[GOLD] Fix spurious "plugin needed to handle lto object" warnings
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_entry_key key(i, 0);
431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432 if (p != this->local_got_offsets_.end())
433 {
434 const Got_offset_list* got_offsets = p->second;
435 got_offsets->for_all_got_offsets(v);
436 }
437 }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445 unsigned int shndx)
446 {
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx);
451
452 const Output_section* os = this->do_output_section(shndx);
453 gold_assert(os != NULL);
454 return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461 const std::string& name,
462 Input_file* input_file,
463 off_t offset,
464 const elfcpp::Ehdr<size, big_endian>& ehdr)
465 : Sized_relobj<size, big_endian>(name, input_file, offset),
466 elf_file_(this, ehdr),
467 symtab_shndx_(-1U),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
471 symbols_(),
472 defined_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
475 local_values_(),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 is_deferred_layout_(false),
480 deferred_layout_(),
481 deferred_layout_relocs_(),
482 output_views_(NULL)
483 {
484 this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header. This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499 const unsigned int shnum = this->elf_file_.shnum();
500 this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers. The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section. Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512 const unsigned int shnum = this->shnum();
513 this->symtab_shndx_ = 0;
514 if (shnum > 0)
515 {
516 // Look through the sections in reverse order, since gas tends
517 // to put the symbol table at the end.
518 const unsigned char* p = pshdrs + shnum * This::shdr_size;
519 unsigned int i = shnum;
520 unsigned int xindex_shndx = 0;
521 unsigned int xindex_link = 0;
522 while (i > 0)
523 {
524 --i;
525 p -= This::shdr_size;
526 typename This::Shdr shdr(p);
527 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528 {
529 this->symtab_shndx_ = i;
530 if (xindex_shndx > 0 && xindex_link == i)
531 {
532 Xindex* xindex =
533 new Xindex(this->elf_file_.large_shndx_offset());
534 xindex->read_symtab_xindex<size, big_endian>(this,
535 xindex_shndx,
536 pshdrs);
537 this->set_xindex(xindex);
538 }
539 break;
540 }
541
542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 // one. This will work if it follows the SHT_SYMTAB
544 // section.
545 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546 {
547 xindex_shndx = i;
548 xindex_link = this->adjust_shndx(shdr.get_sh_link());
549 }
550 }
551 }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561 gold_assert(this->symtab_shndx_ != -1U);
562 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564 return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573 const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576 return ((sh_type == elfcpp::SHT_PROGBITS
577 || sh_type == parameters->target().unwind_section_type())
578 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586 const unsigned char* pshdrs,
587 const char* name,
588 const char* names,
589 section_size_type names_size,
590 const unsigned char* hdr) const
591 {
592 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593 const unsigned int shnum = this->shnum();
594 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595 size_t sh_name = 0;
596
597 while (1)
598 {
599 if (hdr)
600 {
601 // We found HDR last time we were called, continue looking.
602 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603 sh_name = shdr.get_sh_name();
604 }
605 else
606 {
607 // Look for the next occurrence of NAME in NAMES.
608 // The fact that .shstrtab produced by current GNU tools is
609 // string merged means we shouldn't have both .not.foo and
610 // .foo in .shstrtab, and multiple .foo sections should all
611 // have the same sh_name. However, this is not guaranteed
612 // by the ELF spec and not all ELF object file producers may
613 // be so clever.
614 size_t len = strlen(name) + 1;
615 const char *p = sh_name ? names + sh_name + len : names;
616 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617 name, len));
618 if (p == NULL)
619 return NULL;
620 sh_name = p - names;
621 hdr = pshdrs;
622 if (sh_name == 0)
623 return hdr;
624 }
625
626 hdr += shdr_size;
627 while (hdr < hdr_end)
628 {
629 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630 if (shdr.get_sh_name() == sh_name)
631 return hdr;
632 hdr += shdr_size;
633 }
634 hdr = NULL;
635 if (sh_name == 0)
636 return hdr;
637 }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646 const unsigned char* pshdrs,
647 const char* names,
648 section_size_type names_size) const
649 {
650 const unsigned char* s = NULL;
651
652 while (1)
653 {
654 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655 names, names_size, s);
656 if (s == NULL)
657 return false;
658
659 typename This::Shdr shdr(s);
660 if (this->check_eh_frame_flags(&shdr))
661 return true;
662 }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task. This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673 if (*name++ != '_')
674 return false;
675
676 #ifdef ENABLE_THREADS
677 // Decompressing these sections now will help only if we're
678 // multithreaded.
679 if (parameters->options().threads())
680 {
681 // We will need .zdebug_str if this is not an incremental link
682 // (i.e., we are processing string merge sections) or if we need
683 // to build a gdb index.
684 if ((!parameters->incremental() || parameters->options().gdb_index())
685 && strcmp(name, "str") == 0)
686 return true;
687
688 // We will need these other sections when building a gdb index.
689 if (parameters->options().gdb_index()
690 && (strcmp(name, "info") == 0
691 || strcmp(name, "types") == 0
692 || strcmp(name, "pubnames") == 0
693 || strcmp(name, "pubtypes") == 0
694 || strcmp(name, "ranges") == 0
695 || strcmp(name, "abbrev") == 0))
696 return true;
697 }
698 #endif
699
700 // Even when single-threaded, we will need .zdebug_str if this is
701 // not an incremental link and we are building a gdb index.
702 // Otherwise, we would decompress the section twice: once for
703 // string merge processing, and once for building the gdb index.
704 if (!parameters->incremental()
705 && parameters->options().gdb_index()
706 && strcmp(name, "str") == 0)
707 return true;
708
709 return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718 const unsigned char* pshdrs,
719 unsigned int shnum,
720 const char* names,
721 section_size_type names_size,
722 Object* obj,
723 bool decompress_if_needed)
724 {
725 Compressed_section_map* uncompressed_map = new Compressed_section_map();
726 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727 const unsigned char* p = pshdrs + shdr_size;
728
729 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730 {
731 typename elfcpp::Shdr<size, big_endian> shdr(p);
732 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 {
735 if (shdr.get_sh_name() >= names_size)
736 {
737 obj->error(_("bad section name offset for section %u: %lu"),
738 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 continue;
740 }
741
742 const char* name = names + shdr.get_sh_name();
743 bool is_compressed = ((shdr.get_sh_flags()
744 & elfcpp::SHF_COMPRESSED) != 0);
745 bool is_zcompressed = (!is_compressed
746 && is_compressed_debug_section(name));
747
748 if (is_zcompressed || is_compressed)
749 {
750 section_size_type len;
751 const unsigned char* contents =
752 obj->section_contents(i, &len, false);
753 uint64_t uncompressed_size;
754 Compressed_section_info info;
755 if (is_zcompressed)
756 {
757 // Skip over the ".zdebug" prefix.
758 name += 7;
759 uncompressed_size = get_uncompressed_size(contents, len);
760 info.addralign = shdr.get_sh_addralign();
761 }
762 else
763 {
764 // Skip over the ".debug" prefix.
765 name += 6;
766 elfcpp::Chdr<size, big_endian> chdr(contents);
767 uncompressed_size = chdr.get_ch_size();
768 info.addralign = chdr.get_ch_addralign();
769 }
770 info.size = convert_to_section_size_type(uncompressed_size);
771 info.flag = shdr.get_sh_flags();
772 info.contents = NULL;
773 if (uncompressed_size != -1ULL)
774 {
775 unsigned char* uncompressed_data = NULL;
776 if (decompress_if_needed && need_decompressed_section(name))
777 {
778 uncompressed_data = new unsigned char[uncompressed_size];
779 if (decompress_input_section(contents, len,
780 uncompressed_data,
781 uncompressed_size,
782 size, big_endian,
783 shdr.get_sh_flags()))
784 info.contents = uncompressed_data;
785 else
786 delete[] uncompressed_data;
787 }
788 (*uncompressed_map)[i] = info;
789 }
790 }
791 }
792 }
793 return uncompressed_map;
794 }
795
796 // Stash away info for a number of special sections.
797 // Return true if any of the sections found require local symbols to be read.
798
799 template<int size, bool big_endian>
800 bool
801 Sized_relobj_file<size, big_endian>::do_find_special_sections(
802 Read_symbols_data* sd)
803 {
804 const unsigned char* const pshdrs = sd->section_headers->data();
805 const unsigned char* namesu = sd->section_names->data();
806 const char* names = reinterpret_cast<const char*>(namesu);
807
808 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
809 this->has_eh_frame_ = true;
810
811 Compressed_section_map* compressed_sections =
812 build_compressed_section_map<size, big_endian>(
813 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
814 if (compressed_sections != NULL)
815 this->set_compressed_sections(compressed_sections);
816
817 return (this->has_eh_frame_
818 || (!parameters->options().relocatable()
819 && parameters->options().gdb_index()
820 && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
821 || memmem(names, sd->section_names_size,
822 "debug_types", 12) != NULL)));
823 }
824
825 // Read the sections and symbols from an object file.
826
827 template<int size, bool big_endian>
828 void
829 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
830 {
831 this->base_read_symbols(sd);
832 }
833
834 // Read the sections and symbols from an object file. This is common
835 // code for all target-specific overrides of do_read_symbols().
836
837 template<int size, bool big_endian>
838 void
839 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
840 {
841 this->read_section_data(&this->elf_file_, sd);
842
843 const unsigned char* const pshdrs = sd->section_headers->data();
844
845 this->find_symtab(pshdrs);
846
847 bool need_local_symbols = this->do_find_special_sections(sd);
848
849 sd->symbols = NULL;
850 sd->symbols_size = 0;
851 sd->external_symbols_offset = 0;
852 sd->symbol_names = NULL;
853 sd->symbol_names_size = 0;
854
855 if (this->symtab_shndx_ == 0)
856 {
857 // No symbol table. Weird but legal.
858 return;
859 }
860
861 // Get the symbol table section header.
862 typename This::Shdr symtabshdr(pshdrs
863 + this->symtab_shndx_ * This::shdr_size);
864 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
865
866 // If this object has a .eh_frame section, or if building a .gdb_index
867 // section and there is debug info, we need all the symbols.
868 // Otherwise we only need the external symbols. While it would be
869 // simpler to just always read all the symbols, I've seen object
870 // files with well over 2000 local symbols, which for a 64-bit
871 // object file format is over 5 pages that we don't need to read
872 // now.
873
874 const int sym_size = This::sym_size;
875 const unsigned int loccount = symtabshdr.get_sh_info();
876 this->local_symbol_count_ = loccount;
877 this->local_values_.resize(loccount);
878 section_offset_type locsize = loccount * sym_size;
879 off_t dataoff = symtabshdr.get_sh_offset();
880 section_size_type datasize =
881 convert_to_section_size_type(symtabshdr.get_sh_size());
882 off_t extoff = dataoff + locsize;
883 section_size_type extsize = datasize - locsize;
884
885 off_t readoff = need_local_symbols ? dataoff : extoff;
886 section_size_type readsize = need_local_symbols ? datasize : extsize;
887
888 if (readsize == 0)
889 {
890 // No external symbols. Also weird but also legal.
891 return;
892 }
893
894 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
895
896 // Read the section header for the symbol names.
897 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
898 if (strtab_shndx >= this->shnum())
899 {
900 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
901 return;
902 }
903 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
904 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
905 {
906 this->error(_("symbol table name section has wrong type: %u"),
907 static_cast<unsigned int>(strtabshdr.get_sh_type()));
908 return;
909 }
910
911 // Read the symbol names.
912 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
913 strtabshdr.get_sh_size(),
914 false, true);
915
916 sd->symbols = fvsymtab;
917 sd->symbols_size = readsize;
918 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
919 sd->symbol_names = fvstrtab;
920 sd->symbol_names_size =
921 convert_to_section_size_type(strtabshdr.get_sh_size());
922 }
923
924 // Return the section index of symbol SYM. Set *VALUE to its value in
925 // the object file. Set *IS_ORDINARY if this is an ordinary section
926 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
927 // Note that for a symbol which is not defined in this object file,
928 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
929 // the final value of the symbol in the link.
930
931 template<int size, bool big_endian>
932 unsigned int
933 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
934 Address* value,
935 bool* is_ordinary)
936 {
937 section_size_type symbols_size;
938 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
939 &symbols_size,
940 false);
941
942 const size_t count = symbols_size / This::sym_size;
943 gold_assert(sym < count);
944
945 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
946 *value = elfsym.get_st_value();
947
948 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
949 }
950
951 // Return whether to include a section group in the link. LAYOUT is
952 // used to keep track of which section groups we have already seen.
