
2621 this->output_local_symbol_count_ = 0;
2622 }
2623
2624 gold_assert(this->symtab_shndx_ != -1U);
2625 if (this->symtab_shndx_ == 0)
2626 {
2627 // This object has no symbols. Weird but legal.
2628 return;
2629 }
2630
2631 // Read the symbol table section header.
2632 const unsigned int symtab_shndx = this->symtab_shndx_;
2633 typename This::Shdr symtabshdr(this,
2634 this->elf_file_.section_header(symtab_shndx));
2635 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2636 const unsigned int loccount = this->local_symbol_count_;
2637 gold_assert(loccount == symtabshdr.get_sh_info());
2638
2639 // Read the local symbols.
2640 const int sym_size = This::sym_size;
2641 off_t locsize = loccount * sym_size;
2642 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2643 locsize, true, false);
2644
2645 // Read the symbol names.
2646 const unsigned int strtab_shndx =
2647 this->adjust_shndx(symtabshdr.get_sh_link());
2648 section_size_type strtab_size;
2649 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2650 &strtab_size,
2651 false);
2652 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2653
2654 // Get views into the output file for the portions of the symbol table
2655 // and the dynamic symbol table that we will be writing.
2656 off_t output_size = this->output_local_symbol_count_ * sym_size;
2657 unsigned char* oview = NULL;
2658 if (output_size > 0)
2659 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2660 output_size);
2661
2662 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2663 unsigned char* dyn_oview = NULL;
2664 if (dyn_output_size > 0)
2665 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2666 dyn_output_size);
2667
2668 const Output_sections& out_sections(this->output_sections());
2669
2670 gold_assert(this->local_values_.size() == loccount);
2671
2672 unsigned char* ov = oview;
2673 unsigned char* dyn_ov = dyn_oview;
2674 psyms += sym_size;
2675 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2676 {
2677 elfcpp::Sym<size, big_endian> isym(psyms);
2678
2679 Symbol_value<size>& lv(this->local_values_[i]);
2680
2681 bool is_ordinary;
2682 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2683 &is_ordinary);
2684 if (is_ordinary)
2685 {
2686 gold_assert(st_shndx < out_sections.size());
2687 if (out_sections[st_shndx] == NULL)
2688 continue;
2689 st_shndx = out_sections[st_shndx]->out_shndx();
2690 if (st_shndx >= elfcpp::SHN_LORESERVE)
2691 {
2692 if (lv.has_output_symtab_entry())
2693 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2694 if (lv.has_output_dynsym_entry())
2695 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2696 st_shndx = elfcpp::SHN_XINDEX;
2697 }
2698 }
2699
2700 // Write the symbol to the output symbol table.
2701 if (lv.has_output_symtab_entry())
2702 {
2703 elfcpp::Sym_write<size, big_endian> osym(ov);
2704
2705 gold_assert(isym.get_st_name() < strtab_size);
2706 const char* name = pnames + isym.get_st_name();
2707 osym.put_st_name(sympool->get_offset(name));
2708 osym.put_st_value(lv.value(this, 0));
2709 osym.put_st_size(isym.get_st_size());
2710 osym.put_st_info(isym.get_st_info());
2711 osym.put_st_other(isym.get_st_other());
2712 osym.put_st_shndx(st_shndx);
2713
2714 ov += sym_size;
2715 }
2716
2717 // Write the symbol to the output dynamic symbol table.
2718 if (lv.has_output_dynsym_entry())
2719 {
2720 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2721 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2722
2723 gold_assert(isym.get_st_name() < strtab_size);
2724 const char* name = pnames + isym.get_st_name();
2725 osym.put_st_name(dynpool->get_offset(name));
2726 osym.put_st_value(lv.value(this, 0));
2727 osym.put_st_size(isym.get_st_size());
2728 osym.put_st_info(isym.get_st_info());
2729 osym.put_st_other(isym.get_st_other());
2730 osym.put_st_shndx(st_shndx);
2731
2732 dyn_ov += sym_size;
2733 }
2734 }
2735
2736
2737 if (output_size > 0)
2738 {
2739 gold_assert(ov - oview == output_size);
2740 of->write_output_view(symtab_off + this->local_symbol_offset_,
2741 output_size, oview);
2742 }
2743
2744 if (dyn_output_size > 0)
2745 {
2746 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2747 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2748 dyn_oview);
2749 }
2750 }
2751
2752 // Set *INFO to symbolic information about the offset OFFSET in the
2753 // section SHNDX. Return true if we found something, false if we
2754 // found nothing.
