Add SHF_COMPRESSED section decompression to gold
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
431 if (p != this->local_got_offsets_.end())
432 {
433 const Got_offset_list* got_offsets = p->second;
434 got_offsets->for_all_got_offsets(v);
435 }
436 }
437 }
438
439 // Get the address of an output section.
440
441 template<int size, bool big_endian>
442 uint64_t
443 Sized_relobj<size, big_endian>::do_output_section_address(
444 unsigned int shndx)
445 {
446 // If the input file is linked as --just-symbols, the output
447 // section address is the input section address.
448 if (this->just_symbols())
449 return this->section_address(shndx);
450
451 const Output_section* os = this->do_output_section(shndx);
452 gold_assert(os != NULL);
453 return os->address();
454 }
455
456 // Class Sized_relobj_file.
457
458 template<int size, bool big_endian>
459 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
460 const std::string& name,
461 Input_file* input_file,
462 off_t offset,
463 const elfcpp::Ehdr<size, big_endian>& ehdr)
464 : Sized_relobj<size, big_endian>(name, input_file, offset),
465 elf_file_(this, ehdr),
466 symtab_shndx_(-1U),
467 local_symbol_count_(0),
468 output_local_symbol_count_(0),
469 output_local_dynsym_count_(0),
470 symbols_(),
471 defined_count_(0),
472 local_symbol_offset_(0),
473 local_dynsym_offset_(0),
474 local_values_(),
475 local_plt_offsets_(),
476 kept_comdat_sections_(),
477 has_eh_frame_(false),
478 discarded_eh_frame_shndx_(-1U),
479 is_deferred_layout_(false),
480 deferred_layout_(),
481 deferred_layout_relocs_()
482 {
483 this->e_type_ = ehdr.get_e_type();
484 }
485
486 template<int size, bool big_endian>
487 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
488 {
489 }
490
491 // Set up an object file based on the file header. This sets up the
492 // section information.
493
494 template<int size, bool big_endian>
495 void
496 Sized_relobj_file<size, big_endian>::do_setup()
497 {
498 const unsigned int shnum = this->elf_file_.shnum();
499 this->set_shnum(shnum);
500 }
501
502 // Find the SHT_SYMTAB section, given the section headers. The ELF
503 // standard says that maybe in the future there can be more than one
504 // SHT_SYMTAB section. Until somebody figures out how that could
505 // work, we assume there is only one.
506
507 template<int size, bool big_endian>
508 void
509 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
510 {
511 const unsigned int shnum = this->shnum();
512 this->symtab_shndx_ = 0;
513 if (shnum > 0)
514 {
515 // Look through the sections in reverse order, since gas tends
516 // to put the symbol table at the end.
517 const unsigned char* p = pshdrs + shnum * This::shdr_size;
518 unsigned int i = shnum;
519 unsigned int xindex_shndx = 0;
520 unsigned int xindex_link = 0;
521 while (i > 0)
522 {
523 --i;
524 p -= This::shdr_size;
525 typename This::Shdr shdr(p);
526 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
527 {
528 this->symtab_shndx_ = i;
529 if (xindex_shndx > 0 && xindex_link == i)
530 {
531 Xindex* xindex =
532 new Xindex(this->elf_file_.large_shndx_offset());
533 xindex->read_symtab_xindex<size, big_endian>(this,
534 xindex_shndx,
535 pshdrs);
536 this->set_xindex(xindex);
537 }
538 break;
539 }
540
541 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
542 // one. This will work if it follows the SHT_SYMTAB
543 // section.
544 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
545 {
546 xindex_shndx = i;
547 xindex_link = this->adjust_shndx(shdr.get_sh_link());
548 }
549 }
550 }
551 }
552
553 // Return the Xindex structure to use for object with lots of
554 // sections.
555
556 template<int size, bool big_endian>
557 Xindex*
558 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
559 {
560 gold_assert(this->symtab_shndx_ != -1U);
561 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
562 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
563 return xindex;
564 }
565
566 // Return whether SHDR has the right type and flags to be a GNU
567 // .eh_frame section.
568
569 template<int size, bool big_endian>
570 bool
571 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
572 const elfcpp::Shdr<size, big_endian>* shdr) const
573 {
574 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
575 return ((sh_type == elfcpp::SHT_PROGBITS
576 || sh_type == elfcpp::SHT_X86_64_UNWIND)
577 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
578 }
579
580 // Find the section header with the given name.
581
582 template<int size, bool big_endian>
583 const unsigned char*
584 Object::find_shdr(
585 const unsigned char* pshdrs,
586 const char* name,
587 const char* names,
588 section_size_type names_size,
589 const unsigned char* hdr) const
590 {
591 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
592 const unsigned int shnum = this->shnum();
593 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
594 size_t sh_name = 0;
595
596 while (1)
597 {
598 if (hdr)
599 {
600 // We found HDR last time we were called, continue looking.
601 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
602 sh_name = shdr.get_sh_name();
603 }
604 else
605 {
606 // Look for the next occurrence of NAME in NAMES.
607 // The fact that .shstrtab produced by current GNU tools is
608 // string merged means we shouldn't have both .not.foo and
609 // .foo in .shstrtab, and multiple .foo sections should all
610 // have the same sh_name. However, this is not guaranteed
611 // by the ELF spec and not all ELF object file producers may
612 // be so clever.
613 size_t len = strlen(name) + 1;
614 const char *p = sh_name ? names + sh_name + len : names;
615 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
616 name, len));
617 if (p == NULL)
618 return NULL;
619 sh_name = p - names;
620 hdr = pshdrs;
621 if (sh_name == 0)
622 return hdr;
623 }
624
625 hdr += shdr_size;
626 while (hdr < hdr_end)
627 {
628 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
629 if (shdr.get_sh_name() == sh_name)
630 return hdr;
631 hdr += shdr_size;
632 }
633 hdr = NULL;
634 if (sh_name == 0)
635 return hdr;
636 }
637 }
638
639 // Return whether there is a GNU .eh_frame section, given the section
640 // headers and the section names.
641
642 template<int size, bool big_endian>
643 bool
644 Sized_relobj_file<size, big_endian>::find_eh_frame(
645 const unsigned char* pshdrs,
646 const char* names,
647 section_size_type names_size) const
648 {
649 const unsigned char* s = NULL;
650
651 while (1)
652 {
653 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
654 names, names_size, s);
655 if (s == NULL)
656 return false;
657
658 typename This::Shdr shdr(s);
659 if (this->check_eh_frame_flags(&shdr))
660 return true;
661 }
662 }
663
664 // Return TRUE if this is a section whose contents will be needed in the
665 // Add_symbols task. This function is only called for sections that have
666 // already passed the test in is_compressed_debug_section() and the debug
667 // section name prefix, ".debug"/".zdebug", has been skipped.
668
669 static bool
670 need_decompressed_section(const char* name)
671 {
672 if (*name++ != '_')
673 return false;
674
675 #ifdef ENABLE_THREADS
676 // Decompressing these sections now will help only if we're
677 // multithreaded.
678 if (parameters->options().threads())
679 {
680 // We will need .zdebug_str if this is not an incremental link
681 // (i.e., we are processing string merge sections) or if we need
682 // to build a gdb index.
683 if ((!parameters->incremental() || parameters->options().gdb_index())
684 && strcmp(name, "str") == 0)
685 return true;
686
687 // We will need these other sections when building a gdb index.
688 if (parameters->options().gdb_index()
689 && (strcmp(name, "info") == 0
690 || strcmp(name, "types") == 0
691 || strcmp(name, "pubnames") == 0
692 || strcmp(name, "pubtypes") == 0
693 || strcmp(name, "ranges") == 0
694 || strcmp(name, "abbrev") == 0))
695 return true;
696 }
697 #endif
698
699 // Even when single-threaded, we will need .zdebug_str if this is
700 // not an incremental link and we are building a gdb index.
701 // Otherwise, we would decompress the section twice: once for
702 // string merge processing, and once for building the gdb index.
703 if (!parameters->incremental()
704 && parameters->options().gdb_index()
705 && strcmp(name, "str") == 0)
706 return true;
707
708 return false;
709 }
710
711 // Build a table for any compressed debug sections, mapping each section index
712 // to the uncompressed size and (if needed) the decompressed contents.
713
714 template<int size, bool big_endian>
715 Compressed_section_map*
716 build_compressed_section_map(
717 const unsigned char* pshdrs,
718 unsigned int shnum,
719 const char* names,
720 section_size_type names_size,
721 Object* obj,
722 bool decompress_if_needed)
723 {
724 Compressed_section_map* uncompressed_map = new Compressed_section_map();
725 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
726 const unsigned char* p = pshdrs + shdr_size;
727
728 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
729 {
730 typename elfcpp::Shdr<size, big_endian> shdr(p);
731 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
732 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
733 {
734 if (shdr.get_sh_name() >= names_size)
735 {
736 obj->error(_("bad section name offset for section %u: %lu"),
737 i, static_cast<unsigned long>(shdr.get_sh_name()));
738 continue;
739 }
740
741 const char* name = names + shdr.get_sh_name();
742 bool is_compressed = ((shdr.get_sh_flags()
743 & elfcpp::SHF_COMPRESSED) != 0);
744 bool is_zcompressed = (!is_compressed
745 && is_compressed_debug_section(name));
746
747 if (is_zcompressed || is_compressed)
748 {
749 section_size_type len;
750 const unsigned char* contents =
751 obj->section_contents(i, &len, false);
752 uint64_t uncompressed_size;
753 if (is_zcompressed)
754 {
755 // Skip over the ".zdebug" prefix.
756 name += 7;
757 uncompressed_size = get_uncompressed_size(contents, len);
758 }
759 else
760 {
761 // Skip over the ".debug" prefix.
762 name += 6;
763 elfcpp::Chdr<size, big_endian> chdr(contents);
764 uncompressed_size = chdr.get_ch_size();
765 }
766 Compressed_section_info info;
767 info.size = convert_to_section_size_type(uncompressed_size);
768 info.flag = shdr.get_sh_flags();
769 info.contents = NULL;
770 if (uncompressed_size != -1ULL)
771 {
772 unsigned char* uncompressed_data = NULL;
773 if (decompress_if_needed && need_decompressed_section(name))
774 {
775 uncompressed_data = new unsigned char[uncompressed_size];
776 if (decompress_input_section(contents, len,
777 uncompressed_data,
778 uncompressed_size,
779 size, big_endian,
780 shdr.get_sh_flags()))
781 info.contents = uncompressed_data;
782 else
783 delete[] uncompressed_data;
784 }
785 (*uncompressed_map)[i] = info;
786 }
787 }
788 }
789 }
790 return uncompressed_map;
791 }
792
793 // Stash away info for a number of special sections.
794 // Return true if any of the sections found require local symbols to be read.
795
796 template<int size, bool big_endian>
797 bool
798 Sized_relobj_file<size, big_endian>::do_find_special_sections(
799 Read_symbols_data* sd)
800 {
801 const unsigned char* const pshdrs = sd->section_headers->data();
802 const unsigned char* namesu = sd->section_names->data();
803 const char* names = reinterpret_cast<const char*>(namesu);
804
805 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
806 this->has_eh_frame_ = true;
807
808 Compressed_section_map* compressed_sections =
809 build_compressed_section_map<size, big_endian>(
810 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
811 if (compressed_sections != NULL)
812 this->set_compressed_sections(compressed_sections);
813
814 return (this->has_eh_frame_
815 || (!parameters->options().relocatable()
816 && parameters->options().gdb_index()
817 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
818 || memmem(names, sd->section_names_size, "debug_types",
819 13) == 0)));
820 }
821
822 // Read the sections and symbols from an object file.
