* object.cc (Sized_relobj::do_count_local_symbols): Check for
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 if (clear_counts)
370 this->reloc_counts_[i] = 0;
371 }
372 layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 template<int size, bool big_endian>
378 Sized_relobj<size, big_endian>::Sized_relobj(
379 const std::string& name,
380 Input_file* input_file,
381 off_t offset,
382 const elfcpp::Ehdr<size, big_endian>& ehdr)
383 : Sized_relobj_base<size, big_endian>(name, input_file, offset),
384 elf_file_(this, ehdr),
385 symtab_shndx_(-1U),
386 local_symbol_count_(0),
387 output_local_symbol_count_(0),
388 output_local_dynsym_count_(0),
389 symbols_(),
390 defined_count_(0),
391 local_symbol_offset_(0),
392 local_dynsym_offset_(0),
393 local_values_(),
394 local_got_offsets_(),
395 local_plt_offsets_(),
396 kept_comdat_sections_(),
397 has_eh_frame_(false),
398 discarded_eh_frame_shndx_(-1U),
399 deferred_layout_(),
400 deferred_layout_relocs_(),
401 compressed_sections_()
402 {
403 }
404
405 template<int size, bool big_endian>
406 Sized_relobj<size, big_endian>::~Sized_relobj()
407 {
408 }
409
410 // Set up an object file based on the file header. This sets up the
411 // section information.
412
413 template<int size, bool big_endian>
414 void
415 Sized_relobj<size, big_endian>::do_setup()
416 {
417 const unsigned int shnum = this->elf_file_.shnum();
418 this->set_shnum(shnum);
419 }
420
421 // Find the SHT_SYMTAB section, given the section headers. The ELF
422 // standard says that maybe in the future there can be more than one
423 // SHT_SYMTAB section. Until somebody figures out how that could
424 // work, we assume there is only one.
425
426 template<int size, bool big_endian>
427 void
428 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
429 {
430 const unsigned int shnum = this->shnum();
431 this->symtab_shndx_ = 0;
432 if (shnum > 0)
433 {
434 // Look through the sections in reverse order, since gas tends
435 // to put the symbol table at the end.
436 const unsigned char* p = pshdrs + shnum * This::shdr_size;
437 unsigned int i = shnum;
438 unsigned int xindex_shndx = 0;
439 unsigned int xindex_link = 0;
440 while (i > 0)
441 {
442 --i;
443 p -= This::shdr_size;
444 typename This::Shdr shdr(p);
445 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
446 {
447 this->symtab_shndx_ = i;
448 if (xindex_shndx > 0 && xindex_link == i)
449 {
450 Xindex* xindex =
451 new Xindex(this->elf_file_.large_shndx_offset());
452 xindex->read_symtab_xindex<size, big_endian>(this,
453 xindex_shndx,
454 pshdrs);
455 this->set_xindex(xindex);
456 }
457 break;
458 }
459
460 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
461 // one. This will work if it follows the SHT_SYMTAB
462 // section.
463 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
464 {
465 xindex_shndx = i;
466 xindex_link = this->adjust_shndx(shdr.get_sh_link());
467 }
468 }
469 }
470 }
471
472 // Return the Xindex structure to use for object with lots of
473 // sections.
474
475 template<int size, bool big_endian>
476 Xindex*
477 Sized_relobj<size, big_endian>::do_initialize_xindex()
478 {
479 gold_assert(this->symtab_shndx_ != -1U);
480 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
481 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
482 return xindex;
483 }
484
485 // Return whether SHDR has the right type and flags to be a GNU
486 // .eh_frame section.
487
488 template<int size, bool big_endian>
489 bool
490 Sized_relobj<size, big_endian>::check_eh_frame_flags(
491 const elfcpp::Shdr<size, big_endian>* shdr) const
492 {
493 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
494 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
495 }
496
497 // Return whether there is a GNU .eh_frame section, given the section
498 // headers and the section names.
499
500 template<int size, bool big_endian>
501 bool
502 Sized_relobj<size, big_endian>::find_eh_frame(
503 const unsigned char* pshdrs,
504 const char* names,
505 section_size_type names_size) const
506 {
507 const unsigned int shnum = this->shnum();
508 const unsigned char* p = pshdrs + This::shdr_size;
509 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
510 {
511 typename This::Shdr shdr(p);
512 if (this->check_eh_frame_flags(&shdr))
513 {
514 if (shdr.get_sh_name() >= names_size)
515 {
516 this->error(_("bad section name offset for section %u: %lu"),
517 i, static_cast<unsigned long>(shdr.get_sh_name()));
518 continue;
519 }
520
521 const char* name = names + shdr.get_sh_name();
522 if (strcmp(name, ".eh_frame") == 0)
523 return true;
524 }
525 }
526 return false;
527 }
528
529 // Build a table for any compressed debug sections, mapping each section index
530 // to the uncompressed size.
531
532 template<int size, bool big_endian>
533 Compressed_section_map*
534 build_compressed_section_map(
535 const unsigned char* pshdrs,
536 unsigned int shnum,
537 const char* names,
538 section_size_type names_size,
539 Sized_relobj<size, big_endian>* obj)
540 {
541 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
542 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
543 const unsigned char* p = pshdrs + shdr_size;
544 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
545 {
546 typename elfcpp::Shdr<size, big_endian> shdr(p);
547 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
548 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
549 {
550 if (shdr.get_sh_name() >= names_size)
551 {
552 obj->error(_("bad section name offset for section %u: %lu"),
553 i, static_cast<unsigned long>(shdr.get_sh_name()));
554 continue;
555 }
556
557 const char* name = names + shdr.get_sh_name();
558 if (is_compressed_debug_section(name))
559 {
560 section_size_type len;
561 const unsigned char* contents =
562 obj->section_contents(i, &len, false);
563 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
564 if (uncompressed_size != -1ULL)
565 (*uncompressed_sizes)[i] =
566 convert_to_section_size_type(uncompressed_size);
567 }
568 }
569 }
570 return uncompressed_sizes;
571 }
572
573 // Read the sections and symbols from an object file.
574
575 template<int size, bool big_endian>
576 void
577 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
578 {
579 this->read_section_data(&this->elf_file_, sd);
580
581 const unsigned char* const pshdrs = sd->section_headers->data();
582
583 this->find_symtab(pshdrs);
584
585 const unsigned char* namesu = sd->section_names->data();
586 const char* names = reinterpret_cast<const char*>(namesu);
587 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
588 {
589 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
590 this->has_eh_frame_ = true;
591 }
592 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
593 this->compressed_sections_ =
594 build_compressed_section_map(pshdrs, this->shnum(), names,
595 sd->section_names_size, this);
596
597 sd->symbols = NULL;
598 sd->symbols_size = 0;
599 sd->external_symbols_offset = 0;
600 sd->symbol_names = NULL;
601 sd->symbol_names_size = 0;
602
603 if (this->symtab_shndx_ == 0)
604 {
605 // No symbol table. Weird but legal.
606 return;
607 }
608
609 // Get the symbol table section header.
610 typename This::Shdr symtabshdr(pshdrs
611 + this->symtab_shndx_ * This::shdr_size);
612 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
613
614 // If this object has a .eh_frame section, we need all the symbols.
615 // Otherwise we only need the external symbols. While it would be
616 // simpler to just always read all the symbols, I've seen object
617 // files with well over 2000 local symbols, which for a 64-bit
618 // object file format is over 5 pages that we don't need to read
619 // now.
620
621 const int sym_size = This::sym_size;
622 const unsigned int loccount = symtabshdr.get_sh_info();
623 this->local_symbol_count_ = loccount;
624 this->local_values_.resize(loccount);
625 section_offset_type locsize = loccount * sym_size;
626 off_t dataoff = symtabshdr.get_sh_offset();
627 section_size_type datasize =
628 convert_to_section_size_type(symtabshdr.get_sh_size());
629 off_t extoff = dataoff + locsize;
630 section_size_type extsize = datasize - locsize;
631
632 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
633 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
634
635 if (readsize == 0)
636 {
637 // No external symbols. Also weird but also legal.
638 return;
639 }
640
641 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
642
643 // Read the section header for the symbol names.
644 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
645 if (strtab_shndx >= this->shnum())
646 {
647 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
648 return;
649 }
650 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
651 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
652 {
653 this->error(_("symbol table name section has wrong type: %u"),
654 static_cast<unsigned int>(strtabshdr.get_sh_type()));
655 return;
656 }
657
658 // Read the symbol names.
659 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
660 strtabshdr.get_sh_size(),
661 false, true);
662
663 sd->symbols = fvsymtab;
664 sd->symbols_size = readsize;
665 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
666 sd->symbol_names = fvstrtab;
667 sd->symbol_names_size =
668 convert_to_section_size_type(strtabshdr.get_sh_size());
669 }
670
671 // Return the section index of symbol SYM. Set *VALUE to its value in
672 // the object file. Set *IS_ORDINARY if this is an ordinary section
673 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
674 // Note that for a symbol which is not defined in this object file,
675 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
676 // the final value of the symbol in the link.
677
678 template<int size, bool big_endian>
679 unsigned int
680 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
681 Address* value,
682 bool* is_ordinary)
683 {
684 section_size_type symbols_size;
685 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
686 &symbols_size,
687 false);
688
689 const size_t count = symbols_size / This::sym_size;
690 gold_assert(sym < count);
691
692 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
693 *value = elfsym.get_st_value();
694
695 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
696 }
697
698 // Return whether to include a section group in the link. LAYOUT is
699 // used to keep track of which section groups we have already seen.
700 // INDEX is the index of the section group and SHDR is the section
701 // header. If we do not want to include this group, we set bits in
702 // OMIT for each section which should be discarded.
703
704 template<int size, bool big_endian>
705 bool
706 Sized_relobj<size, big_endian>::include_section_group(
707 Symbol_table* symtab,
708 Layout* layout,
709 unsigned int index,
710 const char* name,
711 const unsigned char* shdrs,
712 const char* section_names,
713 section_size_type section_names_size,
714 std::vector<bool>* omit)
715 {
716 // Read the section contents.
