Update copyright years
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects and buffers of decompressed
51 // sections.
52
53 Read_symbols_data::~Read_symbols_data()
54 {
55 if (this->section_headers != NULL)
56 delete this->section_headers;
57 if (this->section_names != NULL)
58 delete this->section_names;
59 if (this->symbols != NULL)
60 delete this->symbols;
61 if (this->symbol_names != NULL)
62 delete this->symbol_names;
63 if (this->versym != NULL)
64 delete this->versym;
65 if (this->verdef != NULL)
66 delete this->verdef;
67 if (this->verneed != NULL)
68 delete this->verneed;
69 }
70
71 // Class Xindex.
72
73 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
74 // section and read it in. SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
76
77 template<int size, bool big_endian>
78 void
79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 {
81 if (!this->symtab_xindex_.empty())
82 return;
83
84 gold_assert(symtab_shndx != 0);
85
86 // Look through the sections in reverse order, on the theory that it
87 // is more likely to be near the end than the beginning.
88 unsigned int i = object->shnum();
89 while (i > 0)
90 {
91 --i;
92 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94 {
95 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
96 return;
97 }
98 }
99
100 object->error(_("missing SHT_SYMTAB_SHNDX section"));
101 }
102
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
105 // section headers.
106
107 template<int size, bool big_endian>
108 void
109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110 const unsigned char* pshdrs)
111 {
112 section_size_type bytecount;
113 const unsigned char* contents;
114 if (pshdrs == NULL)
115 contents = object->section_contents(xindex_shndx, &bytecount, false);
116 else
117 {
118 const unsigned char* p = (pshdrs
119 + (xindex_shndx
120 * elfcpp::Elf_sizes<size>::shdr_size));
121 typename elfcpp::Shdr<size, big_endian> shdr(p);
122 bytecount = convert_to_section_size_type(shdr.get_sh_size());
123 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
124 }
125
126 gold_assert(this->symtab_xindex_.empty());
127 this->symtab_xindex_.reserve(bytecount / 4);
128 for (section_size_type i = 0; i < bytecount; i += 4)
129 {
130 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131 // We preadjust the section indexes we save.
132 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
133 }
134 }
135
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 // index.
138
139 unsigned int
140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 {
142 if (symndx >= this->symtab_xindex_.size())
143 {
144 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145 symndx);
146 return elfcpp::SHN_UNDEF;
147 }
148 unsigned int shndx = this->symtab_xindex_[symndx];
149 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150 {
151 object->error(_("extended index for symbol %u out of range: %u"),
152 symndx, shndx);
153 return elfcpp::SHN_UNDEF;
154 }
155 return shndx;
156 }
157
158 // Class Object.
159
160 // Report an error for this object file. This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
162 // itself.
163
164 void
165 Object::error(const char* format, ...) const
166 {
167 va_list args;
168 va_start(args, format);
169 char* buf = NULL;
170 if (vasprintf(&buf, format, args) < 0)
171 gold_nomem();
172 va_end(args);
173 gold_error(_("%s: %s"), this->name().c_str(), buf);
174 free(buf);
175 }
176
177 // Return a view of the contents of a section.
178
179 const unsigned char*
180 Object::section_contents(unsigned int shndx, section_size_type* plen,
181 bool cache)
182 { return this->do_section_contents(shndx, plen, cache); }
183
184 // Read the section data into SD. This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
186
187 template<int size, bool big_endian>
188 void
189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190 Read_symbols_data* sd)
191 {
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193
194 // Read the section headers.
195 const off_t shoff = elf_file->shoff();
196 const unsigned int shnum = this->shnum();
197 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
198 true, true);
199
200 // Read the section names.
201 const unsigned char* pshdrs = sd->section_headers->data();
202 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
204
205 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206 this->error(_("section name section has wrong type: %u"),
207 static_cast<unsigned int>(shdrnames.get_sh_type()));
208
209 sd->section_names_size =
210 convert_to_section_size_type(shdrnames.get_sh_size());
211 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212 sd->section_names_size, false,
213 false);
214 }
215
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued. SHNDX is the section index. Return
218 // whether it is a warning section.
219
220 bool
221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222 Symbol_table* symtab)
223 {
224 const char warn_prefix[] = ".gnu.warning.";
225 const int warn_prefix_len = sizeof warn_prefix - 1;
226 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
227 {
228 // Read the section contents to get the warning text. It would
229 // be nicer if we only did this if we have to actually issue a
230 // warning. Unfortunately, warnings are issued as we relocate
231 // sections. That means that we can not lock the object then,
232 // as we might try to issue the same warning multiple times
233 // simultaneously.
234 section_size_type len;
235 const unsigned char* contents = this->section_contents(shndx, &len,
236 false);
237 if (len == 0)
238 {
239 const char* warning = name + warn_prefix_len;
240 contents = reinterpret_cast<const unsigned char*>(warning);
241 len = strlen(warning);
242 }
243 std::string warning(reinterpret_cast<const char*>(contents), len);
244 symtab->add_warning(name + warn_prefix_len, this, warning);
245 return true;
246 }
247 return false;
248 }
249
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
252
253 bool
254 Object::handle_split_stack_section(const char* name)
255 {
256 if (strcmp(name, ".note.GNU-split-stack") == 0)
257 {
258 this->uses_split_stack_ = true;
259 return true;
260 }
261 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
262 {
263 this->has_no_split_stack_ = true;
264 return true;
265 }
266 return false;
267 }
268
269 // Class Relobj
270
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
273 // collection.
274
275 void
276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277 unsigned int section_header_size)
278 {
279 gc_sd->section_headers_data =
280 new unsigned char[(section_header_size)];
281 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282 section_header_size);
283 gc_sd->section_names_data =
284 new unsigned char[sd->section_names_size];
285 memcpy(gc_sd->section_names_data, sd->section_names->data(),
286 sd->section_names_size);
287 gc_sd->section_names_size = sd->section_names_size;
288 if (sd->symbols != NULL)
289 {
290 gc_sd->symbols_data =
291 new unsigned char[sd->symbols_size];
292 memcpy(gc_sd->symbols_data, sd->symbols->data(),
293 sd->symbols_size);
294 }
295 else
296 {
297 gc_sd->symbols_data = NULL;
298 }
299 gc_sd->symbols_size = sd->symbols_size;
300 gc_sd->external_symbols_offset = sd->external_symbols_offset;
301 if (sd->symbol_names != NULL)
302 {
303 gc_sd->symbol_names_data =
304 new unsigned char[sd->symbol_names_size];
305 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306 sd->symbol_names_size);
307 }
308 else
309 {
310 gc_sd->symbol_names_data = NULL;
311 }
312 gc_sd->symbol_names_size = sd->symbol_names_size;
313 }
314
315 // This function determines if a particular section name must be included
316 // in the link. This is used during garbage collection to determine the
317 // roots of the worklist.
318
319 bool
320 Relobj::is_section_name_included(const char* name)
321 {
322 if (is_prefix_of(".ctors", name)
323 || is_prefix_of(".dtors", name)
324 || is_prefix_of(".note", name)
325 || is_prefix_of(".init", name)
326 || is_prefix_of(".fini", name)
327 || is_prefix_of(".gcc_except_table", name)
328 || is_prefix_of(".jcr", name)
329 || is_prefix_of(".preinit_array", name)
330 || (is_prefix_of(".text", name)
331 && strstr(name, "personality"))
332 || (is_prefix_of(".data", name)
333 && strstr(name, "personality"))
334 || (is_prefix_of(".sdata", name)
335 && strstr(name, "personality"))
336 || (is_prefix_of(".gnu.linkonce.d", name)
337 && strstr(name, "personality")))
338 {
339 return true;
340 }
341 return false;
342 }
343
344 // Finalize the incremental relocation information. Allocates a block
345 // of relocation entries for each symbol, and sets the reloc_bases_
346 // array to point to the first entry in each block. If CLEAR_COUNTS
347 // is TRUE, also clear the per-symbol relocation counters.
348
349 void
350 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
351 {
352 unsigned int nsyms = this->get_global_symbols()->size();
353 this->reloc_bases_ = new unsigned int[nsyms];
354
355 gold_assert(this->reloc_bases_ != NULL);
356 gold_assert(layout->incremental_inputs() != NULL);
357
358 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
359 for (unsigned int i = 0; i < nsyms; ++i)
360 {
361 this->reloc_bases_[i] = rindex;
362 rindex += this->reloc_counts_[i];
363 if (clear_counts)
364 this->reloc_counts_[i] = 0;
365 }
366 layout->incremental_inputs()->set_reloc_count(rindex);
367 }
368
369 // Class Sized_relobj.
370
371 // Iterate over local symbols, calling a visitor class V for each GOT offset
372 // associated with a local symbol.
373
374 template<int size, bool big_endian>
375 void
376 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
377 Got_offset_list::Visitor* v) const
378 {
379 unsigned int nsyms = this->local_symbol_count();
380 for (unsigned int i = 0; i < nsyms; i++)
381 {
382 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
383 if (p != this->local_got_offsets_.end())
384 {
385 const Got_offset_list* got_offsets = p->second;
386 got_offsets->for_all_got_offsets(v);
387 }
388 }
389 }
390
391 // Get the address of an output section.
392
393 template<int size, bool big_endian>
394 uint64_t
395 Sized_relobj<size, big_endian>::do_output_section_address(
396 unsigned int shndx)
397 {
398 // If the input file is linked as --just-symbols, the output
399 // section address is the input section address.
400 if (this->just_symbols())
401 return this->section_address(shndx);
402
403 const Output_section* os = this->do_output_section(shndx);
404 gold_assert(os != NULL);
405 return os->address();
406 }
407
408 // Class Sized_relobj_file.
409
410 template<int size, bool big_endian>
411 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
412 const std::string& name,
413 Input_file* input_file,
414 off_t offset,
415 const elfcpp::Ehdr<size, big_endian>& ehdr)
416 : Sized_relobj<size, big_endian>(name, input_file, offset),
417 elf_file_(this, ehdr),
418 symtab_shndx_(-1U),
419 local_symbol_count_(0),
420 output_local_symbol_count_(0),
421 output_local_dynsym_count_(0),
422 symbols_(),
423 defined_count_(0),
424 local_symbol_offset_(0),
425 local_dynsym_offset_(0),
426 local_values_(),
427 local_plt_offsets_(),
428 kept_comdat_sections_(),
429 has_eh_frame_(false),
430 discarded_eh_frame_shndx_(-1U),
431 deferred_layout_(),
432 deferred_layout_relocs_(),
433 compressed_sections_()
434 {
435 this->e_type_ = ehdr.get_e_type();
436 }
437
438 template<int size, bool big_endian>
439 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
440 {
441 }
442
443 // Set up an object file based on the file header. This sets up the
444 // section information.
445
446 template<int size, bool big_endian>
447 void
448 Sized_relobj_file<size, big_endian>::do_setup()
449 {
450 const unsigned int shnum = this->elf_file_.shnum();
451 this->set_shnum(shnum);
452 }
453
454 // Find the SHT_SYMTAB section, given the section headers. The ELF
455 // standard says that maybe in the future there can be more than one
456 // SHT_SYMTAB section. Until somebody figures out how that could
457 // work, we assume there is only one.
458
459 template<int size, bool big_endian>
460 void
461 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
462 {
463 const unsigned int shnum = this->shnum();
464 this->symtab_shndx_ = 0;
465 if (shnum > 0)
466 {
467 // Look through the sections in reverse order, since gas tends
468 // to put the symbol table at the end.
469 const unsigned char* p = pshdrs + shnum * This::shdr_size;
470 unsigned int i = shnum;
471 unsigned int xindex_shndx = 0;
472 unsigned int xindex_link = 0;
473 while (i > 0)
474 {
475 --i;
476 p -= This::shdr_size;
477 typename This::Shdr shdr(p);
478 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
479 {
480 this->symtab_shndx_ = i;
481 if (xindex_shndx > 0 && xindex_link == i)
482 {
483 Xindex* xindex =
484 new Xindex(this->elf_file_.large_shndx_offset());
485 xindex->read_symtab_xindex<size, big_endian>(this,
486 xindex_shndx,
487 pshdrs);
488 this->set_xindex(xindex);
489 }
490 break;
491 }
492
493 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
494 // one. This will work if it follows the SHT_SYMTAB
495 // section.
496 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
497 {
498 xindex_shndx = i;
499 xindex_link = this->adjust_shndx(shdr.get_sh_link());
500 }
501 }
502 }
503 }
504
505 // Return the Xindex structure to use for object with lots of
506 // sections.