823
824 template<int size, bool big_endian>
825 void
826 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
827 {
828 this->base_read_symbols(sd);
829 }
830
831 // Read the sections and symbols from an object file. This is common
832 // code for all target-specific overrides of do_read_symbols().
833
834 template<int size, bool big_endian>
835 void
836 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
837 {
838 this->read_section_data(&this->elf_file_, sd);
839
840 const unsigned char* const pshdrs = sd->section_headers->data();
841
842 this->find_symtab(pshdrs);
843
844 bool need_local_symbols = this->do_find_special_sections(sd);
845
846 sd->symbols = NULL;
847 sd->symbols_size = 0;
848 sd->external_symbols_offset = 0;
849 sd->symbol_names = NULL;
850 sd->symbol_names_size = 0;
851
852 if (this->symtab_shndx_ == 0)
853 {
854 // No symbol table. Weird but legal.
855 return;
856 }
857
858 // Get the symbol table section header.
859 typename This::Shdr symtabshdr(pshdrs
860 + this->symtab_shndx_ * This::shdr_size);
861 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
862
863 // If this object has a .eh_frame section, or if building a .gdb_index
864 // section and there is debug info, we need all the symbols.
865 // Otherwise we only need the external symbols. While it would be
866 // simpler to just always read all the symbols, I've seen object
867 // files with well over 2000 local symbols, which for a 64-bit
868 // object file format is over 5 pages that we don't need to read
869 // now.
870
871 const int sym_size = This::sym_size;
872 const unsigned int loccount = symtabshdr.get_sh_info();
873 this->local_symbol_count_ = loccount;
874 this->local_values_.resize(loccount);
875 section_offset_type locsize = loccount * sym_size;
876 off_t dataoff = symtabshdr.get_sh_offset();
877 section_size_type datasize =
878 convert_to_section_size_type(symtabshdr.get_sh_size());
879 off_t extoff = dataoff + locsize;
880 section_size_type extsize = datasize - locsize;
881
882 off_t readoff = need_local_symbols ? dataoff : extoff;
883 section_size_type readsize = need_local_symbols ? datasize : extsize;
884
885 if (readsize == 0)
886 {
887 // No external symbols. Also weird but also legal.
888 return;
889 }
890
891 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
892
893 // Read the section header for the symbol names.
894 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
895 if (strtab_shndx >= this->shnum())
896 {
897 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
898 return;
899 }
900 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
901 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
902 {
903 this->error(_("symbol table name section has wrong type: %u"),
904 static_cast<unsigned int>(strtabshdr.get_sh_type()));
905 return;
906 }
907
908 // Read the symbol names.
909 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
910 strtabshdr.get_sh_size(),
911 false, true);
912
913 sd->symbols = fvsymtab;
914 sd->symbols_size = readsize;
915 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
916 sd->symbol_names = fvstrtab;
917 sd->symbol_names_size =
918 convert_to_section_size_type(strtabshdr.get_sh_size());
919 }
920
921 // Return the section index of symbol SYM. Set *VALUE to its value in
922 // the object file. Set *IS_ORDINARY if this is an ordinary section
923 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
924 // Note that for a symbol which is not defined in this object file,
925 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
926 // the final value of the symbol in the link.
927
928 template<int size, bool big_endian>
929 unsigned int
930 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
931 Address* value,
932 bool* is_ordinary)
933 {
934 section_size_type symbols_size;
935 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
936 &symbols_size,
937 false);
938
939 const size_t count = symbols_size / This::sym_size;
940 gold_assert(sym < count);
941
942 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
943 *value = elfsym.get_st_value();
944
945 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
946 }
947
948 // Return whether to include a section group in the link. LAYOUT is
949 // used to keep track of which section groups we have already seen.
950 // INDEX is the index of the section group and SHDR is the section
951 // header. If we do not want to include this group, we set bits in
952 // OMIT for each section which should be discarded.
953
954 template<int size, bool big_endian>
955 bool
956 Sized_relobj_file<size, big_endian>::include_section_group(
957 Symbol_table* symtab,
958 Layout* layout,
959 unsigned int index,
960 const char* name,
961 const unsigned char* shdrs,
962 const char* section_names,
963 section_size_type section_names_size,
964 std::vector<bool>* omit)
965 {
966 // Read the section contents.
967 typename This::Shdr shdr(shdrs + index * This::shdr_size);
968 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
969 shdr.get_sh_size(), true, false);
970 const elfcpp::Elf_Word* pword =
971 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
972
973 // The first word contains flags. We only care about COMDAT section
974 // groups. Other section groups are always included in the link
975 // just like ordinary sections.
976 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
977
978 // Look up the group signature, which is the name of a symbol. ELF
979 // uses a symbol name because some group signatures are long, and
980 // the name is generally already in the symbol table, so it makes
981 // sense to put the long string just once in .strtab rather than in
982 // both .strtab and .shstrtab.
983
984 // Get the appropriate symbol table header (this will normally be
985 // the single SHT_SYMTAB section, but in principle it need not be).
986 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
987 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
988
989 // Read the symbol table entry.
990 unsigned int symndx = shdr.get_sh_info();
991 if (symndx >= symshdr.get_sh_size() / This::sym_size)
992 {
993 this->error(_("section group %u info %u out of range"),
994 index, symndx);
995 return false;
996 }
997 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
998 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
999 false);
1000 elfcpp::Sym<size, big_endian> sym(psym);
1001
1002 // Read the symbol table names.
1003 section_size_type symnamelen;
1004 const unsigned char* psymnamesu;
1005 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1006 &symnamelen, true);
1007 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1008
1009 // Get the section group signature.
1010 if (sym.get_st_name() >= symnamelen)
1011 {
1012 this->error(_("symbol %u name offset %u out of range"),
1013 symndx, sym.get_st_name());
1014 return false;
1015 }
1016
1017 std::string signature(psymnames + sym.get_st_name());
1018
1019 // It seems that some versions of gas will create a section group
1020 // associated with a section symbol, and then fail to give a name to
1021 // the section symbol. In such a case, use the name of the section.
1022 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1023 {
1024 bool is_ordinary;
1025 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1026 sym.get_st_shndx(),
1027 &is_ordinary);
1028 if (!is_ordinary || sym_shndx >= this->shnum())
1029 {
1030 this->error(_("symbol %u invalid section index %u"),
1031 symndx, sym_shndx);
1032 return false;
1033 }
1034 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1035 if (member_shdr.get_sh_name() < section_names_size)
1036 signature = section_names + member_shdr.get_sh_name();
1037 }
1038
1039 // Record this section group in the layout, and see whether we've already
1040 // seen one with the same signature.
1041 bool include_group;
1042 bool is_comdat;
1043 Kept_section* kept_section = NULL;
1044
1045 if ((flags & elfcpp::GRP_COMDAT) == 0)
1046 {
1047 include_group = true;
1048 is_comdat = false;
1049 }
1050 else
1051 {
1052 include_group = layout->find_or_add_kept_section(signature,
1053 this, index, true,
1054 true, &kept_section);
1055 is_comdat = true;
1056 }
1057
1058 if (is_comdat && include_group)
1059 {
1060 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1061 if (incremental_inputs != NULL)
1062 incremental_inputs->report_comdat_group(this, signature.c_str());
1063 }
1064
1065 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1066
1067 std::vector<unsigned int> shndxes;
1068 bool relocate_group = include_group && parameters->options().relocatable();
1069 if (relocate_group)
1070 shndxes.reserve(count - 1);
1071
1072 for (size_t i = 1; i < count; ++i)
1073 {
1074 elfcpp::Elf_Word shndx =
1075 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1076
1077 if (relocate_group)
1078 shndxes.push_back(shndx);
1079
1080 if (shndx >= this->shnum())
1081 {
1082 this->error(_("section %u in section group %u out of range"),
1083 shndx, index);
1084 continue;
1085 }
1086
1087 // Check for an earlier section number, since we're going to get
1088 // it wrong--we may have already decided to include the section.
1089 if (shndx < index)
1090 this->error(_("invalid section group %u refers to earlier section %u"),
1091 index, shndx);
1092
1093 // Get the name of the member section.
1094 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1095 if (member_shdr.get_sh_name() >= section_names_size)
1096 {
1097 // This is an error, but it will be diagnosed eventually
1098 // in do_layout, so we don't need to do anything here but
1099 // ignore it.
1100 continue;
1101 }
1102 std::string mname(section_names + member_shdr.get_sh_name());
1103
1104 if (include_group)
1105 {
1106 if (is_comdat)
1107 kept_section->add_comdat_section(mname, shndx,
1108 member_shdr.get_sh_size());
1109 }
1110 else
1111 {
1112 (*omit)[shndx] = true;
1113
1114 if (is_comdat)
1115 {
1116 Relobj* kept_object = kept_section->object();
1117 if (kept_section->is_comdat())
1118 {
1119 // Find the corresponding kept section, and store
1120 // that info in the discarded section table.
1121 unsigned int kept_shndx;
1122 uint64_t kept_size;
1123 if (kept_section->find_comdat_section(mname, &kept_shndx,
1124 &kept_size))
1125 {
1126 // We don't keep a mapping for this section if
1127 // it has a different size. The mapping is only
1128 // used for relocation processing, and we don't
1129 // want to treat the sections as similar if the
1130 // sizes are different. Checking the section
1131 // size is the approach used by the GNU linker.
1132 if (kept_size == member_shdr.get_sh_size())
1133 this->set_kept_comdat_section(shndx, kept_object,
1134 kept_shndx);
1135 }
1136 }
1137 else
1138 {
1139 // The existing section is a linkonce section. Add
1140 // a mapping if there is exactly one section in the
1141 // group (which is true when COUNT == 2) and if it
1142 // is the same size.
1143 if (count == 2
1144 && (kept_section->linkonce_size()
1145 == member_shdr.get_sh_size()))
1146 this->set_kept_comdat_section(shndx, kept_object,
1147 kept_section->shndx());
1148 }
1149 }
1150 }
1151 }
1152
1153 if (relocate_group)
1154 layout->layout_group(symtab, this, index, name, signature.c_str(),
1155 shdr, flags, &shndxes);
1156
1157 return include_group;
1158 }
1159
1160 // Whether to include a linkonce section in the link. NAME is the
1161 // name of the section and SHDR is the section header.
1162
1163 // Linkonce sections are a GNU extension implemented in the original
1164 // GNU linker before section groups were defined. The semantics are
1165 // that we only include one linkonce section with a given name. The
1166 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1167 // where T is the type of section and SYMNAME is the name of a symbol.
1168 // In an attempt to make linkonce sections interact well with section
1169 // groups, we try to identify SYMNAME and use it like a section group
1170 // signature. We want to block section groups with that signature,
1171 // but not other linkonce sections with that signature. We also use
1172 // the full name of the linkonce section as a normal section group
1173 // signature.
1174
1175 template<int size, bool big_endian>
1176 bool
1177 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1178 Layout* layout,
1179 unsigned int index,
1180 const char* name,
1181 const elfcpp::Shdr<size, big_endian>& shdr)
1182 {
1183 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1184 // In general the symbol name we want will be the string following
1185 // the last '.'. However, we have to handle the case of
1186 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1187 // some versions of gcc. So we use a heuristic: if the name starts
1188 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1189 // we look for the last '.'. We can't always simply skip
1190 // ".gnu.linkonce.X", because we have to deal with cases like
1191 // ".gnu.linkonce.d.rel.ro.local".