717 typename This::Shdr shdr(shdrs + index * This::shdr_size);
718 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
719 shdr.get_sh_size(), true, false);
720 const elfcpp::Elf_Word* pword =
721 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
722
723 // The first word contains flags. We only care about COMDAT section
724 // groups. Other section groups are always included in the link
725 // just like ordinary sections.
726 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
727
728 // Look up the group signature, which is the name of a symbol. This
729 // is a lot of effort to go to to read a string. Why didn't they
730 // just have the group signature point into the string table, rather
731 // than indirect through a symbol?
732
733 // Get the appropriate symbol table header (this will normally be
734 // the single SHT_SYMTAB section, but in principle it need not be).
735 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
736 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
737
738 // Read the symbol table entry.
739 unsigned int symndx = shdr.get_sh_info();
740 if (symndx >= symshdr.get_sh_size() / This::sym_size)
741 {
742 this->error(_("section group %u info %u out of range"),
743 index, symndx);
744 return false;
745 }
746 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
747 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
748 false);
749 elfcpp::Sym<size, big_endian> sym(psym);
750
751 // Read the symbol table names.
752 section_size_type symnamelen;
753 const unsigned char* psymnamesu;
754 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
755 &symnamelen, true);
756 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
757
758 // Get the section group signature.
759 if (sym.get_st_name() >= symnamelen)
760 {
761 this->error(_("symbol %u name offset %u out of range"),
762 symndx, sym.get_st_name());
763 return false;
764 }
765
766 std::string signature(psymnames + sym.get_st_name());
767
768 // It seems that some versions of gas will create a section group
769 // associated with a section symbol, and then fail to give a name to
770 // the section symbol. In such a case, use the name of the section.
771 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
772 {
773 bool is_ordinary;
774 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
775 sym.get_st_shndx(),
776 &is_ordinary);
777 if (!is_ordinary || sym_shndx >= this->shnum())
778 {
779 this->error(_("symbol %u invalid section index %u"),
780 symndx, sym_shndx);
781 return false;
782 }
783 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
784 if (member_shdr.get_sh_name() < section_names_size)
785 signature = section_names + member_shdr.get_sh_name();
786 }
787
788 // Record this section group in the layout, and see whether we've already
789 // seen one with the same signature.
790 bool include_group;
791 bool is_comdat;
792 Kept_section* kept_section = NULL;
793
794 if ((flags & elfcpp::GRP_COMDAT) == 0)
795 {
796 include_group = true;
797 is_comdat = false;
798 }
799 else
800 {
801 include_group = layout->find_or_add_kept_section(signature,
802 this, index, true,
803 true, &kept_section);
804 is_comdat = true;
805 }
806
807 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
808
809 std::vector<unsigned int> shndxes;
810 bool relocate_group = include_group && parameters->options().relocatable();
811 if (relocate_group)
812 shndxes.reserve(count - 1);
813
814 for (size_t i = 1; i < count; ++i)
815 {
816 elfcpp::Elf_Word shndx =
817 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
818
819 if (relocate_group)
820 shndxes.push_back(shndx);
821
822 if (shndx >= this->shnum())
823 {
824 this->error(_("section %u in section group %u out of range"),
825 shndx, index);
826 continue;
827 }
828
829 // Check for an earlier section number, since we're going to get
830 // it wrong--we may have already decided to include the section.
831 if (shndx < index)
832 this->error(_("invalid section group %u refers to earlier section %u"),
833 index, shndx);
834
835 // Get the name of the member section.
836 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
837 if (member_shdr.get_sh_name() >= section_names_size)
838 {
839 // This is an error, but it will be diagnosed eventually
840 // in do_layout, so we don't need to do anything here but
841 // ignore it.
842 continue;
843 }
844 std::string mname(section_names + member_shdr.get_sh_name());
845
846 if (include_group)
847 {
848 if (is_comdat)
849 kept_section->add_comdat_section(mname, shndx,
850 member_shdr.get_sh_size());
851 }
852 else
853 {
854 (*omit)[shndx] = true;
855
856 if (is_comdat)
857 {
858 Relobj* kept_object = kept_section->object();
859 if (kept_section->is_comdat())
860 {
861 // Find the corresponding kept section, and store
862 // that info in the discarded section table.
863 unsigned int kept_shndx;
864 uint64_t kept_size;
865 if (kept_section->find_comdat_section(mname, &kept_shndx,
866 &kept_size))
867 {
868 // We don't keep a mapping for this section if
869 // it has a different size. The mapping is only
870 // used for relocation processing, and we don't
871 // want to treat the sections as similar if the
872 // sizes are different. Checking the section
873 // size is the approach used by the GNU linker.
874 if (kept_size == member_shdr.get_sh_size())
875 this->set_kept_comdat_section(shndx, kept_object,
876 kept_shndx);
877 }
878 }
879 else
880 {
881 // The existing section is a linkonce section. Add
882 // a mapping if there is exactly one section in the
883 // group (which is true when COUNT == 2) and if it
884 // is the same size.
885 if (count == 2
886 && (kept_section->linkonce_size()
887 == member_shdr.get_sh_size()))
888 this->set_kept_comdat_section(shndx, kept_object,
889 kept_section->shndx());
890 }
891 }
892 }
893 }
894
895 if (relocate_group)
896 layout->layout_group(symtab, this, index, name, signature.c_str(),
897 shdr, flags, &shndxes);
898
899 return include_group;
900 }
901
902 // Whether to include a linkonce section in the link. NAME is the
903 // name of the section and SHDR is the section header.
904
905 // Linkonce sections are a GNU extension implemented in the original
906 // GNU linker before section groups were defined. The semantics are
907 // that we only include one linkonce section with a given name. The
908 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
909 // where T is the type of section and SYMNAME is the name of a symbol.
910 // In an attempt to make linkonce sections interact well with section
911 // groups, we try to identify SYMNAME and use it like a section group
912 // signature. We want to block section groups with that signature,
913 // but not other linkonce sections with that signature. We also use
914 // the full name of the linkonce section as a normal section group
915 // signature.
916
917 template<int size, bool big_endian>
918 bool
919 Sized_relobj<size, big_endian>::include_linkonce_section(
920 Layout* layout,
921 unsigned int index,
922 const char* name,
923 const elfcpp::Shdr<size, big_endian>& shdr)
924 {
925 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
926 // In general the symbol name we want will be the string following
927 // the last '.'. However, we have to handle the case of
928 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
929 // some versions of gcc. So we use a heuristic: if the name starts
930 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
931 // we look for the last '.'. We can't always simply skip
932 // ".gnu.linkonce.X", because we have to deal with cases like
933 // ".gnu.linkonce.d.rel.ro.local".
934 const char* const linkonce_t = ".gnu.linkonce.t.";
935 const char* symname;
936 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
937 symname = name + strlen(linkonce_t);
938 else
939 symname = strrchr(name, '.') + 1;
940 std::string sig1(symname);
941 std::string sig2(name);
942 Kept_section* kept1;
943 Kept_section* kept2;
944 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
945 false, &kept1);
946 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
947 true, &kept2);
948
949 if (!include2)
950 {
951 // We are not including this section because we already saw the
952 // name of the section as a signature. This normally implies
953 // that the kept section is another linkonce section. If it is
954 // the same size, record it as the section which corresponds to
955 // this one.
956 if (kept2->object() != NULL
957 && !kept2->is_comdat()
958 && kept2->linkonce_size() == sh_size)
959 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
960 }
961 else if (!include1)
962 {
963 // The section is being discarded on the basis of its symbol
964 // name. This means that the corresponding kept section was
965 // part of a comdat group, and it will be difficult to identify
966 // the specific section within that group that corresponds to
967 // this linkonce section. We'll handle the simple case where
968 // the group has only one member section. Otherwise, it's not
969 // worth the effort.
970 unsigned int kept_shndx;
971 uint64_t kept_size;
972 if (kept1->object() != NULL
973 && kept1->is_comdat()
974 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
975 && kept_size == sh_size)
976 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
977 }
978 else
979 {
980 kept1->set_linkonce_size(sh_size);
981 kept2->set_linkonce_size(sh_size);
982 }
983
984 return include1 && include2;
985 }
986
987 // Layout an input section.
988
989 template<int size, bool big_endian>
990 inline void
991 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
992 unsigned int shndx,
993 const char* name,
994 typename This::Shdr& shdr,
995 unsigned int reloc_shndx,
996 unsigned int reloc_type)
997 {
998 off_t offset;
999 Output_section* os = layout->layout(this, shndx, name, shdr,
1000 reloc_shndx, reloc_type, &offset);
1001
1002 this->output_sections()[shndx] = os;
1003 if (offset == -1)
1004 this->section_offsets_[shndx] = invalid_address;
1005 else
1006 this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
1007
1008 // If this section requires special handling, and if there are
1009 // relocs that apply to it, then we must do the special handling
1010 // before we apply the relocs.
1011 if (offset == -1 && reloc_shndx != 0)
1012 this->set_relocs_must_follow_section_writes();
1013 }
1014
1015 // Lay out the input sections. We walk through the sections and check
1016 // whether they should be included in the link. If they should, we
1017 // pass them to the Layout object, which will return an output section
1018 // and an offset.
1019 // During garbage collection (--gc-sections) and identical code folding
1020 // (--icf), this function is called twice. When it is called the first
1021 // time, it is for setting up some sections as roots to a work-list for
1022 // --gc-sections and to do comdat processing. Actual layout happens the
1023 // second time around after all the relevant sections have been determined.
1024 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1025 // set to true after the garbage collection worklist or identical code
1026 // folding is processed and the relevant sections to be kept are
1027 // determined. Then, this function is called again to layout the sections.