2755
2756 template<int size, bool big_endian>
2757 bool
2758 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2759 unsigned int shndx,
2760 off_t offset,
2761 Symbol_location_info* info)
2762 {
2763 if (this->symtab_shndx_ == 0)
2764 return false;
2765
2766 section_size_type symbols_size;
2767 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2768 &symbols_size,
2769 false);
2770
2771 unsigned int symbol_names_shndx =
2772 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2773 section_size_type names_size;
2774 const unsigned char* symbol_names_u =
2775 this->section_contents(symbol_names_shndx, &names_size, false);
2776 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2777
2778 const int sym_size = This::sym_size;
2779 const size_t count = symbols_size / sym_size;
2780
2781 const unsigned char* p = symbols;
2782 for (size_t i = 0; i < count; ++i, p += sym_size)
2783 {
2784 elfcpp::Sym<size, big_endian> sym(p);
2785
2786 if (sym.get_st_type() == elfcpp::STT_FILE)
2787 {
2788 if (sym.get_st_name() >= names_size)
2789 info->source_file = "(invalid)";
2790 else
2791 info->source_file = symbol_names + sym.get_st_name();
2792 continue;
2793 }
2794
2795 bool is_ordinary;
2796 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2797 &is_ordinary);
2798 if (is_ordinary
2799 && st_shndx == shndx
2800 && static_cast<off_t>(sym.get_st_value()) <= offset
2801 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2802 > offset))
2803 {
2804 info->enclosing_symbol_type = sym.get_st_type();
2805 if (sym.get_st_name() > names_size)
2806 info->enclosing_symbol_name = "(invalid)";
2807 else
2808 {
2809 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2810 if (parameters->options().do_demangle())
2811 {
2812 char* demangled_name = cplus_demangle(
2813 info->enclosing_symbol_name.c_str(),
2814 DMGL_ANSI | DMGL_PARAMS);
2815 if (demangled_name != NULL)
2816 {
2817 info->enclosing_symbol_name.assign(demangled_name);
2818 free(demangled_name);
2819 }
2820 }
2821 }
2822 return true;
2823 }
2824 }
2825
2826 return false;
2827 }
2828
2829 // Look for a kept section corresponding to the given discarded section,
2830 // and return its output address. This is used only for relocations in
2831 // debugging sections. If we can't find the kept section, return 0.
2832
2833 template<int size, bool big_endian>
2834 typename Sized_relobj_file<size, big_endian>::Address
2835 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2836 unsigned int shndx,
2837 bool* found) const
2838 {
2839 Relobj* kept_object;
2840 unsigned int kept_shndx;
2841 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2842 {
2843 Sized_relobj_file<size, big_endian>* kept_relobj =
2844 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2845 Output_section* os = kept_relobj->output_section(kept_shndx);
2846 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2847 if (os != NULL && offset != invalid_address)
2848 {
2849 *found = true;
2850 return os->address() + offset;
2851 }
2852 }
2853 *found = false;
2854 return 0;
2855 }
2856
2857 // Get symbol counts.
2858
2859 template<int size, bool big_endian>
2860 void
2861 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2862 const Symbol_table*,
2863 size_t* defined,
2864 size_t* used) const
2865 {
2866 *defined = this->defined_count_;
2867 size_t count = 0;
2868 for (typename Symbols::const_iterator p = this->symbols_.begin();
2869 p != this->symbols_.end();
2870 ++p)
2871 if (*p != NULL
2872 && (*p)->source() == Symbol::FROM_OBJECT
2873 && (*p)->object() == this
2874 && (*p)->is_defined())
2875 ++count;
2876 *used = count;
2877 }
2878
2879 // Return a view of the decompressed contents of a section. Set *PLEN
2880 // to the size. Set *IS_NEW to true if the contents need to be freed
2881 // by the caller.