1192 const char* const linkonce_t = ".gnu.linkonce.t.";
1193 const char* symname;
1194 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1195 symname = name + strlen(linkonce_t);
1196 else
1197 symname = strrchr(name, '.') + 1;
1198 std::string sig1(symname);
1199 std::string sig2(name);
1200 Kept_section* kept1;
1201 Kept_section* kept2;
1202 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1203 false, &kept1);
1204 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1205 true, &kept2);
1206
1207 if (!include2)
1208 {
1209 // We are not including this section because we already saw the
1210 // name of the section as a signature. This normally implies
1211 // that the kept section is another linkonce section. If it is
1212 // the same size, record it as the section which corresponds to
1213 // this one.
1214 if (kept2->object() != NULL
1215 && !kept2->is_comdat()
1216 && kept2->linkonce_size() == sh_size)
1217 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1218 }
1219 else if (!include1)
1220 {
1221 // The section is being discarded on the basis of its symbol
1222 // name. This means that the corresponding kept section was
1223 // part of a comdat group, and it will be difficult to identify
1224 // the specific section within that group that corresponds to
1225 // this linkonce section. We'll handle the simple case where
1226 // the group has only one member section. Otherwise, it's not
1227 // worth the effort.
1228 unsigned int kept_shndx;
1229 uint64_t kept_size;
1230 if (kept1->object() != NULL
1231 && kept1->is_comdat()
1232 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1233 && kept_size == sh_size)
1234 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1235 }
1236 else
1237 {
1238 kept1->set_linkonce_size(sh_size);
1239 kept2->set_linkonce_size(sh_size);
1240 }
1241
1242 return include1 && include2;
1243 }
1244
1245 // Layout an input section.
1246
1247 template<int size, bool big_endian>
1248 inline void
1249 Sized_relobj_file<size, big_endian>::layout_section(
1250 Layout* layout,
1251 unsigned int shndx,
1252 const char* name,
1253 const typename This::Shdr& shdr,
1254 unsigned int reloc_shndx,
1255 unsigned int reloc_type)
1256 {
1257 off_t offset;
1258 Output_section* os = layout->layout(this, shndx, name, shdr,
1259 reloc_shndx, reloc_type, &offset);
1260
1261 this->output_sections()[shndx] = os;
1262 if (offset == -1)
1263 this->section_offsets()[shndx] = invalid_address;
1264 else
1265 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1266
1267 // If this section requires special handling, and if there are
1268 // relocs that apply to it, then we must do the special handling
1269 // before we apply the relocs.
1270 if (offset == -1 && reloc_shndx != 0)
1271 this->set_relocs_must_follow_section_writes();
1272 }
1273
1274 // Layout an input .eh_frame section.
1275
1276 template<int size, bool big_endian>
1277 void
1278 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1279 Layout* layout,
1280 const unsigned char* symbols_data,
1281 section_size_type symbols_size,
1282 const unsigned char* symbol_names_data,
1283 section_size_type symbol_names_size,
1284 unsigned int shndx,
1285 const typename This::Shdr& shdr,
1286 unsigned int reloc_shndx,
1287 unsigned int reloc_type)
1288 {
1289 gold_assert(this->has_eh_frame_);
1290
1291 off_t offset;
1292 Output_section* os = layout->layout_eh_frame(this,
1293 symbols_data,
1294 symbols_size,
1295 symbol_names_data,
1296 symbol_names_size,
1297 shndx,
1298 shdr,
1299 reloc_shndx,
1300 reloc_type,
1301 &offset);
1302 this->output_sections()[shndx] = os;
1303 if (os == NULL || offset == -1)
1304 {
1305 // An object can contain at most one section holding exception
1306 // frame information.
1307 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1308 this->discarded_eh_frame_shndx_ = shndx;
1309 this->section_offsets()[shndx] = invalid_address;
1310 }
1311 else
1312 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1313
1314 // If this section requires special handling, and if there are
1315 // relocs that aply to it, then we must do the special handling
1316 // before we apply the relocs.
1317 if (os != NULL && offset == -1 && reloc_shndx != 0)
1318 this->set_relocs_must_follow_section_writes();
1319 }
1320
1321 // Lay out the input sections. We walk through the sections and check
1322 // whether they should be included in the link. If they should, we
1323 // pass them to the Layout object, which will return an output section
1324 // and an offset.
1325 // This function is called twice sometimes, two passes, when mapping
1326 // of input sections to output sections must be delayed.
1327 // This is true for the following :
1328 // * Garbage collection (--gc-sections): Some input sections will be
1329 // discarded and hence the assignment must wait until the second pass.
1330 // In the first pass, it is for setting up some sections as roots to
1331 // a work-list for --gc-sections and to do comdat processing.
1332 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1333 // will be folded and hence the assignment must wait.
1334 // * Using plugins to map some sections to unique segments: Mapping
1335 // some sections to unique segments requires mapping them to unique
1336 // output sections too. This can be done via plugins now and this
1337 // information is not available in the first pass.
1338
1339 template<int size, bool big_endian>
1340 void
1341 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1342 Layout* layout,
1343 Read_symbols_data* sd)
1344 {
1345 const unsigned int shnum = this->shnum();
1346
1347 /* Should this function be called twice? */
1348 bool is_two_pass = (parameters->options().gc_sections()
1349 || parameters->options().icf_enabled()
1350 || layout->is_unique_segment_for_sections_specified());
1351
1352 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1353 a two-pass approach is not needed. */
1354 bool is_pass_one = false;
1355 bool is_pass_two = false;
1356
1357 Symbols_data* gc_sd = NULL;
1358
1359 /* Check if do_layout needs to be two-pass. If so, find out which pass
1360 should happen. In the first pass, the data in sd is saved to be used
1361 later in the second pass. */
1362 if (is_two_pass)
1363 {
1364 gc_sd = this->get_symbols_data();
1365 if (gc_sd == NULL)
1366 {
1367 gold_assert(sd != NULL);
1368 is_pass_one = true;
1369 }
1370 else
1371 {
1372 if (parameters->options().gc_sections())
1373 gold_assert(symtab->gc()->is_worklist_ready());
1374 if (parameters->options().icf_enabled())
1375 gold_assert(symtab->icf()->is_icf_ready());
1376 is_pass_two = true;
1377 }
1378 }
1379
1380 if (shnum == 0)
1381 return;
1382
1383 if (is_pass_one)
1384 {
1385 // During garbage collection save the symbols data to use it when
1386 // re-entering this function.
1387 gc_sd = new Symbols_data;
1388 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1389 this->set_symbols_data(gc_sd);
1390 }
1391
1392 const unsigned char* section_headers_data = NULL;
1393 section_size_type section_names_size;
1394 const unsigned char* symbols_data = NULL;
1395 section_size_type symbols_size;
1396 const unsigned char* symbol_names_data = NULL;
1397 section_size_type symbol_names_size;
1398
1399 if (is_two_pass)
1400 {
1401 section_headers_data = gc_sd->section_headers_data;
1402 section_names_size = gc_sd->section_names_size;
1403 symbols_data = gc_sd->symbols_data;
1404 symbols_size = gc_sd->symbols_size;
1405 symbol_names_data = gc_sd->symbol_names_data;
1406 symbol_names_size = gc_sd->symbol_names_size;
1407 }
1408 else
1409 {
1410 section_headers_data = sd->section_headers->data();
1411 section_names_size = sd->section_names_size;
1412 if (sd->symbols != NULL)
1413 symbols_data = sd->symbols->data();
1414 symbols_size = sd->symbols_size;
1415 if (sd->symbol_names != NULL)
1416 symbol_names_data = sd->symbol_names->data();
1417 symbol_names_size = sd->symbol_names_size;
1418 }
1419
1420 // Get the section headers.
1421 const unsigned char* shdrs = section_headers_data;
1422 const unsigned char* pshdrs;
1423
1424 // Get the section names.
1425 const unsigned char* pnamesu = (is_two_pass
1426 ? gc_sd->section_names_data
1427 : sd->section_names->data());
1428
1429 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1430
1431 // If any input files have been claimed by plugins, we need to defer
1432 // actual layout until the replacement files have arrived.
1433 const bool should_defer_layout =
1434 (parameters->options().has_plugins()
1435 && parameters->options().plugins()->should_defer_layout());
1436 unsigned int num_sections_to_defer = 0;
1437
1438 // For each section, record the index of the reloc section if any.
1439 // Use 0 to mean that there is no reloc section, -1U to mean that
1440 // there is more than one.
1441 std::vector<unsigned int> reloc_shndx(shnum, 0);
1442 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1443 // Skip the first, dummy, section.
1444 pshdrs = shdrs + This::shdr_size;
1445 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1446 {
1447 typename This::Shdr shdr(pshdrs);
1448
1449 // Count the number of sections whose layout will be deferred.
1450 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1451 ++num_sections_to_defer;
1452
1453 unsigned int sh_type = shdr.get_sh_type();
1454 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1455 {
1456 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1457 if (target_shndx == 0 || target_shndx >= shnum)
1458 {
1459 this->error(_("relocation section %u has bad info %u"),
1460 i, target_shndx);
1461 continue;
1462 }
1463
1464 if (reloc_shndx[target_shndx] != 0)
1465 reloc_shndx[target_shndx] = -1U;
1466 else
1467 {
1468 reloc_shndx[target_shndx] = i;
1469 reloc_type[target_shndx] = sh_type;
1470 }
1471 }
1472 }
1473
1474 Output_sections& out_sections(this->output_sections());
1475 std::vector<Address>& out_section_offsets(this->section_offsets());
1476
1477 if (!is_pass_two)
1478 {
1479 out_sections.resize(shnum);
1480 out_section_offsets.resize(shnum);
1481 }
1482
1483 // If we are only linking for symbols, then there is nothing else to
1484 // do here.
1485 if (this->input_file()->just_symbols())
1486 {
1487 if (!is_pass_two)
1488 {
1489 delete sd->section_headers;
1490 sd->section_headers = NULL;
1491 delete sd->section_names;
1492 sd->section_names = NULL;
1493 }
1494 return;
1495 }
1496
1497 if (num_sections_to_defer > 0)
1498 {
1499 parameters->options().plugins()->add_deferred_layout_object(this);
1500 this->deferred_layout_.reserve(num_sections_to_defer);
1501 this->is_deferred_layout_ = true;
1502 }
1503
1504 // Whether we've seen a .note.GNU-stack section.
1505 bool seen_gnu_stack = false;
1506 // The flags of a .note.GNU-stack section.
1507 uint64_t gnu_stack_flags = 0;
1508
1509 // Keep track of which sections to omit.
1510 std::vector<bool> omit(shnum, false);
1511
1512 // Keep track of reloc sections when emitting relocations.
1513 const bool relocatable = parameters->options().relocatable();
1514 const bool emit_relocs = (relocatable
1515 || parameters->options().emit_relocs());
1516 std::vector<unsigned int> reloc_sections;
1517
1518 // Keep track of .eh_frame sections.
1519 std::vector<unsigned int> eh_frame_sections;
1520
1521 // Keep track of .debug_info and .debug_types sections.
1522 std::vector<unsigned int> debug_info_sections;
1523 std::vector<unsigned int> debug_types_sections;
1524
1525 // Skip the first, dummy, section.
1526 pshdrs = shdrs + This::shdr_size;
1527 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1528 {
1529 typename This::Shdr shdr(pshdrs);
1530
1531 if (shdr.get_sh_name() >= section_names_size)
1532 {
1533 this->error(_("bad section name offset for section %u: %lu"),
1534 i, static_cast<unsigned long>(shdr.get_sh_name()));
1535 return;
1536 }
1537
1538 const char* name = pnames + shdr.get_sh_name();
1539
1540 if (!is_pass_two)
1541 {
1542 if (this->handle_gnu_warning_section(name, i, symtab))
1543 {
1544 if (!relocatable && !parameters->options().shared())
1545 omit[i] = true;
1546 }
1547
1548 // The .note.GNU-stack section is special. It gives the
1549 // protection flags that this object file requires for the stack
1550 // in memory.