953 // INDEX is the index of the section group and SHDR is the section
954 // header. If we do not want to include this group, we set bits in
955 // OMIT for each section which should be discarded.
956
957 template<int size, bool big_endian>
958 bool
959 Sized_relobj_file<size, big_endian>::include_section_group(
960 Symbol_table* symtab,
961 Layout* layout,
962 unsigned int index,
963 const char* name,
964 const unsigned char* shdrs,
965 const char* section_names,
966 section_size_type section_names_size,
967 std::vector<bool>* omit)
968 {
969 // Read the section contents.
970 typename This::Shdr shdr(shdrs + index * This::shdr_size);
971 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
972 shdr.get_sh_size(), true, false);
973 const elfcpp::Elf_Word* pword =
974 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
975
976 // The first word contains flags. We only care about COMDAT section
977 // groups. Other section groups are always included in the link
978 // just like ordinary sections.
979 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
980
981 // Look up the group signature, which is the name of a symbol. ELF
982 // uses a symbol name because some group signatures are long, and
983 // the name is generally already in the symbol table, so it makes
984 // sense to put the long string just once in .strtab rather than in
985 // both .strtab and .shstrtab.
986
987 // Get the appropriate symbol table header (this will normally be
988 // the single SHT_SYMTAB section, but in principle it need not be).
989 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
990 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
991
992 // Read the symbol table entry.
993 unsigned int symndx = shdr.get_sh_info();
994 if (symndx >= symshdr.get_sh_size() / This::sym_size)
995 {
996 this->error(_("section group %u info %u out of range"),
997 index, symndx);
998 return false;
999 }
1000 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1001 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1002 false);
1003 elfcpp::Sym<size, big_endian> sym(psym);
1004
1005 // Read the symbol table names.
1006 section_size_type symnamelen;
1007 const unsigned char* psymnamesu;
1008 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1009 &symnamelen, true);
1010 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1011
1012 // Get the section group signature.
1013 if (sym.get_st_name() >= symnamelen)
1014 {
1015 this->error(_("symbol %u name offset %u out of range"),
1016 symndx, sym.get_st_name());
1017 return false;
1018 }
1019
1020 std::string signature(psymnames + sym.get_st_name());
1021
1022 // It seems that some versions of gas will create a section group
1023 // associated with a section symbol, and then fail to give a name to
1024 // the section symbol. In such a case, use the name of the section.
1025 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1026 {
1027 bool is_ordinary;
1028 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1029 sym.get_st_shndx(),
1030 &is_ordinary);
1031 if (!is_ordinary || sym_shndx >= this->shnum())
1032 {
1033 this->error(_("symbol %u invalid section index %u"),
1034 symndx, sym_shndx);
1035 return false;
1036 }
1037 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1038 if (member_shdr.get_sh_name() < section_names_size)
1039 signature = section_names + member_shdr.get_sh_name();
1040 }
1041
1042 // Record this section group in the layout, and see whether we've already
1043 // seen one with the same signature.
1044 bool include_group;
1045 bool is_comdat;
1046 Kept_section* kept_section = NULL;
1047
1048 if ((flags & elfcpp::GRP_COMDAT) == 0)
1049 {
1050 include_group = true;
1051 is_comdat = false;
1052 }
1053 else
1054 {
1055 include_group = layout->find_or_add_kept_section(signature,
1056 this, index, true,
1057 true, &kept_section);
1058 is_comdat = true;
1059 }
1060
1061 if (is_comdat && include_group)
1062 {
1063 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1064 if (incremental_inputs != NULL)
1065 incremental_inputs->report_comdat_group(this, signature.c_str());
1066 }
1067
1068 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1069
1070 std::vector<unsigned int> shndxes;
1071 bool relocate_group = include_group && parameters->options().relocatable();
1072 if (relocate_group)
1073 shndxes.reserve(count - 1);
1074
1075 for (size_t i = 1; i < count; ++i)
1076 {
1077 elfcpp::Elf_Word shndx =
1078 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1079
1080 if (relocate_group)
1081 shndxes.push_back(shndx);
1082
1083 if (shndx >= this->shnum())
1084 {
1085 this->error(_("section %u in section group %u out of range"),
1086 shndx, index);
1087 continue;
1088 }
1089
1090 // Check for an earlier section number, since we're going to get
1091 // it wrong--we may have already decided to include the section.
1092 if (shndx < index)
1093 this->error(_("invalid section group %u refers to earlier section %u"),
1094 index, shndx);
1095
1096 // Get the name of the member section.
1097 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1098 if (member_shdr.get_sh_name() >= section_names_size)
1099 {
1100 // This is an error, but it will be diagnosed eventually
1101 // in do_layout, so we don't need to do anything here but
1102 // ignore it.
1103 continue;
1104 }
1105 std::string mname(section_names + member_shdr.get_sh_name());
1106
1107 if (include_group)
1108 {
1109 if (is_comdat)
1110 kept_section->add_comdat_section(mname, shndx,
1111 member_shdr.get_sh_size());
1112 }
1113 else
1114 {
1115 (*omit)[shndx] = true;
1116
1117 // Store a mapping from this section to the Kept_section
1118 // information for the group. This mapping is used for
1119 // relocation processing and diagnostics.
1120 // If the kept section is a linkonce section, we don't
1121 // bother with it unless the comdat group contains just
1122 // a single section, making it easy to match up.
1123 if (is_comdat
1124 && (kept_section->is_comdat() || count == 2))
1125 this->set_kept_comdat_section(shndx, true, symndx,
1126 member_shdr.get_sh_size(),
1127 kept_section);
1128 }
1129 }
1130
1131 if (relocate_group)
1132 layout->layout_group(symtab, this, index, name, signature.c_str(),
1133 shdr, flags, &shndxes);
1134
1135 return include_group;
1136 }
1137
1138 // Whether to include a linkonce section in the link. NAME is the
1139 // name of the section and SHDR is the section header.
1140
1141 // Linkonce sections are a GNU extension implemented in the original
1142 // GNU linker before section groups were defined. The semantics are
1143 // that we only include one linkonce section with a given name. The
1144 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1145 // where T is the type of section and SYMNAME is the name of a symbol.
1146 // In an attempt to make linkonce sections interact well with section
1147 // groups, we try to identify SYMNAME and use it like a section group
1148 // signature. We want to block section groups with that signature,
1149 // but not other linkonce sections with that signature. We also use
1150 // the full name of the linkonce section as a normal section group
1151 // signature.
1152
1153 template<int size, bool big_endian>
1154 bool
1155 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1156 Layout* layout,
1157 unsigned int index,
1158 const char* name,
1159 const elfcpp::Shdr<size, big_endian>& shdr)
1160 {
1161 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1162 // In general the symbol name we want will be the string following
1163 // the last '.'. However, we have to handle the case of
1164 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1165 // some versions of gcc. So we use a heuristic: if the name starts
1166 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1167 // we look for the last '.'. We can't always simply skip
1168 // ".gnu.linkonce.X", because we have to deal with cases like
1169 // ".gnu.linkonce.d.rel.ro.local".
1170 const char* const linkonce_t = ".gnu.linkonce.t.";
1171 const char* symname;
1172 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1173 symname = name + strlen(linkonce_t);
1174 else
1175 symname = strrchr(name, '.') + 1;
1176 std::string sig1(symname);
1177 std::string sig2(name);
1178 Kept_section* kept1;
1179 Kept_section* kept2;
1180 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1181 false, &kept1);
1182 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1183 true, &kept2);
1184
1185 if (!include2)
1186 {
1187 // We are not including this section because we already saw the
1188 // name of the section as a signature. This normally implies
1189 // that the kept section is another linkonce section. If it is
1190 // the same size, record it as the section which corresponds to
1191 // this one.
1192 if (kept2->object() != NULL && !kept2->is_comdat())
1193 this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1194 }
1195 else if (!include1)
1196 {
1197 // The section is being discarded on the basis of its symbol
1198 // name. This means that the corresponding kept section was
1199 // part of a comdat group, and it will be difficult to identify
1200 // the specific section within that group that corresponds to
1201 // this linkonce section. We'll handle the simple case where
1202 // the group has only one member section. Otherwise, it's not
1203 // worth the effort.
1204 if (kept1->object() != NULL && kept1->is_comdat())
1205 this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1206 }
1207 else
1208 {
1209 kept1->set_linkonce_size(sh_size);
1210 kept2->set_linkonce_size(sh_size);
1211 }
1212
1213 return include1 && include2;
1214 }
1215
1216 // Layout an input section.
1217
1218 template<int size, bool big_endian>
1219 inline void
1220 Sized_relobj_file<size, big_endian>::layout_section(
1221 Layout* layout,
1222 unsigned int shndx,
1223 const char* name,
1224 const typename This::Shdr& shdr,
1225 unsigned int sh_type,
1226 unsigned int reloc_shndx,
1227 unsigned int reloc_type)
1228 {
1229 off_t offset;
1230 Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1231 reloc_shndx, reloc_type, &offset);
1232
1233 this->output_sections()[shndx] = os;
1234 if (offset == -1)
1235 this->section_offsets()[shndx] = invalid_address;
1236 else
1237 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1238
1239 // If this section requires special handling, and if there are
1240 // relocs that apply to it, then we must do the special handling
1241 // before we apply the relocs.
1242 if (offset == -1 && reloc_shndx != 0)
1243 this->set_relocs_must_follow_section_writes();
1244 }
1245
1246 // Layout an input .eh_frame section.
1247
1248 template<int size, bool big_endian>
1249 void
1250 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1251 Layout* layout,
1252 const unsigned char* symbols_data,
1253 section_size_type symbols_size,
1254 const unsigned char* symbol_names_data,
1255 section_size_type symbol_names_size,
1256 unsigned int shndx,
1257 const typename This::Shdr& shdr,
1258 unsigned int reloc_shndx,
1259 unsigned int reloc_type)
1260 {
1261 gold_assert(this->has_eh_frame_);
1262
1263 off_t offset;
1264 Output_section* os = layout->layout_eh_frame(this,
1265 symbols_data,
1266 symbols_size,
1267 symbol_names_data,
1268 symbol_names_size,
1269 shndx,
1270 shdr,
1271 reloc_shndx,
1272 reloc_type,
1273 &offset);
1274 this->output_sections()[shndx] = os;
1275 if (os == NULL || offset == -1)
1276 this->section_offsets()[shndx] = invalid_address;
1277 else
1278 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1279
1280 // If this section requires special handling, and if there are
1281 // relocs that aply to it, then we must do the special handling
1282 // before we apply the relocs.
1283 if (os != NULL && offset == -1 && reloc_shndx != 0)
1284 this->set_relocs_must_follow_section_writes();
1285 }
1286
1287 // Layout an input .note.gnu.property section.
1288
1289 // This note section has an *extremely* non-standard layout.
1290 // The gABI spec says that ELF-64 files should have 8-byte fields and
1291 // 8-byte alignment in the note section, but the Gnu tools generally
1292 // use 4-byte fields and 4-byte alignment (see the comment for
1293 // Layout::create_note). This section uses 4-byte fields (i.e.,
1294 // namesz, descsz, and type are always 4 bytes), the name field is
1295 // padded to a multiple of 4 bytes, but the desc field is padded
1296 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1297 // The individual properties within the desc field always use
1298 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1299 // a multiple of 4 or 8 bytes, depending on the ELF class.
1300
1301 template<int size, bool big_endian>
1302 void
1303 Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1304 Layout* layout,
1305 unsigned int shndx)
1306 {
1307 section_size_type contents_len;
1308 const unsigned char* pcontents = this->section_contents(shndx,
1309 &contents_len,
1310 false);
1311 const unsigned char* pcontents_end = pcontents + contents_len;
1312
1313 // Loop over all the notes in this section.