507
508 template<int size, bool big_endian>
509 Xindex*
510 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
511 {
512 gold_assert(this->symtab_shndx_ != -1U);
513 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
514 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
515 return xindex;
516 }
517
518 // Return whether SHDR has the right type and flags to be a GNU
519 // .eh_frame section.
520
521 template<int size, bool big_endian>
522 bool
523 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
524 const elfcpp::Shdr<size, big_endian>* shdr) const
525 {
526 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
527 return ((sh_type == elfcpp::SHT_PROGBITS
528 || sh_type == elfcpp::SHT_X86_64_UNWIND)
529 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
530 }
531
532 // Find the section header with the given name.
533
534 template<int size, bool big_endian>
535 const unsigned char*
536 Object::find_shdr(
537 const unsigned char* pshdrs,
538 const char* name,
539 const char* names,
540 section_size_type names_size,
541 const unsigned char* hdr) const
542 {
543 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
544 const unsigned int shnum = this->shnum();
545 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
546 size_t sh_name = 0;
547
548 while (1)
549 {
550 if (hdr)
551 {
552 // We found HDR last time we were called, continue looking.
553 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
554 sh_name = shdr.get_sh_name();
555 }
556 else
557 {
558 // Look for the next occurrence of NAME in NAMES.
559 // The fact that .shstrtab produced by current GNU tools is
560 // string merged means we shouldn't have both .not.foo and
561 // .foo in .shstrtab, and multiple .foo sections should all
562 // have the same sh_name. However, this is not guaranteed
563 // by the ELF spec and not all ELF object file producers may
564 // be so clever.
565 size_t len = strlen(name) + 1;
566 const char *p = sh_name ? names + sh_name + len : names;
567 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
568 name, len));
569 if (p == NULL)
570 return NULL;
571 sh_name = p - names;
572 hdr = pshdrs;
573 if (sh_name == 0)
574 return hdr;
575 }
576
577 hdr += shdr_size;
578 while (hdr < hdr_end)
579 {
580 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
581 if (shdr.get_sh_name() == sh_name)
582 return hdr;
583 hdr += shdr_size;
584 }
585 hdr = NULL;
586 if (sh_name == 0)
587 return hdr;
588 }
589 }
590
591 // Return whether there is a GNU .eh_frame section, given the section
592 // headers and the section names.
593
594 template<int size, bool big_endian>
595 bool
596 Sized_relobj_file<size, big_endian>::find_eh_frame(
597 const unsigned char* pshdrs,
598 const char* names,
599 section_size_type names_size) const
600 {
601 const unsigned char* s = NULL;
602
603 while (1)
604 {
605 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
606 names, names_size, s);
607 if (s == NULL)
608 return false;
609
610 typename This::Shdr shdr(s);
611 if (this->check_eh_frame_flags(&shdr))
612 return true;
613 }
614 }
615
616 // Return TRUE if this is a section whose contents will be needed in the
617 // Add_symbols task. This function is only called for sections that have
618 // already passed the test in is_compressed_debug_section(), so we know
619 // that the section name begins with ".zdebug".
620
621 static bool
622 need_decompressed_section(const char* name)
623 {
624 // Skip over the ".zdebug" and a quick check for the "_".
625 name += 7;
626 if (*name++ != '_')
627 return false;
628
629 #ifdef ENABLE_THREADS
630 // Decompressing these sections now will help only if we're
631 // multithreaded.
632 if (parameters->options().threads())
633 {
634 // We will need .zdebug_str if this is not an incremental link
635 // (i.e., we are processing string merge sections) or if we need
636 // to build a gdb index.
637 if ((!parameters->incremental() || parameters->options().gdb_index())
638 && strcmp(name, "str") == 0)
639 return true;
640
641 // We will need these other sections when building a gdb index.
642 if (parameters->options().gdb_index()
643 && (strcmp(name, "info") == 0
644 || strcmp(name, "types") == 0
645 || strcmp(name, "pubnames") == 0
646 || strcmp(name, "pubtypes") == 0
647 || strcmp(name, "ranges") == 0
648 || strcmp(name, "abbrev") == 0))
649 return true;
650 }
651 #endif
652
653 // Even when single-threaded, we will need .zdebug_str if this is
654 // not an incremental link and we are building a gdb index.
655 // Otherwise, we would decompress the section twice: once for
656 // string merge processing, and once for building the gdb index.
657 if (!parameters->incremental()
658 && parameters->options().gdb_index()
659 && strcmp(name, "str") == 0)
660 return true;
661
662 return false;
663 }
664
665 // Build a table for any compressed debug sections, mapping each section index
666 // to the uncompressed size and (if needed) the decompressed contents.
667
668 template<int size, bool big_endian>
669 Compressed_section_map*
670 build_compressed_section_map(
671 const unsigned char* pshdrs,
672 unsigned int shnum,
673 const char* names,
674 section_size_type names_size,
675 Sized_relobj_file<size, big_endian>* obj)
676 {
677 Compressed_section_map* uncompressed_map = new Compressed_section_map();
678 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
679 const unsigned char* p = pshdrs + shdr_size;
680
681 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
682 {
683 typename elfcpp::Shdr<size, big_endian> shdr(p);
684 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
685 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
686 {
687 if (shdr.get_sh_name() >= names_size)
688 {
689 obj->error(_("bad section name offset for section %u: %lu"),
690 i, static_cast<unsigned long>(shdr.get_sh_name()));
691 continue;
692 }
693
694 const char* name = names + shdr.get_sh_name();
695 if (is_compressed_debug_section(name))
696 {
697 section_size_type len;
698 const unsigned char* contents =
699 obj->section_contents(i, &len, false);
700 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
701 Compressed_section_info info;
702 info.size = convert_to_section_size_type(uncompressed_size);
703 info.contents = NULL;
704 if (uncompressed_size != -1ULL)
705 {
706 unsigned char* uncompressed_data = NULL;
707 if (need_decompressed_section(name))
708 {
709 uncompressed_data = new unsigned char[uncompressed_size];
710 if (decompress_input_section(contents, len,
711 uncompressed_data,
712 uncompressed_size))
713 info.contents = uncompressed_data;
714 else
715 delete[] uncompressed_data;
716 }
717 (*uncompressed_map)[i] = info;
718 }
719 }
720 }
721 }
722 return uncompressed_map;
723 }
724
725 // Stash away info for a number of special sections.
726 // Return true if any of the sections found require local symbols to be read.
727
728 template<int size, bool big_endian>
729 bool
730 Sized_relobj_file<size, big_endian>::do_find_special_sections(
731 Read_symbols_data* sd)
732 {
733 const unsigned char* const pshdrs = sd->section_headers->data();
734 const unsigned char* namesu = sd->section_names->data();
735 const char* names = reinterpret_cast<const char*>(namesu);
736
737 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
738 this->has_eh_frame_ = true;
739
740 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
741 this->compressed_sections_
742 = build_compressed_section_map(pshdrs, this->shnum(), names,
743 sd->section_names_size, this);
744 return (this->has_eh_frame_
745 || (!parameters->options().relocatable()
746 && parameters->options().gdb_index()
747 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
748 || memmem(names, sd->section_names_size, "debug_types",
749 13) == 0)));
750 }
751
752 // Read the sections and symbols from an object file.
753
754 template<int size, bool big_endian>
755 void
756 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
757 {
758 this->read_section_data(&this->elf_file_, sd);
759
760 const unsigned char* const pshdrs = sd->section_headers->data();
761
762 this->find_symtab(pshdrs);
763
764 bool need_local_symbols = this->do_find_special_sections(sd);
765
766 sd->symbols = NULL;
767 sd->symbols_size = 0;
768 sd->external_symbols_offset = 0;
769 sd->symbol_names = NULL;
770 sd->symbol_names_size = 0;
771
772 if (this->symtab_shndx_ == 0)
773 {
774 // No symbol table. Weird but legal.
775 return;
776 }
777
778 // Get the symbol table section header.
779 typename This::Shdr symtabshdr(pshdrs
780 + this->symtab_shndx_ * This::shdr_size);
781 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
782
783 // If this object has a .eh_frame section, or if building a .gdb_index
784 // section and there is debug info, we need all the symbols.
785 // Otherwise we only need the external symbols. While it would be
786 // simpler to just always read all the symbols, I've seen object
787 // files with well over 2000 local symbols, which for a 64-bit
788 // object file format is over 5 pages that we don't need to read
789 // now.
790
791 const int sym_size = This::sym_size;
792 const unsigned int loccount = symtabshdr.get_sh_info();
793 this->local_symbol_count_ = loccount;
794 this->local_values_.resize(loccount);
795 section_offset_type locsize = loccount * sym_size;
796 off_t dataoff = symtabshdr.get_sh_offset();
797 section_size_type datasize =
798 convert_to_section_size_type(symtabshdr.get_sh_size());
799 off_t extoff = dataoff + locsize;
800 section_size_type extsize = datasize - locsize;
801
802 off_t readoff = need_local_symbols ? dataoff : extoff;
803 section_size_type readsize = need_local_symbols ? datasize : extsize;
804
805 if (readsize == 0)
806 {
807 // No external symbols. Also weird but also legal.
808 return;
809 }
810
811 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
812
813 // Read the section header for the symbol names.
814 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
815 if (strtab_shndx >= this->shnum())
816 {
817 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
818 return;
819 }
820 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
821 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
822 {
823 this->error(_("symbol table name section has wrong type: %u"),
824 static_cast<unsigned int>(strtabshdr.get_sh_type()));
825 return;
826 }
827
828 // Read the symbol names.
829 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
830 strtabshdr.get_sh_size(),
831 false, true);
832
833 sd->symbols = fvsymtab;
834 sd->symbols_size = readsize;
835 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
836 sd->symbol_names = fvstrtab;
837 sd->symbol_names_size =
838 convert_to_section_size_type(strtabshdr.get_sh_size());
839 }
840
841 // Return the section index of symbol SYM. Set *VALUE to its value in
842 // the object file. Set *IS_ORDINARY if this is an ordinary section
843 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
844 // Note that for a symbol which is not defined in this object file,
845 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
846 // the final value of the symbol in the link.
847
848 template<int size, bool big_endian>
849 unsigned int
850 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
851 Address* value,
852 bool* is_ordinary)
853 {
854 section_size_type symbols_size;
855 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
856 &symbols_size,
857 false);
858
859 const size_t count = symbols_size / This::sym_size;
860 gold_assert(sym < count);
861
862 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
863 *value = elfsym.get_st_value();
864
865 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
866 }
867
868 // Return whether to include a section group in the link. LAYOUT is
869 // used to keep track of which section groups we have already seen.
870 // INDEX is the index of the section group and SHDR is the section
871 // header. If we do not want to include this group, we set bits in
872 // OMIT for each section which should be discarded.
873
874 template<int size, bool big_endian>
875 bool
876 Sized_relobj_file<size, big_endian>::include_section_group(
877 Symbol_table* symtab,
878 Layout* layout,
879 unsigned int index,
880 const char* name,
881 const unsigned char* shdrs,
882 const char* section_names,
883 section_size_type section_names_size,
884 std::vector<bool>* omit)
885 {
886 // Read the section contents.
887 typename This::Shdr shdr(shdrs + index * This::shdr_size);
888 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
889 shdr.get_sh_size(), true, false);
890 const elfcpp::Elf_Word* pword =
891 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
892
893 // The first word contains flags. We only care about COMDAT section
894 // groups. Other section groups are always included in the link
895 // just like ordinary sections.
896 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
897
898 // Look up the group signature, which is the name of a symbol. ELF
899 // uses a symbol name because some group signatures are long, and
900 // the name is generally already in the symbol table, so it makes
901 // sense to put the long string just once in .strtab rather than in
902 // both .strtab and .shstrtab.
903
904 // Get the appropriate symbol table header (this will normally be
905 // the single SHT_SYMTAB section, but in principle it need not be).
906 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
907 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
908
909 // Read the symbol table entry.
910 unsigned int symndx = shdr.get_sh_info();
911 if (symndx >= symshdr.get_sh_size() / This::sym_size)
912 {
913 this->error(_("section group %u info %u out of range"),
914 index, symndx);
915 return false;
916 }
917 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
918 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
919 false);
920 elfcpp::Sym<size, big_endian> sym(psym);
921
922 // Read the symbol table names.
923 section_size_type symnamelen;
924 const unsigned char* psymnamesu;
925 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
926 &symnamelen, true);
927 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
928
929 // Get the section group signature.