1551 if (strcmp(name, ".note.GNU-stack") == 0)
1552 {
1553 seen_gnu_stack = true;
1554 gnu_stack_flags |= shdr.get_sh_flags();
1555 omit[i] = true;
1556 }
1557
1558 // The .note.GNU-split-stack section is also special. It
1559 // indicates that the object was compiled with
1560 // -fsplit-stack.
1561 if (this->handle_split_stack_section(name))
1562 {
1563 if (!relocatable && !parameters->options().shared())
1564 omit[i] = true;
1565 }
1566
1567 // Skip attributes section.
1568 if (parameters->target().is_attributes_section(name))
1569 {
1570 omit[i] = true;
1571 }
1572
1573 bool discard = omit[i];
1574 if (!discard)
1575 {
1576 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1577 {
1578 if (!this->include_section_group(symtab, layout, i, name,
1579 shdrs, pnames,
1580 section_names_size,
1581 &omit))
1582 discard = true;
1583 }
1584 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1585 && Layout::is_linkonce(name))
1586 {
1587 if (!this->include_linkonce_section(layout, i, name, shdr))
1588 discard = true;
1589 }
1590 }
1591
1592 // Add the section to the incremental inputs layout.
1593 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1594 if (incremental_inputs != NULL
1595 && !discard
1596 && can_incremental_update(shdr.get_sh_type()))
1597 {
1598 off_t sh_size = shdr.get_sh_size();
1599 section_size_type uncompressed_size;
1600 if (this->section_is_compressed(i, &uncompressed_size))
1601 sh_size = uncompressed_size;
1602 incremental_inputs->report_input_section(this, i, name, sh_size);
1603 }
1604
1605 if (discard)
1606 {
1607 // Do not include this section in the link.
1608 out_sections[i] = NULL;
1609 out_section_offsets[i] = invalid_address;
1610 continue;
1611 }
1612 }
1613
1614 if (is_pass_one && parameters->options().gc_sections())
1615 {
1616 if (this->is_section_name_included(name)
1617 || layout->keep_input_section (this, name)
1618 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1619 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1620 {
1621 symtab->gc()->worklist().push_back(Section_id(this, i));
1622 }
1623 // If the section name XXX can be represented as a C identifier
1624 // it cannot be discarded if there are references to
1625 // __start_XXX and __stop_XXX symbols. These need to be
1626 // specially handled.
1627 if (is_cident(name))
1628 {
1629 symtab->gc()->add_cident_section(name, Section_id(this, i));
1630 }
1631 }
1632
1633 // When doing a relocatable link we are going to copy input
1634 // reloc sections into the output. We only want to copy the
1635 // ones associated with sections which are not being discarded.
1636 // However, we don't know that yet for all sections. So save
1637 // reloc sections and process them later. Garbage collection is
1638 // not triggered when relocatable code is desired.
1639 if (emit_relocs
1640 && (shdr.get_sh_type() == elfcpp::SHT_REL
1641 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1642 {
1643 reloc_sections.push_back(i);
1644 continue;
1645 }
1646
1647 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1648 continue;
1649
1650 // The .eh_frame section is special. It holds exception frame
1651 // information that we need to read in order to generate the
1652 // exception frame header. We process these after all the other
1653 // sections so that the exception frame reader can reliably
1654 // determine which sections are being discarded, and discard the
1655 // corresponding information.
1656 if (!relocatable
1657 && strcmp(name, ".eh_frame") == 0
1658 && this->check_eh_frame_flags(&shdr))
1659 {
1660 if (is_pass_one)
1661 {
1662 if (this->is_deferred_layout())
1663 out_sections[i] = reinterpret_cast<Output_section*>(2);
1664 else
1665 out_sections[i] = reinterpret_cast<Output_section*>(1);
1666 out_section_offsets[i] = invalid_address;
1667 }
1668 else if (this->is_deferred_layout())
1669 this->deferred_layout_.push_back(Deferred_layout(i, name,
1670 pshdrs,
1671 reloc_shndx[i],
1672 reloc_type[i]));
1673 else
1674 eh_frame_sections.push_back(i);
1675 continue;
1676 }
1677
1678 if (is_pass_two && parameters->options().gc_sections())
1679 {
1680 // This is executed during the second pass of garbage
1681 // collection. do_layout has been called before and some
1682 // sections have been already discarded. Simply ignore
1683 // such sections this time around.
1684 if (out_sections[i] == NULL)
1685 {
1686 gold_assert(out_section_offsets[i] == invalid_address);
1687 continue;
1688 }
1689 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1690 && symtab->gc()->is_section_garbage(this, i))
1691 {
1692 if (parameters->options().print_gc_sections())
1693 gold_info(_("%s: removing unused section from '%s'"
1694 " in file '%s'"),
1695 program_name, this->section_name(i).c_str(),
1696 this->name().c_str());
1697 out_sections[i] = NULL;
1698 out_section_offsets[i] = invalid_address;
1699 continue;
1700 }
1701 }
1702
1703 if (is_pass_two && parameters->options().icf_enabled())
1704 {
1705 if (out_sections[i] == NULL)
1706 {
1707 gold_assert(out_section_offsets[i] == invalid_address);
1708 continue;
1709 }
1710 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1711 && symtab->icf()->is_section_folded(this, i))
1712 {
1713 if (parameters->options().print_icf_sections())
1714 {
1715 Section_id folded =
1716 symtab->icf()->get_folded_section(this, i);
1717 Relobj* folded_obj =
1718 reinterpret_cast<Relobj*>(folded.first);
1719 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1720 "into '%s' in file '%s'"),
1721 program_name, this->section_name(i).c_str(),
1722 this->name().c_str(),
1723 folded_obj->section_name(folded.second).c_str(),
1724 folded_obj->name().c_str());
1725 }
1726 out_sections[i] = NULL;
1727 out_section_offsets[i] = invalid_address;
1728 continue;
1729 }
1730 }
1731
1732 // Defer layout here if input files are claimed by plugins. When gc
1733 // is turned on this function is called twice; we only want to do this
1734 // on the first pass.
1735 if (!is_pass_two
1736 && this->is_deferred_layout()
1737 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1738 {
1739 this->deferred_layout_.push_back(Deferred_layout(i, name,
1740 pshdrs,
1741 reloc_shndx[i],
1742 reloc_type[i]));
1743 // Put dummy values here; real values will be supplied by
1744 // do_layout_deferred_sections.
1745 out_sections[i] = reinterpret_cast<Output_section*>(2);
1746 out_section_offsets[i] = invalid_address;
1747 continue;
1748 }
1749
1750 // During gc_pass_two if a section that was previously deferred is
1751 // found, do not layout the section as layout_deferred_sections will
1752 // do it later from gold.cc.
1753 if (is_pass_two
1754 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1755 continue;
1756
1757 if (is_pass_one)
1758 {
1759 // This is during garbage collection. The out_sections are
1760 // assigned in the second call to this function.
1761 out_sections[i] = reinterpret_cast<Output_section*>(1);
1762 out_section_offsets[i] = invalid_address;
1763 }
1764 else
1765 {
1766 // When garbage collection is switched on the actual layout
1767 // only happens in the second call.
1768 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1769 reloc_type[i]);
1770
1771 // When generating a .gdb_index section, we do additional
1772 // processing of .debug_info and .debug_types sections after all
1773 // the other sections for the same reason as above.
1774 if (!relocatable
1775 && parameters->options().gdb_index()
1776 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1777 {
1778 if (strcmp(name, ".debug_info") == 0
1779 || strcmp(name, ".zdebug_info") == 0)
1780 debug_info_sections.push_back(i);
1781 else if (strcmp(name, ".debug_types") == 0
1782 || strcmp(name, ".zdebug_types") == 0)
1783 debug_types_sections.push_back(i);
1784 }
1785 }
1786 }
1787
1788 if (!is_pass_two)
1789 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1790
1791 // Handle the .eh_frame sections after the other sections.
1792 gold_assert(!is_pass_one || eh_frame_sections.empty());
1793 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1794 p != eh_frame_sections.end();
1795 ++p)
1796 {
1797 unsigned int i = *p;
1798 const unsigned char* pshdr;
1799 pshdr = section_headers_data + i * This::shdr_size;
1800 typename This::Shdr shdr(pshdr);
1801
1802 this->layout_eh_frame_section(layout,
1803 symbols_data,
1804 symbols_size,
1805 symbol_names_data,
1806 symbol_names_size,
1807 i,
1808 shdr,
1809 reloc_shndx[i],
1810 reloc_type[i]);
1811 }
1812
1813 // When doing a relocatable link handle the reloc sections at the
1814 // end. Garbage collection and Identical Code Folding is not
1815 // turned on for relocatable code.
1816 if (emit_relocs)
1817 this->size_relocatable_relocs();
1818
1819 gold_assert(!is_two_pass || reloc_sections.empty());
1820
1821 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1822 p != reloc_sections.end();
1823 ++p)
1824 {
1825 unsigned int i = *p;
1826 const unsigned char* pshdr;
1827 pshdr = section_headers_data + i * This::shdr_size;
1828 typename This::Shdr shdr(pshdr);
1829
1830 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1831 if (data_shndx >= shnum)
1832 {
1833 // We already warned about this above.
1834 continue;
1835 }
1836
1837 Output_section* data_section = out_sections[data_shndx];
1838 if (data_section == reinterpret_cast<Output_section*>(2))
1839 {
1840 if (is_pass_two)
1841 continue;
1842 // The layout for the data section was deferred, so we need
1843 // to defer the relocation section, too.
1844 const char* name = pnames + shdr.get_sh_name();
1845 this->deferred_layout_relocs_.push_back(
1846 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1847 out_sections[i] = reinterpret_cast<Output_section*>(2);
1848 out_section_offsets[i] = invalid_address;
1849 continue;
1850 }
1851 if (data_section == NULL)
1852 {
1853 out_sections[i] = NULL;
1854 out_section_offsets[i] = invalid_address;
1855 continue;
1856 }
1857
1858 Relocatable_relocs* rr = new Relocatable_relocs();
1859 this->set_relocatable_relocs(i, rr);
1860
1861 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1862 rr);
1863 out_sections[i] = os;
1864 out_section_offsets[i] = invalid_address;
1865 }
1866
1867 // When building a .gdb_index section, scan the .debug_info and
1868 // .debug_types sections.
1869 gold_assert(!is_pass_one
1870 || (debug_info_sections.empty() && debug_types_sections.empty()));
1871 for (std::vector<unsigned int>::const_iterator p
1872 = debug_info_sections.begin();
1873 p != debug_info_sections.end();
1874 ++p)
1875 {
1876 unsigned int i = *p;
1877 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1878 i, reloc_shndx[i], reloc_type[i]);
1879 }
1880 for (std::vector<unsigned int>::const_iterator p
1881 = debug_types_sections.begin();
1882 p != debug_types_sections.end();
1883 ++p)
1884 {
1885 unsigned int i = *p;
1886 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1887 i, reloc_shndx[i], reloc_type[i]);
1888 }
1889
1890 if (is_pass_two)
1891 {
1892 delete[] gc_sd->section_headers_data;
1893 delete[] gc_sd->section_names_data;
1894 delete[] gc_sd->symbols_data;
1895 delete[] gc_sd->symbol_names_data;
1896 this->set_symbols_data(NULL);
1897 }
1898 else
1899 {
1900 delete sd->section_headers;
1901 sd->section_headers = NULL;
1902 delete sd->section_names;
1903 sd->section_names = NULL;
1904 }
1905 }
1906
1907 // Layout sections whose layout was deferred while waiting for
1908 // input files from a plugin.