1028
1029 template<int size, bool big_endian>
1030 void
1031 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
1032 Layout* layout,
1033 Read_symbols_data* sd)
1034 {
1035 const unsigned int shnum = this->shnum();
1036 bool is_gc_pass_one = ((parameters->options().gc_sections()
1037 && !symtab->gc()->is_worklist_ready())
1038 || (parameters->options().icf_enabled()
1039 && !symtab->icf()->is_icf_ready()));
1040
1041 bool is_gc_pass_two = ((parameters->options().gc_sections()
1042 && symtab->gc()->is_worklist_ready())
1043 || (parameters->options().icf_enabled()
1044 && symtab->icf()->is_icf_ready()));
1045
1046 bool is_gc_or_icf = (parameters->options().gc_sections()
1047 || parameters->options().icf_enabled());
1048
1049 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1050 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1051
1052 if (shnum == 0)
1053 return;
1054 Symbols_data* gc_sd = NULL;
1055 if (is_gc_pass_one)
1056 {
1057 // During garbage collection save the symbols data to use it when
1058 // re-entering this function.
1059 gc_sd = new Symbols_data;
1060 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1061 this->set_symbols_data(gc_sd);
1062 }
1063 else if (is_gc_pass_two)
1064 {
1065 gc_sd = this->get_symbols_data();
1066 }
1067
1068 const unsigned char* section_headers_data = NULL;
1069 section_size_type section_names_size;
1070 const unsigned char* symbols_data = NULL;
1071 section_size_type symbols_size;
1072 section_offset_type external_symbols_offset;
1073 const unsigned char* symbol_names_data = NULL;
1074 section_size_type symbol_names_size;
1075
1076 if (is_gc_or_icf)
1077 {
1078 section_headers_data = gc_sd->section_headers_data;
1079 section_names_size = gc_sd->section_names_size;
1080 symbols_data = gc_sd->symbols_data;
1081 symbols_size = gc_sd->symbols_size;
1082 external_symbols_offset = gc_sd->external_symbols_offset;
1083 symbol_names_data = gc_sd->symbol_names_data;
1084 symbol_names_size = gc_sd->symbol_names_size;
1085 }
1086 else
1087 {
1088 section_headers_data = sd->section_headers->data();
1089 section_names_size = sd->section_names_size;
1090 if (sd->symbols != NULL)
1091 symbols_data = sd->symbols->data();
1092 symbols_size = sd->symbols_size;
1093 external_symbols_offset = sd->external_symbols_offset;
1094 if (sd->symbol_names != NULL)
1095 symbol_names_data = sd->symbol_names->data();
1096 symbol_names_size = sd->symbol_names_size;
1097 }
1098
1099 // Get the section headers.
1100 const unsigned char* shdrs = section_headers_data;
1101 const unsigned char* pshdrs;
1102
1103 // Get the section names.
1104 const unsigned char* pnamesu = (is_gc_or_icf)
1105 ? gc_sd->section_names_data
1106 : sd->section_names->data();
1107
1108 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1109
1110 // If any input files have been claimed by plugins, we need to defer
1111 // actual layout until the replacement files have arrived.
1112 const bool should_defer_layout =
1113 (parameters->options().has_plugins()
1114 && parameters->options().plugins()->should_defer_layout());
1115 unsigned int num_sections_to_defer = 0;
1116
1117 // For each section, record the index of the reloc section if any.
1118 // Use 0 to mean that there is no reloc section, -1U to mean that
1119 // there is more than one.
1120 std::vector<unsigned int> reloc_shndx(shnum, 0);
1121 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1122 // Skip the first, dummy, section.
1123 pshdrs = shdrs + This::shdr_size;
1124 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1125 {
1126 typename This::Shdr shdr(pshdrs);
1127
1128 // Count the number of sections whose layout will be deferred.
1129 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1130 ++num_sections_to_defer;
1131
1132 unsigned int sh_type = shdr.get_sh_type();
1133 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1134 {
1135 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1136 if (target_shndx == 0 || target_shndx >= shnum)
1137 {
1138 this->error(_("relocation section %u has bad info %u"),
1139 i, target_shndx);
1140 continue;
1141 }
1142
1143 if (reloc_shndx[target_shndx] != 0)
1144 reloc_shndx[target_shndx] = -1U;
1145 else
1146 {
1147 reloc_shndx[target_shndx] = i;
1148 reloc_type[target_shndx] = sh_type;
1149 }
1150 }
1151 }
1152
1153 Output_sections& out_sections(this->output_sections());
1154 std::vector<Address>& out_section_offsets(this->section_offsets_);
1155
1156 if (!is_gc_pass_two)
1157 {
1158 out_sections.resize(shnum);
1159 out_section_offsets.resize(shnum);
1160 }
1161
1162 // If we are only linking for symbols, then there is nothing else to
1163 // do here.
1164 if (this->input_file()->just_symbols())
1165 {
1166 if (!is_gc_pass_two)
1167 {
1168 delete sd->section_headers;
1169 sd->section_headers = NULL;
1170 delete sd->section_names;
1171 sd->section_names = NULL;
1172 }
1173 return;
1174 }
1175
1176 if (num_sections_to_defer > 0)
1177 {
1178 parameters->options().plugins()->add_deferred_layout_object(this);
1179 this->deferred_layout_.reserve(num_sections_to_defer);
1180 }
1181
1182 // Whether we've seen a .note.GNU-stack section.
1183 bool seen_gnu_stack = false;
1184 // The flags of a .note.GNU-stack section.
1185 uint64_t gnu_stack_flags = 0;
1186
1187 // Keep track of which sections to omit.
1188 std::vector<bool> omit(shnum, false);
1189
1190 // Keep track of reloc sections when emitting relocations.
1191 const bool relocatable = parameters->options().relocatable();
1192 const bool emit_relocs = (relocatable
1193 || parameters->options().emit_relocs());
1194 std::vector<unsigned int> reloc_sections;
1195
1196 // Keep track of .eh_frame sections.
1197 std::vector<unsigned int> eh_frame_sections;
1198
1199 // Skip the first, dummy, section.
1200 pshdrs = shdrs + This::shdr_size;
1201 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1202 {
1203 typename This::Shdr shdr(pshdrs);
1204
1205 if (shdr.get_sh_name() >= section_names_size)
1206 {
1207 this->error(_("bad section name offset for section %u: %lu"),
1208 i, static_cast<unsigned long>(shdr.get_sh_name()));
1209 return;
1210 }
1211
1212 const char* name = pnames + shdr.get_sh_name();
1213
1214 if (!is_gc_pass_two)
1215 {
1216 if (this->handle_gnu_warning_section(name, i, symtab))
1217 {
1218 if (!relocatable)
1219 omit[i] = true;
1220 }
1221
1222 // The .note.GNU-stack section is special. It gives the
1223 // protection flags that this object file requires for the stack
1224 // in memory.
1225 if (strcmp(name, ".note.GNU-stack") == 0)
1226 {
1227 seen_gnu_stack = true;
1228 gnu_stack_flags |= shdr.get_sh_flags();
1229 omit[i] = true;
1230 }
1231
1232 // The .note.GNU-split-stack section is also special. It
1233 // indicates that the object was compiled with
1234 // -fsplit-stack.
1235 if (this->handle_split_stack_section(name))
1236 {
1237 if (!parameters->options().relocatable()
1238 && !parameters->options().shared())
1239 omit[i] = true;
1240 }
1241
1242 // Skip attributes section.
1243 if (parameters->target().is_attributes_section(name))
1244 {
1245 omit[i] = true;
1246 }
1247
1248 bool discard = omit[i];
1249 if (!discard)
1250 {
1251 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1252 {
1253 if (!this->include_section_group(symtab, layout, i, name,
1254 shdrs, pnames,
1255 section_names_size,
1256 &omit))
1257 discard = true;
1258 }
1259 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1260 && Layout::is_linkonce(name))
1261 {
1262 if (!this->include_linkonce_section(layout, i, name, shdr))
1263 discard = true;
1264 }
1265 }
1266
1267 // Add the section to the incremental inputs layout.
1268 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1269 if (incremental_inputs != NULL
1270 && !discard
1271 && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1272 || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1273 || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1274 incremental_inputs->report_input_section(this, i, name,
1275 shdr.get_sh_size());
1276
1277 if (discard)
1278 {
1279 // Do not include this section in the link.
1280 out_sections[i] = NULL;
1281 out_section_offsets[i] = invalid_address;
1282 continue;
1283 }
1284 }
1285
1286 if (is_gc_pass_one && parameters->options().gc_sections())
1287 {
1288 if (this->is_section_name_included(name)
1289 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1290 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1291 {
1292 symtab->gc()->worklist().push(Section_id(this, i));
1293 }
1294 // If the section name XXX can be represented as a C identifier
1295 // it cannot be discarded if there are references to
1296 // __start_XXX and __stop_XXX symbols. These need to be
1297 // specially handled.
1298 if (is_cident(name))
1299 {
1300 symtab->gc()->add_cident_section(name, Section_id(this, i));
1301 }
1302 }
1303
1304 // When doing a relocatable link we are going to copy input
1305 // reloc sections into the output. We only want to copy the
1306 // ones associated with sections which are not being discarded.
1307 // However, we don't know that yet for all sections. So save
1308 // reloc sections and process them later. Garbage collection is
1309 // not triggered when relocatable code is desired.
1310 if (emit_relocs
1311 && (shdr.get_sh_type() == elfcpp::SHT_REL
1312 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1313 {
1314 reloc_sections.push_back(i);
1315 continue;
1316 }
1317
1318 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1319 continue;
1320
1321 // The .eh_frame section is special. It holds exception frame
1322 // information that we need to read in order to generate the
1323 // exception frame header. We process these after all the other
1324 // sections so that the exception frame reader can reliably
1325 // determine which sections are being discarded, and discard the
1326 // corresponding information.