930 if (sym.get_st_name() >= symnamelen)
931 {
932 this->error(_("symbol %u name offset %u out of range"),
933 symndx, sym.get_st_name());
934 return false;
935 }
936
937 std::string signature(psymnames + sym.get_st_name());
938
939 // It seems that some versions of gas will create a section group
940 // associated with a section symbol, and then fail to give a name to
941 // the section symbol. In such a case, use the name of the section.
942 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
943 {
944 bool is_ordinary;
945 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
946 sym.get_st_shndx(),
947 &is_ordinary);
948 if (!is_ordinary || sym_shndx >= this->shnum())
949 {
950 this->error(_("symbol %u invalid section index %u"),
951 symndx, sym_shndx);
952 return false;
953 }
954 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
955 if (member_shdr.get_sh_name() < section_names_size)
956 signature = section_names + member_shdr.get_sh_name();
957 }
958
959 // Record this section group in the layout, and see whether we've already
960 // seen one with the same signature.
961 bool include_group;
962 bool is_comdat;
963 Kept_section* kept_section = NULL;
964
965 if ((flags & elfcpp::GRP_COMDAT) == 0)
966 {
967 include_group = true;
968 is_comdat = false;
969 }
970 else
971 {
972 include_group = layout->find_or_add_kept_section(signature,
973 this, index, true,
974 true, &kept_section);
975 is_comdat = true;
976 }
977
978 if (is_comdat && include_group)
979 {
980 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
981 if (incremental_inputs != NULL)
982 incremental_inputs->report_comdat_group(this, signature.c_str());
983 }
984
985 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
986
987 std::vector<unsigned int> shndxes;
988 bool relocate_group = include_group && parameters->options().relocatable();
989 if (relocate_group)
990 shndxes.reserve(count - 1);
991
992 for (size_t i = 1; i < count; ++i)
993 {
994 elfcpp::Elf_Word shndx =
995 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
996
997 if (relocate_group)
998 shndxes.push_back(shndx);
999
1000 if (shndx >= this->shnum())
1001 {
1002 this->error(_("section %u in section group %u out of range"),
1003 shndx, index);
1004 continue;
1005 }
1006
1007 // Check for an earlier section number, since we're going to get
1008 // it wrong--we may have already decided to include the section.
1009 if (shndx < index)
1010 this->error(_("invalid section group %u refers to earlier section %u"),
1011 index, shndx);
1012
1013 // Get the name of the member section.
1014 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1015 if (member_shdr.get_sh_name() >= section_names_size)
1016 {
1017 // This is an error, but it will be diagnosed eventually
1018 // in do_layout, so we don't need to do anything here but
1019 // ignore it.
1020 continue;
1021 }
1022 std::string mname(section_names + member_shdr.get_sh_name());
1023
1024 if (include_group)
1025 {
1026 if (is_comdat)
1027 kept_section->add_comdat_section(mname, shndx,
1028 member_shdr.get_sh_size());
1029 }
1030 else
1031 {
1032 (*omit)[shndx] = true;
1033
1034 if (is_comdat)
1035 {
1036 Relobj* kept_object = kept_section->object();
1037 if (kept_section->is_comdat())
1038 {
1039 // Find the corresponding kept section, and store
1040 // that info in the discarded section table.
1041 unsigned int kept_shndx;
1042 uint64_t kept_size;
1043 if (kept_section->find_comdat_section(mname, &kept_shndx,
1044 &kept_size))
1045 {
1046 // We don't keep a mapping for this section if
1047 // it has a different size. The mapping is only
1048 // used for relocation processing, and we don't
1049 // want to treat the sections as similar if the
1050 // sizes are different. Checking the section
1051 // size is the approach used by the GNU linker.
1052 if (kept_size == member_shdr.get_sh_size())
1053 this->set_kept_comdat_section(shndx, kept_object,
1054 kept_shndx);
1055 }
1056 }
1057 else
1058 {
1059 // The existing section is a linkonce section. Add
1060 // a mapping if there is exactly one section in the
1061 // group (which is true when COUNT == 2) and if it
1062 // is the same size.
1063 if (count == 2
1064 && (kept_section->linkonce_size()
1065 == member_shdr.get_sh_size()))
1066 this->set_kept_comdat_section(shndx, kept_object,
1067 kept_section->shndx());
1068 }
1069 }
1070 }
1071 }
1072
1073 if (relocate_group)
1074 layout->layout_group(symtab, this, index, name, signature.c_str(),
1075 shdr, flags, &shndxes);
1076
1077 return include_group;
1078 }
1079
1080 // Whether to include a linkonce section in the link. NAME is the
1081 // name of the section and SHDR is the section header.
1082
1083 // Linkonce sections are a GNU extension implemented in the original
1084 // GNU linker before section groups were defined. The semantics are
1085 // that we only include one linkonce section with a given name. The
1086 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1087 // where T is the type of section and SYMNAME is the name of a symbol.
1088 // In an attempt to make linkonce sections interact well with section
1089 // groups, we try to identify SYMNAME and use it like a section group
1090 // signature. We want to block section groups with that signature,
1091 // but not other linkonce sections with that signature. We also use
1092 // the full name of the linkonce section as a normal section group
1093 // signature.
1094
1095 template<int size, bool big_endian>
1096 bool
1097 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1098 Layout* layout,
1099 unsigned int index,
1100 const char* name,
1101 const elfcpp::Shdr<size, big_endian>& shdr)
1102 {
1103 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1104 // In general the symbol name we want will be the string following
1105 // the last '.'. However, we have to handle the case of
1106 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1107 // some versions of gcc. So we use a heuristic: if the name starts
1108 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1109 // we look for the last '.'. We can't always simply skip
1110 // ".gnu.linkonce.X", because we have to deal with cases like
1111 // ".gnu.linkonce.d.rel.ro.local".
1112 const char* const linkonce_t = ".gnu.linkonce.t.";
1113 const char* symname;
1114 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1115 symname = name + strlen(linkonce_t);
1116 else
1117 symname = strrchr(name, '.') + 1;
1118 std::string sig1(symname);
1119 std::string sig2(name);
1120 Kept_section* kept1;
1121 Kept_section* kept2;
1122 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1123 false, &kept1);
1124 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1125 true, &kept2);
1126
1127 if (!include2)
1128 {
1129 // We are not including this section because we already saw the
1130 // name of the section as a signature. This normally implies
1131 // that the kept section is another linkonce section. If it is
1132 // the same size, record it as the section which corresponds to
1133 // this one.
1134 if (kept2->object() != NULL
1135 && !kept2->is_comdat()
1136 && kept2->linkonce_size() == sh_size)
1137 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1138 }
1139 else if (!include1)
1140 {
1141 // The section is being discarded on the basis of its symbol
1142 // name. This means that the corresponding kept section was
1143 // part of a comdat group, and it will be difficult to identify
1144 // the specific section within that group that corresponds to
1145 // this linkonce section. We'll handle the simple case where
1146 // the group has only one member section. Otherwise, it's not
1147 // worth the effort.
1148 unsigned int kept_shndx;
1149 uint64_t kept_size;
1150 if (kept1->object() != NULL
1151 && kept1->is_comdat()
1152 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1153 && kept_size == sh_size)
1154 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1155 }
1156 else
1157 {
1158 kept1->set_linkonce_size(sh_size);
1159 kept2->set_linkonce_size(sh_size);
1160 }
1161
1162 return include1 && include2;
1163 }
1164
1165 // Layout an input section.
1166
1167 template<int size, bool big_endian>
1168 inline void
1169 Sized_relobj_file<size, big_endian>::layout_section(
1170 Layout* layout,
1171 unsigned int shndx,
1172 const char* name,
1173 const typename This::Shdr& shdr,
1174 unsigned int reloc_shndx,
1175 unsigned int reloc_type)
1176 {
1177 off_t offset;
1178 Output_section* os = layout->layout(this, shndx, name, shdr,
1179 reloc_shndx, reloc_type, &offset);
1180
1181 this->output_sections()[shndx] = os;
1182 if (offset == -1)
1183 this->section_offsets()[shndx] = invalid_address;
1184 else
1185 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1186
1187 // If this section requires special handling, and if there are
1188 // relocs that apply to it, then we must do the special handling
1189 // before we apply the relocs.
1190 if (offset == -1 && reloc_shndx != 0)
1191 this->set_relocs_must_follow_section_writes();
1192 }
1193
1194 // Layout an input .eh_frame section.
1195
1196 template<int size, bool big_endian>
1197 void
1198 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1199 Layout* layout,
1200 const unsigned char* symbols_data,
1201 section_size_type symbols_size,
1202 const unsigned char* symbol_names_data,
1203 section_size_type symbol_names_size,
1204 unsigned int shndx,
1205 const typename This::Shdr& shdr,
1206 unsigned int reloc_shndx,
1207 unsigned int reloc_type)
1208 {
1209 gold_assert(this->has_eh_frame_);
1210
1211 off_t offset;
1212 Output_section* os = layout->layout_eh_frame(this,
1213 symbols_data,
1214 symbols_size,
1215 symbol_names_data,
1216 symbol_names_size,
1217 shndx,
1218 shdr,
1219 reloc_shndx,
1220 reloc_type,
1221 &offset);
1222 this->output_sections()[shndx] = os;
1223 if (os == NULL || offset == -1)
1224 {
1225 // An object can contain at most one section holding exception
1226 // frame information.
1227 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1228 this->discarded_eh_frame_shndx_ = shndx;
1229 this->section_offsets()[shndx] = invalid_address;
1230 }
1231 else
1232 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1233
1234 // If this section requires special handling, and if there are
1235 // relocs that aply to it, then we must do the special handling
1236 // before we apply the relocs.
1237 if (os != NULL && offset == -1 && reloc_shndx != 0)
1238 this->set_relocs_must_follow_section_writes();
1239 }
1240
1241 // Lay out the input sections. We walk through the sections and check
1242 // whether they should be included in the link. If they should, we
1243 // pass them to the Layout object, which will return an output section
1244 // and an offset.
1245 // This function is called twice sometimes, two passes, when mapping
1246 // of input sections to output sections must be delayed.
1247 // This is true for the following :
1248 // * Garbage collection (--gc-sections): Some input sections will be
1249 // discarded and hence the assignment must wait until the second pass.
1250 // In the first pass, it is for setting up some sections as roots to
1251 // a work-list for --gc-sections and to do comdat processing.
1252 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1253 // will be folded and hence the assignment must wait.
1254 // * Using plugins to map some sections to unique segments: Mapping
1255 // some sections to unique segments requires mapping them to unique
1256 // output sections too. This can be done via plugins now and this
1257 // information is not available in the first pass.
1258
1259 template<int size, bool big_endian>
1260 void
1261 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1262 Layout* layout,
1263 Read_symbols_data* sd)
1264 {
1265 const unsigned int shnum = this->shnum();
1266
1267 /* Should this function be called twice? */
1268 bool is_two_pass = (parameters->options().gc_sections()
1269 || parameters->options().icf_enabled()
1270 || layout->is_unique_segment_for_sections_specified());
1271
1272 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1273 a two-pass approach is not needed. */
1274 bool is_pass_one = false;
1275 bool is_pass_two = false;
1276
1277 Symbols_data* gc_sd = NULL;
1278
1279 /* Check if do_layout needs to be two-pass. If so, find out which pass
1280 should happen. In the first pass, the data in sd is saved to be used
1281 later in the second pass. */
1282 if (is_two_pass)
1283 {
1284 gc_sd = this->get_symbols_data();
1285 if (gc_sd == NULL)
1286 {
1287 gold_assert(sd != NULL);
1288 is_pass_one = true;
1289 }
1290 else
1291 {
1292 if (parameters->options().gc_sections())
1293 gold_assert(symtab->gc()->is_worklist_ready());
1294 if (parameters->options().icf_enabled())
1295 gold_assert(symtab->icf()->is_icf_ready());
1296 is_pass_two = true;
1297 }
1298 }
1299
1300 if (shnum == 0)
1301 return;
1302
1303 if (is_pass_one)
1304 {
1305 // During garbage collection save the symbols data to use it when
1306 // re-entering this function.