2882
2883 const unsigned char*
2884 Object::decompressed_section_contents(
2885 unsigned int shndx,
2886 section_size_type* plen,
2887 bool* is_new)
2888 {
2889 section_size_type buffer_size;
2890 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2891 false);
2892
2893 if (this->compressed_sections_ == NULL)
2894 {
2895 *plen = buffer_size;
2896 *is_new = false;
2897 return buffer;
2898 }
2899
2900 Compressed_section_map::const_iterator p =
2901 this->compressed_sections_->find(shndx);
2902 if (p == this->compressed_sections_->end())
2903 {
2904 *plen = buffer_size;
2905 *is_new = false;
2906 return buffer;
2907 }
2908
2909 section_size_type uncompressed_size = p->second.size;
2910 if (p->second.contents != NULL)
2911 {
2912 *plen = uncompressed_size;
2913 *is_new = false;
2914 return p->second.contents;
2915 }
2916
2917 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2918 if (!decompress_input_section(buffer,
2919 buffer_size,
2920 uncompressed_data,
2921 uncompressed_size,
2922 elfsize(),
2923 is_big_endian(),
2924 p->second.flag))
2925 this->error(_("could not decompress section %s"),
2926 this->do_section_name(shndx).c_str());
2927
2928 // We could cache the results in p->second.contents and store
2929 // false in *IS_NEW, but build_compressed_section_map() would
2930 // have done so if it had expected it to be profitable. If
2931 // we reach this point, we expect to need the contents only
2932 // once in this pass.
2933 *plen = uncompressed_size;
2934 *is_new = true;
2935 return uncompressed_data;
2936 }
2937
2938 // Discard any buffers of uncompressed sections. This is done
2939 // at the end of the Add_symbols task.
2940
2941 void
2942 Object::discard_decompressed_sections()
2943 {
2944 if (this->compressed_sections_ == NULL)
2945 return;
2946
2947 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2948 p != this->compressed_sections_->end();
2949 ++p)
2950 {
2951 if (p->second.contents != NULL)
2952 {
2953 delete[] p->second.contents;
2954 p->second.contents = NULL;
2955 }
2956 }
2957 }
2958
2959 // Input_objects methods.
2960
2961 // Add a regular relocatable object to the list. Return false if this
2962 // object should be ignored.
2963
2964 bool
2965 Input_objects::add_object(Object* obj)
2966 {
2967 // Print the filename if the -t/--trace option is selected.
2968 if (parameters->options().trace())
2969 gold_info("%s", obj->name().c_str());
2970
2971 if (!obj->is_dynamic())
2972 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2973 else
2974 {
2975 // See if this is a duplicate SONAME.
2976 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2977 const char* soname = dynobj->soname();
2978
2979 Unordered_map<std::string, Object*>::value_type val(soname, obj);
2980 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
2981 this->sonames_.insert(val);
2982 if (!ins.second)
2983 {
2984 // We have already seen a dynamic object with this soname.
2985 // If any instances of this object on the command line have
2986 // the --no-as-needed flag, make sure the one we keep is
2987 // marked so.
2988 if (!obj->as_needed())
2989 {
2990 gold_assert(ins.first->second != NULL);
2991 ins.first->second->clear_as_needed();
2992 }
2993 return false;
2994 }
2995
2996 this->dynobj_list_.push_back(dynobj);
2997 }
2998
2999 // Add this object to the cross-referencer if requested.
3000 if (parameters->options().user_set_print_symbol_counts()
3001 || parameters->options().cref())
3002 {
3003 if (this->cref_ == NULL)
3004 this->cref_ = new Cref();
3005 this->cref_->add_object(obj);
3006 }
3007
3008 return true;
3009 }
3010
3011 // For each dynamic object, record whether we've seen all of its
3012 // explicit dependencies.