1909
1910 template<int size, bool big_endian>
1911 void
1912 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1913 {
1914 typename std::vector<Deferred_layout>::iterator deferred;
1915
1916 for (deferred = this->deferred_layout_.begin();
1917 deferred != this->deferred_layout_.end();
1918 ++deferred)
1919 {
1920 typename This::Shdr shdr(deferred->shdr_data_);
1921
1922 if (!parameters->options().relocatable()
1923 && deferred->name_ == ".eh_frame"
1924 && this->check_eh_frame_flags(&shdr))
1925 {
1926 // Checking is_section_included is not reliable for
1927 // .eh_frame sections, because they do not have an output
1928 // section. This is not a problem normally because we call
1929 // layout_eh_frame_section unconditionally, but when
1930 // deferring sections that is not true. We don't want to
1931 // keep all .eh_frame sections because that will cause us to
1932 // keep all sections that they refer to, which is the wrong
1933 // way around. Instead, the eh_frame code will discard
1934 // .eh_frame sections that refer to discarded sections.
1935
1936 // Reading the symbols again here may be slow.
1937 Read_symbols_data sd;
1938 this->base_read_symbols(&sd);
1939 this->layout_eh_frame_section(layout,
1940 sd.symbols->data(),
1941 sd.symbols_size,
1942 sd.symbol_names->data(),
1943 sd.symbol_names_size,
1944 deferred->shndx_,
1945 shdr,
1946 deferred->reloc_shndx_,
1947 deferred->reloc_type_);
1948 continue;
1949 }
1950
1951 // If the section is not included, it is because the garbage collector
1952 // decided it is not needed. Avoid reverting that decision.
1953 if (!this->is_section_included(deferred->shndx_))
1954 continue;
1955
1956 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1957 shdr, deferred->reloc_shndx_,
1958 deferred->reloc_type_);
1959 }
1960
1961 this->deferred_layout_.clear();
1962
1963 // Now handle the deferred relocation sections.
1964
1965 Output_sections& out_sections(this->output_sections());
1966 std::vector<Address>& out_section_offsets(this->section_offsets());
1967
1968 for (deferred = this->deferred_layout_relocs_.begin();
1969 deferred != this->deferred_layout_relocs_.end();
1970 ++deferred)
1971 {
1972 unsigned int shndx = deferred->shndx_;
1973 typename This::Shdr shdr(deferred->shdr_data_);
1974 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1975
1976 Output_section* data_section = out_sections[data_shndx];
1977 if (data_section == NULL)
1978 {
1979 out_sections[shndx] = NULL;
1980 out_section_offsets[shndx] = invalid_address;
1981 continue;
1982 }
1983
1984 Relocatable_relocs* rr = new Relocatable_relocs();
1985 this->set_relocatable_relocs(shndx, rr);
1986
1987 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1988 data_section, rr);
1989 out_sections[shndx] = os;
1990 out_section_offsets[shndx] = invalid_address;
1991 }
1992 }
1993
1994 // Add the symbols to the symbol table.
1995
1996 template<int size, bool big_endian>
1997 void
1998 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1999 Read_symbols_data* sd,
2000 Layout*)
2001 {
2002 if (sd->symbols == NULL)
2003 {
2004 gold_assert(sd->symbol_names == NULL);
2005 return;
2006 }
2007
2008 const int sym_size = This::sym_size;
2009 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2010 / sym_size);
2011 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2012 {
2013 this->error(_("size of symbols is not multiple of symbol size"));
2014 return;
2015 }
2016
2017 this->symbols_.resize(symcount);
2018
2019 const char* sym_names =
2020 reinterpret_cast<const char*>(sd->symbol_names->data());
2021 symtab->add_from_relobj(this,
2022 sd->symbols->data() + sd->external_symbols_offset,
2023 symcount, this->local_symbol_count_,
2024 sym_names, sd->symbol_names_size,
2025 &this->symbols_,
2026 &this->defined_count_);
2027
2028 delete sd->symbols;
2029 sd->symbols = NULL;
2030 delete sd->symbol_names;
2031 sd->symbol_names = NULL;
2032 }
2033
2034 // Find out if this object, that is a member of a lib group, should be included
2035 // in the link. We check every symbol defined by this object. If the symbol
2036 // table has a strong undefined reference to that symbol, we have to include
2037 // the object.
2038
2039 template<int size, bool big_endian>
2040 Archive::Should_include
2041 Sized_relobj_file<size, big_endian>::do_should_include_member(
2042 Symbol_table* symtab,
2043 Layout* layout,
2044 Read_symbols_data* sd,
2045 std::string* why)
2046 {
2047 char* tmpbuf = NULL;
2048 size_t tmpbuflen = 0;
2049 const char* sym_names =
2050 reinterpret_cast<const char*>(sd->symbol_names->data());
2051 const unsigned char* syms =
2052 sd->symbols->data() + sd->external_symbols_offset;
2053 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2054 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2055 / sym_size);
2056
2057 const unsigned char* p = syms;
2058
2059 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2060 {
2061 elfcpp::Sym<size, big_endian> sym(p);
2062 unsigned int st_shndx = sym.get_st_shndx();
2063 if (st_shndx == elfcpp::SHN_UNDEF)
2064 continue;
2065
2066 unsigned int st_name = sym.get_st_name();
2067 const char* name = sym_names + st_name;
2068 Symbol* symbol;
2069 Archive::Should_include t = Archive::should_include_member(symtab,
2070 layout,
2071 name,
2072 &symbol, why,
2073 &tmpbuf,
2074 &tmpbuflen);
2075 if (t == Archive::SHOULD_INCLUDE_YES)
2076 {
2077 if (tmpbuf != NULL)
2078 free(tmpbuf);
2079 return t;
2080 }
2081 }
2082 if (tmpbuf != NULL)
2083 free(tmpbuf);
2084 return Archive::SHOULD_INCLUDE_UNKNOWN;
2085 }
2086
2087 // Iterate over global defined symbols, calling a visitor class V for each.
2088
2089 template<int size, bool big_endian>
2090 void
2091 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2092 Read_symbols_data* sd,
2093 Library_base::Symbol_visitor_base* v)
2094 {
2095 const char* sym_names =
2096 reinterpret_cast<const char*>(sd->symbol_names->data());
2097 const unsigned char* syms =
2098 sd->symbols->data() + sd->external_symbols_offset;
2099 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2100 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2101 / sym_size);
2102 const unsigned char* p = syms;
2103
2104 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2105 {
2106 elfcpp::Sym<size, big_endian> sym(p);
2107 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2108 v->visit(sym_names + sym.get_st_name());
2109 }
2110 }
2111
2112 // Return whether the local symbol SYMNDX has a PLT offset.
2113
2114 template<int size, bool big_endian>
2115 bool
2116 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2117 unsigned int symndx) const
2118 {
2119 typename Local_plt_offsets::const_iterator p =
2120 this->local_plt_offsets_.find(symndx);
2121 return p != this->local_plt_offsets_.end();
2122 }
2123
2124 // Get the PLT offset of a local symbol.
2125
2126 template<int size, bool big_endian>
2127 unsigned int
2128 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2129 unsigned int symndx) const
2130 {
2131 typename Local_plt_offsets::const_iterator p =
2132 this->local_plt_offsets_.find(symndx);
2133 gold_assert(p != this->local_plt_offsets_.end());
2134 return p->second;
2135 }
2136
2137 // Set the PLT offset of a local symbol.
2138
2139 template<int size, bool big_endian>
2140 void
2141 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2142 unsigned int symndx, unsigned int plt_offset)
2143 {
2144 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2145 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2146 gold_assert(ins.second);
2147 }
2148
2149 // First pass over the local symbols. Here we add their names to
2150 // *POOL and *DYNPOOL, and we store the symbol value in
2151 // THIS->LOCAL_VALUES_. This function is always called from a
2152 // singleton thread. This is followed by a call to
2153 // finalize_local_symbols.
2154
2155 template<int size, bool big_endian>
2156 void
2157 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2158 Stringpool* dynpool)
2159 {
2160 gold_assert(this->symtab_shndx_ != -1U);
2161 if (this->symtab_shndx_ == 0)
2162 {
2163 // This object has no symbols. Weird but legal.
2164 return;
2165 }
2166
2167 // Read the symbol table section header.
2168 const unsigned int symtab_shndx = this->symtab_shndx_;
2169 typename This::Shdr symtabshdr(this,
2170 this->elf_file_.section_header(symtab_shndx));
2171 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2172
2173 // Read the local symbols.
2174 const int sym_size = This::sym_size;
2175 const unsigned int loccount = this->local_symbol_count_;
2176 gold_assert(loccount == symtabshdr.get_sh_info());
2177 off_t locsize = loccount * sym_size;
2178 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2179 locsize, true, true);
2180
2181 // Read the symbol names.
2182 const unsigned int strtab_shndx =
2183 this->adjust_shndx(symtabshdr.get_sh_link());
2184 section_size_type strtab_size;
2185 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2186 &strtab_size,
2187 true);
2188 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2189
2190 // Loop over the local symbols.
2191
2192 const Output_sections& out_sections(this->output_sections());
2193 std::vector<Address>& out_section_offsets(this->section_offsets());
2194 unsigned int shnum = this->shnum();
2195 unsigned int count = 0;
2196 unsigned int dyncount = 0;
2197 // Skip the first, dummy, symbol.
2198 psyms += sym_size;
2199 bool strip_all = parameters->options().strip_all();
2200 bool discard_all = parameters->options().discard_all();
2201 bool discard_locals = parameters->options().discard_locals();
2202 bool discard_sec_merge = parameters->options().discard_sec_merge();
2203 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2204 {
2205 elfcpp::Sym<size, big_endian> sym(psyms);
2206
2207 Symbol_value<size>& lv(this->local_values_[i]);
2208
2209 bool is_ordinary;
2210 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2211 &is_ordinary);
2212 lv.set_input_shndx(shndx, is_ordinary);
2213
2214 if (sym.get_st_type() == elfcpp::STT_SECTION)
2215 lv.set_is_section_symbol();
2216 else if (sym.get_st_type() == elfcpp::STT_TLS)
2217 lv.set_is_tls_symbol();
2218 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2219 lv.set_is_ifunc_symbol();
2220
2221 // Save the input symbol value for use in do_finalize_local_symbols().
2222 lv.set_input_value(sym.get_st_value());
2223
2224 // Decide whether this symbol should go into the output file.
2225
2226 if ((shndx < shnum && out_sections[shndx] == NULL)
2227 || shndx == this->discarded_eh_frame_shndx_)
2228 {
2229 lv.set_no_output_symtab_entry();
2230 gold_assert(!lv.needs_output_dynsym_entry());
2231 continue;
2232 }
2233
2234 if (sym.get_st_type() == elfcpp::STT_SECTION
2235 || !this->adjust_local_symbol(&lv))
2236 {
2237 lv.set_no_output_symtab_entry();
2238 gold_assert(!lv.needs_output_dynsym_entry());
2239 continue;
2240 }
2241
2242 if (sym.get_st_name() >= strtab_size)
2243 {
2244 this->error(_("local symbol %u section name out of range: %u >= %u"),
2245 i, sym.get_st_name(),
2246 static_cast<unsigned int>(strtab_size));
2247 lv.set_no_output_symtab_entry();
2248 continue;
2249 }
2250
2251 const char* name = pnames + sym.get_st_name();
2252
2253 // If needed, add the symbol to the dynamic symbol table string pool.