1327 if (!relocatable
1328 && strcmp(name, ".eh_frame") == 0
1329 && this->check_eh_frame_flags(&shdr))
1330 {
1331 if (is_gc_pass_one)
1332 {
1333 out_sections[i] = reinterpret_cast<Output_section*>(1);
1334 out_section_offsets[i] = invalid_address;
1335 }
1336 else
1337 eh_frame_sections.push_back(i);
1338 continue;
1339 }
1340
1341 if (is_gc_pass_two && parameters->options().gc_sections())
1342 {
1343 // This is executed during the second pass of garbage
1344 // collection. do_layout has been called before and some
1345 // sections have been already discarded. Simply ignore
1346 // such sections this time around.
1347 if (out_sections[i] == NULL)
1348 {
1349 gold_assert(out_section_offsets[i] == invalid_address);
1350 continue;
1351 }
1352 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1353 && symtab->gc()->is_section_garbage(this, i))
1354 {
1355 if (parameters->options().print_gc_sections())
1356 gold_info(_("%s: removing unused section from '%s'"
1357 " in file '%s'"),
1358 program_name, this->section_name(i).c_str(),
1359 this->name().c_str());
1360 out_sections[i] = NULL;
1361 out_section_offsets[i] = invalid_address;
1362 continue;
1363 }
1364 }
1365
1366 if (is_gc_pass_two && parameters->options().icf_enabled())
1367 {
1368 if (out_sections[i] == NULL)
1369 {
1370 gold_assert(out_section_offsets[i] == invalid_address);
1371 continue;
1372 }
1373 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1374 && symtab->icf()->is_section_folded(this, i))
1375 {
1376 if (parameters->options().print_icf_sections())
1377 {
1378 Section_id folded =
1379 symtab->icf()->get_folded_section(this, i);
1380 Relobj* folded_obj =
1381 reinterpret_cast<Relobj*>(folded.first);
1382 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1383 "into '%s' in file '%s'"),
1384 program_name, this->section_name(i).c_str(),
1385 this->name().c_str(),
1386 folded_obj->section_name(folded.second).c_str(),
1387 folded_obj->name().c_str());
1388 }
1389 out_sections[i] = NULL;
1390 out_section_offsets[i] = invalid_address;
1391 continue;
1392 }
1393 }
1394
1395 // Defer layout here if input files are claimed by plugins. When gc
1396 // is turned on this function is called twice. For the second call
1397 // should_defer_layout should be false.
1398 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1399 {
1400 gold_assert(!is_gc_pass_two);
1401 this->deferred_layout_.push_back(Deferred_layout(i, name,
1402 pshdrs,
1403 reloc_shndx[i],
1404 reloc_type[i]));
1405 // Put dummy values here; real values will be supplied by
1406 // do_layout_deferred_sections.
1407 out_sections[i] = reinterpret_cast<Output_section*>(2);
1408 out_section_offsets[i] = invalid_address;
1409 continue;
1410 }
1411
1412 // During gc_pass_two if a section that was previously deferred is
1413 // found, do not layout the section as layout_deferred_sections will
1414 // do it later from gold.cc.
1415 if (is_gc_pass_two
1416 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1417 continue;
1418
1419 if (is_gc_pass_one)
1420 {
1421 // This is during garbage collection. The out_sections are
1422 // assigned in the second call to this function.
1423 out_sections[i] = reinterpret_cast<Output_section*>(1);
1424 out_section_offsets[i] = invalid_address;
1425 }
1426 else
1427 {
1428 // When garbage collection is switched on the actual layout
1429 // only happens in the second call.
1430 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1431 reloc_type[i]);
1432 }
1433 }
1434
1435 if (!is_gc_pass_two)
1436 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1437
1438 // When doing a relocatable link handle the reloc sections at the
1439 // end. Garbage collection and Identical Code Folding is not
1440 // turned on for relocatable code.
1441 if (emit_relocs)
1442 this->size_relocatable_relocs();
1443
1444 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1445
1446 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1447 p != reloc_sections.end();
1448 ++p)
1449 {
1450 unsigned int i = *p;
1451 const unsigned char* pshdr;
1452 pshdr = section_headers_data + i * This::shdr_size;
1453 typename This::Shdr shdr(pshdr);
1454
1455 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1456 if (data_shndx >= shnum)
1457 {
1458 // We already warned about this above.
1459 continue;
1460 }
1461
1462 Output_section* data_section = out_sections[data_shndx];
1463 if (data_section == reinterpret_cast<Output_section*>(2))
1464 {
1465 // The layout for the data section was deferred, so we need
1466 // to defer the relocation section, too.
1467 const char* name = pnames + shdr.get_sh_name();
1468 this->deferred_layout_relocs_.push_back(
1469 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1470 out_sections[i] = reinterpret_cast<Output_section*>(2);
1471 out_section_offsets[i] = invalid_address;
1472 continue;
1473 }
1474 if (data_section == NULL)
1475 {
1476 out_sections[i] = NULL;
1477 out_section_offsets[i] = invalid_address;
1478 continue;
1479 }
1480
1481 Relocatable_relocs* rr = new Relocatable_relocs();
1482 this->set_relocatable_relocs(i, rr);
1483
1484 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1485 rr);
1486 out_sections[i] = os;
1487 out_section_offsets[i] = invalid_address;
1488 }
1489
1490 // Handle the .eh_frame sections at the end.
1491 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1492 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1493 p != eh_frame_sections.end();
1494 ++p)
1495 {
1496 gold_assert(this->has_eh_frame_);
1497 gold_assert(external_symbols_offset != 0);
1498
1499 unsigned int i = *p;
1500 const unsigned char* pshdr;
1501 pshdr = section_headers_data + i * This::shdr_size;
1502 typename This::Shdr shdr(pshdr);
1503
1504 off_t offset;
1505 Output_section* os = layout->layout_eh_frame(this,
1506 symbols_data,
1507 symbols_size,
1508 symbol_names_data,
1509 symbol_names_size,
1510 i, shdr,
1511 reloc_shndx[i],
1512 reloc_type[i],
1513 &offset);
1514 out_sections[i] = os;
1515 if (os == NULL || offset == -1)
1516 {
1517 // An object can contain at most one section holding exception
1518 // frame information.
1519 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1520 this->discarded_eh_frame_shndx_ = i;
1521 out_section_offsets[i] = invalid_address;
1522 }
1523 else
1524 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1525
1526 // If this section requires special handling, and if there are
1527 // relocs that apply to it, then we must do the special handling
1528 // before we apply the relocs.
1529 if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1530 this->set_relocs_must_follow_section_writes();
1531 }
1532
1533 if (is_gc_pass_two)
1534 {
1535 delete[] gc_sd->section_headers_data;
1536 delete[] gc_sd->section_names_data;
1537 delete[] gc_sd->symbols_data;
1538 delete[] gc_sd->symbol_names_data;
1539 this->set_symbols_data(NULL);
1540 }
1541 else
1542 {
1543 delete sd->section_headers;
1544 sd->section_headers = NULL;
1545 delete sd->section_names;
1546 sd->section_names = NULL;
1547 }
1548 }
1549
1550 // Layout sections whose layout was deferred while waiting for
1551 // input files from a plugin.
1552
1553 template<int size, bool big_endian>
1554 void
1555 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1556 {
1557 typename std::vector<Deferred_layout>::iterator deferred;
1558
1559 for (deferred = this->deferred_layout_.begin();
1560 deferred != this->deferred_layout_.end();
1561 ++deferred)
1562 {
1563 typename This::Shdr shdr(deferred->shdr_data_);
1564 // If the section is not included, it is because the garbage collector
1565 // decided it is not needed. Avoid reverting that decision.
1566 if (!this->is_section_included(deferred->shndx_))
1567 continue;
1568
1569 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1570 shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1571 }
1572
1573 this->deferred_layout_.clear();
1574
1575 // Now handle the deferred relocation sections.
1576
1577 Output_sections& out_sections(this->output_sections());
1578 std::vector<Address>& out_section_offsets(this->section_offsets_);
1579
1580 for (deferred = this->deferred_layout_relocs_.begin();
1581 deferred != this->deferred_layout_relocs_.end();
1582 ++deferred)
1583 {
1584 unsigned int shndx = deferred->shndx_;
1585 typename This::Shdr shdr(deferred->shdr_data_);
1586 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1587
1588 Output_section* data_section = out_sections[data_shndx];
1589 if (data_section == NULL)
1590 {
1591 out_sections[shndx] = NULL;
1592 out_section_offsets[shndx] = invalid_address;
1593 continue;
1594 }
1595
1596 Relocatable_relocs* rr = new Relocatable_relocs();
1597 this->set_relocatable_relocs(shndx, rr);
1598
1599 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1600 data_section, rr);
1601 out_sections[shndx] = os;
1602 out_section_offsets[shndx] = invalid_address;
1603 }
1604 }
1605
1606 // Add the symbols to the symbol table.
1607
1608 template<int size, bool big_endian>
1609 void
1610 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1611 Read_symbols_data* sd,
1612 Layout*)
1613 {
1614 if (sd->symbols == NULL)
1615 {
1616 gold_assert(sd->symbol_names == NULL);
1617 return;
1618 }
1619
1620 const int sym_size = This::sym_size;
1621 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1622 / sym_size);
1623 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1624 {
1625 this->error(_("size of symbols is not multiple of symbol size"));
1626 return;
1627 }
1628
1629 this->symbols_.resize(symcount);
1630
1631 const char* sym_names =
1632 reinterpret_cast<const char*>(sd->symbol_names->data());
1633 symtab->add_from_relobj(this,
1634 sd->symbols->data() + sd->external_symbols_offset,
1635 symcount, this->local_symbol_count_,
1636 sym_names, sd->symbol_names_size,
1637 &this->symbols_,
1638 &this->defined_count_);
1639
1640 delete sd->symbols;
1641 sd->symbols = NULL;
1642 delete sd->symbol_names;
1643 sd->symbol_names = NULL;
1644 }
1645
1646 // Find out if this object, that is a member of a lib group, should be included
1647 // in the link. We check every symbol defined by this object. If the symbol
1648 // table has a strong undefined reference to that symbol, we have to include
1649 // the object.