3013
3014 void
3015 Input_objects::check_dynamic_dependencies() const
3016 {
3017 bool issued_copy_dt_needed_error = false;
3018 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3019 p != this->dynobj_list_.end();
3020 ++p)
3021 {
3022 const Dynobj::Needed& needed((*p)->needed());
3023 bool found_all = true;
3024 Dynobj::Needed::const_iterator pneeded;
3025 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3026 {
3027 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3028 {
3029 found_all = false;
3030 break;
3031 }
3032 }
3033 (*p)->set_has_unknown_needed_entries(!found_all);
3034
3035 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3036 // that gold does not support. However, they cause no trouble
3037 // unless there is a DT_NEEDED entry that we don't know about;
3038 // warn only in that case.
3039 if (!found_all
3040 && !issued_copy_dt_needed_error
3041 && (parameters->options().copy_dt_needed_entries()
3042 || parameters->options().add_needed()))
3043 {
3044 const char* optname;
3045 if (parameters->options().copy_dt_needed_entries())
3046 optname = "--copy-dt-needed-entries";
3047 else
3048 optname = "--add-needed";
3049 gold_error(_("%s is not supported but is required for %s in %s"),
3050 optname, (*pneeded).c_str(), (*p)->name().c_str());
3051 issued_copy_dt_needed_error = true;
3052 }
3053 }
3054 }
3055
3056 // Start processing an archive.
3057
3058 void
3059 Input_objects::archive_start(Archive* archive)
3060 {
3061 if (parameters->options().user_set_print_symbol_counts()
3062 || parameters->options().cref())
3063 {
3064 if (this->cref_ == NULL)
3065 this->cref_ = new Cref();
3066 this->cref_->add_archive_start(archive);
3067 }
3068 }
3069
3070 // Stop processing an archive.
3071
3072 void
3073 Input_objects::archive_stop(Archive* archive)
3074 {
3075 if (parameters->options().user_set_print_symbol_counts()
3076 || parameters->options().cref())
3077 this->cref_->add_archive_stop(archive);
3078 }
3079
3080 // Print symbol counts
3081
3082 void
3083 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3084 {
3085 if (parameters->options().user_set_print_symbol_counts()
3086 && this->cref_ != NULL)
3087 this->cref_->print_symbol_counts(symtab);
3088 }
3089
3090 // Print a cross reference table.
3091
3092 void
3093 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3094 {
3095 if (parameters->options().cref() && this->cref_ != NULL)
3096 this->cref_->print_cref(symtab, f);
3097 }
3098
3099 // Relocate_info methods.
3100
3101 // Return a string describing the location of a relocation when file
3102 // and lineno information is not available. This is only used in
3103 // error messages.
3104
3105 template<int size, bool big_endian>
3106 std::string
3107 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3108 {
3109 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3110 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3111 if (!ret.empty())
3112 return ret;
3113
3114 ret = this->object->name();
3115
3116 Symbol_location_info info;
3117 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3118 {
3119 if (!info.source_file.empty())
3120 {
3121 ret += ":";
3122 ret += info.source_file;
3123 }
3124 ret += ":";
3125 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3126 ret += _("function ");
3127 ret += info.enclosing_symbol_name;
3128 return ret;
3129 }
3130
3131 ret += "(";
3132 ret += this->object->section_name(this->data_shndx);
3133 char buf[100];
3134 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3135 ret += buf;
3136 return ret;
3137 }
3138
3139 } // End namespace gold.
3140
3141 namespace
3142 {
3143
3144 using namespace gold;
3145
3146 // Read an ELF file with the header and return the appropriate
3147 // instance of Object.
3148
3149 template<int size, bool big_endian>
3150 Object*
3151 make_elf_sized_object(const std::string& name, Input_file* input_file,
3152 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3153 bool* punconfigured)
3154 {
3155 Target* target = select_target(input_file, offset,
3156 ehdr.get_e_machine(), size, big_endian,
3157 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3158 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3159 if (target == NULL)
3160 gold_fatal(_("%s: unsupported ELF machine number %d"),
3161 name.c_str(), ehdr.get_e_machine());
3162
3163 if (!parameters->target_valid())
3164 set_parameters_target(target);
3165 else if (target != &parameters->target())
3166 {
3167 if (punconfigured != NULL)
3168 *punconfigured = true;
3169 else
3170 gold_error(_("%s: incompatible target"), name.c_str());
3171 return NULL;
3172 }
3173
3174 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3175 ehdr);
3176 }
3177
3178 } // End anonymous namespace.