2254 if (lv.needs_output_dynsym_entry())
2255 {
2256 dynpool->add(name, true, NULL);
2257 ++dyncount;
2258 }
2259
2260 if (strip_all
2261 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2262 {
2263 lv.set_no_output_symtab_entry();
2264 continue;
2265 }
2266
2267 // By default, discard temporary local symbols in merge sections.
2268 // If --discard-locals option is used, discard all temporary local
2269 // symbols. These symbols start with system-specific local label
2270 // prefixes, typically .L for ELF system. We want to be compatible
2271 // with GNU ld so here we essentially use the same check in
2272 // bfd_is_local_label(). The code is different because we already
2273 // know that:
2274 //
2275 // - the symbol is local and thus cannot have global or weak binding.
2276 // - the symbol is not a section symbol.
2277 // - the symbol has a name.
2278 //
2279 // We do not discard a symbol if it needs a dynamic symbol entry.
2280 if ((discard_locals
2281 || (discard_sec_merge
2282 && is_ordinary
2283 && out_section_offsets[shndx] == invalid_address))
2284 && sym.get_st_type() != elfcpp::STT_FILE
2285 && !lv.needs_output_dynsym_entry()
2286 && lv.may_be_discarded_from_output_symtab()
2287 && parameters->target().is_local_label_name(name))
2288 {
2289 lv.set_no_output_symtab_entry();
2290 continue;
2291 }
2292
2293 // Discard the local symbol if -retain_symbols_file is specified
2294 // and the local symbol is not in that file.
2295 if (!parameters->options().should_retain_symbol(name))
2296 {
2297 lv.set_no_output_symtab_entry();
2298 continue;
2299 }
2300
2301 // Add the symbol to the symbol table string pool.
2302 pool->add(name, true, NULL);
2303 ++count;
2304 }
2305
2306 this->output_local_symbol_count_ = count;
2307 this->output_local_dynsym_count_ = dyncount;
2308 }
2309
2310 // Compute the final value of a local symbol.
2311
2312 template<int size, bool big_endian>
2313 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2314 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2315 unsigned int r_sym,
2316 const Symbol_value<size>* lv_in,
2317 Symbol_value<size>* lv_out,
2318 bool relocatable,
2319 const Output_sections& out_sections,
2320 const std::vector<Address>& out_offsets,
2321 const Symbol_table* symtab)
2322 {
2323 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2324 // we may have a memory leak.
2325 gold_assert(lv_out->has_output_value());
2326
2327 bool is_ordinary;
2328 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2329
2330 // Set the output symbol value.
2331
2332 if (!is_ordinary)
2333 {
2334 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2335 lv_out->set_output_value(lv_in->input_value());
2336 else
2337 {
2338 this->error(_("unknown section index %u for local symbol %u"),
2339 shndx, r_sym);
2340 lv_out->set_output_value(0);
2341 return This::CFLV_ERROR;
2342 }
2343 }
2344 else
2345 {
2346 if (shndx >= this->shnum())
2347 {
2348 this->error(_("local symbol %u section index %u out of range"),
2349 r_sym, shndx);
2350 lv_out->set_output_value(0);
2351 return This::CFLV_ERROR;
2352 }
2353
2354 Output_section* os = out_sections[shndx];
2355 Address secoffset = out_offsets[shndx];
2356 if (symtab->is_section_folded(this, shndx))
2357 {
2358 gold_assert(os == NULL && secoffset == invalid_address);
2359 // Get the os of the section it is folded onto.
2360 Section_id folded = symtab->icf()->get_folded_section(this,
2361 shndx);
2362 gold_assert(folded.first != NULL);
2363 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2364 <Sized_relobj_file<size, big_endian>*>(folded.first);
2365 os = folded_obj->output_section(folded.second);
2366 gold_assert(os != NULL);
2367 secoffset = folded_obj->get_output_section_offset(folded.second);
2368
2369 // This could be a relaxed input section.
2370 if (secoffset == invalid_address)
2371 {
2372 const Output_relaxed_input_section* relaxed_section =
2373 os->find_relaxed_input_section(folded_obj, folded.second);
2374 gold_assert(relaxed_section != NULL);
2375 secoffset = relaxed_section->address() - os->address();
2376 }
2377 }
2378
2379 if (os == NULL)
2380 {
2381 // This local symbol belongs to a section we are discarding.
2382 // In some cases when applying relocations later, we will
2383 // attempt to match it to the corresponding kept section,
2384 // so we leave the input value unchanged here.
2385 return This::CFLV_DISCARDED;
2386 }
2387 else if (secoffset == invalid_address)
2388 {
2389 uint64_t start;
2390
2391 // This is a SHF_MERGE section or one which otherwise
2392 // requires special handling.
2393 if (shndx == this->discarded_eh_frame_shndx_)
2394 {
2395 // This local symbol belongs to a discarded .eh_frame
2396 // section. Just treat it like the case in which
2397 // os == NULL above.
2398 gold_assert(this->has_eh_frame_);
2399 return This::CFLV_DISCARDED;
2400 }
2401 else if (!lv_in->is_section_symbol())
2402 {
2403 // This is not a section symbol. We can determine
2404 // the final value now.
2405 lv_out->set_output_value(
2406 os->output_address(this, shndx, lv_in->input_value()));
2407 }
2408 else if (!os->find_starting_output_address(this, shndx, &start))
2409 {
2410 // This is a section symbol, but apparently not one in a
2411 // merged section. First check to see if this is a relaxed
2412 // input section. If so, use its address. Otherwise just
2413 // use the start of the output section. This happens with
2414 // relocatable links when the input object has section
2415 // symbols for arbitrary non-merge sections.
2416 const Output_section_data* posd =
2417 os->find_relaxed_input_section(this, shndx);
2418 if (posd != NULL)
2419 {
2420 Address relocatable_link_adjustment =
2421 relocatable ? os->address() : 0;
2422 lv_out->set_output_value(posd->address()
2423 - relocatable_link_adjustment);
2424 }
2425 else
2426 lv_out->set_output_value(os->address());
2427 }
2428 else
2429 {
2430 // We have to consider the addend to determine the
2431 // value to use in a relocation. START is the start
2432 // of this input section. If we are doing a relocatable
2433 // link, use offset from start output section instead of
2434 // address.
2435 Address adjusted_start =
2436 relocatable ? start - os->address() : start;
2437 Merged_symbol_value<size>* msv =
2438 new Merged_symbol_value<size>(lv_in->input_value(),
2439 adjusted_start);
2440 lv_out->set_merged_symbol_value(msv);
2441 }
2442 }
2443 else if (lv_in->is_tls_symbol()
2444 || (lv_in->is_section_symbol()
2445 && (os->flags() & elfcpp::SHF_TLS)))
2446 lv_out->set_output_value(os->tls_offset()
2447 + secoffset
2448 + lv_in->input_value());
2449 else
2450 lv_out->set_output_value((relocatable ? 0 : os->address())
2451 + secoffset
2452 + lv_in->input_value());
2453 }
2454 return This::CFLV_OK;
2455 }
2456
2457 // Compute final local symbol value. R_SYM is the index of a local
2458 // symbol in symbol table. LV points to a symbol value, which is
2459 // expected to hold the input value and to be over-written by the
2460 // final value. SYMTAB points to a symbol table. Some targets may want
2461 // to know would-be-finalized local symbol values in relaxation.
2462 // Hence we provide this method. Since this method updates *LV, a
2463 // callee should make a copy of the original local symbol value and
2464 // use the copy instead of modifying an object's local symbols before
2465 // everything is finalized. The caller should also free up any allocated
2466 // memory in the return value in *LV.
2467 template<int size, bool big_endian>
2468 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2469 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2470 unsigned int r_sym,
2471 const Symbol_value<size>* lv_in,
2472 Symbol_value<size>* lv_out,
2473 const Symbol_table* symtab)
2474 {
2475 // This is just a wrapper of compute_final_local_value_internal.
2476 const bool relocatable = parameters->options().relocatable();
2477 const Output_sections& out_sections(this->output_sections());
2478 const std::vector<Address>& out_offsets(this->section_offsets());
2479 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2480 relocatable, out_sections,
2481 out_offsets, symtab);
2482 }
2483
2484 // Finalize the local symbols. Here we set the final value in
2485 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2486 // This function is always called from a singleton thread. The actual
2487 // output of the local symbols will occur in a separate task.
2488
2489 template<int size, bool big_endian>
2490 unsigned int
2491 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2492 unsigned int index,
2493 off_t off,
2494 Symbol_table* symtab)
2495 {
2496 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2497
2498 const unsigned int loccount = this->local_symbol_count_;
2499 this->local_symbol_offset_ = off;
2500
2501 const bool relocatable = parameters->options().relocatable();
2502 const Output_sections& out_sections(this->output_sections());
2503 const std::vector<Address>& out_offsets(this->section_offsets());
2504
2505 for (unsigned int i = 1; i < loccount; ++i)
2506 {
2507 Symbol_value<size>* lv = &this->local_values_[i];
2508
2509 Compute_final_local_value_status cflv_status =
2510 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2511 out_sections, out_offsets,
2512 symtab);
2513 switch (cflv_status)
2514 {
2515 case CFLV_OK:
2516 if (!lv->is_output_symtab_index_set())
2517 {
2518 lv->set_output_symtab_index(index);
2519 ++index;
2520 }
2521 break;
2522 case CFLV_DISCARDED:
2523 case CFLV_ERROR:
2524 // Do nothing.
2525 break;
2526 default:
2527 gold_unreachable();
2528 }
2529 }
2530 return index;
2531 }
2532
2533 // Set the output dynamic symbol table indexes for the local variables.
2534
2535 template<int size, bool big_endian>
2536 unsigned int
2537 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2538 unsigned int index)
2539 {
2540 const unsigned int loccount = this->local_symbol_count_;
2541 for (unsigned int i = 1; i < loccount; ++i)
2542 {
2543 Symbol_value<size>& lv(this->local_values_[i]);
2544 if (lv.needs_output_dynsym_entry())
2545 {
2546 lv.set_output_dynsym_index(index);
2547 ++index;
2548 }
2549 }
2550 return index;
2551 }
2552
2553 // Set the offset where local dynamic symbol information will be stored.
2554 // Returns the count of local symbols contributed to the symbol table by
2555 // this object.
2556
2557 template<int size, bool big_endian>
2558 unsigned int
2559 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2560 {
2561 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2562 this->local_dynsym_offset_ = off;
2563 return this->output_local_dynsym_count_;
2564 }
2565
2566 // If Symbols_data is not NULL get the section flags from here otherwise
2567 // get it from the file.
2568
2569 template<int size, bool big_endian>
2570 uint64_t
2571 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2572 {
2573 Symbols_data* sd = this->get_symbols_data();
2574 if (sd != NULL)
2575 {
2576 const unsigned char* pshdrs = sd->section_headers_data
2577 + This::shdr_size * shndx;
2578 typename This::Shdr shdr(pshdrs);
2579 return shdr.get_sh_flags();
2580 }
2581 // If sd is NULL, read the section header from the file.
2582 return this->elf_file_.section_flags(shndx);
2583 }
2584
2585 // Get the section's ent size from Symbols_data. Called by get_section_contents
2586 // in icf.cc
2587
2588 template<int size, bool big_endian>
2589 uint64_t
2590 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2591 {
2592 Symbols_data* sd = this->get_symbols_data();
2593 gold_assert(sd != NULL);
2594
2595 const unsigned char* pshdrs = sd->section_headers_data
2596 + This::shdr_size * shndx;
2597 typename This::Shdr shdr(pshdrs);
2598 return shdr.get_sh_entsize();
2599 }
2600
2601 // Write out the local symbols.