1314 while (pcontents < pcontents_end)
1315 {
1316 if (pcontents + 16 > pcontents_end)
1317 {
1318 gold_warning(_("%s: corrupt .note.gnu.property section "
1319 "(note too short)"),
1320 this->name().c_str());
1321 return;
1322 }
1323
1324 size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1325 size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1326 unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1327 const unsigned char* pname = pcontents + 12;
1328
1329 if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1330 {
1331 gold_warning(_("%s: corrupt .note.gnu.property section "
1332 "(name is not 'GNU')"),
1333 this->name().c_str());
1334 return;
1335 }
1336
1337 if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1338 {
1339 gold_warning(_("%s: unsupported note type %d "
1340 "in .note.gnu.property section"),
1341 this->name().c_str(), ntype);
1342 return;
1343 }
1344
1345 size_t aligned_namesz = align_address(namesz, 4);
1346 const unsigned char* pdesc = pname + aligned_namesz;
1347
1348 if (pdesc + descsz > pcontents + contents_len)
1349 {
1350 gold_warning(_("%s: corrupt .note.gnu.property section"),
1351 this->name().c_str());
1352 return;
1353 }
1354
1355 const unsigned char* pprop = pdesc;
1356
1357 // Loop over the program properties in this note.
1358 while (pprop < pdesc + descsz)
1359 {
1360 if (pprop + 8 > pdesc + descsz)
1361 {
1362 gold_warning(_("%s: corrupt .note.gnu.property section"),
1363 this->name().c_str());
1364 return;
1365 }
1366 unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1367 size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1368 pprop += 8;
1369 if (pprop + pr_datasz > pdesc + descsz)
1370 {
1371 gold_warning(_("%s: corrupt .note.gnu.property section"),
1372 this->name().c_str());
1373 return;
1374 }
1375 layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1376 pprop += align_address(pr_datasz, size / 8);
1377 }
1378
1379 pcontents = pdesc + align_address(descsz, size / 8);
1380 }
1381 }
1382
1383 // This a copy of lto_section defined in GCC (lto-streamer.h)
1384
1385 struct lto_section
1386 {
1387 int16_t major_version;
1388 int16_t minor_version;
1389 unsigned char slim_object;
1390
1391 /* Flags is a private field that is not defined publicly. */
1392 uint16_t flags;
1393 };
1394
1395 // Lay out the input sections. We walk through the sections and check
1396 // whether they should be included in the link. If they should, we
1397 // pass them to the Layout object, which will return an output section
1398 // and an offset.
1399 // This function is called twice sometimes, two passes, when mapping
1400 // of input sections to output sections must be delayed.
1401 // This is true for the following :
1402 // * Garbage collection (--gc-sections): Some input sections will be
1403 // discarded and hence the assignment must wait until the second pass.
1404 // In the first pass, it is for setting up some sections as roots to
1405 // a work-list for --gc-sections and to do comdat processing.
1406 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1407 // will be folded and hence the assignment must wait.
1408 // * Using plugins to map some sections to unique segments: Mapping
1409 // some sections to unique segments requires mapping them to unique
1410 // output sections too. This can be done via plugins now and this
1411 // information is not available in the first pass.
1412
1413 template<int size, bool big_endian>
1414 void
1415 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1416 Layout* layout,
1417 Read_symbols_data* sd)
1418 {
1419 const unsigned int unwind_section_type =
1420 parameters->target().unwind_section_type();
1421 const unsigned int shnum = this->shnum();
1422
1423 /* Should this function be called twice? */
1424 bool is_two_pass = (parameters->options().gc_sections()
1425 || parameters->options().icf_enabled()
1426 || layout->is_unique_segment_for_sections_specified());
1427
1428 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1429 a two-pass approach is not needed. */
1430 bool is_pass_one = false;
1431 bool is_pass_two = false;
1432
1433 Symbols_data* gc_sd = NULL;
1434
1435 /* Check if do_layout needs to be two-pass. If so, find out which pass
1436 should happen. In the first pass, the data in sd is saved to be used
1437 later in the second pass. */
1438 if (is_two_pass)
1439 {
1440 gc_sd = this->get_symbols_data();
1441 if (gc_sd == NULL)
1442 {
1443 gold_assert(sd != NULL);
1444 is_pass_one = true;
1445 }
1446 else
1447 {
1448 if (parameters->options().gc_sections())
1449 gold_assert(symtab->gc()->is_worklist_ready());
1450 if (parameters->options().icf_enabled())
1451 gold_assert(symtab->icf()->is_icf_ready());
1452 is_pass_two = true;
1453 }
1454 }
1455
1456 if (shnum == 0)
1457 return;
1458
1459 if (is_pass_one)
1460 {
1461 // During garbage collection save the symbols data to use it when
1462 // re-entering this function.
1463 gc_sd = new Symbols_data;
1464 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1465 this->set_symbols_data(gc_sd);
1466 }
1467
1468 const unsigned char* section_headers_data = NULL;
1469 section_size_type section_names_size;
1470 const unsigned char* symbols_data = NULL;
1471 section_size_type symbols_size;
1472 const unsigned char* symbol_names_data = NULL;
1473 section_size_type symbol_names_size;
1474
1475 if (is_two_pass)
1476 {
1477 section_headers_data = gc_sd->section_headers_data;
1478 section_names_size = gc_sd->section_names_size;
1479 symbols_data = gc_sd->symbols_data;
1480 symbols_size = gc_sd->symbols_size;
1481 symbol_names_data = gc_sd->symbol_names_data;
1482 symbol_names_size = gc_sd->symbol_names_size;
1483 }
1484 else
1485 {
1486 section_headers_data = sd->section_headers->data();
1487 section_names_size = sd->section_names_size;
1488 if (sd->symbols != NULL)
1489 symbols_data = sd->symbols->data();
1490 symbols_size = sd->symbols_size;
1491 if (sd->symbol_names != NULL)
1492 symbol_names_data = sd->symbol_names->data();
1493 symbol_names_size = sd->symbol_names_size;
1494 }
1495
1496 // Get the section headers.
1497 const unsigned char* shdrs = section_headers_data;
1498 const unsigned char* pshdrs;
1499
1500 // Get the section names.
1501 const unsigned char* pnamesu = (is_two_pass
1502 ? gc_sd->section_names_data
1503 : sd->section_names->data());
1504
1505 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1506
1507 // If any input files have been claimed by plugins, we need to defer
1508 // actual layout until the replacement files have arrived.
1509 const bool should_defer_layout =
1510 (parameters->options().has_plugins()
1511 && parameters->options().plugins()->should_defer_layout());
1512 unsigned int num_sections_to_defer = 0;
1513
1514 // For each section, record the index of the reloc section if any.
1515 // Use 0 to mean that there is no reloc section, -1U to mean that
1516 // there is more than one.
1517 std::vector<unsigned int> reloc_shndx(shnum, 0);
1518 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1519 // Skip the first, dummy, section.
1520 pshdrs = shdrs + This::shdr_size;
1521 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1522 {
1523 typename This::Shdr shdr(pshdrs);
1524
1525 // Count the number of sections whose layout will be deferred.
1526 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1527 ++num_sections_to_defer;
1528
1529 unsigned int sh_type = shdr.get_sh_type();
1530 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1531 {
1532 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1533 if (target_shndx == 0 || target_shndx >= shnum)
1534 {
1535 this->error(_("relocation section %u has bad info %u"),
1536 i, target_shndx);
1537 continue;
1538 }
1539
1540 if (reloc_shndx[target_shndx] != 0)
1541 reloc_shndx[target_shndx] = -1U;
1542 else
1543 {
1544 reloc_shndx[target_shndx] = i;
1545 reloc_type[target_shndx] = sh_type;
1546 }
1547 }
1548 }
1549
1550 Output_sections& out_sections(this->output_sections());
1551 std::vector<Address>& out_section_offsets(this->section_offsets());
1552
1553 if (!is_pass_two)
1554 {
1555 out_sections.resize(shnum);
1556 out_section_offsets.resize(shnum);
1557 }
1558
1559 // If we are only linking for symbols, then there is nothing else to
1560 // do here.
1561 if (this->input_file()->just_symbols())
1562 {
1563 if (!is_pass_two)
1564 {
1565 delete sd->section_headers;
1566 sd->section_headers = NULL;
1567 delete sd->section_names;
1568 sd->section_names = NULL;
1569 }
1570 return;
1571 }
1572
1573 if (num_sections_to_defer > 0)
1574 {
1575 parameters->options().plugins()->add_deferred_layout_object(this);
1576 this->deferred_layout_.reserve(num_sections_to_defer);
1577 this->is_deferred_layout_ = true;
1578 }
1579
1580 // Whether we've seen a .note.GNU-stack section.
1581 bool seen_gnu_stack = false;
1582 // The flags of a .note.GNU-stack section.
1583 uint64_t gnu_stack_flags = 0;
1584
1585 // Keep track of which sections to omit.
1586 std::vector<bool> omit(shnum, false);
1587
1588 // Keep track of reloc sections when emitting relocations.
1589 const bool relocatable = parameters->options().relocatable();
1590 const bool emit_relocs = (relocatable
1591 || parameters->options().emit_relocs());
1592 std::vector<unsigned int> reloc_sections;
1593
1594 // Keep track of .eh_frame sections.
1595 std::vector<unsigned int> eh_frame_sections;
1596
1597 // Keep track of .debug_info and .debug_types sections.
1598 std::vector<unsigned int> debug_info_sections;
1599 std::vector<unsigned int> debug_types_sections;
1600
1601 // Skip the first, dummy, section.
1602 pshdrs = shdrs + This::shdr_size;
1603 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1604 {
1605 typename This::Shdr shdr(pshdrs);
1606 const unsigned int sh_name = shdr.get_sh_name();
1607 unsigned int sh_type = shdr.get_sh_type();
1608
1609 if (sh_name >= section_names_size)
1610 {
1611 this->error(_("bad section name offset for section %u: %lu"),
1612 i, static_cast<unsigned long>(sh_name));
1613 return;
1614 }
1615
1616 const char* name = pnames + sh_name;
1617
1618 if (!is_pass_two)
1619 {
1620 if (this->handle_gnu_warning_section(name, i, symtab))
1621 {
1622 if (!relocatable && !parameters->options().shared())
1623 omit[i] = true;
1624 }
1625
1626 // The .note.GNU-stack section is special. It gives the
1627 // protection flags that this object file requires for the stack
1628 // in memory.
1629 if (strcmp(name, ".note.GNU-stack") == 0)
1630 {
1631 seen_gnu_stack = true;
1632 gnu_stack_flags |= shdr.get_sh_flags();
1633 omit[i] = true;
1634 }
1635
1636 // The .note.GNU-split-stack section is also special. It
1637 // indicates that the object was compiled with
1638 // -fsplit-stack.
1639 if (this->handle_split_stack_section(name))
1640 {
1641 if (!relocatable && !parameters->options().shared())
1642 omit[i] = true;
1643 }
1644
1645 // Skip attributes section.
1646 if (parameters->target().is_attributes_section(name))
1647 {
1648 omit[i] = true;
1649 }
1650
1651 // Handle .note.gnu.property sections.
1652 if (sh_type == elfcpp::SHT_NOTE
1653 && strcmp(name, ".note.gnu.property") == 0)
1654 {
1655 this->layout_gnu_property_section(layout, i);
1656 omit[i] = true;
1657 }
1658
1659 bool discard = omit[i];
1660 if (!discard)
1661 {
1662 if (sh_type == elfcpp::SHT_GROUP)
1663 {
1664 if (!this->include_section_group(symtab, layout, i, name,
1665 shdrs, pnames,
1666 section_names_size,
1667 &omit))
1668 discard = true;
1669 }
1670 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1671 && Layout::is_linkonce(name))
1672 {
1673 if (!this->include_linkonce_section(layout, i, name, shdr))
1674 discard = true;
1675 }
1676 }
1677
1678 // Add the section to the incremental inputs layout.
1679 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1680 if (incremental_inputs != NULL
1681 && !discard
1682 && can_incremental_update(sh_type))
1683 {
1684 off_t sh_size = shdr.get_sh_size();
1685 section_size_type uncompressed_size;
1686 if (this->section_is_compressed(i, &uncompressed_size))
1687 sh_size = uncompressed_size;
1688 incremental_inputs->report_input_section(this, i, name, sh_size);
1689 }
1690
1691 if (discard)
1692 {
1693 // Do not include this section in the link.