1650
1651 template<int size, bool big_endian>
1652 Archive::Should_include
1653 Sized_relobj<size, big_endian>::do_should_include_member(Symbol_table* symtab,
1654 Layout* layout,
1655 Read_symbols_data* sd,
1656 std::string* why)
1657 {
1658 char* tmpbuf = NULL;
1659 size_t tmpbuflen = 0;
1660 const char* sym_names =
1661 reinterpret_cast<const char*>(sd->symbol_names->data());
1662 const unsigned char* syms =
1663 sd->symbols->data() + sd->external_symbols_offset;
1664 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1665 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1666 / sym_size);
1667
1668 const unsigned char* p = syms;
1669
1670 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1671 {
1672 elfcpp::Sym<size, big_endian> sym(p);
1673 unsigned int st_shndx = sym.get_st_shndx();
1674 if (st_shndx == elfcpp::SHN_UNDEF)
1675 continue;
1676
1677 unsigned int st_name = sym.get_st_name();
1678 const char* name = sym_names + st_name;
1679 Symbol* symbol;
1680 Archive::Should_include t = Archive::should_include_member(symtab,
1681 layout,
1682 name,
1683 &symbol, why,
1684 &tmpbuf,
1685 &tmpbuflen);
1686 if (t == Archive::SHOULD_INCLUDE_YES)
1687 {
1688 if (tmpbuf != NULL)
1689 free(tmpbuf);
1690 return t;
1691 }
1692 }
1693 if (tmpbuf != NULL)
1694 free(tmpbuf);
1695 return Archive::SHOULD_INCLUDE_UNKNOWN;
1696 }
1697
1698 // Iterate over global defined symbols, calling a visitor class V for each.
1699
1700 template<int size, bool big_endian>
1701 void
1702 Sized_relobj<size, big_endian>::do_for_all_global_symbols(
1703 Read_symbols_data* sd,
1704 Library_base::Symbol_visitor_base* v)
1705 {
1706 const char* sym_names =
1707 reinterpret_cast<const char*>(sd->symbol_names->data());
1708 const unsigned char* syms =
1709 sd->symbols->data() + sd->external_symbols_offset;
1710 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1711 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1712 / sym_size);
1713 const unsigned char* p = syms;
1714
1715 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1716 {
1717 elfcpp::Sym<size, big_endian> sym(p);
1718 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1719 v->visit(sym_names + sym.get_st_name());
1720 }
1721 }
1722
1723 // Iterate over local symbols, calling a visitor class V for each GOT offset
1724 // associated with a local symbol.
1725
1726 template<int size, bool big_endian>
1727 void
1728 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
1729 Got_offset_list::Visitor* v) const
1730 {
1731 unsigned int nsyms = this->local_symbol_count();
1732 for (unsigned int i = 0; i < nsyms; i++)
1733 {
1734 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
1735 if (p != this->local_got_offsets_.end())
1736 {
1737 const Got_offset_list* got_offsets = p->second;
1738 got_offsets->for_all_got_offsets(v);
1739 }
1740 }
1741 }
1742
1743 // Return whether the local symbol SYMNDX has a PLT offset.
1744
1745 template<int size, bool big_endian>
1746 bool
1747 Sized_relobj<size, big_endian>::local_has_plt_offset(unsigned int symndx) const
1748 {
1749 typename Local_plt_offsets::const_iterator p =
1750 this->local_plt_offsets_.find(symndx);
1751 return p != this->local_plt_offsets_.end();
1752 }
1753
1754 // Get the PLT offset of a local symbol.
1755
1756 template<int size, bool big_endian>
1757 unsigned int
1758 Sized_relobj<size, big_endian>::local_plt_offset(unsigned int symndx) const
1759 {
1760 typename Local_plt_offsets::const_iterator p =
1761 this->local_plt_offsets_.find(symndx);
1762 gold_assert(p != this->local_plt_offsets_.end());
1763 return p->second;
1764 }
1765
1766 // Set the PLT offset of a local symbol.
1767
1768 template<int size, bool big_endian>
1769 void
1770 Sized_relobj<size, big_endian>::set_local_plt_offset(unsigned int symndx,
1771 unsigned int plt_offset)
1772 {
1773 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1774 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1775 gold_assert(ins.second);
1776 }
1777
1778 // First pass over the local symbols. Here we add their names to
1779 // *POOL and *DYNPOOL, and we store the symbol value in
1780 // THIS->LOCAL_VALUES_. This function is always called from a
1781 // singleton thread. This is followed by a call to
1782 // finalize_local_symbols.
1783
1784 template<int size, bool big_endian>
1785 void
1786 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1787 Stringpool* dynpool)
1788 {
1789 gold_assert(this->symtab_shndx_ != -1U);
1790 if (this->symtab_shndx_ == 0)
1791 {
1792 // This object has no symbols. Weird but legal.
1793 return;
1794 }
1795
1796 // Read the symbol table section header.
1797 const unsigned int symtab_shndx = this->symtab_shndx_;
1798 typename This::Shdr symtabshdr(this,
1799 this->elf_file_.section_header(symtab_shndx));
1800 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1801
1802 // Read the local symbols.
1803 const int sym_size = This::sym_size;
1804 const unsigned int loccount = this->local_symbol_count_;
1805 gold_assert(loccount == symtabshdr.get_sh_info());
1806 off_t locsize = loccount * sym_size;
1807 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1808 locsize, true, true);
1809
1810 // Read the symbol names.
1811 const unsigned int strtab_shndx =
1812 this->adjust_shndx(symtabshdr.get_sh_link());
1813 section_size_type strtab_size;
1814 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1815 &strtab_size,
1816 true);
1817 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1818
1819 // Loop over the local symbols.
1820
1821 const Output_sections& out_sections(this->output_sections());
1822 unsigned int shnum = this->shnum();
1823 unsigned int count = 0;
1824 unsigned int dyncount = 0;
1825 // Skip the first, dummy, symbol.
1826 psyms += sym_size;
1827 bool strip_all = parameters->options().strip_all();
1828 bool discard_all = parameters->options().discard_all();
1829 bool discard_locals = parameters->options().discard_locals();
1830 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1831 {
1832 elfcpp::Sym<size, big_endian> sym(psyms);
1833
1834 Symbol_value<size>& lv(this->local_values_[i]);
1835
1836 bool is_ordinary;
1837 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1838 &is_ordinary);
1839 lv.set_input_shndx(shndx, is_ordinary);
1840
1841 if (sym.get_st_type() == elfcpp::STT_SECTION)
1842 lv.set_is_section_symbol();
1843 else if (sym.get_st_type() == elfcpp::STT_TLS)
1844 lv.set_is_tls_symbol();
1845 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1846 lv.set_is_ifunc_symbol();
1847
1848 // Save the input symbol value for use in do_finalize_local_symbols().
1849 lv.set_input_value(sym.get_st_value());
1850
1851 // Decide whether this symbol should go into the output file.
1852
1853 if ((shndx < shnum && out_sections[shndx] == NULL)
1854 || shndx == this->discarded_eh_frame_shndx_)
1855 {
1856 lv.set_no_output_symtab_entry();
1857 gold_assert(!lv.needs_output_dynsym_entry());
1858 continue;
1859 }
1860
1861 if (sym.get_st_type() == elfcpp::STT_SECTION)
1862 {
1863 lv.set_no_output_symtab_entry();
1864 gold_assert(!lv.needs_output_dynsym_entry());
1865 continue;
1866 }
1867
1868 if (sym.get_st_name() >= strtab_size)
1869 {
1870 this->error(_("local symbol %u section name out of range: %u >= %u"),
1871 i, sym.get_st_name(),
1872 static_cast<unsigned int>(strtab_size));
1873 lv.set_no_output_symtab_entry();
1874 continue;
1875 }
1876
1877 const char* name = pnames + sym.get_st_name();
1878
1879 // If needed, add the symbol to the dynamic symbol table string pool.
1880 if (lv.needs_output_dynsym_entry())
1881 {
1882 dynpool->add(name, true, NULL);
1883 ++dyncount;
1884 }
1885
1886 if (strip_all
1887 || (discard_all && lv.may_be_discarded_from_output_symtab()))
1888 {
1889 lv.set_no_output_symtab_entry();
1890 continue;
1891 }
1892
1893 // If --discard-locals option is used, discard all temporary local
1894 // symbols. These symbols start with system-specific local label
1895 // prefixes, typically .L for ELF system. We want to be compatible
1896 // with GNU ld so here we essentially use the same check in
1897 // bfd_is_local_label(). The code is different because we already
1898 // know that:
1899 //
1900 // - the symbol is local and thus cannot have global or weak binding.
1901 // - the symbol is not a section symbol.
1902 // - the symbol has a name.
1903 //
1904 // We do not discard a symbol if it needs a dynamic symbol entry.
1905 if (discard_locals
1906 && sym.get_st_type() != elfcpp::STT_FILE
1907 && !lv.needs_output_dynsym_entry()
1908 && lv.may_be_discarded_from_output_symtab()
1909 && parameters->target().is_local_label_name(name))
1910 {
1911 lv.set_no_output_symtab_entry();
1912 continue;
1913 }
1914
1915 // Discard the local symbol if -retain_symbols_file is specified
1916 // and the local symbol is not in that file.
1917 if (!parameters->options().should_retain_symbol(name))
1918 {
1919 lv.set_no_output_symtab_entry();
1920 continue;
1921 }
1922
1923 // Add the symbol to the symbol table string pool.
1924 pool->add(name, true, NULL);
1925 ++count;
1926 }
1927
1928 this->output_local_symbol_count_ = count;
1929 this->output_local_dynsym_count_ = dyncount;
1930 }
1931
1932 // Compute the final value of a local symbol.
1933
1934 template<int size, bool big_endian>
1935 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status
1936 Sized_relobj<size, big_endian>::compute_final_local_value_internal(
1937 unsigned int r_sym,
1938 const Symbol_value<size>* lv_in,
1939 Symbol_value<size>* lv_out,
1940 bool relocatable,
1941 const Output_sections& out_sections,
1942 const std::vector<Address>& out_offsets,
1943 const Symbol_table* symtab)
1944 {
1945 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1946 // we may have a memory leak.