2602
2603 template<int size, bool big_endian>
2604 void
2605 Sized_relobj_file<size, big_endian>::write_local_symbols(
2606 Output_file* of,
2607 const Stringpool* sympool,
2608 const Stringpool* dynpool,
2609 Output_symtab_xindex* symtab_xindex,
2610 Output_symtab_xindex* dynsym_xindex,
2611 off_t symtab_off)
2612 {
2613 const bool strip_all = parameters->options().strip_all();
2614 if (strip_all)
2615 {
2616 if (this->output_local_dynsym_count_ == 0)
2617 return;
2618 this->output_local_symbol_count_ = 0;
2619 }
2620
2621 gold_assert(this->symtab_shndx_ != -1U);
2622 if (this->symtab_shndx_ == 0)
2623 {
2624 // This object has no symbols. Weird but legal.
2625 return;
2626 }
2627
2628 // Read the symbol table section header.
2629 const unsigned int symtab_shndx = this->symtab_shndx_;
2630 typename This::Shdr symtabshdr(this,
2631 this->elf_file_.section_header(symtab_shndx));
2632 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2633 const unsigned int loccount = this->local_symbol_count_;
2634 gold_assert(loccount == symtabshdr.get_sh_info());
2635
2636 // Read the local symbols.
2637 const int sym_size = This::sym_size;
2638 off_t locsize = loccount * sym_size;
2639 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2640 locsize, true, false);
2641
2642 // Read the symbol names.
2643 const unsigned int strtab_shndx =
2644 this->adjust_shndx(symtabshdr.get_sh_link());
2645 section_size_type strtab_size;
2646 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2647 &strtab_size,
2648 false);
2649 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2650
2651 // Get views into the output file for the portions of the symbol table
2652 // and the dynamic symbol table that we will be writing.
2653 off_t output_size = this->output_local_symbol_count_ * sym_size;
2654 unsigned char* oview = NULL;
2655 if (output_size > 0)
2656 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2657 output_size);
2658
2659 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2660 unsigned char* dyn_oview = NULL;
2661 if (dyn_output_size > 0)
2662 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2663 dyn_output_size);
2664
2665 const Output_sections& out_sections(this->output_sections());
2666
2667 gold_assert(this->local_values_.size() == loccount);
2668
2669 unsigned char* ov = oview;
2670 unsigned char* dyn_ov = dyn_oview;
2671 psyms += sym_size;
2672 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2673 {
2674 elfcpp::Sym<size, big_endian> isym(psyms);
2675
2676 Symbol_value<size>& lv(this->local_values_[i]);
2677
2678 bool is_ordinary;
2679 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2680 &is_ordinary);
2681 if (is_ordinary)
2682 {
2683 gold_assert(st_shndx < out_sections.size());
2684 if (out_sections[st_shndx] == NULL)
2685 continue;
2686 st_shndx = out_sections[st_shndx]->out_shndx();
2687 if (st_shndx >= elfcpp::SHN_LORESERVE)
2688 {
2689 if (lv.has_output_symtab_entry())
2690 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2691 if (lv.has_output_dynsym_entry())
2692 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2693 st_shndx = elfcpp::SHN_XINDEX;
2694 }
2695 }
2696
2697 // Write the symbol to the output symbol table.
2698 if (lv.has_output_symtab_entry())
2699 {
2700 elfcpp::Sym_write<size, big_endian> osym(ov);
2701
2702 gold_assert(isym.get_st_name() < strtab_size);
2703 const char* name = pnames + isym.get_st_name();
2704 osym.put_st_name(sympool->get_offset(name));
2705 osym.put_st_value(this->local_values_[i].value(this, 0));
2706 osym.put_st_size(isym.get_st_size());
2707 osym.put_st_info(isym.get_st_info());
2708 osym.put_st_other(isym.get_st_other());
2709 osym.put_st_shndx(st_shndx);
2710
2711 ov += sym_size;
2712 }
2713
2714 // Write the symbol to the output dynamic symbol table.
2715 if (lv.has_output_dynsym_entry())
2716 {
2717 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2718 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2719
2720 gold_assert(isym.get_st_name() < strtab_size);
2721 const char* name = pnames + isym.get_st_name();
2722 osym.put_st_name(dynpool->get_offset(name));
2723 osym.put_st_value(this->local_values_[i].value(this, 0));
2724 osym.put_st_size(isym.get_st_size());
2725 osym.put_st_info(isym.get_st_info());
2726 osym.put_st_other(isym.get_st_other());
2727 osym.put_st_shndx(st_shndx);
2728
2729 dyn_ov += sym_size;
2730 }
2731 }
2732
2733
2734 if (output_size > 0)
2735 {
2736 gold_assert(ov - oview == output_size);
2737 of->write_output_view(symtab_off + this->local_symbol_offset_,
2738 output_size, oview);
2739 }
2740
2741 if (dyn_output_size > 0)
2742 {
2743 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2744 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2745 dyn_oview);
2746 }
2747 }
2748
2749 // Set *INFO to symbolic information about the offset OFFSET in the
2750 // section SHNDX. Return true if we found something, false if we
2751 // found nothing.
2752
2753 template<int size, bool big_endian>
2754 bool
2755 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2756 unsigned int shndx,
2757 off_t offset,
2758 Symbol_location_info* info)
2759 {
2760 if (this->symtab_shndx_ == 0)
2761 return false;
2762
2763 section_size_type symbols_size;
2764 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2765 &symbols_size,
2766 false);
2767
2768 unsigned int symbol_names_shndx =
2769 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2770 section_size_type names_size;
2771 const unsigned char* symbol_names_u =
2772 this->section_contents(symbol_names_shndx, &names_size, false);
2773 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2774
2775 const int sym_size = This::sym_size;
2776 const size_t count = symbols_size / sym_size;
2777
2778 const unsigned char* p = symbols;
2779 for (size_t i = 0; i < count; ++i, p += sym_size)
2780 {
2781 elfcpp::Sym<size, big_endian> sym(p);
2782
2783 if (sym.get_st_type() == elfcpp::STT_FILE)
2784 {
2785 if (sym.get_st_name() >= names_size)
2786 info->source_file = "(invalid)";
2787 else
2788 info->source_file = symbol_names + sym.get_st_name();
2789 continue;
2790 }
2791
2792 bool is_ordinary;
2793 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2794 &is_ordinary);
2795 if (is_ordinary
2796 && st_shndx == shndx
2797 && static_cast<off_t>(sym.get_st_value()) <= offset
2798 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2799 > offset))
2800 {
2801 info->enclosing_symbol_type = sym.get_st_type();
2802 if (sym.get_st_name() > names_size)
2803 info->enclosing_symbol_name = "(invalid)";
2804 else
2805 {
2806 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2807 if (parameters->options().do_demangle())
2808 {
2809 char* demangled_name = cplus_demangle(
2810 info->enclosing_symbol_name.c_str(),
2811 DMGL_ANSI | DMGL_PARAMS);
2812 if (demangled_name != NULL)
2813 {
2814 info->enclosing_symbol_name.assign(demangled_name);
2815 free(demangled_name);
2816 }
2817 }
2818 }
2819 return true;
2820 }
2821 }
2822
2823 return false;
2824 }
2825
2826 // Look for a kept section corresponding to the given discarded section,
2827 // and return its output address. This is used only for relocations in
2828 // debugging sections. If we can't find the kept section, return 0.
2829
2830 template<int size, bool big_endian>
2831 typename Sized_relobj_file<size, big_endian>::Address
2832 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2833 unsigned int shndx,
2834 bool* found) const
2835 {
2836 Relobj* kept_object;
2837 unsigned int kept_shndx;
2838 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2839 {
2840 Sized_relobj_file<size, big_endian>* kept_relobj =
2841 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2842 Output_section* os = kept_relobj->output_section(kept_shndx);
2843 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2844 if (os != NULL && offset != invalid_address)
2845 {
2846 *found = true;
2847 return os->address() + offset;
2848 }
2849 }
2850 *found = false;
2851 return 0;
2852 }
2853
2854 // Get symbol counts.
2855
2856 template<int size, bool big_endian>
2857 void
2858 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2859 const Symbol_table*,
2860 size_t* defined,
2861 size_t* used) const
2862 {
2863 *defined = this->defined_count_;
2864 size_t count = 0;
2865 for (typename Symbols::const_iterator p = this->symbols_.begin();
2866 p != this->symbols_.end();
2867 ++p)
2868 if (*p != NULL
2869 && (*p)->source() == Symbol::FROM_OBJECT
2870 && (*p)->object() == this
2871 && (*p)->is_defined())
2872 ++count;
2873 *used = count;
2874 }
2875
2876 // Return a view of the decompressed contents of a section. Set *PLEN
2877 // to the size. Set *IS_NEW to true if the contents need to be freed
2878 // by the caller.
2879
2880 const unsigned char*
2881 Object::decompressed_section_contents(
2882 unsigned int shndx,
2883 section_size_type* plen,
2884 bool* is_new)
2885 {
2886 section_size_type buffer_size;
2887 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2888 false);
2889
2890 if (this->compressed_sections_ == NULL)
2891 {
2892 *plen = buffer_size;
2893 *is_new = false;
2894 return buffer;
2895 }
2896
2897 Compressed_section_map::const_iterator p =
2898 this->compressed_sections_->find(shndx);
2899 if (p == this->compressed_sections_->end())
2900 {
2901 *plen = buffer_size;
2902 *is_new = false;
2903 return buffer;
2904 }
2905
2906 section_size_type uncompressed_size = p->second.size;
2907 if (p->second.contents != NULL)
2908 {
2909 *plen = uncompressed_size;
2910 *is_new = false;
2911 return p->second.contents;
2912 }
2913
2914 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2915 if (!decompress_input_section(buffer,
2916 buffer_size,
2917 uncompressed_data,
2918 uncompressed_size,
2919 elfsize(),
2920 is_big_endian(),
2921 p->second.flag))
2922 this->error(_("could not decompress section %s"),
2923 this->do_section_name(shndx).c_str());
2924
2925 // We could cache the results in p->second.contents and store
2926 // false in *IS_NEW, but build_compressed_section_map() would
2927 // have done so if it had expected it to be profitable. If
2928 // we reach this point, we expect to need the contents only
2929 // once in this pass.
2930 *plen = uncompressed_size;
2931 *is_new = true;
2932 return uncompressed_data;
2933 }
2934
2935 // Discard any buffers of uncompressed sections. This is done
2936 // at the end of the Add_symbols task.
2937
2938 void
2939 Object::discard_decompressed_sections()
2940 {
2941 if (this->compressed_sections_ == NULL)
2942 return;
2943
2944 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2945 p != this->compressed_sections_->end();
2946 ++p)
2947 {
2948 if (p->second.contents != NULL)
2949 {
2950 delete[] p->second.contents;
2951 p->second.contents = NULL;
2952 }
2953 }
2954 }
2955
2956 // Input_objects methods.
2957
2958 // Add a regular relocatable object to the list. Return false if this
2959 // object should be ignored.
2960
2961 bool
2962 Input_objects::add_object(Object* obj)
2963 {
2964 // Print the filename if the -t/--trace option is selected.
2965 if (parameters->options().trace())
2966 gold_info("%s", obj->name().c_str());
2967
2968 if (!obj->is_dynamic())
2969 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2970 else
2971 {
2972 // See if this is a duplicate SONAME.
2973 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2974 const char* soname = dynobj->soname();
2975
2976 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2977 this->sonames_.insert(soname);
2978 if (!ins.second)
2979 {
2980 // We have already seen a dynamic object with this soname.
2981 return false;
2982 }
2983
2984 this->dynobj_list_.push_back(dynobj);
2985 }
2986
2987 // Add this object to the cross-referencer if requested.