3179
3180 namespace gold
3181 {
3182
3183 // Return whether INPUT_FILE is an ELF object.
3184
3185 bool
3186 is_elf_object(Input_file* input_file, off_t offset,
3187 const unsigned char** start, int* read_size)
3188 {
3189 off_t filesize = input_file->file().filesize();
3190 int want = elfcpp::Elf_recognizer::max_header_size;
3191 if (filesize - offset < want)
3192 want = filesize - offset;
3193
3194 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3195 true, false);
3196 *start = p;
3197 *read_size = want;
3198
3199 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3200 }
3201
3202 // Read an ELF file and return the appropriate instance of Object.
3203
3204 Object*
3205 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3206 const unsigned char* p, section_offset_type bytes,
3207 bool* punconfigured)
3208 {
3209 if (punconfigured != NULL)
3210 *punconfigured = false;
3211
3212 std::string error;
3213 bool big_endian = false;
3214 int size = 0;
3215 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3216 &big_endian, &error))
3217 {
3218 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3219 return NULL;
3220 }
3221
3222 if (size == 32)
3223 {
3224 if (big_endian)
3225 {
3226 #ifdef HAVE_TARGET_32_BIG
3227 elfcpp::Ehdr<32, true> ehdr(p);
3228 return make_elf_sized_object<32, true>(name, input_file,
3229 offset, ehdr, punconfigured);
3230 #else
3231 if (punconfigured != NULL)
3232 *punconfigured = true;
3233 else
3234 gold_error(_("%s: not configured to support "
3235 "32-bit big-endian object"),
3236 name.c_str());
3237 return NULL;
3238 #endif
3239 }
3240 else
3241 {
3242 #ifdef HAVE_TARGET_32_LITTLE
3243 elfcpp::Ehdr<32, false> ehdr(p);
3244 return make_elf_sized_object<32, false>(name, input_file,
3245 offset, ehdr, punconfigured);
3246 #else
3247 if (punconfigured != NULL)
3248 *punconfigured = true;
3249 else
3250 gold_error(_("%s: not configured to support "
3251 "32-bit little-endian object"),
3252 name.c_str());
3253 return NULL;
3254 #endif
3255 }
3256 }
3257 else if (size == 64)
3258 {
3259 if (big_endian)
3260 {
3261 #ifdef HAVE_TARGET_64_BIG
3262 elfcpp::Ehdr<64, true> ehdr(p);
3263 return make_elf_sized_object<64, true>(name, input_file,
3264 offset, ehdr, punconfigured);
3265 #else
3266 if (punconfigured != NULL)
3267 *punconfigured = true;
3268 else
3269 gold_error(_("%s: not configured to support "
3270 "64-bit big-endian object"),
3271 name.c_str());
3272 return NULL;
3273 #endif
3274 }
3275 else
3276 {
3277 #ifdef HAVE_TARGET_64_LITTLE
3278 elfcpp::Ehdr<64, false> ehdr(p);
3279 return make_elf_sized_object<64, false>(name, input_file,
3280 offset, ehdr, punconfigured);
3281 #else
3282 if (punconfigured != NULL)
3283 *punconfigured = true;
3284 else
3285 gold_error(_("%s: not configured to support "
3286 "64-bit little-endian object"),
3287 name.c_str());
3288 return NULL;
3289 #endif
3290 }
3291 }
3292 else
3293 gold_unreachable();
3294 }
3295
3296 // Instantiate the templates we need.