1307 gc_sd = new Symbols_data;
1308 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1309 this->set_symbols_data(gc_sd);
1310 }
1311
1312 const unsigned char* section_headers_data = NULL;
1313 section_size_type section_names_size;
1314 const unsigned char* symbols_data = NULL;
1315 section_size_type symbols_size;
1316 const unsigned char* symbol_names_data = NULL;
1317 section_size_type symbol_names_size;
1318
1319 if (is_two_pass)
1320 {
1321 section_headers_data = gc_sd->section_headers_data;
1322 section_names_size = gc_sd->section_names_size;
1323 symbols_data = gc_sd->symbols_data;
1324 symbols_size = gc_sd->symbols_size;
1325 symbol_names_data = gc_sd->symbol_names_data;
1326 symbol_names_size = gc_sd->symbol_names_size;
1327 }
1328 else
1329 {
1330 section_headers_data = sd->section_headers->data();
1331 section_names_size = sd->section_names_size;
1332 if (sd->symbols != NULL)
1333 symbols_data = sd->symbols->data();
1334 symbols_size = sd->symbols_size;
1335 if (sd->symbol_names != NULL)
1336 symbol_names_data = sd->symbol_names->data();
1337 symbol_names_size = sd->symbol_names_size;
1338 }
1339
1340 // Get the section headers.
1341 const unsigned char* shdrs = section_headers_data;
1342 const unsigned char* pshdrs;
1343
1344 // Get the section names.
1345 const unsigned char* pnamesu = (is_two_pass
1346 ? gc_sd->section_names_data
1347 : sd->section_names->data());
1348
1349 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1350
1351 // If any input files have been claimed by plugins, we need to defer
1352 // actual layout until the replacement files have arrived.
1353 const bool should_defer_layout =
1354 (parameters->options().has_plugins()
1355 && parameters->options().plugins()->should_defer_layout());
1356 unsigned int num_sections_to_defer = 0;
1357
1358 // For each section, record the index of the reloc section if any.
1359 // Use 0 to mean that there is no reloc section, -1U to mean that
1360 // there is more than one.
1361 std::vector<unsigned int> reloc_shndx(shnum, 0);
1362 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1363 // Skip the first, dummy, section.
1364 pshdrs = shdrs + This::shdr_size;
1365 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1366 {
1367 typename This::Shdr shdr(pshdrs);
1368
1369 // Count the number of sections whose layout will be deferred.
1370 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1371 ++num_sections_to_defer;
1372
1373 unsigned int sh_type = shdr.get_sh_type();
1374 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1375 {
1376 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1377 if (target_shndx == 0 || target_shndx >= shnum)
1378 {
1379 this->error(_("relocation section %u has bad info %u"),
1380 i, target_shndx);
1381 continue;
1382 }
1383
1384 if (reloc_shndx[target_shndx] != 0)
1385 reloc_shndx[target_shndx] = -1U;
1386 else
1387 {
1388 reloc_shndx[target_shndx] = i;
1389 reloc_type[target_shndx] = sh_type;
1390 }
1391 }
1392 }
1393
1394 Output_sections& out_sections(this->output_sections());
1395 std::vector<Address>& out_section_offsets(this->section_offsets());
1396
1397 if (!is_pass_two)
1398 {
1399 out_sections.resize(shnum);
1400 out_section_offsets.resize(shnum);
1401 }
1402
1403 // If we are only linking for symbols, then there is nothing else to
1404 // do here.
1405 if (this->input_file()->just_symbols())
1406 {
1407 if (!is_pass_two)
1408 {
1409 delete sd->section_headers;
1410 sd->section_headers = NULL;
1411 delete sd->section_names;
1412 sd->section_names = NULL;
1413 }
1414 return;
1415 }
1416
1417 if (num_sections_to_defer > 0)
1418 {
1419 parameters->options().plugins()->add_deferred_layout_object(this);
1420 this->deferred_layout_.reserve(num_sections_to_defer);
1421 }
1422
1423 // Whether we've seen a .note.GNU-stack section.
1424 bool seen_gnu_stack = false;
1425 // The flags of a .note.GNU-stack section.
1426 uint64_t gnu_stack_flags = 0;
1427
1428 // Keep track of which sections to omit.
1429 std::vector<bool> omit(shnum, false);
1430
1431 // Keep track of reloc sections when emitting relocations.
1432 const bool relocatable = parameters->options().relocatable();
1433 const bool emit_relocs = (relocatable
1434 || parameters->options().emit_relocs());
1435 std::vector<unsigned int> reloc_sections;
1436
1437 // Keep track of .eh_frame sections.
1438 std::vector<unsigned int> eh_frame_sections;
1439
1440 // Keep track of .debug_info and .debug_types sections.
1441 std::vector<unsigned int> debug_info_sections;
1442 std::vector<unsigned int> debug_types_sections;
1443
1444 // Skip the first, dummy, section.
1445 pshdrs = shdrs + This::shdr_size;
1446 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1447 {
1448 typename This::Shdr shdr(pshdrs);
1449
1450 if (shdr.get_sh_name() >= section_names_size)
1451 {
1452 this->error(_("bad section name offset for section %u: %lu"),
1453 i, static_cast<unsigned long>(shdr.get_sh_name()));
1454 return;
1455 }
1456
1457 const char* name = pnames + shdr.get_sh_name();
1458
1459 if (!is_pass_two)
1460 {
1461 if (this->handle_gnu_warning_section(name, i, symtab))
1462 {
1463 if (!relocatable && !parameters->options().shared())
1464 omit[i] = true;
1465 }
1466
1467 // The .note.GNU-stack section is special. It gives the
1468 // protection flags that this object file requires for the stack
1469 // in memory.
1470 if (strcmp(name, ".note.GNU-stack") == 0)
1471 {
1472 seen_gnu_stack = true;
1473 gnu_stack_flags |= shdr.get_sh_flags();
1474 omit[i] = true;
1475 }
1476
1477 // The .note.GNU-split-stack section is also special. It
1478 // indicates that the object was compiled with
1479 // -fsplit-stack.
1480 if (this->handle_split_stack_section(name))
1481 {
1482 if (!relocatable && !parameters->options().shared())
1483 omit[i] = true;
1484 }
1485
1486 // Skip attributes section.
1487 if (parameters->target().is_attributes_section(name))
1488 {
1489 omit[i] = true;
1490 }
1491
1492 bool discard = omit[i];
1493 if (!discard)
1494 {
1495 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1496 {
1497 if (!this->include_section_group(symtab, layout, i, name,
1498 shdrs, pnames,
1499 section_names_size,
1500 &omit))
1501 discard = true;
1502 }
1503 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1504 && Layout::is_linkonce(name))
1505 {
1506 if (!this->include_linkonce_section(layout, i, name, shdr))
1507 discard = true;
1508 }
1509 }
1510
1511 // Add the section to the incremental inputs layout.
1512 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1513 if (incremental_inputs != NULL
1514 && !discard
1515 && can_incremental_update(shdr.get_sh_type()))
1516 {
1517 off_t sh_size = shdr.get_sh_size();
1518 section_size_type uncompressed_size;
1519 if (this->section_is_compressed(i, &uncompressed_size))
1520 sh_size = uncompressed_size;
1521 incremental_inputs->report_input_section(this, i, name, sh_size);
1522 }
1523
1524 if (discard)
1525 {
1526 // Do not include this section in the link.
1527 out_sections[i] = NULL;
1528 out_section_offsets[i] = invalid_address;
1529 continue;
1530 }
1531 }
1532
1533 if (is_pass_one && parameters->options().gc_sections())
1534 {
1535 if (this->is_section_name_included(name)
1536 || layout->keep_input_section (this, name)
1537 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1538 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1539 {
1540 symtab->gc()->worklist().push(Section_id(this, i));
1541 }
1542 // If the section name XXX can be represented as a C identifier
1543 // it cannot be discarded if there are references to
1544 // __start_XXX and __stop_XXX symbols. These need to be
1545 // specially handled.
1546 if (is_cident(name))
1547 {
1548 symtab->gc()->add_cident_section(name, Section_id(this, i));
1549 }
1550 }
1551
1552 // When doing a relocatable link we are going to copy input
1553 // reloc sections into the output. We only want to copy the
1554 // ones associated with sections which are not being discarded.
1555 // However, we don't know that yet for all sections. So save
1556 // reloc sections and process them later. Garbage collection is
1557 // not triggered when relocatable code is desired.
1558 if (emit_relocs
1559 && (shdr.get_sh_type() == elfcpp::SHT_REL
1560 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1561 {
1562 reloc_sections.push_back(i);
1563 continue;
1564 }
1565
1566 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1567 continue;
1568
1569 // The .eh_frame section is special. It holds exception frame
1570 // information that we need to read in order to generate the
1571 // exception frame header. We process these after all the other
1572 // sections so that the exception frame reader can reliably
1573 // determine which sections are being discarded, and discard the
1574 // corresponding information.
1575 if (!relocatable
1576 && strcmp(name, ".eh_frame") == 0
1577 && this->check_eh_frame_flags(&shdr))
1578 {
1579 if (is_pass_one)
1580 {
1581 out_sections[i] = reinterpret_cast<Output_section*>(1);
1582 out_section_offsets[i] = invalid_address;
1583 }
1584 else if (should_defer_layout)
1585 this->deferred_layout_.push_back(Deferred_layout(i, name,
1586 pshdrs,
1587 reloc_shndx[i],
1588 reloc_type[i]));
1589 else
1590 eh_frame_sections.push_back(i);
1591 continue;
1592 }
1593
1594 if (is_pass_two && parameters->options().gc_sections())
1595 {
1596 // This is executed during the second pass of garbage
1597 // collection. do_layout has been called before and some
1598 // sections have been already discarded. Simply ignore
1599 // such sections this time around.
1600 if (out_sections[i] == NULL)
1601 {
1602 gold_assert(out_section_offsets[i] == invalid_address);
1603 continue;
1604 }
1605 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1606 && symtab->gc()->is_section_garbage(this, i))
1607 {
1608 if (parameters->options().print_gc_sections())
1609 gold_info(_("%s: removing unused section from '%s'"
1610 " in file '%s'"),
1611 program_name, this->section_name(i).c_str(),
1612 this->name().c_str());
1613 out_sections[i] = NULL;
1614 out_section_offsets[i] = invalid_address;
1615 continue;
1616 }
1617 }
1618
1619 if (is_pass_two && parameters->options().icf_enabled())
1620 {
1621 if (out_sections[i] == NULL)
1622 {
1623 gold_assert(out_section_offsets[i] == invalid_address);
1624 continue;
1625 }
1626 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1627 && symtab->icf()->is_section_folded(this, i))
1628 {
1629 if (parameters->options().print_icf_sections())
1630 {
1631 Section_id folded =
1632 symtab->icf()->get_folded_section(this, i);
1633 Relobj* folded_obj =
1634 reinterpret_cast<Relobj*>(folded.first);
1635 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1636 "into '%s' in file '%s'"),
1637 program_name, this->section_name(i).c_str(),
1638 this->name().c_str(),
1639 folded_obj->section_name(folded.second).c_str(),
1640 folded_obj->name().c_str());
1641 }
1642 out_sections[i] = NULL;
1643 out_section_offsets[i] = invalid_address;
1644 continue;
1645 }
1646 }
1647
1648 // Defer layout here if input files are claimed by plugins. When gc
1649 // is turned on this function is called twice. For the second call
1650 // should_defer_layout should be false.
1651 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1652 {
1653 gold_assert(!is_pass_two);
1654 this->deferred_layout_.push_back(Deferred_layout(i, name,
1655 pshdrs,
1656 reloc_shndx[i],
1657 reloc_type[i]));
1658 // Put dummy values here; real values will be supplied by
1659 // do_layout_deferred_sections.
1660 out_sections[i] = reinterpret_cast<Output_section*>(2);
1661 out_section_offsets[i] = invalid_address;
1662 continue;
1663 }
1664
1665 // During gc_pass_two if a section that was previously deferred is
1666 // found, do not layout the section as layout_deferred_sections will
1667 // do it later from gold.cc.
1668 if (is_pass_two
1669 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1670 continue;
1671
1672 if (is_pass_one)
1673 {
1674 // This is during garbage collection. The out_sections are
1675 // assigned in the second call to this function.
1676 out_sections[i] = reinterpret_cast<Output_section*>(1);
1677 out_section_offsets[i] = invalid_address;
1678 }
1679 else
1680 {
1681 // When garbage collection is switched on the actual layout
1682 // only happens in the second call.
1683 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1684 reloc_type[i]);
1685
1686 // When generating a .gdb_index section, we do additional
1687 // processing of .debug_info and .debug_types sections after all
1688 // the other sections for the same reason as above.