1947 gold_assert(lv_out->has_output_value());
1948
1949 bool is_ordinary;
1950 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1951
1952 // Set the output symbol value.
1953
1954 if (!is_ordinary)
1955 {
1956 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1957 lv_out->set_output_value(lv_in->input_value());
1958 else
1959 {
1960 this->error(_("unknown section index %u for local symbol %u"),
1961 shndx, r_sym);
1962 lv_out->set_output_value(0);
1963 return This::CFLV_ERROR;
1964 }
1965 }
1966 else
1967 {
1968 if (shndx >= this->shnum())
1969 {
1970 this->error(_("local symbol %u section index %u out of range"),
1971 r_sym, shndx);
1972 lv_out->set_output_value(0);
1973 return This::CFLV_ERROR;
1974 }
1975
1976 Output_section* os = out_sections[shndx];
1977 Address secoffset = out_offsets[shndx];
1978 if (symtab->is_section_folded(this, shndx))
1979 {
1980 gold_assert(os == NULL && secoffset == invalid_address);
1981 // Get the os of the section it is folded onto.
1982 Section_id folded = symtab->icf()->get_folded_section(this,
1983 shndx);
1984 gold_assert(folded.first != NULL);
1985 Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
1986 <Sized_relobj<size, big_endian>*>(folded.first);
1987 os = folded_obj->output_section(folded.second);
1988 gold_assert(os != NULL);
1989 secoffset = folded_obj->get_output_section_offset(folded.second);
1990
1991 // This could be a relaxed input section.
1992 if (secoffset == invalid_address)
1993 {
1994 const Output_relaxed_input_section* relaxed_section =
1995 os->find_relaxed_input_section(folded_obj, folded.second);
1996 gold_assert(relaxed_section != NULL);
1997 secoffset = relaxed_section->address() - os->address();
1998 }
1999 }
2000
2001 if (os == NULL)
2002 {
2003 // This local symbol belongs to a section we are discarding.
2004 // In some cases when applying relocations later, we will
2005 // attempt to match it to the corresponding kept section,
2006 // so we leave the input value unchanged here.
2007 return This::CFLV_DISCARDED;
2008 }
2009 else if (secoffset == invalid_address)
2010 {
2011 uint64_t start;
2012
2013 // This is a SHF_MERGE section or one which otherwise
2014 // requires special handling.
2015 if (shndx == this->discarded_eh_frame_shndx_)
2016 {
2017 // This local symbol belongs to a discarded .eh_frame
2018 // section. Just treat it like the case in which
2019 // os == NULL above.
2020 gold_assert(this->has_eh_frame_);
2021 return This::CFLV_DISCARDED;
2022 }
2023 else if (!lv_in->is_section_symbol())
2024 {
2025 // This is not a section symbol. We can determine
2026 // the final value now.
2027 lv_out->set_output_value(
2028 os->output_address(this, shndx, lv_in->input_value()));
2029 }
2030 else if (!os->find_starting_output_address(this, shndx, &start))
2031 {
2032 // This is a section symbol, but apparently not one in a
2033 // merged section. First check to see if this is a relaxed
2034 // input section. If so, use its address. Otherwise just
2035 // use the start of the output section. This happens with
2036 // relocatable links when the input object has section
2037 // symbols for arbitrary non-merge sections.
2038 const Output_section_data* posd =
2039 os->find_relaxed_input_section(this, shndx);
2040 if (posd != NULL)
2041 {
2042 Address relocatable_link_adjustment =
2043 relocatable ? os->address() : 0;
2044 lv_out->set_output_value(posd->address()
2045 - relocatable_link_adjustment);
2046 }
2047 else
2048 lv_out->set_output_value(os->address());
2049 }
2050 else
2051 {
2052 // We have to consider the addend to determine the
2053 // value to use in a relocation. START is the start
2054 // of this input section. If we are doing a relocatable
2055 // link, use offset from start output section instead of
2056 // address.
2057 Address adjusted_start =
2058 relocatable ? start - os->address() : start;
2059 Merged_symbol_value<size>* msv =
2060 new Merged_symbol_value<size>(lv_in->input_value(),
2061 adjusted_start);
2062 lv_out->set_merged_symbol_value(msv);
2063 }
2064 }
2065 else if (lv_in->is_tls_symbol())
2066 lv_out->set_output_value(os->tls_offset()
2067 + secoffset
2068 + lv_in->input_value());
2069 else
2070 lv_out->set_output_value((relocatable ? 0 : os->address())
2071 + secoffset
2072 + lv_in->input_value());
2073 }
2074 return This::CFLV_OK;
2075 }
2076
2077 // Compute final local symbol value. R_SYM is the index of a local
2078 // symbol in symbol table. LV points to a symbol value, which is
2079 // expected to hold the input value and to be over-written by the
2080 // final value. SYMTAB points to a symbol table. Some targets may want
2081 // to know would-be-finalized local symbol values in relaxation.
2082 // Hence we provide this method. Since this method updates *LV, a
2083 // callee should make a copy of the original local symbol value and
2084 // use the copy instead of modifying an object's local symbols before
2085 // everything is finalized. The caller should also free up any allocated
2086 // memory in the return value in *LV.
2087 template<int size, bool big_endian>
2088 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status
2089 Sized_relobj<size, big_endian>::compute_final_local_value(
2090 unsigned int r_sym,
2091 const Symbol_value<size>* lv_in,
2092 Symbol_value<size>* lv_out,
2093 const Symbol_table* symtab)
2094 {
2095 // This is just a wrapper of compute_final_local_value_internal.
2096 const bool relocatable = parameters->options().relocatable();
2097 const Output_sections& out_sections(this->output_sections());
2098 const std::vector<Address>& out_offsets(this->section_offsets_);
2099 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2100 relocatable, out_sections,
2101 out_offsets, symtab);
2102 }
2103
2104 // Finalize the local symbols. Here we set the final value in
2105 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2106 // This function is always called from a singleton thread. The actual
2107 // output of the local symbols will occur in a separate task.
2108
2109 template<int size, bool big_endian>
2110 unsigned int
2111 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
2112 off_t off,
2113 Symbol_table* symtab)
2114 {
2115 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2116
2117 const unsigned int loccount = this->local_symbol_count_;
2118 this->local_symbol_offset_ = off;
2119
2120 const bool relocatable = parameters->options().relocatable();
2121 const Output_sections& out_sections(this->output_sections());
2122 const std::vector<Address>& out_offsets(this->section_offsets_);
2123
2124 for (unsigned int i = 1; i < loccount; ++i)
2125 {
2126 Symbol_value<size>* lv = &this->local_values_[i];
2127
2128 Compute_final_local_value_status cflv_status =
2129 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2130 out_sections, out_offsets,
2131 symtab);
2132 switch (cflv_status)
2133 {
2134 case CFLV_OK:
2135 if (!lv->is_output_symtab_index_set())
2136 {
2137 lv->set_output_symtab_index(index);
2138 ++index;
2139 }
2140 break;
2141 case CFLV_DISCARDED:
2142 case CFLV_ERROR:
2143 // Do nothing.
2144 break;
2145 default:
2146 gold_unreachable();
2147 }
2148 }
2149 return index;
2150 }
2151
2152 // Set the output dynamic symbol table indexes for the local variables.
2153
2154 template<int size, bool big_endian>
2155 unsigned int
2156 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
2157 {
2158 const unsigned int loccount = this->local_symbol_count_;
2159 for (unsigned int i = 1; i < loccount; ++i)
2160 {
2161 Symbol_value<size>& lv(this->local_values_[i]);
2162 if (lv.needs_output_dynsym_entry())
2163 {
2164 lv.set_output_dynsym_index(index);
2165 ++index;
2166 }
2167 }
2168 return index;
2169 }
2170
2171 // Set the offset where local dynamic symbol information will be stored.
2172 // Returns the count of local symbols contributed to the symbol table by
2173 // this object.
2174
2175 template<int size, bool big_endian>
2176 unsigned int
2177 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2178 {
2179 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2180 this->local_dynsym_offset_ = off;
2181 return this->output_local_dynsym_count_;
2182 }
2183
2184 // If Symbols_data is not NULL get the section flags from here otherwise
2185 // get it from the file.
2186
2187 template<int size, bool big_endian>
2188 uint64_t
2189 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
2190 {
2191 Symbols_data* sd = this->get_symbols_data();
2192 if (sd != NULL)
2193 {
2194 const unsigned char* pshdrs = sd->section_headers_data
2195 + This::shdr_size * shndx;
2196 typename This::Shdr shdr(pshdrs);
2197 return shdr.get_sh_flags();
2198 }
2199 // If sd is NULL, read the section header from the file.
2200 return this->elf_file_.section_flags(shndx);
2201 }
2202
2203 // Get the section's ent size from Symbols_data. Called by get_section_contents
2204 // in icf.cc
2205
2206 template<int size, bool big_endian>
2207 uint64_t
2208 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
2209 {
2210 Symbols_data* sd = this->get_symbols_data();
2211 gold_assert(sd != NULL);
2212
2213 const unsigned char* pshdrs = sd->section_headers_data
2214 + This::shdr_size * shndx;
2215 typename This::Shdr shdr(pshdrs);
2216 return shdr.get_sh_entsize();
2217 }
2218
2219 // Write out the local symbols.
2220
2221 template<int size, bool big_endian>
2222 void
2223 Sized_relobj<size, big_endian>::write_local_symbols(
2224 Output_file* of,
2225 const Stringpool* sympool,
2226 const Stringpool* dynpool,
2227 Output_symtab_xindex* symtab_xindex,
2228 Output_symtab_xindex* dynsym_xindex,
2229 off_t symtab_off)
2230 {
2231 const bool strip_all = parameters->options().strip_all();
2232 if (strip_all)
2233 {
2234 if (this->output_local_dynsym_count_ == 0)
2235 return;
2236 this->output_local_symbol_count_ = 0;
2237 }
2238
2239 gold_assert(this->symtab_shndx_ != -1U);
2240 if (this->symtab_shndx_ == 0)
2241 {
2242 // This object has no symbols. Weird but legal.