1694 out_sections[i] = NULL;
1695 out_section_offsets[i] = invalid_address;
1696 continue;
1697 }
1698 }
1699
1700 if (is_pass_one && parameters->options().gc_sections())
1701 {
1702 if (this->is_section_name_included(name)
1703 || layout->keep_input_section (this, name)
1704 || sh_type == elfcpp::SHT_INIT_ARRAY
1705 || sh_type == elfcpp::SHT_FINI_ARRAY)
1706 {
1707 symtab->gc()->worklist().push_back(Section_id(this, i));
1708 }
1709 // If the section name XXX can be represented as a C identifier
1710 // it cannot be discarded if there are references to
1711 // __start_XXX and __stop_XXX symbols. These need to be
1712 // specially handled.
1713 if (is_cident(name))
1714 {
1715 symtab->gc()->add_cident_section(name, Section_id(this, i));
1716 }
1717 }
1718
1719 // When doing a relocatable link we are going to copy input
1720 // reloc sections into the output. We only want to copy the
1721 // ones associated with sections which are not being discarded.
1722 // However, we don't know that yet for all sections. So save
1723 // reloc sections and process them later. Garbage collection is
1724 // not triggered when relocatable code is desired.
1725 if (emit_relocs
1726 && (sh_type == elfcpp::SHT_REL
1727 || sh_type == elfcpp::SHT_RELA))
1728 {
1729 reloc_sections.push_back(i);
1730 continue;
1731 }
1732
1733 if (relocatable && sh_type == elfcpp::SHT_GROUP)
1734 continue;
1735
1736 // The .eh_frame section is special. It holds exception frame
1737 // information that we need to read in order to generate the
1738 // exception frame header. We process these after all the other
1739 // sections so that the exception frame reader can reliably
1740 // determine which sections are being discarded, and discard the
1741 // corresponding information.
1742 if (this->check_eh_frame_flags(&shdr)
1743 && strcmp(name, ".eh_frame") == 0)
1744 {
1745 // If the target has a special unwind section type, let's
1746 // canonicalize it here.
1747 sh_type = unwind_section_type;
1748 if (!relocatable)
1749 {
1750 if (is_pass_one)
1751 {
1752 if (this->is_deferred_layout())
1753 out_sections[i] = reinterpret_cast<Output_section*>(2);
1754 else
1755 out_sections[i] = reinterpret_cast<Output_section*>(1);
1756 out_section_offsets[i] = invalid_address;
1757 }
1758 else if (this->is_deferred_layout())
1759 {
1760 out_sections[i] = reinterpret_cast<Output_section*>(2);
1761 out_section_offsets[i] = invalid_address;
1762 this->deferred_layout_.push_back(
1763 Deferred_layout(i, name, sh_type, pshdrs,
1764 reloc_shndx[i], reloc_type[i]));
1765 }
1766 else
1767 eh_frame_sections.push_back(i);
1768 continue;
1769 }
1770 }
1771
1772 if (is_pass_two && parameters->options().gc_sections())
1773 {
1774 // This is executed during the second pass of garbage
1775 // collection. do_layout has been called before and some
1776 // sections have been already discarded. Simply ignore
1777 // such sections this time around.
1778 if (out_sections[i] == NULL)
1779 {
1780 gold_assert(out_section_offsets[i] == invalid_address);
1781 continue;
1782 }
1783 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1784 && symtab->gc()->is_section_garbage(this, i))
1785 {
1786 if (parameters->options().print_gc_sections())
1787 gold_info(_("%s: removing unused section from '%s'"
1788 " in file '%s'"),
1789 program_name, this->section_name(i).c_str(),
1790 this->name().c_str());
1791 out_sections[i] = NULL;
1792 out_section_offsets[i] = invalid_address;
1793 continue;
1794 }
1795 }
1796
1797 if (is_pass_two && parameters->options().icf_enabled())
1798 {
1799 if (out_sections[i] == NULL)
1800 {
1801 gold_assert(out_section_offsets[i] == invalid_address);
1802 continue;
1803 }
1804 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1805 && symtab->icf()->is_section_folded(this, i))
1806 {
1807 if (parameters->options().print_icf_sections())
1808 {
1809 Section_id folded =
1810 symtab->icf()->get_folded_section(this, i);
1811 Relobj* folded_obj =
1812 reinterpret_cast<Relobj*>(folded.first);
1813 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1814 "into '%s' in file '%s'"),
1815 program_name, this->section_name(i).c_str(),
1816 this->name().c_str(),
1817 folded_obj->section_name(folded.second).c_str(),
1818 folded_obj->name().c_str());
1819 }
1820 out_sections[i] = NULL;
1821 out_section_offsets[i] = invalid_address;
1822 continue;
1823 }
1824 }
1825
1826 // Defer layout here if input files are claimed by plugins. When gc
1827 // is turned on this function is called twice; we only want to do this
1828 // on the first pass.
1829 if (!is_pass_two
1830 && this->is_deferred_layout()
1831 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1832 {
1833 this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1834 pshdrs,
1835 reloc_shndx[i],
1836 reloc_type[i]));
1837 // Put dummy values here; real values will be supplied by
1838 // do_layout_deferred_sections.
1839 out_sections[i] = reinterpret_cast<Output_section*>(2);
1840 out_section_offsets[i] = invalid_address;
1841 continue;
1842 }
1843
1844 // During gc_pass_two if a section that was previously deferred is
1845 // found, do not layout the section as layout_deferred_sections will
1846 // do it later from gold.cc.
1847 if (is_pass_two
1848 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1849 continue;
1850
1851 if (is_pass_one)
1852 {
1853 // This is during garbage collection. The out_sections are
1854 // assigned in the second call to this function.
1855 out_sections[i] = reinterpret_cast<Output_section*>(1);
1856 out_section_offsets[i] = invalid_address;
1857 }
1858 else
1859 {
1860 // When garbage collection is switched on the actual layout
1861 // only happens in the second call.
1862 this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1863 reloc_type[i]);
1864
1865 // When generating a .gdb_index section, we do additional
1866 // processing of .debug_info and .debug_types sections after all
1867 // the other sections for the same reason as above.
1868 if (!relocatable
1869 && parameters->options().gdb_index()
1870 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1871 {
1872 if (strcmp(name, ".debug_info") == 0
1873 || strcmp(name, ".zdebug_info") == 0)
1874 debug_info_sections.push_back(i);
1875 else if (strcmp(name, ".debug_types") == 0
1876 || strcmp(name, ".zdebug_types") == 0)
1877 debug_types_sections.push_back(i);
1878 }
1879 }
1880
1881 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1882 section. */
1883 const char *lto_section_name = ".gnu.lto_.lto.";
1884 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1885 {
1886 section_size_type contents_len;
1887 const unsigned char* pcontents
1888 = this->section_contents(i, &contents_len, false);
1889 if (contents_len >= sizeof(lto_section))
1890 {
1891 const lto_section* lsection
1892 = reinterpret_cast<const lto_section*>(pcontents);
1893 if (lsection->slim_object)
1894 layout->set_lto_slim_object();
1895 }
1896 }
1897 }
1898
1899 if (!is_pass_two)
1900 {
1901 layout->merge_gnu_properties(this);
1902 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1903 }
1904
1905 // Handle the .eh_frame sections after the other sections.
1906 gold_assert(!is_pass_one || eh_frame_sections.empty());
1907 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1908 p != eh_frame_sections.end();
1909 ++p)
1910 {
1911 unsigned int i = *p;
1912 const unsigned char* pshdr;
1913 pshdr = section_headers_data + i * This::shdr_size;
1914 typename This::Shdr shdr(pshdr);
1915
1916 this->layout_eh_frame_section(layout,
1917 symbols_data,
1918 symbols_size,
1919 symbol_names_data,
1920 symbol_names_size,
1921 i,
1922 shdr,
1923 reloc_shndx[i],
1924 reloc_type[i]);
1925 }
1926
1927 // When doing a relocatable link handle the reloc sections at the
1928 // end. Garbage collection and Identical Code Folding is not
1929 // turned on for relocatable code.
1930 if (emit_relocs)
1931 this->size_relocatable_relocs();
1932
1933 gold_assert(!is_two_pass || reloc_sections.empty());
1934
1935 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1936 p != reloc_sections.end();
1937 ++p)
1938 {
1939 unsigned int i = *p;
1940 const unsigned char* pshdr;
1941 pshdr = section_headers_data + i * This::shdr_size;
1942 typename This::Shdr shdr(pshdr);
1943
1944 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1945 if (data_shndx >= shnum)
1946 {
1947 // We already warned about this above.
1948 continue;
1949 }
1950
1951 Output_section* data_section = out_sections[data_shndx];
1952 if (data_section == reinterpret_cast<Output_section*>(2))
1953 {
1954 if (is_pass_two)
1955 continue;
1956 // The layout for the data section was deferred, so we need
1957 // to defer the relocation section, too.
1958 const char* name = pnames + shdr.get_sh_name();
1959 this->deferred_layout_relocs_.push_back(
1960 Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1961 elfcpp::SHT_NULL));
1962 out_sections[i] = reinterpret_cast<Output_section*>(2);
1963 out_section_offsets[i] = invalid_address;
1964 continue;
1965 }
1966 if (data_section == NULL)
1967 {
1968 out_sections[i] = NULL;
1969 out_section_offsets[i] = invalid_address;
1970 continue;
1971 }
1972
1973 Relocatable_relocs* rr = new Relocatable_relocs();
1974 this->set_relocatable_relocs(i, rr);
1975
1976 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1977 rr);
1978 out_sections[i] = os;
1979 out_section_offsets[i] = invalid_address;
1980 }
1981
1982 // When building a .gdb_index section, scan the .debug_info and
1983 // .debug_types sections.
1984 gold_assert(!is_pass_one
1985 || (debug_info_sections.empty() && debug_types_sections.empty()));
1986 for (std::vector<unsigned int>::const_iterator p
1987 = debug_info_sections.begin();
1988 p != debug_info_sections.end();
1989 ++p)
1990 {
1991 unsigned int i = *p;
1992 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1993 i, reloc_shndx[i], reloc_type[i]);
1994 }
1995 for (std::vector<unsigned int>::const_iterator p
1996 = debug_types_sections.begin();
1997 p != debug_types_sections.end();
1998 ++p)
1999 {
2000 unsigned int i = *p;
2001 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
2002 i, reloc_shndx[i], reloc_type[i]);
2003 }
2004
2005 if (is_pass_two)
2006 {
2007 delete[] gc_sd->section_headers_data;
2008 delete[] gc_sd->section_names_data;
2009 delete[] gc_sd->symbols_data;
2010 delete[] gc_sd->symbol_names_data;
2011 this->set_symbols_data(NULL);
2012 }
2013 else
2014 {
2015 delete sd->section_headers;
2016 sd->section_headers = NULL;
2017 delete sd->section_names;
2018 sd->section_names = NULL;
2019 }
2020 }
2021
2022 // Layout sections whose layout was deferred while waiting for
2023 // input files from a plugin.
2024
2025 template<int size, bool big_endian>
2026 void
2027 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
2028 {
2029 typename std::vector<Deferred_layout>::iterator deferred;
2030
2031 for (deferred = this->deferred_layout_.begin();
2032 deferred != this->deferred_layout_.end();
2033 ++deferred)
2034 {
2035 typename This::Shdr shdr(deferred->shdr_data_);
2036
2037 if (!parameters->options().relocatable()
2038 && deferred->name_ == ".eh_frame"
2039 && this->check_eh_frame_flags(&shdr))
2040 {
2041 // Checking is_section_included is not reliable for
2042 // .eh_frame sections, because they do not have an output
2043 // section. This is not a problem normally because we call
2044 // layout_eh_frame_section unconditionally, but when
2045 // deferring sections that is not true. We don't want to
2046 // keep all .eh_frame sections because that will cause us to
2047 // keep all sections that they refer to, which is the wrong
2048 // way around. Instead, the eh_frame code will discard
2049 // .eh_frame sections that refer to discarded sections.
2050
2051 // Reading the symbols again here may be slow.
2052 Read_symbols_data sd;
2053 this->base_read_symbols(&sd);
2054 this->layout_eh_frame_section(layout,
2055 sd.symbols->data(),
2056 sd.symbols_size,
2057 sd.symbol_names->data(),
2058 sd.symbol_names_size,
2059 deferred->shndx_,
2060 shdr,
2061 deferred->reloc_shndx_,
2062 deferred->reloc_type_);
2063 continue;
2064 }
2065
2066 // If the section is not included, it is because the garbage collector
2067 // decided it is not needed. Avoid reverting that decision.