1689 if (!relocatable
1690 && parameters->options().gdb_index()
1691 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1692 {
1693 if (strcmp(name, ".debug_info") == 0
1694 || strcmp(name, ".zdebug_info") == 0)
1695 debug_info_sections.push_back(i);
1696 else if (strcmp(name, ".debug_types") == 0
1697 || strcmp(name, ".zdebug_types") == 0)
1698 debug_types_sections.push_back(i);
1699 }
1700 }
1701 }
1702
1703 if (!is_pass_two)
1704 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1705
1706 // Handle the .eh_frame sections after the other sections.
1707 gold_assert(!is_pass_one || eh_frame_sections.empty());
1708 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1709 p != eh_frame_sections.end();
1710 ++p)
1711 {
1712 unsigned int i = *p;
1713 const unsigned char* pshdr;
1714 pshdr = section_headers_data + i * This::shdr_size;
1715 typename This::Shdr shdr(pshdr);
1716
1717 this->layout_eh_frame_section(layout,
1718 symbols_data,
1719 symbols_size,
1720 symbol_names_data,
1721 symbol_names_size,
1722 i,
1723 shdr,
1724 reloc_shndx[i],
1725 reloc_type[i]);
1726 }
1727
1728 // When doing a relocatable link handle the reloc sections at the
1729 // end. Garbage collection and Identical Code Folding is not
1730 // turned on for relocatable code.
1731 if (emit_relocs)
1732 this->size_relocatable_relocs();
1733
1734 gold_assert(!is_two_pass || reloc_sections.empty());
1735
1736 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1737 p != reloc_sections.end();
1738 ++p)
1739 {
1740 unsigned int i = *p;
1741 const unsigned char* pshdr;
1742 pshdr = section_headers_data + i * This::shdr_size;
1743 typename This::Shdr shdr(pshdr);
1744
1745 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1746 if (data_shndx >= shnum)
1747 {
1748 // We already warned about this above.
1749 continue;
1750 }
1751
1752 Output_section* data_section = out_sections[data_shndx];
1753 if (data_section == reinterpret_cast<Output_section*>(2))
1754 {
1755 // The layout for the data section was deferred, so we need
1756 // to defer the relocation section, too.
1757 const char* name = pnames + shdr.get_sh_name();
1758 this->deferred_layout_relocs_.push_back(
1759 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1760 out_sections[i] = reinterpret_cast<Output_section*>(2);
1761 out_section_offsets[i] = invalid_address;
1762 continue;
1763 }
1764 if (data_section == NULL)
1765 {
1766 out_sections[i] = NULL;
1767 out_section_offsets[i] = invalid_address;
1768 continue;
1769 }
1770
1771 Relocatable_relocs* rr = new Relocatable_relocs();
1772 this->set_relocatable_relocs(i, rr);
1773
1774 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1775 rr);
1776 out_sections[i] = os;
1777 out_section_offsets[i] = invalid_address;
1778 }
1779
1780 // When building a .gdb_index section, scan the .debug_info and
1781 // .debug_types sections.
1782 gold_assert(!is_pass_one
1783 || (debug_info_sections.empty() && debug_types_sections.empty()));
1784 for (std::vector<unsigned int>::const_iterator p
1785 = debug_info_sections.begin();
1786 p != debug_info_sections.end();
1787 ++p)
1788 {
1789 unsigned int i = *p;
1790 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1791 i, reloc_shndx[i], reloc_type[i]);
1792 }
1793 for (std::vector<unsigned int>::const_iterator p
1794 = debug_types_sections.begin();
1795 p != debug_types_sections.end();
1796 ++p)
1797 {
1798 unsigned int i = *p;
1799 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1800 i, reloc_shndx[i], reloc_type[i]);
1801 }
1802
1803 if (is_pass_two)
1804 {
1805 delete[] gc_sd->section_headers_data;
1806 delete[] gc_sd->section_names_data;
1807 delete[] gc_sd->symbols_data;
1808 delete[] gc_sd->symbol_names_data;
1809 this->set_symbols_data(NULL);
1810 }
1811 else
1812 {
1813 delete sd->section_headers;
1814 sd->section_headers = NULL;
1815 delete sd->section_names;
1816 sd->section_names = NULL;
1817 }
1818 }
1819
1820 // Layout sections whose layout was deferred while waiting for
1821 // input files from a plugin.
1822
1823 template<int size, bool big_endian>
1824 void
1825 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1826 {
1827 typename std::vector<Deferred_layout>::iterator deferred;
1828
1829 for (deferred = this->deferred_layout_.begin();
1830 deferred != this->deferred_layout_.end();
1831 ++deferred)
1832 {
1833 typename This::Shdr shdr(deferred->shdr_data_);
1834
1835 if (!parameters->options().relocatable()
1836 && deferred->name_ == ".eh_frame"
1837 && this->check_eh_frame_flags(&shdr))
1838 {
1839 // Checking is_section_included is not reliable for
1840 // .eh_frame sections, because they do not have an output
1841 // section. This is not a problem normally because we call
1842 // layout_eh_frame_section unconditionally, but when
1843 // deferring sections that is not true. We don't want to
1844 // keep all .eh_frame sections because that will cause us to
1845 // keep all sections that they refer to, which is the wrong
1846 // way around. Instead, the eh_frame code will discard
1847 // .eh_frame sections that refer to discarded sections.
1848
1849 // Reading the symbols again here may be slow.
1850 Read_symbols_data sd;
1851 this->read_symbols(&sd);
1852 this->layout_eh_frame_section(layout,
1853 sd.symbols->data(),
1854 sd.symbols_size,
1855 sd.symbol_names->data(),
1856 sd.symbol_names_size,
1857 deferred->shndx_,
1858 shdr,
1859 deferred->reloc_shndx_,
1860 deferred->reloc_type_);
1861 continue;
1862 }
1863
1864 // If the section is not included, it is because the garbage collector
1865 // decided it is not needed. Avoid reverting that decision.
1866 if (!this->is_section_included(deferred->shndx_))
1867 continue;
1868
1869 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1870 shdr, deferred->reloc_shndx_,
1871 deferred->reloc_type_);
1872 }
1873
1874 this->deferred_layout_.clear();
1875
1876 // Now handle the deferred relocation sections.
1877
1878 Output_sections& out_sections(this->output_sections());
1879 std::vector<Address>& out_section_offsets(this->section_offsets());
1880
1881 for (deferred = this->deferred_layout_relocs_.begin();
1882 deferred != this->deferred_layout_relocs_.end();
1883 ++deferred)
1884 {
1885 unsigned int shndx = deferred->shndx_;
1886 typename This::Shdr shdr(deferred->shdr_data_);
1887 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1888
1889 Output_section* data_section = out_sections[data_shndx];
1890 if (data_section == NULL)
1891 {
1892 out_sections[shndx] = NULL;
1893 out_section_offsets[shndx] = invalid_address;
1894 continue;
1895 }
1896
1897 Relocatable_relocs* rr = new Relocatable_relocs();
1898 this->set_relocatable_relocs(shndx, rr);
1899
1900 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1901 data_section, rr);
1902 out_sections[shndx] = os;
1903 out_section_offsets[shndx] = invalid_address;
1904 }
1905 }
1906
1907 // Add the symbols to the symbol table.
1908
1909 template<int size, bool big_endian>
1910 void
1911 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1912 Read_symbols_data* sd,
1913 Layout*)
1914 {
1915 if (sd->symbols == NULL)
1916 {
1917 gold_assert(sd->symbol_names == NULL);
1918 return;
1919 }
1920
1921 const int sym_size = This::sym_size;
1922 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1923 / sym_size);
1924 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1925 {
1926 this->error(_("size of symbols is not multiple of symbol size"));
1927 return;
1928 }
1929
1930 this->symbols_.resize(symcount);
1931
1932 const char* sym_names =
1933 reinterpret_cast<const char*>(sd->symbol_names->data());
1934 symtab->add_from_relobj(this,
1935 sd->symbols->data() + sd->external_symbols_offset,
1936 symcount, this->local_symbol_count_,
1937 sym_names, sd->symbol_names_size,
1938 &this->symbols_,
1939 &this->defined_count_);
1940
1941 delete sd->symbols;
1942 sd->symbols = NULL;
1943 delete sd->symbol_names;
1944 sd->symbol_names = NULL;
1945 }
1946
1947 // Find out if this object, that is a member of a lib group, should be included
1948 // in the link. We check every symbol defined by this object. If the symbol
1949 // table has a strong undefined reference to that symbol, we have to include
1950 // the object.
1951
1952 template<int size, bool big_endian>
1953 Archive::Should_include
1954 Sized_relobj_file<size, big_endian>::do_should_include_member(
1955 Symbol_table* symtab,
1956 Layout* layout,
1957 Read_symbols_data* sd,
1958 std::string* why)
1959 {
1960 char* tmpbuf = NULL;
1961 size_t tmpbuflen = 0;
1962 const char* sym_names =
1963 reinterpret_cast<const char*>(sd->symbol_names->data());
1964 const unsigned char* syms =
1965 sd->symbols->data() + sd->external_symbols_offset;
1966 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1967 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1968 / sym_size);
1969
1970 const unsigned char* p = syms;
1971
1972 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1973 {
1974 elfcpp::Sym<size, big_endian> sym(p);
1975 unsigned int st_shndx = sym.get_st_shndx();
1976 if (st_shndx == elfcpp::SHN_UNDEF)
1977 continue;
1978
1979 unsigned int st_name = sym.get_st_name();
1980 const char* name = sym_names + st_name;
1981 Symbol* symbol;
1982 Archive::Should_include t = Archive::should_include_member(symtab,
1983 layout,
1984 name,
1985 &symbol, why,
1986 &tmpbuf,
1987 &tmpbuflen);
1988 if (t == Archive::SHOULD_INCLUDE_YES)
1989 {
1990 if (tmpbuf != NULL)
1991 free(tmpbuf);
1992 return t;
1993 }
1994 }
1995 if (tmpbuf != NULL)
1996 free(tmpbuf);
1997 return Archive::SHOULD_INCLUDE_UNKNOWN;
1998 }
1999
2000 // Iterate over global defined symbols, calling a visitor class V for each.
2001
2002 template<int size, bool big_endian>
2003 void
2004 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2005 Read_symbols_data* sd,
2006 Library_base::Symbol_visitor_base* v)
2007 {
2008 const char* sym_names =
2009 reinterpret_cast<const char*>(sd->symbol_names->data());
2010 const unsigned char* syms =
2011 sd->symbols->data() + sd->external_symbols_offset;
2012 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2013 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2014 / sym_size);
2015 const unsigned char* p = syms;
2016
2017 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2018 {
2019 elfcpp::Sym<size, big_endian> sym(p);
2020 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2021 v->visit(sym_names + sym.get_st_name());
2022 }
2023 }
2024
2025 // Return whether the local symbol SYMNDX has a PLT offset.
2026
2027 template<int size, bool big_endian>
2028 bool
2029 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2030 unsigned int symndx) const
2031 {
2032 typename Local_plt_offsets::const_iterator p =
2033 this->local_plt_offsets_.find(symndx);
2034 return p != this->local_plt_offsets_.end();
2035 }
2036
2037 // Get the PLT offset of a local symbol.
2038
2039 template<int size, bool big_endian>
2040 unsigned int
2041 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2042 unsigned int symndx) const
2043 {
2044 typename Local_plt_offsets::const_iterator p =
2045 this->local_plt_offsets_.find(symndx);
2046 gold_assert(p != this->local_plt_offsets_.end());
2047 return p->second;
2048 }
2049
2050 // Set the PLT offset of a local symbol.
2051
2052 template<int size, bool big_endian>
2053 void
2054 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2055 unsigned int symndx, unsigned int plt_offset)
2056 {
2057 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2058 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2059 gold_assert(ins.second);
2060 }
2061
2062 // First pass over the local symbols. Here we add their names to
2063 // *POOL and *DYNPOOL, and we store the symbol value in
2064 // THIS->LOCAL_VALUES_. This function is always called from a
2065 // singleton thread. This is followed by a call to
2066 // finalize_local_symbols.
2067
2068 template<int size, bool big_endian>
2069 void
2070 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2071 Stringpool* dynpool)
2072 {
2073 gold_assert(this->symtab_shndx_ != -1U);
2074 if (this->symtab_shndx_ == 0)
2075 {
2076 // This object has no symbols. Weird but legal.
2077 return;
2078 }
2079
2080 // Read the symbol table section header.