2243 return;
2244 }
2245
2246 // Read the symbol table section header.
2247 const unsigned int symtab_shndx = this->symtab_shndx_;
2248 typename This::Shdr symtabshdr(this,
2249 this->elf_file_.section_header(symtab_shndx));
2250 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2251 const unsigned int loccount = this->local_symbol_count_;
2252 gold_assert(loccount == symtabshdr.get_sh_info());
2253
2254 // Read the local symbols.
2255 const int sym_size = This::sym_size;
2256 off_t locsize = loccount * sym_size;
2257 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2258 locsize, true, false);
2259
2260 // Read the symbol names.
2261 const unsigned int strtab_shndx =
2262 this->adjust_shndx(symtabshdr.get_sh_link());
2263 section_size_type strtab_size;
2264 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2265 &strtab_size,
2266 false);
2267 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2268
2269 // Get views into the output file for the portions of the symbol table
2270 // and the dynamic symbol table that we will be writing.
2271 off_t output_size = this->output_local_symbol_count_ * sym_size;
2272 unsigned char* oview = NULL;
2273 if (output_size > 0)
2274 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2275 output_size);
2276
2277 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2278 unsigned char* dyn_oview = NULL;
2279 if (dyn_output_size > 0)
2280 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2281 dyn_output_size);
2282
2283 const Output_sections out_sections(this->output_sections());
2284
2285 gold_assert(this->local_values_.size() == loccount);
2286
2287 unsigned char* ov = oview;
2288 unsigned char* dyn_ov = dyn_oview;
2289 psyms += sym_size;
2290 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2291 {
2292 elfcpp::Sym<size, big_endian> isym(psyms);
2293
2294 Symbol_value<size>& lv(this->local_values_[i]);
2295
2296 bool is_ordinary;
2297 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2298 &is_ordinary);
2299 if (is_ordinary)
2300 {
2301 gold_assert(st_shndx < out_sections.size());
2302 if (out_sections[st_shndx] == NULL)
2303 continue;
2304 st_shndx = out_sections[st_shndx]->out_shndx();
2305 if (st_shndx >= elfcpp::SHN_LORESERVE)
2306 {
2307 if (lv.has_output_symtab_entry())
2308 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2309 if (lv.has_output_dynsym_entry())
2310 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2311 st_shndx = elfcpp::SHN_XINDEX;
2312 }
2313 }
2314
2315 // Write the symbol to the output symbol table.
2316 if (lv.has_output_symtab_entry())
2317 {
2318 elfcpp::Sym_write<size, big_endian> osym(ov);
2319
2320 gold_assert(isym.get_st_name() < strtab_size);
2321 const char* name = pnames + isym.get_st_name();
2322 osym.put_st_name(sympool->get_offset(name));
2323 osym.put_st_value(this->local_values_[i].value(this, 0));
2324 osym.put_st_size(isym.get_st_size());
2325 osym.put_st_info(isym.get_st_info());
2326 osym.put_st_other(isym.get_st_other());
2327 osym.put_st_shndx(st_shndx);
2328
2329 ov += sym_size;
2330 }
2331
2332 // Write the symbol to the output dynamic symbol table.
2333 if (lv.has_output_dynsym_entry())
2334 {
2335 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2336 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2337
2338 gold_assert(isym.get_st_name() < strtab_size);
2339 const char* name = pnames + isym.get_st_name();
2340 osym.put_st_name(dynpool->get_offset(name));
2341 osym.put_st_value(this->local_values_[i].value(this, 0));
2342 osym.put_st_size(isym.get_st_size());
2343 osym.put_st_info(isym.get_st_info());
2344 osym.put_st_other(isym.get_st_other());
2345 osym.put_st_shndx(st_shndx);
2346
2347 dyn_ov += sym_size;
2348 }
2349 }
2350
2351
2352 if (output_size > 0)
2353 {
2354 gold_assert(ov - oview == output_size);
2355 of->write_output_view(symtab_off + this->local_symbol_offset_,
2356 output_size, oview);
2357 }
2358
2359 if (dyn_output_size > 0)
2360 {
2361 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2362 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2363 dyn_oview);
2364 }
2365 }
2366
2367 // Set *INFO to symbolic information about the offset OFFSET in the
2368 // section SHNDX. Return true if we found something, false if we
2369 // found nothing.
2370
2371 template<int size, bool big_endian>
2372 bool
2373 Sized_relobj<size, big_endian>::get_symbol_location_info(
2374 unsigned int shndx,
2375 off_t offset,
2376 Symbol_location_info* info)
2377 {
2378 if (this->symtab_shndx_ == 0)
2379 return false;
2380
2381 section_size_type symbols_size;
2382 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2383 &symbols_size,
2384 false);
2385
2386 unsigned int symbol_names_shndx =
2387 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2388 section_size_type names_size;
2389 const unsigned char* symbol_names_u =
2390 this->section_contents(symbol_names_shndx, &names_size, false);
2391 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2392
2393 const int sym_size = This::sym_size;
2394 const size_t count = symbols_size / sym_size;
2395
2396 const unsigned char* p = symbols;
2397 for (size_t i = 0; i < count; ++i, p += sym_size)
2398 {
2399 elfcpp::Sym<size, big_endian> sym(p);
2400
2401 if (sym.get_st_type() == elfcpp::STT_FILE)
2402 {
2403 if (sym.get_st_name() >= names_size)
2404 info->source_file = "(invalid)";
2405 else
2406 info->source_file = symbol_names + sym.get_st_name();
2407 continue;
2408 }
2409
2410 bool is_ordinary;
2411 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2412 &is_ordinary);
2413 if (is_ordinary
2414 && st_shndx == shndx
2415 && static_cast<off_t>(sym.get_st_value()) <= offset
2416 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2417 > offset))
2418 {
2419 if (sym.get_st_name() > names_size)
2420 info->enclosing_symbol_name = "(invalid)";
2421 else
2422 {
2423 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2424 if (parameters->options().do_demangle())
2425 {
2426 char* demangled_name = cplus_demangle(
2427 info->enclosing_symbol_name.c_str(),
2428 DMGL_ANSI | DMGL_PARAMS);
2429 if (demangled_name != NULL)
2430 {
2431 info->enclosing_symbol_name.assign(demangled_name);
2432 free(demangled_name);
2433 }
2434 }
2435 }
2436 return true;
2437 }
2438 }
2439
2440 return false;
2441 }
2442
2443 // Look for a kept section corresponding to the given discarded section,
2444 // and return its output address. This is used only for relocations in
2445 // debugging sections. If we can't find the kept section, return 0.
2446
2447 template<int size, bool big_endian>
2448 typename Sized_relobj<size, big_endian>::Address
2449 Sized_relobj<size, big_endian>::map_to_kept_section(
2450 unsigned int shndx,
2451 bool* found) const
2452 {
2453 Relobj* kept_object;
2454 unsigned int kept_shndx;
2455 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2456 {
2457 Sized_relobj<size, big_endian>* kept_relobj =
2458 static_cast<Sized_relobj<size, big_endian>*>(kept_object);
2459 Output_section* os = kept_relobj->output_section(kept_shndx);
2460 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2461 if (os != NULL && offset != invalid_address)
2462 {
2463 *found = true;
2464 return os->address() + offset;
2465 }
2466 }
2467 *found = false;
2468 return 0;
2469 }
2470
2471 // Get symbol counts.
2472
2473 template<int size, bool big_endian>
2474 void
2475 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
2476 const Symbol_table*,
2477 size_t* defined,
2478 size_t* used) const
2479 {
2480 *defined = this->defined_count_;
2481 size_t count = 0;
2482 for (typename Symbols::const_iterator p = this->symbols_.begin();
2483 p != this->symbols_.end();
2484 ++p)
2485 if (*p != NULL
2486 && (*p)->source() == Symbol::FROM_OBJECT
2487 && (*p)->object() == this
2488 && (*p)->is_defined())
2489 ++count;
2490 *used = count;
2491 }
2492
2493 // Input_objects methods.
2494
2495 // Add a regular relocatable object to the list. Return false if this
2496 // object should be ignored.
2497
2498 bool
2499 Input_objects::add_object(Object* obj)
2500 {
2501 // Print the filename if the -t/--trace option is selected.
2502 if (parameters->options().trace())
2503 gold_info("%s", obj->name().c_str());
2504
2505 if (!obj->is_dynamic())
2506 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2507 else
2508 {
2509 // See if this is a duplicate SONAME.
2510 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2511 const char* soname = dynobj->soname();
2512
2513 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2514 this->sonames_.insert(soname);
2515 if (!ins.second)
2516 {
2517 // We have already seen a dynamic object with this soname.
2518 return false;
2519 }
2520
2521 this->dynobj_list_.push_back(dynobj);
2522 }
2523
2524 // Add this object to the cross-referencer if requested.
2525 if (parameters->options().user_set_print_symbol_counts()
2526 || parameters->options().cref())
2527 {
2528 if (this->cref_ == NULL)
2529 this->cref_ = new Cref();
2530 this->cref_->add_object(obj);
2531 }
2532
2533 return true;
2534 }
2535
2536 // For each dynamic object, record whether we've seen all of its
2537 // explicit dependencies.
2538
2539 void
2540 Input_objects::check_dynamic_dependencies() const
2541 {
2542 bool issued_copy_dt_needed_error = false;
2543 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2544 p != this->dynobj_list_.end();
2545 ++p)
2546 {
2547 const Dynobj::Needed& needed((*p)->needed());
2548 bool found_all = true;
2549 Dynobj::Needed::const_iterator pneeded;
2550 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2551 {
2552 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2553 {
2554 found_all = false;
2555 break;
2556 }
2557 }
2558 (*p)->set_has_unknown_needed_entries(!found_all);
2559
2560 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2561 // that gold does not support. However, they cause no trouble
2562 // unless there is a DT_NEEDED entry that we don't know about;
2563 // warn only in that case.