3297
3298 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3299 template
3300 void
3301 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3302 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3303 Unordered_map<section_offset_type,
3304 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3305 #endif
3306
3307 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3308 template
3309 void
3310 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3311 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3312 Unordered_map<section_offset_type,
3313 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3314 #endif
3315
3316 #ifdef HAVE_TARGET_32_LITTLE
3317 template
3318 void
3319 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3320 Read_symbols_data*);
3321 template
3322 const unsigned char*
3323 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3324 section_size_type, const unsigned char*) const;
3325 #endif
3326
3327 #ifdef HAVE_TARGET_32_BIG
3328 template
3329 void
3330 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3331 Read_symbols_data*);
3332 template
3333 const unsigned char*
3334 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3335 section_size_type, const unsigned char*) const;
3336 #endif
3337
3338 #ifdef HAVE_TARGET_64_LITTLE
3339 template
3340 void
3341 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3342 Read_symbols_data*);
3343 template
3344 const unsigned char*
3345 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3346 section_size_type, const unsigned char*) const;
3347 #endif
3348
3349 #ifdef HAVE_TARGET_64_BIG
3350 template
3351 void
3352 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3353 Read_symbols_data*);
3354 template
3355 const unsigned char*
3356 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3357 section_size_type, const unsigned char*) const;
3358 #endif
3359
3360 #ifdef HAVE_TARGET_32_LITTLE
3361 template
3362 class Sized_relobj<32, false>;
3363
3364 template
3365 class Sized_relobj_file<32, false>;
3366 #endif
3367
3368 #ifdef HAVE_TARGET_32_BIG
3369 template
3370 class Sized_relobj<32, true>;
3371
3372 template
3373 class Sized_relobj_file<32, true>;
3374 #endif
3375
3376 #ifdef HAVE_TARGET_64_LITTLE
3377 template
3378 class Sized_relobj<64, false>;
3379
3380 template
3381 class Sized_relobj_file<64, false>;
3382 #endif
3383
3384 #ifdef HAVE_TARGET_64_BIG
3385 template
3386 class Sized_relobj<64, true>;
3387
3388 template
3389 class Sized_relobj_file<64, true>;
3390 #endif
3391
3392 #ifdef HAVE_TARGET_32_LITTLE
3393 template
3394 struct Relocate_info<32, false>;
3395 #endif
3396
3397 #ifdef HAVE_TARGET_32_BIG
3398 template
3399 struct Relocate_info<32, true>;
3400 #endif
3401
3402 #ifdef HAVE_TARGET_64_LITTLE
3403 template
3404 struct Relocate_info<64, false>;
3405 #endif
3406
3407 #ifdef HAVE_TARGET_64_BIG
3408 template
3409 struct Relocate_info<64, true>;
3410 #endif
3411
3412 #ifdef HAVE_TARGET_32_LITTLE
3413 template
3414 void
3415 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3416
3417 template
3418 void
3419 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3420 const unsigned char*);
3421 #endif
3422
3423 #ifdef HAVE_TARGET_32_BIG
3424 template
3425 void
3426 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3427
3428 template
3429 void
3430 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3431 const unsigned char*);
3432 #endif
3433
3434 #ifdef HAVE_TARGET_64_LITTLE
3435 template
3436 void
3437 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3438
3439 template
3440 void
3441 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3442 const unsigned char*);
3443 #endif
3444
3445 #ifdef HAVE_TARGET_64_BIG
3446 template
3447 void
3448 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3449
3450 template
3451 void
3452 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3453 const unsigned char*);
3454 #endif
3455
3456 #ifdef HAVE_TARGET_32_LITTLE
3457 template
3458 Compressed_section_map*
3459 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3460 const char*, section_size_type,
3461 Object*, bool);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_32_BIG
3465 template
3466 Compressed_section_map*
3467 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3468 const char*, section_size_type,
3469 Object*, bool);
3470 #endif
3471
3472 #ifdef HAVE_TARGET_64_LITTLE
3473 template
3474 Compressed_section_map*
3475 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3476 const char*, section_size_type,
3477 Object*, bool);
3478 #endif
3479
3480 #ifdef HAVE_TARGET_64_BIG
3481 template
3482 Compressed_section_map*
3483 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3484 const char*, section_size_type,
3485 Object*, bool);
3486 #endif
3487
3488 } // End namespace gold.
This page took 0.121278 seconds and 5 git commands to generate.