2081 const unsigned int symtab_shndx = this->symtab_shndx_;
2082 typename This::Shdr symtabshdr(this,
2083 this->elf_file_.section_header(symtab_shndx));
2084 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2085
2086 // Read the local symbols.
2087 const int sym_size = This::sym_size;
2088 const unsigned int loccount = this->local_symbol_count_;
2089 gold_assert(loccount == symtabshdr.get_sh_info());
2090 off_t locsize = loccount * sym_size;
2091 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2092 locsize, true, true);
2093
2094 // Read the symbol names.
2095 const unsigned int strtab_shndx =
2096 this->adjust_shndx(symtabshdr.get_sh_link());
2097 section_size_type strtab_size;
2098 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2099 &strtab_size,
2100 true);
2101 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2102
2103 // Loop over the local symbols.
2104
2105 const Output_sections& out_sections(this->output_sections());
2106 unsigned int shnum = this->shnum();
2107 unsigned int count = 0;
2108 unsigned int dyncount = 0;
2109 // Skip the first, dummy, symbol.
2110 psyms += sym_size;
2111 bool strip_all = parameters->options().strip_all();
2112 bool discard_all = parameters->options().discard_all();
2113 bool discard_locals = parameters->options().discard_locals();
2114 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2115 {
2116 elfcpp::Sym<size, big_endian> sym(psyms);
2117
2118 Symbol_value<size>& lv(this->local_values_[i]);
2119
2120 bool is_ordinary;
2121 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2122 &is_ordinary);
2123 lv.set_input_shndx(shndx, is_ordinary);
2124
2125 if (sym.get_st_type() == elfcpp::STT_SECTION)
2126 lv.set_is_section_symbol();
2127 else if (sym.get_st_type() == elfcpp::STT_TLS)
2128 lv.set_is_tls_symbol();
2129 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2130 lv.set_is_ifunc_symbol();
2131
2132 // Save the input symbol value for use in do_finalize_local_symbols().
2133 lv.set_input_value(sym.get_st_value());
2134
2135 // Decide whether this symbol should go into the output file.
2136
2137 if ((shndx < shnum && out_sections[shndx] == NULL)
2138 || shndx == this->discarded_eh_frame_shndx_)
2139 {
2140 lv.set_no_output_symtab_entry();
2141 gold_assert(!lv.needs_output_dynsym_entry());
2142 continue;
2143 }
2144
2145 if (sym.get_st_type() == elfcpp::STT_SECTION
2146 || !this->adjust_local_symbol(&lv))
2147 {
2148 lv.set_no_output_symtab_entry();
2149 gold_assert(!lv.needs_output_dynsym_entry());
2150 continue;
2151 }
2152
2153 if (sym.get_st_name() >= strtab_size)
2154 {
2155 this->error(_("local symbol %u section name out of range: %u >= %u"),
2156 i, sym.get_st_name(),
2157 static_cast<unsigned int>(strtab_size));
2158 lv.set_no_output_symtab_entry();
2159 continue;
2160 }
2161
2162 const char* name = pnames + sym.get_st_name();
2163
2164 // If needed, add the symbol to the dynamic symbol table string pool.
2165 if (lv.needs_output_dynsym_entry())
2166 {
2167 dynpool->add(name, true, NULL);
2168 ++dyncount;
2169 }
2170
2171 if (strip_all
2172 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2173 {
2174 lv.set_no_output_symtab_entry();
2175 continue;
2176 }
2177
2178 // If --discard-locals option is used, discard all temporary local
2179 // symbols. These symbols start with system-specific local label
2180 // prefixes, typically .L for ELF system. We want to be compatible
2181 // with GNU ld so here we essentially use the same check in
2182 // bfd_is_local_label(). The code is different because we already
2183 // know that:
2184 //
2185 // - the symbol is local and thus cannot have global or weak binding.
2186 // - the symbol is not a section symbol.
2187 // - the symbol has a name.
2188 //
2189 // We do not discard a symbol if it needs a dynamic symbol entry.
2190 if (discard_locals
2191 && sym.get_st_type() != elfcpp::STT_FILE
2192 && !lv.needs_output_dynsym_entry()
2193 && lv.may_be_discarded_from_output_symtab()
2194 && parameters->target().is_local_label_name(name))
2195 {
2196 lv.set_no_output_symtab_entry();
2197 continue;
2198 }
2199
2200 // Discard the local symbol if -retain_symbols_file is specified
2201 // and the local symbol is not in that file.
2202 if (!parameters->options().should_retain_symbol(name))
2203 {
2204 lv.set_no_output_symtab_entry();
2205 continue;
2206 }
2207
2208 // Add the symbol to the symbol table string pool.
2209 pool->add(name, true, NULL);
2210 ++count;
2211 }
2212
2213 this->output_local_symbol_count_ = count;
2214 this->output_local_dynsym_count_ = dyncount;
2215 }
2216
2217 // Compute the final value of a local symbol.
2218
2219 template<int size, bool big_endian>
2220 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2221 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2222 unsigned int r_sym,
2223 const Symbol_value<size>* lv_in,
2224 Symbol_value<size>* lv_out,
2225 bool relocatable,
2226 const Output_sections& out_sections,
2227 const std::vector<Address>& out_offsets,
2228 const Symbol_table* symtab)
2229 {
2230 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2231 // we may have a memory leak.
2232 gold_assert(lv_out->has_output_value());
2233
2234 bool is_ordinary;
2235 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2236
2237 // Set the output symbol value.
2238
2239 if (!is_ordinary)
2240 {
2241 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2242 lv_out->set_output_value(lv_in->input_value());
2243 else
2244 {
2245 this->error(_("unknown section index %u for local symbol %u"),
2246 shndx, r_sym);
2247 lv_out->set_output_value(0);
2248 return This::CFLV_ERROR;
2249 }
2250 }
2251 else
2252 {
2253 if (shndx >= this->shnum())
2254 {
2255 this->error(_("local symbol %u section index %u out of range"),
2256 r_sym, shndx);
2257 lv_out->set_output_value(0);
2258 return This::CFLV_ERROR;
2259 }
2260
2261 Output_section* os = out_sections[shndx];
2262 Address secoffset = out_offsets[shndx];
2263 if (symtab->is_section_folded(this, shndx))
2264 {
2265 gold_assert(os == NULL && secoffset == invalid_address);
2266 // Get the os of the section it is folded onto.
2267 Section_id folded = symtab->icf()->get_folded_section(this,
2268 shndx);
2269 gold_assert(folded.first != NULL);
2270 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2271 <Sized_relobj_file<size, big_endian>*>(folded.first);
2272 os = folded_obj->output_section(folded.second);
2273 gold_assert(os != NULL);
2274 secoffset = folded_obj->get_output_section_offset(folded.second);
2275
2276 // This could be a relaxed input section.
2277 if (secoffset == invalid_address)
2278 {
2279 const Output_relaxed_input_section* relaxed_section =
2280 os->find_relaxed_input_section(folded_obj, folded.second);
2281 gold_assert(relaxed_section != NULL);
2282 secoffset = relaxed_section->address() - os->address();
2283 }
2284 }
2285
2286 if (os == NULL)
2287 {
2288 // This local symbol belongs to a section we are discarding.
2289 // In some cases when applying relocations later, we will
2290 // attempt to match it to the corresponding kept section,
2291 // so we leave the input value unchanged here.
2292 return This::CFLV_DISCARDED;
2293 }
2294 else if (secoffset == invalid_address)
2295 {
2296 uint64_t start;
2297
2298 // This is a SHF_MERGE section or one which otherwise
2299 // requires special handling.
2300 if (shndx == this->discarded_eh_frame_shndx_)
2301 {
2302 // This local symbol belongs to a discarded .eh_frame
2303 // section. Just treat it like the case in which
2304 // os == NULL above.
2305 gold_assert(this->has_eh_frame_);
2306 return This::CFLV_DISCARDED;
2307 }
2308 else if (!lv_in->is_section_symbol())
2309 {
2310 // This is not a section symbol. We can determine
2311 // the final value now.
2312 lv_out->set_output_value(
2313 os->output_address(this, shndx, lv_in->input_value()));
2314 }
2315 else if (!os->find_starting_output_address(this, shndx, &start))
2316 {
2317 // This is a section symbol, but apparently not one in a
2318 // merged section. First check to see if this is a relaxed
2319 // input section. If so, use its address. Otherwise just
2320 // use the start of the output section. This happens with
2321 // relocatable links when the input object has section
2322 // symbols for arbitrary non-merge sections.
2323 const Output_section_data* posd =
2324 os->find_relaxed_input_section(this, shndx);
2325 if (posd != NULL)
2326 {
2327 Address relocatable_link_adjustment =
2328 relocatable ? os->address() : 0;
2329 lv_out->set_output_value(posd->address()
2330 - relocatable_link_adjustment);
2331 }
2332 else
2333 lv_out->set_output_value(os->address());
2334 }
2335 else
2336 {
2337 // We have to consider the addend to determine the
2338 // value to use in a relocation. START is the start
2339 // of this input section. If we are doing a relocatable
2340 // link, use offset from start output section instead of
2341 // address.
2342 Address adjusted_start =
2343 relocatable ? start - os->address() : start;
2344 Merged_symbol_value<size>* msv =
2345 new Merged_symbol_value<size>(lv_in->input_value(),
2346 adjusted_start);
2347 lv_out->set_merged_symbol_value(msv);
2348 }
2349 }
2350 else if (lv_in->is_tls_symbol())
2351 lv_out->set_output_value(os->tls_offset()
2352 + secoffset
2353 + lv_in->input_value());
2354 else
2355 lv_out->set_output_value((relocatable ? 0 : os->address())
2356 + secoffset
2357 + lv_in->input_value());
2358 }
2359 return This::CFLV_OK;
2360 }
2361
2362 // Compute final local symbol value. R_SYM is the index of a local
2363 // symbol in symbol table. LV points to a symbol value, which is
2364 // expected to hold the input value and to be over-written by the
2365 // final value. SYMTAB points to a symbol table. Some targets may want
2366 // to know would-be-finalized local symbol values in relaxation.
2367 // Hence we provide this method. Since this method updates *LV, a
2368 // callee should make a copy of the original local symbol value and
2369 // use the copy instead of modifying an object's local symbols before
2370 // everything is finalized. The caller should also free up any allocated
2371 // memory in the return value in *LV.
2372 template<int size, bool big_endian>
2373 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2374 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2375 unsigned int r_sym,
2376 const Symbol_value<size>* lv_in,
2377 Symbol_value<size>* lv_out,
2378 const Symbol_table* symtab)
2379 {
2380 // This is just a wrapper of compute_final_local_value_internal.
2381 const bool relocatable = parameters->options().relocatable();
2382 const Output_sections& out_sections(this->output_sections());
2383 const std::vector<Address>& out_offsets(this->section_offsets());
2384 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2385 relocatable, out_sections,
2386 out_offsets, symtab);
2387 }
2388
2389 // Finalize the local symbols. Here we set the final value in
2390 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2391 // This function is always called from a singleton thread. The actual
2392 // output of the local symbols will occur in a separate task.
2393
2394 template<int size, bool big_endian>
2395 unsigned int
2396 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2397 unsigned int index,
2398 off_t off,
2399 Symbol_table* symtab)
2400 {
2401 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2402
2403 const unsigned int loccount = this->local_symbol_count_;
2404 this->local_symbol_offset_ = off;
2405
2406 const bool relocatable = parameters->options().relocatable();
2407 const Output_sections& out_sections(this->output_sections());
2408 const std::vector<Address>& out_offsets(this->section_offsets());
2409
2410 for (unsigned int i = 1; i < loccount; ++i)
2411 {
2412 Symbol_value<size>* lv = &this->local_values_[i];
2413
2414 Compute_final_local_value_status cflv_status =
2415 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2416 out_sections, out_offsets,
2417 symtab);
2418 switch (cflv_status)
2419 {
2420 case CFLV_OK:
2421 if (!lv->is_output_symtab_index_set())
2422 {
2423 lv->set_output_symtab_index(index);
2424 ++index;
2425 }
2426 break;
2427 case CFLV_DISCARDED:
2428 case CFLV_ERROR:
2429 // Do nothing.
2430 break;
2431 default:
2432 gold_unreachable();
2433 }
2434 }
2435 return index;
2436 }
2437
2438 // Set the output dynamic symbol table indexes for the local variables.