2068 if (!this->is_section_included(deferred->shndx_))
2069 continue;
2070
2071 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2072 shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2073 deferred->reloc_type_);
2074 }
2075
2076 this->deferred_layout_.clear();
2077
2078 // Now handle the deferred relocation sections.
2079
2080 Output_sections& out_sections(this->output_sections());
2081 std::vector<Address>& out_section_offsets(this->section_offsets());
2082
2083 for (deferred = this->deferred_layout_relocs_.begin();
2084 deferred != this->deferred_layout_relocs_.end();
2085 ++deferred)
2086 {
2087 unsigned int shndx = deferred->shndx_;
2088 typename This::Shdr shdr(deferred->shdr_data_);
2089 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2090
2091 Output_section* data_section = out_sections[data_shndx];
2092 if (data_section == NULL)
2093 {
2094 out_sections[shndx] = NULL;
2095 out_section_offsets[shndx] = invalid_address;
2096 continue;
2097 }
2098
2099 Relocatable_relocs* rr = new Relocatable_relocs();
2100 this->set_relocatable_relocs(shndx, rr);
2101
2102 Output_section* os = layout->layout_reloc(this, shndx, shdr,
2103 data_section, rr);
2104 out_sections[shndx] = os;
2105 out_section_offsets[shndx] = invalid_address;
2106 }
2107 }
2108
2109 // Add the symbols to the symbol table.
2110
2111 template<int size, bool big_endian>
2112 void
2113 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2114 Read_symbols_data* sd,
2115 Layout* layout)
2116 {
2117 if (sd->symbols == NULL)
2118 {
2119 gold_assert(sd->symbol_names == NULL);
2120 return;
2121 }
2122
2123 const int sym_size = This::sym_size;
2124 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2125 / sym_size);
2126 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2127 {
2128 this->error(_("size of symbols is not multiple of symbol size"));
2129 return;
2130 }
2131
2132 this->symbols_.resize(symcount);
2133
2134 if (!parameters->options().relocatable()
2135 && layout->is_lto_slim_object ())
2136 gold_info(_("%s: plugin needed to handle lto object"),
2137 this->name().c_str());
2138
2139 const char* sym_names =
2140 reinterpret_cast<const char*>(sd->symbol_names->data());
2141 symtab->add_from_relobj(this,
2142 sd->symbols->data() + sd->external_symbols_offset,
2143 symcount, this->local_symbol_count_,
2144 sym_names, sd->symbol_names_size,
2145 &this->symbols_,
2146 &this->defined_count_);
2147
2148 delete sd->symbols;
2149 sd->symbols = NULL;
2150 delete sd->symbol_names;
2151 sd->symbol_names = NULL;
2152 }
2153
2154 // Find out if this object, that is a member of a lib group, should be included
2155 // in the link. We check every symbol defined by this object. If the symbol
2156 // table has a strong undefined reference to that symbol, we have to include
2157 // the object.
2158
2159 template<int size, bool big_endian>
2160 Archive::Should_include
2161 Sized_relobj_file<size, big_endian>::do_should_include_member(
2162 Symbol_table* symtab,
2163 Layout* layout,
2164 Read_symbols_data* sd,
2165 std::string* why)
2166 {
2167 char* tmpbuf = NULL;
2168 size_t tmpbuflen = 0;
2169 const char* sym_names =
2170 reinterpret_cast<const char*>(sd->symbol_names->data());
2171 const unsigned char* syms =
2172 sd->symbols->data() + sd->external_symbols_offset;
2173 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2174 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2175 / sym_size);
2176
2177 const unsigned char* p = syms;
2178
2179 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2180 {
2181 elfcpp::Sym<size, big_endian> sym(p);
2182 unsigned int st_shndx = sym.get_st_shndx();
2183 if (st_shndx == elfcpp::SHN_UNDEF)
2184 continue;
2185
2186 unsigned int st_name = sym.get_st_name();
2187 const char* name = sym_names + st_name;
2188 Symbol* symbol;
2189 Archive::Should_include t = Archive::should_include_member(symtab,
2190 layout,
2191 name,
2192 &symbol, why,
2193 &tmpbuf,
2194 &tmpbuflen);
2195 if (t == Archive::SHOULD_INCLUDE_YES)
2196 {
2197 if (tmpbuf != NULL)
2198 free(tmpbuf);
2199 return t;
2200 }
2201 }
2202 if (tmpbuf != NULL)
2203 free(tmpbuf);
2204 return Archive::SHOULD_INCLUDE_UNKNOWN;
2205 }
2206
2207 // Iterate over global defined symbols, calling a visitor class V for each.
2208
2209 template<int size, bool big_endian>
2210 void
2211 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2212 Read_symbols_data* sd,
2213 Library_base::Symbol_visitor_base* v)
2214 {
2215 const char* sym_names =
2216 reinterpret_cast<const char*>(sd->symbol_names->data());
2217 const unsigned char* syms =
2218 sd->symbols->data() + sd->external_symbols_offset;
2219 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2220 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2221 / sym_size);
2222 const unsigned char* p = syms;
2223
2224 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2225 {
2226 elfcpp::Sym<size, big_endian> sym(p);
2227 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2228 v->visit(sym_names + sym.get_st_name());
2229 }
2230 }
2231
2232 // Return whether the local symbol SYMNDX has a PLT offset.
2233
2234 template<int size, bool big_endian>
2235 bool
2236 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2237 unsigned int symndx) const
2238 {
2239 typename Local_plt_offsets::const_iterator p =
2240 this->local_plt_offsets_.find(symndx);
2241 return p != this->local_plt_offsets_.end();
2242 }
2243
2244 // Get the PLT offset of a local symbol.
2245
2246 template<int size, bool big_endian>
2247 unsigned int
2248 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2249 unsigned int symndx) const
2250 {
2251 typename Local_plt_offsets::const_iterator p =
2252 this->local_plt_offsets_.find(symndx);
2253 gold_assert(p != this->local_plt_offsets_.end());
2254 return p->second;
2255 }
2256
2257 // Set the PLT offset of a local symbol.
2258
2259 template<int size, bool big_endian>
2260 void
2261 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2262 unsigned int symndx, unsigned int plt_offset)
2263 {
2264 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2265 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2266 gold_assert(ins.second);
2267 }
2268
2269 // First pass over the local symbols. Here we add their names to
2270 // *POOL and *DYNPOOL, and we store the symbol value in
2271 // THIS->LOCAL_VALUES_. This function is always called from a
2272 // singleton thread. This is followed by a call to
2273 // finalize_local_symbols.
2274
2275 template<int size, bool big_endian>
2276 void
2277 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2278 Stringpool* dynpool)
2279 {
2280 gold_assert(this->symtab_shndx_ != -1U);
2281 if (this->symtab_shndx_ == 0)
2282 {
2283 // This object has no symbols. Weird but legal.
2284 return;
2285 }
2286
2287 // Read the symbol table section header.
2288 const unsigned int symtab_shndx = this->symtab_shndx_;
2289 typename This::Shdr symtabshdr(this,
2290 this->elf_file_.section_header(symtab_shndx));
2291 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2292
2293 // Read the local symbols.
2294 const int sym_size = This::sym_size;
2295 const unsigned int loccount = this->local_symbol_count_;
2296 gold_assert(loccount == symtabshdr.get_sh_info());
2297 off_t locsize = loccount * sym_size;
2298 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2299 locsize, true, true);
2300
2301 // Read the symbol names.
2302 const unsigned int strtab_shndx =
2303 this->adjust_shndx(symtabshdr.get_sh_link());
2304 section_size_type strtab_size;
2305 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2306 &strtab_size,
2307 true);
2308 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2309
2310 // Loop over the local symbols.
2311
2312 const Output_sections& out_sections(this->output_sections());
2313 std::vector<Address>& out_section_offsets(this->section_offsets());
2314 unsigned int shnum = this->shnum();
2315 unsigned int count = 0;
2316 unsigned int dyncount = 0;
2317 // Skip the first, dummy, symbol.
2318 psyms += sym_size;
2319 bool strip_all = parameters->options().strip_all();
2320 bool discard_all = parameters->options().discard_all();
2321 bool discard_locals = parameters->options().discard_locals();
2322 bool discard_sec_merge = parameters->options().discard_sec_merge();
2323 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2324 {
2325 elfcpp::Sym<size, big_endian> sym(psyms);
2326
2327 Symbol_value<size>& lv(this->local_values_[i]);
2328
2329 bool is_ordinary;
2330 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2331 &is_ordinary);
2332 lv.set_input_shndx(shndx, is_ordinary);
2333
2334 if (sym.get_st_type() == elfcpp::STT_SECTION)
2335 lv.set_is_section_symbol();
2336 else if (sym.get_st_type() == elfcpp::STT_TLS)
2337 lv.set_is_tls_symbol();
2338 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2339 lv.set_is_ifunc_symbol();
2340
2341 // Save the input symbol value for use in do_finalize_local_symbols().
2342 lv.set_input_value(sym.get_st_value());
2343
2344 // Decide whether this symbol should go into the output file.
2345
2346 if (is_ordinary
2347 && shndx < shnum
2348 && (out_sections[shndx] == NULL
2349 || (out_sections[shndx]->order() == ORDER_EHFRAME
2350 && out_section_offsets[shndx] == invalid_address)))
2351 {
2352 // This is either a discarded section or an optimized .eh_frame
2353 // section.
2354 lv.set_no_output_symtab_entry();
2355 gold_assert(!lv.needs_output_dynsym_entry());
2356 continue;
2357 }
2358
2359 if (sym.get_st_type() == elfcpp::STT_SECTION
2360 || !this->adjust_local_symbol(&lv))
2361 {
2362 lv.set_no_output_symtab_entry();
2363 gold_assert(!lv.needs_output_dynsym_entry());
2364 continue;
2365 }
2366
2367 if (sym.get_st_name() >= strtab_size)
2368 {
2369 this->error(_("local symbol %u section name out of range: %u >= %u"),
2370 i, sym.get_st_name(),
2371 static_cast<unsigned int>(strtab_size));
2372 lv.set_no_output_symtab_entry();
2373 continue;
2374 }
2375
2376 const char* name = pnames + sym.get_st_name();
2377
2378 // If needed, add the symbol to the dynamic symbol table string pool.
2379 if (lv.needs_output_dynsym_entry())
2380 {
2381 dynpool->add(name, true, NULL);
2382 ++dyncount;
2383 }
2384
2385 if (strip_all
2386 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2387 {
2388 lv.set_no_output_symtab_entry();
2389 continue;
2390 }
2391
2392 // By default, discard temporary local symbols in merge sections.
2393 // If --discard-locals option is used, discard all temporary local
2394 // symbols. These symbols start with system-specific local label
2395 // prefixes, typically .L for ELF system. We want to be compatible
2396 // with GNU ld so here we essentially use the same check in
2397 // bfd_is_local_label(). The code is different because we already
2398 // know that:
2399 //
2400 // - the symbol is local and thus cannot have global or weak binding.
2401 // - the symbol is not a section symbol.
2402 // - the symbol has a name.
2403 //
2404 // We do not discard a symbol if it needs a dynamic symbol entry.
2405 if ((discard_locals
2406 || (discard_sec_merge
2407 && is_ordinary
2408 && out_section_offsets[shndx] == invalid_address))
2409 && sym.get_st_type() != elfcpp::STT_FILE
2410 && !lv.needs_output_dynsym_entry()
2411 && lv.may_be_discarded_from_output_symtab()
2412 && parameters->target().is_local_label_name(name))
2413 {
2414 lv.set_no_output_symtab_entry();
2415 continue;
2416 }
2417
2418 // Discard the local symbol if -retain_symbols_file is specified
2419 // and the local symbol is not in that file.
2420 if (!parameters->options().should_retain_symbol(name))
2421 {
2422 lv.set_no_output_symtab_entry();
2423 continue;
2424 }
2425
2426 // Add the symbol to the symbol table string pool.
2427 pool->add(name, true, NULL);
2428 ++count;
2429 }
2430
2431 this->output_local_symbol_count_ = count;
2432 this->output_local_dynsym_count_ = dyncount;
2433 }
2434
2435 // Compute the final value of a local symbol.