2988 if (parameters->options().user_set_print_symbol_counts()
2989 || parameters->options().cref())
2990 {
2991 if (this->cref_ == NULL)
2992 this->cref_ = new Cref();
2993 this->cref_->add_object(obj);
2994 }
2995
2996 return true;
2997 }
2998
2999 // For each dynamic object, record whether we've seen all of its
3000 // explicit dependencies.
3001
3002 void
3003 Input_objects::check_dynamic_dependencies() const
3004 {
3005 bool issued_copy_dt_needed_error = false;
3006 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3007 p != this->dynobj_list_.end();
3008 ++p)
3009 {
3010 const Dynobj::Needed& needed((*p)->needed());
3011 bool found_all = true;
3012 Dynobj::Needed::const_iterator pneeded;
3013 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3014 {
3015 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3016 {
3017 found_all = false;
3018 break;
3019 }
3020 }
3021 (*p)->set_has_unknown_needed_entries(!found_all);
3022
3023 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3024 // that gold does not support. However, they cause no trouble
3025 // unless there is a DT_NEEDED entry that we don't know about;
3026 // warn only in that case.
3027 if (!found_all
3028 && !issued_copy_dt_needed_error
3029 && (parameters->options().copy_dt_needed_entries()
3030 || parameters->options().add_needed()))
3031 {
3032 const char* optname;
3033 if (parameters->options().copy_dt_needed_entries())
3034 optname = "--copy-dt-needed-entries";
3035 else
3036 optname = "--add-needed";
3037 gold_error(_("%s is not supported but is required for %s in %s"),
3038 optname, (*pneeded).c_str(), (*p)->name().c_str());
3039 issued_copy_dt_needed_error = true;
3040 }
3041 }
3042 }
3043
3044 // Start processing an archive.
3045
3046 void
3047 Input_objects::archive_start(Archive* archive)
3048 {
3049 if (parameters->options().user_set_print_symbol_counts()
3050 || parameters->options().cref())
3051 {
3052 if (this->cref_ == NULL)
3053 this->cref_ = new Cref();
3054 this->cref_->add_archive_start(archive);
3055 }
3056 }
3057
3058 // Stop processing an archive.
3059
3060 void
3061 Input_objects::archive_stop(Archive* archive)
3062 {
3063 if (parameters->options().user_set_print_symbol_counts()
3064 || parameters->options().cref())
3065 this->cref_->add_archive_stop(archive);
3066 }
3067
3068 // Print symbol counts
3069
3070 void
3071 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3072 {
3073 if (parameters->options().user_set_print_symbol_counts()
3074 && this->cref_ != NULL)
3075 this->cref_->print_symbol_counts(symtab);
3076 }
3077
3078 // Print a cross reference table.
3079
3080 void
3081 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3082 {
3083 if (parameters->options().cref() && this->cref_ != NULL)
3084 this->cref_->print_cref(symtab, f);
3085 }
3086
3087 // Relocate_info methods.
3088
3089 // Return a string describing the location of a relocation when file
3090 // and lineno information is not available. This is only used in
3091 // error messages.
3092
3093 template<int size, bool big_endian>
3094 std::string
3095 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3096 {
3097 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3098 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3099 if (!ret.empty())
3100 return ret;
3101
3102 ret = this->object->name();
3103
3104 Symbol_location_info info;
3105 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3106 {
3107 if (!info.source_file.empty())
3108 {
3109 ret += ":";
3110 ret += info.source_file;
3111 }
3112 ret += ":";
3113 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3114 ret += _("function ");
3115 ret += info.enclosing_symbol_name;
3116 return ret;
3117 }
3118
3119 ret += "(";
3120 ret += this->object->section_name(this->data_shndx);
3121 char buf[100];
3122 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3123 ret += buf;
3124 return ret;
3125 }
3126
3127 } // End namespace gold.
3128
3129 namespace
3130 {
3131
3132 using namespace gold;
3133
3134 // Read an ELF file with the header and return the appropriate
3135 // instance of Object.
3136
3137 template<int size, bool big_endian>
3138 Object*
3139 make_elf_sized_object(const std::string& name, Input_file* input_file,
3140 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3141 bool* punconfigured)
3142 {
3143 Target* target = select_target(input_file, offset,
3144 ehdr.get_e_machine(), size, big_endian,
3145 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3146 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3147 if (target == NULL)
3148 gold_fatal(_("%s: unsupported ELF machine number %d"),
3149 name.c_str(), ehdr.get_e_machine());
3150
3151 if (!parameters->target_valid())
3152 set_parameters_target(target);
3153 else if (target != &parameters->target())
3154 {
3155 if (punconfigured != NULL)
3156 *punconfigured = true;
3157 else
3158 gold_error(_("%s: incompatible target"), name.c_str());
3159 return NULL;
3160 }
3161
3162 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3163 ehdr);
3164 }
3165
3166 } // End anonymous namespace.
3167
3168 namespace gold
3169 {
3170
3171 // Return whether INPUT_FILE is an ELF object.
3172
3173 bool
3174 is_elf_object(Input_file* input_file, off_t offset,
3175 const unsigned char** start, int* read_size)
3176 {
3177 off_t filesize = input_file->file().filesize();
3178 int want = elfcpp::Elf_recognizer::max_header_size;
3179 if (filesize - offset < want)
3180 want = filesize - offset;
3181
3182 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3183 true, false);
3184 *start = p;
3185 *read_size = want;
3186
3187 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3188 }
3189
3190 // Read an ELF file and return the appropriate instance of Object.
3191
3192 Object*
3193 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3194 const unsigned char* p, section_offset_type bytes,
3195 bool* punconfigured)
3196 {
3197 if (punconfigured != NULL)
3198 *punconfigured = false;
3199
3200 std::string error;
3201 bool big_endian = false;
3202 int size = 0;
3203 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3204 &big_endian, &error))
3205 {
3206 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3207 return NULL;
3208 }
3209
3210 if (size == 32)
3211 {
3212 if (big_endian)
3213 {
3214 #ifdef HAVE_TARGET_32_BIG
3215 elfcpp::Ehdr<32, true> ehdr(p);
3216 return make_elf_sized_object<32, true>(name, input_file,
3217 offset, ehdr, punconfigured);
3218 #else
3219 if (punconfigured != NULL)
3220 *punconfigured = true;
3221 else
3222 gold_error(_("%s: not configured to support "
3223 "32-bit big-endian object"),
3224 name.c_str());
3225 return NULL;
3226 #endif
3227 }
3228 else
3229 {
3230 #ifdef HAVE_TARGET_32_LITTLE
3231 elfcpp::Ehdr<32, false> ehdr(p);
3232 return make_elf_sized_object<32, false>(name, input_file,
3233 offset, ehdr, punconfigured);
3234 #else
3235 if (punconfigured != NULL)
3236 *punconfigured = true;
3237 else
3238 gold_error(_("%s: not configured to support "
3239 "32-bit little-endian object"),
3240 name.c_str());
3241 return NULL;
3242 #endif
3243 }
3244 }
3245 else if (size == 64)
3246 {
3247 if (big_endian)
3248 {
3249 #ifdef HAVE_TARGET_64_BIG
3250 elfcpp::Ehdr<64, true> ehdr(p);
3251 return make_elf_sized_object<64, true>(name, input_file,
3252 offset, ehdr, punconfigured);
3253 #else
3254 if (punconfigured != NULL)
3255 *punconfigured = true;
3256 else
3257 gold_error(_("%s: not configured to support "
3258 "64-bit big-endian object"),
3259 name.c_str());
3260 return NULL;
3261 #endif
3262 }
3263 else
3264 {
3265 #ifdef HAVE_TARGET_64_LITTLE
3266 elfcpp::Ehdr<64, false> ehdr(p);
3267 return make_elf_sized_object<64, false>(name, input_file,
3268 offset, ehdr, punconfigured);
3269 #else
3270 if (punconfigured != NULL)
3271 *punconfigured = true;
3272 else
3273 gold_error(_("%s: not configured to support "
3274 "64-bit little-endian object"),
3275 name.c_str());
3276 return NULL;
3277 #endif
3278 }
3279 }
3280 else
3281 gold_unreachable();
3282 }
3283
3284 // Instantiate the templates we need.
3285
3286 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3287 template
3288 void
3289 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3290 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3291 Unordered_map<section_offset_type,
3292 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3293 #endif
3294
3295 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3296 template
3297 void
3298 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3299 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3300 Unordered_map<section_offset_type,
3301 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3302 #endif
3303
3304 #ifdef HAVE_TARGET_32_LITTLE
3305 template
3306 void
3307 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3308 Read_symbols_data*);
3309 template
3310 const unsigned char*
3311 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3312 section_size_type, const unsigned char*) const;
3313 #endif
3314
3315 #ifdef HAVE_TARGET_32_BIG
3316 template
3317 void
3318 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3319 Read_symbols_data*);
3320 template
3321 const unsigned char*
3322 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3323 section_size_type, const unsigned char*) const;
3324 #endif
3325
3326 #ifdef HAVE_TARGET_64_LITTLE
3327 template
3328 void
3329 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3330 Read_symbols_data*);
3331 template
3332 const unsigned char*
3333 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3334 section_size_type, const unsigned char*) const;
3335 #endif
3336
3337 #ifdef HAVE_TARGET_64_BIG
3338 template
3339 void
3340 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3341 Read_symbols_data*);
3342 template
3343 const unsigned char*
3344 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3345 section_size_type, const unsigned char*) const;
3346 #endif
3347
3348 #ifdef HAVE_TARGET_32_LITTLE
3349 template
3350 class Sized_relobj<32, false>;
3351
3352 template
3353 class Sized_relobj_file<32, false>;
3354 #endif
3355
3356 #ifdef HAVE_TARGET_32_BIG
3357 template
3358 class Sized_relobj<32, true>;
3359
3360 template
3361 class Sized_relobj_file<32, true>;
3362 #endif
3363
3364 #ifdef HAVE_TARGET_64_LITTLE
3365 template
3366 class Sized_relobj<64, false>;
3367
3368 template
3369 class Sized_relobj_file<64, false>;
3370 #endif
3371
3372 #ifdef HAVE_TARGET_64_BIG
3373 template
3374 class Sized_relobj<64, true>;
3375
3376 template
3377 class Sized_relobj_file<64, true>;
3378 #endif
3379
3380 #ifdef HAVE_TARGET_32_LITTLE
3381 template
3382 struct Relocate_info<32, false>;
3383 #endif
3384
3385 #ifdef HAVE_TARGET_32_BIG
3386 template
3387 struct Relocate_info<32, true>;
3388 #endif
3389
3390 #ifdef HAVE_TARGET_64_LITTLE
3391 template
3392 struct Relocate_info<64, false>;
3393 #endif
3394
3395 #ifdef HAVE_TARGET_64_BIG
3396 template
3397 struct Relocate_info<64, true>;
3398 #endif
3399
3400 #ifdef HAVE_TARGET_32_LITTLE
3401 template
3402 void
3403 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3404
3405 template
3406 void
3407 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3408 const unsigned char*);
3409 #endif
3410
3411 #ifdef HAVE_TARGET_32_BIG
3412 template
3413 void
3414 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3415
3416 template
3417 void
3418 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3419 const unsigned char*);
3420 #endif
3421
3422 #ifdef HAVE_TARGET_64_LITTLE
3423 template
3424 void
3425 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3426
3427 template
3428 void
3429 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3430 const unsigned char*);
3431 #endif
3432
3433 #ifdef HAVE_TARGET_64_BIG
3434 template
3435 void
3436 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3437
3438 template
3439 void
3440 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3441 const unsigned char*);
3442 #endif
3443
3444 } // End namespace gold.
This page took 0.127558 seconds and 5 git commands to generate.