2439
2440 template<int size, bool big_endian>
2441 unsigned int
2442 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2443 unsigned int index)
2444 {
2445 const unsigned int loccount = this->local_symbol_count_;
2446 for (unsigned int i = 1; i < loccount; ++i)
2447 {
2448 Symbol_value<size>& lv(this->local_values_[i]);
2449 if (lv.needs_output_dynsym_entry())
2450 {
2451 lv.set_output_dynsym_index(index);
2452 ++index;
2453 }
2454 }
2455 return index;
2456 }
2457
2458 // Set the offset where local dynamic symbol information will be stored.
2459 // Returns the count of local symbols contributed to the symbol table by
2460 // this object.
2461
2462 template<int size, bool big_endian>
2463 unsigned int
2464 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2465 {
2466 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2467 this->local_dynsym_offset_ = off;
2468 return this->output_local_dynsym_count_;
2469 }
2470
2471 // If Symbols_data is not NULL get the section flags from here otherwise
2472 // get it from the file.
2473
2474 template<int size, bool big_endian>
2475 uint64_t
2476 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2477 {
2478 Symbols_data* sd = this->get_symbols_data();
2479 if (sd != NULL)
2480 {
2481 const unsigned char* pshdrs = sd->section_headers_data
2482 + This::shdr_size * shndx;
2483 typename This::Shdr shdr(pshdrs);
2484 return shdr.get_sh_flags();
2485 }
2486 // If sd is NULL, read the section header from the file.
2487 return this->elf_file_.section_flags(shndx);
2488 }
2489
2490 // Get the section's ent size from Symbols_data. Called by get_section_contents
2491 // in icf.cc
2492
2493 template<int size, bool big_endian>
2494 uint64_t
2495 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2496 {
2497 Symbols_data* sd = this->get_symbols_data();
2498 gold_assert(sd != NULL);
2499
2500 const unsigned char* pshdrs = sd->section_headers_data
2501 + This::shdr_size * shndx;
2502 typename This::Shdr shdr(pshdrs);
2503 return shdr.get_sh_entsize();
2504 }
2505
2506 // Write out the local symbols.
2507
2508 template<int size, bool big_endian>
2509 void
2510 Sized_relobj_file<size, big_endian>::write_local_symbols(
2511 Output_file* of,
2512 const Stringpool* sympool,
2513 const Stringpool* dynpool,
2514 Output_symtab_xindex* symtab_xindex,
2515 Output_symtab_xindex* dynsym_xindex,
2516 off_t symtab_off)
2517 {
2518 const bool strip_all = parameters->options().strip_all();
2519 if (strip_all)
2520 {
2521 if (this->output_local_dynsym_count_ == 0)
2522 return;
2523 this->output_local_symbol_count_ = 0;
2524 }
2525
2526 gold_assert(this->symtab_shndx_ != -1U);
2527 if (this->symtab_shndx_ == 0)
2528 {
2529 // This object has no symbols. Weird but legal.
2530 return;
2531 }
2532
2533 // Read the symbol table section header.
2534 const unsigned int symtab_shndx = this->symtab_shndx_;
2535 typename This::Shdr symtabshdr(this,
2536 this->elf_file_.section_header(symtab_shndx));
2537 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2538 const unsigned int loccount = this->local_symbol_count_;
2539 gold_assert(loccount == symtabshdr.get_sh_info());
2540
2541 // Read the local symbols.
2542 const int sym_size = This::sym_size;
2543 off_t locsize = loccount * sym_size;
2544 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2545 locsize, true, false);
2546
2547 // Read the symbol names.
2548 const unsigned int strtab_shndx =
2549 this->adjust_shndx(symtabshdr.get_sh_link());
2550 section_size_type strtab_size;
2551 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2552 &strtab_size,
2553 false);
2554 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2555
2556 // Get views into the output file for the portions of the symbol table
2557 // and the dynamic symbol table that we will be writing.
2558 off_t output_size = this->output_local_symbol_count_ * sym_size;
2559 unsigned char* oview = NULL;
2560 if (output_size > 0)
2561 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2562 output_size);
2563
2564 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2565 unsigned char* dyn_oview = NULL;
2566 if (dyn_output_size > 0)
2567 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2568 dyn_output_size);
2569
2570 const Output_sections out_sections(this->output_sections());
2571
2572 gold_assert(this->local_values_.size() == loccount);
2573
2574 unsigned char* ov = oview;
2575 unsigned char* dyn_ov = dyn_oview;
2576 psyms += sym_size;
2577 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2578 {
2579 elfcpp::Sym<size, big_endian> isym(psyms);
2580
2581 Symbol_value<size>& lv(this->local_values_[i]);
2582
2583 bool is_ordinary;
2584 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2585 &is_ordinary);
2586 if (is_ordinary)
2587 {
2588 gold_assert(st_shndx < out_sections.size());
2589 if (out_sections[st_shndx] == NULL)
2590 continue;
2591 st_shndx = out_sections[st_shndx]->out_shndx();
2592 if (st_shndx >= elfcpp::SHN_LORESERVE)
2593 {
2594 if (lv.has_output_symtab_entry())
2595 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2596 if (lv.has_output_dynsym_entry())
2597 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2598 st_shndx = elfcpp::SHN_XINDEX;
2599 }
2600 }
2601
2602 // Write the symbol to the output symbol table.
2603 if (lv.has_output_symtab_entry())
2604 {
2605 elfcpp::Sym_write<size, big_endian> osym(ov);
2606
2607 gold_assert(isym.get_st_name() < strtab_size);
2608 const char* name = pnames + isym.get_st_name();
2609 osym.put_st_name(sympool->get_offset(name));
2610 osym.put_st_value(this->local_values_[i].value(this, 0));
2611 osym.put_st_size(isym.get_st_size());
2612 osym.put_st_info(isym.get_st_info());
2613 osym.put_st_other(isym.get_st_other());
2614 osym.put_st_shndx(st_shndx);
2615
2616 ov += sym_size;
2617 }
2618
2619 // Write the symbol to the output dynamic symbol table.
2620 if (lv.has_output_dynsym_entry())
2621 {
2622 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2623 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2624
2625 gold_assert(isym.get_st_name() < strtab_size);
2626 const char* name = pnames + isym.get_st_name();
2627 osym.put_st_name(dynpool->get_offset(name));
2628 osym.put_st_value(this->local_values_[i].value(this, 0));
2629 osym.put_st_size(isym.get_st_size());
2630 osym.put_st_info(isym.get_st_info());
2631 osym.put_st_other(isym.get_st_other());
2632 osym.put_st_shndx(st_shndx);
2633
2634 dyn_ov += sym_size;
2635 }
2636 }
2637
2638
2639 if (output_size > 0)
2640 {
2641 gold_assert(ov - oview == output_size);
2642 of->write_output_view(symtab_off + this->local_symbol_offset_,
2643 output_size, oview);
2644 }
2645
2646 if (dyn_output_size > 0)
2647 {
2648 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2649 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2650 dyn_oview);
2651 }
2652 }
2653
2654 // Set *INFO to symbolic information about the offset OFFSET in the
2655 // section SHNDX. Return true if we found something, false if we
2656 // found nothing.
2657
2658 template<int size, bool big_endian>
2659 bool
2660 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2661 unsigned int shndx,
2662 off_t offset,
2663 Symbol_location_info* info)
2664 {
2665 if (this->symtab_shndx_ == 0)
2666 return false;
2667
2668 section_size_type symbols_size;
2669 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2670 &symbols_size,
2671 false);
2672
2673 unsigned int symbol_names_shndx =
2674 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2675 section_size_type names_size;
2676 const unsigned char* symbol_names_u =
2677 this->section_contents(symbol_names_shndx, &names_size, false);
2678 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2679
2680 const int sym_size = This::sym_size;
2681 const size_t count = symbols_size / sym_size;
2682
2683 const unsigned char* p = symbols;
2684 for (size_t i = 0; i < count; ++i, p += sym_size)
2685 {
2686 elfcpp::Sym<size, big_endian> sym(p);
2687
2688 if (sym.get_st_type() == elfcpp::STT_FILE)
2689 {
2690 if (sym.get_st_name() >= names_size)
2691 info->source_file = "(invalid)";
2692 else
2693 info->source_file = symbol_names + sym.get_st_name();
2694 continue;
2695 }
2696
2697 bool is_ordinary;
2698 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2699 &is_ordinary);
2700 if (is_ordinary
2701 && st_shndx == shndx
2702 && static_cast<off_t>(sym.get_st_value()) <= offset
2703 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2704 > offset))
2705 {
2706 info->enclosing_symbol_type = sym.get_st_type();
2707 if (sym.get_st_name() > names_size)
2708 info->enclosing_symbol_name = "(invalid)";
2709 else
2710 {
2711 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2712 if (parameters->options().do_demangle())
2713 {
2714 char* demangled_name = cplus_demangle(
2715 info->enclosing_symbol_name.c_str(),
2716 DMGL_ANSI | DMGL_PARAMS);
2717 if (demangled_name != NULL)
2718 {
2719 info->enclosing_symbol_name.assign(demangled_name);
2720 free(demangled_name);
2721 }
2722 }
2723 }
2724 return true;
2725 }
2726 }
2727
2728 return false;
2729 }
2730
2731 // Look for a kept section corresponding to the given discarded section,
2732 // and return its output address. This is used only for relocations in
2733 // debugging sections. If we can't find the kept section, return 0.
2734
2735 template<int size, bool big_endian>
2736 typename Sized_relobj_file<size, big_endian>::Address
2737 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2738 unsigned int shndx,
2739 bool* found) const
2740 {
2741 Relobj* kept_object;
2742 unsigned int kept_shndx;
2743 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2744 {
2745 Sized_relobj_file<size, big_endian>* kept_relobj =
2746 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2747 Output_section* os = kept_relobj->output_section(kept_shndx);
2748 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2749 if (os != NULL && offset != invalid_address)
2750 {
2751 *found = true;
2752 return os->address() + offset;
2753 }
2754 }
2755 *found = false;
2756 return 0;
2757 }
2758
2759 // Get symbol counts.
2760
2761 template<int size, bool big_endian>
2762 void
2763 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2764 const Symbol_table*,
2765 size_t* defined,
2766 size_t* used) const
2767 {
2768 *defined = this->defined_count_;
2769 size_t count = 0;
2770 for (typename Symbols::const_iterator p = this->symbols_.begin();
2771 p != this->symbols_.end();
2772 ++p)
2773 if (*p != NULL
2774 && (*p)->source() == Symbol::FROM_OBJECT
2775 && (*p)->object() == this
2776 && (*p)->is_defined())
2777 ++count;
2778 *used = count;
2779 }
2780
2781 // Return a view of the decompressed contents of a section. Set *PLEN
2782 // to the size. Set *IS_NEW to true if the contents need to be freed
2783 // by the caller.
2784
2785 template<int size, bool big_endian>
2786 const unsigned char*
2787 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2788 unsigned int shndx,
2789 section_size_type* plen,
2790 bool* is_new)
2791 {
2792 section_size_type buffer_size;
2793 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2794 false);
2795
2796 if (this->compressed_sections_ == NULL)
2797 {
2798 *plen = buffer_size;
2799 *is_new = false;
2800 return buffer;
2801 }
2802
2803 Compressed_section_map::const_iterator p =
2804 this->compressed_sections_->find(shndx);
2805 if (p == this->compressed_sections_->end())
2806 {
2807 *plen = buffer_size;
2808 *is_new = false;
2809 return buffer;
2810 }
2811
2812 section_size_type uncompressed_size = p->second.size;
2813 if (p->second.contents != NULL)
2814 {
2815 *plen = uncompressed_size;
2816 *is_new = false;
2817 return p->second.contents;
2818 }
2819
2820 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2821 if (!decompress_input_section(buffer,
2822 buffer_size,
2823 uncompressed_data,
2824 uncompressed_size))
2825 this->error(_("could not decompress section %s"),
2826 this->do_section_name(shndx).c_str());
2827
2828 // We could cache the results in p->second.contents and store
2829 // false in *IS_NEW, but build_compressed_section_map() would
2830 // have done so if it had expected it to be profitable. If
2831 // we reach this point, we expect to need the contents only
2832 // once in this pass.
2833 *plen = uncompressed_size;
2834 *is_new = true;
2835 return uncompressed_data;
2836 }
2837
2838 // Discard any buffers of uncompressed sections. This is done
2839 // at the end of the Add_symbols task.
2840
2841 template<int size, bool big_endian>
2842 void
2843 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2844 {
2845 if (this->compressed_sections_ == NULL)
2846 return;
2847
2848 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2849 p != this->compressed_sections_->end();
2850 ++p)
2851 {
2852 if (p->second.contents != NULL)
2853 {
2854 delete[] p->second.contents;
2855 p->second.contents = NULL;
2856 }
2857 }
2858 }
2859
2860 // Input_objects methods.