2436
2437 template<int size, bool big_endian>
2438 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2439 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2440 unsigned int r_sym,
2441 const Symbol_value<size>* lv_in,
2442 Symbol_value<size>* lv_out,
2443 bool relocatable,
2444 const Output_sections& out_sections,
2445 const std::vector<Address>& out_offsets,
2446 const Symbol_table* symtab)
2447 {
2448 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2449 // we may have a memory leak.
2450 gold_assert(lv_out->has_output_value());
2451
2452 bool is_ordinary;
2453 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2454
2455 // Set the output symbol value.
2456
2457 if (!is_ordinary)
2458 {
2459 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2460 lv_out->set_output_value(lv_in->input_value());
2461 else
2462 {
2463 this->error(_("unknown section index %u for local symbol %u"),
2464 shndx, r_sym);
2465 lv_out->set_output_value(0);
2466 return This::CFLV_ERROR;
2467 }
2468 }
2469 else
2470 {
2471 if (shndx >= this->shnum())
2472 {
2473 this->error(_("local symbol %u section index %u out of range"),
2474 r_sym, shndx);
2475 lv_out->set_output_value(0);
2476 return This::CFLV_ERROR;
2477 }
2478
2479 Output_section* os = out_sections[shndx];
2480 Address secoffset = out_offsets[shndx];
2481 if (symtab->is_section_folded(this, shndx))
2482 {
2483 gold_assert(os == NULL && secoffset == invalid_address);
2484 // Get the os of the section it is folded onto.
2485 Section_id folded = symtab->icf()->get_folded_section(this,
2486 shndx);
2487 gold_assert(folded.first != NULL);
2488 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2489 <Sized_relobj_file<size, big_endian>*>(folded.first);
2490 os = folded_obj->output_section(folded.second);
2491 gold_assert(os != NULL);
2492 secoffset = folded_obj->get_output_section_offset(folded.second);
2493
2494 // This could be a relaxed input section.
2495 if (secoffset == invalid_address)
2496 {
2497 const Output_relaxed_input_section* relaxed_section =
2498 os->find_relaxed_input_section(folded_obj, folded.second);
2499 gold_assert(relaxed_section != NULL);
2500 secoffset = relaxed_section->address() - os->address();
2501 }
2502 }
2503
2504 if (os == NULL)
2505 {
2506 // This local symbol belongs to a section we are discarding.
2507 // In some cases when applying relocations later, we will
2508 // attempt to match it to the corresponding kept section,
2509 // so we leave the input value unchanged here.
2510 return This::CFLV_DISCARDED;
2511 }
2512 else if (secoffset == invalid_address)
2513 {
2514 uint64_t start;
2515
2516 // This is a SHF_MERGE section or one which otherwise
2517 // requires special handling.
2518 if (os->order() == ORDER_EHFRAME)
2519 {
2520 // This local symbol belongs to a discarded or optimized
2521 // .eh_frame section. Just treat it like the case in which
2522 // os == NULL above.
2523 gold_assert(this->has_eh_frame_);
2524 return This::CFLV_DISCARDED;
2525 }
2526 else if (!lv_in->is_section_symbol())
2527 {
2528 // This is not a section symbol. We can determine
2529 // the final value now.
2530 uint64_t value =
2531 os->output_address(this, shndx, lv_in->input_value());
2532 if (relocatable)
2533 value -= os->address();
2534 lv_out->set_output_value(value);
2535 }
2536 else if (!os->find_starting_output_address(this, shndx, &start))
2537 {
2538 // This is a section symbol, but apparently not one in a
2539 // merged section. First check to see if this is a relaxed
2540 // input section. If so, use its address. Otherwise just
2541 // use the start of the output section. This happens with
2542 // relocatable links when the input object has section
2543 // symbols for arbitrary non-merge sections.
2544 const Output_section_data* posd =
2545 os->find_relaxed_input_section(this, shndx);
2546 if (posd != NULL)
2547 {
2548 uint64_t value = posd->address();
2549 if (relocatable)
2550 value -= os->address();
2551 lv_out->set_output_value(value);
2552 }
2553 else
2554 lv_out->set_output_value(os->address());
2555 }
2556 else
2557 {
2558 // We have to consider the addend to determine the
2559 // value to use in a relocation. START is the start
2560 // of this input section. If we are doing a relocatable
2561 // link, use offset from start output section instead of
2562 // address.
2563 Address adjusted_start =
2564 relocatable ? start - os->address() : start;
2565 Merged_symbol_value<size>* msv =
2566 new Merged_symbol_value<size>(lv_in->input_value(),
2567 adjusted_start);
2568 lv_out->set_merged_symbol_value(msv);
2569 }
2570 }
2571 else if (lv_in->is_tls_symbol()
2572 || (lv_in->is_section_symbol()
2573 && (os->flags() & elfcpp::SHF_TLS)))
2574 lv_out->set_output_value(os->tls_offset()
2575 + secoffset
2576 + lv_in->input_value());
2577 else
2578 lv_out->set_output_value((relocatable ? 0 : os->address())
2579 + secoffset
2580 + lv_in->input_value());
2581 }
2582 return This::CFLV_OK;
2583 }
2584
2585 // Compute final local symbol value. R_SYM is the index of a local
2586 // symbol in symbol table. LV points to a symbol value, which is
2587 // expected to hold the input value and to be over-written by the
2588 // final value. SYMTAB points to a symbol table. Some targets may want
2589 // to know would-be-finalized local symbol values in relaxation.
2590 // Hence we provide this method. Since this method updates *LV, a
2591 // callee should make a copy of the original local symbol value and
2592 // use the copy instead of modifying an object's local symbols before
2593 // everything is finalized. The caller should also free up any allocated
2594 // memory in the return value in *LV.
2595 template<int size, bool big_endian>
2596 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2597 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2598 unsigned int r_sym,
2599 const Symbol_value<size>* lv_in,
2600 Symbol_value<size>* lv_out,
2601 const Symbol_table* symtab)
2602 {
2603 // This is just a wrapper of compute_final_local_value_internal.
2604 const bool relocatable = parameters->options().relocatable();
2605 const Output_sections& out_sections(this->output_sections());
2606 const std::vector<Address>& out_offsets(this->section_offsets());
2607 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2608 relocatable, out_sections,
2609 out_offsets, symtab);
2610 }
2611
2612 // Finalize the local symbols. Here we set the final value in
2613 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2614 // This function is always called from a singleton thread. The actual
2615 // output of the local symbols will occur in a separate task.
2616
2617 template<int size, bool big_endian>
2618 unsigned int
2619 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2620 unsigned int index,
2621 off_t off,
2622 Symbol_table* symtab)
2623 {
2624 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2625
2626 const unsigned int loccount = this->local_symbol_count_;
2627 this->local_symbol_offset_ = off;
2628
2629 const bool relocatable = parameters->options().relocatable();
2630 const Output_sections& out_sections(this->output_sections());
2631 const std::vector<Address>& out_offsets(this->section_offsets());
2632
2633 for (unsigned int i = 1; i < loccount; ++i)
2634 {
2635 Symbol_value<size>* lv = &this->local_values_[i];
2636
2637 Compute_final_local_value_status cflv_status =
2638 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2639 out_sections, out_offsets,
2640 symtab);
2641 switch (cflv_status)
2642 {
2643 case CFLV_OK:
2644 if (!lv->is_output_symtab_index_set())
2645 {
2646 lv->set_output_symtab_index(index);
2647 ++index;
2648 }
2649 break;
2650 case CFLV_DISCARDED:
2651 case CFLV_ERROR:
2652 // Do nothing.
2653 break;
2654 default:
2655 gold_unreachable();
2656 }
2657 }
2658 return index;
2659 }
2660
2661 // Set the output dynamic symbol table indexes for the local variables.
2662
2663 template<int size, bool big_endian>
2664 unsigned int
2665 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2666 unsigned int index)
2667 {
2668 const unsigned int loccount = this->local_symbol_count_;
2669 for (unsigned int i = 1; i < loccount; ++i)
2670 {
2671 Symbol_value<size>& lv(this->local_values_[i]);
2672 if (lv.needs_output_dynsym_entry())
2673 {
2674 lv.set_output_dynsym_index(index);
2675 ++index;
2676 }
2677 }
2678 return index;
2679 }
2680
2681 // Set the offset where local dynamic symbol information will be stored.
2682 // Returns the count of local symbols contributed to the symbol table by
2683 // this object.
2684
2685 template<int size, bool big_endian>
2686 unsigned int
2687 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2688 {
2689 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2690 this->local_dynsym_offset_ = off;
2691 return this->output_local_dynsym_count_;
2692 }
2693
2694 // If Symbols_data is not NULL get the section flags from here otherwise
2695 // get it from the file.
2696
2697 template<int size, bool big_endian>
2698 uint64_t
2699 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2700 {
2701 Symbols_data* sd = this->get_symbols_data();
2702 if (sd != NULL)
2703 {
2704 const unsigned char* pshdrs = sd->section_headers_data
2705 + This::shdr_size * shndx;
2706 typename This::Shdr shdr(pshdrs);
2707 return shdr.get_sh_flags();
2708 }
2709 // If sd is NULL, read the section header from the file.
2710 return this->elf_file_.section_flags(shndx);
2711 }
2712
2713 // Get the section's ent size from Symbols_data. Called by get_section_contents
2714 // in icf.cc
2715
2716 template<int size, bool big_endian>
2717 uint64_t
2718 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2719 {
2720 Symbols_data* sd = this->get_symbols_data();
2721 gold_assert(sd != NULL);
2722
2723 const unsigned char* pshdrs = sd->section_headers_data
2724 + This::shdr_size * shndx;
2725 typename This::Shdr shdr(pshdrs);
2726 return shdr.get_sh_entsize();
2727 }
2728
2729 // Write out the local symbols.
2730
2731 template<int size, bool big_endian>
2732 void
2733 Sized_relobj_file<size, big_endian>::write_local_symbols(
2734 Output_file* of,
2735 const Stringpool* sympool,
2736 const Stringpool* dynpool,
2737 Output_symtab_xindex* symtab_xindex,
2738 Output_symtab_xindex* dynsym_xindex,
2739 off_t symtab_off)
2740 {
2741 const bool strip_all = parameters->options().strip_all();
2742 if (strip_all)
2743 {
2744 if (this->output_local_dynsym_count_ == 0)
2745 return;
2746 this->output_local_symbol_count_ = 0;
2747 }
2748
2749 gold_assert(this->symtab_shndx_ != -1U);
2750 if (this->symtab_shndx_ == 0)
2751 {
2752 // This object has no symbols. Weird but legal.
2753 return;
2754 }
2755
2756 // Read the symbol table section header.
2757 const unsigned int symtab_shndx = this->symtab_shndx_;
2758 typename This::Shdr symtabshdr(this,
2759 this->elf_file_.section_header(symtab_shndx));
2760 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2761 const unsigned int loccount = this->local_symbol_count_;
2762 gold_assert(loccount == symtabshdr.get_sh_info());
2763
2764 // Read the local symbols.
2765 const int sym_size = This::sym_size;
2766 off_t locsize = loccount * sym_size;
2767 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2768 locsize, true, false);
2769
2770 // Read the symbol names.
2771 const unsigned int strtab_shndx =
2772 this->adjust_shndx(symtabshdr.get_sh_link());
2773 section_size_type strtab_size;
2774 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2775 &strtab_size,
2776 false);
2777 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2778
2779 // Get views into the output file for the portions of the symbol table
2780 // and the dynamic symbol table that we will be writing.
2781 off_t output_size = this->output_local_symbol_count_ * sym_size;
2782 unsigned char* oview = NULL;
2783 if (output_size > 0)
2784 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2785 output_size);
2786
2787 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2788 unsigned char* dyn_oview = NULL;
2789 if (dyn_output_size > 0)
2790 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2791 dyn_output_size);
2792
2793 const Output_sections& out_sections(this->output_sections());
2794
2795 gold_assert(this->local_values_.size() == loccount);
2796
2797 unsigned char* ov = oview;
2798 unsigned char* dyn_ov = dyn_oview;
2799 psyms += sym_size;
2800 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2801 {
2802 elfcpp::Sym<size, big_endian> isym(psyms);
2803
2804 Symbol_value<size>& lv(this->local_values_[i]);
2805
2806 bool is_ordinary;
2807 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2808 &is_ordinary);
2809 if (is_ordinary)
2810 {
2811 gold_assert(st_shndx < out_sections.size());
2812 if (out_sections[st_shndx] == NULL)
2813 continue;
2814 st_shndx = out_sections[st_shndx]->out_shndx();
2815 if (st_shndx >= elfcpp::SHN_LORESERVE)
2816 {
2817 if (lv.has_output_symtab_entry())
2818 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2819 if (lv.has_output_dynsym_entry())
2820 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2821 st_shndx = elfcpp::SHN_XINDEX;
2822 }
2823 }
2824
2825 // Write the symbol to the output symbol table.