2564 if (!found_all
2565 && !issued_copy_dt_needed_error
2566 && (parameters->options().copy_dt_needed_entries()
2567 || parameters->options().add_needed()))
2568 {
2569 const char* optname;
2570 if (parameters->options().copy_dt_needed_entries())
2571 optname = "--copy-dt-needed-entries";
2572 else
2573 optname = "--add-needed";
2574 gold_error(_("%s is not supported but is required for %s in %s"),
2575 optname, (*pneeded).c_str(), (*p)->name().c_str());
2576 issued_copy_dt_needed_error = true;
2577 }
2578 }
2579 }
2580
2581 // Start processing an archive.
2582
2583 void
2584 Input_objects::archive_start(Archive* archive)
2585 {
2586 if (parameters->options().user_set_print_symbol_counts()
2587 || parameters->options().cref())
2588 {
2589 if (this->cref_ == NULL)
2590 this->cref_ = new Cref();
2591 this->cref_->add_archive_start(archive);
2592 }
2593 }
2594
2595 // Stop processing an archive.
2596
2597 void
2598 Input_objects::archive_stop(Archive* archive)
2599 {
2600 if (parameters->options().user_set_print_symbol_counts()
2601 || parameters->options().cref())
2602 this->cref_->add_archive_stop(archive);
2603 }
2604
2605 // Print symbol counts
2606
2607 void
2608 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2609 {
2610 if (parameters->options().user_set_print_symbol_counts()
2611 && this->cref_ != NULL)
2612 this->cref_->print_symbol_counts(symtab);
2613 }
2614
2615 // Print a cross reference table.
2616
2617 void
2618 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2619 {
2620 if (parameters->options().cref() && this->cref_ != NULL)
2621 this->cref_->print_cref(symtab, f);
2622 }
2623
2624 // Relocate_info methods.
2625
2626 // Return a string describing the location of a relocation when file
2627 // and lineno information is not available. This is only used in
2628 // error messages.
2629
2630 template<int size, bool big_endian>
2631 std::string
2632 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2633 {
2634 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2635 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2636 if (!ret.empty())
2637 return ret;
2638
2639 ret = this->object->name();
2640
2641 Symbol_location_info info;
2642 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2643 {
2644 if (!info.source_file.empty())
2645 {
2646 ret += ":";
2647 ret += info.source_file;
2648 }
2649 size_t len = info.enclosing_symbol_name.length() + 100;
2650 char* buf = new char[len];
2651 snprintf(buf, len, _(":function %s"),
2652 info.enclosing_symbol_name.c_str());
2653 ret += buf;
2654 delete[] buf;
2655 return ret;
2656 }
2657
2658 ret += "(";
2659 ret += this->object->section_name(this->data_shndx);
2660 char buf[100];
2661 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2662 ret += buf;
2663 return ret;
2664 }
2665
2666 } // End namespace gold.
2667
2668 namespace
2669 {
2670
2671 using namespace gold;
2672
2673 // Read an ELF file with the header and return the appropriate
2674 // instance of Object.
2675
2676 template<int size, bool big_endian>
2677 Object*
2678 make_elf_sized_object(const std::string& name, Input_file* input_file,
2679 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2680 bool* punconfigured)
2681 {
2682 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2683 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2684 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2685 if (target == NULL)
2686 gold_fatal(_("%s: unsupported ELF machine number %d"),
2687 name.c_str(), ehdr.get_e_machine());
2688
2689 if (!parameters->target_valid())
2690 set_parameters_target(target);
2691 else if (target != &parameters->target())
2692 {
2693 if (punconfigured != NULL)
2694 *punconfigured = true;
2695 else
2696 gold_error(_("%s: incompatible target"), name.c_str());
2697 return NULL;
2698 }
2699
2700 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2701 ehdr);
2702 }
2703
2704 } // End anonymous namespace.
2705
2706 namespace gold
2707 {
2708
2709 // Return whether INPUT_FILE is an ELF object.
2710
2711 bool
2712 is_elf_object(Input_file* input_file, off_t offset,
2713 const unsigned char** start, int* read_size)
2714 {
2715 off_t filesize = input_file->file().filesize();
2716 int want = elfcpp::Elf_recognizer::max_header_size;
2717 if (filesize - offset < want)
2718 want = filesize - offset;
2719
2720 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2721 true, false);
2722 *start = p;
2723 *read_size = want;
2724
2725 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2726 }
2727
2728 // Read an ELF file and return the appropriate instance of Object.
2729
2730 Object*
2731 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2732 const unsigned char* p, section_offset_type bytes,
2733 bool* punconfigured)
2734 {
2735 if (punconfigured != NULL)
2736 *punconfigured = false;
2737
2738 std::string error;
2739 bool big_endian = false;
2740 int size = 0;
2741 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2742 &big_endian, &error))
2743 {
2744 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2745 return NULL;
2746 }
2747
2748 if (size == 32)
2749 {
2750 if (big_endian)
2751 {
2752 #ifdef HAVE_TARGET_32_BIG
2753 elfcpp::Ehdr<32, true> ehdr(p);
2754 return make_elf_sized_object<32, true>(name, input_file,
2755 offset, ehdr, punconfigured);
2756 #else
2757 if (punconfigured != NULL)
2758 *punconfigured = true;
2759 else
2760 gold_error(_("%s: not configured to support "
2761 "32-bit big-endian object"),
2762 name.c_str());
2763 return NULL;
2764 #endif
2765 }
2766 else
2767 {
2768 #ifdef HAVE_TARGET_32_LITTLE
2769 elfcpp::Ehdr<32, false> ehdr(p);
2770 return make_elf_sized_object<32, false>(name, input_file,
2771 offset, ehdr, punconfigured);
2772 #else
2773 if (punconfigured != NULL)
2774 *punconfigured = true;
2775 else
2776 gold_error(_("%s: not configured to support "
2777 "32-bit little-endian object"),
2778 name.c_str());
2779 return NULL;
2780 #endif
2781 }
2782 }
2783 else if (size == 64)
2784 {
2785 if (big_endian)
2786 {
2787 #ifdef HAVE_TARGET_64_BIG
2788 elfcpp::Ehdr<64, true> ehdr(p);
2789 return make_elf_sized_object<64, true>(name, input_file,
2790 offset, ehdr, punconfigured);
2791 #else
2792 if (punconfigured != NULL)
2793 *punconfigured = true;
2794 else
2795 gold_error(_("%s: not configured to support "
2796 "64-bit big-endian object"),
2797 name.c_str());
2798 return NULL;
2799 #endif
2800 }
2801 else
2802 {
2803 #ifdef HAVE_TARGET_64_LITTLE
2804 elfcpp::Ehdr<64, false> ehdr(p);
2805 return make_elf_sized_object<64, false>(name, input_file,
2806 offset, ehdr, punconfigured);
2807 #else
2808 if (punconfigured != NULL)
2809 *punconfigured = true;
2810 else
2811 gold_error(_("%s: not configured to support "
2812 "64-bit little-endian object"),
2813 name.c_str());
2814 return NULL;
2815 #endif
2816 }
2817 }
2818 else
2819 gold_unreachable();
2820 }
2821
2822 // Instantiate the templates we need.
2823
2824 #ifdef HAVE_TARGET_32_LITTLE
2825 template
2826 void
2827 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2828 Read_symbols_data*);
2829 #endif
2830
2831 #ifdef HAVE_TARGET_32_BIG
2832 template
2833 void
2834 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2835 Read_symbols_data*);
2836 #endif
2837
2838 #ifdef HAVE_TARGET_64_LITTLE
2839 template
2840 void
2841 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2842 Read_symbols_data*);
2843 #endif
2844
2845 #ifdef HAVE_TARGET_64_BIG
2846 template
2847 void
2848 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2849 Read_symbols_data*);
2850 #endif
2851
2852 #ifdef HAVE_TARGET_32_LITTLE
2853 template
2854 class Sized_relobj<32, false>;
2855 #endif
2856
2857 #ifdef HAVE_TARGET_32_BIG
2858 template
2859 class Sized_relobj<32, true>;
2860 #endif
2861
2862 #ifdef HAVE_TARGET_64_LITTLE
2863 template
2864 class Sized_relobj<64, false>;
2865 #endif
2866
2867 #ifdef HAVE_TARGET_64_BIG
2868 template
2869 class Sized_relobj<64, true>;
2870 #endif
2871
2872 #ifdef HAVE_TARGET_32_LITTLE
2873 template
2874 struct Relocate_info<32, false>;
2875 #endif
2876
2877 #ifdef HAVE_TARGET_32_BIG
2878 template
2879 struct Relocate_info<32, true>;
2880 #endif
2881
2882 #ifdef HAVE_TARGET_64_LITTLE
2883 template
2884 struct Relocate_info<64, false>;
2885 #endif
2886
2887 #ifdef HAVE_TARGET_64_BIG
2888 template
2889 struct Relocate_info<64, true>;
2890 #endif
2891
2892 #ifdef HAVE_TARGET_32_LITTLE
2893 template
2894 void
2895 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2896
2897 template
2898 void
2899 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2900 const unsigned char*);
2901 #endif
2902
2903 #ifdef HAVE_TARGET_32_BIG
2904 template
2905 void
2906 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2907
2908 template
2909 void
2910 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2911 const unsigned char*);
2912 #endif
2913
2914 #ifdef HAVE_TARGET_64_LITTLE
2915 template
2916 void
2917 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2918
2919 template
2920 void
2921 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2922 const unsigned char*);
2923 #endif
2924
2925 #ifdef HAVE_TARGET_64_BIG
2926 template
2927 void
2928 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2929
2930 template
2931 void
2932 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2933 const unsigned char*);
2934 #endif
2935
2936 } // End namespace gold.
This page took 0.093561 seconds and 5 git commands to generate.