2861
2862 // Add a regular relocatable object to the list. Return false if this
2863 // object should be ignored.
2864
2865 bool
2866 Input_objects::add_object(Object* obj)
2867 {
2868 // Print the filename if the -t/--trace option is selected.
2869 if (parameters->options().trace())
2870 gold_info("%s", obj->name().c_str());
2871
2872 if (!obj->is_dynamic())
2873 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2874 else
2875 {
2876 // See if this is a duplicate SONAME.
2877 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2878 const char* soname = dynobj->soname();
2879
2880 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2881 this->sonames_.insert(soname);
2882 if (!ins.second)
2883 {
2884 // We have already seen a dynamic object with this soname.
2885 return false;
2886 }
2887
2888 this->dynobj_list_.push_back(dynobj);
2889 }
2890
2891 // Add this object to the cross-referencer if requested.
2892 if (parameters->options().user_set_print_symbol_counts()
2893 || parameters->options().cref())
2894 {
2895 if (this->cref_ == NULL)
2896 this->cref_ = new Cref();
2897 this->cref_->add_object(obj);
2898 }
2899
2900 return true;
2901 }
2902
2903 // For each dynamic object, record whether we've seen all of its
2904 // explicit dependencies.
2905
2906 void
2907 Input_objects::check_dynamic_dependencies() const
2908 {
2909 bool issued_copy_dt_needed_error = false;
2910 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2911 p != this->dynobj_list_.end();
2912 ++p)
2913 {
2914 const Dynobj::Needed& needed((*p)->needed());
2915 bool found_all = true;
2916 Dynobj::Needed::const_iterator pneeded;
2917 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2918 {
2919 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2920 {
2921 found_all = false;
2922 break;
2923 }
2924 }
2925 (*p)->set_has_unknown_needed_entries(!found_all);
2926
2927 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2928 // that gold does not support. However, they cause no trouble
2929 // unless there is a DT_NEEDED entry that we don't know about;
2930 // warn only in that case.
2931 if (!found_all
2932 && !issued_copy_dt_needed_error
2933 && (parameters->options().copy_dt_needed_entries()
2934 || parameters->options().add_needed()))
2935 {
2936 const char* optname;
2937 if (parameters->options().copy_dt_needed_entries())
2938 optname = "--copy-dt-needed-entries";
2939 else
2940 optname = "--add-needed";
2941 gold_error(_("%s is not supported but is required for %s in %s"),
2942 optname, (*pneeded).c_str(), (*p)->name().c_str());
2943 issued_copy_dt_needed_error = true;
2944 }
2945 }
2946 }
2947
2948 // Start processing an archive.
2949
2950 void
2951 Input_objects::archive_start(Archive* archive)
2952 {
2953 if (parameters->options().user_set_print_symbol_counts()
2954 || parameters->options().cref())
2955 {
2956 if (this->cref_ == NULL)
2957 this->cref_ = new Cref();
2958 this->cref_->add_archive_start(archive);
2959 }
2960 }
2961
2962 // Stop processing an archive.
2963
2964 void
2965 Input_objects::archive_stop(Archive* archive)
2966 {
2967 if (parameters->options().user_set_print_symbol_counts()
2968 || parameters->options().cref())
2969 this->cref_->add_archive_stop(archive);
2970 }
2971
2972 // Print symbol counts
2973
2974 void
2975 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2976 {
2977 if (parameters->options().user_set_print_symbol_counts()
2978 && this->cref_ != NULL)
2979 this->cref_->print_symbol_counts(symtab);
2980 }
2981
2982 // Print a cross reference table.
2983
2984 void
2985 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2986 {
2987 if (parameters->options().cref() && this->cref_ != NULL)
2988 this->cref_->print_cref(symtab, f);
2989 }
2990
2991 // Relocate_info methods.
2992
2993 // Return a string describing the location of a relocation when file
2994 // and lineno information is not available. This is only used in
2995 // error messages.
2996
2997 template<int size, bool big_endian>
2998 std::string
2999 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3000 {
3001 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3002 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3003 if (!ret.empty())
3004 return ret;
3005
3006 ret = this->object->name();
3007
3008 Symbol_location_info info;
3009 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3010 {
3011 if (!info.source_file.empty())
3012 {
3013 ret += ":";
3014 ret += info.source_file;
3015 }
3016 ret += ":";
3017 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3018 ret += _("function ");
3019 ret += info.enclosing_symbol_name;
3020 return ret;
3021 }
3022
3023 ret += "(";
3024 ret += this->object->section_name(this->data_shndx);
3025 char buf[100];
3026 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3027 ret += buf;
3028 return ret;
3029 }
3030
3031 } // End namespace gold.
3032
3033 namespace
3034 {
3035
3036 using namespace gold;
3037
3038 // Read an ELF file with the header and return the appropriate
3039 // instance of Object.
3040
3041 template<int size, bool big_endian>
3042 Object*
3043 make_elf_sized_object(const std::string& name, Input_file* input_file,
3044 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3045 bool* punconfigured)
3046 {
3047 Target* target = select_target(input_file, offset,
3048 ehdr.get_e_machine(), size, big_endian,
3049 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3050 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3051 if (target == NULL)
3052 gold_fatal(_("%s: unsupported ELF machine number %d"),
3053 name.c_str(), ehdr.get_e_machine());
3054
3055 if (!parameters->target_valid())
3056 set_parameters_target(target);
3057 else if (target != &parameters->target())
3058 {
3059 if (punconfigured != NULL)
3060 *punconfigured = true;
3061 else
3062 gold_error(_("%s: incompatible target"), name.c_str());
3063 return NULL;
3064 }
3065
3066 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3067 ehdr);
3068 }
3069
3070 } // End anonymous namespace.
3071
3072 namespace gold
3073 {
3074
3075 // Return whether INPUT_FILE is an ELF object.
3076
3077 bool
3078 is_elf_object(Input_file* input_file, off_t offset,
3079 const unsigned char** start, int* read_size)
3080 {
3081 off_t filesize = input_file->file().filesize();
3082 int want = elfcpp::Elf_recognizer::max_header_size;
3083 if (filesize - offset < want)
3084 want = filesize - offset;
3085
3086 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3087 true, false);
3088 *start = p;
3089 *read_size = want;
3090
3091 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3092 }
3093
3094 // Read an ELF file and return the appropriate instance of Object.
3095
3096 Object*
3097 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3098 const unsigned char* p, section_offset_type bytes,
3099 bool* punconfigured)
3100 {
3101 if (punconfigured != NULL)
3102 *punconfigured = false;
3103
3104 std::string error;
3105 bool big_endian = false;
3106 int size = 0;
3107 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3108 &big_endian, &error))
3109 {
3110 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3111 return NULL;
3112 }
3113
3114 if (size == 32)
3115 {
3116 if (big_endian)
3117 {
3118 #ifdef HAVE_TARGET_32_BIG
3119 elfcpp::Ehdr<32, true> ehdr(p);
3120 return make_elf_sized_object<32, true>(name, input_file,
3121 offset, ehdr, punconfigured);
3122 #else
3123 if (punconfigured != NULL)
3124 *punconfigured = true;
3125 else
3126 gold_error(_("%s: not configured to support "
3127 "32-bit big-endian object"),
3128 name.c_str());
3129 return NULL;
3130 #endif
3131 }
3132 else
3133 {
3134 #ifdef HAVE_TARGET_32_LITTLE
3135 elfcpp::Ehdr<32, false> ehdr(p);
3136 return make_elf_sized_object<32, false>(name, input_file,
3137 offset, ehdr, punconfigured);
3138 #else
3139 if (punconfigured != NULL)
3140 *punconfigured = true;
3141 else
3142 gold_error(_("%s: not configured to support "
3143 "32-bit little-endian object"),
3144 name.c_str());
3145 return NULL;
3146 #endif
3147 }
3148 }
3149 else if (size == 64)
3150 {
3151 if (big_endian)
3152 {
3153 #ifdef HAVE_TARGET_64_BIG
3154 elfcpp::Ehdr<64, true> ehdr(p);
3155 return make_elf_sized_object<64, true>(name, input_file,
3156 offset, ehdr, punconfigured);
3157 #else
3158 if (punconfigured != NULL)
3159 *punconfigured = true;
3160 else
3161 gold_error(_("%s: not configured to support "
3162 "64-bit big-endian object"),
3163 name.c_str());
3164 return NULL;
3165 #endif
3166 }
3167 else
3168 {
3169 #ifdef HAVE_TARGET_64_LITTLE
3170 elfcpp::Ehdr<64, false> ehdr(p);
3171 return make_elf_sized_object<64, false>(name, input_file,
3172 offset, ehdr, punconfigured);
3173 #else
3174 if (punconfigured != NULL)
3175 *punconfigured = true;
3176 else
3177 gold_error(_("%s: not configured to support "
3178 "64-bit little-endian object"),
3179 name.c_str());
3180 return NULL;
3181 #endif
3182 }
3183 }
3184 else
3185 gold_unreachable();
3186 }
3187
3188 // Instantiate the templates we need.
3189
3190 #ifdef HAVE_TARGET_32_LITTLE
3191 template
3192 void
3193 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3194 Read_symbols_data*);
3195 template
3196 const unsigned char*
3197 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3198 section_size_type, const unsigned char*) const;
3199 #endif
3200
3201 #ifdef HAVE_TARGET_32_BIG
3202 template
3203 void
3204 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3205 Read_symbols_data*);
3206 template
3207 const unsigned char*
3208 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3209 section_size_type, const unsigned char*) const;
3210 #endif
3211
3212 #ifdef HAVE_TARGET_64_LITTLE
3213 template
3214 void
3215 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3216 Read_symbols_data*);
3217 template
3218 const unsigned char*
3219 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3220 section_size_type, const unsigned char*) const;
3221 #endif
3222
3223 #ifdef HAVE_TARGET_64_BIG
3224 template
3225 void
3226 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3227 Read_symbols_data*);
3228 template
3229 const unsigned char*
3230 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3231 section_size_type, const unsigned char*) const;
3232 #endif
3233
3234 #ifdef HAVE_TARGET_32_LITTLE
3235 template
3236 class Sized_relobj<32, false>;
3237
3238 template
3239 class Sized_relobj_file<32, false>;
3240 #endif
3241
3242 #ifdef HAVE_TARGET_32_BIG
3243 template
3244 class Sized_relobj<32, true>;
3245
3246 template
3247 class Sized_relobj_file<32, true>;
3248 #endif
3249
3250 #ifdef HAVE_TARGET_64_LITTLE
3251 template
3252 class Sized_relobj<64, false>;
3253
3254 template
3255 class Sized_relobj_file<64, false>;
3256 #endif
3257
3258 #ifdef HAVE_TARGET_64_BIG
3259 template
3260 class Sized_relobj<64, true>;
3261
3262 template
3263 class Sized_relobj_file<64, true>;
3264 #endif
3265
3266 #ifdef HAVE_TARGET_32_LITTLE
3267 template
3268 struct Relocate_info<32, false>;
3269 #endif
3270
3271 #ifdef HAVE_TARGET_32_BIG
3272 template
3273 struct Relocate_info<32, true>;
3274 #endif
3275
3276 #ifdef HAVE_TARGET_64_LITTLE
3277 template
3278 struct Relocate_info<64, false>;
3279 #endif
3280
3281 #ifdef HAVE_TARGET_64_BIG
3282 template
3283 struct Relocate_info<64, true>;
3284 #endif
3285
3286 #ifdef HAVE_TARGET_32_LITTLE
3287 template
3288 void
3289 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3290
3291 template
3292 void
3293 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3294 const unsigned char*);
3295 #endif
3296
3297 #ifdef HAVE_TARGET_32_BIG
3298 template
3299 void
3300 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3301
3302 template
3303 void
3304 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3305 const unsigned char*);
3306 #endif
3307
3308 #ifdef HAVE_TARGET_64_LITTLE
3309 template
3310 void
3311 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3312
3313 template
3314 void
3315 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3316 const unsigned char*);
3317 #endif
3318
3319 #ifdef HAVE_TARGET_64_BIG
3320 template
3321 void
3322 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3323
3324 template
3325 void
3326 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3327 const unsigned char*);
3328 #endif
3329
3330 } // End namespace gold.
This page took 0.124118 seconds and 5 git commands to generate.