2826 if (lv.has_output_symtab_entry())
2827 {
2828 elfcpp::Sym_write<size, big_endian> osym(ov);
2829
2830 gold_assert(isym.get_st_name() < strtab_size);
2831 const char* name = pnames + isym.get_st_name();
2832 osym.put_st_name(sympool->get_offset(name));
2833 osym.put_st_value(lv.value(this, 0));
2834 osym.put_st_size(isym.get_st_size());
2835 osym.put_st_info(isym.get_st_info());
2836 osym.put_st_other(isym.get_st_other());
2837 osym.put_st_shndx(st_shndx);
2838
2839 ov += sym_size;
2840 }
2841
2842 // Write the symbol to the output dynamic symbol table.
2843 if (lv.has_output_dynsym_entry())
2844 {
2845 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2846 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2847
2848 gold_assert(isym.get_st_name() < strtab_size);
2849 const char* name = pnames + isym.get_st_name();
2850 osym.put_st_name(dynpool->get_offset(name));
2851 osym.put_st_value(lv.value(this, 0));
2852 osym.put_st_size(isym.get_st_size());
2853 osym.put_st_info(isym.get_st_info());
2854 osym.put_st_other(isym.get_st_other());
2855 osym.put_st_shndx(st_shndx);
2856
2857 dyn_ov += sym_size;
2858 }
2859 }
2860
2861
2862 if (output_size > 0)
2863 {
2864 gold_assert(ov - oview == output_size);
2865 of->write_output_view(symtab_off + this->local_symbol_offset_,
2866 output_size, oview);
2867 }
2868
2869 if (dyn_output_size > 0)
2870 {
2871 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2872 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2873 dyn_oview);
2874 }
2875 }
2876
2877 // Set *INFO to symbolic information about the offset OFFSET in the
2878 // section SHNDX. Return true if we found something, false if we
2879 // found nothing.
2880
2881 template<int size, bool big_endian>
2882 bool
2883 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2884 unsigned int shndx,
2885 off_t offset,
2886 Symbol_location_info* info)
2887 {
2888 if (this->symtab_shndx_ == 0)
2889 return false;
2890
2891 section_size_type symbols_size;
2892 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2893 &symbols_size,
2894 false);
2895
2896 unsigned int symbol_names_shndx =
2897 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2898 section_size_type names_size;
2899 const unsigned char* symbol_names_u =
2900 this->section_contents(symbol_names_shndx, &names_size, false);
2901 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2902
2903 const int sym_size = This::sym_size;
2904 const size_t count = symbols_size / sym_size;
2905
2906 const unsigned char* p = symbols;
2907 for (size_t i = 0; i < count; ++i, p += sym_size)
2908 {
2909 elfcpp::Sym<size, big_endian> sym(p);
2910
2911 if (sym.get_st_type() == elfcpp::STT_FILE)
2912 {
2913 if (sym.get_st_name() >= names_size)
2914 info->source_file = "(invalid)";
2915 else
2916 info->source_file = symbol_names + sym.get_st_name();
2917 continue;
2918 }
2919
2920 bool is_ordinary;
2921 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2922 &is_ordinary);
2923 if (is_ordinary
2924 && st_shndx == shndx
2925 && static_cast<off_t>(sym.get_st_value()) <= offset
2926 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2927 > offset))
2928 {
2929 info->enclosing_symbol_type = sym.get_st_type();
2930 if (sym.get_st_name() > names_size)
2931 info->enclosing_symbol_name = "(invalid)";
2932 else
2933 {
2934 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2935 if (parameters->options().do_demangle())
2936 {
2937 char* demangled_name = cplus_demangle(
2938 info->enclosing_symbol_name.c_str(),
2939 DMGL_ANSI | DMGL_PARAMS);
2940 if (demangled_name != NULL)
2941 {
2942 info->enclosing_symbol_name.assign(demangled_name);
2943 free(demangled_name);
2944 }
2945 }
2946 }
2947 return true;
2948 }
2949 }
2950
2951 return false;
2952 }
2953
2954 // Look for a kept section corresponding to the given discarded section,
2955 // and return its output address. This is used only for relocations in
2956 // debugging sections. If we can't find the kept section, return 0.
2957
2958 template<int size, bool big_endian>
2959 typename Sized_relobj_file<size, big_endian>::Address
2960 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2961 unsigned int shndx,
2962 std::string& section_name,
2963 bool* pfound) const
2964 {
2965 Kept_section* kept_section;
2966 bool is_comdat;
2967 uint64_t sh_size;
2968 unsigned int symndx;
2969 bool found = false;
2970
2971 if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2972 &kept_section))
2973 {
2974 Relobj* kept_object = kept_section->object();
2975 unsigned int kept_shndx = 0;
2976 if (!kept_section->is_comdat())
2977 {
2978 // The kept section is a linkonce section.
2979 if (sh_size == kept_section->linkonce_size())
2980 found = true;
2981 }
2982 else
2983 {
2984 if (is_comdat)
2985 {
2986 // Find the corresponding kept section.
2987 // Since we're using this mapping for relocation processing,
2988 // we don't want to match sections unless they have the same
2989 // size.
2990 uint64_t kept_size = 0;
2991 if (kept_section->find_comdat_section(section_name, &kept_shndx,
2992 &kept_size))
2993 {
2994 if (sh_size == kept_size)
2995 found = true;
2996 }
2997 }
2998 else
2999 {
3000 uint64_t kept_size = 0;
3001 if (kept_section->find_single_comdat_section(&kept_shndx,
3002 &kept_size)
3003 && sh_size == kept_size)
3004 found = true;
3005 }
3006 }
3007
3008 if (found)
3009 {
3010 Sized_relobj_file<size, big_endian>* kept_relobj =
3011 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
3012 Output_section* os = kept_relobj->output_section(kept_shndx);
3013 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
3014 if (os != NULL && offset != invalid_address)
3015 {
3016 *pfound = true;
3017 return os->address() + offset;
3018 }
3019 }
3020 }
3021 *pfound = false;
3022 return 0;
3023 }
3024
3025 // Look for a kept section corresponding to the given discarded section,
3026 // and return its object file.
3027
3028 template<int size, bool big_endian>
3029 Relobj*
3030 Sized_relobj_file<size, big_endian>::find_kept_section_object(
3031 unsigned int shndx, unsigned int *symndx_p) const
3032 {
3033 Kept_section* kept_section;
3034 bool is_comdat;
3035 uint64_t sh_size;
3036 if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
3037 &kept_section))
3038 return kept_section->object();
3039 return NULL;
3040 }
3041
3042 // Return the name of symbol SYMNDX.
3043
3044 template<int size, bool big_endian>
3045 const char*
3046 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3047 {
3048 if (this->symtab_shndx_ == 0)
3049 return NULL;
3050
3051 section_size_type symbols_size;
3052 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3053 &symbols_size,
3054 false);
3055
3056 unsigned int symbol_names_shndx =
3057 this->adjust_shndx(this->section_link(this->symtab_shndx_));
3058 section_size_type names_size;
3059 const unsigned char* symbol_names_u =
3060 this->section_contents(symbol_names_shndx, &names_size, false);
3061 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3062
3063 const unsigned char* p = symbols + symndx * This::sym_size;
3064
3065 if (p >= symbols + symbols_size)
3066 return NULL;
3067
3068 elfcpp::Sym<size, big_endian> sym(p);
3069
3070 return symbol_names + sym.get_st_name();
3071 }
3072
3073 // Get symbol counts.
3074
3075 template<int size, bool big_endian>
3076 void
3077 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3078 const Symbol_table*,
3079 size_t* defined,
3080 size_t* used) const
3081 {
3082 *defined = this->defined_count_;
3083 size_t count = 0;
3084 for (typename Symbols::const_iterator p = this->symbols_.begin();
3085 p != this->symbols_.end();
3086 ++p)
3087 if (*p != NULL
3088 && (*p)->source() == Symbol::FROM_OBJECT
3089 && (*p)->object() == this
3090 && (*p)->is_defined())
3091 ++count;
3092 *used = count;
3093 }
3094
3095 // Return a view of the decompressed contents of a section. Set *PLEN
3096 // to the size. Set *IS_NEW to true if the contents need to be freed
3097 // by the caller.
3098
3099 const unsigned char*
3100 Object::decompressed_section_contents(
3101 unsigned int shndx,
3102 section_size_type* plen,
3103 bool* is_new,
3104 uint64_t* palign)
3105 {
3106 section_size_type buffer_size;
3107 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3108 false);
3109
3110 if (this->compressed_sections_ == NULL)
3111 {
3112 *plen = buffer_size;
3113 *is_new = false;
3114 return buffer;
3115 }
3116
3117 Compressed_section_map::const_iterator p =
3118 this->compressed_sections_->find(shndx);
3119 if (p == this->compressed_sections_->end())
3120 {
3121 *plen = buffer_size;
3122 *is_new = false;
3123 return buffer;
3124 }
3125
3126 section_size_type uncompressed_size = p->second.size;
3127 if (p->second.contents != NULL)
3128 {
3129 *plen = uncompressed_size;
3130 *is_new = false;
3131 if (palign != NULL)
3132 *palign = p->second.addralign;
3133 return p->second.contents;
3134 }
3135
3136 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3137 if (!decompress_input_section(buffer,
3138 buffer_size,
3139 uncompressed_data,
3140 uncompressed_size,
3141 elfsize(),
3142 is_big_endian(),
3143 p->second.flag))
3144 this->error(_("could not decompress section %s"),
3145 this->do_section_name(shndx).c_str());
3146
3147 // We could cache the results in p->second.contents and store
3148 // false in *IS_NEW, but build_compressed_section_map() would
3149 // have done so if it had expected it to be profitable. If
3150 // we reach this point, we expect to need the contents only
3151 // once in this pass.
3152 *plen = uncompressed_size;
3153 *is_new = true;
3154 if (palign != NULL)
3155 *palign = p->second.addralign;
3156 return uncompressed_data;
3157 }
3158
3159 // Discard any buffers of uncompressed sections. This is done
3160 // at the end of the Add_symbols task.
3161
3162 void
3163 Object::discard_decompressed_sections()
3164 {
3165 if (this->compressed_sections_ == NULL)
3166 return;
3167
3168 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3169 p != this->compressed_sections_->end();
3170 ++p)
3171 {
3172 if (p->second.contents != NULL)
3173 {
3174 delete[] p->second.contents;
3175 p->second.contents = NULL;
3176 }
3177 }
3178 }
3179
3180 // Input_objects methods.
3181
3182 // Add a regular relocatable object to the list. Return false if this
3183 // object should be ignored.
3184
3185 bool
3186 Input_objects::add_object(Object* obj)
3187 {
3188 // Print the filename if the -t/--trace option is selected.
3189 if (parameters->options().trace())
3190 gold_info("%s", obj->name().c_str());
3191
3192 if (!obj->is_dynamic())
3193 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3194 else
3195 {
3196 // See if this is a duplicate SONAME.
3197 Dynobj* dynobj = static_cast<Dynobj*>(obj);
3198 const char* soname = dynobj->soname();
3199
3200 Unordered_map<std::string, Object*>::value_type val(soname, obj);
3201 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3202 this->sonames_.insert(val);
3203 if (!ins.second)
3204 {
3205 // We have already seen a dynamic object with this soname.
3206 // If any instances of this object on the command line have
3207 // the --no-as-needed flag, make sure the one we keep is
3208 // marked so.
3209 if (!obj->as_needed())
3210 {
3211 gold_assert(ins.first->second != NULL);
3212 ins.first->second->clear_as_needed();
3213 }
3214 return false;
3215 }
3216
3217 this->dynobj_list_.push_back(dynobj);
3218 }
3219
3220 // Add this object to the cross-referencer if requested.
3221 if (parameters->options().user_set_print_symbol_counts()
3222 || parameters->options().cref())
3223 {
3224 if (this->cref_ == NULL)
3225 this->cref_ = new Cref();
3226 this->cref_->add_object(obj);
3227 }
3228
3229 return true;
3230 }
3231
3232 // For each dynamic object, record whether we've seen all of its
3233 // explicit dependencies.
3234
3235 void
3236 Input_objects::check_dynamic_dependencies() const
3237 {
3238 bool issued_copy_dt_needed_error = false;
3239 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3240 p != this->dynobj_list_.end();
3241 ++p)
3242 {
3243 const Dynobj::Needed& needed((*p)->needed());
3244 bool found_all = true;
3245 Dynobj::Needed::const_iterator pneeded;
3246 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3247 {
3248 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3249 {
3250 found_all = false;
3251 break;
3252 }
3253 }
3254 (*p)->set_has_unknown_needed_entries(!found_all);
3255
3256 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3257 // that gold does not support. However, they cause no trouble
3258 // unless there is a DT_NEEDED entry that we don't know about;
3259 // warn only in that case.
3260 if (!found_all
3261 && !issued_copy_dt_needed_error
3262 && (parameters->options().copy_dt_needed_entries()
3263 || parameters->options().add_needed()))
3264 {
3265 const char* optname;
3266 if (parameters->options().copy_dt_needed_entries())
3267 optname = "--copy-dt-needed-entries";
3268 else
3269 optname = "--add-needed";
3270 gold_error(_("%s is not supported but is required for %s in %s"),
3271 optname, (*pneeded).c_str(), (*p)->name().c_str());
3272 issued_copy_dt_needed_error = true;
3273 }
3274 }
3275 }
3276
3277 // Start processing an archive.
3278
3279 void
3280 Input_objects::archive_start(Archive* archive)
3281 {
3282 if (parameters->options().user_set_print_symbol_counts()
3283 || parameters->options().cref())
3284 {
3285 if (this->cref_ == NULL)
3286 this->cref_ = new Cref();
3287 this->cref_->add_archive_start(archive);
3288 }
3289 }
3290
3291 // Stop processing an archive.
3292
3293 void
3294 Input_objects::archive_stop(Archive* archive)
3295 {
3296 if (parameters->options().user_set_print_symbol_counts()
3297 || parameters->options().cref())
3298 this->cref_->add_archive_stop(archive);
3299 }
3300
3301 // Print symbol counts
3302
3303 void
3304 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3305 {
3306 if (parameters->options().user_set_print_symbol_counts()
3307 && this->cref_ != NULL)
3308 this->cref_->print_symbol_counts(symtab);
3309 }
3310
3311 // Print a cross reference table.
3312
3313 void
3314 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3315 {
3316 if (parameters->options().cref() && this->cref_ != NULL)
3317 this->cref_->print_cref(symtab, f);
3318 }
3319
3320 // Relocate_info methods.
3321
3322 // Return a string describing the location of a relocation when file
3323 // and lineno information is not available. This is only used in
3324 // error messages.
3325
3326 template<int size, bool big_endian>
3327 std::string
3328 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3329 {
3330 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3331 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3332 if (!ret.empty())
3333 return ret;
3334
3335 ret = this->object->name();
3336
3337 Symbol_location_info info;
3338 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3339 {
3340 if (!info.source_file.empty())
3341 {
3342 ret += ":";
3343 ret += info.source_file;
3344 }
3345 ret += ":";
3346 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3347 ret += _("function ");
3348 ret += info.enclosing_symbol_name;
3349 return ret;
3350 }
3351
3352 ret += "(";
3353 ret += this->object->section_name(this->data_shndx);
3354 char buf[100];
3355 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3356 ret += buf;
3357 return ret;
3358 }
3359
3360 } // End namespace gold.
3361
3362 namespace
3363 {
3364
3365 using namespace gold;
3366
3367 // Read an ELF file with the header and return the appropriate
3368 // instance of Object.
3369
3370 template<int size, bool big_endian>
3371 Object*
3372 make_elf_sized_object(const std::string& name, Input_file* input_file,
3373 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3374 bool* punconfigured)
3375 {
3376 Target* target = select_target(input_file, offset,
3377 ehdr.get_e_machine(), size, big_endian,
3378 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3379 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3380 if (target == NULL)
3381 gold_fatal(_("%s: unsupported ELF machine number %d"),
3382 name.c_str(), ehdr.get_e_machine());
3383
3384 if (!parameters->target_valid())
3385 set_parameters_target(target);
3386 else if (target != &parameters->target())
3387 {
3388 if (punconfigured != NULL)
3389 *punconfigured = true;
3390 else
3391 gold_error(_("%s: incompatible target"), name.c_str());
3392 return NULL;
3393 }
3394
3395 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3396 ehdr);
3397 }
3398
3399 } // End anonymous namespace.
3400
3401 namespace gold
3402 {
3403
3404 // Return whether INPUT_FILE is an ELF object.
3405
3406 bool
3407 is_elf_object(Input_file* input_file, off_t offset,
3408 const unsigned char** start, int* read_size)
3409 {
3410 off_t filesize = input_file->file().filesize();
3411 int want = elfcpp::Elf_recognizer::max_header_size;
3412 if (filesize - offset < want)
3413 want = filesize - offset;
3414
3415 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3416 true, false);
3417 *start = p;
3418 *read_size = want;
3419
3420 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3421 }
3422
3423 // Read an ELF file and return the appropriate instance of Object.
3424
3425 Object*
3426 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3427 const unsigned char* p, section_offset_type bytes,
3428 bool* punconfigured)
3429 {
3430 if (punconfigured != NULL)
3431 *punconfigured = false;
3432
3433 std::string error;
3434 bool big_endian = false;
3435 int size = 0;
3436 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3437 &big_endian, &error))
3438 {
3439 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3440 return NULL;
3441 }
3442
3443 if (size == 32)
3444 {
3445 if (big_endian)
3446 {
3447 #ifdef HAVE_TARGET_32_BIG
3448 elfcpp::Ehdr<32, true> ehdr(p);
3449 return make_elf_sized_object<32, true>(name, input_file,
3450 offset, ehdr, punconfigured);
3451 #else
3452 if (punconfigured != NULL)
3453 *punconfigured = true;
3454 else
3455 gold_error(_("%s: not configured to support "
3456 "32-bit big-endian object"),
3457 name.c_str());
3458 return NULL;
3459 #endif
3460 }
3461 else
3462 {
3463 #ifdef HAVE_TARGET_32_LITTLE
3464 elfcpp::Ehdr<32, false> ehdr(p);
3465 return make_elf_sized_object<32, false>(name, input_file,
3466 offset, ehdr, punconfigured);
3467 #else
3468 if (punconfigured != NULL)
3469 *punconfigured = true;
3470 else
3471 gold_error(_("%s: not configured to support "
3472 "32-bit little-endian object"),
3473 name.c_str());
3474 return NULL;
3475 #endif
3476 }
3477 }
3478 else if (size == 64)
3479 {
3480 if (big_endian)
3481 {
3482 #ifdef HAVE_TARGET_64_BIG
3483 elfcpp::Ehdr<64, true> ehdr(p);
3484 return make_elf_sized_object<64, true>(name, input_file,
3485 offset, ehdr, punconfigured);
3486 #else
3487 if (punconfigured != NULL)
3488 *punconfigured = true;
3489 else
3490 gold_error(_("%s: not configured to support "
3491 "64-bit big-endian object"),
3492 name.c_str());
3493 return NULL;
3494 #endif
3495 }
3496 else
3497 {
3498 #ifdef HAVE_TARGET_64_LITTLE
3499 elfcpp::Ehdr<64, false> ehdr(p);
3500 return make_elf_sized_object<64, false>(name, input_file,
3501 offset, ehdr, punconfigured);
3502 #else
3503 if (punconfigured != NULL)
3504 *punconfigured = true;
3505 else
3506 gold_error(_("%s: not configured to support "
3507 "64-bit little-endian object"),
3508 name.c_str());
3509 return NULL;
3510 #endif
3511 }
3512 }
3513 else
3514 gold_unreachable();
3515 }
3516
3517 // Instantiate the templates we need.
3518
3519 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3520 template
3521 void
3522 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3523 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3524 Unordered_map<section_offset_type,
3525 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3526 #endif
3527
3528 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3529 template
3530 void
3531 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3532 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3533 Unordered_map<section_offset_type,
3534 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3535 #endif
3536
3537 #ifdef HAVE_TARGET_32_LITTLE
3538 template
3539 void
3540 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3541 Read_symbols_data*);
3542 template
3543 const unsigned char*
3544 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3545 section_size_type, const unsigned char*) const;
3546 #endif
3547
3548 #ifdef HAVE_TARGET_32_BIG
3549 template
3550 void
3551 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3552 Read_symbols_data*);
3553 template
3554 const unsigned char*
3555 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3556 section_size_type, const unsigned char*) const;
3557 #endif
3558
3559 #ifdef HAVE_TARGET_64_LITTLE
3560 template
3561 void
3562 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3563 Read_symbols_data*);
3564 template
3565 const unsigned char*
3566 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3567 section_size_type, const unsigned char*) const;
3568 #endif
3569
3570 #ifdef HAVE_TARGET_64_BIG
3571 template
3572 void
3573 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3574 Read_symbols_data*);
3575 template
3576 const unsigned char*
3577 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3578 section_size_type, const unsigned char*) const;
3579 #endif
3580
3581 #ifdef HAVE_TARGET_32_LITTLE
3582 template
3583 class Sized_relobj<32, false>;
3584
3585 template
3586 class Sized_relobj_file<32, false>;
3587 #endif
3588
3589 #ifdef HAVE_TARGET_32_BIG
3590 template
3591 class Sized_relobj<32, true>;
3592
3593 template
3594 class Sized_relobj_file<32, true>;
3595 #endif
3596
3597 #ifdef HAVE_TARGET_64_LITTLE
3598 template
3599 class Sized_relobj<64, false>;
3600
3601 template
3602 class Sized_relobj_file<64, false>;
3603 #endif
3604
3605 #ifdef HAVE_TARGET_64_BIG
3606 template
3607 class Sized_relobj<64, true>;
3608
3609 template
3610 class Sized_relobj_file<64, true>;
3611 #endif
3612
3613 #ifdef HAVE_TARGET_32_LITTLE
3614 template
3615 struct Relocate_info<32, false>;
3616 #endif
3617
3618 #ifdef HAVE_TARGET_32_BIG
3619 template
3620 struct Relocate_info<32, true>;
3621 #endif
3622
3623 #ifdef HAVE_TARGET_64_LITTLE
3624 template
3625 struct Relocate_info<64, false>;
3626 #endif
3627
3628 #ifdef HAVE_TARGET_64_BIG
3629 template
3630 struct Relocate_info<64, true>;
3631 #endif
3632
3633 #ifdef HAVE_TARGET_32_LITTLE
3634 template
3635 void
3636 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3637
3638 template
3639 void
3640 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3641 const unsigned char*);
3642 #endif
3643
3644 #ifdef HAVE_TARGET_32_BIG
3645 template
3646 void
3647 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3648
3649 template
3650 void
3651 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3652 const unsigned char*);
3653 #endif
3654
3655 #ifdef HAVE_TARGET_64_LITTLE
3656 template
3657 void
3658 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3659
3660 template
3661 void
3662 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3663 const unsigned char*);
3664 #endif
3665
3666 #ifdef HAVE_TARGET_64_BIG
3667 template
3668 void
3669 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3670
3671 template
3672 void
3673 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3674 const unsigned char*);
3675 #endif
3676
3677 #ifdef HAVE_TARGET_32_LITTLE
3678 template
3679 Compressed_section_map*
3680 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3681 const char*, section_size_type,
3682 Object*, bool);
3683 #endif
3684
3685 #ifdef HAVE_TARGET_32_BIG
3686 template
3687 Compressed_section_map*
3688 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3689 const char*, section_size_type,
3690 Object*, bool);
3691 #endif
3692
3693 #ifdef HAVE_TARGET_64_LITTLE
3694 template
3695 Compressed_section_map*
3696 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3697 const char*, section_size_type,
3698 Object*, bool);
3699 #endif
3700
3701 #ifdef HAVE_TARGET_64_BIG
3702 template
3703 Compressed_section_map*
3704 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3705 const char*, section_size_type,
3706 Object*, bool);
3707 #endif
3708
3709 } // End namespace gold.
This page took 0.109662 seconds and 5 git commands to generate.